src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Thu, 14 Mar 2013 09:37:38 +0100

author
tschatzl
date
Thu, 14 Mar 2013 09:37:38 +0100
changeset 4785
3c226052f7dc
parent 4384
b735136e0d82
child 4904
7b835924c31c
permissions
-rw-r--r--

6733980: par compact - TraceGen1Time always shows 0.0000 seconds
Summary: Use the correct collector to retrieve accumulated gen1 trace time
Reviewed-by: johnc, jmasa

duke@435 1 /*
never@3499 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "code/codeCache.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
stefank@2314 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
stefank@2314 32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
stefank@2314 33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
stefank@2314 34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
stefank@2314 35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
stefank@2314 36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
stefank@2314 37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
stefank@2314 38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
stefank@2314 39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
stefank@2314 40 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 42 #include "gc_implementation/shared/isGCActiveMark.hpp"
stefank@2314 43 #include "gc_interface/gcCause.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/referencePolicy.hpp"
stefank@2314 46 #include "memory/referenceProcessor.hpp"
coleenp@4037 47 #include "oops/methodData.hpp"
stefank@2314 48 #include "oops/oop.inline.hpp"
stefank@2314 49 #include "oops/oop.pcgc.inline.hpp"
stefank@2314 50 #include "runtime/fprofiler.hpp"
stefank@2314 51 #include "runtime/safepoint.hpp"
stefank@2314 52 #include "runtime/vmThread.hpp"
stefank@2314 53 #include "services/management.hpp"
stefank@2314 54 #include "services/memoryService.hpp"
zgu@3900 55 #include "services/memTracker.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/stack.inline.hpp"
duke@435 58
duke@435 59 #include <math.h>
duke@435 60
duke@435 61 // All sizes are in HeapWords.
jcoomes@810 62 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words
jcoomes@810 63 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
jcoomes@810 64 const size_t ParallelCompactData::RegionSizeBytes =
jcoomes@810 65 RegionSize << LogHeapWordSize;
jcoomes@810 66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
jcoomes@810 67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
jcoomes@810 68 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
duke@435 69
jcoomes@810 70 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 71 ParallelCompactData::RegionData::dc_shift = 27;
jcoomes@810 72
jcoomes@810 73 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
jcoomes@810 75
jcoomes@810 76 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
jcoomes@810 78
jcoomes@810 79 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
jcoomes@810 81
jcoomes@810 82 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
jcoomes@810 84
jcoomes@810 85 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
duke@435 87
duke@435 88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 89 bool PSParallelCompact::_print_phases = false;
duke@435 90
duke@435 91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
coleenp@4037 92 Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 93
duke@435 94 double PSParallelCompact::_dwl_mean;
duke@435 95 double PSParallelCompact::_dwl_std_dev;
duke@435 96 double PSParallelCompact::_dwl_first_term;
duke@435 97 double PSParallelCompact::_dwl_adjustment;
duke@435 98 #ifdef ASSERT
duke@435 99 bool PSParallelCompact::_dwl_initialized = false;
duke@435 100 #endif // #ifdef ASSERT
duke@435 101
jcoomes@917 102 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 103 HeapWord* destination)
jcoomes@917 104 {
jcoomes@917 105 assert(src_region_idx != 0, "invalid src_region_idx");
jcoomes@917 106 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
jcoomes@917 107 assert(destination != NULL, "invalid destination argument");
jcoomes@917 108
jcoomes@917 109 _src_region_idx = src_region_idx;
jcoomes@917 110 _partial_obj_size = partial_obj_size;
jcoomes@917 111 _destination = destination;
jcoomes@917 112
jcoomes@917 113 // These fields may not be updated below, so make sure they're clear.
jcoomes@917 114 assert(_dest_region_addr == NULL, "should have been cleared");
jcoomes@917 115 assert(_first_src_addr == NULL, "should have been cleared");
jcoomes@917 116
jcoomes@917 117 // Determine the number of destination regions for the partial object.
jcoomes@917 118 HeapWord* const last_word = destination + partial_obj_size - 1;
jcoomes@917 119 const ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@917 120 HeapWord* const beg_region_addr = sd.region_align_down(destination);
jcoomes@917 121 HeapWord* const end_region_addr = sd.region_align_down(last_word);
jcoomes@917 122
jcoomes@917 123 if (beg_region_addr == end_region_addr) {
jcoomes@917 124 // One destination region.
jcoomes@917 125 _destination_count = 1;
jcoomes@917 126 if (end_region_addr == destination) {
jcoomes@917 127 // The destination falls on a region boundary, thus the first word of the
jcoomes@917 128 // partial object will be the first word copied to the destination region.
jcoomes@917 129 _dest_region_addr = end_region_addr;
jcoomes@917 130 _first_src_addr = sd.region_to_addr(src_region_idx);
jcoomes@917 131 }
jcoomes@917 132 } else {
jcoomes@917 133 // Two destination regions. When copied, the partial object will cross a
jcoomes@917 134 // destination region boundary, so a word somewhere within the partial
jcoomes@917 135 // object will be the first word copied to the second destination region.
jcoomes@917 136 _destination_count = 2;
jcoomes@917 137 _dest_region_addr = end_region_addr;
jcoomes@917 138 const size_t ofs = pointer_delta(end_region_addr, destination);
jcoomes@917 139 assert(ofs < _partial_obj_size, "sanity");
jcoomes@917 140 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
jcoomes@917 141 }
jcoomes@917 142 }
jcoomes@917 143
jcoomes@917 144 void SplitInfo::clear()
jcoomes@917 145 {
jcoomes@917 146 _src_region_idx = 0;
jcoomes@917 147 _partial_obj_size = 0;
jcoomes@917 148 _destination = NULL;
jcoomes@917 149 _destination_count = 0;
jcoomes@917 150 _dest_region_addr = NULL;
jcoomes@917 151 _first_src_addr = NULL;
jcoomes@917 152 assert(!is_valid(), "sanity");
jcoomes@917 153 }
jcoomes@917 154
jcoomes@917 155 #ifdef ASSERT
jcoomes@917 156 void SplitInfo::verify_clear()
jcoomes@917 157 {
jcoomes@917 158 assert(_src_region_idx == 0, "not clear");
jcoomes@917 159 assert(_partial_obj_size == 0, "not clear");
jcoomes@917 160 assert(_destination == NULL, "not clear");
jcoomes@917 161 assert(_destination_count == 0, "not clear");
jcoomes@917 162 assert(_dest_region_addr == NULL, "not clear");
jcoomes@917 163 assert(_first_src_addr == NULL, "not clear");
jcoomes@917 164 }
jcoomes@917 165 #endif // #ifdef ASSERT
jcoomes@917 166
jcoomes@917 167
duke@435 168 #ifndef PRODUCT
duke@435 169 const char* PSParallelCompact::space_names[] = {
coleenp@4037 170 "old ", "eden", "from", "to "
duke@435 171 };
duke@435 172
jcoomes@810 173 void PSParallelCompact::print_region_ranges()
duke@435 174 {
duke@435 175 tty->print_cr("space bottom top end new_top");
duke@435 176 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 177
duke@435 178 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 179 const MutableSpace* space = _space_info[id].space();
duke@435 180 tty->print_cr("%u %s "
jcoomes@699 181 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
jcoomes@699 182 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
duke@435 183 id, space_names[id],
jcoomes@810 184 summary_data().addr_to_region_idx(space->bottom()),
jcoomes@810 185 summary_data().addr_to_region_idx(space->top()),
jcoomes@810 186 summary_data().addr_to_region_idx(space->end()),
jcoomes@810 187 summary_data().addr_to_region_idx(_space_info[id].new_top()));
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191 void
jcoomes@810 192 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
duke@435 193 {
jcoomes@810 194 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
jcoomes@810 195 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
duke@435 196
duke@435 197 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 198 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
jcoomes@810 199 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 200 REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 201 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
jcoomes@810 202 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
duke@435 203 i, c->data_location(), dci, c->destination(),
duke@435 204 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 205 c->data_size(), c->source_region(), c->destination_count());
jcoomes@810 206
jcoomes@810 207 #undef REGION_IDX_FORMAT
jcoomes@810 208 #undef REGION_DATA_FORMAT
duke@435 209 }
duke@435 210
duke@435 211 void
duke@435 212 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 213 HeapWord* const beg_addr,
duke@435 214 HeapWord* const end_addr)
duke@435 215 {
duke@435 216 size_t total_words = 0;
jcoomes@810 217 size_t i = summary_data.addr_to_region_idx(beg_addr);
jcoomes@810 218 const size_t last = summary_data.addr_to_region_idx(end_addr);
duke@435 219 HeapWord* pdest = 0;
duke@435 220
duke@435 221 while (i <= last) {
jcoomes@810 222 ParallelCompactData::RegionData* c = summary_data.region(i);
duke@435 223 if (c->data_size() != 0 || c->destination() != pdest) {
jcoomes@810 224 print_generic_summary_region(i, c);
duke@435 225 total_words += c->data_size();
duke@435 226 pdest = c->destination();
duke@435 227 }
duke@435 228 ++i;
duke@435 229 }
duke@435 230
duke@435 231 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 232 }
duke@435 233
duke@435 234 void
duke@435 235 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 236 SpaceInfo* space_info)
duke@435 237 {
duke@435 238 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 239 const MutableSpace* space = space_info[id].space();
duke@435 240 print_generic_summary_data(summary_data, space->bottom(),
duke@435 241 MAX2(space->top(), space_info[id].new_top()));
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 void
jcoomes@810 246 print_initial_summary_region(size_t i,
jcoomes@810 247 const ParallelCompactData::RegionData* c,
jcoomes@810 248 bool newline = true)
duke@435 249 {
jcoomes@699 250 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
jcoomes@699 251 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
jcoomes@699 252 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
duke@435 253 i, c->destination(),
duke@435 254 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 255 c->data_size(), c->source_region(), c->destination_count());
duke@435 256 if (newline) tty->cr();
duke@435 257 }
duke@435 258
duke@435 259 void
duke@435 260 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 261 const MutableSpace* space) {
duke@435 262 if (space->top() == space->bottom()) {
duke@435 263 return;
duke@435 264 }
duke@435 265
jcoomes@810 266 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 267 typedef ParallelCompactData::RegionData RegionData;
jcoomes@810 268 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
jcoomes@810 269 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
jcoomes@810 270 const RegionData* c = summary_data.region(end_region - 1);
duke@435 271 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 272 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 273
jcoomes@810 274 // Print (and count) the full regions at the beginning of the space.
jcoomes@810 275 size_t full_region_count = 0;
jcoomes@810 276 size_t i = summary_data.addr_to_region_idx(space->bottom());
jcoomes@810 277 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
jcoomes@810 278 print_initial_summary_region(i, summary_data.region(i));
jcoomes@810 279 ++full_region_count;
duke@435 280 ++i;
duke@435 281 }
duke@435 282
jcoomes@810 283 size_t live_to_right = live_in_space - full_region_count * region_size;
duke@435 284
duke@435 285 double max_reclaimed_ratio = 0.0;
jcoomes@810 286 size_t max_reclaimed_ratio_region = 0;
duke@435 287 size_t max_dead_to_right = 0;
duke@435 288 size_t max_live_to_right = 0;
duke@435 289
jcoomes@810 290 // Print the 'reclaimed ratio' for regions while there is something live in
jcoomes@810 291 // the region or to the right of it. The remaining regions are empty (and
duke@435 292 // uninteresting), and computing the ratio will result in division by 0.
jcoomes@810 293 while (i < end_region && live_to_right > 0) {
jcoomes@810 294 c = summary_data.region(i);
jcoomes@810 295 HeapWord* const region_addr = summary_data.region_to_addr(i);
jcoomes@810 296 const size_t used_to_right = pointer_delta(space->top(), region_addr);
duke@435 297 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 298 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 299
duke@435 300 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 301 max_reclaimed_ratio = reclaimed_ratio;
jcoomes@810 302 max_reclaimed_ratio_region = i;
duke@435 303 max_dead_to_right = dead_to_right;
duke@435 304 max_live_to_right = live_to_right;
duke@435 305 }
duke@435 306
jcoomes@810 307 print_initial_summary_region(i, c, false);
jcoomes@699 308 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
duke@435 309 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 310
duke@435 311 live_to_right -= c->data_size();
duke@435 312 ++i;
duke@435 313 }
duke@435 314
jcoomes@810 315 // Any remaining regions are empty. Print one more if there is one.
jcoomes@810 316 if (i < end_region) {
jcoomes@810 317 print_initial_summary_region(i, summary_data.region(i));
duke@435 318 }
duke@435 319
jcoomes@699 320 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
jcoomes@699 321 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
jcoomes@810 322 max_reclaimed_ratio_region, max_dead_to_right,
duke@435 323 max_live_to_right, max_reclaimed_ratio);
duke@435 324 }
duke@435 325
duke@435 326 void
duke@435 327 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 328 SpaceInfo* space_info) {
coleenp@4037 329 unsigned int id = PSParallelCompact::old_space_id;
duke@435 330 const MutableSpace* space;
duke@435 331 do {
duke@435 332 space = space_info[id].space();
duke@435 333 print_initial_summary_data(summary_data, space);
duke@435 334 } while (++id < PSParallelCompact::eden_space_id);
duke@435 335
duke@435 336 do {
duke@435 337 space = space_info[id].space();
duke@435 338 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 339 } while (++id < PSParallelCompact::last_space_id);
duke@435 340 }
duke@435 341 #endif // #ifndef PRODUCT
duke@435 342
duke@435 343 #ifdef ASSERT
duke@435 344 size_t add_obj_count;
duke@435 345 size_t add_obj_size;
duke@435 346 size_t mark_bitmap_count;
duke@435 347 size_t mark_bitmap_size;
duke@435 348 #endif // #ifdef ASSERT
duke@435 349
duke@435 350 ParallelCompactData::ParallelCompactData()
duke@435 351 {
duke@435 352 _region_start = 0;
duke@435 353
jcoomes@810 354 _region_vspace = 0;
jcoomes@810 355 _region_data = 0;
jcoomes@810 356 _region_count = 0;
duke@435 357 }
duke@435 358
duke@435 359 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 360 {
duke@435 361 _region_start = covered_region.start();
duke@435 362 const size_t region_size = covered_region.word_size();
duke@435 363 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 364
jcoomes@810 365 assert(region_align_down(_region_start) == _region_start,
duke@435 366 "region start not aligned");
jcoomes@810 367 assert((region_size & RegionSizeOffsetMask) == 0,
jcoomes@810 368 "region size not a multiple of RegionSize");
jcoomes@810 369
jcoomes@810 370 bool result = initialize_region_data(region_size);
duke@435 371
duke@435 372 return result;
duke@435 373 }
duke@435 374
duke@435 375 PSVirtualSpace*
duke@435 376 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 377 {
duke@435 378 const size_t raw_bytes = count * element_size;
duke@435 379 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 380 const size_t granularity = os::vm_allocation_granularity();
duke@435 381 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 382
duke@435 383 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 384 MAX2(page_sz, granularity);
jcoomes@514 385 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 386 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 387 rs.size());
zgu@3900 388
zgu@3900 389 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
zgu@3900 390
duke@435 391 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 392 if (vspace != 0) {
duke@435 393 if (vspace->expand_by(bytes)) {
duke@435 394 return vspace;
duke@435 395 }
duke@435 396 delete vspace;
coleenp@672 397 // Release memory reserved in the space.
coleenp@672 398 rs.release();
duke@435 399 }
duke@435 400
duke@435 401 return 0;
duke@435 402 }
duke@435 403
jcoomes@810 404 bool ParallelCompactData::initialize_region_data(size_t region_size)
duke@435 405 {
jcoomes@810 406 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
jcoomes@810 407 _region_vspace = create_vspace(count, sizeof(RegionData));
jcoomes@810 408 if (_region_vspace != 0) {
jcoomes@810 409 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
jcoomes@810 410 _region_count = count;
duke@435 411 return true;
duke@435 412 }
duke@435 413 return false;
duke@435 414 }
duke@435 415
duke@435 416 void ParallelCompactData::clear()
duke@435 417 {
jcoomes@810 418 memset(_region_data, 0, _region_vspace->committed_size());
duke@435 419 }
duke@435 420
jcoomes@810 421 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
jcoomes@810 422 assert(beg_region <= _region_count, "beg_region out of range");
jcoomes@810 423 assert(end_region <= _region_count, "end_region out of range");
jcoomes@810 424
jcoomes@810 425 const size_t region_cnt = end_region - beg_region;
jcoomes@810 426 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
duke@435 427 }
duke@435 428
jcoomes@810 429 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
duke@435 430 {
jcoomes@810 431 const RegionData* cur_cp = region(region_idx);
jcoomes@810 432 const RegionData* const end_cp = region(region_count() - 1);
jcoomes@810 433
jcoomes@810 434 HeapWord* result = region_to_addr(region_idx);
duke@435 435 if (cur_cp < end_cp) {
duke@435 436 do {
duke@435 437 result += cur_cp->partial_obj_size();
jcoomes@810 438 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
duke@435 439 }
duke@435 440 return result;
duke@435 441 }
duke@435 442
duke@435 443 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 444 {
duke@435 445 const size_t obj_ofs = pointer_delta(addr, _region_start);
jcoomes@810 446 const size_t beg_region = obj_ofs >> Log2RegionSize;
jcoomes@810 447 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
duke@435 448
duke@435 449 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 450 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 451
jcoomes@810 452 if (beg_region == end_region) {
jcoomes@810 453 // All in one region.
jcoomes@810 454 _region_data[beg_region].add_live_obj(len);
duke@435 455 return;
duke@435 456 }
duke@435 457
jcoomes@810 458 // First region.
jcoomes@810 459 const size_t beg_ofs = region_offset(addr);
jcoomes@810 460 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
duke@435 461
coleenp@4037 462 Klass* klass = ((oop)addr)->klass();
jcoomes@810 463 // Middle regions--completely spanned by this object.
jcoomes@810 464 for (size_t region = beg_region + 1; region < end_region; ++region) {
jcoomes@810 465 _region_data[region].set_partial_obj_size(RegionSize);
jcoomes@810 466 _region_data[region].set_partial_obj_addr(addr);
duke@435 467 }
duke@435 468
jcoomes@810 469 // Last region.
jcoomes@810 470 const size_t end_ofs = region_offset(addr + len - 1);
jcoomes@810 471 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
jcoomes@810 472 _region_data[end_region].set_partial_obj_addr(addr);
duke@435 473 }
duke@435 474
duke@435 475 void
duke@435 476 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 477 {
jcoomes@810 478 assert(region_offset(beg) == 0, "not RegionSize aligned");
jcoomes@810 479 assert(region_offset(end) == 0, "not RegionSize aligned");
jcoomes@810 480
jcoomes@810 481 size_t cur_region = addr_to_region_idx(beg);
jcoomes@810 482 const size_t end_region = addr_to_region_idx(end);
duke@435 483 HeapWord* addr = beg;
jcoomes@810 484 while (cur_region < end_region) {
jcoomes@810 485 _region_data[cur_region].set_destination(addr);
jcoomes@810 486 _region_data[cur_region].set_destination_count(0);
jcoomes@810 487 _region_data[cur_region].set_source_region(cur_region);
jcoomes@810 488 _region_data[cur_region].set_data_location(addr);
jcoomes@810 489
jcoomes@810 490 // Update live_obj_size so the region appears completely full.
jcoomes@810 491 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
jcoomes@810 492 _region_data[cur_region].set_live_obj_size(live_size);
jcoomes@810 493
jcoomes@810 494 ++cur_region;
jcoomes@810 495 addr += RegionSize;
duke@435 496 }
duke@435 497 }
duke@435 498
jcoomes@917 499 // Find the point at which a space can be split and, if necessary, record the
jcoomes@917 500 // split point.
jcoomes@917 501 //
jcoomes@917 502 // If the current src region (which overflowed the destination space) doesn't
jcoomes@917 503 // have a partial object, the split point is at the beginning of the current src
jcoomes@917 504 // region (an "easy" split, no extra bookkeeping required).
jcoomes@917 505 //
jcoomes@917 506 // If the current src region has a partial object, the split point is in the
jcoomes@917 507 // region where that partial object starts (call it the split_region). If
jcoomes@917 508 // split_region has a partial object, then the split point is just after that
jcoomes@917 509 // partial object (a "hard" split where we have to record the split data and
jcoomes@917 510 // zero the partial_obj_size field). With a "hard" split, we know that the
jcoomes@917 511 // partial_obj ends within split_region because the partial object that caused
jcoomes@917 512 // the overflow starts in split_region. If split_region doesn't have a partial
jcoomes@917 513 // obj, then the split is at the beginning of split_region (another "easy"
jcoomes@917 514 // split).
jcoomes@917 515 HeapWord*
jcoomes@917 516 ParallelCompactData::summarize_split_space(size_t src_region,
jcoomes@917 517 SplitInfo& split_info,
jcoomes@917 518 HeapWord* destination,
jcoomes@917 519 HeapWord* target_end,
jcoomes@917 520 HeapWord** target_next)
jcoomes@917 521 {
jcoomes@917 522 assert(destination <= target_end, "sanity");
jcoomes@917 523 assert(destination + _region_data[src_region].data_size() > target_end,
jcoomes@917 524 "region should not fit into target space");
jcoomes@1131 525 assert(is_region_aligned(target_end), "sanity");
jcoomes@917 526
jcoomes@917 527 size_t split_region = src_region;
jcoomes@917 528 HeapWord* split_destination = destination;
jcoomes@917 529 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
jcoomes@917 530
jcoomes@917 531 if (destination + partial_obj_size > target_end) {
jcoomes@917 532 // The split point is just after the partial object (if any) in the
jcoomes@917 533 // src_region that contains the start of the object that overflowed the
jcoomes@917 534 // destination space.
jcoomes@917 535 //
jcoomes@917 536 // Find the start of the "overflow" object and set split_region to the
jcoomes@917 537 // region containing it.
jcoomes@917 538 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
jcoomes@917 539 split_region = addr_to_region_idx(overflow_obj);
jcoomes@917 540
jcoomes@917 541 // Clear the source_region field of all destination regions whose first word
jcoomes@917 542 // came from data after the split point (a non-null source_region field
jcoomes@917 543 // implies a region must be filled).
jcoomes@917 544 //
jcoomes@917 545 // An alternative to the simple loop below: clear during post_compact(),
jcoomes@917 546 // which uses memcpy instead of individual stores, and is easy to
jcoomes@917 547 // parallelize. (The downside is that it clears the entire RegionData
jcoomes@917 548 // object as opposed to just one field.)
jcoomes@917 549 //
jcoomes@917 550 // post_compact() would have to clear the summary data up to the highest
jcoomes@917 551 // address that was written during the summary phase, which would be
jcoomes@917 552 //
jcoomes@917 553 // max(top, max(new_top, clear_top))
jcoomes@917 554 //
jcoomes@917 555 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
jcoomes@1131 556 // to target_end.
jcoomes@917 557 const RegionData* const sr = region(split_region);
jcoomes@917 558 const size_t beg_idx =
jcoomes@917 559 addr_to_region_idx(region_align_up(sr->destination() +
jcoomes@917 560 sr->partial_obj_size()));
jcoomes@1131 561 const size_t end_idx = addr_to_region_idx(target_end);
jcoomes@917 562
jcoomes@917 563 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 564 gclog_or_tty->print_cr("split: clearing source_region field in ["
jcoomes@917 565 SIZE_FORMAT ", " SIZE_FORMAT ")",
jcoomes@917 566 beg_idx, end_idx);
jcoomes@917 567 }
jcoomes@917 568 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
jcoomes@917 569 _region_data[idx].set_source_region(0);
jcoomes@917 570 }
jcoomes@917 571
jcoomes@917 572 // Set split_destination and partial_obj_size to reflect the split region.
jcoomes@917 573 split_destination = sr->destination();
jcoomes@917 574 partial_obj_size = sr->partial_obj_size();
jcoomes@917 575 }
jcoomes@917 576
jcoomes@917 577 // The split is recorded only if a partial object extends onto the region.
jcoomes@917 578 if (partial_obj_size != 0) {
jcoomes@917 579 _region_data[split_region].set_partial_obj_size(0);
jcoomes@917 580 split_info.record(split_region, partial_obj_size, split_destination);
jcoomes@917 581 }
jcoomes@917 582
jcoomes@917 583 // Setup the continuation addresses.
jcoomes@917 584 *target_next = split_destination + partial_obj_size;
jcoomes@917 585 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
jcoomes@917 586
jcoomes@917 587 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 588 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
jcoomes@917 589 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
jcoomes@917 590 " pos=" SIZE_FORMAT,
jcoomes@917 591 split_type, source_next, split_region,
jcoomes@917 592 partial_obj_size);
jcoomes@917 593 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
jcoomes@917 594 " tn=" PTR_FORMAT,
jcoomes@917 595 split_type, split_destination,
jcoomes@917 596 addr_to_region_idx(split_destination),
jcoomes@917 597 *target_next);
jcoomes@917 598
jcoomes@917 599 if (partial_obj_size != 0) {
jcoomes@917 600 HeapWord* const po_beg = split_info.destination();
jcoomes@917 601 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
jcoomes@917 602 gclog_or_tty->print_cr("%s split: "
jcoomes@917 603 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
jcoomes@917 604 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
jcoomes@917 605 split_type,
jcoomes@917 606 po_beg, addr_to_region_idx(po_beg),
jcoomes@917 607 po_end, addr_to_region_idx(po_end));
jcoomes@917 608 }
jcoomes@917 609 }
jcoomes@917 610
jcoomes@917 611 return source_next;
jcoomes@917 612 }
jcoomes@917 613
jcoomes@917 614 bool ParallelCompactData::summarize(SplitInfo& split_info,
duke@435 615 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 616 HeapWord** source_next,
jcoomes@917 617 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 618 HeapWord** target_next)
jcoomes@917 619 {
duke@435 620 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 621 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
jcoomes@917 622 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
jcoomes@917 623 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
jcoomes@917 624 source_beg, source_end, source_next_val,
jcoomes@917 625 target_beg, target_end, *target_next);
duke@435 626 }
duke@435 627
jcoomes@810 628 size_t cur_region = addr_to_region_idx(source_beg);
jcoomes@810 629 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
duke@435 630
duke@435 631 HeapWord *dest_addr = target_beg;
jcoomes@810 632 while (cur_region < end_region) {
jcoomes@917 633 // The destination must be set even if the region has no data.
jcoomes@917 634 _region_data[cur_region].set_destination(dest_addr);
jcoomes@917 635
jcoomes@810 636 size_t words = _region_data[cur_region].data_size();
duke@435 637 if (words > 0) {
jcoomes@917 638 // If cur_region does not fit entirely into the target space, find a point
jcoomes@917 639 // at which the source space can be 'split' so that part is copied to the
jcoomes@917 640 // target space and the rest is copied elsewhere.
jcoomes@917 641 if (dest_addr + words > target_end) {
jcoomes@917 642 assert(source_next != NULL, "source_next is NULL when splitting");
jcoomes@917 643 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
jcoomes@917 644 target_end, target_next);
jcoomes@917 645 return false;
jcoomes@917 646 }
jcoomes@917 647
jcoomes@917 648 // Compute the destination_count for cur_region, and if necessary, update
jcoomes@917 649 // source_region for a destination region. The source_region field is
jcoomes@917 650 // updated if cur_region is the first (left-most) region to be copied to a
jcoomes@917 651 // destination region.
jcoomes@917 652 //
jcoomes@917 653 // The destination_count calculation is a bit subtle. A region that has
jcoomes@917 654 // data that compacts into itself does not count itself as a destination.
jcoomes@917 655 // This maintains the invariant that a zero count means the region is
jcoomes@917 656 // available and can be claimed and then filled.
jcoomes@917 657 uint destination_count = 0;
jcoomes@917 658 if (split_info.is_split(cur_region)) {
jcoomes@917 659 // The current region has been split: the partial object will be copied
jcoomes@917 660 // to one destination space and the remaining data will be copied to
jcoomes@917 661 // another destination space. Adjust the initial destination_count and,
jcoomes@917 662 // if necessary, set the source_region field if the partial object will
jcoomes@917 663 // cross a destination region boundary.
jcoomes@917 664 destination_count = split_info.destination_count();
jcoomes@917 665 if (destination_count == 2) {
jcoomes@917 666 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
jcoomes@917 667 _region_data[dest_idx].set_source_region(cur_region);
jcoomes@917 668 }
jcoomes@917 669 }
jcoomes@917 670
duke@435 671 HeapWord* const last_addr = dest_addr + words - 1;
jcoomes@810 672 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
jcoomes@810 673 const size_t dest_region_2 = addr_to_region_idx(last_addr);
jcoomes@917 674
jcoomes@810 675 // Initially assume that the destination regions will be the same and
duke@435 676 // adjust the value below if necessary. Under this assumption, if
jcoomes@810 677 // cur_region == dest_region_2, then cur_region will be compacted
jcoomes@810 678 // completely into itself.
jcoomes@917 679 destination_count += cur_region == dest_region_2 ? 0 : 1;
jcoomes@810 680 if (dest_region_1 != dest_region_2) {
jcoomes@810 681 // Destination regions differ; adjust destination_count.
duke@435 682 destination_count += 1;
jcoomes@810 683 // Data from cur_region will be copied to the start of dest_region_2.
jcoomes@810 684 _region_data[dest_region_2].set_source_region(cur_region);
jcoomes@810 685 } else if (region_offset(dest_addr) == 0) {
jcoomes@810 686 // Data from cur_region will be copied to the start of the destination
jcoomes@810 687 // region.
jcoomes@810 688 _region_data[dest_region_1].set_source_region(cur_region);
duke@435 689 }
duke@435 690
jcoomes@810 691 _region_data[cur_region].set_destination_count(destination_count);
jcoomes@810 692 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
duke@435 693 dest_addr += words;
duke@435 694 }
duke@435 695
jcoomes@810 696 ++cur_region;
duke@435 697 }
duke@435 698
duke@435 699 *target_next = dest_addr;
duke@435 700 return true;
duke@435 701 }
duke@435 702
duke@435 703 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 704 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 705 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 706 #ifdef ASSERT
duke@435 707 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 708 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 709 }
duke@435 710 #endif
duke@435 711 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 712
jcoomes@810 713 // Region covering the object.
jcoomes@810 714 size_t region_index = addr_to_region_idx(addr);
jcoomes@810 715 const RegionData* const region_ptr = region(region_index);
jcoomes@810 716 HeapWord* const region_addr = region_align_down(addr);
jcoomes@810 717
jcoomes@810 718 assert(addr < region_addr + RegionSize, "Region does not cover object");
jcoomes@810 719 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
jcoomes@810 720
jcoomes@810 721 HeapWord* result = region_ptr->destination();
jcoomes@810 722
jcoomes@810 723 // If all the data in the region is live, then the new location of the object
jcoomes@810 724 // can be calculated from the destination of the region plus the offset of the
jcoomes@810 725 // object in the region.
jcoomes@810 726 if (region_ptr->data_size() == RegionSize) {
jcoomes@810 727 result += pointer_delta(addr, region_addr);
kvn@1926 728 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 729 return result;
duke@435 730 }
duke@435 731
duke@435 732 // The new location of the object is
jcoomes@810 733 // region destination +
jcoomes@810 734 // size of the partial object extending onto the region +
jcoomes@810 735 // sizes of the live objects in the Region that are to the left of addr
jcoomes@810 736 const size_t partial_obj_size = region_ptr->partial_obj_size();
jcoomes@810 737 HeapWord* const search_start = region_addr + partial_obj_size;
duke@435 738
duke@435 739 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 740 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 741
duke@435 742 result += partial_obj_size + live_to_left;
jcoomes@930 743 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 744 return result;
duke@435 745 }
duke@435 746
duke@435 747 #ifdef ASSERT
duke@435 748 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 749 {
duke@435 750 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 751 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 752 for (const size_t* p = beg; p < end; ++p) {
duke@435 753 assert(*p == 0, "not zero");
duke@435 754 }
duke@435 755 }
duke@435 756
duke@435 757 void ParallelCompactData::verify_clear()
duke@435 758 {
jcoomes@810 759 verify_clear(_region_vspace);
duke@435 760 }
duke@435 761 #endif // #ifdef ASSERT
duke@435 762
duke@435 763 #ifdef NOT_PRODUCT
jcoomes@810 764 ParallelCompactData::RegionData* debug_region(size_t region_index) {
duke@435 765 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 766 return sd.region(region_index);
duke@435 767 }
duke@435 768 #endif
duke@435 769
duke@435 770 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 771 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 772 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 773 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 774 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 775 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 776 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 777
duke@435 778 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 779
coleenp@548 780 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 781 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 782
coleenp@548 783 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 784 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 785
duke@435 786 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
duke@435 787 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
coleenp@4037 788 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
duke@435 789
coleenp@548 790 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
coleenp@548 791 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
coleenp@548 792
jcoomes@1746 793 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
coleenp@548 794
coleenp@4037 795 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) {
coleenp@4037 796 mark_and_push(_compaction_manager, p);
coleenp@4037 797 }
coleenp@548 798 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 799
coleenp@4037 800 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
coleenp@4037 801 klass->oops_do(_mark_and_push_closure);
coleenp@4037 802 }
coleenp@4037 803 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
coleenp@4037 804 klass->oops_do(&PSParallelCompact::_adjust_root_pointer_closure);
coleenp@4037 805 }
coleenp@4037 806
duke@435 807 void PSParallelCompact::post_initialize() {
duke@435 808 ParallelScavengeHeap* heap = gc_heap();
duke@435 809 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 810
duke@435 811 MemRegion mr = heap->reserved_region();
ysr@2651 812 _ref_processor =
ysr@2651 813 new ReferenceProcessor(mr, // span
ysr@2651 814 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
ysr@2651 815 (int) ParallelGCThreads, // mt processing degree
ysr@2651 816 true, // mt discovery
ysr@2651 817 (int) ParallelGCThreads, // mt discovery degree
ysr@2651 818 true, // atomic_discovery
ysr@2651 819 &_is_alive_closure, // non-header is alive closure
ysr@2651 820 false); // write barrier for next field updates
duke@435 821 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 822
duke@435 823 // Initialize static fields in ParCompactionManager.
duke@435 824 ParCompactionManager::initialize(mark_bitmap());
duke@435 825 }
duke@435 826
duke@435 827 bool PSParallelCompact::initialize() {
duke@435 828 ParallelScavengeHeap* heap = gc_heap();
duke@435 829 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 830 MemRegion mr = heap->reserved_region();
duke@435 831
duke@435 832 // Was the old gen get allocated successfully?
duke@435 833 if (!heap->old_gen()->is_allocated()) {
duke@435 834 return false;
duke@435 835 }
duke@435 836
duke@435 837 initialize_space_info();
duke@435 838 initialize_dead_wood_limiter();
duke@435 839
duke@435 840 if (!_mark_bitmap.initialize(mr)) {
duke@435 841 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 842 "parallel garbage collection for the requested heap size.");
duke@435 843 return false;
duke@435 844 }
duke@435 845
duke@435 846 if (!_summary_data.initialize(mr)) {
duke@435 847 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 848 "parallel garbage collection for the requested heap size.");
duke@435 849 return false;
duke@435 850 }
duke@435 851
duke@435 852 return true;
duke@435 853 }
duke@435 854
duke@435 855 void PSParallelCompact::initialize_space_info()
duke@435 856 {
duke@435 857 memset(&_space_info, 0, sizeof(_space_info));
duke@435 858
duke@435 859 ParallelScavengeHeap* heap = gc_heap();
duke@435 860 PSYoungGen* young_gen = heap->young_gen();
coleenp@4037 861
duke@435 862 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 863 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 864 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 865 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 866
duke@435 867 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 868 }
duke@435 869
duke@435 870 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 871 {
duke@435 872 const size_t max = 100;
duke@435 873 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 874 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 875 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 876 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 877 _dwl_adjustment = normal_distribution(1.0);
duke@435 878 }
duke@435 879
duke@435 880 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 881 // after GC for comparison/printing.
duke@435 882 class PreGCValues {
duke@435 883 public:
duke@435 884 PreGCValues() { }
duke@435 885 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 886
duke@435 887 void fill(ParallelScavengeHeap* heap) {
duke@435 888 _heap_used = heap->used();
duke@435 889 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 890 _old_gen_used = heap->old_gen()->used_in_bytes();
coleenp@4037 891 _metadata_used = MetaspaceAux::used_in_bytes();
duke@435 892 };
duke@435 893
duke@435 894 size_t heap_used() const { return _heap_used; }
duke@435 895 size_t young_gen_used() const { return _young_gen_used; }
duke@435 896 size_t old_gen_used() const { return _old_gen_used; }
coleenp@4037 897 size_t metadata_used() const { return _metadata_used; }
duke@435 898
duke@435 899 private:
duke@435 900 size_t _heap_used;
duke@435 901 size_t _young_gen_used;
duke@435 902 size_t _old_gen_used;
coleenp@4037 903 size_t _metadata_used;
duke@435 904 };
duke@435 905
duke@435 906 void
duke@435 907 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 908 {
duke@435 909 // At this point, top is the value before GC, new_top() is the value that will
duke@435 910 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 911 // should be marked above top. The summary data is cleared to the larger of
duke@435 912 // top & new_top.
duke@435 913 MutableSpace* const space = _space_info[id].space();
duke@435 914 HeapWord* const bot = space->bottom();
duke@435 915 HeapWord* const top = space->top();
duke@435 916 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 917
duke@435 918 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 919 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 920 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 921
jcoomes@810 922 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
jcoomes@810 923 const size_t end_region =
jcoomes@810 924 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
jcoomes@810 925 _summary_data.clear_range(beg_region, end_region);
jcoomes@917 926
jcoomes@917 927 // Clear the data used to 'split' regions.
jcoomes@917 928 SplitInfo& split_info = _space_info[id].split_info();
jcoomes@917 929 if (split_info.is_valid()) {
jcoomes@917 930 split_info.clear();
jcoomes@917 931 }
jcoomes@917 932 DEBUG_ONLY(split_info.verify_clear();)
duke@435 933 }
duke@435 934
duke@435 935 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 936 {
duke@435 937 // Update the from & to space pointers in space_info, since they are swapped
duke@435 938 // at each young gen gc. Do the update unconditionally (even though a
duke@435 939 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 940 // collections will have swapped the spaces an unknown number of times.
duke@435 941 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 942 ParallelScavengeHeap* heap = gc_heap();
duke@435 943 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 944 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 945
duke@435 946 pre_gc_values->fill(heap);
duke@435 947
duke@435 948 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 949 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 950 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 951
duke@435 952 // Increment the invocation count
apetrusenko@574 953 heap->increment_total_collections(true);
duke@435 954
duke@435 955 // We need to track unique mark sweep invocations as well.
duke@435 956 _total_invocations++;
duke@435 957
never@3499 958 heap->print_heap_before_gc();
duke@435 959
duke@435 960 // Fill in TLABs
duke@435 961 heap->accumulate_statistics_all_tlabs();
duke@435 962 heap->ensure_parsability(true); // retire TLABs
duke@435 963
duke@435 964 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 965 HandleMark hm; // Discard invalid handles created during verification
duke@435 966 gclog_or_tty->print(" VerifyBeforeGC:");
johnc@4176 967 Universe::verify();
duke@435 968 }
duke@435 969
duke@435 970 // Verify object start arrays
duke@435 971 if (VerifyObjectStartArray &&
duke@435 972 VerifyBeforeGC) {
duke@435 973 heap->old_gen()->verify_object_start_array();
duke@435 974 }
duke@435 975
duke@435 976 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 977 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 978
jcoomes@645 979 // Have worker threads release resources the next time they run a task.
jcoomes@645 980 gc_task_manager()->release_all_resources();
duke@435 981 }
duke@435 982
duke@435 983 void PSParallelCompact::post_compact()
duke@435 984 {
duke@435 985 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 986
coleenp@4037 987 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
jcoomes@917 988 // Clear the marking bitmap, summary data and split info.
duke@435 989 clear_data_covering_space(SpaceId(id));
jcoomes@917 990 // Update top(). Must be done after clearing the bitmap and summary data.
jcoomes@917 991 _space_info[id].publish_new_top();
duke@435 992 }
duke@435 993
duke@435 994 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 995 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 996 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 997
duke@435 998 ParallelScavengeHeap* heap = gc_heap();
duke@435 999 bool eden_empty = eden_space->is_empty();
duke@435 1000 if (!eden_empty) {
duke@435 1001 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 1002 heap->young_gen(), heap->old_gen());
duke@435 1003 }
duke@435 1004
duke@435 1005 // Update heap occupancy information which is used as input to the soft ref
duke@435 1006 // clearing policy at the next gc.
duke@435 1007 Universe::update_heap_info_at_gc();
duke@435 1008
duke@435 1009 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1010 to_space->is_empty();
duke@435 1011
duke@435 1012 BarrierSet* bs = heap->barrier_set();
duke@435 1013 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1014 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1015 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1016
duke@435 1017 if (young_gen_empty) {
coleenp@4037 1018 modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
duke@435 1019 } else {
coleenp@4037 1020 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
duke@435 1021 }
duke@435 1022 }
duke@435 1023
coleenp@4037 1024 // Delete metaspaces for unloaded class loaders and clean up loader_data graph
coleenp@4037 1025 ClassLoaderDataGraph::purge();
coleenp@4037 1026
duke@435 1027 Threads::gc_epilogue();
duke@435 1028 CodeCache::gc_epilogue();
kamg@2467 1029 JvmtiExport::gc_epilogue();
duke@435 1030
duke@435 1031 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1032
duke@435 1033 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1034
jmasa@698 1035 if (ZapUnusedHeapArea) {
jmasa@698 1036 heap->gen_mangle_unused_area();
jmasa@698 1037 }
jmasa@698 1038
duke@435 1039 // Update time of last GC
duke@435 1040 reset_millis_since_last_gc();
duke@435 1041 }
duke@435 1042
duke@435 1043 HeapWord*
duke@435 1044 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1045 bool maximum_compaction)
duke@435 1046 {
jcoomes@810 1047 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1048 const ParallelCompactData& sd = summary_data();
duke@435 1049
duke@435 1050 const MutableSpace* const space = _space_info[id].space();
jcoomes@810 1051 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 1052 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
jcoomes@810 1053 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1054
jcoomes@810 1055 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1056 // of the dense prefix.
duke@435 1057 size_t full_count = 0;
jcoomes@810 1058 const RegionData* cp;
jcoomes@810 1059 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
duke@435 1060 ++full_count;
duke@435 1061 }
duke@435 1062
duke@435 1063 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1064 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1065 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1066 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1067 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1068 return sd.region_to_addr(cp);
duke@435 1069 }
duke@435 1070
duke@435 1071 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1072 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1073 const size_t space_used = space->used_in_words();
duke@435 1074 const size_t space_capacity = space->capacity_in_words();
duke@435 1075
duke@435 1076 const double cur_density = double(space_live) / space_capacity;
duke@435 1077 const double deadwood_density =
duke@435 1078 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1079 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1080
duke@435 1081 if (TraceParallelOldGCDensePrefix) {
duke@435 1082 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1083 cur_density, deadwood_density, deadwood_goal);
duke@435 1084 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1085 "space_cap=" SIZE_FORMAT,
duke@435 1086 space_live, space_used,
duke@435 1087 space_capacity);
duke@435 1088 }
duke@435 1089
duke@435 1090 // XXX - Use binary search?
jcoomes@810 1091 HeapWord* dense_prefix = sd.region_to_addr(cp);
jcoomes@810 1092 const RegionData* full_cp = cp;
jcoomes@810 1093 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
duke@435 1094 while (cp < end_cp) {
jcoomes@810 1095 HeapWord* region_destination = cp->destination();
jcoomes@810 1096 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
duke@435 1097 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1098 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
jcoomes@699 1099 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
jcoomes@810 1100 sd.region(cp), region_destination,
duke@435 1101 dense_prefix, cur_deadwood);
duke@435 1102 }
duke@435 1103
duke@435 1104 if (cur_deadwood >= deadwood_goal) {
jcoomes@810 1105 // Found the region that has the correct amount of deadwood to the left.
jcoomes@810 1106 // This typically occurs after crossing a fairly sparse set of regions, so
jcoomes@810 1107 // iterate backwards over those sparse regions, looking for the region
jcoomes@810 1108 // that has the lowest density of live objects 'to the right.'
jcoomes@810 1109 size_t space_to_left = sd.region(cp) * region_size;
duke@435 1110 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1111 size_t space_to_right = space_capacity - space_to_left;
duke@435 1112 size_t live_to_right = space_live - live_to_left;
duke@435 1113 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1114 while (cp > full_cp) {
duke@435 1115 --cp;
jcoomes@810 1116 const size_t prev_region_live_to_right = live_to_right -
jcoomes@810 1117 cp->data_size();
jcoomes@810 1118 const size_t prev_region_space_to_right = space_to_right + region_size;
jcoomes@810 1119 double prev_region_density_to_right =
jcoomes@810 1120 double(prev_region_live_to_right) / prev_region_space_to_right;
jcoomes@810 1121 if (density_to_right <= prev_region_density_to_right) {
duke@435 1122 return dense_prefix;
duke@435 1123 }
duke@435 1124 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1125 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
jcoomes@810 1126 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
jcoomes@810 1127 prev_region_density_to_right);
duke@435 1128 }
jcoomes@810 1129 dense_prefix -= region_size;
jcoomes@810 1130 live_to_right = prev_region_live_to_right;
jcoomes@810 1131 space_to_right = prev_region_space_to_right;
jcoomes@810 1132 density_to_right = prev_region_density_to_right;
duke@435 1133 }
duke@435 1134 return dense_prefix;
duke@435 1135 }
duke@435 1136
jcoomes@810 1137 dense_prefix += region_size;
duke@435 1138 ++cp;
duke@435 1139 }
duke@435 1140
duke@435 1141 return dense_prefix;
duke@435 1142 }
duke@435 1143
duke@435 1144 #ifndef PRODUCT
duke@435 1145 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1146 const SpaceId id,
duke@435 1147 const bool maximum_compaction,
duke@435 1148 HeapWord* const addr)
duke@435 1149 {
jcoomes@810 1150 const size_t region_idx = summary_data().addr_to_region_idx(addr);
jcoomes@810 1151 RegionData* const cp = summary_data().region(region_idx);
duke@435 1152 const MutableSpace* const space = _space_info[id].space();
duke@435 1153 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1154
duke@435 1155 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1156 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1157 const size_t space_cap = space->capacity_in_words();
duke@435 1158 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1159 const size_t live_to_right = new_top - cp->destination();
duke@435 1160 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1161
jcoomes@699 1162 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
duke@435 1163 "spl=" SIZE_FORMAT " "
duke@435 1164 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1165 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1166 " ratio=%10.8f",
jcoomes@810 1167 algorithm, addr, region_idx,
duke@435 1168 space_live,
duke@435 1169 dead_to_left, dead_to_left_pct,
duke@435 1170 dead_to_right, live_to_right,
duke@435 1171 double(dead_to_right) / live_to_right);
duke@435 1172 }
duke@435 1173 #endif // #ifndef PRODUCT
duke@435 1174
duke@435 1175 // Return a fraction indicating how much of the generation can be treated as
duke@435 1176 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1177 // based on the density of live objects in the generation to determine a limit,
duke@435 1178 // which is then adjusted so the return value is min_percent when the density is
duke@435 1179 // 1.
duke@435 1180 //
duke@435 1181 // The following table shows some return values for a different values of the
duke@435 1182 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1183 // min_percent is 1.
duke@435 1184 //
duke@435 1185 // fraction allowed as dead wood
duke@435 1186 // -----------------------------------------------------------------
duke@435 1187 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1188 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1189 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1190 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1191 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1192 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1193 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1194 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1195 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1196 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1197 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1198 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1199 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1200 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1201 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1202 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1203 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1204 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1205 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1206 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1207 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1208 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1209 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1210
duke@435 1211 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1212 {
duke@435 1213 assert(_dwl_initialized, "uninitialized");
duke@435 1214
duke@435 1215 // The raw limit is the value of the normal distribution at x = density.
duke@435 1216 const double raw_limit = normal_distribution(density);
duke@435 1217
duke@435 1218 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1219 //
duke@435 1220 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1221 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1222 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1223 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1224 const double min = double(min_percent) / 100.0;
duke@435 1225 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1226 return MAX2(limit, 0.0);
duke@435 1227 }
duke@435 1228
jcoomes@810 1229 ParallelCompactData::RegionData*
jcoomes@810 1230 PSParallelCompact::first_dead_space_region(const RegionData* beg,
jcoomes@810 1231 const RegionData* end)
duke@435 1232 {
jcoomes@810 1233 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1234 ParallelCompactData& sd = summary_data();
jcoomes@810 1235 size_t left = sd.region(beg);
jcoomes@810 1236 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1237
duke@435 1238 // Binary search.
duke@435 1239 while (left < right) {
duke@435 1240 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1241 const size_t middle = left + (right - left) / 2;
jcoomes@810 1242 RegionData* const middle_ptr = sd.region(middle);
duke@435 1243 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1244 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1245 assert(dest != NULL, "sanity");
duke@435 1246 assert(dest <= addr, "must move left");
duke@435 1247
duke@435 1248 if (middle > left && dest < addr) {
duke@435 1249 right = middle - 1;
jcoomes@810 1250 } else if (middle < right && middle_ptr->data_size() == region_size) {
duke@435 1251 left = middle + 1;
duke@435 1252 } else {
duke@435 1253 return middle_ptr;
duke@435 1254 }
duke@435 1255 }
jcoomes@810 1256 return sd.region(left);
duke@435 1257 }
duke@435 1258
jcoomes@810 1259 ParallelCompactData::RegionData*
jcoomes@810 1260 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1261 const RegionData* end,
jcoomes@810 1262 size_t dead_words)
duke@435 1263 {
duke@435 1264 ParallelCompactData& sd = summary_data();
jcoomes@810 1265 size_t left = sd.region(beg);
jcoomes@810 1266 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1267
duke@435 1268 // Binary search.
duke@435 1269 while (left < right) {
duke@435 1270 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1271 const size_t middle = left + (right - left) / 2;
jcoomes@810 1272 RegionData* const middle_ptr = sd.region(middle);
duke@435 1273 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1274 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1275 assert(dest != NULL, "sanity");
duke@435 1276 assert(dest <= addr, "must move left");
duke@435 1277
duke@435 1278 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1279 if (middle > left && dead_to_left > dead_words) {
duke@435 1280 right = middle - 1;
duke@435 1281 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1282 left = middle + 1;
duke@435 1283 } else {
duke@435 1284 return middle_ptr;
duke@435 1285 }
duke@435 1286 }
jcoomes@810 1287 return sd.region(left);
duke@435 1288 }
duke@435 1289
duke@435 1290 // The result is valid during the summary phase, after the initial summarization
duke@435 1291 // of each space into itself, and before final summarization.
duke@435 1292 inline double
jcoomes@810 1293 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
duke@435 1294 HeapWord* const bottom,
duke@435 1295 HeapWord* const top,
duke@435 1296 HeapWord* const new_top)
duke@435 1297 {
duke@435 1298 ParallelCompactData& sd = summary_data();
duke@435 1299
duke@435 1300 assert(cp != NULL, "sanity");
duke@435 1301 assert(bottom != NULL, "sanity");
duke@435 1302 assert(top != NULL, "sanity");
duke@435 1303 assert(new_top != NULL, "sanity");
duke@435 1304 assert(top >= new_top, "summary data problem?");
duke@435 1305 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1306 assert(new_top >= cp->destination(), "sanity");
jcoomes@810 1307 assert(top >= sd.region_to_addr(cp), "sanity");
duke@435 1308
duke@435 1309 HeapWord* const destination = cp->destination();
duke@435 1310 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1311 const size_t compacted_region_live = pointer_delta(new_top, destination);
jcoomes@810 1312 const size_t compacted_region_used = pointer_delta(top,
jcoomes@810 1313 sd.region_to_addr(cp));
duke@435 1314 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1315
duke@435 1316 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1317 return double(reclaimable) / divisor;
duke@435 1318 }
duke@435 1319
duke@435 1320 // Return the address of the end of the dense prefix, a.k.a. the start of the
jcoomes@810 1321 // compacted region. The address is always on a region boundary.
duke@435 1322 //
jcoomes@810 1323 // Completely full regions at the left are skipped, since no compaction can
jcoomes@810 1324 // occur in those regions. Then the maximum amount of dead wood to allow is
jcoomes@810 1325 // computed, based on the density (amount live / capacity) of the generation;
jcoomes@810 1326 // the region with approximately that amount of dead space to the left is
jcoomes@810 1327 // identified as the limit region. Regions between the last completely full
jcoomes@810 1328 // region and the limit region are scanned and the one that has the best
jcoomes@810 1329 // (maximum) reclaimed_ratio() is selected.
duke@435 1330 HeapWord*
duke@435 1331 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1332 bool maximum_compaction)
duke@435 1333 {
jcoomes@918 1334 if (ParallelOldGCSplitALot) {
jcoomes@918 1335 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
jcoomes@918 1336 // The value was chosen to provoke splitting a young gen space; use it.
jcoomes@918 1337 return _space_info[id].dense_prefix();
jcoomes@918 1338 }
jcoomes@918 1339 }
jcoomes@918 1340
jcoomes@810 1341 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1342 const ParallelCompactData& sd = summary_data();
duke@435 1343
duke@435 1344 const MutableSpace* const space = _space_info[id].space();
duke@435 1345 HeapWord* const top = space->top();
jcoomes@810 1346 HeapWord* const top_aligned_up = sd.region_align_up(top);
duke@435 1347 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1348 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
duke@435 1349 HeapWord* const bottom = space->bottom();
jcoomes@810 1350 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
jcoomes@810 1351 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1352 const RegionData* const new_top_cp =
jcoomes@810 1353 sd.addr_to_region_ptr(new_top_aligned_up);
jcoomes@810 1354
jcoomes@810 1355 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1356 // of the dense prefix.
jcoomes@810 1357 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
jcoomes@810 1358 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
duke@435 1359 space->is_empty(), "no dead space allowed to the left");
jcoomes@810 1360 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
jcoomes@810 1361 "region must have dead space");
duke@435 1362
duke@435 1363 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1364 // determine when the maximum compaction interval has expired. This avoids
duke@435 1365 // successive max compactions for different reasons.
duke@435 1366 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1367 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1368 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1369 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1370 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1371 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1372 return sd.region_to_addr(full_cp);
duke@435 1373 }
duke@435 1374
duke@435 1375 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1376 const size_t space_used = space->used_in_words();
duke@435 1377 const size_t space_capacity = space->capacity_in_words();
duke@435 1378
duke@435 1379 const double density = double(space_live) / double(space_capacity);
coleenp@4037 1380 const size_t min_percent_free = MarkSweepDeadRatio;
duke@435 1381 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1382 const size_t dead_wood_max = space_used - space_live;
duke@435 1383 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1384 dead_wood_max);
duke@435 1385
duke@435 1386 if (TraceParallelOldGCDensePrefix) {
duke@435 1387 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1388 "space_cap=" SIZE_FORMAT,
duke@435 1389 space_live, space_used,
duke@435 1390 space_capacity);
duke@435 1391 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1392 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1393 density, min_percent_free, limiter,
duke@435 1394 dead_wood_max, dead_wood_limit);
duke@435 1395 }
duke@435 1396
jcoomes@810 1397 // Locate the region with the desired amount of dead space to the left.
jcoomes@810 1398 const RegionData* const limit_cp =
jcoomes@810 1399 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
jcoomes@810 1400
jcoomes@810 1401 // Scan from the first region with dead space to the limit region and find the
duke@435 1402 // one with the best (largest) reclaimed ratio.
duke@435 1403 double best_ratio = 0.0;
jcoomes@810 1404 const RegionData* best_cp = full_cp;
jcoomes@810 1405 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1406 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1407 if (tmp_ratio > best_ratio) {
duke@435 1408 best_cp = cp;
duke@435 1409 best_ratio = tmp_ratio;
duke@435 1410 }
duke@435 1411 }
duke@435 1412
duke@435 1413 #if 0
jcoomes@810 1414 // Something to consider: if the region with the best ratio is 'close to' the
jcoomes@810 1415 // first region w/free space, choose the first region with free space
jcoomes@810 1416 // ("first-free"). The first-free region is usually near the start of the
duke@435 1417 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1418 // more to get complete compaction.
jcoomes@810 1419 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
duke@435 1420 _maximum_compaction_gc_num = total_invocations();
duke@435 1421 best_cp = full_cp;
duke@435 1422 }
duke@435 1423 #endif // #if 0
duke@435 1424
jcoomes@810 1425 return sd.region_to_addr(best_cp);
duke@435 1426 }
duke@435 1427
jcoomes@918 1428 #ifndef PRODUCT
jcoomes@918 1429 void
jcoomes@918 1430 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1431 size_t words)
jcoomes@918 1432 {
jcoomes@918 1433 if (TraceParallelOldGCSummaryPhase) {
jcoomes@918 1434 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
jcoomes@918 1435 SIZE_FORMAT, start, start + words, words);
jcoomes@918 1436 }
jcoomes@918 1437
jcoomes@918 1438 ObjectStartArray* const start_array = _space_info[id].start_array();
jcoomes@918 1439 CollectedHeap::fill_with_objects(start, words);
jcoomes@918 1440 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
jcoomes@918 1441 _mark_bitmap.mark_obj(p, words);
jcoomes@918 1442 _summary_data.add_obj(p, words);
jcoomes@918 1443 start_array->allocate_block(p);
jcoomes@918 1444 }
jcoomes@918 1445 }
jcoomes@918 1446
jcoomes@918 1447 void
jcoomes@918 1448 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
jcoomes@918 1449 {
jcoomes@918 1450 ParallelCompactData& sd = summary_data();
jcoomes@918 1451 MutableSpace* space = _space_info[id].space();
jcoomes@918 1452
jcoomes@918 1453 // Find the source and destination start addresses.
jcoomes@918 1454 HeapWord* const src_addr = sd.region_align_down(start);
jcoomes@918 1455 HeapWord* dst_addr;
jcoomes@918 1456 if (src_addr < start) {
jcoomes@918 1457 dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
jcoomes@918 1458 } else if (src_addr > space->bottom()) {
jcoomes@918 1459 // The start (the original top() value) is aligned to a region boundary so
jcoomes@918 1460 // the associated region does not have a destination. Compute the
jcoomes@918 1461 // destination from the previous region.
jcoomes@918 1462 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
jcoomes@918 1463 dst_addr = cp->destination() + cp->data_size();
jcoomes@918 1464 } else {
jcoomes@918 1465 // Filling the entire space.
jcoomes@918 1466 dst_addr = space->bottom();
jcoomes@918 1467 }
jcoomes@918 1468 assert(dst_addr != NULL, "sanity");
jcoomes@918 1469
jcoomes@918 1470 // Update the summary data.
jcoomes@918 1471 bool result = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@918 1472 src_addr, space->top(), NULL,
jcoomes@918 1473 dst_addr, space->end(),
jcoomes@918 1474 _space_info[id].new_top_addr());
jcoomes@918 1475 assert(result, "should not fail: bad filler object size");
jcoomes@918 1476 }
jcoomes@918 1477
jcoomes@918 1478 void
jcoomes@931 1479 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
jcoomes@931 1480 {
jcoomes@931 1481 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
jcoomes@931 1482 return;
jcoomes@931 1483 }
jcoomes@931 1484
jcoomes@931 1485 MutableSpace* const space = _space_info[id].space();
jcoomes@931 1486 if (space->is_empty()) {
jcoomes@931 1487 HeapWord* b = space->bottom();
jcoomes@931 1488 HeapWord* t = b + space->capacity_in_words() / 2;
jcoomes@931 1489 space->set_top(t);
jcoomes@931 1490 if (ZapUnusedHeapArea) {
jcoomes@931 1491 space->set_top_for_allocations();
jcoomes@931 1492 }
jcoomes@931 1493
kvn@1926 1494 size_t min_size = CollectedHeap::min_fill_size();
kvn@1926 1495 size_t obj_len = min_size;
jcoomes@931 1496 while (b + obj_len <= t) {
jcoomes@931 1497 CollectedHeap::fill_with_object(b, obj_len);
jcoomes@931 1498 mark_bitmap()->mark_obj(b, obj_len);
jcoomes@931 1499 summary_data().add_obj(b, obj_len);
jcoomes@931 1500 b += obj_len;
kvn@1926 1501 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
jcoomes@931 1502 }
jcoomes@931 1503 if (b < t) {
jcoomes@931 1504 // The loop didn't completely fill to t (top); adjust top downward.
jcoomes@931 1505 space->set_top(b);
jcoomes@931 1506 if (ZapUnusedHeapArea) {
jcoomes@931 1507 space->set_top_for_allocations();
jcoomes@931 1508 }
jcoomes@931 1509 }
jcoomes@931 1510
jcoomes@931 1511 HeapWord** nta = _space_info[id].new_top_addr();
jcoomes@931 1512 bool result = summary_data().summarize(_space_info[id].split_info(),
jcoomes@931 1513 space->bottom(), space->top(), NULL,
jcoomes@931 1514 space->bottom(), space->end(), nta);
jcoomes@931 1515 assert(result, "space must fit into itself");
jcoomes@931 1516 }
jcoomes@931 1517 }
jcoomes@931 1518
jcoomes@931 1519 void
jcoomes@918 1520 PSParallelCompact::provoke_split(bool & max_compaction)
jcoomes@918 1521 {
jcoomes@931 1522 if (total_invocations() % ParallelOldGCSplitInterval != 0) {
jcoomes@931 1523 return;
jcoomes@931 1524 }
jcoomes@931 1525
jcoomes@918 1526 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@918 1527 ParallelCompactData& sd = summary_data();
jcoomes@918 1528
jcoomes@918 1529 MutableSpace* const eden_space = _space_info[eden_space_id].space();
jcoomes@918 1530 MutableSpace* const from_space = _space_info[from_space_id].space();
jcoomes@918 1531 const size_t eden_live = pointer_delta(eden_space->top(),
jcoomes@918 1532 _space_info[eden_space_id].new_top());
jcoomes@918 1533 const size_t from_live = pointer_delta(from_space->top(),
jcoomes@918 1534 _space_info[from_space_id].new_top());
jcoomes@918 1535
jcoomes@918 1536 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@918 1537 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
jcoomes@918 1538 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
jcoomes@918 1539 const size_t from_free = pointer_delta(from_space->end(), from_space->top());
jcoomes@918 1540 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
jcoomes@918 1541
jcoomes@918 1542 // Choose the space to split; need at least 2 regions live (or fillable).
jcoomes@918 1543 SpaceId id;
jcoomes@918 1544 MutableSpace* space;
jcoomes@918 1545 size_t live_words;
jcoomes@918 1546 size_t fill_words;
jcoomes@918 1547 if (eden_live + eden_fillable >= region_size * 2) {
jcoomes@918 1548 id = eden_space_id;
jcoomes@918 1549 space = eden_space;
jcoomes@918 1550 live_words = eden_live;
jcoomes@918 1551 fill_words = eden_fillable;
jcoomes@918 1552 } else if (from_live + from_fillable >= region_size * 2) {
jcoomes@918 1553 id = from_space_id;
jcoomes@918 1554 space = from_space;
jcoomes@918 1555 live_words = from_live;
jcoomes@918 1556 fill_words = from_fillable;
jcoomes@918 1557 } else {
jcoomes@918 1558 return; // Give up.
jcoomes@918 1559 }
jcoomes@918 1560 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
jcoomes@918 1561
jcoomes@918 1562 if (live_words < region_size * 2) {
jcoomes@918 1563 // Fill from top() to end() w/live objects of mixed sizes.
jcoomes@918 1564 HeapWord* const fill_start = space->top();
jcoomes@918 1565 live_words += fill_words;
jcoomes@918 1566
jcoomes@918 1567 space->set_top(fill_start + fill_words);
jcoomes@918 1568 if (ZapUnusedHeapArea) {
jcoomes@918 1569 space->set_top_for_allocations();
jcoomes@918 1570 }
jcoomes@918 1571
jcoomes@918 1572 HeapWord* cur_addr = fill_start;
jcoomes@918 1573 while (fill_words > 0) {
jcoomes@918 1574 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
jcoomes@918 1575 size_t cur_size = MIN2(align_object_size_(r), fill_words);
jcoomes@918 1576 if (fill_words - cur_size < min_fill_size) {
jcoomes@918 1577 cur_size = fill_words; // Avoid leaving a fragment too small to fill.
jcoomes@918 1578 }
jcoomes@918 1579
jcoomes@918 1580 CollectedHeap::fill_with_object(cur_addr, cur_size);
jcoomes@918 1581 mark_bitmap()->mark_obj(cur_addr, cur_size);
jcoomes@918 1582 sd.add_obj(cur_addr, cur_size);
jcoomes@918 1583
jcoomes@918 1584 cur_addr += cur_size;
jcoomes@918 1585 fill_words -= cur_size;
jcoomes@918 1586 }
jcoomes@918 1587
jcoomes@918 1588 summarize_new_objects(id, fill_start);
jcoomes@918 1589 }
jcoomes@918 1590
jcoomes@918 1591 max_compaction = false;
jcoomes@918 1592
jcoomes@918 1593 // Manipulate the old gen so that it has room for about half of the live data
jcoomes@918 1594 // in the target young gen space (live_words / 2).
jcoomes@918 1595 id = old_space_id;
jcoomes@918 1596 space = _space_info[id].space();
jcoomes@918 1597 const size_t free_at_end = space->free_in_words();
jcoomes@918 1598 const size_t free_target = align_object_size(live_words / 2);
jcoomes@918 1599 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
jcoomes@918 1600
jcoomes@918 1601 if (free_at_end >= free_target + min_fill_size) {
jcoomes@918 1602 // Fill space above top() and set the dense prefix so everything survives.
jcoomes@918 1603 HeapWord* const fill_start = space->top();
jcoomes@918 1604 const size_t fill_size = free_at_end - free_target;
jcoomes@918 1605 space->set_top(space->top() + fill_size);
jcoomes@918 1606 if (ZapUnusedHeapArea) {
jcoomes@918 1607 space->set_top_for_allocations();
jcoomes@918 1608 }
jcoomes@918 1609 fill_with_live_objects(id, fill_start, fill_size);
jcoomes@918 1610 summarize_new_objects(id, fill_start);
jcoomes@918 1611 _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
jcoomes@918 1612 } else if (dead + free_at_end > free_target) {
jcoomes@918 1613 // Find a dense prefix that makes the right amount of space available.
jcoomes@918 1614 HeapWord* cur = sd.region_align_down(space->top());
jcoomes@918 1615 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1616 size_t dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1617 while (dead_to_right < free_target) {
jcoomes@918 1618 cur -= region_size;
jcoomes@918 1619 cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1620 dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1621 }
jcoomes@918 1622 _space_info[id].set_dense_prefix(cur);
jcoomes@918 1623 }
jcoomes@918 1624 }
jcoomes@918 1625 #endif // #ifndef PRODUCT
jcoomes@918 1626
duke@435 1627 void PSParallelCompact::summarize_spaces_quick()
duke@435 1628 {
duke@435 1629 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1630 const MutableSpace* space = _space_info[i].space();
jcoomes@917 1631 HeapWord** nta = _space_info[i].new_top_addr();
jcoomes@917 1632 bool result = _summary_data.summarize(_space_info[i].split_info(),
jcoomes@917 1633 space->bottom(), space->top(), NULL,
jcoomes@917 1634 space->bottom(), space->end(), nta);
jcoomes@917 1635 assert(result, "space must fit into itself");
duke@435 1636 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1637 }
jcoomes@931 1638
jcoomes@931 1639 #ifndef PRODUCT
jcoomes@931 1640 if (ParallelOldGCSplitALot) {
jcoomes@931 1641 provoke_split_fill_survivor(to_space_id);
jcoomes@931 1642 }
jcoomes@931 1643 #endif // #ifndef PRODUCT
duke@435 1644 }
duke@435 1645
duke@435 1646 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1647 {
duke@435 1648 HeapWord* const dense_prefix_end = dense_prefix(id);
jcoomes@810 1649 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
duke@435 1650 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
jcoomes@810 1651 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
duke@435 1652 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1653 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1654 // during the copy/update phase.)
duke@435 1655 //
duke@435 1656 // The size of the dead space to the right of the boundary is not a
duke@435 1657 // concern, since compaction will be able to use whatever space is
duke@435 1658 // available.
duke@435 1659 //
duke@435 1660 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1661 // surrounds the space to be filled with an object.
duke@435 1662 //
duke@435 1663 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1664 // +---+
duke@435 1665 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1666 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1667 // +---+
duke@435 1668 //
duke@435 1669 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1670 // +------------+
duke@435 1671 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1672 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1673 // +------------+
duke@435 1674 // +-------+
duke@435 1675 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1676 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1677 // +-------+
duke@435 1678 // +-----------+
duke@435 1679 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1680 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1681 // +-----------+
duke@435 1682 // +-------+
duke@435 1683 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1684 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1685 // +-------+
duke@435 1686
duke@435 1687 // Initially assume case a, c or e will apply.
kvn@1926 1688 size_t obj_len = CollectedHeap::min_fill_size();
duke@435 1689 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1690
duke@435 1691 #ifdef _LP64
kvn@1926 1692 if (MinObjAlignment > 1) { // object alignment > heap word size
kvn@1926 1693 // Cases a, c or e.
kvn@1926 1694 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1695 // Case b above.
duke@435 1696 obj_beg = dense_prefix_end - 1;
duke@435 1697 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1698 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1699 // Case d above.
duke@435 1700 obj_beg = dense_prefix_end - 3;
duke@435 1701 obj_len = 3;
duke@435 1702 }
duke@435 1703 #endif // #ifdef _LP64
duke@435 1704
jcoomes@917 1705 CollectedHeap::fill_with_object(obj_beg, obj_len);
duke@435 1706 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1707 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1708 assert(start_array(id) != NULL, "sanity");
duke@435 1709 start_array(id)->allocate_block(obj_beg);
duke@435 1710 }
duke@435 1711 }
duke@435 1712
duke@435 1713 void
jcoomes@917 1714 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
jcoomes@917 1715 {
jcoomes@917 1716 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
jcoomes@917 1717 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
jcoomes@917 1718 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
jcoomes@917 1719 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
jcoomes@917 1720 cur->set_source_region(0);
jcoomes@917 1721 }
jcoomes@917 1722 }
jcoomes@917 1723
jcoomes@917 1724 void
duke@435 1725 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1726 {
duke@435 1727 assert(id < last_space_id, "id out of range");
jcoomes@918 1728 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
jcoomes@918 1729 ParallelOldGCSplitALot && id == old_space_id,
jcoomes@918 1730 "should have been reset in summarize_spaces_quick()");
duke@435 1731
duke@435 1732 const MutableSpace* space = _space_info[id].space();
jcoomes@700 1733 if (_space_info[id].new_top() != space->bottom()) {
jcoomes@700 1734 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
jcoomes@700 1735 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1736
duke@435 1737 #ifndef PRODUCT
jcoomes@700 1738 if (TraceParallelOldGCDensePrefix) {
jcoomes@700 1739 print_dense_prefix_stats("ratio", id, maximum_compaction,
jcoomes@700 1740 dense_prefix_end);
jcoomes@700 1741 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
jcoomes@700 1742 print_dense_prefix_stats("density", id, maximum_compaction, addr);
jcoomes@700 1743 }
jcoomes@700 1744 #endif // #ifndef PRODUCT
jcoomes@700 1745
jcoomes@918 1746 // Recompute the summary data, taking into account the dense prefix. If
jcoomes@918 1747 // every last byte will be reclaimed, then the existing summary data which
jcoomes@918 1748 // compacts everything can be left in place.
jcoomes@700 1749 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
jcoomes@917 1750 // If dead space crosses the dense prefix boundary, it is (at least
jcoomes@917 1751 // partially) filled with a dummy object, marked live and added to the
jcoomes@917 1752 // summary data. This simplifies the copy/update phase and must be done
jcoomes@918 1753 // before the final locations of objects are determined, to prevent
jcoomes@918 1754 // leaving a fragment of dead space that is too small to fill.
jcoomes@700 1755 fill_dense_prefix_end(id);
jcoomes@917 1756
jcoomes@917 1757 // Compute the destination of each Region, and thus each object.
jcoomes@917 1758 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
jcoomes@917 1759 _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1760 dense_prefix_end, space->top(), NULL,
jcoomes@917 1761 dense_prefix_end, space->end(),
jcoomes@917 1762 _space_info[id].new_top_addr());
jcoomes@700 1763 }
duke@435 1764 }
duke@435 1765
duke@435 1766 if (TraceParallelOldGCSummaryPhase) {
jcoomes@810 1767 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@700 1768 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
jcoomes@810 1769 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
duke@435 1770 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
jcoomes@700 1771 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1772 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
duke@435 1773 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1774 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
jcoomes@810 1775 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1776 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1777 id, space->capacity_in_words(), dense_prefix_end,
jcoomes@810 1778 dp_region, dp_words / region_size,
jcoomes@810 1779 cr_words / region_size, new_top);
duke@435 1780 }
duke@435 1781 }
duke@435 1782
jcoomes@917 1783 #ifndef PRODUCT
jcoomes@917 1784 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1785 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1786 SpaceId src_space_id,
jcoomes@917 1787 HeapWord* src_beg, HeapWord* src_end)
jcoomes@917 1788 {
jcoomes@917 1789 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 1790 tty->print_cr("summarizing %d [%s] into %d [%s]: "
jcoomes@917 1791 "src=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1792 SIZE_FORMAT "-" SIZE_FORMAT " "
jcoomes@917 1793 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1794 SIZE_FORMAT "-" SIZE_FORMAT,
jcoomes@917 1795 src_space_id, space_names[src_space_id],
jcoomes@917 1796 dst_space_id, space_names[dst_space_id],
jcoomes@917 1797 src_beg, src_end,
jcoomes@917 1798 _summary_data.addr_to_region_idx(src_beg),
jcoomes@917 1799 _summary_data.addr_to_region_idx(src_end),
jcoomes@917 1800 dst_beg, dst_end,
jcoomes@917 1801 _summary_data.addr_to_region_idx(dst_beg),
jcoomes@917 1802 _summary_data.addr_to_region_idx(dst_end));
jcoomes@917 1803 }
jcoomes@917 1804 }
jcoomes@917 1805 #endif // #ifndef PRODUCT
jcoomes@917 1806
duke@435 1807 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1808 bool maximum_compaction)
duke@435 1809 {
duke@435 1810 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1811 // trace("2");
duke@435 1812
duke@435 1813 #ifdef ASSERT
duke@435 1814 if (TraceParallelOldGCMarkingPhase) {
duke@435 1815 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1816 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1817 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1818 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1819 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1820 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1821 }
duke@435 1822 #endif // #ifdef ASSERT
duke@435 1823
duke@435 1824 // Quick summarization of each space into itself, to see how much is live.
duke@435 1825 summarize_spaces_quick();
duke@435 1826
duke@435 1827 if (TraceParallelOldGCSummaryPhase) {
duke@435 1828 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1829 Universe::print();
jcoomes@810 1830 NOT_PRODUCT(print_region_ranges());
duke@435 1831 if (Verbose) {
duke@435 1832 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1833 }
duke@435 1834 }
duke@435 1835
duke@435 1836 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1837 size_t old_space_total_live = 0;
jcoomes@917 1838 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 1839 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1840 _space_info[id].space()->bottom());
duke@435 1841 }
duke@435 1842
jcoomes@917 1843 MutableSpace* const old_space = _space_info[old_space_id].space();
jcoomes@918 1844 const size_t old_capacity = old_space->capacity_in_words();
jcoomes@918 1845 if (old_space_total_live > old_capacity) {
duke@435 1846 // XXX - should also try to expand
duke@435 1847 maximum_compaction = true;
duke@435 1848 }
jcoomes@918 1849 #ifndef PRODUCT
jcoomes@918 1850 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
jcoomes@931 1851 provoke_split(maximum_compaction);
jcoomes@918 1852 }
jcoomes@918 1853 #endif // #ifndef PRODUCT
duke@435 1854
coleenp@4037 1855 // Old generations.
duke@435 1856 summarize_space(old_space_id, maximum_compaction);
duke@435 1857
jcoomes@917 1858 // Summarize the remaining spaces in the young gen. The initial target space
jcoomes@917 1859 // is the old gen. If a space does not fit entirely into the target, then the
jcoomes@917 1860 // remainder is compacted into the space itself and that space becomes the new
jcoomes@917 1861 // target.
jcoomes@917 1862 SpaceId dst_space_id = old_space_id;
jcoomes@917 1863 HeapWord* dst_space_end = old_space->end();
jcoomes@917 1864 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
jcoomes@917 1865 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
duke@435 1866 const MutableSpace* space = _space_info[id].space();
duke@435 1867 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1868 space->bottom());
jcoomes@917 1869 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
jcoomes@917 1870
jcoomes@917 1871 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
jcoomes@917 1872 SpaceId(id), space->bottom(), space->top());)
jcoomes@701 1873 if (live > 0 && live <= available) {
duke@435 1874 // All the live data will fit.
jcoomes@917 1875 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1876 space->bottom(), space->top(),
jcoomes@917 1877 NULL,
jcoomes@917 1878 *new_top_addr, dst_space_end,
jcoomes@917 1879 new_top_addr);
jcoomes@917 1880 assert(done, "space must fit into old gen");
jcoomes@917 1881
jcoomes@701 1882 // Reset the new_top value for the space.
jcoomes@701 1883 _space_info[id].set_new_top(space->bottom());
jcoomes@917 1884 } else if (live > 0) {
jcoomes@917 1885 // Attempt to fit part of the source space into the target space.
jcoomes@917 1886 HeapWord* next_src_addr = NULL;
jcoomes@917 1887 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1888 space->bottom(), space->top(),
jcoomes@917 1889 &next_src_addr,
jcoomes@917 1890 *new_top_addr, dst_space_end,
jcoomes@917 1891 new_top_addr);
jcoomes@917 1892 assert(!done, "space should not fit into old gen");
jcoomes@917 1893 assert(next_src_addr != NULL, "sanity");
jcoomes@917 1894
jcoomes@917 1895 // The source space becomes the new target, so the remainder is compacted
jcoomes@917 1896 // within the space itself.
jcoomes@917 1897 dst_space_id = SpaceId(id);
jcoomes@917 1898 dst_space_end = space->end();
jcoomes@917 1899 new_top_addr = _space_info[id].new_top_addr();
jcoomes@917 1900 NOT_PRODUCT(summary_phase_msg(dst_space_id,
jcoomes@917 1901 space->bottom(), dst_space_end,
jcoomes@917 1902 SpaceId(id), next_src_addr, space->top());)
jcoomes@917 1903 done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1904 next_src_addr, space->top(),
jcoomes@917 1905 NULL,
jcoomes@917 1906 space->bottom(), dst_space_end,
jcoomes@917 1907 new_top_addr);
jcoomes@917 1908 assert(done, "space must fit when compacted into itself");
jcoomes@917 1909 assert(*new_top_addr <= space->top(), "usage should not grow");
duke@435 1910 }
duke@435 1911 }
duke@435 1912
duke@435 1913 if (TraceParallelOldGCSummaryPhase) {
duke@435 1914 tty->print_cr("summary_phase: after final summarization");
duke@435 1915 Universe::print();
jcoomes@810 1916 NOT_PRODUCT(print_region_ranges());
duke@435 1917 if (Verbose) {
duke@435 1918 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1919 }
duke@435 1920 }
duke@435 1921 }
duke@435 1922
duke@435 1923 // This method should contain all heap-specific policy for invoking a full
duke@435 1924 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1925 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1926 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1927 //
duke@435 1928 // Note that this method should only be called from the vm_thread while at a
duke@435 1929 // safepoint.
jmasa@1822 1930 //
jmasa@1822 1931 // Note that the all_soft_refs_clear flag in the collector policy
jmasa@1822 1932 // may be true because this method can be called without intervening
jmasa@1822 1933 // activity. For example when the heap space is tight and full measure
jmasa@1822 1934 // are being taken to free space.
duke@435 1935 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1936 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1937 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1938 "should be in vm thread");
jmasa@1822 1939
duke@435 1940 ParallelScavengeHeap* heap = gc_heap();
duke@435 1941 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1942 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1943
duke@435 1944 PSAdaptiveSizePolicy* policy = heap->size_policy();
jmasa@1822 1945 IsGCActiveMark mark;
jmasa@1822 1946
jmasa@1822 1947 if (ScavengeBeforeFullGC) {
jmasa@1822 1948 PSScavenge::invoke_no_policy();
duke@435 1949 }
jmasa@1822 1950
jmasa@1822 1951 const bool clear_all_soft_refs =
jmasa@1822 1952 heap->collector_policy()->should_clear_all_soft_refs();
jmasa@1822 1953
jmasa@1822 1954 PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
jmasa@1822 1955 maximum_heap_compaction);
duke@435 1956 }
duke@435 1957
jcoomes@810 1958 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
jcoomes@810 1959 size_t addr_region_index = addr_to_region_idx(addr);
jcoomes@810 1960 return region_index == addr_region_index;
duke@435 1961 }
duke@435 1962
duke@435 1963 // This method contains no policy. You should probably
duke@435 1964 // be calling invoke() instead.
jcoomes@3540 1965 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1966 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1967 assert(ref_processor() != NULL, "Sanity");
duke@435 1968
apetrusenko@574 1969 if (GC_locker::check_active_before_gc()) {
jcoomes@3540 1970 return false;
duke@435 1971 }
duke@435 1972
duke@435 1973 TimeStamp marking_start;
duke@435 1974 TimeStamp compaction_start;
duke@435 1975 TimeStamp collection_exit;
duke@435 1976
duke@435 1977 ParallelScavengeHeap* heap = gc_heap();
duke@435 1978 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1979 PSYoungGen* young_gen = heap->young_gen();
duke@435 1980 PSOldGen* old_gen = heap->old_gen();
duke@435 1981 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 1982
jmasa@1822 1983 // The scope of casr should end after code that can change
jmasa@1822 1984 // CollectorPolicy::_should_clear_all_soft_refs.
jmasa@1822 1985 ClearedAllSoftRefs casr(maximum_heap_compaction,
jmasa@1822 1986 heap->collector_policy());
jmasa@1822 1987
jmasa@698 1988 if (ZapUnusedHeapArea) {
jmasa@698 1989 // Save information needed to minimize mangling
jmasa@698 1990 heap->record_gen_tops_before_GC();
jmasa@698 1991 }
jmasa@698 1992
ysr@1050 1993 heap->pre_full_gc_dump();
ysr@1050 1994
duke@435 1995 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 1996
duke@435 1997 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 1998 // miscellaneous bookkeeping.
duke@435 1999 PreGCValues pre_gc_values;
duke@435 2000 pre_compact(&pre_gc_values);
duke@435 2001
jcoomes@645 2002 // Get the compaction manager reserved for the VM thread.
jcoomes@645 2003 ParCompactionManager* const vmthread_cm =
jcoomes@645 2004 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 2005
duke@435 2006 // Place after pre_compact() where the number of invocations is incremented.
duke@435 2007 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 2008
duke@435 2009 {
duke@435 2010 ResourceMark rm;
duke@435 2011 HandleMark hm;
duke@435 2012
jmasa@3294 2013 // Set the number of GC threads to be used in this collection
jmasa@3294 2014 gc_task_manager()->set_active_gang();
jmasa@3294 2015 gc_task_manager()->task_idle_workers();
jmasa@3294 2016 heap->set_par_threads(gc_task_manager()->active_workers());
jmasa@3294 2017
duke@435 2018 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 2019 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
brutisso@3767 2020 TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 2021 TraceCollectorStats tcs(counters());
fparain@2888 2022 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
duke@435 2023
duke@435 2024 if (TraceGen1Time) accumulated_time()->start();
duke@435 2025
duke@435 2026 // Let the size policy know we're starting
duke@435 2027 size_policy->major_collection_begin();
duke@435 2028
duke@435 2029 CodeCache::gc_prologue();
duke@435 2030 Threads::gc_prologue();
duke@435 2031
duke@435 2032 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 2033
johnc@3175 2034 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 2035 ref_processor()->setup_policy(maximum_heap_compaction);
duke@435 2036
duke@435 2037 bool marked_for_unloading = false;
duke@435 2038
duke@435 2039 marking_start.update();
jcoomes@645 2040 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 2041
duke@435 2042 #ifndef PRODUCT
duke@435 2043 if (TraceParallelOldGCMarkingPhase) {
duke@435 2044 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 2045 "cas_by_another %d",
duke@435 2046 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 2047 mark_bitmap()->cas_by_another());
duke@435 2048 }
duke@435 2049 #endif // #ifndef PRODUCT
duke@435 2050
brutisso@3767 2051 bool max_on_system_gc = UseMaximumCompactionOnSystemGC
brutisso@3767 2052 && gc_cause == GCCause::_java_lang_system_gc;
jcoomes@645 2053 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 2054
duke@435 2055 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 2056 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 2057
duke@435 2058 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 2059 // needed by the compaction for filling holes in the dense prefix.
duke@435 2060 adjust_roots();
duke@435 2061
duke@435 2062 compaction_start.update();
jcoomes@2783 2063 compact();
duke@435 2064
duke@435 2065 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 2066 // done before resizing.
duke@435 2067 post_compact();
duke@435 2068
duke@435 2069 // Let the size policy know we're done
duke@435 2070 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 2071
duke@435 2072 if (UseAdaptiveSizePolicy) {
duke@435 2073 if (PrintAdaptiveSizePolicy) {
duke@435 2074 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 2075 gclog_or_tty->stamp();
duke@435 2076 gclog_or_tty->print_cr(" collection: %d ",
duke@435 2077 heap->total_collections());
duke@435 2078 if (Verbose) {
coleenp@4037 2079 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
coleenp@4037 2080 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
duke@435 2081 }
duke@435 2082 }
duke@435 2083
duke@435 2084 // Don't check if the size_policy is ready here. Let
duke@435 2085 // the size_policy check that internally.
duke@435 2086 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 2087 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 2088 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 2089 // Calculate optimal free space amounts
duke@435 2090 assert(young_gen->max_size() >
duke@435 2091 young_gen->from_space()->capacity_in_bytes() +
duke@435 2092 young_gen->to_space()->capacity_in_bytes(),
duke@435 2093 "Sizes of space in young gen are out-of-bounds");
duke@435 2094 size_t max_eden_size = young_gen->max_size() -
duke@435 2095 young_gen->from_space()->capacity_in_bytes() -
duke@435 2096 young_gen->to_space()->capacity_in_bytes();
jmasa@698 2097 size_policy->compute_generation_free_space(
jmasa@698 2098 young_gen->used_in_bytes(),
jmasa@698 2099 young_gen->eden_space()->used_in_bytes(),
jmasa@698 2100 old_gen->used_in_bytes(),
jmasa@698 2101 young_gen->eden_space()->capacity_in_bytes(),
jmasa@698 2102 old_gen->max_gen_size(),
jmasa@698 2103 max_eden_size,
jmasa@698 2104 true /* full gc*/,
jmasa@1822 2105 gc_cause,
jmasa@1822 2106 heap->collector_policy());
jmasa@698 2107
jmasa@698 2108 heap->resize_old_gen(
jmasa@698 2109 size_policy->calculated_old_free_size_in_bytes());
duke@435 2110
duke@435 2111 // Don't resize the young generation at an major collection. A
duke@435 2112 // desired young generation size may have been calculated but
duke@435 2113 // resizing the young generation complicates the code because the
duke@435 2114 // resizing of the old generation may have moved the boundary
duke@435 2115 // between the young generation and the old generation. Let the
duke@435 2116 // young generation resizing happen at the minor collections.
duke@435 2117 }
duke@435 2118 if (PrintAdaptiveSizePolicy) {
duke@435 2119 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 2120 heap->total_collections());
duke@435 2121 }
duke@435 2122 }
duke@435 2123
duke@435 2124 if (UsePerfData) {
duke@435 2125 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 2126 counters->update_counters();
duke@435 2127 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 2128 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 2129 }
duke@435 2130
duke@435 2131 heap->resize_all_tlabs();
duke@435 2132
coleenp@4037 2133 // Resize the metaspace capactiy after a collection
coleenp@4037 2134 MetaspaceGC::compute_new_size();
duke@435 2135
duke@435 2136 if (TraceGen1Time) accumulated_time()->stop();
duke@435 2137
duke@435 2138 if (PrintGC) {
duke@435 2139 if (PrintGCDetails) {
duke@435 2140 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 2141 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 2142 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 2143 heap->print_heap_change(pre_gc_values.heap_used());
coleenp@4037 2144 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
duke@435 2145 } else {
duke@435 2146 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2147 }
duke@435 2148 }
duke@435 2149
duke@435 2150 // Track memory usage and detect low memory
duke@435 2151 MemoryService::track_memory_usage();
duke@435 2152 heap->update_counters();
jmasa@3294 2153 gc_task_manager()->release_idle_workers();
duke@435 2154 }
duke@435 2155
jcoomes@2191 2156 #ifdef ASSERT
jcoomes@2191 2157 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
jcoomes@2191 2158 ParCompactionManager* const cm =
jcoomes@2191 2159 ParCompactionManager::manager_array(int(i));
jcoomes@2191 2160 assert(cm->marking_stack()->is_empty(), "should be empty");
jmasa@3294 2161 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
jcoomes@2191 2162 }
jcoomes@2191 2163 #endif // ASSERT
jcoomes@2191 2164
duke@435 2165 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 2166 HandleMark hm; // Discard invalid handles created during verification
duke@435 2167 gclog_or_tty->print(" VerifyAfterGC:");
johnc@4176 2168 Universe::verify();
duke@435 2169 }
duke@435 2170
duke@435 2171 // Re-verify object start arrays
duke@435 2172 if (VerifyObjectStartArray &&
duke@435 2173 VerifyAfterGC) {
duke@435 2174 old_gen->verify_object_start_array();
duke@435 2175 }
duke@435 2176
jmasa@698 2177 if (ZapUnusedHeapArea) {
jmasa@698 2178 old_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2179 }
jmasa@698 2180
duke@435 2181 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2182
duke@435 2183 collection_exit.update();
duke@435 2184
never@3499 2185 heap->print_heap_after_gc();
duke@435 2186 if (PrintGCTaskTimeStamps) {
duke@435 2187 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 2188 INT64_FORMAT,
duke@435 2189 marking_start.ticks(), compaction_start.ticks(),
duke@435 2190 collection_exit.ticks());
duke@435 2191 gc_task_manager()->print_task_time_stamps();
duke@435 2192 }
jmasa@981 2193
ysr@1050 2194 heap->post_full_gc_dump();
ysr@1050 2195
jmasa@981 2196 #ifdef TRACESPINNING
jmasa@981 2197 ParallelTaskTerminator::print_termination_counts();
jmasa@981 2198 #endif
jcoomes@3540 2199
jcoomes@3540 2200 return true;
duke@435 2201 }
duke@435 2202
duke@435 2203 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2204 PSYoungGen* young_gen,
duke@435 2205 PSOldGen* old_gen) {
duke@435 2206 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2207 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2208 assert(young_gen->virtual_space()->alignment() ==
duke@435 2209 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2210
duke@435 2211 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2212 return false;
duke@435 2213 }
duke@435 2214
duke@435 2215 // Both generations must be completely committed.
duke@435 2216 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2217 return false;
duke@435 2218 }
duke@435 2219 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2220 return false;
duke@435 2221 }
duke@435 2222
duke@435 2223 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2224 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2225 // full GC.
duke@435 2226 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2227 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2228 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2229 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2230 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2231
duke@435 2232 if (absorb_size >= eden_capacity) {
duke@435 2233 return false; // Must leave some space in eden.
duke@435 2234 }
duke@435 2235
duke@435 2236 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2237 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2238 return false; // Respect young gen minimum size.
duke@435 2239 }
duke@435 2240
duke@435 2241 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2242 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2243 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2244 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2245 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2246 absorb_size / K,
duke@435 2247 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2248 young_gen->from_space()->used_in_bytes() / K,
duke@435 2249 young_gen->to_space()->used_in_bytes() / K,
duke@435 2250 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2251 }
duke@435 2252
duke@435 2253 // Fill the unused part of the old gen.
duke@435 2254 MutableSpace* const old_space = old_gen->object_space();
jcoomes@916 2255 HeapWord* const unused_start = old_space->top();
jcoomes@916 2256 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
jcoomes@916 2257
jcoomes@916 2258 if (unused_words > 0) {
jcoomes@916 2259 if (unused_words < CollectedHeap::min_fill_size()) {
jcoomes@916 2260 return false; // If the old gen cannot be filled, must give up.
jcoomes@916 2261 }
jcoomes@916 2262 CollectedHeap::fill_with_objects(unused_start, unused_words);
duke@435 2263 }
duke@435 2264
duke@435 2265 // Take the live data from eden and set both top and end in the old gen to
duke@435 2266 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2267 // from end to virtual_space->high() in debug builds).
duke@435 2268 HeapWord* const new_top = eden_space->top();
duke@435 2269 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2270 absorb_size);
duke@435 2271 young_gen->reset_after_change();
duke@435 2272 old_space->set_top(new_top);
duke@435 2273 old_space->set_end(new_top);
duke@435 2274 old_gen->reset_after_change();
duke@435 2275
duke@435 2276 // Update the object start array for the filler object and the data from eden.
duke@435 2277 ObjectStartArray* const start_array = old_gen->start_array();
jcoomes@916 2278 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
jcoomes@916 2279 start_array->allocate_block(p);
duke@435 2280 }
duke@435 2281
duke@435 2282 // Could update the promoted average here, but it is not typically updated at
duke@435 2283 // full GCs and the value to use is unclear. Something like
duke@435 2284 //
duke@435 2285 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2286
duke@435 2287 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2288 return true;
duke@435 2289 }
duke@435 2290
duke@435 2291 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2292 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2293 "shouldn't return NULL");
duke@435 2294 return ParallelScavengeHeap::gc_task_manager();
duke@435 2295 }
duke@435 2296
duke@435 2297 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2298 bool maximum_heap_compaction) {
duke@435 2299 // Recursively traverse all live objects and mark them
duke@435 2300 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2301
duke@435 2302 ParallelScavengeHeap* heap = gc_heap();
duke@435 2303 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2304 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2305 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2306 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2307
duke@435 2308 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2309 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2310
coleenp@4037 2311 // Need new claim bits before marking starts.
coleenp@4037 2312 ClassLoaderDataGraph::clear_claimed_marks();
coleenp@4037 2313
duke@435 2314 {
duke@435 2315 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
jrose@1424 2316 ParallelScavengeHeap::ParStrongRootsScope psrs;
duke@435 2317
duke@435 2318 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2319
duke@435 2320 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2321 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2322 // We scan the thread roots in parallel
duke@435 2323 Threads::create_thread_roots_marking_tasks(q);
duke@435 2324 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2325 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2326 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2327 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2328 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
jrose@1424 2329 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
duke@435 2330
jmasa@3294 2331 if (active_gc_threads > 1) {
jmasa@3294 2332 for (uint j = 0; j < active_gc_threads; j++) {
duke@435 2333 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2334 }
duke@435 2335 }
duke@435 2336
jmasa@3294 2337 gc_task_manager()->execute_and_wait(q);
duke@435 2338 }
duke@435 2339
duke@435 2340 // Process reference objects found during marking
duke@435 2341 {
duke@435 2342 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2343 if (ref_processor()->processing_is_mt()) {
duke@435 2344 RefProcTaskExecutor task_executor;
duke@435 2345 ref_processor()->process_discovered_references(
ysr@888 2346 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
ysr@888 2347 &task_executor);
duke@435 2348 } else {
duke@435 2349 ref_processor()->process_discovered_references(
ysr@888 2350 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
duke@435 2351 }
duke@435 2352 }
duke@435 2353
duke@435 2354 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2355 // Follow system dictionary roots and unload classes.
duke@435 2356 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2357
duke@435 2358 // Follow code cache roots.
brutisso@4098 2359 CodeCache::do_unloading(is_alive_closure(), purged_class);
jcoomes@1746 2360 cm->follow_marking_stacks(); // Flush marking stack.
duke@435 2361
duke@435 2362 // Update subklass/sibling/implementor links of live klasses
coleenp@4037 2363 Klass::clean_weak_klass_links(is_alive_closure());
duke@435 2364
coleenp@2497 2365 // Visit interned string tables and delete unmarked oops
duke@435 2366 StringTable::unlink(is_alive_closure());
coleenp@2497 2367 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2368 SymbolTable::unlink();
duke@435 2369
jcoomes@1746 2370 assert(cm->marking_stacks_empty(), "marking stacks should be empty");
duke@435 2371 }
duke@435 2372
coleenp@4037 2373 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
coleenp@4037 2374 ClassLoaderData* cld = klass->class_loader_data();
coleenp@4037 2375 // The actual processing of the klass is done when we
coleenp@4037 2376 // traverse the list of Klasses in the class loader data.
coleenp@4037 2377 PSParallelCompact::follow_class_loader(cm, cld);
coleenp@4037 2378 }
coleenp@4037 2379
coleenp@4037 2380 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
coleenp@4037 2381 ClassLoaderData* cld = klass->class_loader_data();
coleenp@4037 2382 // The actual processing of the klass is done when we
coleenp@4037 2383 // traverse the list of Klasses in the class loader data.
coleenp@4037 2384 PSParallelCompact::adjust_class_loader(cm, cld);
coleenp@4037 2385 }
coleenp@4037 2386
coleenp@4037 2387 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
coleenp@4037 2388 ClassLoaderData* cld) {
coleenp@4037 2389 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
coleenp@4037 2390 PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
coleenp@4037 2391
coleenp@4037 2392 cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
coleenp@4037 2393 }
coleenp@4037 2394
coleenp@4037 2395 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
coleenp@4037 2396 ClassLoaderData* cld) {
coleenp@4037 2397 cld->oops_do(PSParallelCompact::adjust_root_pointer_closure(),
coleenp@4037 2398 PSParallelCompact::adjust_klass_closure(),
coleenp@4037 2399 true);
coleenp@4037 2400 }
coleenp@4037 2401
duke@435 2402 // This should be moved to the shared markSweep code!
duke@435 2403 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2404 public:
duke@435 2405 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2406 bool do_object_b(oop p) { return true; }
duke@435 2407 };
duke@435 2408 static PSAlwaysTrueClosure always_true;
duke@435 2409
duke@435 2410 void PSParallelCompact::adjust_roots() {
duke@435 2411 // Adjust the pointers to reflect the new locations
duke@435 2412 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2413
coleenp@4037 2414 // Need new claim bits when tracing through and adjusting pointers.
coleenp@4037 2415 ClassLoaderDataGraph::clear_claimed_marks();
coleenp@4037 2416
duke@435 2417 // General strong roots.
duke@435 2418 Universe::oops_do(adjust_root_pointer_closure());
duke@435 2419 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
stefank@4298 2420 CLDToOopClosure adjust_from_cld(adjust_root_pointer_closure());
stefank@4298 2421 Threads::oops_do(adjust_root_pointer_closure(), &adjust_from_cld, NULL);
duke@435 2422 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
duke@435 2423 FlatProfiler::oops_do(adjust_root_pointer_closure());
duke@435 2424 Management::oops_do(adjust_root_pointer_closure());
duke@435 2425 JvmtiExport::oops_do(adjust_root_pointer_closure());
duke@435 2426 // SO_AllClasses
duke@435 2427 SystemDictionary::oops_do(adjust_root_pointer_closure());
coleenp@4037 2428 ClassLoaderDataGraph::oops_do(adjust_root_pointer_closure(), adjust_klass_closure(), true);
duke@435 2429
duke@435 2430 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2431 // have been cleared if they pointed to non-surviving objects.)
duke@435 2432 // Global (weak) JNI handles
duke@435 2433 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
duke@435 2434
duke@435 2435 CodeCache::oops_do(adjust_pointer_closure());
duke@435 2436 StringTable::oops_do(adjust_root_pointer_closure());
duke@435 2437 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
duke@435 2438 // Roots were visited so references into the young gen in roots
duke@435 2439 // may have been scanned. Process them also.
duke@435 2440 // Should the reference processor have a span that excludes
duke@435 2441 // young gen objects?
duke@435 2442 PSScavenge::reference_processor()->weak_oops_do(
duke@435 2443 adjust_root_pointer_closure());
duke@435 2444 }
duke@435 2445
jcoomes@810 2446 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 2447 uint parallel_gc_threads)
jcoomes@810 2448 {
duke@435 2449 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2450
jmasa@3294 2451 // Find the threads that are active
jmasa@3294 2452 unsigned int which = 0;
jmasa@3294 2453
jmasa@3294 2454 const uint task_count = MAX2(parallel_gc_threads, 1U);
jmasa@3294 2455 for (uint j = 0; j < task_count; j++) {
jmasa@2188 2456 q->enqueue(new DrainStacksCompactionTask(j));
jmasa@3294 2457 ParCompactionManager::verify_region_list_empty(j);
jmasa@3294 2458 // Set the region stacks variables to "no" region stack values
jmasa@3294 2459 // so that they will be recognized and needing a region stack
jmasa@3294 2460 // in the stealing tasks if they do not get one by executing
jmasa@3294 2461 // a draining stack.
jmasa@3294 2462 ParCompactionManager* cm = ParCompactionManager::manager_array(j);
jmasa@3294 2463 cm->set_region_stack(NULL);
jmasa@3294 2464 cm->set_region_stack_index((uint)max_uintx);
duke@435 2465 }
jmasa@3294 2466 ParCompactionManager::reset_recycled_stack_index();
duke@435 2467
jcoomes@810 2468 // Find all regions that are available (can be filled immediately) and
duke@435 2469 // distribute them to the thread stacks. The iteration is done in reverse
jcoomes@810 2470 // order (high to low) so the regions will be removed in ascending order.
duke@435 2471
duke@435 2472 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2473
jcoomes@810 2474 size_t fillable_regions = 0; // A count for diagnostic purposes.
jmasa@3294 2475 // A region index which corresponds to the tasks created above.
jmasa@3294 2476 // "which" must be 0 <= which < task_count
jmasa@3294 2477
jmasa@3294 2478 which = 0;
coleenp@4037 2479 // id + 1 is used to test termination so unsigned can
coleenp@4037 2480 // be used with an old_space_id == 0.
coleenp@4037 2481 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
duke@435 2482 SpaceInfo* const space_info = _space_info + id;
duke@435 2483 MutableSpace* const space = space_info->space();
duke@435 2484 HeapWord* const new_top = space_info->new_top();
duke@435 2485
jcoomes@810 2486 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
jcoomes@810 2487 const size_t end_region =
jcoomes@810 2488 sd.addr_to_region_idx(sd.region_align_up(new_top));
coleenp@4037 2489
coleenp@4037 2490 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
jcoomes@810 2491 if (sd.region(cur)->claim_unsafe()) {
jmasa@3294 2492 ParCompactionManager::region_list_push(which, cur);
duke@435 2493
duke@435 2494 if (TraceParallelOldGCCompactionPhase && Verbose) {
jcoomes@810 2495 const size_t count_mod_8 = fillable_regions & 7;
duke@435 2496 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
jcoomes@699 2497 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
duke@435 2498 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2499 }
duke@435 2500
jcoomes@810 2501 NOT_PRODUCT(++fillable_regions;)
jcoomes@810 2502
jmasa@3294 2503 // Assign regions to tasks in round-robin fashion.
duke@435 2504 if (++which == task_count) {
jmasa@3294 2505 assert(which <= parallel_gc_threads,
jmasa@3294 2506 "Inconsistent number of workers");
duke@435 2507 which = 0;
duke@435 2508 }
duke@435 2509 }
duke@435 2510 }
duke@435 2511 }
duke@435 2512
duke@435 2513 if (TraceParallelOldGCCompactionPhase) {
jcoomes@810 2514 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
jcoomes@810 2515 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
duke@435 2516 }
duke@435 2517 }
duke@435 2518
duke@435 2519 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2520
duke@435 2521 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2522 uint parallel_gc_threads) {
duke@435 2523 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2524
duke@435 2525 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2526
duke@435 2527 // Iterate over all the spaces adding tasks for updating
jcoomes@810 2528 // regions in the dense prefix. Assume that 1 gc thread
duke@435 2529 // will work on opening the gaps and the remaining gc threads
duke@435 2530 // will work on the dense prefix.
jcoomes@917 2531 unsigned int space_id;
jcoomes@917 2532 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
duke@435 2533 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2534 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2535
duke@435 2536 if (dense_prefix_end == space->bottom()) {
duke@435 2537 // There is no dense prefix for this space.
duke@435 2538 continue;
duke@435 2539 }
duke@435 2540
jcoomes@810 2541 // The dense prefix is before this region.
jcoomes@810 2542 size_t region_index_end_dense_prefix =
jcoomes@810 2543 sd.addr_to_region_idx(dense_prefix_end);
jcoomes@810 2544 RegionData* const dense_prefix_cp =
jcoomes@810 2545 sd.region(region_index_end_dense_prefix);
duke@435 2546 assert(dense_prefix_end == space->end() ||
duke@435 2547 dense_prefix_cp->available() ||
duke@435 2548 dense_prefix_cp->claimed(),
jcoomes@810 2549 "The region after the dense prefix should always be ready to fill");
jcoomes@810 2550
jcoomes@810 2551 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
duke@435 2552
duke@435 2553 // Is there dense prefix work?
jcoomes@810 2554 size_t total_dense_prefix_regions =
jcoomes@810 2555 region_index_end_dense_prefix - region_index_start;
jcoomes@810 2556 // How many regions of the dense prefix should be given to
duke@435 2557 // each thread?
jcoomes@810 2558 if (total_dense_prefix_regions > 0) {
duke@435 2559 uint tasks_for_dense_prefix = 1;
jcoomes@2783 2560 if (total_dense_prefix_regions <=
jcoomes@2783 2561 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
jcoomes@2783 2562 // Don't over partition. This assumes that
jcoomes@2783 2563 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
jcoomes@2783 2564 // so there are not many regions to process.
jcoomes@2783 2565 tasks_for_dense_prefix = parallel_gc_threads;
jcoomes@2783 2566 } else {
jcoomes@2783 2567 // Over partition
jcoomes@2783 2568 tasks_for_dense_prefix = parallel_gc_threads *
jcoomes@2783 2569 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2570 }
jcoomes@810 2571 size_t regions_per_thread = total_dense_prefix_regions /
duke@435 2572 tasks_for_dense_prefix;
jcoomes@810 2573 // Give each thread at least 1 region.
jcoomes@810 2574 if (regions_per_thread == 0) {
jcoomes@810 2575 regions_per_thread = 1;
duke@435 2576 }
duke@435 2577
duke@435 2578 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
jcoomes@810 2579 if (region_index_start >= region_index_end_dense_prefix) {
duke@435 2580 break;
duke@435 2581 }
jcoomes@810 2582 // region_index_end is not processed
jcoomes@810 2583 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
jcoomes@810 2584 region_index_end_dense_prefix);
jcoomes@917 2585 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2586 region_index_start,
jcoomes@917 2587 region_index_end));
jcoomes@810 2588 region_index_start = region_index_end;
duke@435 2589 }
duke@435 2590 }
duke@435 2591 // This gets any part of the dense prefix that did not
duke@435 2592 // fit evenly.
jcoomes@810 2593 if (region_index_start < region_index_end_dense_prefix) {
jcoomes@917 2594 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2595 region_index_start,
jcoomes@917 2596 region_index_end_dense_prefix));
duke@435 2597 }
jcoomes@917 2598 }
duke@435 2599 }
duke@435 2600
jcoomes@810 2601 void PSParallelCompact::enqueue_region_stealing_tasks(
duke@435 2602 GCTaskQueue* q,
duke@435 2603 ParallelTaskTerminator* terminator_ptr,
duke@435 2604 uint parallel_gc_threads) {
duke@435 2605 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2606
jcoomes@810 2607 // Once a thread has drained it's stack, it should try to steal regions from
duke@435 2608 // other threads.
duke@435 2609 if (parallel_gc_threads > 1) {
duke@435 2610 for (uint j = 0; j < parallel_gc_threads; j++) {
jcoomes@810 2611 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
duke@435 2612 }
duke@435 2613 }
duke@435 2614 }
duke@435 2615
duke@435 2616 void PSParallelCompact::compact() {
duke@435 2617 // trace("5");
duke@435 2618 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2619
duke@435 2620 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2621 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2622 PSOldGen* old_gen = heap->old_gen();
duke@435 2623 old_gen->start_array()->reset();
duke@435 2624 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2625 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2626 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2627 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2628
duke@435 2629 GCTaskQueue* q = GCTaskQueue::create();
jmasa@3294 2630 enqueue_region_draining_tasks(q, active_gc_threads);
jmasa@3294 2631 enqueue_dense_prefix_tasks(q, active_gc_threads);
jmasa@3294 2632 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
duke@435 2633
duke@435 2634 {
duke@435 2635 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2636
jmasa@3294 2637 gc_task_manager()->execute_and_wait(q);
duke@435 2638
duke@435 2639 #ifdef ASSERT
jcoomes@810 2640 // Verify that all regions have been processed before the deferred updates.
duke@435 2641 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2642 verify_complete(SpaceId(id));
duke@435 2643 }
duke@435 2644 #endif
duke@435 2645 }
duke@435 2646
duke@435 2647 {
duke@435 2648 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2649 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2650 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2651 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2652 update_deferred_objects(cm, SpaceId(id));
duke@435 2653 }
duke@435 2654 }
duke@435 2655 }
duke@435 2656
duke@435 2657 #ifdef ASSERT
duke@435 2658 void PSParallelCompact::verify_complete(SpaceId space_id) {
jcoomes@810 2659 // All Regions between space bottom() to new_top() should be marked as filled
jcoomes@810 2660 // and all Regions between new_top() and top() should be available (i.e.,
duke@435 2661 // should have been emptied).
duke@435 2662 ParallelCompactData& sd = summary_data();
duke@435 2663 SpaceInfo si = _space_info[space_id];
jcoomes@810 2664 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
jcoomes@810 2665 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
jcoomes@810 2666 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
jcoomes@810 2667 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
jcoomes@810 2668 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
duke@435 2669
duke@435 2670 bool issued_a_warning = false;
duke@435 2671
jcoomes@810 2672 size_t cur_region;
jcoomes@810 2673 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
jcoomes@810 2674 const RegionData* const c = sd.region(cur_region);
duke@435 2675 if (!c->completed()) {
jcoomes@810 2676 warning("region " SIZE_FORMAT " not filled: "
duke@435 2677 "destination_count=" SIZE_FORMAT,
jcoomes@810 2678 cur_region, c->destination_count());
duke@435 2679 issued_a_warning = true;
duke@435 2680 }
duke@435 2681 }
duke@435 2682
jcoomes@810 2683 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
jcoomes@810 2684 const RegionData* const c = sd.region(cur_region);
duke@435 2685 if (!c->available()) {
jcoomes@810 2686 warning("region " SIZE_FORMAT " not empty: "
duke@435 2687 "destination_count=" SIZE_FORMAT,
jcoomes@810 2688 cur_region, c->destination_count());
duke@435 2689 issued_a_warning = true;
duke@435 2690 }
duke@435 2691 }
duke@435 2692
duke@435 2693 if (issued_a_warning) {
jcoomes@810 2694 print_region_ranges();
duke@435 2695 }
duke@435 2696 }
duke@435 2697 #endif // #ifdef ASSERT
duke@435 2698
jcoomes@810 2699 // Update interior oops in the ranges of regions [beg_region, end_region).
duke@435 2700 void
duke@435 2701 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2702 SpaceId space_id,
jcoomes@810 2703 size_t beg_region,
jcoomes@810 2704 size_t end_region) {
duke@435 2705 ParallelCompactData& sd = summary_data();
duke@435 2706 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2707
jcoomes@810 2708 HeapWord* beg_addr = sd.region_to_addr(beg_region);
jcoomes@810 2709 HeapWord* const end_addr = sd.region_to_addr(end_region);
jcoomes@810 2710 assert(beg_region <= end_region, "bad region range");
duke@435 2711 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2712
duke@435 2713 #ifdef ASSERT
jcoomes@810 2714 // Claim the regions to avoid triggering an assert when they are marked as
duke@435 2715 // filled.
jcoomes@810 2716 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
jcoomes@810 2717 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
duke@435 2718 }
duke@435 2719 #endif // #ifdef ASSERT
duke@435 2720
duke@435 2721 if (beg_addr != space(space_id)->bottom()) {
duke@435 2722 // Find the first live object or block of dead space that *starts* in this
jcoomes@810 2723 // range of regions. If a partial object crosses onto the region, skip it;
jcoomes@810 2724 // it will be marked for 'deferred update' when the object head is
jcoomes@810 2725 // processed. If dead space crosses onto the region, it is also skipped; it
jcoomes@810 2726 // will be filled when the prior region is processed. If neither of those
jcoomes@810 2727 // apply, the first word in the region is the start of a live object or dead
jcoomes@810 2728 // space.
duke@435 2729 assert(beg_addr > space(space_id)->bottom(), "sanity");
jcoomes@810 2730 const RegionData* const cp = sd.region(beg_region);
duke@435 2731 if (cp->partial_obj_size() != 0) {
jcoomes@810 2732 beg_addr = sd.partial_obj_end(beg_region);
duke@435 2733 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2734 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2735 }
duke@435 2736 }
duke@435 2737
duke@435 2738 if (beg_addr < end_addr) {
jcoomes@810 2739 // A live object or block of dead space starts in this range of Regions.
duke@435 2740 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2741
duke@435 2742 // Create closures and iterate.
duke@435 2743 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2744 FillClosure fill_closure(cm, space_id);
duke@435 2745 ParMarkBitMap::IterationStatus status;
duke@435 2746 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2747 dense_prefix_end);
duke@435 2748 if (status == ParMarkBitMap::incomplete) {
duke@435 2749 update_closure.do_addr(update_closure.source());
duke@435 2750 }
duke@435 2751 }
duke@435 2752
jcoomes@810 2753 // Mark the regions as filled.
jcoomes@810 2754 RegionData* const beg_cp = sd.region(beg_region);
jcoomes@810 2755 RegionData* const end_cp = sd.region(end_region);
jcoomes@810 2756 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2757 cp->set_completed();
duke@435 2758 }
duke@435 2759 }
duke@435 2760
duke@435 2761 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2762 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2763 // in the heap and asserts such.
duke@435 2764 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2765 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 2766
coleenp@4037 2767 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2768 if (_space_info[id].space()->contains(addr)) {
duke@435 2769 return SpaceId(id);
duke@435 2770 }
duke@435 2771 }
duke@435 2772
duke@435 2773 assert(false, "no space contains the addr");
duke@435 2774 return last_space_id;
duke@435 2775 }
duke@435 2776
duke@435 2777 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 2778 SpaceId id) {
duke@435 2779 assert(id < last_space_id, "bad space id");
duke@435 2780
duke@435 2781 ParallelCompactData& sd = summary_data();
duke@435 2782 const SpaceInfo* const space_info = _space_info + id;
duke@435 2783 ObjectStartArray* const start_array = space_info->start_array();
duke@435 2784
duke@435 2785 const MutableSpace* const space = space_info->space();
duke@435 2786 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 2787 HeapWord* const beg_addr = space_info->dense_prefix();
jcoomes@810 2788 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
jcoomes@810 2789
jcoomes@810 2790 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
jcoomes@810 2791 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
jcoomes@810 2792 const RegionData* cur_region;
jcoomes@810 2793 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
jcoomes@810 2794 HeapWord* const addr = cur_region->deferred_obj_addr();
duke@435 2795 if (addr != NULL) {
duke@435 2796 if (start_array != NULL) {
duke@435 2797 start_array->allocate_block(addr);
duke@435 2798 }
duke@435 2799 oop(addr)->update_contents(cm);
duke@435 2800 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 2801 }
duke@435 2802 }
duke@435 2803 }
duke@435 2804
duke@435 2805 // Skip over count live words starting from beg, and return the address of the
duke@435 2806 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 2807 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 2808 // an object, or account for those live words in some other way. Callers must
duke@435 2809 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 2810 HeapWord*
duke@435 2811 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 2812 {
duke@435 2813 assert(count > 0, "sanity");
duke@435 2814
duke@435 2815 ParMarkBitMap* m = mark_bitmap();
duke@435 2816 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 2817 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 2818 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 2819
duke@435 2820 do {
duke@435 2821 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2822 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 2823 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 2824 if (obj_bits > bits_to_skip) {
duke@435 2825 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 2826 }
duke@435 2827 bits_to_skip -= obj_bits;
duke@435 2828 cur_beg = cur_end + 1;
duke@435 2829 } while (bits_to_skip > 0);
duke@435 2830
duke@435 2831 // Skipping the desired number of words landed just past the end of an object.
duke@435 2832 // Find the start of the next object.
duke@435 2833 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2834 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 2835 return m->bit_to_addr(cur_beg);
duke@435 2836 }
duke@435 2837
jcoomes@917 2838 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
jcoomes@917 2839 SpaceId src_space_id,
jcoomes@917 2840 size_t src_region_idx)
duke@435 2841 {
jcoomes@917 2842 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
jcoomes@917 2843
jcoomes@917 2844 const SplitInfo& split_info = _space_info[src_space_id].split_info();
jcoomes@917 2845 if (split_info.dest_region_addr() == dest_addr) {
jcoomes@917 2846 // The partial object ending at the split point contains the first word to
jcoomes@917 2847 // be copied to dest_addr.
jcoomes@917 2848 return split_info.first_src_addr();
jcoomes@917 2849 }
jcoomes@917 2850
jcoomes@917 2851 const ParallelCompactData& sd = summary_data();
duke@435 2852 ParMarkBitMap* const bitmap = mark_bitmap();
jcoomes@810 2853 const size_t RegionSize = ParallelCompactData::RegionSize;
jcoomes@810 2854
jcoomes@810 2855 assert(sd.is_region_aligned(dest_addr), "not aligned");
jcoomes@810 2856 const RegionData* const src_region_ptr = sd.region(src_region_idx);
jcoomes@810 2857 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
jcoomes@810 2858 HeapWord* const src_region_destination = src_region_ptr->destination();
jcoomes@810 2859
jcoomes@810 2860 assert(dest_addr >= src_region_destination, "wrong src region");
jcoomes@810 2861 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
jcoomes@810 2862
jcoomes@810 2863 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
jcoomes@810 2864 HeapWord* const src_region_end = src_region_beg + RegionSize;
jcoomes@810 2865
jcoomes@810 2866 HeapWord* addr = src_region_beg;
jcoomes@810 2867 if (dest_addr == src_region_destination) {
jcoomes@810 2868 // Return the first live word in the source region.
duke@435 2869 if (partial_obj_size == 0) {
jcoomes@810 2870 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 2871 assert(addr < src_region_end, "no objects start in src region");
duke@435 2872 }
duke@435 2873 return addr;
duke@435 2874 }
duke@435 2875
duke@435 2876 // Must skip some live data.
jcoomes@810 2877 size_t words_to_skip = dest_addr - src_region_destination;
jcoomes@810 2878 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
duke@435 2879
duke@435 2880 if (partial_obj_size >= words_to_skip) {
duke@435 2881 // All the live words to skip are part of the partial object.
duke@435 2882 addr += words_to_skip;
duke@435 2883 if (partial_obj_size == words_to_skip) {
duke@435 2884 // Find the first live word past the partial object.
jcoomes@810 2885 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 2886 assert(addr < src_region_end, "wrong src region");
duke@435 2887 }
duke@435 2888 return addr;
duke@435 2889 }
duke@435 2890
duke@435 2891 // Skip over the partial object (if any).
duke@435 2892 if (partial_obj_size != 0) {
duke@435 2893 words_to_skip -= partial_obj_size;
duke@435 2894 addr += partial_obj_size;
duke@435 2895 }
duke@435 2896
jcoomes@810 2897 // Skip over live words due to objects that start in the region.
jcoomes@810 2898 addr = skip_live_words(addr, src_region_end, words_to_skip);
jcoomes@810 2899 assert(addr < src_region_end, "wrong src region");
duke@435 2900 return addr;
duke@435 2901 }
duke@435 2902
duke@435 2903 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 2904 SpaceId src_space_id,
jcoomes@810 2905 size_t beg_region,
duke@435 2906 HeapWord* end_addr)
duke@435 2907 {
duke@435 2908 ParallelCompactData& sd = summary_data();
jcoomes@930 2909
jcoomes@930 2910 #ifdef ASSERT
jcoomes@930 2911 MutableSpace* const src_space = _space_info[src_space_id].space();
jcoomes@930 2912 HeapWord* const beg_addr = sd.region_to_addr(beg_region);
jcoomes@930 2913 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
jcoomes@930 2914 "src_space_id does not match beg_addr");
jcoomes@930 2915 assert(src_space->contains(end_addr) || end_addr == src_space->end(),
jcoomes@930 2916 "src_space_id does not match end_addr");
jcoomes@930 2917 #endif // #ifdef ASSERT
jcoomes@930 2918
jcoomes@810 2919 RegionData* const beg = sd.region(beg_region);
jcoomes@930 2920 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
jcoomes@930 2921
jcoomes@930 2922 // Regions up to new_top() are enqueued if they become available.
jcoomes@930 2923 HeapWord* const new_top = _space_info[src_space_id].new_top();
jcoomes@930 2924 RegionData* const enqueue_end =
jcoomes@930 2925 sd.addr_to_region_ptr(sd.region_align_up(new_top));
jcoomes@930 2926
jcoomes@930 2927 for (RegionData* cur = beg; cur < end; ++cur) {
jcoomes@810 2928 assert(cur->data_size() > 0, "region must have live data");
duke@435 2929 cur->decrement_destination_count();
jcoomes@930 2930 if (cur < enqueue_end && cur->available() && cur->claim()) {
jcoomes@1993 2931 cm->push_region(sd.region(cur));
duke@435 2932 }
duke@435 2933 }
duke@435 2934 }
duke@435 2935
jcoomes@810 2936 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 2937 SpaceId& src_space_id,
jcoomes@810 2938 HeapWord*& src_space_top,
jcoomes@810 2939 HeapWord* end_addr)
duke@435 2940 {
jcoomes@810 2941 typedef ParallelCompactData::RegionData RegionData;
duke@435 2942
duke@435 2943 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 2944 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 2945
jcoomes@810 2946 size_t src_region_idx = 0;
jcoomes@810 2947
jcoomes@810 2948 // Skip empty regions (if any) up to the top of the space.
jcoomes@810 2949 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 2950 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
jcoomes@810 2951 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
jcoomes@810 2952 const RegionData* const top_region_ptr =
jcoomes@810 2953 sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 2954 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
jcoomes@810 2955 ++src_region_ptr;
duke@435 2956 }
duke@435 2957
jcoomes@810 2958 if (src_region_ptr < top_region_ptr) {
jcoomes@810 2959 // The next source region is in the current space. Update src_region_idx
jcoomes@810 2960 // and the source address to match src_region_ptr.
jcoomes@810 2961 src_region_idx = sd.region(src_region_ptr);
jcoomes@810 2962 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
jcoomes@810 2963 if (src_region_addr > closure.source()) {
jcoomes@810 2964 closure.set_source(src_region_addr);
duke@435 2965 }
jcoomes@810 2966 return src_region_idx;
duke@435 2967 }
duke@435 2968
jcoomes@810 2969 // Switch to a new source space and find the first non-empty region.
duke@435 2970 unsigned int space_id = src_space_id + 1;
duke@435 2971 assert(space_id < last_space_id, "not enough spaces");
duke@435 2972
duke@435 2973 HeapWord* const destination = closure.destination();
duke@435 2974
duke@435 2975 do {
duke@435 2976 MutableSpace* space = _space_info[space_id].space();
duke@435 2977 HeapWord* const bottom = space->bottom();
jcoomes@810 2978 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
duke@435 2979
duke@435 2980 // Iterate over the spaces that do not compact into themselves.
duke@435 2981 if (bottom_cp->destination() != bottom) {
jcoomes@810 2982 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 2983 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 2984
jcoomes@810 2985 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 2986 if (src_cp->live_obj_size() > 0) {
duke@435 2987 // Found it.
duke@435 2988 assert(src_cp->destination() == destination,
duke@435 2989 "first live obj in the space must match the destination");
duke@435 2990 assert(src_cp->partial_obj_size() == 0,
duke@435 2991 "a space cannot begin with a partial obj");
duke@435 2992
duke@435 2993 src_space_id = SpaceId(space_id);
duke@435 2994 src_space_top = space->top();
jcoomes@810 2995 const size_t src_region_idx = sd.region(src_cp);
jcoomes@810 2996 closure.set_source(sd.region_to_addr(src_region_idx));
jcoomes@810 2997 return src_region_idx;
duke@435 2998 } else {
duke@435 2999 assert(src_cp->data_size() == 0, "sanity");
duke@435 3000 }
duke@435 3001 }
duke@435 3002 }
duke@435 3003 } while (++space_id < last_space_id);
duke@435 3004
jcoomes@810 3005 assert(false, "no source region was found");
duke@435 3006 return 0;
duke@435 3007 }
duke@435 3008
jcoomes@810 3009 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
duke@435 3010 {
duke@435 3011 typedef ParMarkBitMap::IterationStatus IterationStatus;
jcoomes@810 3012 const size_t RegionSize = ParallelCompactData::RegionSize;
duke@435 3013 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3014 ParallelCompactData& sd = summary_data();
jcoomes@810 3015 RegionData* const region_ptr = sd.region(region_idx);
duke@435 3016
duke@435 3017 // Get the items needed to construct the closure.
jcoomes@810 3018 HeapWord* dest_addr = sd.region_to_addr(region_idx);
duke@435 3019 SpaceId dest_space_id = space_id(dest_addr);
duke@435 3020 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 3021 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 3022 assert(dest_addr < new_top, "sanity");
jcoomes@810 3023 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
jcoomes@810 3024
jcoomes@810 3025 // Get the source region and related info.
jcoomes@810 3026 size_t src_region_idx = region_ptr->source_region();
jcoomes@810 3027 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
duke@435 3028 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 3029
duke@435 3030 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
jcoomes@917 3031 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
jcoomes@810 3032
jcoomes@810 3033 // Adjust src_region_idx to prepare for decrementing destination counts (the
jcoomes@810 3034 // destination count is not decremented when a region is copied to itself).
jcoomes@810 3035 if (src_region_idx == region_idx) {
jcoomes@810 3036 src_region_idx += 1;
duke@435 3037 }
duke@435 3038
duke@435 3039 if (bitmap->is_unmarked(closure.source())) {
duke@435 3040 // The first source word is in the middle of an object; copy the remainder
duke@435 3041 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3042 // deferred will be noted when the object header is processed.
duke@435 3043 HeapWord* const old_src_addr = closure.source();
duke@435 3044 closure.copy_partial_obj();
duke@435 3045 if (closure.is_full()) {
jcoomes@930 3046 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3047 closure.source());
jcoomes@810 3048 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3049 region_ptr->set_completed();
duke@435 3050 return;
duke@435 3051 }
duke@435 3052
jcoomes@810 3053 HeapWord* const end_addr = sd.region_align_down(closure.source());
jcoomes@810 3054 if (sd.region_align_down(old_src_addr) != end_addr) {
jcoomes@810 3055 // The partial object was copied from more than one source region.
jcoomes@930 3056 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3057
jcoomes@810 3058 // Move to the next source region, possibly switching spaces as well. All
duke@435 3059 // args except end_addr may be modified.
jcoomes@810 3060 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3061 end_addr);
duke@435 3062 }
duke@435 3063 }
duke@435 3064
duke@435 3065 do {
duke@435 3066 HeapWord* const cur_addr = closure.source();
jcoomes@810 3067 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
duke@435 3068 src_space_top);
duke@435 3069 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3070
duke@435 3071 if (status == ParMarkBitMap::incomplete) {
jcoomes@810 3072 // The last obj that starts in the source region does not end in the
jcoomes@810 3073 // region.
jcoomes@1844 3074 assert(closure.source() < end_addr, "sanity");
duke@435 3075 HeapWord* const obj_beg = closure.source();
duke@435 3076 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3077 src_space_top);
duke@435 3078 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3079 if (obj_end < range_end) {
duke@435 3080 // The end was found; the entire object will fit.
duke@435 3081 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3082 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3083 } else {
duke@435 3084 // The end was not found; the object will not fit.
duke@435 3085 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3086 status = ParMarkBitMap::would_overflow;
duke@435 3087 }
duke@435 3088 }
duke@435 3089
duke@435 3090 if (status == ParMarkBitMap::would_overflow) {
duke@435 3091 // The last object did not fit. Note that interior oop updates were
jcoomes@810 3092 // deferred, then copy enough of the object to fill the region.
jcoomes@810 3093 region_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3094 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3095
jcoomes@930 3096 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3097 closure.source());
jcoomes@810 3098 region_ptr->set_completed();
duke@435 3099 return;
duke@435 3100 }
duke@435 3101
duke@435 3102 if (status == ParMarkBitMap::full) {
jcoomes@930 3103 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3104 closure.source());
jcoomes@810 3105 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3106 region_ptr->set_completed();
duke@435 3107 return;
duke@435 3108 }
duke@435 3109
jcoomes@930 3110 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3111
jcoomes@810 3112 // Move to the next source region, possibly switching spaces as well. All
duke@435 3113 // args except end_addr may be modified.
jcoomes@810 3114 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3115 end_addr);
duke@435 3116 } while (true);
duke@435 3117 }
duke@435 3118
duke@435 3119 void
duke@435 3120 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3121 const MutableSpace* sp = space(space_id);
duke@435 3122 if (sp->is_empty()) {
duke@435 3123 return;
duke@435 3124 }
duke@435 3125
duke@435 3126 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3127 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3128 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3129 HeapWord* beg_addr = sp->bottom();
duke@435 3130 HeapWord* end_addr = sp->top();
duke@435 3131
duke@435 3132 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3133
jcoomes@810 3134 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
jcoomes@810 3135 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
jcoomes@810 3136 if (beg_region < dp_region) {
jcoomes@810 3137 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
duke@435 3138 }
duke@435 3139
jcoomes@810 3140 // The destination of the first live object that starts in the region is one
jcoomes@810 3141 // past the end of the partial object entering the region (if any).
jcoomes@810 3142 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
duke@435 3143 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3144 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3145 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3146
duke@435 3147 if (words > 0) {
duke@435 3148 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3149 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3150
duke@435 3151 ParMarkBitMap::IterationStatus status;
duke@435 3152 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3153 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3154 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3155 "live objects skipped because closure is full");
duke@435 3156 }
duke@435 3157 }
duke@435 3158
duke@435 3159 jlong PSParallelCompact::millis_since_last_gc() {
johnc@3339 3160 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3161 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3162 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3339 3163 jlong ret_val = now - _time_of_last_gc;
duke@435 3164 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3165 if (ret_val < 0) {
johnc@3339 3166 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
duke@435 3167 return 0;
duke@435 3168 }
duke@435 3169 return ret_val;
duke@435 3170 }
duke@435 3171
duke@435 3172 void PSParallelCompact::reset_millis_since_last_gc() {
johnc@3339 3173 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3174 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3175 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
duke@435 3176 }
duke@435 3177
duke@435 3178 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3179 {
duke@435 3180 if (source() != destination()) {
jcoomes@930 3181 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3182 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3183 }
duke@435 3184 update_state(words_remaining());
duke@435 3185 assert(is_full(), "sanity");
duke@435 3186 return ParMarkBitMap::full;
duke@435 3187 }
duke@435 3188
duke@435 3189 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3190 {
duke@435 3191 size_t words = words_remaining();
duke@435 3192
duke@435 3193 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3194 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3195 if (end_addr < range_end) {
duke@435 3196 words = bitmap()->obj_size(source(), end_addr);
duke@435 3197 }
duke@435 3198
duke@435 3199 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3200 // that crosses the dense prefix boundary could be overwritten.
duke@435 3201 if (source() != destination()) {
jcoomes@930 3202 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3203 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3204 }
duke@435 3205 update_state(words);
duke@435 3206 }
duke@435 3207
duke@435 3208 ParMarkBitMapClosure::IterationStatus
duke@435 3209 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3210 assert(destination() != NULL, "sanity");
duke@435 3211 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3212
duke@435 3213 _source = addr;
duke@435 3214 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3215 destination(), "wrong destination");
duke@435 3216
duke@435 3217 if (words > words_remaining()) {
duke@435 3218 return ParMarkBitMap::would_overflow;
duke@435 3219 }
duke@435 3220
duke@435 3221 // The start_array must be updated even if the object is not moving.
duke@435 3222 if (_start_array != NULL) {
duke@435 3223 _start_array->allocate_block(destination());
duke@435 3224 }
duke@435 3225
duke@435 3226 if (destination() != source()) {
jcoomes@930 3227 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3228 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3229 }
duke@435 3230
duke@435 3231 oop moved_oop = (oop) destination();
duke@435 3232 moved_oop->update_contents(compaction_manager());
duke@435 3233 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3234
duke@435 3235 update_state(words);
duke@435 3236 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3237 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3238 }
duke@435 3239
duke@435 3240 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3241 ParCompactionManager* cm,
duke@435 3242 PSParallelCompact::SpaceId space_id) :
duke@435 3243 ParMarkBitMapClosure(mbm, cm),
duke@435 3244 _space_id(space_id),
duke@435 3245 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3246 {
duke@435 3247 }
duke@435 3248
duke@435 3249 // Updates the references in the object to their new values.
duke@435 3250 ParMarkBitMapClosure::IterationStatus
duke@435 3251 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3252 do_addr(addr);
duke@435 3253 return ParMarkBitMap::incomplete;
duke@435 3254 }

mercurial