src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Thu, 14 Mar 2013 09:37:38 +0100

author
tschatzl
date
Thu, 14 Mar 2013 09:37:38 +0100
changeset 4785
3c226052f7dc
parent 4384
b735136e0d82
child 4904
7b835924c31c
permissions
-rw-r--r--

6733980: par compact - TraceGen1Time always shows 0.0000 seconds
Summary: Use the correct collector to retrieve accumulated gen1 trace time
Reviewed-by: johnc, jmasa

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
    35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
    40 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    42 #include "gc_implementation/shared/isGCActiveMark.hpp"
    43 #include "gc_interface/gcCause.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/referencePolicy.hpp"
    46 #include "memory/referenceProcessor.hpp"
    47 #include "oops/methodData.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "oops/oop.pcgc.inline.hpp"
    50 #include "runtime/fprofiler.hpp"
    51 #include "runtime/safepoint.hpp"
    52 #include "runtime/vmThread.hpp"
    53 #include "services/management.hpp"
    54 #include "services/memoryService.hpp"
    55 #include "services/memTracker.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/stack.inline.hpp"
    59 #include <math.h>
    61 // All sizes are in HeapWords.
    62 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
    63 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    64 const size_t ParallelCompactData::RegionSizeBytes =
    65   RegionSize << LogHeapWordSize;
    66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    68 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
    70 const ParallelCompactData::RegionData::region_sz_t
    71 ParallelCompactData::RegionData::dc_shift = 27;
    73 const ParallelCompactData::RegionData::region_sz_t
    74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    76 const ParallelCompactData::RegionData::region_sz_t
    77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
    79 const ParallelCompactData::RegionData::region_sz_t
    80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
    82 const ParallelCompactData::RegionData::region_sz_t
    83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
    85 const ParallelCompactData::RegionData::region_sz_t
    86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
    88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    89 bool      PSParallelCompact::_print_phases = false;
    91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    92 Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
    94 double PSParallelCompact::_dwl_mean;
    95 double PSParallelCompact::_dwl_std_dev;
    96 double PSParallelCompact::_dwl_first_term;
    97 double PSParallelCompact::_dwl_adjustment;
    98 #ifdef  ASSERT
    99 bool   PSParallelCompact::_dwl_initialized = false;
   100 #endif  // #ifdef ASSERT
   102 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
   103                        HeapWord* destination)
   104 {
   105   assert(src_region_idx != 0, "invalid src_region_idx");
   106   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
   107   assert(destination != NULL, "invalid destination argument");
   109   _src_region_idx = src_region_idx;
   110   _partial_obj_size = partial_obj_size;
   111   _destination = destination;
   113   // These fields may not be updated below, so make sure they're clear.
   114   assert(_dest_region_addr == NULL, "should have been cleared");
   115   assert(_first_src_addr == NULL, "should have been cleared");
   117   // Determine the number of destination regions for the partial object.
   118   HeapWord* const last_word = destination + partial_obj_size - 1;
   119   const ParallelCompactData& sd = PSParallelCompact::summary_data();
   120   HeapWord* const beg_region_addr = sd.region_align_down(destination);
   121   HeapWord* const end_region_addr = sd.region_align_down(last_word);
   123   if (beg_region_addr == end_region_addr) {
   124     // One destination region.
   125     _destination_count = 1;
   126     if (end_region_addr == destination) {
   127       // The destination falls on a region boundary, thus the first word of the
   128       // partial object will be the first word copied to the destination region.
   129       _dest_region_addr = end_region_addr;
   130       _first_src_addr = sd.region_to_addr(src_region_idx);
   131     }
   132   } else {
   133     // Two destination regions.  When copied, the partial object will cross a
   134     // destination region boundary, so a word somewhere within the partial
   135     // object will be the first word copied to the second destination region.
   136     _destination_count = 2;
   137     _dest_region_addr = end_region_addr;
   138     const size_t ofs = pointer_delta(end_region_addr, destination);
   139     assert(ofs < _partial_obj_size, "sanity");
   140     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
   141   }
   142 }
   144 void SplitInfo::clear()
   145 {
   146   _src_region_idx = 0;
   147   _partial_obj_size = 0;
   148   _destination = NULL;
   149   _destination_count = 0;
   150   _dest_region_addr = NULL;
   151   _first_src_addr = NULL;
   152   assert(!is_valid(), "sanity");
   153 }
   155 #ifdef  ASSERT
   156 void SplitInfo::verify_clear()
   157 {
   158   assert(_src_region_idx == 0, "not clear");
   159   assert(_partial_obj_size == 0, "not clear");
   160   assert(_destination == NULL, "not clear");
   161   assert(_destination_count == 0, "not clear");
   162   assert(_dest_region_addr == NULL, "not clear");
   163   assert(_first_src_addr == NULL, "not clear");
   164 }
   165 #endif  // #ifdef ASSERT
   168 #ifndef PRODUCT
   169 const char* PSParallelCompact::space_names[] = {
   170   "old ", "eden", "from", "to  "
   171 };
   173 void PSParallelCompact::print_region_ranges()
   174 {
   175   tty->print_cr("space  bottom     top        end        new_top");
   176   tty->print_cr("------ ---------- ---------- ---------- ----------");
   178   for (unsigned int id = 0; id < last_space_id; ++id) {
   179     const MutableSpace* space = _space_info[id].space();
   180     tty->print_cr("%u %s "
   181                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   182                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   183                   id, space_names[id],
   184                   summary_data().addr_to_region_idx(space->bottom()),
   185                   summary_data().addr_to_region_idx(space->top()),
   186                   summary_data().addr_to_region_idx(space->end()),
   187                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   188   }
   189 }
   191 void
   192 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   193 {
   194 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   195 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   197   ParallelCompactData& sd = PSParallelCompact::summary_data();
   198   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   199   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   200                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   201                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   202                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   203                 i, c->data_location(), dci, c->destination(),
   204                 c->partial_obj_size(), c->live_obj_size(),
   205                 c->data_size(), c->source_region(), c->destination_count());
   207 #undef  REGION_IDX_FORMAT
   208 #undef  REGION_DATA_FORMAT
   209 }
   211 void
   212 print_generic_summary_data(ParallelCompactData& summary_data,
   213                            HeapWord* const beg_addr,
   214                            HeapWord* const end_addr)
   215 {
   216   size_t total_words = 0;
   217   size_t i = summary_data.addr_to_region_idx(beg_addr);
   218   const size_t last = summary_data.addr_to_region_idx(end_addr);
   219   HeapWord* pdest = 0;
   221   while (i <= last) {
   222     ParallelCompactData::RegionData* c = summary_data.region(i);
   223     if (c->data_size() != 0 || c->destination() != pdest) {
   224       print_generic_summary_region(i, c);
   225       total_words += c->data_size();
   226       pdest = c->destination();
   227     }
   228     ++i;
   229   }
   231   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   232 }
   234 void
   235 print_generic_summary_data(ParallelCompactData& summary_data,
   236                            SpaceInfo* space_info)
   237 {
   238   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   239     const MutableSpace* space = space_info[id].space();
   240     print_generic_summary_data(summary_data, space->bottom(),
   241                                MAX2(space->top(), space_info[id].new_top()));
   242   }
   243 }
   245 void
   246 print_initial_summary_region(size_t i,
   247                              const ParallelCompactData::RegionData* c,
   248                              bool newline = true)
   249 {
   250   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   251              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   252              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   253              i, c->destination(),
   254              c->partial_obj_size(), c->live_obj_size(),
   255              c->data_size(), c->source_region(), c->destination_count());
   256   if (newline) tty->cr();
   257 }
   259 void
   260 print_initial_summary_data(ParallelCompactData& summary_data,
   261                            const MutableSpace* space) {
   262   if (space->top() == space->bottom()) {
   263     return;
   264   }
   266   const size_t region_size = ParallelCompactData::RegionSize;
   267   typedef ParallelCompactData::RegionData RegionData;
   268   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   269   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   270   const RegionData* c = summary_data.region(end_region - 1);
   271   HeapWord* end_addr = c->destination() + c->data_size();
   272   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   274   // Print (and count) the full regions at the beginning of the space.
   275   size_t full_region_count = 0;
   276   size_t i = summary_data.addr_to_region_idx(space->bottom());
   277   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   278     print_initial_summary_region(i, summary_data.region(i));
   279     ++full_region_count;
   280     ++i;
   281   }
   283   size_t live_to_right = live_in_space - full_region_count * region_size;
   285   double max_reclaimed_ratio = 0.0;
   286   size_t max_reclaimed_ratio_region = 0;
   287   size_t max_dead_to_right = 0;
   288   size_t max_live_to_right = 0;
   290   // Print the 'reclaimed ratio' for regions while there is something live in
   291   // the region or to the right of it.  The remaining regions are empty (and
   292   // uninteresting), and computing the ratio will result in division by 0.
   293   while (i < end_region && live_to_right > 0) {
   294     c = summary_data.region(i);
   295     HeapWord* const region_addr = summary_data.region_to_addr(i);
   296     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   297     const size_t dead_to_right = used_to_right - live_to_right;
   298     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   300     if (reclaimed_ratio > max_reclaimed_ratio) {
   301             max_reclaimed_ratio = reclaimed_ratio;
   302             max_reclaimed_ratio_region = i;
   303             max_dead_to_right = dead_to_right;
   304             max_live_to_right = live_to_right;
   305     }
   307     print_initial_summary_region(i, c, false);
   308     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   309                   reclaimed_ratio, dead_to_right, live_to_right);
   311     live_to_right -= c->data_size();
   312     ++i;
   313   }
   315   // Any remaining regions are empty.  Print one more if there is one.
   316   if (i < end_region) {
   317     print_initial_summary_region(i, summary_data.region(i));
   318   }
   320   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   321                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   322                 max_reclaimed_ratio_region, max_dead_to_right,
   323                 max_live_to_right, max_reclaimed_ratio);
   324 }
   326 void
   327 print_initial_summary_data(ParallelCompactData& summary_data,
   328                            SpaceInfo* space_info) {
   329   unsigned int id = PSParallelCompact::old_space_id;
   330   const MutableSpace* space;
   331   do {
   332     space = space_info[id].space();
   333     print_initial_summary_data(summary_data, space);
   334   } while (++id < PSParallelCompact::eden_space_id);
   336   do {
   337     space = space_info[id].space();
   338     print_generic_summary_data(summary_data, space->bottom(), space->top());
   339   } while (++id < PSParallelCompact::last_space_id);
   340 }
   341 #endif  // #ifndef PRODUCT
   343 #ifdef  ASSERT
   344 size_t add_obj_count;
   345 size_t add_obj_size;
   346 size_t mark_bitmap_count;
   347 size_t mark_bitmap_size;
   348 #endif  // #ifdef ASSERT
   350 ParallelCompactData::ParallelCompactData()
   351 {
   352   _region_start = 0;
   354   _region_vspace = 0;
   355   _region_data = 0;
   356   _region_count = 0;
   357 }
   359 bool ParallelCompactData::initialize(MemRegion covered_region)
   360 {
   361   _region_start = covered_region.start();
   362   const size_t region_size = covered_region.word_size();
   363   DEBUG_ONLY(_region_end = _region_start + region_size;)
   365   assert(region_align_down(_region_start) == _region_start,
   366          "region start not aligned");
   367   assert((region_size & RegionSizeOffsetMask) == 0,
   368          "region size not a multiple of RegionSize");
   370   bool result = initialize_region_data(region_size);
   372   return result;
   373 }
   375 PSVirtualSpace*
   376 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   377 {
   378   const size_t raw_bytes = count * element_size;
   379   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   380   const size_t granularity = os::vm_allocation_granularity();
   381   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   383   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   384     MAX2(page_sz, granularity);
   385   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   386   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   387                        rs.size());
   389   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   391   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   392   if (vspace != 0) {
   393     if (vspace->expand_by(bytes)) {
   394       return vspace;
   395     }
   396     delete vspace;
   397     // Release memory reserved in the space.
   398     rs.release();
   399   }
   401   return 0;
   402 }
   404 bool ParallelCompactData::initialize_region_data(size_t region_size)
   405 {
   406   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   407   _region_vspace = create_vspace(count, sizeof(RegionData));
   408   if (_region_vspace != 0) {
   409     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   410     _region_count = count;
   411     return true;
   412   }
   413   return false;
   414 }
   416 void ParallelCompactData::clear()
   417 {
   418   memset(_region_data, 0, _region_vspace->committed_size());
   419 }
   421 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   422   assert(beg_region <= _region_count, "beg_region out of range");
   423   assert(end_region <= _region_count, "end_region out of range");
   425   const size_t region_cnt = end_region - beg_region;
   426   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   427 }
   429 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   430 {
   431   const RegionData* cur_cp = region(region_idx);
   432   const RegionData* const end_cp = region(region_count() - 1);
   434   HeapWord* result = region_to_addr(region_idx);
   435   if (cur_cp < end_cp) {
   436     do {
   437       result += cur_cp->partial_obj_size();
   438     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   439   }
   440   return result;
   441 }
   443 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   444 {
   445   const size_t obj_ofs = pointer_delta(addr, _region_start);
   446   const size_t beg_region = obj_ofs >> Log2RegionSize;
   447   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   449   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   450   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   452   if (beg_region == end_region) {
   453     // All in one region.
   454     _region_data[beg_region].add_live_obj(len);
   455     return;
   456   }
   458   // First region.
   459   const size_t beg_ofs = region_offset(addr);
   460   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   462   Klass* klass = ((oop)addr)->klass();
   463   // Middle regions--completely spanned by this object.
   464   for (size_t region = beg_region + 1; region < end_region; ++region) {
   465     _region_data[region].set_partial_obj_size(RegionSize);
   466     _region_data[region].set_partial_obj_addr(addr);
   467   }
   469   // Last region.
   470   const size_t end_ofs = region_offset(addr + len - 1);
   471   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   472   _region_data[end_region].set_partial_obj_addr(addr);
   473 }
   475 void
   476 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   477 {
   478   assert(region_offset(beg) == 0, "not RegionSize aligned");
   479   assert(region_offset(end) == 0, "not RegionSize aligned");
   481   size_t cur_region = addr_to_region_idx(beg);
   482   const size_t end_region = addr_to_region_idx(end);
   483   HeapWord* addr = beg;
   484   while (cur_region < end_region) {
   485     _region_data[cur_region].set_destination(addr);
   486     _region_data[cur_region].set_destination_count(0);
   487     _region_data[cur_region].set_source_region(cur_region);
   488     _region_data[cur_region].set_data_location(addr);
   490     // Update live_obj_size so the region appears completely full.
   491     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   492     _region_data[cur_region].set_live_obj_size(live_size);
   494     ++cur_region;
   495     addr += RegionSize;
   496   }
   497 }
   499 // Find the point at which a space can be split and, if necessary, record the
   500 // split point.
   501 //
   502 // If the current src region (which overflowed the destination space) doesn't
   503 // have a partial object, the split point is at the beginning of the current src
   504 // region (an "easy" split, no extra bookkeeping required).
   505 //
   506 // If the current src region has a partial object, the split point is in the
   507 // region where that partial object starts (call it the split_region).  If
   508 // split_region has a partial object, then the split point is just after that
   509 // partial object (a "hard" split where we have to record the split data and
   510 // zero the partial_obj_size field).  With a "hard" split, we know that the
   511 // partial_obj ends within split_region because the partial object that caused
   512 // the overflow starts in split_region.  If split_region doesn't have a partial
   513 // obj, then the split is at the beginning of split_region (another "easy"
   514 // split).
   515 HeapWord*
   516 ParallelCompactData::summarize_split_space(size_t src_region,
   517                                            SplitInfo& split_info,
   518                                            HeapWord* destination,
   519                                            HeapWord* target_end,
   520                                            HeapWord** target_next)
   521 {
   522   assert(destination <= target_end, "sanity");
   523   assert(destination + _region_data[src_region].data_size() > target_end,
   524     "region should not fit into target space");
   525   assert(is_region_aligned(target_end), "sanity");
   527   size_t split_region = src_region;
   528   HeapWord* split_destination = destination;
   529   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
   531   if (destination + partial_obj_size > target_end) {
   532     // The split point is just after the partial object (if any) in the
   533     // src_region that contains the start of the object that overflowed the
   534     // destination space.
   535     //
   536     // Find the start of the "overflow" object and set split_region to the
   537     // region containing it.
   538     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
   539     split_region = addr_to_region_idx(overflow_obj);
   541     // Clear the source_region field of all destination regions whose first word
   542     // came from data after the split point (a non-null source_region field
   543     // implies a region must be filled).
   544     //
   545     // An alternative to the simple loop below:  clear during post_compact(),
   546     // which uses memcpy instead of individual stores, and is easy to
   547     // parallelize.  (The downside is that it clears the entire RegionData
   548     // object as opposed to just one field.)
   549     //
   550     // post_compact() would have to clear the summary data up to the highest
   551     // address that was written during the summary phase, which would be
   552     //
   553     //         max(top, max(new_top, clear_top))
   554     //
   555     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
   556     // to target_end.
   557     const RegionData* const sr = region(split_region);
   558     const size_t beg_idx =
   559       addr_to_region_idx(region_align_up(sr->destination() +
   560                                          sr->partial_obj_size()));
   561     const size_t end_idx = addr_to_region_idx(target_end);
   563     if (TraceParallelOldGCSummaryPhase) {
   564         gclog_or_tty->print_cr("split:  clearing source_region field in ["
   565                                SIZE_FORMAT ", " SIZE_FORMAT ")",
   566                                beg_idx, end_idx);
   567     }
   568     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
   569       _region_data[idx].set_source_region(0);
   570     }
   572     // Set split_destination and partial_obj_size to reflect the split region.
   573     split_destination = sr->destination();
   574     partial_obj_size = sr->partial_obj_size();
   575   }
   577   // The split is recorded only if a partial object extends onto the region.
   578   if (partial_obj_size != 0) {
   579     _region_data[split_region].set_partial_obj_size(0);
   580     split_info.record(split_region, partial_obj_size, split_destination);
   581   }
   583   // Setup the continuation addresses.
   584   *target_next = split_destination + partial_obj_size;
   585   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
   587   if (TraceParallelOldGCSummaryPhase) {
   588     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
   589     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
   590                            " pos=" SIZE_FORMAT,
   591                            split_type, source_next, split_region,
   592                            partial_obj_size);
   593     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
   594                            " tn=" PTR_FORMAT,
   595                            split_type, split_destination,
   596                            addr_to_region_idx(split_destination),
   597                            *target_next);
   599     if (partial_obj_size != 0) {
   600       HeapWord* const po_beg = split_info.destination();
   601       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
   602       gclog_or_tty->print_cr("%s split:  "
   603                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
   604                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
   605                              split_type,
   606                              po_beg, addr_to_region_idx(po_beg),
   607                              po_end, addr_to_region_idx(po_end));
   608     }
   609   }
   611   return source_next;
   612 }
   614 bool ParallelCompactData::summarize(SplitInfo& split_info,
   615                                     HeapWord* source_beg, HeapWord* source_end,
   616                                     HeapWord** source_next,
   617                                     HeapWord* target_beg, HeapWord* target_end,
   618                                     HeapWord** target_next)
   619 {
   620   if (TraceParallelOldGCSummaryPhase) {
   621     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
   622     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
   623                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
   624                   source_beg, source_end, source_next_val,
   625                   target_beg, target_end, *target_next);
   626   }
   628   size_t cur_region = addr_to_region_idx(source_beg);
   629   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   631   HeapWord *dest_addr = target_beg;
   632   while (cur_region < end_region) {
   633     // The destination must be set even if the region has no data.
   634     _region_data[cur_region].set_destination(dest_addr);
   636     size_t words = _region_data[cur_region].data_size();
   637     if (words > 0) {
   638       // If cur_region does not fit entirely into the target space, find a point
   639       // at which the source space can be 'split' so that part is copied to the
   640       // target space and the rest is copied elsewhere.
   641       if (dest_addr + words > target_end) {
   642         assert(source_next != NULL, "source_next is NULL when splitting");
   643         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
   644                                              target_end, target_next);
   645         return false;
   646       }
   648       // Compute the destination_count for cur_region, and if necessary, update
   649       // source_region for a destination region.  The source_region field is
   650       // updated if cur_region is the first (left-most) region to be copied to a
   651       // destination region.
   652       //
   653       // The destination_count calculation is a bit subtle.  A region that has
   654       // data that compacts into itself does not count itself as a destination.
   655       // This maintains the invariant that a zero count means the region is
   656       // available and can be claimed and then filled.
   657       uint destination_count = 0;
   658       if (split_info.is_split(cur_region)) {
   659         // The current region has been split:  the partial object will be copied
   660         // to one destination space and the remaining data will be copied to
   661         // another destination space.  Adjust the initial destination_count and,
   662         // if necessary, set the source_region field if the partial object will
   663         // cross a destination region boundary.
   664         destination_count = split_info.destination_count();
   665         if (destination_count == 2) {
   666           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
   667           _region_data[dest_idx].set_source_region(cur_region);
   668         }
   669       }
   671       HeapWord* const last_addr = dest_addr + words - 1;
   672       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   673       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   675       // Initially assume that the destination regions will be the same and
   676       // adjust the value below if necessary.  Under this assumption, if
   677       // cur_region == dest_region_2, then cur_region will be compacted
   678       // completely into itself.
   679       destination_count += cur_region == dest_region_2 ? 0 : 1;
   680       if (dest_region_1 != dest_region_2) {
   681         // Destination regions differ; adjust destination_count.
   682         destination_count += 1;
   683         // Data from cur_region will be copied to the start of dest_region_2.
   684         _region_data[dest_region_2].set_source_region(cur_region);
   685       } else if (region_offset(dest_addr) == 0) {
   686         // Data from cur_region will be copied to the start of the destination
   687         // region.
   688         _region_data[dest_region_1].set_source_region(cur_region);
   689       }
   691       _region_data[cur_region].set_destination_count(destination_count);
   692       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   693       dest_addr += words;
   694     }
   696     ++cur_region;
   697   }
   699   *target_next = dest_addr;
   700   return true;
   701 }
   703 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   704   assert(addr != NULL, "Should detect NULL oop earlier");
   705   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   706 #ifdef ASSERT
   707   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   708     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   709   }
   710 #endif
   711   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   713   // Region covering the object.
   714   size_t region_index = addr_to_region_idx(addr);
   715   const RegionData* const region_ptr = region(region_index);
   716   HeapWord* const region_addr = region_align_down(addr);
   718   assert(addr < region_addr + RegionSize, "Region does not cover object");
   719   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
   721   HeapWord* result = region_ptr->destination();
   723   // If all the data in the region is live, then the new location of the object
   724   // can be calculated from the destination of the region plus the offset of the
   725   // object in the region.
   726   if (region_ptr->data_size() == RegionSize) {
   727     result += pointer_delta(addr, region_addr);
   728     DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   729     return result;
   730   }
   732   // The new location of the object is
   733   //    region destination +
   734   //    size of the partial object extending onto the region +
   735   //    sizes of the live objects in the Region that are to the left of addr
   736   const size_t partial_obj_size = region_ptr->partial_obj_size();
   737   HeapWord* const search_start = region_addr + partial_obj_size;
   739   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   740   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   742   result += partial_obj_size + live_to_left;
   743   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   744   return result;
   745 }
   747 #ifdef  ASSERT
   748 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   749 {
   750   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   751   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   752   for (const size_t* p = beg; p < end; ++p) {
   753     assert(*p == 0, "not zero");
   754   }
   755 }
   757 void ParallelCompactData::verify_clear()
   758 {
   759   verify_clear(_region_vspace);
   760 }
   761 #endif  // #ifdef ASSERT
   763 #ifdef NOT_PRODUCT
   764 ParallelCompactData::RegionData* debug_region(size_t region_index) {
   765   ParallelCompactData& sd = PSParallelCompact::summary_data();
   766   return sd.region(region_index);
   767 }
   768 #endif
   770 elapsedTimer        PSParallelCompact::_accumulated_time;
   771 unsigned int        PSParallelCompact::_total_invocations = 0;
   772 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   773 jlong               PSParallelCompact::_time_of_last_gc = 0;
   774 CollectorCounters*  PSParallelCompact::_counters = NULL;
   775 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   776 ParallelCompactData PSParallelCompact::_summary_data;
   778 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   780 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   781 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   783 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   784 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   786 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   787 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   788 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
   790 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
   791 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
   793 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
   795 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
   796   mark_and_push(_compaction_manager, p);
   797 }
   798 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   800 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
   801   klass->oops_do(_mark_and_push_closure);
   802 }
   803 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
   804   klass->oops_do(&PSParallelCompact::_adjust_root_pointer_closure);
   805 }
   807 void PSParallelCompact::post_initialize() {
   808   ParallelScavengeHeap* heap = gc_heap();
   809   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   811   MemRegion mr = heap->reserved_region();
   812   _ref_processor =
   813     new ReferenceProcessor(mr,            // span
   814                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   815                            (int) ParallelGCThreads, // mt processing degree
   816                            true,          // mt discovery
   817                            (int) ParallelGCThreads, // mt discovery degree
   818                            true,          // atomic_discovery
   819                            &_is_alive_closure, // non-header is alive closure
   820                            false);        // write barrier for next field updates
   821   _counters = new CollectorCounters("PSParallelCompact", 1);
   823   // Initialize static fields in ParCompactionManager.
   824   ParCompactionManager::initialize(mark_bitmap());
   825 }
   827 bool PSParallelCompact::initialize() {
   828   ParallelScavengeHeap* heap = gc_heap();
   829   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   830   MemRegion mr = heap->reserved_region();
   832   // Was the old gen get allocated successfully?
   833   if (!heap->old_gen()->is_allocated()) {
   834     return false;
   835   }
   837   initialize_space_info();
   838   initialize_dead_wood_limiter();
   840   if (!_mark_bitmap.initialize(mr)) {
   841     vm_shutdown_during_initialization("Unable to allocate bit map for "
   842       "parallel garbage collection for the requested heap size.");
   843     return false;
   844   }
   846   if (!_summary_data.initialize(mr)) {
   847     vm_shutdown_during_initialization("Unable to allocate tables for "
   848       "parallel garbage collection for the requested heap size.");
   849     return false;
   850   }
   852   return true;
   853 }
   855 void PSParallelCompact::initialize_space_info()
   856 {
   857   memset(&_space_info, 0, sizeof(_space_info));
   859   ParallelScavengeHeap* heap = gc_heap();
   860   PSYoungGen* young_gen = heap->young_gen();
   862   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   863   _space_info[eden_space_id].set_space(young_gen->eden_space());
   864   _space_info[from_space_id].set_space(young_gen->from_space());
   865   _space_info[to_space_id].set_space(young_gen->to_space());
   867   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   868 }
   870 void PSParallelCompact::initialize_dead_wood_limiter()
   871 {
   872   const size_t max = 100;
   873   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   874   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   875   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   876   DEBUG_ONLY(_dwl_initialized = true;)
   877   _dwl_adjustment = normal_distribution(1.0);
   878 }
   880 // Simple class for storing info about the heap at the start of GC, to be used
   881 // after GC for comparison/printing.
   882 class PreGCValues {
   883 public:
   884   PreGCValues() { }
   885   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   887   void fill(ParallelScavengeHeap* heap) {
   888     _heap_used      = heap->used();
   889     _young_gen_used = heap->young_gen()->used_in_bytes();
   890     _old_gen_used   = heap->old_gen()->used_in_bytes();
   891     _metadata_used  = MetaspaceAux::used_in_bytes();
   892   };
   894   size_t heap_used() const      { return _heap_used; }
   895   size_t young_gen_used() const { return _young_gen_used; }
   896   size_t old_gen_used() const   { return _old_gen_used; }
   897   size_t metadata_used() const  { return _metadata_used; }
   899 private:
   900   size_t _heap_used;
   901   size_t _young_gen_used;
   902   size_t _old_gen_used;
   903   size_t _metadata_used;
   904 };
   906 void
   907 PSParallelCompact::clear_data_covering_space(SpaceId id)
   908 {
   909   // At this point, top is the value before GC, new_top() is the value that will
   910   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   911   // should be marked above top.  The summary data is cleared to the larger of
   912   // top & new_top.
   913   MutableSpace* const space = _space_info[id].space();
   914   HeapWord* const bot = space->bottom();
   915   HeapWord* const top = space->top();
   916   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   918   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   919   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   920   _mark_bitmap.clear_range(beg_bit, end_bit);
   922   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   923   const size_t end_region =
   924     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   925   _summary_data.clear_range(beg_region, end_region);
   927   // Clear the data used to 'split' regions.
   928   SplitInfo& split_info = _space_info[id].split_info();
   929   if (split_info.is_valid()) {
   930     split_info.clear();
   931   }
   932   DEBUG_ONLY(split_info.verify_clear();)
   933 }
   935 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   936 {
   937   // Update the from & to space pointers in space_info, since they are swapped
   938   // at each young gen gc.  Do the update unconditionally (even though a
   939   // promotion failure does not swap spaces) because an unknown number of minor
   940   // collections will have swapped the spaces an unknown number of times.
   941   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   942   ParallelScavengeHeap* heap = gc_heap();
   943   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   944   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   946   pre_gc_values->fill(heap);
   948   NOT_PRODUCT(_mark_bitmap.reset_counters());
   949   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   950   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   952   // Increment the invocation count
   953   heap->increment_total_collections(true);
   955   // We need to track unique mark sweep invocations as well.
   956   _total_invocations++;
   958   heap->print_heap_before_gc();
   960   // Fill in TLABs
   961   heap->accumulate_statistics_all_tlabs();
   962   heap->ensure_parsability(true);  // retire TLABs
   964   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   965     HandleMark hm;  // Discard invalid handles created during verification
   966     gclog_or_tty->print(" VerifyBeforeGC:");
   967     Universe::verify();
   968   }
   970   // Verify object start arrays
   971   if (VerifyObjectStartArray &&
   972       VerifyBeforeGC) {
   973     heap->old_gen()->verify_object_start_array();
   974   }
   976   DEBUG_ONLY(mark_bitmap()->verify_clear();)
   977   DEBUG_ONLY(summary_data().verify_clear();)
   979   // Have worker threads release resources the next time they run a task.
   980   gc_task_manager()->release_all_resources();
   981 }
   983 void PSParallelCompact::post_compact()
   984 {
   985   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
   987   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
   988     // Clear the marking bitmap, summary data and split info.
   989     clear_data_covering_space(SpaceId(id));
   990     // Update top().  Must be done after clearing the bitmap and summary data.
   991     _space_info[id].publish_new_top();
   992   }
   994   MutableSpace* const eden_space = _space_info[eden_space_id].space();
   995   MutableSpace* const from_space = _space_info[from_space_id].space();
   996   MutableSpace* const to_space   = _space_info[to_space_id].space();
   998   ParallelScavengeHeap* heap = gc_heap();
   999   bool eden_empty = eden_space->is_empty();
  1000   if (!eden_empty) {
  1001     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1002                                             heap->young_gen(), heap->old_gen());
  1005   // Update heap occupancy information which is used as input to the soft ref
  1006   // clearing policy at the next gc.
  1007   Universe::update_heap_info_at_gc();
  1009   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1010     to_space->is_empty();
  1012   BarrierSet* bs = heap->barrier_set();
  1013   if (bs->is_a(BarrierSet::ModRef)) {
  1014     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1015     MemRegion old_mr = heap->old_gen()->reserved();
  1017     if (young_gen_empty) {
  1018       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
  1019     } else {
  1020       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
  1024   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1025   ClassLoaderDataGraph::purge();
  1027   Threads::gc_epilogue();
  1028   CodeCache::gc_epilogue();
  1029   JvmtiExport::gc_epilogue();
  1031   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1033   ref_processor()->enqueue_discovered_references(NULL);
  1035   if (ZapUnusedHeapArea) {
  1036     heap->gen_mangle_unused_area();
  1039   // Update time of last GC
  1040   reset_millis_since_last_gc();
  1043 HeapWord*
  1044 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1045                                                     bool maximum_compaction)
  1047   const size_t region_size = ParallelCompactData::RegionSize;
  1048   const ParallelCompactData& sd = summary_data();
  1050   const MutableSpace* const space = _space_info[id].space();
  1051   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  1052   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  1053   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
  1055   // Skip full regions at the beginning of the space--they are necessarily part
  1056   // of the dense prefix.
  1057   size_t full_count = 0;
  1058   const RegionData* cp;
  1059   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
  1060     ++full_count;
  1063   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1064   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1065   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1066   if (maximum_compaction || cp == end_cp || interval_ended) {
  1067     _maximum_compaction_gc_num = total_invocations();
  1068     return sd.region_to_addr(cp);
  1071   HeapWord* const new_top = _space_info[id].new_top();
  1072   const size_t space_live = pointer_delta(new_top, space->bottom());
  1073   const size_t space_used = space->used_in_words();
  1074   const size_t space_capacity = space->capacity_in_words();
  1076   const double cur_density = double(space_live) / space_capacity;
  1077   const double deadwood_density =
  1078     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1079   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1081   if (TraceParallelOldGCDensePrefix) {
  1082     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1083                   cur_density, deadwood_density, deadwood_goal);
  1084     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1085                   "space_cap=" SIZE_FORMAT,
  1086                   space_live, space_used,
  1087                   space_capacity);
  1090   // XXX - Use binary search?
  1091   HeapWord* dense_prefix = sd.region_to_addr(cp);
  1092   const RegionData* full_cp = cp;
  1093   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
  1094   while (cp < end_cp) {
  1095     HeapWord* region_destination = cp->destination();
  1096     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
  1097     if (TraceParallelOldGCDensePrefix && Verbose) {
  1098       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
  1099                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
  1100                     sd.region(cp), region_destination,
  1101                     dense_prefix, cur_deadwood);
  1104     if (cur_deadwood >= deadwood_goal) {
  1105       // Found the region that has the correct amount of deadwood to the left.
  1106       // This typically occurs after crossing a fairly sparse set of regions, so
  1107       // iterate backwards over those sparse regions, looking for the region
  1108       // that has the lowest density of live objects 'to the right.'
  1109       size_t space_to_left = sd.region(cp) * region_size;
  1110       size_t live_to_left = space_to_left - cur_deadwood;
  1111       size_t space_to_right = space_capacity - space_to_left;
  1112       size_t live_to_right = space_live - live_to_left;
  1113       double density_to_right = double(live_to_right) / space_to_right;
  1114       while (cp > full_cp) {
  1115         --cp;
  1116         const size_t prev_region_live_to_right = live_to_right -
  1117           cp->data_size();
  1118         const size_t prev_region_space_to_right = space_to_right + region_size;
  1119         double prev_region_density_to_right =
  1120           double(prev_region_live_to_right) / prev_region_space_to_right;
  1121         if (density_to_right <= prev_region_density_to_right) {
  1122           return dense_prefix;
  1124         if (TraceParallelOldGCDensePrefix && Verbose) {
  1125           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
  1126                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
  1127                         prev_region_density_to_right);
  1129         dense_prefix -= region_size;
  1130         live_to_right = prev_region_live_to_right;
  1131         space_to_right = prev_region_space_to_right;
  1132         density_to_right = prev_region_density_to_right;
  1134       return dense_prefix;
  1137     dense_prefix += region_size;
  1138     ++cp;
  1141   return dense_prefix;
  1144 #ifndef PRODUCT
  1145 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1146                                                  const SpaceId id,
  1147                                                  const bool maximum_compaction,
  1148                                                  HeapWord* const addr)
  1150   const size_t region_idx = summary_data().addr_to_region_idx(addr);
  1151   RegionData* const cp = summary_data().region(region_idx);
  1152   const MutableSpace* const space = _space_info[id].space();
  1153   HeapWord* const new_top = _space_info[id].new_top();
  1155   const size_t space_live = pointer_delta(new_top, space->bottom());
  1156   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1157   const size_t space_cap = space->capacity_in_words();
  1158   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1159   const size_t live_to_right = new_top - cp->destination();
  1160   const size_t dead_to_right = space->top() - addr - live_to_right;
  1162   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
  1163                 "spl=" SIZE_FORMAT " "
  1164                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1165                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1166                 " ratio=%10.8f",
  1167                 algorithm, addr, region_idx,
  1168                 space_live,
  1169                 dead_to_left, dead_to_left_pct,
  1170                 dead_to_right, live_to_right,
  1171                 double(dead_to_right) / live_to_right);
  1173 #endif  // #ifndef PRODUCT
  1175 // Return a fraction indicating how much of the generation can be treated as
  1176 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1177 // based on the density of live objects in the generation to determine a limit,
  1178 // which is then adjusted so the return value is min_percent when the density is
  1179 // 1.
  1180 //
  1181 // The following table shows some return values for a different values of the
  1182 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1183 // min_percent is 1.
  1184 //
  1185 //                          fraction allowed as dead wood
  1186 //         -----------------------------------------------------------------
  1187 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1188 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1189 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1190 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1191 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1192 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1193 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1194 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1195 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1196 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1197 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1198 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1199 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1200 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1201 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1202 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1203 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1204 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1205 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1206 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1207 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1208 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1209 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1211 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1213   assert(_dwl_initialized, "uninitialized");
  1215   // The raw limit is the value of the normal distribution at x = density.
  1216   const double raw_limit = normal_distribution(density);
  1218   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1219   //
  1220   // First subtract the adjustment value (which is simply the precomputed value
  1221   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1222   // Then add the minimum value, so the minimum is returned when the density is
  1223   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1224   const double min = double(min_percent) / 100.0;
  1225   const double limit = raw_limit - _dwl_adjustment + min;
  1226   return MAX2(limit, 0.0);
  1229 ParallelCompactData::RegionData*
  1230 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1231                                            const RegionData* end)
  1233   const size_t region_size = ParallelCompactData::RegionSize;
  1234   ParallelCompactData& sd = summary_data();
  1235   size_t left = sd.region(beg);
  1236   size_t right = end > beg ? sd.region(end) - 1 : left;
  1238   // Binary search.
  1239   while (left < right) {
  1240     // Equivalent to (left + right) / 2, but does not overflow.
  1241     const size_t middle = left + (right - left) / 2;
  1242     RegionData* const middle_ptr = sd.region(middle);
  1243     HeapWord* const dest = middle_ptr->destination();
  1244     HeapWord* const addr = sd.region_to_addr(middle);
  1245     assert(dest != NULL, "sanity");
  1246     assert(dest <= addr, "must move left");
  1248     if (middle > left && dest < addr) {
  1249       right = middle - 1;
  1250     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1251       left = middle + 1;
  1252     } else {
  1253       return middle_ptr;
  1256   return sd.region(left);
  1259 ParallelCompactData::RegionData*
  1260 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1261                                           const RegionData* end,
  1262                                           size_t dead_words)
  1264   ParallelCompactData& sd = summary_data();
  1265   size_t left = sd.region(beg);
  1266   size_t right = end > beg ? sd.region(end) - 1 : left;
  1268   // Binary search.
  1269   while (left < right) {
  1270     // Equivalent to (left + right) / 2, but does not overflow.
  1271     const size_t middle = left + (right - left) / 2;
  1272     RegionData* const middle_ptr = sd.region(middle);
  1273     HeapWord* const dest = middle_ptr->destination();
  1274     HeapWord* const addr = sd.region_to_addr(middle);
  1275     assert(dest != NULL, "sanity");
  1276     assert(dest <= addr, "must move left");
  1278     const size_t dead_to_left = pointer_delta(addr, dest);
  1279     if (middle > left && dead_to_left > dead_words) {
  1280       right = middle - 1;
  1281     } else if (middle < right && dead_to_left < dead_words) {
  1282       left = middle + 1;
  1283     } else {
  1284       return middle_ptr;
  1287   return sd.region(left);
  1290 // The result is valid during the summary phase, after the initial summarization
  1291 // of each space into itself, and before final summarization.
  1292 inline double
  1293 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1294                                    HeapWord* const bottom,
  1295                                    HeapWord* const top,
  1296                                    HeapWord* const new_top)
  1298   ParallelCompactData& sd = summary_data();
  1300   assert(cp != NULL, "sanity");
  1301   assert(bottom != NULL, "sanity");
  1302   assert(top != NULL, "sanity");
  1303   assert(new_top != NULL, "sanity");
  1304   assert(top >= new_top, "summary data problem?");
  1305   assert(new_top > bottom, "space is empty; should not be here");
  1306   assert(new_top >= cp->destination(), "sanity");
  1307   assert(top >= sd.region_to_addr(cp), "sanity");
  1309   HeapWord* const destination = cp->destination();
  1310   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1311   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1312   const size_t compacted_region_used = pointer_delta(top,
  1313                                                      sd.region_to_addr(cp));
  1314   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1316   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1317   return double(reclaimable) / divisor;
  1320 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1321 // compacted region.  The address is always on a region boundary.
  1322 //
  1323 // Completely full regions at the left are skipped, since no compaction can
  1324 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1325 // computed, based on the density (amount live / capacity) of the generation;
  1326 // the region with approximately that amount of dead space to the left is
  1327 // identified as the limit region.  Regions between the last completely full
  1328 // region and the limit region are scanned and the one that has the best
  1329 // (maximum) reclaimed_ratio() is selected.
  1330 HeapWord*
  1331 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1332                                         bool maximum_compaction)
  1334   if (ParallelOldGCSplitALot) {
  1335     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
  1336       // The value was chosen to provoke splitting a young gen space; use it.
  1337       return _space_info[id].dense_prefix();
  1341   const size_t region_size = ParallelCompactData::RegionSize;
  1342   const ParallelCompactData& sd = summary_data();
  1344   const MutableSpace* const space = _space_info[id].space();
  1345   HeapWord* const top = space->top();
  1346   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1347   HeapWord* const new_top = _space_info[id].new_top();
  1348   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1349   HeapWord* const bottom = space->bottom();
  1350   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1351   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1352   const RegionData* const new_top_cp =
  1353     sd.addr_to_region_ptr(new_top_aligned_up);
  1355   // Skip full regions at the beginning of the space--they are necessarily part
  1356   // of the dense prefix.
  1357   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1358   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1359          space->is_empty(), "no dead space allowed to the left");
  1360   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1361          "region must have dead space");
  1363   // The gc number is saved whenever a maximum compaction is done, and used to
  1364   // determine when the maximum compaction interval has expired.  This avoids
  1365   // successive max compactions for different reasons.
  1366   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1367   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1368   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1369     total_invocations() == HeapFirstMaximumCompactionCount;
  1370   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1371     _maximum_compaction_gc_num = total_invocations();
  1372     return sd.region_to_addr(full_cp);
  1375   const size_t space_live = pointer_delta(new_top, bottom);
  1376   const size_t space_used = space->used_in_words();
  1377   const size_t space_capacity = space->capacity_in_words();
  1379   const double density = double(space_live) / double(space_capacity);
  1380   const size_t min_percent_free = MarkSweepDeadRatio;
  1381   const double limiter = dead_wood_limiter(density, min_percent_free);
  1382   const size_t dead_wood_max = space_used - space_live;
  1383   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1384                                       dead_wood_max);
  1386   if (TraceParallelOldGCDensePrefix) {
  1387     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1388                   "space_cap=" SIZE_FORMAT,
  1389                   space_live, space_used,
  1390                   space_capacity);
  1391     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1392                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1393                   density, min_percent_free, limiter,
  1394                   dead_wood_max, dead_wood_limit);
  1397   // Locate the region with the desired amount of dead space to the left.
  1398   const RegionData* const limit_cp =
  1399     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1401   // Scan from the first region with dead space to the limit region and find the
  1402   // one with the best (largest) reclaimed ratio.
  1403   double best_ratio = 0.0;
  1404   const RegionData* best_cp = full_cp;
  1405   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1406     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1407     if (tmp_ratio > best_ratio) {
  1408       best_cp = cp;
  1409       best_ratio = tmp_ratio;
  1413 #if     0
  1414   // Something to consider:  if the region with the best ratio is 'close to' the
  1415   // first region w/free space, choose the first region with free space
  1416   // ("first-free").  The first-free region is usually near the start of the
  1417   // heap, which means we are copying most of the heap already, so copy a bit
  1418   // more to get complete compaction.
  1419   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1420     _maximum_compaction_gc_num = total_invocations();
  1421     best_cp = full_cp;
  1423 #endif  // #if 0
  1425   return sd.region_to_addr(best_cp);
  1428 #ifndef PRODUCT
  1429 void
  1430 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
  1431                                           size_t words)
  1433   if (TraceParallelOldGCSummaryPhase) {
  1434     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
  1435                   SIZE_FORMAT, start, start + words, words);
  1438   ObjectStartArray* const start_array = _space_info[id].start_array();
  1439   CollectedHeap::fill_with_objects(start, words);
  1440   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
  1441     _mark_bitmap.mark_obj(p, words);
  1442     _summary_data.add_obj(p, words);
  1443     start_array->allocate_block(p);
  1447 void
  1448 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
  1450   ParallelCompactData& sd = summary_data();
  1451   MutableSpace* space = _space_info[id].space();
  1453   // Find the source and destination start addresses.
  1454   HeapWord* const src_addr = sd.region_align_down(start);
  1455   HeapWord* dst_addr;
  1456   if (src_addr < start) {
  1457     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  1458   } else if (src_addr > space->bottom()) {
  1459     // The start (the original top() value) is aligned to a region boundary so
  1460     // the associated region does not have a destination.  Compute the
  1461     // destination from the previous region.
  1462     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
  1463     dst_addr = cp->destination() + cp->data_size();
  1464   } else {
  1465     // Filling the entire space.
  1466     dst_addr = space->bottom();
  1468   assert(dst_addr != NULL, "sanity");
  1470   // Update the summary data.
  1471   bool result = _summary_data.summarize(_space_info[id].split_info(),
  1472                                         src_addr, space->top(), NULL,
  1473                                         dst_addr, space->end(),
  1474                                         _space_info[id].new_top_addr());
  1475   assert(result, "should not fail:  bad filler object size");
  1478 void
  1479 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
  1481   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
  1482     return;
  1485   MutableSpace* const space = _space_info[id].space();
  1486   if (space->is_empty()) {
  1487     HeapWord* b = space->bottom();
  1488     HeapWord* t = b + space->capacity_in_words() / 2;
  1489     space->set_top(t);
  1490     if (ZapUnusedHeapArea) {
  1491       space->set_top_for_allocations();
  1494     size_t min_size = CollectedHeap::min_fill_size();
  1495     size_t obj_len = min_size;
  1496     while (b + obj_len <= t) {
  1497       CollectedHeap::fill_with_object(b, obj_len);
  1498       mark_bitmap()->mark_obj(b, obj_len);
  1499       summary_data().add_obj(b, obj_len);
  1500       b += obj_len;
  1501       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
  1503     if (b < t) {
  1504       // The loop didn't completely fill to t (top); adjust top downward.
  1505       space->set_top(b);
  1506       if (ZapUnusedHeapArea) {
  1507         space->set_top_for_allocations();
  1511     HeapWord** nta = _space_info[id].new_top_addr();
  1512     bool result = summary_data().summarize(_space_info[id].split_info(),
  1513                                            space->bottom(), space->top(), NULL,
  1514                                            space->bottom(), space->end(), nta);
  1515     assert(result, "space must fit into itself");
  1519 void
  1520 PSParallelCompact::provoke_split(bool & max_compaction)
  1522   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
  1523     return;
  1526   const size_t region_size = ParallelCompactData::RegionSize;
  1527   ParallelCompactData& sd = summary_data();
  1529   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1530   MutableSpace* const from_space = _space_info[from_space_id].space();
  1531   const size_t eden_live = pointer_delta(eden_space->top(),
  1532                                          _space_info[eden_space_id].new_top());
  1533   const size_t from_live = pointer_delta(from_space->top(),
  1534                                          _space_info[from_space_id].new_top());
  1536   const size_t min_fill_size = CollectedHeap::min_fill_size();
  1537   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  1538   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  1539   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  1540   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
  1542   // Choose the space to split; need at least 2 regions live (or fillable).
  1543   SpaceId id;
  1544   MutableSpace* space;
  1545   size_t live_words;
  1546   size_t fill_words;
  1547   if (eden_live + eden_fillable >= region_size * 2) {
  1548     id = eden_space_id;
  1549     space = eden_space;
  1550     live_words = eden_live;
  1551     fill_words = eden_fillable;
  1552   } else if (from_live + from_fillable >= region_size * 2) {
  1553     id = from_space_id;
  1554     space = from_space;
  1555     live_words = from_live;
  1556     fill_words = from_fillable;
  1557   } else {
  1558     return; // Give up.
  1560   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
  1562   if (live_words < region_size * 2) {
  1563     // Fill from top() to end() w/live objects of mixed sizes.
  1564     HeapWord* const fill_start = space->top();
  1565     live_words += fill_words;
  1567     space->set_top(fill_start + fill_words);
  1568     if (ZapUnusedHeapArea) {
  1569       space->set_top_for_allocations();
  1572     HeapWord* cur_addr = fill_start;
  1573     while (fill_words > 0) {
  1574       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
  1575       size_t cur_size = MIN2(align_object_size_(r), fill_words);
  1576       if (fill_words - cur_size < min_fill_size) {
  1577         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
  1580       CollectedHeap::fill_with_object(cur_addr, cur_size);
  1581       mark_bitmap()->mark_obj(cur_addr, cur_size);
  1582       sd.add_obj(cur_addr, cur_size);
  1584       cur_addr += cur_size;
  1585       fill_words -= cur_size;
  1588     summarize_new_objects(id, fill_start);
  1591   max_compaction = false;
  1593   // Manipulate the old gen so that it has room for about half of the live data
  1594   // in the target young gen space (live_words / 2).
  1595   id = old_space_id;
  1596   space = _space_info[id].space();
  1597   const size_t free_at_end = space->free_in_words();
  1598   const size_t free_target = align_object_size(live_words / 2);
  1599   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
  1601   if (free_at_end >= free_target + min_fill_size) {
  1602     // Fill space above top() and set the dense prefix so everything survives.
  1603     HeapWord* const fill_start = space->top();
  1604     const size_t fill_size = free_at_end - free_target;
  1605     space->set_top(space->top() + fill_size);
  1606     if (ZapUnusedHeapArea) {
  1607       space->set_top_for_allocations();
  1609     fill_with_live_objects(id, fill_start, fill_size);
  1610     summarize_new_objects(id, fill_start);
  1611     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  1612   } else if (dead + free_at_end > free_target) {
  1613     // Find a dense prefix that makes the right amount of space available.
  1614     HeapWord* cur = sd.region_align_down(space->top());
  1615     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1616     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
  1617     while (dead_to_right < free_target) {
  1618       cur -= region_size;
  1619       cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1620       dead_to_right = pointer_delta(space->end(), cur_destination);
  1622     _space_info[id].set_dense_prefix(cur);
  1625 #endif // #ifndef PRODUCT
  1627 void PSParallelCompact::summarize_spaces_quick()
  1629   for (unsigned int i = 0; i < last_space_id; ++i) {
  1630     const MutableSpace* space = _space_info[i].space();
  1631     HeapWord** nta = _space_info[i].new_top_addr();
  1632     bool result = _summary_data.summarize(_space_info[i].split_info(),
  1633                                           space->bottom(), space->top(), NULL,
  1634                                           space->bottom(), space->end(), nta);
  1635     assert(result, "space must fit into itself");
  1636     _space_info[i].set_dense_prefix(space->bottom());
  1639 #ifndef PRODUCT
  1640   if (ParallelOldGCSplitALot) {
  1641     provoke_split_fill_survivor(to_space_id);
  1643 #endif // #ifndef PRODUCT
  1646 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1648   HeapWord* const dense_prefix_end = dense_prefix(id);
  1649   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1650   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1651   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1652     // Only enough dead space is filled so that any remaining dead space to the
  1653     // left is larger than the minimum filler object.  (The remainder is filled
  1654     // during the copy/update phase.)
  1655     //
  1656     // The size of the dead space to the right of the boundary is not a
  1657     // concern, since compaction will be able to use whatever space is
  1658     // available.
  1659     //
  1660     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1661     // surrounds the space to be filled with an object.
  1662     //
  1663     // In the 32-bit VM, each bit represents two 32-bit words:
  1664     //                              +---+
  1665     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1666     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1667     //                              +---+
  1668     //
  1669     // In the 64-bit VM, each bit represents one 64-bit word:
  1670     //                              +------------+
  1671     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1672     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1673     //                              +------------+
  1674     //                          +-------+
  1675     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1676     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1677     //                          +-------+
  1678     //                      +-----------+
  1679     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1680     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1681     //                      +-----------+
  1682     //                          +-------+
  1683     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1684     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1685     //                          +-------+
  1687     // Initially assume case a, c or e will apply.
  1688     size_t obj_len = CollectedHeap::min_fill_size();
  1689     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1691 #ifdef  _LP64
  1692     if (MinObjAlignment > 1) { // object alignment > heap word size
  1693       // Cases a, c or e.
  1694     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1695       // Case b above.
  1696       obj_beg = dense_prefix_end - 1;
  1697     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1698                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1699       // Case d above.
  1700       obj_beg = dense_prefix_end - 3;
  1701       obj_len = 3;
  1703 #endif  // #ifdef _LP64
  1705     CollectedHeap::fill_with_object(obj_beg, obj_len);
  1706     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1707     _summary_data.add_obj(obj_beg, obj_len);
  1708     assert(start_array(id) != NULL, "sanity");
  1709     start_array(id)->allocate_block(obj_beg);
  1713 void
  1714 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
  1716   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  1717   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  1718   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  1719   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
  1720     cur->set_source_region(0);
  1724 void
  1725 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1727   assert(id < last_space_id, "id out of range");
  1728   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
  1729          ParallelOldGCSplitALot && id == old_space_id,
  1730          "should have been reset in summarize_spaces_quick()");
  1732   const MutableSpace* space = _space_info[id].space();
  1733   if (_space_info[id].new_top() != space->bottom()) {
  1734     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1735     _space_info[id].set_dense_prefix(dense_prefix_end);
  1737 #ifndef PRODUCT
  1738     if (TraceParallelOldGCDensePrefix) {
  1739       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1740                                dense_prefix_end);
  1741       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1742       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1744 #endif  // #ifndef PRODUCT
  1746     // Recompute the summary data, taking into account the dense prefix.  If
  1747     // every last byte will be reclaimed, then the existing summary data which
  1748     // compacts everything can be left in place.
  1749     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1750       // If dead space crosses the dense prefix boundary, it is (at least
  1751       // partially) filled with a dummy object, marked live and added to the
  1752       // summary data.  This simplifies the copy/update phase and must be done
  1753       // before the final locations of objects are determined, to prevent
  1754       // leaving a fragment of dead space that is too small to fill.
  1755       fill_dense_prefix_end(id);
  1757       // Compute the destination of each Region, and thus each object.
  1758       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1759       _summary_data.summarize(_space_info[id].split_info(),
  1760                               dense_prefix_end, space->top(), NULL,
  1761                               dense_prefix_end, space->end(),
  1762                               _space_info[id].new_top_addr());
  1766   if (TraceParallelOldGCSummaryPhase) {
  1767     const size_t region_size = ParallelCompactData::RegionSize;
  1768     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1769     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1770     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1771     HeapWord* const new_top = _space_info[id].new_top();
  1772     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1773     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1774     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1775                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1776                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1777                   id, space->capacity_in_words(), dense_prefix_end,
  1778                   dp_region, dp_words / region_size,
  1779                   cr_words / region_size, new_top);
  1783 #ifndef PRODUCT
  1784 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
  1785                                           HeapWord* dst_beg, HeapWord* dst_end,
  1786                                           SpaceId src_space_id,
  1787                                           HeapWord* src_beg, HeapWord* src_end)
  1789   if (TraceParallelOldGCSummaryPhase) {
  1790     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
  1791                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
  1792                   SIZE_FORMAT "-" SIZE_FORMAT " "
  1793                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
  1794                   SIZE_FORMAT "-" SIZE_FORMAT,
  1795                   src_space_id, space_names[src_space_id],
  1796                   dst_space_id, space_names[dst_space_id],
  1797                   src_beg, src_end,
  1798                   _summary_data.addr_to_region_idx(src_beg),
  1799                   _summary_data.addr_to_region_idx(src_end),
  1800                   dst_beg, dst_end,
  1801                   _summary_data.addr_to_region_idx(dst_beg),
  1802                   _summary_data.addr_to_region_idx(dst_end));
  1805 #endif  // #ifndef PRODUCT
  1807 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1808                                       bool maximum_compaction)
  1810   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1811   // trace("2");
  1813 #ifdef  ASSERT
  1814   if (TraceParallelOldGCMarkingPhase) {
  1815     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1816                   "add_obj_bytes=" SIZE_FORMAT,
  1817                   add_obj_count, add_obj_size * HeapWordSize);
  1818     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1819                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1820                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1822 #endif  // #ifdef ASSERT
  1824   // Quick summarization of each space into itself, to see how much is live.
  1825   summarize_spaces_quick();
  1827   if (TraceParallelOldGCSummaryPhase) {
  1828     tty->print_cr("summary_phase:  after summarizing each space to self");
  1829     Universe::print();
  1830     NOT_PRODUCT(print_region_ranges());
  1831     if (Verbose) {
  1832       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1836   // The amount of live data that will end up in old space (assuming it fits).
  1837   size_t old_space_total_live = 0;
  1838   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1839     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1840                                           _space_info[id].space()->bottom());
  1843   MutableSpace* const old_space = _space_info[old_space_id].space();
  1844   const size_t old_capacity = old_space->capacity_in_words();
  1845   if (old_space_total_live > old_capacity) {
  1846     // XXX - should also try to expand
  1847     maximum_compaction = true;
  1849 #ifndef PRODUCT
  1850   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
  1851     provoke_split(maximum_compaction);
  1853 #endif // #ifndef PRODUCT
  1855   // Old generations.
  1856   summarize_space(old_space_id, maximum_compaction);
  1858   // Summarize the remaining spaces in the young gen.  The initial target space
  1859   // is the old gen.  If a space does not fit entirely into the target, then the
  1860   // remainder is compacted into the space itself and that space becomes the new
  1861   // target.
  1862   SpaceId dst_space_id = old_space_id;
  1863   HeapWord* dst_space_end = old_space->end();
  1864   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  1865   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
  1866     const MutableSpace* space = _space_info[id].space();
  1867     const size_t live = pointer_delta(_space_info[id].new_top(),
  1868                                       space->bottom());
  1869     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
  1871     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
  1872                                   SpaceId(id), space->bottom(), space->top());)
  1873     if (live > 0 && live <= available) {
  1874       // All the live data will fit.
  1875       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1876                                           space->bottom(), space->top(),
  1877                                           NULL,
  1878                                           *new_top_addr, dst_space_end,
  1879                                           new_top_addr);
  1880       assert(done, "space must fit into old gen");
  1882       // Reset the new_top value for the space.
  1883       _space_info[id].set_new_top(space->bottom());
  1884     } else if (live > 0) {
  1885       // Attempt to fit part of the source space into the target space.
  1886       HeapWord* next_src_addr = NULL;
  1887       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1888                                           space->bottom(), space->top(),
  1889                                           &next_src_addr,
  1890                                           *new_top_addr, dst_space_end,
  1891                                           new_top_addr);
  1892       assert(!done, "space should not fit into old gen");
  1893       assert(next_src_addr != NULL, "sanity");
  1895       // The source space becomes the new target, so the remainder is compacted
  1896       // within the space itself.
  1897       dst_space_id = SpaceId(id);
  1898       dst_space_end = space->end();
  1899       new_top_addr = _space_info[id].new_top_addr();
  1900       NOT_PRODUCT(summary_phase_msg(dst_space_id,
  1901                                     space->bottom(), dst_space_end,
  1902                                     SpaceId(id), next_src_addr, space->top());)
  1903       done = _summary_data.summarize(_space_info[id].split_info(),
  1904                                      next_src_addr, space->top(),
  1905                                      NULL,
  1906                                      space->bottom(), dst_space_end,
  1907                                      new_top_addr);
  1908       assert(done, "space must fit when compacted into itself");
  1909       assert(*new_top_addr <= space->top(), "usage should not grow");
  1913   if (TraceParallelOldGCSummaryPhase) {
  1914     tty->print_cr("summary_phase:  after final summarization");
  1915     Universe::print();
  1916     NOT_PRODUCT(print_region_ranges());
  1917     if (Verbose) {
  1918       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1923 // This method should contain all heap-specific policy for invoking a full
  1924 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1925 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1926 // before full gc, or any other specialized behavior, it needs to be added here.
  1927 //
  1928 // Note that this method should only be called from the vm_thread while at a
  1929 // safepoint.
  1930 //
  1931 // Note that the all_soft_refs_clear flag in the collector policy
  1932 // may be true because this method can be called without intervening
  1933 // activity.  For example when the heap space is tight and full measure
  1934 // are being taken to free space.
  1935 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1936   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1937   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1938          "should be in vm thread");
  1940   ParallelScavengeHeap* heap = gc_heap();
  1941   GCCause::Cause gc_cause = heap->gc_cause();
  1942   assert(!heap->is_gc_active(), "not reentrant");
  1944   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1945   IsGCActiveMark mark;
  1947   if (ScavengeBeforeFullGC) {
  1948     PSScavenge::invoke_no_policy();
  1951   const bool clear_all_soft_refs =
  1952     heap->collector_policy()->should_clear_all_soft_refs();
  1954   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
  1955                                       maximum_heap_compaction);
  1958 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  1959   size_t addr_region_index = addr_to_region_idx(addr);
  1960   return region_index == addr_region_index;
  1963 // This method contains no policy. You should probably
  1964 // be calling invoke() instead.
  1965 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1966   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1967   assert(ref_processor() != NULL, "Sanity");
  1969   if (GC_locker::check_active_before_gc()) {
  1970     return false;
  1973   TimeStamp marking_start;
  1974   TimeStamp compaction_start;
  1975   TimeStamp collection_exit;
  1977   ParallelScavengeHeap* heap = gc_heap();
  1978   GCCause::Cause gc_cause = heap->gc_cause();
  1979   PSYoungGen* young_gen = heap->young_gen();
  1980   PSOldGen* old_gen = heap->old_gen();
  1981   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  1983   // The scope of casr should end after code that can change
  1984   // CollectorPolicy::_should_clear_all_soft_refs.
  1985   ClearedAllSoftRefs casr(maximum_heap_compaction,
  1986                           heap->collector_policy());
  1988   if (ZapUnusedHeapArea) {
  1989     // Save information needed to minimize mangling
  1990     heap->record_gen_tops_before_GC();
  1993   heap->pre_full_gc_dump();
  1995   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  1997   // Make sure data structures are sane, make the heap parsable, and do other
  1998   // miscellaneous bookkeeping.
  1999   PreGCValues pre_gc_values;
  2000   pre_compact(&pre_gc_values);
  2002   // Get the compaction manager reserved for the VM thread.
  2003   ParCompactionManager* const vmthread_cm =
  2004     ParCompactionManager::manager_array(gc_task_manager()->workers());
  2006   // Place after pre_compact() where the number of invocations is incremented.
  2007   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  2010     ResourceMark rm;
  2011     HandleMark hm;
  2013     // Set the number of GC threads to be used in this collection
  2014     gc_task_manager()->set_active_gang();
  2015     gc_task_manager()->task_idle_workers();
  2016     heap->set_par_threads(gc_task_manager()->active_workers());
  2018     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2019     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2020     TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
  2021     TraceCollectorStats tcs(counters());
  2022     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
  2024     if (TraceGen1Time) accumulated_time()->start();
  2026     // Let the size policy know we're starting
  2027     size_policy->major_collection_begin();
  2029     CodeCache::gc_prologue();
  2030     Threads::gc_prologue();
  2032     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2034     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  2035     ref_processor()->setup_policy(maximum_heap_compaction);
  2037     bool marked_for_unloading = false;
  2039     marking_start.update();
  2040     marking_phase(vmthread_cm, maximum_heap_compaction);
  2042 #ifndef PRODUCT
  2043     if (TraceParallelOldGCMarkingPhase) {
  2044       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  2045         "cas_by_another %d",
  2046         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  2047         mark_bitmap()->cas_by_another());
  2049 #endif  // #ifndef PRODUCT
  2051     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
  2052       && gc_cause == GCCause::_java_lang_system_gc;
  2053     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  2055     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2056     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2058     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2059     // needed by the compaction for filling holes in the dense prefix.
  2060     adjust_roots();
  2062     compaction_start.update();
  2063     compact();
  2065     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2066     // done before resizing.
  2067     post_compact();
  2069     // Let the size policy know we're done
  2070     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2072     if (UseAdaptiveSizePolicy) {
  2073       if (PrintAdaptiveSizePolicy) {
  2074         gclog_or_tty->print("AdaptiveSizeStart: ");
  2075         gclog_or_tty->stamp();
  2076         gclog_or_tty->print_cr(" collection: %d ",
  2077                        heap->total_collections());
  2078         if (Verbose) {
  2079           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
  2080             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
  2084       // Don't check if the size_policy is ready here.  Let
  2085       // the size_policy check that internally.
  2086       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2087           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2088             UseAdaptiveSizePolicyWithSystemGC)) {
  2089         // Calculate optimal free space amounts
  2090         assert(young_gen->max_size() >
  2091           young_gen->from_space()->capacity_in_bytes() +
  2092           young_gen->to_space()->capacity_in_bytes(),
  2093           "Sizes of space in young gen are out-of-bounds");
  2094         size_t max_eden_size = young_gen->max_size() -
  2095           young_gen->from_space()->capacity_in_bytes() -
  2096           young_gen->to_space()->capacity_in_bytes();
  2097         size_policy->compute_generation_free_space(
  2098                               young_gen->used_in_bytes(),
  2099                               young_gen->eden_space()->used_in_bytes(),
  2100                               old_gen->used_in_bytes(),
  2101                               young_gen->eden_space()->capacity_in_bytes(),
  2102                               old_gen->max_gen_size(),
  2103                               max_eden_size,
  2104                               true /* full gc*/,
  2105                               gc_cause,
  2106                               heap->collector_policy());
  2108         heap->resize_old_gen(
  2109           size_policy->calculated_old_free_size_in_bytes());
  2111         // Don't resize the young generation at an major collection.  A
  2112         // desired young generation size may have been calculated but
  2113         // resizing the young generation complicates the code because the
  2114         // resizing of the old generation may have moved the boundary
  2115         // between the young generation and the old generation.  Let the
  2116         // young generation resizing happen at the minor collections.
  2118       if (PrintAdaptiveSizePolicy) {
  2119         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2120                        heap->total_collections());
  2124     if (UsePerfData) {
  2125       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2126       counters->update_counters();
  2127       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2128       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2131     heap->resize_all_tlabs();
  2133     // Resize the metaspace capactiy after a collection
  2134     MetaspaceGC::compute_new_size();
  2136     if (TraceGen1Time) accumulated_time()->stop();
  2138     if (PrintGC) {
  2139       if (PrintGCDetails) {
  2140         // No GC timestamp here.  This is after GC so it would be confusing.
  2141         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2142         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2143         heap->print_heap_change(pre_gc_values.heap_used());
  2144         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
  2145       } else {
  2146         heap->print_heap_change(pre_gc_values.heap_used());
  2150     // Track memory usage and detect low memory
  2151     MemoryService::track_memory_usage();
  2152     heap->update_counters();
  2153     gc_task_manager()->release_idle_workers();
  2156 #ifdef ASSERT
  2157   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
  2158     ParCompactionManager* const cm =
  2159       ParCompactionManager::manager_array(int(i));
  2160     assert(cm->marking_stack()->is_empty(),       "should be empty");
  2161     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
  2163 #endif // ASSERT
  2165   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2166     HandleMark hm;  // Discard invalid handles created during verification
  2167     gclog_or_tty->print(" VerifyAfterGC:");
  2168     Universe::verify();
  2171   // Re-verify object start arrays
  2172   if (VerifyObjectStartArray &&
  2173       VerifyAfterGC) {
  2174     old_gen->verify_object_start_array();
  2177   if (ZapUnusedHeapArea) {
  2178     old_gen->object_space()->check_mangled_unused_area_complete();
  2181   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2183   collection_exit.update();
  2185   heap->print_heap_after_gc();
  2186   if (PrintGCTaskTimeStamps) {
  2187     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2188                            INT64_FORMAT,
  2189                            marking_start.ticks(), compaction_start.ticks(),
  2190                            collection_exit.ticks());
  2191     gc_task_manager()->print_task_time_stamps();
  2194   heap->post_full_gc_dump();
  2196 #ifdef TRACESPINNING
  2197   ParallelTaskTerminator::print_termination_counts();
  2198 #endif
  2200   return true;
  2203 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2204                                              PSYoungGen* young_gen,
  2205                                              PSOldGen* old_gen) {
  2206   MutableSpace* const eden_space = young_gen->eden_space();
  2207   assert(!eden_space->is_empty(), "eden must be non-empty");
  2208   assert(young_gen->virtual_space()->alignment() ==
  2209          old_gen->virtual_space()->alignment(), "alignments do not match");
  2211   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2212     return false;
  2215   // Both generations must be completely committed.
  2216   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2217     return false;
  2219   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2220     return false;
  2223   // Figure out how much to take from eden.  Include the average amount promoted
  2224   // in the total; otherwise the next young gen GC will simply bail out to a
  2225   // full GC.
  2226   const size_t alignment = old_gen->virtual_space()->alignment();
  2227   const size_t eden_used = eden_space->used_in_bytes();
  2228   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2229   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2230   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2232   if (absorb_size >= eden_capacity) {
  2233     return false; // Must leave some space in eden.
  2236   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2237   if (new_young_size < young_gen->min_gen_size()) {
  2238     return false; // Respect young gen minimum size.
  2241   if (TraceAdaptiveGCBoundary && Verbose) {
  2242     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2243                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2244                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2245                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2246                         absorb_size / K,
  2247                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2248                         young_gen->from_space()->used_in_bytes() / K,
  2249                         young_gen->to_space()->used_in_bytes() / K,
  2250                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2253   // Fill the unused part of the old gen.
  2254   MutableSpace* const old_space = old_gen->object_space();
  2255   HeapWord* const unused_start = old_space->top();
  2256   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
  2258   if (unused_words > 0) {
  2259     if (unused_words < CollectedHeap::min_fill_size()) {
  2260       return false;  // If the old gen cannot be filled, must give up.
  2262     CollectedHeap::fill_with_objects(unused_start, unused_words);
  2265   // Take the live data from eden and set both top and end in the old gen to
  2266   // eden top.  (Need to set end because reset_after_change() mangles the region
  2267   // from end to virtual_space->high() in debug builds).
  2268   HeapWord* const new_top = eden_space->top();
  2269   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2270                                         absorb_size);
  2271   young_gen->reset_after_change();
  2272   old_space->set_top(new_top);
  2273   old_space->set_end(new_top);
  2274   old_gen->reset_after_change();
  2276   // Update the object start array for the filler object and the data from eden.
  2277   ObjectStartArray* const start_array = old_gen->start_array();
  2278   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
  2279     start_array->allocate_block(p);
  2282   // Could update the promoted average here, but it is not typically updated at
  2283   // full GCs and the value to use is unclear.  Something like
  2284   //
  2285   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2287   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2288   return true;
  2291 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2292   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2293     "shouldn't return NULL");
  2294   return ParallelScavengeHeap::gc_task_manager();
  2297 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2298                                       bool maximum_heap_compaction) {
  2299   // Recursively traverse all live objects and mark them
  2300   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2302   ParallelScavengeHeap* heap = gc_heap();
  2303   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2304   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2305   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2306   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2308   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2309   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2311   // Need new claim bits before marking starts.
  2312   ClassLoaderDataGraph::clear_claimed_marks();
  2315     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2316     ParallelScavengeHeap::ParStrongRootsScope psrs;
  2318     GCTaskQueue* q = GCTaskQueue::create();
  2320     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2321     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2322     // We scan the thread roots in parallel
  2323     Threads::create_thread_roots_marking_tasks(q);
  2324     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2325     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2326     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2327     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2328     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2329     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
  2331     if (active_gc_threads > 1) {
  2332       for (uint j = 0; j < active_gc_threads; j++) {
  2333         q->enqueue(new StealMarkingTask(&terminator));
  2337     gc_task_manager()->execute_and_wait(q);
  2340   // Process reference objects found during marking
  2342     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2343     if (ref_processor()->processing_is_mt()) {
  2344       RefProcTaskExecutor task_executor;
  2345       ref_processor()->process_discovered_references(
  2346         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
  2347         &task_executor);
  2348     } else {
  2349       ref_processor()->process_discovered_references(
  2350         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
  2354   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2355   // Follow system dictionary roots and unload classes.
  2356   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2358   // Follow code cache roots.
  2359   CodeCache::do_unloading(is_alive_closure(), purged_class);
  2360   cm->follow_marking_stacks(); // Flush marking stack.
  2362   // Update subklass/sibling/implementor links of live klasses
  2363   Klass::clean_weak_klass_links(is_alive_closure());
  2365   // Visit interned string tables and delete unmarked oops
  2366   StringTable::unlink(is_alive_closure());
  2367   // Clean up unreferenced symbols in symbol table.
  2368   SymbolTable::unlink();
  2370   assert(cm->marking_stacks_empty(), "marking stacks should be empty");
  2373 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
  2374   ClassLoaderData* cld = klass->class_loader_data();
  2375   // The actual processing of the klass is done when we
  2376   // traverse the list of Klasses in the class loader data.
  2377   PSParallelCompact::follow_class_loader(cm, cld);
  2380 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
  2381   ClassLoaderData* cld = klass->class_loader_data();
  2382   // The actual processing of the klass is done when we
  2383   // traverse the list of Klasses in the class loader data.
  2384   PSParallelCompact::adjust_class_loader(cm, cld);
  2387 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
  2388                                             ClassLoaderData* cld) {
  2389   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2390   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
  2392   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
  2395 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
  2396                                             ClassLoaderData* cld) {
  2397   cld->oops_do(PSParallelCompact::adjust_root_pointer_closure(),
  2398                PSParallelCompact::adjust_klass_closure(),
  2399                true);
  2402 // This should be moved to the shared markSweep code!
  2403 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2404 public:
  2405   void do_object(oop p) { ShouldNotReachHere(); }
  2406   bool do_object_b(oop p) { return true; }
  2407 };
  2408 static PSAlwaysTrueClosure always_true;
  2410 void PSParallelCompact::adjust_roots() {
  2411   // Adjust the pointers to reflect the new locations
  2412   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2414   // Need new claim bits when tracing through and adjusting pointers.
  2415   ClassLoaderDataGraph::clear_claimed_marks();
  2417   // General strong roots.
  2418   Universe::oops_do(adjust_root_pointer_closure());
  2419   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  2420   CLDToOopClosure adjust_from_cld(adjust_root_pointer_closure());
  2421   Threads::oops_do(adjust_root_pointer_closure(), &adjust_from_cld, NULL);
  2422   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  2423   FlatProfiler::oops_do(adjust_root_pointer_closure());
  2424   Management::oops_do(adjust_root_pointer_closure());
  2425   JvmtiExport::oops_do(adjust_root_pointer_closure());
  2426   // SO_AllClasses
  2427   SystemDictionary::oops_do(adjust_root_pointer_closure());
  2428   ClassLoaderDataGraph::oops_do(adjust_root_pointer_closure(), adjust_klass_closure(), true);
  2430   // Now adjust pointers in remaining weak roots.  (All of which should
  2431   // have been cleared if they pointed to non-surviving objects.)
  2432   // Global (weak) JNI handles
  2433   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  2435   CodeCache::oops_do(adjust_pointer_closure());
  2436   StringTable::oops_do(adjust_root_pointer_closure());
  2437   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  2438   // Roots were visited so references into the young gen in roots
  2439   // may have been scanned.  Process them also.
  2440   // Should the reference processor have a span that excludes
  2441   // young gen objects?
  2442   PSScavenge::reference_processor()->weak_oops_do(
  2443                                               adjust_root_pointer_closure());
  2446 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  2447                                                       uint parallel_gc_threads)
  2449   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2451   // Find the threads that are active
  2452   unsigned int which = 0;
  2454   const uint task_count = MAX2(parallel_gc_threads, 1U);
  2455   for (uint j = 0; j < task_count; j++) {
  2456     q->enqueue(new DrainStacksCompactionTask(j));
  2457     ParCompactionManager::verify_region_list_empty(j);
  2458     // Set the region stacks variables to "no" region stack values
  2459     // so that they will be recognized and needing a region stack
  2460     // in the stealing tasks if they do not get one by executing
  2461     // a draining stack.
  2462     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
  2463     cm->set_region_stack(NULL);
  2464     cm->set_region_stack_index((uint)max_uintx);
  2466   ParCompactionManager::reset_recycled_stack_index();
  2468   // Find all regions that are available (can be filled immediately) and
  2469   // distribute them to the thread stacks.  The iteration is done in reverse
  2470   // order (high to low) so the regions will be removed in ascending order.
  2472   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2474   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2475   // A region index which corresponds to the tasks created above.
  2476   // "which" must be 0 <= which < task_count
  2478   which = 0;
  2479   // id + 1 is used to test termination so unsigned  can
  2480   // be used with an old_space_id == 0.
  2481   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
  2482     SpaceInfo* const space_info = _space_info + id;
  2483     MutableSpace* const space = space_info->space();
  2484     HeapWord* const new_top = space_info->new_top();
  2486     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2487     const size_t end_region =
  2488       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2490     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
  2491       if (sd.region(cur)->claim_unsafe()) {
  2492         ParCompactionManager::region_list_push(which, cur);
  2494         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2495           const size_t count_mod_8 = fillable_regions & 7;
  2496           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2497           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2498           if (count_mod_8 == 7) gclog_or_tty->cr();
  2501         NOT_PRODUCT(++fillable_regions;)
  2503         // Assign regions to tasks in round-robin fashion.
  2504         if (++which == task_count) {
  2505           assert(which <= parallel_gc_threads,
  2506             "Inconsistent number of workers");
  2507           which = 0;
  2513   if (TraceParallelOldGCCompactionPhase) {
  2514     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2515     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2519 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2521 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2522                                                     uint parallel_gc_threads) {
  2523   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2525   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2527   // Iterate over all the spaces adding tasks for updating
  2528   // regions in the dense prefix.  Assume that 1 gc thread
  2529   // will work on opening the gaps and the remaining gc threads
  2530   // will work on the dense prefix.
  2531   unsigned int space_id;
  2532   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
  2533     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2534     const MutableSpace* const space = _space_info[space_id].space();
  2536     if (dense_prefix_end == space->bottom()) {
  2537       // There is no dense prefix for this space.
  2538       continue;
  2541     // The dense prefix is before this region.
  2542     size_t region_index_end_dense_prefix =
  2543         sd.addr_to_region_idx(dense_prefix_end);
  2544     RegionData* const dense_prefix_cp =
  2545       sd.region(region_index_end_dense_prefix);
  2546     assert(dense_prefix_end == space->end() ||
  2547            dense_prefix_cp->available() ||
  2548            dense_prefix_cp->claimed(),
  2549            "The region after the dense prefix should always be ready to fill");
  2551     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2553     // Is there dense prefix work?
  2554     size_t total_dense_prefix_regions =
  2555       region_index_end_dense_prefix - region_index_start;
  2556     // How many regions of the dense prefix should be given to
  2557     // each thread?
  2558     if (total_dense_prefix_regions > 0) {
  2559       uint tasks_for_dense_prefix = 1;
  2560       if (total_dense_prefix_regions <=
  2561           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2562         // Don't over partition.  This assumes that
  2563         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2564         // so there are not many regions to process.
  2565         tasks_for_dense_prefix = parallel_gc_threads;
  2566       } else {
  2567         // Over partition
  2568         tasks_for_dense_prefix = parallel_gc_threads *
  2569           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2571       size_t regions_per_thread = total_dense_prefix_regions /
  2572         tasks_for_dense_prefix;
  2573       // Give each thread at least 1 region.
  2574       if (regions_per_thread == 0) {
  2575         regions_per_thread = 1;
  2578       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2579         if (region_index_start >= region_index_end_dense_prefix) {
  2580           break;
  2582         // region_index_end is not processed
  2583         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2584                                        region_index_end_dense_prefix);
  2585         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2586                                              region_index_start,
  2587                                              region_index_end));
  2588         region_index_start = region_index_end;
  2591     // This gets any part of the dense prefix that did not
  2592     // fit evenly.
  2593     if (region_index_start < region_index_end_dense_prefix) {
  2594       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2595                                            region_index_start,
  2596                                            region_index_end_dense_prefix));
  2601 void PSParallelCompact::enqueue_region_stealing_tasks(
  2602                                      GCTaskQueue* q,
  2603                                      ParallelTaskTerminator* terminator_ptr,
  2604                                      uint parallel_gc_threads) {
  2605   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2607   // Once a thread has drained it's stack, it should try to steal regions from
  2608   // other threads.
  2609   if (parallel_gc_threads > 1) {
  2610     for (uint j = 0; j < parallel_gc_threads; j++) {
  2611       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2616 void PSParallelCompact::compact() {
  2617   // trace("5");
  2618   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2620   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2621   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2622   PSOldGen* old_gen = heap->old_gen();
  2623   old_gen->start_array()->reset();
  2624   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2625   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2626   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2627   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2629   GCTaskQueue* q = GCTaskQueue::create();
  2630   enqueue_region_draining_tasks(q, active_gc_threads);
  2631   enqueue_dense_prefix_tasks(q, active_gc_threads);
  2632   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
  2635     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2637     gc_task_manager()->execute_and_wait(q);
  2639 #ifdef  ASSERT
  2640     // Verify that all regions have been processed before the deferred updates.
  2641     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2642       verify_complete(SpaceId(id));
  2644 #endif
  2648     // Update the deferred objects, if any.  Any compaction manager can be used.
  2649     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2650     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2651     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2652       update_deferred_objects(cm, SpaceId(id));
  2657 #ifdef  ASSERT
  2658 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2659   // All Regions between space bottom() to new_top() should be marked as filled
  2660   // and all Regions between new_top() and top() should be available (i.e.,
  2661   // should have been emptied).
  2662   ParallelCompactData& sd = summary_data();
  2663   SpaceInfo si = _space_info[space_id];
  2664   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2665   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2666   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2667   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2668   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2670   bool issued_a_warning = false;
  2672   size_t cur_region;
  2673   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2674     const RegionData* const c = sd.region(cur_region);
  2675     if (!c->completed()) {
  2676       warning("region " SIZE_FORMAT " not filled:  "
  2677               "destination_count=" SIZE_FORMAT,
  2678               cur_region, c->destination_count());
  2679       issued_a_warning = true;
  2683   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2684     const RegionData* const c = sd.region(cur_region);
  2685     if (!c->available()) {
  2686       warning("region " SIZE_FORMAT " not empty:   "
  2687               "destination_count=" SIZE_FORMAT,
  2688               cur_region, c->destination_count());
  2689       issued_a_warning = true;
  2693   if (issued_a_warning) {
  2694     print_region_ranges();
  2697 #endif  // #ifdef ASSERT
  2699 // Update interior oops in the ranges of regions [beg_region, end_region).
  2700 void
  2701 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2702                                                        SpaceId space_id,
  2703                                                        size_t beg_region,
  2704                                                        size_t end_region) {
  2705   ParallelCompactData& sd = summary_data();
  2706   ParMarkBitMap* const mbm = mark_bitmap();
  2708   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2709   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2710   assert(beg_region <= end_region, "bad region range");
  2711   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2713 #ifdef  ASSERT
  2714   // Claim the regions to avoid triggering an assert when they are marked as
  2715   // filled.
  2716   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2717     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2719 #endif  // #ifdef ASSERT
  2721   if (beg_addr != space(space_id)->bottom()) {
  2722     // Find the first live object or block of dead space that *starts* in this
  2723     // range of regions.  If a partial object crosses onto the region, skip it;
  2724     // it will be marked for 'deferred update' when the object head is
  2725     // processed.  If dead space crosses onto the region, it is also skipped; it
  2726     // will be filled when the prior region is processed.  If neither of those
  2727     // apply, the first word in the region is the start of a live object or dead
  2728     // space.
  2729     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2730     const RegionData* const cp = sd.region(beg_region);
  2731     if (cp->partial_obj_size() != 0) {
  2732       beg_addr = sd.partial_obj_end(beg_region);
  2733     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2734       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2738   if (beg_addr < end_addr) {
  2739     // A live object or block of dead space starts in this range of Regions.
  2740      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2742     // Create closures and iterate.
  2743     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2744     FillClosure fill_closure(cm, space_id);
  2745     ParMarkBitMap::IterationStatus status;
  2746     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2747                           dense_prefix_end);
  2748     if (status == ParMarkBitMap::incomplete) {
  2749       update_closure.do_addr(update_closure.source());
  2753   // Mark the regions as filled.
  2754   RegionData* const beg_cp = sd.region(beg_region);
  2755   RegionData* const end_cp = sd.region(end_region);
  2756   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2757     cp->set_completed();
  2761 // Return the SpaceId for the space containing addr.  If addr is not in the
  2762 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2763 // in the heap and asserts such.
  2764 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2765   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2767   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2768     if (_space_info[id].space()->contains(addr)) {
  2769       return SpaceId(id);
  2773   assert(false, "no space contains the addr");
  2774   return last_space_id;
  2777 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2778                                                 SpaceId id) {
  2779   assert(id < last_space_id, "bad space id");
  2781   ParallelCompactData& sd = summary_data();
  2782   const SpaceInfo* const space_info = _space_info + id;
  2783   ObjectStartArray* const start_array = space_info->start_array();
  2785   const MutableSpace* const space = space_info->space();
  2786   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2787   HeapWord* const beg_addr = space_info->dense_prefix();
  2788   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  2790   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  2791   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  2792   const RegionData* cur_region;
  2793   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  2794     HeapWord* const addr = cur_region->deferred_obj_addr();
  2795     if (addr != NULL) {
  2796       if (start_array != NULL) {
  2797         start_array->allocate_block(addr);
  2799       oop(addr)->update_contents(cm);
  2800       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  2805 // Skip over count live words starting from beg, and return the address of the
  2806 // next live word.  Unless marked, the word corresponding to beg is assumed to
  2807 // be dead.  Callers must either ensure beg does not correspond to the middle of
  2808 // an object, or account for those live words in some other way.  Callers must
  2809 // also ensure that there are enough live words in the range [beg, end) to skip.
  2810 HeapWord*
  2811 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  2813   assert(count > 0, "sanity");
  2815   ParMarkBitMap* m = mark_bitmap();
  2816   idx_t bits_to_skip = m->words_to_bits(count);
  2817   idx_t cur_beg = m->addr_to_bit(beg);
  2818   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  2820   do {
  2821     cur_beg = m->find_obj_beg(cur_beg, search_end);
  2822     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  2823     const size_t obj_bits = cur_end - cur_beg + 1;
  2824     if (obj_bits > bits_to_skip) {
  2825       return m->bit_to_addr(cur_beg + bits_to_skip);
  2827     bits_to_skip -= obj_bits;
  2828     cur_beg = cur_end + 1;
  2829   } while (bits_to_skip > 0);
  2831   // Skipping the desired number of words landed just past the end of an object.
  2832   // Find the start of the next object.
  2833   cur_beg = m->find_obj_beg(cur_beg, search_end);
  2834   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  2835   return m->bit_to_addr(cur_beg);
  2838 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  2839                                             SpaceId src_space_id,
  2840                                             size_t src_region_idx)
  2842   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
  2844   const SplitInfo& split_info = _space_info[src_space_id].split_info();
  2845   if (split_info.dest_region_addr() == dest_addr) {
  2846     // The partial object ending at the split point contains the first word to
  2847     // be copied to dest_addr.
  2848     return split_info.first_src_addr();
  2851   const ParallelCompactData& sd = summary_data();
  2852   ParMarkBitMap* const bitmap = mark_bitmap();
  2853   const size_t RegionSize = ParallelCompactData::RegionSize;
  2855   assert(sd.is_region_aligned(dest_addr), "not aligned");
  2856   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  2857   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  2858   HeapWord* const src_region_destination = src_region_ptr->destination();
  2860   assert(dest_addr >= src_region_destination, "wrong src region");
  2861   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  2863   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  2864   HeapWord* const src_region_end = src_region_beg + RegionSize;
  2866   HeapWord* addr = src_region_beg;
  2867   if (dest_addr == src_region_destination) {
  2868     // Return the first live word in the source region.
  2869     if (partial_obj_size == 0) {
  2870       addr = bitmap->find_obj_beg(addr, src_region_end);
  2871       assert(addr < src_region_end, "no objects start in src region");
  2873     return addr;
  2876   // Must skip some live data.
  2877   size_t words_to_skip = dest_addr - src_region_destination;
  2878   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  2880   if (partial_obj_size >= words_to_skip) {
  2881     // All the live words to skip are part of the partial object.
  2882     addr += words_to_skip;
  2883     if (partial_obj_size == words_to_skip) {
  2884       // Find the first live word past the partial object.
  2885       addr = bitmap->find_obj_beg(addr, src_region_end);
  2886       assert(addr < src_region_end, "wrong src region");
  2888     return addr;
  2891   // Skip over the partial object (if any).
  2892   if (partial_obj_size != 0) {
  2893     words_to_skip -= partial_obj_size;
  2894     addr += partial_obj_size;
  2897   // Skip over live words due to objects that start in the region.
  2898   addr = skip_live_words(addr, src_region_end, words_to_skip);
  2899   assert(addr < src_region_end, "wrong src region");
  2900   return addr;
  2903 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  2904                                                      SpaceId src_space_id,
  2905                                                      size_t beg_region,
  2906                                                      HeapWord* end_addr)
  2908   ParallelCompactData& sd = summary_data();
  2910 #ifdef ASSERT
  2911   MutableSpace* const src_space = _space_info[src_space_id].space();
  2912   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  2913   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
  2914          "src_space_id does not match beg_addr");
  2915   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
  2916          "src_space_id does not match end_addr");
  2917 #endif // #ifdef ASSERT
  2919   RegionData* const beg = sd.region(beg_region);
  2920   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
  2922   // Regions up to new_top() are enqueued if they become available.
  2923   HeapWord* const new_top = _space_info[src_space_id].new_top();
  2924   RegionData* const enqueue_end =
  2925     sd.addr_to_region_ptr(sd.region_align_up(new_top));
  2927   for (RegionData* cur = beg; cur < end; ++cur) {
  2928     assert(cur->data_size() > 0, "region must have live data");
  2929     cur->decrement_destination_count();
  2930     if (cur < enqueue_end && cur->available() && cur->claim()) {
  2931       cm->push_region(sd.region(cur));
  2936 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  2937                                           SpaceId& src_space_id,
  2938                                           HeapWord*& src_space_top,
  2939                                           HeapWord* end_addr)
  2941   typedef ParallelCompactData::RegionData RegionData;
  2943   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2944   const size_t region_size = ParallelCompactData::RegionSize;
  2946   size_t src_region_idx = 0;
  2948   // Skip empty regions (if any) up to the top of the space.
  2949   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  2950   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  2951   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  2952   const RegionData* const top_region_ptr =
  2953     sd.addr_to_region_ptr(top_aligned_up);
  2954   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  2955     ++src_region_ptr;
  2958   if (src_region_ptr < top_region_ptr) {
  2959     // The next source region is in the current space.  Update src_region_idx
  2960     // and the source address to match src_region_ptr.
  2961     src_region_idx = sd.region(src_region_ptr);
  2962     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  2963     if (src_region_addr > closure.source()) {
  2964       closure.set_source(src_region_addr);
  2966     return src_region_idx;
  2969   // Switch to a new source space and find the first non-empty region.
  2970   unsigned int space_id = src_space_id + 1;
  2971   assert(space_id < last_space_id, "not enough spaces");
  2973   HeapWord* const destination = closure.destination();
  2975   do {
  2976     MutableSpace* space = _space_info[space_id].space();
  2977     HeapWord* const bottom = space->bottom();
  2978     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  2980     // Iterate over the spaces that do not compact into themselves.
  2981     if (bottom_cp->destination() != bottom) {
  2982       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  2983       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  2985       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  2986         if (src_cp->live_obj_size() > 0) {
  2987           // Found it.
  2988           assert(src_cp->destination() == destination,
  2989                  "first live obj in the space must match the destination");
  2990           assert(src_cp->partial_obj_size() == 0,
  2991                  "a space cannot begin with a partial obj");
  2993           src_space_id = SpaceId(space_id);
  2994           src_space_top = space->top();
  2995           const size_t src_region_idx = sd.region(src_cp);
  2996           closure.set_source(sd.region_to_addr(src_region_idx));
  2997           return src_region_idx;
  2998         } else {
  2999           assert(src_cp->data_size() == 0, "sanity");
  3003   } while (++space_id < last_space_id);
  3005   assert(false, "no source region was found");
  3006   return 0;
  3009 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  3011   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3012   const size_t RegionSize = ParallelCompactData::RegionSize;
  3013   ParMarkBitMap* const bitmap = mark_bitmap();
  3014   ParallelCompactData& sd = summary_data();
  3015   RegionData* const region_ptr = sd.region(region_idx);
  3017   // Get the items needed to construct the closure.
  3018   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  3019   SpaceId dest_space_id = space_id(dest_addr);
  3020   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3021   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3022   assert(dest_addr < new_top, "sanity");
  3023   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  3025   // Get the source region and related info.
  3026   size_t src_region_idx = region_ptr->source_region();
  3027   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  3028   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3030   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3031   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
  3033   // Adjust src_region_idx to prepare for decrementing destination counts (the
  3034   // destination count is not decremented when a region is copied to itself).
  3035   if (src_region_idx == region_idx) {
  3036     src_region_idx += 1;
  3039   if (bitmap->is_unmarked(closure.source())) {
  3040     // The first source word is in the middle of an object; copy the remainder
  3041     // of the object or as much as will fit.  The fact that pointer updates were
  3042     // deferred will be noted when the object header is processed.
  3043     HeapWord* const old_src_addr = closure.source();
  3044     closure.copy_partial_obj();
  3045     if (closure.is_full()) {
  3046       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3047                                    closure.source());
  3048       region_ptr->set_deferred_obj_addr(NULL);
  3049       region_ptr->set_completed();
  3050       return;
  3053     HeapWord* const end_addr = sd.region_align_down(closure.source());
  3054     if (sd.region_align_down(old_src_addr) != end_addr) {
  3055       // The partial object was copied from more than one source region.
  3056       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3058       // Move to the next source region, possibly switching spaces as well.  All
  3059       // args except end_addr may be modified.
  3060       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3061                                        end_addr);
  3065   do {
  3066     HeapWord* const cur_addr = closure.source();
  3067     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  3068                                     src_space_top);
  3069     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3071     if (status == ParMarkBitMap::incomplete) {
  3072       // The last obj that starts in the source region does not end in the
  3073       // region.
  3074       assert(closure.source() < end_addr, "sanity");
  3075       HeapWord* const obj_beg = closure.source();
  3076       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3077                                        src_space_top);
  3078       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3079       if (obj_end < range_end) {
  3080         // The end was found; the entire object will fit.
  3081         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3082         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3083       } else {
  3084         // The end was not found; the object will not fit.
  3085         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3086         status = ParMarkBitMap::would_overflow;
  3090     if (status == ParMarkBitMap::would_overflow) {
  3091       // The last object did not fit.  Note that interior oop updates were
  3092       // deferred, then copy enough of the object to fill the region.
  3093       region_ptr->set_deferred_obj_addr(closure.destination());
  3094       status = closure.copy_until_full(); // copies from closure.source()
  3096       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3097                                    closure.source());
  3098       region_ptr->set_completed();
  3099       return;
  3102     if (status == ParMarkBitMap::full) {
  3103       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3104                                    closure.source());
  3105       region_ptr->set_deferred_obj_addr(NULL);
  3106       region_ptr->set_completed();
  3107       return;
  3110     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3112     // Move to the next source region, possibly switching spaces as well.  All
  3113     // args except end_addr may be modified.
  3114     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3115                                      end_addr);
  3116   } while (true);
  3119 void
  3120 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3121   const MutableSpace* sp = space(space_id);
  3122   if (sp->is_empty()) {
  3123     return;
  3126   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3127   ParMarkBitMap* const bitmap = mark_bitmap();
  3128   HeapWord* const dp_addr = dense_prefix(space_id);
  3129   HeapWord* beg_addr = sp->bottom();
  3130   HeapWord* end_addr = sp->top();
  3132   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3134   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  3135   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  3136   if (beg_region < dp_region) {
  3137     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  3140   // The destination of the first live object that starts in the region is one
  3141   // past the end of the partial object entering the region (if any).
  3142   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  3143   HeapWord* const new_top = _space_info[space_id].new_top();
  3144   assert(new_top >= dest_addr, "bad new_top value");
  3145   const size_t words = pointer_delta(new_top, dest_addr);
  3147   if (words > 0) {
  3148     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3149     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3151     ParMarkBitMap::IterationStatus status;
  3152     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3153     assert(status == ParMarkBitMap::full, "iteration not complete");
  3154     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3155            "live objects skipped because closure is full");
  3159 jlong PSParallelCompact::millis_since_last_gc() {
  3160   // We need a monotonically non-deccreasing time in ms but
  3161   // os::javaTimeMillis() does not guarantee monotonicity.
  3162   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3163   jlong ret_val = now - _time_of_last_gc;
  3164   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3165   if (ret_val < 0) {
  3166     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
  3167     return 0;
  3169   return ret_val;
  3172 void PSParallelCompact::reset_millis_since_last_gc() {
  3173   // We need a monotonically non-deccreasing time in ms but
  3174   // os::javaTimeMillis() does not guarantee monotonicity.
  3175   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3178 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3180   if (source() != destination()) {
  3181     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3182     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3184   update_state(words_remaining());
  3185   assert(is_full(), "sanity");
  3186   return ParMarkBitMap::full;
  3189 void MoveAndUpdateClosure::copy_partial_obj()
  3191   size_t words = words_remaining();
  3193   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3194   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3195   if (end_addr < range_end) {
  3196     words = bitmap()->obj_size(source(), end_addr);
  3199   // This test is necessary; if omitted, the pointer updates to a partial object
  3200   // that crosses the dense prefix boundary could be overwritten.
  3201   if (source() != destination()) {
  3202     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3203     Copy::aligned_conjoint_words(source(), destination(), words);
  3205   update_state(words);
  3208 ParMarkBitMapClosure::IterationStatus
  3209 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3210   assert(destination() != NULL, "sanity");
  3211   assert(bitmap()->obj_size(addr) == words, "bad size");
  3213   _source = addr;
  3214   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3215          destination(), "wrong destination");
  3217   if (words > words_remaining()) {
  3218     return ParMarkBitMap::would_overflow;
  3221   // The start_array must be updated even if the object is not moving.
  3222   if (_start_array != NULL) {
  3223     _start_array->allocate_block(destination());
  3226   if (destination() != source()) {
  3227     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3228     Copy::aligned_conjoint_words(source(), destination(), words);
  3231   oop moved_oop = (oop) destination();
  3232   moved_oop->update_contents(compaction_manager());
  3233   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3235   update_state(words);
  3236   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3237   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3240 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3241                                      ParCompactionManager* cm,
  3242                                      PSParallelCompact::SpaceId space_id) :
  3243   ParMarkBitMapClosure(mbm, cm),
  3244   _space_id(space_id),
  3245   _start_array(PSParallelCompact::start_array(space_id))
  3249 // Updates the references in the object to their new values.
  3250 ParMarkBitMapClosure::IterationStatus
  3251 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3252   do_addr(addr);
  3253   return ParMarkBitMap::incomplete;

mercurial