src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 27 Dec 2010 21:51:31 -0800

author
iveresov
date
Mon, 27 Dec 2010 21:51:31 -0800
changeset 2412
037c727f35fb
parent 2355
ec8c74742417
child 2432
55f868e91c3b
permissions
-rw-r--r--

7009231: C1: Incorrect CAS code for longs on SPARC 32bit
Summary: Fix CAS of longs on SPARC 32bit and cmove on SPARC 64bit.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_x86.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    41 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    42 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    43 // fast versions of NegF/NegD and AbsF/AbsD.
    45 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    46 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    47   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    48   // of 128-bits operands for SSE instructions.
    49   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    50   // Store the value to a 128-bits operand.
    51   operand[0] = lo;
    52   operand[1] = hi;
    53   return operand;
    54 }
    56 // Buffer for 128-bits masks used by SSE instructions.
    57 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    59 // Static initialization during VM startup.
    60 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    61 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    62 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    63 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    67 NEEDS_CLEANUP // remove this definitions ?
    68 const Register IC_Klass    = rax;   // where the IC klass is cached
    69 const Register SYNC_header = rax;   // synchronization header
    70 const Register SHIFT_count = rcx;   // where count for shift operations must be
    72 #define __ _masm->
    75 static void select_different_registers(Register preserve,
    76                                        Register extra,
    77                                        Register &tmp1,
    78                                        Register &tmp2) {
    79   if (tmp1 == preserve) {
    80     assert_different_registers(tmp1, tmp2, extra);
    81     tmp1 = extra;
    82   } else if (tmp2 == preserve) {
    83     assert_different_registers(tmp1, tmp2, extra);
    84     tmp2 = extra;
    85   }
    86   assert_different_registers(preserve, tmp1, tmp2);
    87 }
    91 static void select_different_registers(Register preserve,
    92                                        Register extra,
    93                                        Register &tmp1,
    94                                        Register &tmp2,
    95                                        Register &tmp3) {
    96   if (tmp1 == preserve) {
    97     assert_different_registers(tmp1, tmp2, tmp3, extra);
    98     tmp1 = extra;
    99   } else if (tmp2 == preserve) {
   100     assert_different_registers(tmp1, tmp2, tmp3, extra);
   101     tmp2 = extra;
   102   } else if (tmp3 == preserve) {
   103     assert_different_registers(tmp1, tmp2, tmp3, extra);
   104     tmp3 = extra;
   105   }
   106   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   107 }
   111 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   112   if (opr->is_constant()) {
   113     LIR_Const* constant = opr->as_constant_ptr();
   114     switch (constant->type()) {
   115       case T_INT: {
   116         return true;
   117       }
   119       default:
   120         return false;
   121     }
   122   }
   123   return false;
   124 }
   127 LIR_Opr LIR_Assembler::receiverOpr() {
   128   return FrameMap::receiver_opr;
   129 }
   131 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   132   return receiverOpr();
   133 }
   135 LIR_Opr LIR_Assembler::osrBufferPointer() {
   136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   137 }
   139 //--------------fpu register translations-----------------------
   142 address LIR_Assembler::float_constant(float f) {
   143   address const_addr = __ float_constant(f);
   144   if (const_addr == NULL) {
   145     bailout("const section overflow");
   146     return __ code()->consts()->start();
   147   } else {
   148     return const_addr;
   149   }
   150 }
   153 address LIR_Assembler::double_constant(double d) {
   154   address const_addr = __ double_constant(d);
   155   if (const_addr == NULL) {
   156     bailout("const section overflow");
   157     return __ code()->consts()->start();
   158   } else {
   159     return const_addr;
   160   }
   161 }
   164 void LIR_Assembler::set_24bit_FPU() {
   165   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   166 }
   168 void LIR_Assembler::reset_FPU() {
   169   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   170 }
   172 void LIR_Assembler::fpop() {
   173   __ fpop();
   174 }
   176 void LIR_Assembler::fxch(int i) {
   177   __ fxch(i);
   178 }
   180 void LIR_Assembler::fld(int i) {
   181   __ fld_s(i);
   182 }
   184 void LIR_Assembler::ffree(int i) {
   185   __ ffree(i);
   186 }
   188 void LIR_Assembler::breakpoint() {
   189   __ int3();
   190 }
   192 void LIR_Assembler::push(LIR_Opr opr) {
   193   if (opr->is_single_cpu()) {
   194     __ push_reg(opr->as_register());
   195   } else if (opr->is_double_cpu()) {
   196     NOT_LP64(__ push_reg(opr->as_register_hi()));
   197     __ push_reg(opr->as_register_lo());
   198   } else if (opr->is_stack()) {
   199     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   200   } else if (opr->is_constant()) {
   201     LIR_Const* const_opr = opr->as_constant_ptr();
   202     if (const_opr->type() == T_OBJECT) {
   203       __ push_oop(const_opr->as_jobject());
   204     } else if (const_opr->type() == T_INT) {
   205       __ push_jint(const_opr->as_jint());
   206     } else {
   207       ShouldNotReachHere();
   208     }
   210   } else {
   211     ShouldNotReachHere();
   212   }
   213 }
   215 void LIR_Assembler::pop(LIR_Opr opr) {
   216   if (opr->is_single_cpu()) {
   217     __ pop_reg(opr->as_register());
   218   } else {
   219     ShouldNotReachHere();
   220   }
   221 }
   223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   224   return addr->base()->is_illegal() && addr->index()->is_illegal();
   225 }
   227 //-------------------------------------------
   229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   230   return as_Address(addr, rscratch1);
   231 }
   233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   234   if (addr->base()->is_illegal()) {
   235     assert(addr->index()->is_illegal(), "must be illegal too");
   236     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   237     if (! __ reachable(laddr)) {
   238       __ movptr(tmp, laddr.addr());
   239       Address res(tmp, 0);
   240       return res;
   241     } else {
   242       return __ as_Address(laddr);
   243     }
   244   }
   246   Register base = addr->base()->as_pointer_register();
   248   if (addr->index()->is_illegal()) {
   249     return Address( base, addr->disp());
   250   } else if (addr->index()->is_cpu_register()) {
   251     Register index = addr->index()->as_pointer_register();
   252     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   253   } else if (addr->index()->is_constant()) {
   254     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   255     assert(Assembler::is_simm32(addr_offset), "must be");
   257     return Address(base, addr_offset);
   258   } else {
   259     Unimplemented();
   260     return Address();
   261   }
   262 }
   265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   266   Address base = as_Address(addr);
   267   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   268 }
   271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   272   return as_Address(addr);
   273 }
   276 void LIR_Assembler::osr_entry() {
   277   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   278   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   279   ValueStack* entry_state = osr_entry->state();
   280   int number_of_locks = entry_state->locks_size();
   282   // we jump here if osr happens with the interpreter
   283   // state set up to continue at the beginning of the
   284   // loop that triggered osr - in particular, we have
   285   // the following registers setup:
   286   //
   287   // rcx: osr buffer
   288   //
   290   // build frame
   291   ciMethod* m = compilation()->method();
   292   __ build_frame(initial_frame_size_in_bytes());
   294   // OSR buffer is
   295   //
   296   // locals[nlocals-1..0]
   297   // monitors[0..number_of_locks]
   298   //
   299   // locals is a direct copy of the interpreter frame so in the osr buffer
   300   // so first slot in the local array is the last local from the interpreter
   301   // and last slot is local[0] (receiver) from the interpreter
   302   //
   303   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   304   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   305   // in the interpreter frame (the method lock if a sync method)
   307   // Initialize monitors in the compiled activation.
   308   //   rcx: pointer to osr buffer
   309   //
   310   // All other registers are dead at this point and the locals will be
   311   // copied into place by code emitted in the IR.
   313   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   314   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   315     int monitor_offset = BytesPerWord * method()->max_locals() +
   316       (2 * BytesPerWord) * (number_of_locks - 1);
   317     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   318     // the OSR buffer using 2 word entries: first the lock and then
   319     // the oop.
   320     for (int i = 0; i < number_of_locks; i++) {
   321       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   322 #ifdef ASSERT
   323       // verify the interpreter's monitor has a non-null object
   324       {
   325         Label L;
   326         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   327         __ jcc(Assembler::notZero, L);
   328         __ stop("locked object is NULL");
   329         __ bind(L);
   330       }
   331 #endif
   332       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   333       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   334       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   335       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   336     }
   337   }
   338 }
   341 // inline cache check; done before the frame is built.
   342 int LIR_Assembler::check_icache() {
   343   Register receiver = FrameMap::receiver_opr->as_register();
   344   Register ic_klass = IC_Klass;
   345   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   346   const bool do_post_padding = VerifyOops || UseCompressedOops;
   347   if (!do_post_padding) {
   348     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   349     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   350       __ nop();
   351     }
   352   }
   353   int offset = __ offset();
   354   __ inline_cache_check(receiver, IC_Klass);
   355   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   356   if (do_post_padding) {
   357     // force alignment after the cache check.
   358     // It's been verified to be aligned if !VerifyOops
   359     __ align(CodeEntryAlignment);
   360   }
   361   return offset;
   362 }
   365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   366   jobject o = NULL;
   367   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   368   __ movoop(reg, o);
   369   patching_epilog(patch, lir_patch_normal, reg, info);
   370 }
   373 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   374   if (exception->is_valid()) {
   375     // preserve exception
   376     // note: the monitor_exit runtime call is a leaf routine
   377     //       and cannot block => no GC can happen
   378     // The slow case (MonitorAccessStub) uses the first two stack slots
   379     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   380     __ movptr (Address(rsp, 2*wordSize), exception);
   381   }
   383   Register obj_reg  = obj_opr->as_register();
   384   Register lock_reg = lock_opr->as_register();
   386   // setup registers (lock_reg must be rax, for lock_object)
   387   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   388   Register hdr = lock_reg;
   389   assert(new_hdr == SYNC_header, "wrong register");
   390   lock_reg = new_hdr;
   391   // compute pointer to BasicLock
   392   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   393   __ lea(lock_reg, lock_addr);
   394   // unlock object
   395   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   396   // _slow_case_stubs->append(slow_case);
   397   // temporary fix: must be created after exceptionhandler, therefore as call stub
   398   _slow_case_stubs->append(slow_case);
   399   if (UseFastLocking) {
   400     // try inlined fast unlocking first, revert to slow locking if it fails
   401     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   402     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   403     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   404   } else {
   405     // always do slow unlocking
   406     // note: the slow unlocking code could be inlined here, however if we use
   407     //       slow unlocking, speed doesn't matter anyway and this solution is
   408     //       simpler and requires less duplicated code - additionally, the
   409     //       slow unlocking code is the same in either case which simplifies
   410     //       debugging
   411     __ jmp(*slow_case->entry());
   412   }
   413   // done
   414   __ bind(*slow_case->continuation());
   416   if (exception->is_valid()) {
   417     // restore exception
   418     __ movptr (exception, Address(rsp, 2 * wordSize));
   419   }
   420 }
   422 // This specifies the rsp decrement needed to build the frame
   423 int LIR_Assembler::initial_frame_size_in_bytes() {
   424   // if rounding, must let FrameMap know!
   426   // The frame_map records size in slots (32bit word)
   428   // subtract two words to account for return address and link
   429   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   430 }
   433 int LIR_Assembler::emit_exception_handler() {
   434   // if the last instruction is a call (typically to do a throw which
   435   // is coming at the end after block reordering) the return address
   436   // must still point into the code area in order to avoid assertion
   437   // failures when searching for the corresponding bci => add a nop
   438   // (was bug 5/14/1999 - gri)
   439   __ nop();
   441   // generate code for exception handler
   442   address handler_base = __ start_a_stub(exception_handler_size);
   443   if (handler_base == NULL) {
   444     // not enough space left for the handler
   445     bailout("exception handler overflow");
   446     return -1;
   447   }
   449   int offset = code_offset();
   451   // the exception oop and pc are in rax, and rdx
   452   // no other registers need to be preserved, so invalidate them
   453   __ invalidate_registers(false, true, true, false, true, true);
   455   // check that there is really an exception
   456   __ verify_not_null_oop(rax);
   458   // search an exception handler (rax: exception oop, rdx: throwing pc)
   459   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   461   __ stop("should not reach here");
   463   assert(code_offset() - offset <= exception_handler_size, "overflow");
   464   __ end_a_stub();
   466   return offset;
   467 }
   470 // Emit the code to remove the frame from the stack in the exception
   471 // unwind path.
   472 int LIR_Assembler::emit_unwind_handler() {
   473 #ifndef PRODUCT
   474   if (CommentedAssembly) {
   475     _masm->block_comment("Unwind handler");
   476   }
   477 #endif
   479   int offset = code_offset();
   481   // Fetch the exception from TLS and clear out exception related thread state
   482   __ get_thread(rsi);
   483   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   484   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   485   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   487   __ bind(_unwind_handler_entry);
   488   __ verify_not_null_oop(rax);
   489   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   490     __ mov(rsi, rax);  // Preserve the exception
   491   }
   493   // Preform needed unlocking
   494   MonitorExitStub* stub = NULL;
   495   if (method()->is_synchronized()) {
   496     monitor_address(0, FrameMap::rax_opr);
   497     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   498     __ unlock_object(rdi, rbx, rax, *stub->entry());
   499     __ bind(*stub->continuation());
   500   }
   502   if (compilation()->env()->dtrace_method_probes()) {
   503     __ get_thread(rax);
   504     __ movptr(Address(rsp, 0), rax);
   505     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
   506     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   507   }
   509   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   510     __ mov(rax, rsi);  // Restore the exception
   511   }
   513   // remove the activation and dispatch to the unwind handler
   514   __ remove_frame(initial_frame_size_in_bytes());
   515   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   517   // Emit the slow path assembly
   518   if (stub != NULL) {
   519     stub->emit_code(this);
   520   }
   522   return offset;
   523 }
   526 int LIR_Assembler::emit_deopt_handler() {
   527   // if the last instruction is a call (typically to do a throw which
   528   // is coming at the end after block reordering) the return address
   529   // must still point into the code area in order to avoid assertion
   530   // failures when searching for the corresponding bci => add a nop
   531   // (was bug 5/14/1999 - gri)
   532   __ nop();
   534   // generate code for exception handler
   535   address handler_base = __ start_a_stub(deopt_handler_size);
   536   if (handler_base == NULL) {
   537     // not enough space left for the handler
   538     bailout("deopt handler overflow");
   539     return -1;
   540   }
   542   int offset = code_offset();
   543   InternalAddress here(__ pc());
   545   __ pushptr(here.addr());
   546   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   548   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   549   __ end_a_stub();
   551   return offset;
   552 }
   555 // This is the fast version of java.lang.String.compare; it has not
   556 // OSR-entry and therefore, we generate a slow version for OSR's
   557 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   558   __ movptr (rbx, rcx); // receiver is in rcx
   559   __ movptr (rax, arg1->as_register());
   561   // Get addresses of first characters from both Strings
   562   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   563   __ movptr       (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   564   __ lea          (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   567   // rbx, may be NULL
   568   add_debug_info_for_null_check_here(info);
   569   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   570   __ movptr       (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   571   __ lea          (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   573   // compute minimum length (in rax) and difference of lengths (on top of stack)
   574   if (VM_Version::supports_cmov()) {
   575     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   576     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   577     __ mov      (rcx, rbx);
   578     __ subptr   (rbx, rax); // subtract lengths
   579     __ push     (rbx);      // result
   580     __ cmov     (Assembler::lessEqual, rax, rcx);
   581   } else {
   582     Label L;
   583     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   584     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   585     __ mov      (rax, rbx);
   586     __ subptr   (rbx, rcx);
   587     __ push     (rbx);
   588     __ jcc      (Assembler::lessEqual, L);
   589     __ mov      (rax, rcx);
   590     __ bind (L);
   591   }
   592   // is minimum length 0?
   593   Label noLoop, haveResult;
   594   __ testptr (rax, rax);
   595   __ jcc (Assembler::zero, noLoop);
   597   // compare first characters
   598   __ load_unsigned_short(rcx, Address(rdi, 0));
   599   __ load_unsigned_short(rbx, Address(rsi, 0));
   600   __ subl(rcx, rbx);
   601   __ jcc(Assembler::notZero, haveResult);
   602   // starting loop
   603   __ decrement(rax); // we already tested index: skip one
   604   __ jcc(Assembler::zero, noLoop);
   606   // set rsi.edi to the end of the arrays (arrays have same length)
   607   // negate the index
   609   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   610   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   611   __ negptr(rax);
   613   // compare the strings in a loop
   615   Label loop;
   616   __ align(wordSize);
   617   __ bind(loop);
   618   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   619   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   620   __ subl(rcx, rbx);
   621   __ jcc(Assembler::notZero, haveResult);
   622   __ increment(rax);
   623   __ jcc(Assembler::notZero, loop);
   625   // strings are equal up to min length
   627   __ bind(noLoop);
   628   __ pop(rax);
   629   return_op(LIR_OprFact::illegalOpr);
   631   __ bind(haveResult);
   632   // leave instruction is going to discard the TOS value
   633   __ mov (rax, rcx); // result of call is in rax,
   634 }
   637 void LIR_Assembler::return_op(LIR_Opr result) {
   638   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   639   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   640     assert(result->fpu() == 0, "result must already be on TOS");
   641   }
   643   // Pop the stack before the safepoint code
   644   __ remove_frame(initial_frame_size_in_bytes());
   646   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   648   // Note: we do not need to round double result; float result has the right precision
   649   // the poll sets the condition code, but no data registers
   650   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   651                               relocInfo::poll_return_type);
   653   // NOTE: the requires that the polling page be reachable else the reloc
   654   // goes to the movq that loads the address and not the faulting instruction
   655   // which breaks the signal handler code
   657   __ test32(rax, polling_page);
   659   __ ret(0);
   660 }
   663 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   664   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   665                               relocInfo::poll_type);
   667   if (info != NULL) {
   668     add_debug_info_for_branch(info);
   669   } else {
   670     ShouldNotReachHere();
   671   }
   673   int offset = __ offset();
   675   // NOTE: the requires that the polling page be reachable else the reloc
   676   // goes to the movq that loads the address and not the faulting instruction
   677   // which breaks the signal handler code
   679   __ test32(rax, polling_page);
   680   return offset;
   681 }
   684 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   685   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   686 }
   688 void LIR_Assembler::swap_reg(Register a, Register b) {
   689   __ xchgptr(a, b);
   690 }
   693 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   694   assert(src->is_constant(), "should not call otherwise");
   695   assert(dest->is_register(), "should not call otherwise");
   696   LIR_Const* c = src->as_constant_ptr();
   698   switch (c->type()) {
   699     case T_INT: {
   700       assert(patch_code == lir_patch_none, "no patching handled here");
   701       __ movl(dest->as_register(), c->as_jint());
   702       break;
   703     }
   705     case T_ADDRESS: {
   706       assert(patch_code == lir_patch_none, "no patching handled here");
   707       __ movptr(dest->as_register(), c->as_jint());
   708       break;
   709     }
   711     case T_LONG: {
   712       assert(patch_code == lir_patch_none, "no patching handled here");
   713 #ifdef _LP64
   714       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   715 #else
   716       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   717       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   718 #endif // _LP64
   719       break;
   720     }
   722     case T_OBJECT: {
   723       if (patch_code != lir_patch_none) {
   724         jobject2reg_with_patching(dest->as_register(), info);
   725       } else {
   726         __ movoop(dest->as_register(), c->as_jobject());
   727       }
   728       break;
   729     }
   731     case T_FLOAT: {
   732       if (dest->is_single_xmm()) {
   733         if (c->is_zero_float()) {
   734           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   735         } else {
   736           __ movflt(dest->as_xmm_float_reg(),
   737                    InternalAddress(float_constant(c->as_jfloat())));
   738         }
   739       } else {
   740         assert(dest->is_single_fpu(), "must be");
   741         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   742         if (c->is_zero_float()) {
   743           __ fldz();
   744         } else if (c->is_one_float()) {
   745           __ fld1();
   746         } else {
   747           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   748         }
   749       }
   750       break;
   751     }
   753     case T_DOUBLE: {
   754       if (dest->is_double_xmm()) {
   755         if (c->is_zero_double()) {
   756           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   757         } else {
   758           __ movdbl(dest->as_xmm_double_reg(),
   759                     InternalAddress(double_constant(c->as_jdouble())));
   760         }
   761       } else {
   762         assert(dest->is_double_fpu(), "must be");
   763         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   764         if (c->is_zero_double()) {
   765           __ fldz();
   766         } else if (c->is_one_double()) {
   767           __ fld1();
   768         } else {
   769           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   770         }
   771       }
   772       break;
   773     }
   775     default:
   776       ShouldNotReachHere();
   777   }
   778 }
   780 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   781   assert(src->is_constant(), "should not call otherwise");
   782   assert(dest->is_stack(), "should not call otherwise");
   783   LIR_Const* c = src->as_constant_ptr();
   785   switch (c->type()) {
   786     case T_INT:  // fall through
   787     case T_FLOAT:
   788       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   789       break;
   791     case T_ADDRESS:
   792       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   793       break;
   795     case T_OBJECT:
   796       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   797       break;
   799     case T_LONG:  // fall through
   800     case T_DOUBLE:
   801 #ifdef _LP64
   802       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   803                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   804 #else
   805       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   806                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   807       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   808                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   809 #endif // _LP64
   810       break;
   812     default:
   813       ShouldNotReachHere();
   814   }
   815 }
   817 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   818   assert(src->is_constant(), "should not call otherwise");
   819   assert(dest->is_address(), "should not call otherwise");
   820   LIR_Const* c = src->as_constant_ptr();
   821   LIR_Address* addr = dest->as_address_ptr();
   823   int null_check_here = code_offset();
   824   switch (type) {
   825     case T_INT:    // fall through
   826     case T_FLOAT:
   827       __ movl(as_Address(addr), c->as_jint_bits());
   828       break;
   830     case T_ADDRESS:
   831       __ movptr(as_Address(addr), c->as_jint_bits());
   832       break;
   834     case T_OBJECT:  // fall through
   835     case T_ARRAY:
   836       if (c->as_jobject() == NULL) {
   837         if (UseCompressedOops && !wide) {
   838           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   839         } else {
   840           __ movptr(as_Address(addr), NULL_WORD);
   841         }
   842       } else {
   843         if (is_literal_address(addr)) {
   844           ShouldNotReachHere();
   845           __ movoop(as_Address(addr, noreg), c->as_jobject());
   846         } else {
   847 #ifdef _LP64
   848           __ movoop(rscratch1, c->as_jobject());
   849           if (UseCompressedOops && !wide) {
   850             __ encode_heap_oop(rscratch1);
   851             null_check_here = code_offset();
   852             __ movl(as_Address_lo(addr), rscratch1);
   853           } else {
   854             null_check_here = code_offset();
   855             __ movptr(as_Address_lo(addr), rscratch1);
   856           }
   857 #else
   858           __ movoop(as_Address(addr), c->as_jobject());
   859 #endif
   860         }
   861       }
   862       break;
   864     case T_LONG:    // fall through
   865     case T_DOUBLE:
   866 #ifdef _LP64
   867       if (is_literal_address(addr)) {
   868         ShouldNotReachHere();
   869         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   870       } else {
   871         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   872         null_check_here = code_offset();
   873         __ movptr(as_Address_lo(addr), r10);
   874       }
   875 #else
   876       // Always reachable in 32bit so this doesn't produce useless move literal
   877       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   878       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   879 #endif // _LP64
   880       break;
   882     case T_BOOLEAN: // fall through
   883     case T_BYTE:
   884       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   885       break;
   887     case T_CHAR:    // fall through
   888     case T_SHORT:
   889       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   890       break;
   892     default:
   893       ShouldNotReachHere();
   894   };
   896   if (info != NULL) {
   897     add_debug_info_for_null_check(null_check_here, info);
   898   }
   899 }
   902 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   903   assert(src->is_register(), "should not call otherwise");
   904   assert(dest->is_register(), "should not call otherwise");
   906   // move between cpu-registers
   907   if (dest->is_single_cpu()) {
   908 #ifdef _LP64
   909     if (src->type() == T_LONG) {
   910       // Can do LONG -> OBJECT
   911       move_regs(src->as_register_lo(), dest->as_register());
   912       return;
   913     }
   914 #endif
   915     assert(src->is_single_cpu(), "must match");
   916     if (src->type() == T_OBJECT) {
   917       __ verify_oop(src->as_register());
   918     }
   919     move_regs(src->as_register(), dest->as_register());
   921   } else if (dest->is_double_cpu()) {
   922 #ifdef _LP64
   923     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   924       // Surprising to me but we can see move of a long to t_object
   925       __ verify_oop(src->as_register());
   926       move_regs(src->as_register(), dest->as_register_lo());
   927       return;
   928     }
   929 #endif
   930     assert(src->is_double_cpu(), "must match");
   931     Register f_lo = src->as_register_lo();
   932     Register f_hi = src->as_register_hi();
   933     Register t_lo = dest->as_register_lo();
   934     Register t_hi = dest->as_register_hi();
   935 #ifdef _LP64
   936     assert(f_hi == f_lo, "must be same");
   937     assert(t_hi == t_lo, "must be same");
   938     move_regs(f_lo, t_lo);
   939 #else
   940     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   943     if (f_lo == t_hi && f_hi == t_lo) {
   944       swap_reg(f_lo, f_hi);
   945     } else if (f_hi == t_lo) {
   946       assert(f_lo != t_hi, "overwriting register");
   947       move_regs(f_hi, t_hi);
   948       move_regs(f_lo, t_lo);
   949     } else {
   950       assert(f_hi != t_lo, "overwriting register");
   951       move_regs(f_lo, t_lo);
   952       move_regs(f_hi, t_hi);
   953     }
   954 #endif // LP64
   956     // special moves from fpu-register to xmm-register
   957     // necessary for method results
   958   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   959     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   960     __ fld_s(Address(rsp, 0));
   961   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   962     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   963     __ fld_d(Address(rsp, 0));
   964   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   965     __ fstp_s(Address(rsp, 0));
   966     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   967   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   968     __ fstp_d(Address(rsp, 0));
   969     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   971     // move between xmm-registers
   972   } else if (dest->is_single_xmm()) {
   973     assert(src->is_single_xmm(), "must match");
   974     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   975   } else if (dest->is_double_xmm()) {
   976     assert(src->is_double_xmm(), "must match");
   977     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   979     // move between fpu-registers (no instruction necessary because of fpu-stack)
   980   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   981     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   982     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   983   } else {
   984     ShouldNotReachHere();
   985   }
   986 }
   988 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   989   assert(src->is_register(), "should not call otherwise");
   990   assert(dest->is_stack(), "should not call otherwise");
   992   if (src->is_single_cpu()) {
   993     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   994     if (type == T_OBJECT || type == T_ARRAY) {
   995       __ verify_oop(src->as_register());
   996       __ movptr (dst, src->as_register());
   997     } else {
   998       __ movl (dst, src->as_register());
   999     }
  1001   } else if (src->is_double_cpu()) {
  1002     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
  1003     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
  1004     __ movptr (dstLO, src->as_register_lo());
  1005     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
  1007   } else if (src->is_single_xmm()) {
  1008     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1009     __ movflt(dst_addr, src->as_xmm_float_reg());
  1011   } else if (src->is_double_xmm()) {
  1012     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1013     __ movdbl(dst_addr, src->as_xmm_double_reg());
  1015   } else if (src->is_single_fpu()) {
  1016     assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1017     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1018     if (pop_fpu_stack)     __ fstp_s (dst_addr);
  1019     else                   __ fst_s  (dst_addr);
  1021   } else if (src->is_double_fpu()) {
  1022     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1023     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1024     if (pop_fpu_stack)     __ fstp_d (dst_addr);
  1025     else                   __ fst_d  (dst_addr);
  1027   } else {
  1028     ShouldNotReachHere();
  1033 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
  1034   LIR_Address* to_addr = dest->as_address_ptr();
  1035   PatchingStub* patch = NULL;
  1036   Register compressed_src = rscratch1;
  1038   if (type == T_ARRAY || type == T_OBJECT) {
  1039     __ verify_oop(src->as_register());
  1040 #ifdef _LP64
  1041     if (UseCompressedOops && !wide) {
  1042       __ movptr(compressed_src, src->as_register());
  1043       __ encode_heap_oop(compressed_src);
  1045 #endif
  1048   if (patch_code != lir_patch_none) {
  1049     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1050     Address toa = as_Address(to_addr);
  1051     assert(toa.disp() != 0, "must have");
  1054   int null_check_here = code_offset();
  1055   switch (type) {
  1056     case T_FLOAT: {
  1057       if (src->is_single_xmm()) {
  1058         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1059       } else {
  1060         assert(src->is_single_fpu(), "must be");
  1061         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1062         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1063         else                    __ fst_s (as_Address(to_addr));
  1065       break;
  1068     case T_DOUBLE: {
  1069       if (src->is_double_xmm()) {
  1070         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1071       } else {
  1072         assert(src->is_double_fpu(), "must be");
  1073         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1074         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1075         else                    __ fst_d (as_Address(to_addr));
  1077       break;
  1080     case T_ARRAY:   // fall through
  1081     case T_OBJECT:  // fall through
  1082       if (UseCompressedOops && !wide) {
  1083         __ movl(as_Address(to_addr), compressed_src);
  1084       } else {
  1085         __ movptr(as_Address(to_addr), src->as_register());
  1087       break;
  1088     case T_ADDRESS:
  1089       __ movptr(as_Address(to_addr), src->as_register());
  1090       break;
  1091     case T_INT:
  1092       __ movl(as_Address(to_addr), src->as_register());
  1093       break;
  1095     case T_LONG: {
  1096       Register from_lo = src->as_register_lo();
  1097       Register from_hi = src->as_register_hi();
  1098 #ifdef _LP64
  1099       __ movptr(as_Address_lo(to_addr), from_lo);
  1100 #else
  1101       Register base = to_addr->base()->as_register();
  1102       Register index = noreg;
  1103       if (to_addr->index()->is_register()) {
  1104         index = to_addr->index()->as_register();
  1106       if (base == from_lo || index == from_lo) {
  1107         assert(base != from_hi, "can't be");
  1108         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1109         __ movl(as_Address_hi(to_addr), from_hi);
  1110         if (patch != NULL) {
  1111           patching_epilog(patch, lir_patch_high, base, info);
  1112           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1113           patch_code = lir_patch_low;
  1115         __ movl(as_Address_lo(to_addr), from_lo);
  1116       } else {
  1117         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1118         __ movl(as_Address_lo(to_addr), from_lo);
  1119         if (patch != NULL) {
  1120           patching_epilog(patch, lir_patch_low, base, info);
  1121           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1122           patch_code = lir_patch_high;
  1124         __ movl(as_Address_hi(to_addr), from_hi);
  1126 #endif // _LP64
  1127       break;
  1130     case T_BYTE:    // fall through
  1131     case T_BOOLEAN: {
  1132       Register src_reg = src->as_register();
  1133       Address dst_addr = as_Address(to_addr);
  1134       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1135       __ movb(dst_addr, src_reg);
  1136       break;
  1139     case T_CHAR:    // fall through
  1140     case T_SHORT:
  1141       __ movw(as_Address(to_addr), src->as_register());
  1142       break;
  1144     default:
  1145       ShouldNotReachHere();
  1147   if (info != NULL) {
  1148     add_debug_info_for_null_check(null_check_here, info);
  1151   if (patch_code != lir_patch_none) {
  1152     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1157 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1158   assert(src->is_stack(), "should not call otherwise");
  1159   assert(dest->is_register(), "should not call otherwise");
  1161   if (dest->is_single_cpu()) {
  1162     if (type == T_ARRAY || type == T_OBJECT) {
  1163       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1164       __ verify_oop(dest->as_register());
  1165     } else {
  1166       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1169   } else if (dest->is_double_cpu()) {
  1170     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1171     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1172     __ movptr(dest->as_register_lo(), src_addr_LO);
  1173     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1175   } else if (dest->is_single_xmm()) {
  1176     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1177     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1179   } else if (dest->is_double_xmm()) {
  1180     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1181     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1183   } else if (dest->is_single_fpu()) {
  1184     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1185     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1186     __ fld_s(src_addr);
  1188   } else if (dest->is_double_fpu()) {
  1189     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1190     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1191     __ fld_d(src_addr);
  1193   } else {
  1194     ShouldNotReachHere();
  1199 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1200   if (src->is_single_stack()) {
  1201     if (type == T_OBJECT || type == T_ARRAY) {
  1202       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1203       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1204     } else {
  1205 #ifndef _LP64
  1206       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1207       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1208 #else
  1209       //no pushl on 64bits
  1210       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1211       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1212 #endif
  1215   } else if (src->is_double_stack()) {
  1216 #ifdef _LP64
  1217     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1218     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1219 #else
  1220     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1221     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1222     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1223     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1224     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1225 #endif // _LP64
  1227   } else {
  1228     ShouldNotReachHere();
  1233 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1234   assert(src->is_address(), "should not call otherwise");
  1235   assert(dest->is_register(), "should not call otherwise");
  1237   LIR_Address* addr = src->as_address_ptr();
  1238   Address from_addr = as_Address(addr);
  1240   switch (type) {
  1241     case T_BOOLEAN: // fall through
  1242     case T_BYTE:    // fall through
  1243     case T_CHAR:    // fall through
  1244     case T_SHORT:
  1245       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1246         // on pre P6 processors we may get partial register stalls
  1247         // so blow away the value of to_rinfo before loading a
  1248         // partial word into it.  Do it here so that it precedes
  1249         // the potential patch point below.
  1250         __ xorptr(dest->as_register(), dest->as_register());
  1252       break;
  1255   PatchingStub* patch = NULL;
  1256   if (patch_code != lir_patch_none) {
  1257     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1258     assert(from_addr.disp() != 0, "must have");
  1260   if (info != NULL) {
  1261     add_debug_info_for_null_check_here(info);
  1264   switch (type) {
  1265     case T_FLOAT: {
  1266       if (dest->is_single_xmm()) {
  1267         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1268       } else {
  1269         assert(dest->is_single_fpu(), "must be");
  1270         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1271         __ fld_s(from_addr);
  1273       break;
  1276     case T_DOUBLE: {
  1277       if (dest->is_double_xmm()) {
  1278         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1279       } else {
  1280         assert(dest->is_double_fpu(), "must be");
  1281         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1282         __ fld_d(from_addr);
  1284       break;
  1287     case T_OBJECT:  // fall through
  1288     case T_ARRAY:   // fall through
  1289       if (UseCompressedOops && !wide) {
  1290         __ movl(dest->as_register(), from_addr);
  1291       } else {
  1292         __ movptr(dest->as_register(), from_addr);
  1294       break;
  1296     case T_ADDRESS:
  1297       __ movptr(dest->as_register(), from_addr);
  1298       break;
  1299     case T_INT:
  1300       __ movl(dest->as_register(), from_addr);
  1301       break;
  1303     case T_LONG: {
  1304       Register to_lo = dest->as_register_lo();
  1305       Register to_hi = dest->as_register_hi();
  1306 #ifdef _LP64
  1307       __ movptr(to_lo, as_Address_lo(addr));
  1308 #else
  1309       Register base = addr->base()->as_register();
  1310       Register index = noreg;
  1311       if (addr->index()->is_register()) {
  1312         index = addr->index()->as_register();
  1314       if ((base == to_lo && index == to_hi) ||
  1315           (base == to_hi && index == to_lo)) {
  1316         // addresses with 2 registers are only formed as a result of
  1317         // array access so this code will never have to deal with
  1318         // patches or null checks.
  1319         assert(info == NULL && patch == NULL, "must be");
  1320         __ lea(to_hi, as_Address(addr));
  1321         __ movl(to_lo, Address(to_hi, 0));
  1322         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1323       } else if (base == to_lo || index == to_lo) {
  1324         assert(base != to_hi, "can't be");
  1325         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1326         __ movl(to_hi, as_Address_hi(addr));
  1327         if (patch != NULL) {
  1328           patching_epilog(patch, lir_patch_high, base, info);
  1329           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1330           patch_code = lir_patch_low;
  1332         __ movl(to_lo, as_Address_lo(addr));
  1333       } else {
  1334         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1335         __ movl(to_lo, as_Address_lo(addr));
  1336         if (patch != NULL) {
  1337           patching_epilog(patch, lir_patch_low, base, info);
  1338           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1339           patch_code = lir_patch_high;
  1341         __ movl(to_hi, as_Address_hi(addr));
  1343 #endif // _LP64
  1344       break;
  1347     case T_BOOLEAN: // fall through
  1348     case T_BYTE: {
  1349       Register dest_reg = dest->as_register();
  1350       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1351       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1352         __ movsbl(dest_reg, from_addr);
  1353       } else {
  1354         __ movb(dest_reg, from_addr);
  1355         __ shll(dest_reg, 24);
  1356         __ sarl(dest_reg, 24);
  1358       break;
  1361     case T_CHAR: {
  1362       Register dest_reg = dest->as_register();
  1363       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1364       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1365         __ movzwl(dest_reg, from_addr);
  1366       } else {
  1367         __ movw(dest_reg, from_addr);
  1369       break;
  1372     case T_SHORT: {
  1373       Register dest_reg = dest->as_register();
  1374       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1375         __ movswl(dest_reg, from_addr);
  1376       } else {
  1377         __ movw(dest_reg, from_addr);
  1378         __ shll(dest_reg, 16);
  1379         __ sarl(dest_reg, 16);
  1381       break;
  1384     default:
  1385       ShouldNotReachHere();
  1388   if (patch != NULL) {
  1389     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1392   if (type == T_ARRAY || type == T_OBJECT) {
  1393 #ifdef _LP64
  1394     if (UseCompressedOops && !wide) {
  1395       __ decode_heap_oop(dest->as_register());
  1397 #endif
  1398     __ verify_oop(dest->as_register());
  1403 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1404   LIR_Address* addr = src->as_address_ptr();
  1405   Address from_addr = as_Address(addr);
  1407   if (VM_Version::supports_sse()) {
  1408     switch (ReadPrefetchInstr) {
  1409       case 0:
  1410         __ prefetchnta(from_addr); break;
  1411       case 1:
  1412         __ prefetcht0(from_addr); break;
  1413       case 2:
  1414         __ prefetcht2(from_addr); break;
  1415       default:
  1416         ShouldNotReachHere(); break;
  1418   } else if (VM_Version::supports_3dnow()) {
  1419     __ prefetchr(from_addr);
  1424 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1425   LIR_Address* addr = src->as_address_ptr();
  1426   Address from_addr = as_Address(addr);
  1428   if (VM_Version::supports_sse()) {
  1429     switch (AllocatePrefetchInstr) {
  1430       case 0:
  1431         __ prefetchnta(from_addr); break;
  1432       case 1:
  1433         __ prefetcht0(from_addr); break;
  1434       case 2:
  1435         __ prefetcht2(from_addr); break;
  1436       case 3:
  1437         __ prefetchw(from_addr); break;
  1438       default:
  1439         ShouldNotReachHere(); break;
  1441   } else if (VM_Version::supports_3dnow()) {
  1442     __ prefetchw(from_addr);
  1447 NEEDS_CLEANUP; // This could be static?
  1448 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1449   int elem_size = type2aelembytes(type);
  1450   switch (elem_size) {
  1451     case 1: return Address::times_1;
  1452     case 2: return Address::times_2;
  1453     case 4: return Address::times_4;
  1454     case 8: return Address::times_8;
  1456   ShouldNotReachHere();
  1457   return Address::no_scale;
  1461 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1462   switch (op->code()) {
  1463     case lir_idiv:
  1464     case lir_irem:
  1465       arithmetic_idiv(op->code(),
  1466                       op->in_opr1(),
  1467                       op->in_opr2(),
  1468                       op->in_opr3(),
  1469                       op->result_opr(),
  1470                       op->info());
  1471       break;
  1472     default:      ShouldNotReachHere(); break;
  1476 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1477 #ifdef ASSERT
  1478   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1479   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1480   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1481 #endif
  1483   if (op->cond() == lir_cond_always) {
  1484     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1485     __ jmp (*(op->label()));
  1486   } else {
  1487     Assembler::Condition acond = Assembler::zero;
  1488     if (op->code() == lir_cond_float_branch) {
  1489       assert(op->ublock() != NULL, "must have unordered successor");
  1490       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1491       switch(op->cond()) {
  1492         case lir_cond_equal:        acond = Assembler::equal;      break;
  1493         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1494         case lir_cond_less:         acond = Assembler::below;      break;
  1495         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1496         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1497         case lir_cond_greater:      acond = Assembler::above;      break;
  1498         default:                         ShouldNotReachHere();
  1500     } else {
  1501       switch (op->cond()) {
  1502         case lir_cond_equal:        acond = Assembler::equal;       break;
  1503         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1504         case lir_cond_less:         acond = Assembler::less;        break;
  1505         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1506         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1507         case lir_cond_greater:      acond = Assembler::greater;     break;
  1508         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1509         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1510         default:                         ShouldNotReachHere();
  1513     __ jcc(acond,*(op->label()));
  1517 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1518   LIR_Opr src  = op->in_opr();
  1519   LIR_Opr dest = op->result_opr();
  1521   switch (op->bytecode()) {
  1522     case Bytecodes::_i2l:
  1523 #ifdef _LP64
  1524       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1525 #else
  1526       move_regs(src->as_register(), dest->as_register_lo());
  1527       move_regs(src->as_register(), dest->as_register_hi());
  1528       __ sarl(dest->as_register_hi(), 31);
  1529 #endif // LP64
  1530       break;
  1532     case Bytecodes::_l2i:
  1533       move_regs(src->as_register_lo(), dest->as_register());
  1534       break;
  1536     case Bytecodes::_i2b:
  1537       move_regs(src->as_register(), dest->as_register());
  1538       __ sign_extend_byte(dest->as_register());
  1539       break;
  1541     case Bytecodes::_i2c:
  1542       move_regs(src->as_register(), dest->as_register());
  1543       __ andl(dest->as_register(), 0xFFFF);
  1544       break;
  1546     case Bytecodes::_i2s:
  1547       move_regs(src->as_register(), dest->as_register());
  1548       __ sign_extend_short(dest->as_register());
  1549       break;
  1552     case Bytecodes::_f2d:
  1553     case Bytecodes::_d2f:
  1554       if (dest->is_single_xmm()) {
  1555         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1556       } else if (dest->is_double_xmm()) {
  1557         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1558       } else {
  1559         assert(src->fpu() == dest->fpu(), "register must be equal");
  1560         // do nothing (float result is rounded later through spilling)
  1562       break;
  1564     case Bytecodes::_i2f:
  1565     case Bytecodes::_i2d:
  1566       if (dest->is_single_xmm()) {
  1567         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1568       } else if (dest->is_double_xmm()) {
  1569         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1570       } else {
  1571         assert(dest->fpu() == 0, "result must be on TOS");
  1572         __ movl(Address(rsp, 0), src->as_register());
  1573         __ fild_s(Address(rsp, 0));
  1575       break;
  1577     case Bytecodes::_f2i:
  1578     case Bytecodes::_d2i:
  1579       if (src->is_single_xmm()) {
  1580         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1581       } else if (src->is_double_xmm()) {
  1582         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1583       } else {
  1584         assert(src->fpu() == 0, "input must be on TOS");
  1585         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1586         __ fist_s(Address(rsp, 0));
  1587         __ movl(dest->as_register(), Address(rsp, 0));
  1588         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1591       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1592       assert(op->stub() != NULL, "stub required");
  1593       __ cmpl(dest->as_register(), 0x80000000);
  1594       __ jcc(Assembler::equal, *op->stub()->entry());
  1595       __ bind(*op->stub()->continuation());
  1596       break;
  1598     case Bytecodes::_l2f:
  1599     case Bytecodes::_l2d:
  1600       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1601       assert(dest->fpu() == 0, "result must be on TOS");
  1603       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1604       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1605       __ fild_d(Address(rsp, 0));
  1606       // float result is rounded later through spilling
  1607       break;
  1609     case Bytecodes::_f2l:
  1610     case Bytecodes::_d2l:
  1611       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1612       assert(src->fpu() == 0, "input must be on TOS");
  1613       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1615       // instruction sequence too long to inline it here
  1617         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1619       break;
  1621     default: ShouldNotReachHere();
  1625 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1626   if (op->init_check()) {
  1627     __ cmpl(Address(op->klass()->as_register(),
  1628                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1629             instanceKlass::fully_initialized);
  1630     add_debug_info_for_null_check_here(op->stub()->info());
  1631     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1633   __ allocate_object(op->obj()->as_register(),
  1634                      op->tmp1()->as_register(),
  1635                      op->tmp2()->as_register(),
  1636                      op->header_size(),
  1637                      op->object_size(),
  1638                      op->klass()->as_register(),
  1639                      *op->stub()->entry());
  1640   __ bind(*op->stub()->continuation());
  1643 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1644   if (UseSlowPath ||
  1645       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1646       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1647     __ jmp(*op->stub()->entry());
  1648   } else {
  1649     Register len =  op->len()->as_register();
  1650     Register tmp1 = op->tmp1()->as_register();
  1651     Register tmp2 = op->tmp2()->as_register();
  1652     Register tmp3 = op->tmp3()->as_register();
  1653     if (len == tmp1) {
  1654       tmp1 = tmp3;
  1655     } else if (len == tmp2) {
  1656       tmp2 = tmp3;
  1657     } else if (len == tmp3) {
  1658       // everything is ok
  1659     } else {
  1660       __ mov(tmp3, len);
  1662     __ allocate_array(op->obj()->as_register(),
  1663                       len,
  1664                       tmp1,
  1665                       tmp2,
  1666                       arrayOopDesc::header_size(op->type()),
  1667                       array_element_size(op->type()),
  1668                       op->klass()->as_register(),
  1669                       *op->stub()->entry());
  1671   __ bind(*op->stub()->continuation());
  1674 void LIR_Assembler::type_profile_helper(Register mdo,
  1675                                         ciMethodData *md, ciProfileData *data,
  1676                                         Register recv, Label* update_done) {
  1677   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1678     Label next_test;
  1679     // See if the receiver is receiver[n].
  1680     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1681     __ jccb(Assembler::notEqual, next_test);
  1682     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1683     __ addptr(data_addr, DataLayout::counter_increment);
  1684     __ jmp(*update_done);
  1685     __ bind(next_test);
  1688   // Didn't find receiver; find next empty slot and fill it in
  1689   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1690     Label next_test;
  1691     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1692     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1693     __ jccb(Assembler::notEqual, next_test);
  1694     __ movptr(recv_addr, recv);
  1695     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1696     __ jmp(*update_done);
  1697     __ bind(next_test);
  1701 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1702   // we always need a stub for the failure case.
  1703   CodeStub* stub = op->stub();
  1704   Register obj = op->object()->as_register();
  1705   Register k_RInfo = op->tmp1()->as_register();
  1706   Register klass_RInfo = op->tmp2()->as_register();
  1707   Register dst = op->result_opr()->as_register();
  1708   ciKlass* k = op->klass();
  1709   Register Rtmp1 = noreg;
  1711   // check if it needs to be profiled
  1712   ciMethodData* md;
  1713   ciProfileData* data;
  1715   if (op->should_profile()) {
  1716     ciMethod* method = op->profiled_method();
  1717     assert(method != NULL, "Should have method");
  1718     int bci = op->profiled_bci();
  1719     md = method->method_data_or_null();
  1720     assert(md != NULL, "Sanity");
  1721     data = md->bci_to_data(bci);
  1722     assert(data != NULL,                "need data for type check");
  1723     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1725   Label profile_cast_success, profile_cast_failure;
  1726   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1727   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1729   if (obj == k_RInfo) {
  1730     k_RInfo = dst;
  1731   } else if (obj == klass_RInfo) {
  1732     klass_RInfo = dst;
  1734   if (k->is_loaded() && !UseCompressedOops) {
  1735     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1736   } else {
  1737     Rtmp1 = op->tmp3()->as_register();
  1738     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1741   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1742   if (!k->is_loaded()) {
  1743     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1744   } else {
  1745 #ifdef _LP64
  1746     __ movoop(k_RInfo, k->constant_encoding());
  1747 #endif // _LP64
  1749   assert(obj != k_RInfo, "must be different");
  1751   __ cmpptr(obj, (int32_t)NULL_WORD);
  1752   if (op->should_profile()) {
  1753     Label not_null;
  1754     __ jccb(Assembler::notEqual, not_null);
  1755     // Object is null; update MDO and exit
  1756     Register mdo  = klass_RInfo;
  1757     __ movoop(mdo, md->constant_encoding());
  1758     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1759     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1760     __ orl(data_addr, header_bits);
  1761     __ jmp(*obj_is_null);
  1762     __ bind(not_null);
  1763   } else {
  1764     __ jcc(Assembler::equal, *obj_is_null);
  1766   __ verify_oop(obj);
  1768   if (op->fast_check()) {
  1769     // get object class
  1770     // not a safepoint as obj null check happens earlier
  1771 #ifdef _LP64
  1772     if (UseCompressedOops) {
  1773       __ load_klass(Rtmp1, obj);
  1774       __ cmpptr(k_RInfo, Rtmp1);
  1775     } else {
  1776       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1778 #else
  1779     if (k->is_loaded()) {
  1780       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1781     } else {
  1782       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1784 #endif
  1785     __ jcc(Assembler::notEqual, *failure_target);
  1786     // successful cast, fall through to profile or jump
  1787   } else {
  1788     // get object class
  1789     // not a safepoint as obj null check happens earlier
  1790     __ load_klass(klass_RInfo, obj);
  1791     if (k->is_loaded()) {
  1792       // See if we get an immediate positive hit
  1793 #ifdef _LP64
  1794       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1795 #else
  1796       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1797 #endif // _LP64
  1798       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1799         __ jcc(Assembler::notEqual, *failure_target);
  1800         // successful cast, fall through to profile or jump
  1801       } else {
  1802         // See if we get an immediate positive hit
  1803         __ jcc(Assembler::equal, *success_target);
  1804         // check for self
  1805 #ifdef _LP64
  1806         __ cmpptr(klass_RInfo, k_RInfo);
  1807 #else
  1808         __ cmpoop(klass_RInfo, k->constant_encoding());
  1809 #endif // _LP64
  1810         __ jcc(Assembler::equal, *success_target);
  1812         __ push(klass_RInfo);
  1813 #ifdef _LP64
  1814         __ push(k_RInfo);
  1815 #else
  1816         __ pushoop(k->constant_encoding());
  1817 #endif // _LP64
  1818         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1819         __ pop(klass_RInfo);
  1820         __ pop(klass_RInfo);
  1821         // result is a boolean
  1822         __ cmpl(klass_RInfo, 0);
  1823         __ jcc(Assembler::equal, *failure_target);
  1824         // successful cast, fall through to profile or jump
  1826     } else {
  1827       // perform the fast part of the checking logic
  1828       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1829       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1830       __ push(klass_RInfo);
  1831       __ push(k_RInfo);
  1832       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1833       __ pop(klass_RInfo);
  1834       __ pop(k_RInfo);
  1835       // result is a boolean
  1836       __ cmpl(k_RInfo, 0);
  1837       __ jcc(Assembler::equal, *failure_target);
  1838       // successful cast, fall through to profile or jump
  1841   if (op->should_profile()) {
  1842     Register mdo  = klass_RInfo, recv = k_RInfo;
  1843     __ bind(profile_cast_success);
  1844     __ movoop(mdo, md->constant_encoding());
  1845     __ load_klass(recv, obj);
  1846     Label update_done;
  1847     type_profile_helper(mdo, md, data, recv, success);
  1848     __ jmp(*success);
  1850     __ bind(profile_cast_failure);
  1851     __ movoop(mdo, md->constant_encoding());
  1852     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1853     __ subptr(counter_addr, DataLayout::counter_increment);
  1854     __ jmp(*failure);
  1856   __ jmp(*success);
  1860 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1861   LIR_Code code = op->code();
  1862   if (code == lir_store_check) {
  1863     Register value = op->object()->as_register();
  1864     Register array = op->array()->as_register();
  1865     Register k_RInfo = op->tmp1()->as_register();
  1866     Register klass_RInfo = op->tmp2()->as_register();
  1867     Register Rtmp1 = op->tmp3()->as_register();
  1869     CodeStub* stub = op->stub();
  1871     // check if it needs to be profiled
  1872     ciMethodData* md;
  1873     ciProfileData* data;
  1875     if (op->should_profile()) {
  1876       ciMethod* method = op->profiled_method();
  1877       assert(method != NULL, "Should have method");
  1878       int bci = op->profiled_bci();
  1879       md = method->method_data_or_null();
  1880       assert(md != NULL, "Sanity");
  1881       data = md->bci_to_data(bci);
  1882       assert(data != NULL,                "need data for type check");
  1883       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1885     Label profile_cast_success, profile_cast_failure, done;
  1886     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1887     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1889     __ cmpptr(value, (int32_t)NULL_WORD);
  1890     if (op->should_profile()) {
  1891       Label not_null;
  1892       __ jccb(Assembler::notEqual, not_null);
  1893       // Object is null; update MDO and exit
  1894       Register mdo  = klass_RInfo;
  1895       __ movoop(mdo, md->constant_encoding());
  1896       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1897       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1898       __ orl(data_addr, header_bits);
  1899       __ jmp(done);
  1900       __ bind(not_null);
  1901     } else {
  1902       __ jcc(Assembler::equal, done);
  1905     add_debug_info_for_null_check_here(op->info_for_exception());
  1906     __ load_klass(k_RInfo, array);
  1907     __ load_klass(klass_RInfo, value);
  1909     // get instance klass (it's already uncompressed)
  1910     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1911     // perform the fast part of the checking logic
  1912     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1913     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1914     __ push(klass_RInfo);
  1915     __ push(k_RInfo);
  1916     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1917     __ pop(klass_RInfo);
  1918     __ pop(k_RInfo);
  1919     // result is a boolean
  1920     __ cmpl(k_RInfo, 0);
  1921     __ jcc(Assembler::equal, *failure_target);
  1922     // fall through to the success case
  1924     if (op->should_profile()) {
  1925       Register mdo  = klass_RInfo, recv = k_RInfo;
  1926       __ bind(profile_cast_success);
  1927       __ movoop(mdo, md->constant_encoding());
  1928       __ load_klass(recv, value);
  1929       Label update_done;
  1930       type_profile_helper(mdo, md, data, recv, &done);
  1931       __ jmpb(done);
  1933       __ bind(profile_cast_failure);
  1934       __ movoop(mdo, md->constant_encoding());
  1935       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1936       __ subptr(counter_addr, DataLayout::counter_increment);
  1937       __ jmp(*stub->entry());
  1940     __ bind(done);
  1941   } else
  1942     if (code == lir_checkcast) {
  1943       Register obj = op->object()->as_register();
  1944       Register dst = op->result_opr()->as_register();
  1945       Label success;
  1946       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1947       __ bind(success);
  1948       if (dst != obj) {
  1949         __ mov(dst, obj);
  1951     } else
  1952       if (code == lir_instanceof) {
  1953         Register obj = op->object()->as_register();
  1954         Register dst = op->result_opr()->as_register();
  1955         Label success, failure, done;
  1956         emit_typecheck_helper(op, &success, &failure, &failure);
  1957         __ bind(failure);
  1958         __ xorptr(dst, dst);
  1959         __ jmpb(done);
  1960         __ bind(success);
  1961         __ movptr(dst, 1);
  1962         __ bind(done);
  1963       } else {
  1964         ShouldNotReachHere();
  1970 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1971   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1972     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1973     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1974     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1975     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1976     Register addr = op->addr()->as_register();
  1977     if (os::is_MP()) {
  1978       __ lock();
  1980     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1982   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1983     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1984     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1985     Register newval = op->new_value()->as_register();
  1986     Register cmpval = op->cmp_value()->as_register();
  1987     assert(cmpval == rax, "wrong register");
  1988     assert(newval != NULL, "new val must be register");
  1989     assert(cmpval != newval, "cmp and new values must be in different registers");
  1990     assert(cmpval != addr, "cmp and addr must be in different registers");
  1991     assert(newval != addr, "new value and addr must be in different registers");
  1993     if ( op->code() == lir_cas_obj) {
  1994 #ifdef _LP64
  1995       if (UseCompressedOops) {
  1996         __ encode_heap_oop(cmpval);
  1997         __ mov(rscratch1, newval);
  1998         __ encode_heap_oop(rscratch1);
  1999         if (os::is_MP()) {
  2000           __ lock();
  2002         // cmpval (rax) is implicitly used by this instruction
  2003         __ cmpxchgl(rscratch1, Address(addr, 0));
  2004       } else
  2005 #endif
  2007         if (os::is_MP()) {
  2008           __ lock();
  2010         __ cmpxchgptr(newval, Address(addr, 0));
  2012     } else {
  2013       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  2014       if (os::is_MP()) {
  2015         __ lock();
  2017       __ cmpxchgl(newval, Address(addr, 0));
  2019 #ifdef _LP64
  2020   } else if (op->code() == lir_cas_long) {
  2021     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  2022     Register newval = op->new_value()->as_register_lo();
  2023     Register cmpval = op->cmp_value()->as_register_lo();
  2024     assert(cmpval == rax, "wrong register");
  2025     assert(newval != NULL, "new val must be register");
  2026     assert(cmpval != newval, "cmp and new values must be in different registers");
  2027     assert(cmpval != addr, "cmp and addr must be in different registers");
  2028     assert(newval != addr, "new value and addr must be in different registers");
  2029     if (os::is_MP()) {
  2030       __ lock();
  2032     __ cmpxchgq(newval, Address(addr, 0));
  2033 #endif // _LP64
  2034   } else {
  2035     Unimplemented();
  2039 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2040   Assembler::Condition acond, ncond;
  2041   switch (condition) {
  2042     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2043     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2044     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2045     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2046     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2047     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2048     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2049     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2050     default:                    ShouldNotReachHere();
  2053   if (opr1->is_cpu_register()) {
  2054     reg2reg(opr1, result);
  2055   } else if (opr1->is_stack()) {
  2056     stack2reg(opr1, result, result->type());
  2057   } else if (opr1->is_constant()) {
  2058     const2reg(opr1, result, lir_patch_none, NULL);
  2059   } else {
  2060     ShouldNotReachHere();
  2063   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2064     // optimized version that does not require a branch
  2065     if (opr2->is_single_cpu()) {
  2066       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2067       __ cmov(ncond, result->as_register(), opr2->as_register());
  2068     } else if (opr2->is_double_cpu()) {
  2069       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2070       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2071       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2072       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2073     } else if (opr2->is_single_stack()) {
  2074       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2075     } else if (opr2->is_double_stack()) {
  2076       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2077       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2078     } else {
  2079       ShouldNotReachHere();
  2082   } else {
  2083     Label skip;
  2084     __ jcc (acond, skip);
  2085     if (opr2->is_cpu_register()) {
  2086       reg2reg(opr2, result);
  2087     } else if (opr2->is_stack()) {
  2088       stack2reg(opr2, result, result->type());
  2089     } else if (opr2->is_constant()) {
  2090       const2reg(opr2, result, lir_patch_none, NULL);
  2091     } else {
  2092       ShouldNotReachHere();
  2094     __ bind(skip);
  2099 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2100   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2102   if (left->is_single_cpu()) {
  2103     assert(left == dest, "left and dest must be equal");
  2104     Register lreg = left->as_register();
  2106     if (right->is_single_cpu()) {
  2107       // cpu register - cpu register
  2108       Register rreg = right->as_register();
  2109       switch (code) {
  2110         case lir_add: __ addl (lreg, rreg); break;
  2111         case lir_sub: __ subl (lreg, rreg); break;
  2112         case lir_mul: __ imull(lreg, rreg); break;
  2113         default:      ShouldNotReachHere();
  2116     } else if (right->is_stack()) {
  2117       // cpu register - stack
  2118       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2119       switch (code) {
  2120         case lir_add: __ addl(lreg, raddr); break;
  2121         case lir_sub: __ subl(lreg, raddr); break;
  2122         default:      ShouldNotReachHere();
  2125     } else if (right->is_constant()) {
  2126       // cpu register - constant
  2127       jint c = right->as_constant_ptr()->as_jint();
  2128       switch (code) {
  2129         case lir_add: {
  2130           __ incrementl(lreg, c);
  2131           break;
  2133         case lir_sub: {
  2134           __ decrementl(lreg, c);
  2135           break;
  2137         default: ShouldNotReachHere();
  2140     } else {
  2141       ShouldNotReachHere();
  2144   } else if (left->is_double_cpu()) {
  2145     assert(left == dest, "left and dest must be equal");
  2146     Register lreg_lo = left->as_register_lo();
  2147     Register lreg_hi = left->as_register_hi();
  2149     if (right->is_double_cpu()) {
  2150       // cpu register - cpu register
  2151       Register rreg_lo = right->as_register_lo();
  2152       Register rreg_hi = right->as_register_hi();
  2153       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2154       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2155       switch (code) {
  2156         case lir_add:
  2157           __ addptr(lreg_lo, rreg_lo);
  2158           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2159           break;
  2160         case lir_sub:
  2161           __ subptr(lreg_lo, rreg_lo);
  2162           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2163           break;
  2164         case lir_mul:
  2165 #ifdef _LP64
  2166           __ imulq(lreg_lo, rreg_lo);
  2167 #else
  2168           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2169           __ imull(lreg_hi, rreg_lo);
  2170           __ imull(rreg_hi, lreg_lo);
  2171           __ addl (rreg_hi, lreg_hi);
  2172           __ mull (rreg_lo);
  2173           __ addl (lreg_hi, rreg_hi);
  2174 #endif // _LP64
  2175           break;
  2176         default:
  2177           ShouldNotReachHere();
  2180     } else if (right->is_constant()) {
  2181       // cpu register - constant
  2182 #ifdef _LP64
  2183       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2184       __ movptr(r10, (intptr_t) c);
  2185       switch (code) {
  2186         case lir_add:
  2187           __ addptr(lreg_lo, r10);
  2188           break;
  2189         case lir_sub:
  2190           __ subptr(lreg_lo, r10);
  2191           break;
  2192         default:
  2193           ShouldNotReachHere();
  2195 #else
  2196       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2197       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2198       switch (code) {
  2199         case lir_add:
  2200           __ addptr(lreg_lo, c_lo);
  2201           __ adcl(lreg_hi, c_hi);
  2202           break;
  2203         case lir_sub:
  2204           __ subptr(lreg_lo, c_lo);
  2205           __ sbbl(lreg_hi, c_hi);
  2206           break;
  2207         default:
  2208           ShouldNotReachHere();
  2210 #endif // _LP64
  2212     } else {
  2213       ShouldNotReachHere();
  2216   } else if (left->is_single_xmm()) {
  2217     assert(left == dest, "left and dest must be equal");
  2218     XMMRegister lreg = left->as_xmm_float_reg();
  2220     if (right->is_single_xmm()) {
  2221       XMMRegister rreg = right->as_xmm_float_reg();
  2222       switch (code) {
  2223         case lir_add: __ addss(lreg, rreg);  break;
  2224         case lir_sub: __ subss(lreg, rreg);  break;
  2225         case lir_mul_strictfp: // fall through
  2226         case lir_mul: __ mulss(lreg, rreg);  break;
  2227         case lir_div_strictfp: // fall through
  2228         case lir_div: __ divss(lreg, rreg);  break;
  2229         default: ShouldNotReachHere();
  2231     } else {
  2232       Address raddr;
  2233       if (right->is_single_stack()) {
  2234         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2235       } else if (right->is_constant()) {
  2236         // hack for now
  2237         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2238       } else {
  2239         ShouldNotReachHere();
  2241       switch (code) {
  2242         case lir_add: __ addss(lreg, raddr);  break;
  2243         case lir_sub: __ subss(lreg, raddr);  break;
  2244         case lir_mul_strictfp: // fall through
  2245         case lir_mul: __ mulss(lreg, raddr);  break;
  2246         case lir_div_strictfp: // fall through
  2247         case lir_div: __ divss(lreg, raddr);  break;
  2248         default: ShouldNotReachHere();
  2252   } else if (left->is_double_xmm()) {
  2253     assert(left == dest, "left and dest must be equal");
  2255     XMMRegister lreg = left->as_xmm_double_reg();
  2256     if (right->is_double_xmm()) {
  2257       XMMRegister rreg = right->as_xmm_double_reg();
  2258       switch (code) {
  2259         case lir_add: __ addsd(lreg, rreg);  break;
  2260         case lir_sub: __ subsd(lreg, rreg);  break;
  2261         case lir_mul_strictfp: // fall through
  2262         case lir_mul: __ mulsd(lreg, rreg);  break;
  2263         case lir_div_strictfp: // fall through
  2264         case lir_div: __ divsd(lreg, rreg);  break;
  2265         default: ShouldNotReachHere();
  2267     } else {
  2268       Address raddr;
  2269       if (right->is_double_stack()) {
  2270         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2271       } else if (right->is_constant()) {
  2272         // hack for now
  2273         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2274       } else {
  2275         ShouldNotReachHere();
  2277       switch (code) {
  2278         case lir_add: __ addsd(lreg, raddr);  break;
  2279         case lir_sub: __ subsd(lreg, raddr);  break;
  2280         case lir_mul_strictfp: // fall through
  2281         case lir_mul: __ mulsd(lreg, raddr);  break;
  2282         case lir_div_strictfp: // fall through
  2283         case lir_div: __ divsd(lreg, raddr);  break;
  2284         default: ShouldNotReachHere();
  2288   } else if (left->is_single_fpu()) {
  2289     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2291     if (right->is_single_fpu()) {
  2292       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2294     } else {
  2295       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2296       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2298       Address raddr;
  2299       if (right->is_single_stack()) {
  2300         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2301       } else if (right->is_constant()) {
  2302         address const_addr = float_constant(right->as_jfloat());
  2303         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2304         // hack for now
  2305         raddr = __ as_Address(InternalAddress(const_addr));
  2306       } else {
  2307         ShouldNotReachHere();
  2310       switch (code) {
  2311         case lir_add: __ fadd_s(raddr); break;
  2312         case lir_sub: __ fsub_s(raddr); break;
  2313         case lir_mul_strictfp: // fall through
  2314         case lir_mul: __ fmul_s(raddr); break;
  2315         case lir_div_strictfp: // fall through
  2316         case lir_div: __ fdiv_s(raddr); break;
  2317         default:      ShouldNotReachHere();
  2321   } else if (left->is_double_fpu()) {
  2322     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2324     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2325       // Double values require special handling for strictfp mul/div on x86
  2326       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2327       __ fmulp(left->fpu_regnrLo() + 1);
  2330     if (right->is_double_fpu()) {
  2331       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2333     } else {
  2334       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2335       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2337       Address raddr;
  2338       if (right->is_double_stack()) {
  2339         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2340       } else if (right->is_constant()) {
  2341         // hack for now
  2342         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2343       } else {
  2344         ShouldNotReachHere();
  2347       switch (code) {
  2348         case lir_add: __ fadd_d(raddr); break;
  2349         case lir_sub: __ fsub_d(raddr); break;
  2350         case lir_mul_strictfp: // fall through
  2351         case lir_mul: __ fmul_d(raddr); break;
  2352         case lir_div_strictfp: // fall through
  2353         case lir_div: __ fdiv_d(raddr); break;
  2354         default: ShouldNotReachHere();
  2358     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2359       // Double values require special handling for strictfp mul/div on x86
  2360       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2361       __ fmulp(dest->fpu_regnrLo() + 1);
  2364   } else if (left->is_single_stack() || left->is_address()) {
  2365     assert(left == dest, "left and dest must be equal");
  2367     Address laddr;
  2368     if (left->is_single_stack()) {
  2369       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2370     } else if (left->is_address()) {
  2371       laddr = as_Address(left->as_address_ptr());
  2372     } else {
  2373       ShouldNotReachHere();
  2376     if (right->is_single_cpu()) {
  2377       Register rreg = right->as_register();
  2378       switch (code) {
  2379         case lir_add: __ addl(laddr, rreg); break;
  2380         case lir_sub: __ subl(laddr, rreg); break;
  2381         default:      ShouldNotReachHere();
  2383     } else if (right->is_constant()) {
  2384       jint c = right->as_constant_ptr()->as_jint();
  2385       switch (code) {
  2386         case lir_add: {
  2387           __ incrementl(laddr, c);
  2388           break;
  2390         case lir_sub: {
  2391           __ decrementl(laddr, c);
  2392           break;
  2394         default: ShouldNotReachHere();
  2396     } else {
  2397       ShouldNotReachHere();
  2400   } else {
  2401     ShouldNotReachHere();
  2405 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2406   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2407   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2408   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2410   bool left_is_tos = (left_index == 0);
  2411   bool dest_is_tos = (dest_index == 0);
  2412   int non_tos_index = (left_is_tos ? right_index : left_index);
  2414   switch (code) {
  2415     case lir_add:
  2416       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2417       else if (dest_is_tos)    __ fadd (non_tos_index);
  2418       else                     __ fadda(non_tos_index);
  2419       break;
  2421     case lir_sub:
  2422       if (left_is_tos) {
  2423         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2424         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2425         else                   __ fsubra(non_tos_index);
  2426       } else {
  2427         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2428         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2429         else                   __ fsuba (non_tos_index);
  2431       break;
  2433     case lir_mul_strictfp: // fall through
  2434     case lir_mul:
  2435       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2436       else if (dest_is_tos)    __ fmul (non_tos_index);
  2437       else                     __ fmula(non_tos_index);
  2438       break;
  2440     case lir_div_strictfp: // fall through
  2441     case lir_div:
  2442       if (left_is_tos) {
  2443         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2444         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2445         else                   __ fdivra(non_tos_index);
  2446       } else {
  2447         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2448         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2449         else                   __ fdiva (non_tos_index);
  2451       break;
  2453     case lir_rem:
  2454       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2455       __ fremr(noreg);
  2456       break;
  2458     default:
  2459       ShouldNotReachHere();
  2464 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2465   if (value->is_double_xmm()) {
  2466     switch(code) {
  2467       case lir_abs :
  2469           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2470             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2472           __ andpd(dest->as_xmm_double_reg(),
  2473                     ExternalAddress((address)double_signmask_pool));
  2475         break;
  2477       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2478       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2479       default      : ShouldNotReachHere();
  2482   } else if (value->is_double_fpu()) {
  2483     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2484     switch(code) {
  2485       case lir_log   : __ flog() ; break;
  2486       case lir_log10 : __ flog10() ; break;
  2487       case lir_abs   : __ fabs() ; break;
  2488       case lir_sqrt  : __ fsqrt(); break;
  2489       case lir_sin   :
  2490         // Should consider not saving rbx, if not necessary
  2491         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2492         break;
  2493       case lir_cos :
  2494         // Should consider not saving rbx, if not necessary
  2495         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2496         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2497         break;
  2498       case lir_tan :
  2499         // Should consider not saving rbx, if not necessary
  2500         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2501         break;
  2502       default      : ShouldNotReachHere();
  2504   } else {
  2505     Unimplemented();
  2509 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2510   // assert(left->destroys_register(), "check");
  2511   if (left->is_single_cpu()) {
  2512     Register reg = left->as_register();
  2513     if (right->is_constant()) {
  2514       int val = right->as_constant_ptr()->as_jint();
  2515       switch (code) {
  2516         case lir_logic_and: __ andl (reg, val); break;
  2517         case lir_logic_or:  __ orl  (reg, val); break;
  2518         case lir_logic_xor: __ xorl (reg, val); break;
  2519         default: ShouldNotReachHere();
  2521     } else if (right->is_stack()) {
  2522       // added support for stack operands
  2523       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2524       switch (code) {
  2525         case lir_logic_and: __ andl (reg, raddr); break;
  2526         case lir_logic_or:  __ orl  (reg, raddr); break;
  2527         case lir_logic_xor: __ xorl (reg, raddr); break;
  2528         default: ShouldNotReachHere();
  2530     } else {
  2531       Register rright = right->as_register();
  2532       switch (code) {
  2533         case lir_logic_and: __ andptr (reg, rright); break;
  2534         case lir_logic_or : __ orptr  (reg, rright); break;
  2535         case lir_logic_xor: __ xorptr (reg, rright); break;
  2536         default: ShouldNotReachHere();
  2539     move_regs(reg, dst->as_register());
  2540   } else {
  2541     Register l_lo = left->as_register_lo();
  2542     Register l_hi = left->as_register_hi();
  2543     if (right->is_constant()) {
  2544 #ifdef _LP64
  2545       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2546       switch (code) {
  2547         case lir_logic_and:
  2548           __ andq(l_lo, rscratch1);
  2549           break;
  2550         case lir_logic_or:
  2551           __ orq(l_lo, rscratch1);
  2552           break;
  2553         case lir_logic_xor:
  2554           __ xorq(l_lo, rscratch1);
  2555           break;
  2556         default: ShouldNotReachHere();
  2558 #else
  2559       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2560       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2561       switch (code) {
  2562         case lir_logic_and:
  2563           __ andl(l_lo, r_lo);
  2564           __ andl(l_hi, r_hi);
  2565           break;
  2566         case lir_logic_or:
  2567           __ orl(l_lo, r_lo);
  2568           __ orl(l_hi, r_hi);
  2569           break;
  2570         case lir_logic_xor:
  2571           __ xorl(l_lo, r_lo);
  2572           __ xorl(l_hi, r_hi);
  2573           break;
  2574         default: ShouldNotReachHere();
  2576 #endif // _LP64
  2577     } else {
  2578 #ifdef _LP64
  2579       Register r_lo;
  2580       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2581         r_lo = right->as_register();
  2582       } else {
  2583         r_lo = right->as_register_lo();
  2585 #else
  2586       Register r_lo = right->as_register_lo();
  2587       Register r_hi = right->as_register_hi();
  2588       assert(l_lo != r_hi, "overwriting registers");
  2589 #endif
  2590       switch (code) {
  2591         case lir_logic_and:
  2592           __ andptr(l_lo, r_lo);
  2593           NOT_LP64(__ andptr(l_hi, r_hi);)
  2594           break;
  2595         case lir_logic_or:
  2596           __ orptr(l_lo, r_lo);
  2597           NOT_LP64(__ orptr(l_hi, r_hi);)
  2598           break;
  2599         case lir_logic_xor:
  2600           __ xorptr(l_lo, r_lo);
  2601           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2602           break;
  2603         default: ShouldNotReachHere();
  2607     Register dst_lo = dst->as_register_lo();
  2608     Register dst_hi = dst->as_register_hi();
  2610 #ifdef _LP64
  2611     move_regs(l_lo, dst_lo);
  2612 #else
  2613     if (dst_lo == l_hi) {
  2614       assert(dst_hi != l_lo, "overwriting registers");
  2615       move_regs(l_hi, dst_hi);
  2616       move_regs(l_lo, dst_lo);
  2617     } else {
  2618       assert(dst_lo != l_hi, "overwriting registers");
  2619       move_regs(l_lo, dst_lo);
  2620       move_regs(l_hi, dst_hi);
  2622 #endif // _LP64
  2627 // we assume that rax, and rdx can be overwritten
  2628 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2630   assert(left->is_single_cpu(),   "left must be register");
  2631   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2632   assert(result->is_single_cpu(), "result must be register");
  2634   //  assert(left->destroys_register(), "check");
  2635   //  assert(right->destroys_register(), "check");
  2637   Register lreg = left->as_register();
  2638   Register dreg = result->as_register();
  2640   if (right->is_constant()) {
  2641     int divisor = right->as_constant_ptr()->as_jint();
  2642     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2643     if (code == lir_idiv) {
  2644       assert(lreg == rax, "must be rax,");
  2645       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2646       __ cdql(); // sign extend into rdx:rax
  2647       if (divisor == 2) {
  2648         __ subl(lreg, rdx);
  2649       } else {
  2650         __ andl(rdx, divisor - 1);
  2651         __ addl(lreg, rdx);
  2653       __ sarl(lreg, log2_intptr(divisor));
  2654       move_regs(lreg, dreg);
  2655     } else if (code == lir_irem) {
  2656       Label done;
  2657       __ mov(dreg, lreg);
  2658       __ andl(dreg, 0x80000000 | (divisor - 1));
  2659       __ jcc(Assembler::positive, done);
  2660       __ decrement(dreg);
  2661       __ orl(dreg, ~(divisor - 1));
  2662       __ increment(dreg);
  2663       __ bind(done);
  2664     } else {
  2665       ShouldNotReachHere();
  2667   } else {
  2668     Register rreg = right->as_register();
  2669     assert(lreg == rax, "left register must be rax,");
  2670     assert(rreg != rdx, "right register must not be rdx");
  2671     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2673     move_regs(lreg, rax);
  2675     int idivl_offset = __ corrected_idivl(rreg);
  2676     add_debug_info_for_div0(idivl_offset, info);
  2677     if (code == lir_irem) {
  2678       move_regs(rdx, dreg); // result is in rdx
  2679     } else {
  2680       move_regs(rax, dreg);
  2686 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2687   if (opr1->is_single_cpu()) {
  2688     Register reg1 = opr1->as_register();
  2689     if (opr2->is_single_cpu()) {
  2690       // cpu register - cpu register
  2691       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2692         __ cmpptr(reg1, opr2->as_register());
  2693       } else {
  2694         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2695         __ cmpl(reg1, opr2->as_register());
  2697     } else if (opr2->is_stack()) {
  2698       // cpu register - stack
  2699       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2700         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2701       } else {
  2702         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2704     } else if (opr2->is_constant()) {
  2705       // cpu register - constant
  2706       LIR_Const* c = opr2->as_constant_ptr();
  2707       if (c->type() == T_INT) {
  2708         __ cmpl(reg1, c->as_jint());
  2709       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2710         // In 64bit oops are single register
  2711         jobject o = c->as_jobject();
  2712         if (o == NULL) {
  2713           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2714         } else {
  2715 #ifdef _LP64
  2716           __ movoop(rscratch1, o);
  2717           __ cmpptr(reg1, rscratch1);
  2718 #else
  2719           __ cmpoop(reg1, c->as_jobject());
  2720 #endif // _LP64
  2722       } else {
  2723         ShouldNotReachHere();
  2725       // cpu register - address
  2726     } else if (opr2->is_address()) {
  2727       if (op->info() != NULL) {
  2728         add_debug_info_for_null_check_here(op->info());
  2730       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2731     } else {
  2732       ShouldNotReachHere();
  2735   } else if(opr1->is_double_cpu()) {
  2736     Register xlo = opr1->as_register_lo();
  2737     Register xhi = opr1->as_register_hi();
  2738     if (opr2->is_double_cpu()) {
  2739 #ifdef _LP64
  2740       __ cmpptr(xlo, opr2->as_register_lo());
  2741 #else
  2742       // cpu register - cpu register
  2743       Register ylo = opr2->as_register_lo();
  2744       Register yhi = opr2->as_register_hi();
  2745       __ subl(xlo, ylo);
  2746       __ sbbl(xhi, yhi);
  2747       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2748         __ orl(xhi, xlo);
  2750 #endif // _LP64
  2751     } else if (opr2->is_constant()) {
  2752       // cpu register - constant 0
  2753       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2754 #ifdef _LP64
  2755       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2756 #else
  2757       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2758       __ orl(xhi, xlo);
  2759 #endif // _LP64
  2760     } else {
  2761       ShouldNotReachHere();
  2764   } else if (opr1->is_single_xmm()) {
  2765     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2766     if (opr2->is_single_xmm()) {
  2767       // xmm register - xmm register
  2768       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2769     } else if (opr2->is_stack()) {
  2770       // xmm register - stack
  2771       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2772     } else if (opr2->is_constant()) {
  2773       // xmm register - constant
  2774       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2775     } else if (opr2->is_address()) {
  2776       // xmm register - address
  2777       if (op->info() != NULL) {
  2778         add_debug_info_for_null_check_here(op->info());
  2780       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2781     } else {
  2782       ShouldNotReachHere();
  2785   } else if (opr1->is_double_xmm()) {
  2786     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2787     if (opr2->is_double_xmm()) {
  2788       // xmm register - xmm register
  2789       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2790     } else if (opr2->is_stack()) {
  2791       // xmm register - stack
  2792       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2793     } else if (opr2->is_constant()) {
  2794       // xmm register - constant
  2795       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2796     } else if (opr2->is_address()) {
  2797       // xmm register - address
  2798       if (op->info() != NULL) {
  2799         add_debug_info_for_null_check_here(op->info());
  2801       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2802     } else {
  2803       ShouldNotReachHere();
  2806   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2807     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2808     assert(opr2->is_fpu_register(), "both must be registers");
  2809     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2811   } else if (opr1->is_address() && opr2->is_constant()) {
  2812     LIR_Const* c = opr2->as_constant_ptr();
  2813 #ifdef _LP64
  2814     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2815       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2816       __ movoop(rscratch1, c->as_jobject());
  2818 #endif // LP64
  2819     if (op->info() != NULL) {
  2820       add_debug_info_for_null_check_here(op->info());
  2822     // special case: address - constant
  2823     LIR_Address* addr = opr1->as_address_ptr();
  2824     if (c->type() == T_INT) {
  2825       __ cmpl(as_Address(addr), c->as_jint());
  2826     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2827 #ifdef _LP64
  2828       // %%% Make this explode if addr isn't reachable until we figure out a
  2829       // better strategy by giving noreg as the temp for as_Address
  2830       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2831 #else
  2832       __ cmpoop(as_Address(addr), c->as_jobject());
  2833 #endif // _LP64
  2834     } else {
  2835       ShouldNotReachHere();
  2838   } else {
  2839     ShouldNotReachHere();
  2843 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2844   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2845     if (left->is_single_xmm()) {
  2846       assert(right->is_single_xmm(), "must match");
  2847       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2848     } else if (left->is_double_xmm()) {
  2849       assert(right->is_double_xmm(), "must match");
  2850       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2852     } else {
  2853       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2854       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2856       assert(left->fpu() == 0, "left must be on TOS");
  2857       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2858                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2860   } else {
  2861     assert(code == lir_cmp_l2i, "check");
  2862 #ifdef _LP64
  2863     Label done;
  2864     Register dest = dst->as_register();
  2865     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2866     __ movl(dest, -1);
  2867     __ jccb(Assembler::less, done);
  2868     __ set_byte_if_not_zero(dest);
  2869     __ movzbl(dest, dest);
  2870     __ bind(done);
  2871 #else
  2872     __ lcmp2int(left->as_register_hi(),
  2873                 left->as_register_lo(),
  2874                 right->as_register_hi(),
  2875                 right->as_register_lo());
  2876     move_regs(left->as_register_hi(), dst->as_register());
  2877 #endif // _LP64
  2882 void LIR_Assembler::align_call(LIR_Code code) {
  2883   if (os::is_MP()) {
  2884     // make sure that the displacement word of the call ends up word aligned
  2885     int offset = __ offset();
  2886     switch (code) {
  2887       case lir_static_call:
  2888       case lir_optvirtual_call:
  2889       case lir_dynamic_call:
  2890         offset += NativeCall::displacement_offset;
  2891         break;
  2892       case lir_icvirtual_call:
  2893         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2894       break;
  2895       case lir_virtual_call:  // currently, sparc-specific for niagara
  2896       default: ShouldNotReachHere();
  2898     while (offset++ % BytesPerWord != 0) {
  2899       __ nop();
  2905 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2906   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2907          "must be aligned");
  2908   __ call(AddressLiteral(op->addr(), rtype));
  2909   add_call_info(code_offset(), op->info());
  2913 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2914   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2915   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2916   assert(!os::is_MP() ||
  2917          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2918          "must be aligned");
  2919   __ call(AddressLiteral(op->addr(), rh));
  2920   add_call_info(code_offset(), op->info());
  2924 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2925 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2926   ShouldNotReachHere();
  2930 void LIR_Assembler::emit_static_call_stub() {
  2931   address call_pc = __ pc();
  2932   address stub = __ start_a_stub(call_stub_size);
  2933   if (stub == NULL) {
  2934     bailout("static call stub overflow");
  2935     return;
  2938   int start = __ offset();
  2939   if (os::is_MP()) {
  2940     // make sure that the displacement word of the call ends up word aligned
  2941     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2942     while (offset++ % BytesPerWord != 0) {
  2943       __ nop();
  2946   __ relocate(static_stub_Relocation::spec(call_pc));
  2947   __ movoop(rbx, (jobject)NULL);
  2948   // must be set to -1 at code generation time
  2949   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2950   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2951   __ jump(RuntimeAddress(__ pc()));
  2953   assert(__ offset() - start <= call_stub_size, "stub too big");
  2954   __ end_a_stub();
  2958 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2959   assert(exceptionOop->as_register() == rax, "must match");
  2960   assert(exceptionPC->as_register() == rdx, "must match");
  2962   // exception object is not added to oop map by LinearScan
  2963   // (LinearScan assumes that no oops are in fixed registers)
  2964   info->add_register_oop(exceptionOop);
  2965   Runtime1::StubID unwind_id;
  2967   // get current pc information
  2968   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2969   int pc_for_athrow_offset = __ offset();
  2970   InternalAddress pc_for_athrow(__ pc());
  2971   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2972   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2974   __ verify_not_null_oop(rax);
  2975   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2976   if (compilation()->has_fpu_code()) {
  2977     unwind_id = Runtime1::handle_exception_id;
  2978   } else {
  2979     unwind_id = Runtime1::handle_exception_nofpu_id;
  2981   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2983   // enough room for two byte trap
  2984   __ nop();
  2988 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2989   assert(exceptionOop->as_register() == rax, "must match");
  2991   __ jmp(_unwind_handler_entry);
  2995 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2997   // optimized version for linear scan:
  2998   // * count must be already in ECX (guaranteed by LinearScan)
  2999   // * left and dest must be equal
  3000   // * tmp must be unused
  3001   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  3002   assert(left == dest, "left and dest must be equal");
  3003   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  3005   if (left->is_single_cpu()) {
  3006     Register value = left->as_register();
  3007     assert(value != SHIFT_count, "left cannot be ECX");
  3009     switch (code) {
  3010       case lir_shl:  __ shll(value); break;
  3011       case lir_shr:  __ sarl(value); break;
  3012       case lir_ushr: __ shrl(value); break;
  3013       default: ShouldNotReachHere();
  3015   } else if (left->is_double_cpu()) {
  3016     Register lo = left->as_register_lo();
  3017     Register hi = left->as_register_hi();
  3018     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  3019 #ifdef _LP64
  3020     switch (code) {
  3021       case lir_shl:  __ shlptr(lo);        break;
  3022       case lir_shr:  __ sarptr(lo);        break;
  3023       case lir_ushr: __ shrptr(lo);        break;
  3024       default: ShouldNotReachHere();
  3026 #else
  3028     switch (code) {
  3029       case lir_shl:  __ lshl(hi, lo);        break;
  3030       case lir_shr:  __ lshr(hi, lo, true);  break;
  3031       case lir_ushr: __ lshr(hi, lo, false); break;
  3032       default: ShouldNotReachHere();
  3034 #endif // LP64
  3035   } else {
  3036     ShouldNotReachHere();
  3041 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3042   if (dest->is_single_cpu()) {
  3043     // first move left into dest so that left is not destroyed by the shift
  3044     Register value = dest->as_register();
  3045     count = count & 0x1F; // Java spec
  3047     move_regs(left->as_register(), value);
  3048     switch (code) {
  3049       case lir_shl:  __ shll(value, count); break;
  3050       case lir_shr:  __ sarl(value, count); break;
  3051       case lir_ushr: __ shrl(value, count); break;
  3052       default: ShouldNotReachHere();
  3054   } else if (dest->is_double_cpu()) {
  3055 #ifndef _LP64
  3056     Unimplemented();
  3057 #else
  3058     // first move left into dest so that left is not destroyed by the shift
  3059     Register value = dest->as_register_lo();
  3060     count = count & 0x1F; // Java spec
  3062     move_regs(left->as_register_lo(), value);
  3063     switch (code) {
  3064       case lir_shl:  __ shlptr(value, count); break;
  3065       case lir_shr:  __ sarptr(value, count); break;
  3066       case lir_ushr: __ shrptr(value, count); break;
  3067       default: ShouldNotReachHere();
  3069 #endif // _LP64
  3070   } else {
  3071     ShouldNotReachHere();
  3076 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3077   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3078   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3079   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3080   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3084 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3085   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3086   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3087   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3088   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3092 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3093   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3094   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3095   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3096   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3100 // This code replaces a call to arraycopy; no exception may
  3101 // be thrown in this code, they must be thrown in the System.arraycopy
  3102 // activation frame; we could save some checks if this would not be the case
  3103 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3104   ciArrayKlass* default_type = op->expected_type();
  3105   Register src = op->src()->as_register();
  3106   Register dst = op->dst()->as_register();
  3107   Register src_pos = op->src_pos()->as_register();
  3108   Register dst_pos = op->dst_pos()->as_register();
  3109   Register length  = op->length()->as_register();
  3110   Register tmp = op->tmp()->as_register();
  3112   CodeStub* stub = op->stub();
  3113   int flags = op->flags();
  3114   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3115   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3117   // if we don't know anything or it's an object array, just go through the generic arraycopy
  3118   if (default_type == NULL) {
  3119     Label done;
  3120     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3121     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3122     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3123     // For the moment until C1 gets the new register allocator I just force all the
  3124     // args to the right place (except the register args) and then on the back side
  3125     // reload the register args properly if we go slow path. Yuck
  3127     // These are proper for the calling convention
  3129     store_parameter(length, 2);
  3130     store_parameter(dst_pos, 1);
  3131     store_parameter(dst, 0);
  3133     // these are just temporary placements until we need to reload
  3134     store_parameter(src_pos, 3);
  3135     store_parameter(src, 4);
  3136     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3138     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3140     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3141 #ifdef _LP64
  3142     // The arguments are in java calling convention so we can trivially shift them to C
  3143     // convention
  3144     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3145     __ mov(c_rarg0, j_rarg0);
  3146     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3147     __ mov(c_rarg1, j_rarg1);
  3148     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3149     __ mov(c_rarg2, j_rarg2);
  3150     assert_different_registers(c_rarg3, j_rarg4);
  3151     __ mov(c_rarg3, j_rarg3);
  3152 #ifdef _WIN64
  3153     // Allocate abi space for args but be sure to keep stack aligned
  3154     __ subptr(rsp, 6*wordSize);
  3155     store_parameter(j_rarg4, 4);
  3156     __ call(RuntimeAddress(entry));
  3157     __ addptr(rsp, 6*wordSize);
  3158 #else
  3159     __ mov(c_rarg4, j_rarg4);
  3160     __ call(RuntimeAddress(entry));
  3161 #endif // _WIN64
  3162 #else
  3163     __ push(length);
  3164     __ push(dst_pos);
  3165     __ push(dst);
  3166     __ push(src_pos);
  3167     __ push(src);
  3168     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3170 #endif // _LP64
  3172     __ cmpl(rax, 0);
  3173     __ jcc(Assembler::equal, *stub->continuation());
  3175     // Reload values from the stack so they are where the stub
  3176     // expects them.
  3177     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3178     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3179     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3180     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3181     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3182     __ jmp(*stub->entry());
  3184     __ bind(*stub->continuation());
  3185     return;
  3188   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3190   int elem_size = type2aelembytes(basic_type);
  3191   int shift_amount;
  3192   Address::ScaleFactor scale;
  3194   switch (elem_size) {
  3195     case 1 :
  3196       shift_amount = 0;
  3197       scale = Address::times_1;
  3198       break;
  3199     case 2 :
  3200       shift_amount = 1;
  3201       scale = Address::times_2;
  3202       break;
  3203     case 4 :
  3204       shift_amount = 2;
  3205       scale = Address::times_4;
  3206       break;
  3207     case 8 :
  3208       shift_amount = 3;
  3209       scale = Address::times_8;
  3210       break;
  3211     default:
  3212       ShouldNotReachHere();
  3215   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3216   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3217   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3218   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3220   // length and pos's are all sign extended at this point on 64bit
  3222   // test for NULL
  3223   if (flags & LIR_OpArrayCopy::src_null_check) {
  3224     __ testptr(src, src);
  3225     __ jcc(Assembler::zero, *stub->entry());
  3227   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3228     __ testptr(dst, dst);
  3229     __ jcc(Assembler::zero, *stub->entry());
  3232   // check if negative
  3233   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3234     __ testl(src_pos, src_pos);
  3235     __ jcc(Assembler::less, *stub->entry());
  3237   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3238     __ testl(dst_pos, dst_pos);
  3239     __ jcc(Assembler::less, *stub->entry());
  3241   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3242     __ testl(length, length);
  3243     __ jcc(Assembler::less, *stub->entry());
  3246   if (flags & LIR_OpArrayCopy::src_range_check) {
  3247     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3248     __ cmpl(tmp, src_length_addr);
  3249     __ jcc(Assembler::above, *stub->entry());
  3251   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3252     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3253     __ cmpl(tmp, dst_length_addr);
  3254     __ jcc(Assembler::above, *stub->entry());
  3257   if (flags & LIR_OpArrayCopy::type_check) {
  3258     if (UseCompressedOops) {
  3259       __ movl(tmp, src_klass_addr);
  3260       __ cmpl(tmp, dst_klass_addr);
  3261     } else {
  3262       __ movptr(tmp, src_klass_addr);
  3263       __ cmpptr(tmp, dst_klass_addr);
  3265     __ jcc(Assembler::notEqual, *stub->entry());
  3268 #ifdef ASSERT
  3269   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3270     // Sanity check the known type with the incoming class.  For the
  3271     // primitive case the types must match exactly with src.klass and
  3272     // dst.klass each exactly matching the default type.  For the
  3273     // object array case, if no type check is needed then either the
  3274     // dst type is exactly the expected type and the src type is a
  3275     // subtype which we can't check or src is the same array as dst
  3276     // but not necessarily exactly of type default_type.
  3277     Label known_ok, halt;
  3278     __ movoop(tmp, default_type->constant_encoding());
  3279 #ifdef _LP64
  3280     if (UseCompressedOops) {
  3281       __ encode_heap_oop(tmp);
  3283 #endif
  3285     if (basic_type != T_OBJECT) {
  3287       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3288       else                   __ cmpptr(tmp, dst_klass_addr);
  3289       __ jcc(Assembler::notEqual, halt);
  3290       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
  3291       else                   __ cmpptr(tmp, src_klass_addr);
  3292       __ jcc(Assembler::equal, known_ok);
  3293     } else {
  3294       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3295       else                   __ cmpptr(tmp, dst_klass_addr);
  3296       __ jcc(Assembler::equal, known_ok);
  3297       __ cmpptr(src, dst);
  3298       __ jcc(Assembler::equal, known_ok);
  3300     __ bind(halt);
  3301     __ stop("incorrect type information in arraycopy");
  3302     __ bind(known_ok);
  3304 #endif
  3306   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3307     __ shlptr(length, shift_amount);
  3310 #ifdef _LP64
  3311   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3312   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3313   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3314   assert_different_registers(c_rarg1, length);
  3315   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3316   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3317   __ mov(c_rarg2, length);
  3319 #else
  3320   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3321   store_parameter(tmp, 0);
  3322   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3323   store_parameter(tmp, 1);
  3324   store_parameter(length, 2);
  3325 #endif // _LP64
  3326   if (basic_type == T_OBJECT) {
  3327     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3328   } else {
  3329     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3332   __ bind(*stub->continuation());
  3336 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3337   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3338   Register hdr = op->hdr_opr()->as_register();
  3339   Register lock = op->lock_opr()->as_register();
  3340   if (!UseFastLocking) {
  3341     __ jmp(*op->stub()->entry());
  3342   } else if (op->code() == lir_lock) {
  3343     Register scratch = noreg;
  3344     if (UseBiasedLocking) {
  3345       scratch = op->scratch_opr()->as_register();
  3347     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3348     // add debug info for NullPointerException only if one is possible
  3349     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3350     if (op->info() != NULL) {
  3351       add_debug_info_for_null_check(null_check_offset, op->info());
  3353     // done
  3354   } else if (op->code() == lir_unlock) {
  3355     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3356     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3357   } else {
  3358     Unimplemented();
  3360   __ bind(*op->stub()->continuation());
  3364 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3365   ciMethod* method = op->profiled_method();
  3366   int bci          = op->profiled_bci();
  3368   // Update counter for all call types
  3369   ciMethodData* md = method->method_data_or_null();
  3370   assert(md != NULL, "Sanity");
  3371   ciProfileData* data = md->bci_to_data(bci);
  3372   assert(data->is_CounterData(), "need CounterData for calls");
  3373   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3374   Register mdo  = op->mdo()->as_register();
  3375   __ movoop(mdo, md->constant_encoding());
  3376   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3377   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3378   // Perform additional virtual call profiling for invokevirtual and
  3379   // invokeinterface bytecodes
  3380   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3381       C1ProfileVirtualCalls) {
  3382     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3383     Register recv = op->recv()->as_register();
  3384     assert_different_registers(mdo, recv);
  3385     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3386     ciKlass* known_klass = op->known_holder();
  3387     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3388       // We know the type that will be seen at this call site; we can
  3389       // statically update the methodDataOop rather than needing to do
  3390       // dynamic tests on the receiver type
  3392       // NOTE: we should probably put a lock around this search to
  3393       // avoid collisions by concurrent compilations
  3394       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3395       uint i;
  3396       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3397         ciKlass* receiver = vc_data->receiver(i);
  3398         if (known_klass->equals(receiver)) {
  3399           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3400           __ addptr(data_addr, DataLayout::counter_increment);
  3401           return;
  3405       // Receiver type not found in profile data; select an empty slot
  3407       // Note that this is less efficient than it should be because it
  3408       // always does a write to the receiver part of the
  3409       // VirtualCallData rather than just the first time
  3410       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3411         ciKlass* receiver = vc_data->receiver(i);
  3412         if (receiver == NULL) {
  3413           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3414           __ movoop(recv_addr, known_klass->constant_encoding());
  3415           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3416           __ addptr(data_addr, DataLayout::counter_increment);
  3417           return;
  3420     } else {
  3421       __ load_klass(recv, recv);
  3422       Label update_done;
  3423       type_profile_helper(mdo, md, data, recv, &update_done);
  3424       // Receiver did not match any saved receiver and there is no empty row for it.
  3425       // Increment total counter to indicate polymorphic case.
  3426       __ addptr(counter_addr, DataLayout::counter_increment);
  3428       __ bind(update_done);
  3430   } else {
  3431     // Static call
  3432     __ addptr(counter_addr, DataLayout::counter_increment);
  3436 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3437   Unimplemented();
  3441 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3442   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3446 void LIR_Assembler::align_backward_branch_target() {
  3447   __ align(BytesPerWord);
  3451 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3452   if (left->is_single_cpu()) {
  3453     __ negl(left->as_register());
  3454     move_regs(left->as_register(), dest->as_register());
  3456   } else if (left->is_double_cpu()) {
  3457     Register lo = left->as_register_lo();
  3458 #ifdef _LP64
  3459     Register dst = dest->as_register_lo();
  3460     __ movptr(dst, lo);
  3461     __ negptr(dst);
  3462 #else
  3463     Register hi = left->as_register_hi();
  3464     __ lneg(hi, lo);
  3465     if (dest->as_register_lo() == hi) {
  3466       assert(dest->as_register_hi() != lo, "destroying register");
  3467       move_regs(hi, dest->as_register_hi());
  3468       move_regs(lo, dest->as_register_lo());
  3469     } else {
  3470       move_regs(lo, dest->as_register_lo());
  3471       move_regs(hi, dest->as_register_hi());
  3473 #endif // _LP64
  3475   } else if (dest->is_single_xmm()) {
  3476     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3477       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3479     __ xorps(dest->as_xmm_float_reg(),
  3480              ExternalAddress((address)float_signflip_pool));
  3482   } else if (dest->is_double_xmm()) {
  3483     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3484       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3486     __ xorpd(dest->as_xmm_double_reg(),
  3487              ExternalAddress((address)double_signflip_pool));
  3489   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3490     assert(left->fpu() == 0, "arg must be on TOS");
  3491     assert(dest->fpu() == 0, "dest must be TOS");
  3492     __ fchs();
  3494   } else {
  3495     ShouldNotReachHere();
  3500 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3501   assert(addr->is_address() && dest->is_register(), "check");
  3502   Register reg;
  3503   reg = dest->as_pointer_register();
  3504   __ lea(reg, as_Address(addr->as_address_ptr()));
  3509 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3510   assert(!tmp->is_valid(), "don't need temporary");
  3511   __ call(RuntimeAddress(dest));
  3512   if (info != NULL) {
  3513     add_call_info_here(info);
  3518 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3519   assert(type == T_LONG, "only for volatile long fields");
  3521   if (info != NULL) {
  3522     add_debug_info_for_null_check_here(info);
  3525   if (src->is_double_xmm()) {
  3526     if (dest->is_double_cpu()) {
  3527 #ifdef _LP64
  3528       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3529 #else
  3530       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3531       __ psrlq(src->as_xmm_double_reg(), 32);
  3532       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3533 #endif // _LP64
  3534     } else if (dest->is_double_stack()) {
  3535       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3536     } else if (dest->is_address()) {
  3537       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3538     } else {
  3539       ShouldNotReachHere();
  3542   } else if (dest->is_double_xmm()) {
  3543     if (src->is_double_stack()) {
  3544       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3545     } else if (src->is_address()) {
  3546       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3547     } else {
  3548       ShouldNotReachHere();
  3551   } else if (src->is_double_fpu()) {
  3552     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3553     if (dest->is_double_stack()) {
  3554       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3555     } else if (dest->is_address()) {
  3556       __ fistp_d(as_Address(dest->as_address_ptr()));
  3557     } else {
  3558       ShouldNotReachHere();
  3561   } else if (dest->is_double_fpu()) {
  3562     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3563     if (src->is_double_stack()) {
  3564       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3565     } else if (src->is_address()) {
  3566       __ fild_d(as_Address(src->as_address_ptr()));
  3567     } else {
  3568       ShouldNotReachHere();
  3570   } else {
  3571     ShouldNotReachHere();
  3576 void LIR_Assembler::membar() {
  3577   // QQQ sparc TSO uses this,
  3578   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3581 void LIR_Assembler::membar_acquire() {
  3582   // No x86 machines currently require load fences
  3583   // __ load_fence();
  3586 void LIR_Assembler::membar_release() {
  3587   // No x86 machines currently require store fences
  3588   // __ store_fence();
  3591 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3592   assert(result_reg->is_register(), "check");
  3593 #ifdef _LP64
  3594   // __ get_thread(result_reg->as_register_lo());
  3595   __ mov(result_reg->as_register(), r15_thread);
  3596 #else
  3597   __ get_thread(result_reg->as_register());
  3598 #endif // _LP64
  3602 void LIR_Assembler::peephole(LIR_List*) {
  3603   // do nothing for now
  3607 #undef __

mercurial