src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 18 Jun 2013 12:31:07 -0700

author
johnc
date
Tue, 18 Jun 2013 12:31:07 -0700
changeset 5277
01522ca68fc7
parent 5229
075ea888b039
child 5353
b800986664f4
permissions
-rw-r--r--

8015237: Parallelize string table scanning during strong root processing
Summary: Parallelize the scanning of the intern string table by having each GC worker claim a given number of buckets. Changes were also reviewed by Per Liden <per.liden@oracle.com>.
Reviewed-by: tschatzl, stefank, twisti

duke@435 1 /*
jiangli@4936 2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_FrameMap.hpp"
stefank@2314 28 #include "c1/c1_Instruction.hpp"
stefank@2314 29 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 30 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 31 #include "c1/c1_ValueStack.hpp"
stefank@2314 32 #include "ci/ciArrayKlass.hpp"
stefank@2314 33 #include "ci/ciInstance.hpp"
coleenp@4037 34 #include "ci/ciObjArray.hpp"
stefank@2314 35 #include "runtime/sharedRuntime.hpp"
stefank@2314 36 #include "runtime/stubRoutines.hpp"
stefank@2314 37 #include "utilities/bitMap.inline.hpp"
jprovino@4542 38 #include "utilities/macros.hpp"
jprovino@4542 39 #if INCLUDE_ALL_GCS
stefank@2314 40 #include "gc_implementation/g1/heapRegion.hpp"
jprovino@4542 41 #endif // INCLUDE_ALL_GCS
duke@435 42
duke@435 43 #ifdef ASSERT
duke@435 44 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 45 #else
duke@435 46 #define __ gen()->lir()->
duke@435 47 #endif
duke@435 48
bobv@2036 49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
bobv@2036 50 #ifdef ARM
bobv@2036 51 #define PATCHED_ADDR (204)
bobv@2036 52 #else
bobv@2036 53 #define PATCHED_ADDR (max_jint)
bobv@2036 54 #endif
duke@435 55
duke@435 56 void PhiResolverState::reset(int max_vregs) {
duke@435 57 // Initialize array sizes
duke@435 58 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 59 _virtual_operands.trunc_to(0);
duke@435 60 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 61 _other_operands.trunc_to(0);
duke@435 62 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 63 _vreg_table.trunc_to(0);
duke@435 64 }
duke@435 65
duke@435 66
duke@435 67
duke@435 68 //--------------------------------------------------------------
duke@435 69 // PhiResolver
duke@435 70
duke@435 71 // Resolves cycles:
duke@435 72 //
duke@435 73 // r1 := r2 becomes temp := r1
duke@435 74 // r2 := r1 r1 := r2
duke@435 75 // r2 := temp
duke@435 76 // and orders moves:
duke@435 77 //
duke@435 78 // r2 := r3 becomes r1 := r2
duke@435 79 // r1 := r2 r2 := r3
duke@435 80
duke@435 81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
duke@435 82 : _gen(gen)
duke@435 83 , _state(gen->resolver_state())
duke@435 84 , _temp(LIR_OprFact::illegalOpr)
duke@435 85 {
duke@435 86 // reinitialize the shared state arrays
duke@435 87 _state.reset(max_vregs);
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
duke@435 92 assert(src->is_valid(), "");
duke@435 93 assert(dest->is_valid(), "");
duke@435 94 __ move(src, dest);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98 void PhiResolver::move_temp_to(LIR_Opr dest) {
duke@435 99 assert(_temp->is_valid(), "");
duke@435 100 emit_move(_temp, dest);
duke@435 101 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
duke@435 102 }
duke@435 103
duke@435 104
duke@435 105 void PhiResolver::move_to_temp(LIR_Opr src) {
duke@435 106 assert(_temp->is_illegal(), "");
duke@435 107 _temp = _gen->new_register(src->type());
duke@435 108 emit_move(src, _temp);
duke@435 109 }
duke@435 110
duke@435 111
duke@435 112 // Traverse assignment graph in depth first order and generate moves in post order
duke@435 113 // ie. two assignments: b := c, a := b start with node c:
duke@435 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
duke@435 115 // Generates moves in this order: move b to a and move c to b
duke@435 116 // ie. cycle a := b, b := a start with node a
duke@435 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
duke@435 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
duke@435 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
duke@435 120 if (!dest->visited()) {
duke@435 121 dest->set_visited();
duke@435 122 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
duke@435 123 move(dest, dest->destination_at(i));
duke@435 124 }
duke@435 125 } else if (!dest->start_node()) {
duke@435 126 // cylce in graph detected
duke@435 127 assert(_loop == NULL, "only one loop valid!");
duke@435 128 _loop = dest;
duke@435 129 move_to_temp(src->operand());
duke@435 130 return;
duke@435 131 } // else dest is a start node
duke@435 132
duke@435 133 if (!dest->assigned()) {
duke@435 134 if (_loop == dest) {
duke@435 135 move_temp_to(dest->operand());
duke@435 136 dest->set_assigned();
duke@435 137 } else if (src != NULL) {
duke@435 138 emit_move(src->operand(), dest->operand());
duke@435 139 dest->set_assigned();
duke@435 140 }
duke@435 141 }
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 PhiResolver::~PhiResolver() {
duke@435 146 int i;
duke@435 147 // resolve any cycles in moves from and to virtual registers
duke@435 148 for (i = virtual_operands().length() - 1; i >= 0; i --) {
duke@435 149 ResolveNode* node = virtual_operands()[i];
duke@435 150 if (!node->visited()) {
duke@435 151 _loop = NULL;
duke@435 152 move(NULL, node);
duke@435 153 node->set_start_node();
duke@435 154 assert(_temp->is_illegal(), "move_temp_to() call missing");
duke@435 155 }
duke@435 156 }
duke@435 157
duke@435 158 // generate move for move from non virtual register to abitrary destination
duke@435 159 for (i = other_operands().length() - 1; i >= 0; i --) {
duke@435 160 ResolveNode* node = other_operands()[i];
duke@435 161 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
duke@435 162 emit_move(node->operand(), node->destination_at(j)->operand());
duke@435 163 }
duke@435 164 }
duke@435 165 }
duke@435 166
duke@435 167
duke@435 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
duke@435 169 ResolveNode* node;
duke@435 170 if (opr->is_virtual()) {
duke@435 171 int vreg_num = opr->vreg_number();
duke@435 172 node = vreg_table().at_grow(vreg_num, NULL);
duke@435 173 assert(node == NULL || node->operand() == opr, "");
duke@435 174 if (node == NULL) {
duke@435 175 node = new ResolveNode(opr);
duke@435 176 vreg_table()[vreg_num] = node;
duke@435 177 }
duke@435 178 // Make sure that all virtual operands show up in the list when
duke@435 179 // they are used as the source of a move.
duke@435 180 if (source && !virtual_operands().contains(node)) {
duke@435 181 virtual_operands().append(node);
duke@435 182 }
duke@435 183 } else {
duke@435 184 assert(source, "");
duke@435 185 node = new ResolveNode(opr);
duke@435 186 other_operands().append(node);
duke@435 187 }
duke@435 188 return node;
duke@435 189 }
duke@435 190
duke@435 191
duke@435 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
duke@435 193 assert(dest->is_virtual(), "");
duke@435 194 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
duke@435 195 assert(src->is_valid(), "");
duke@435 196 assert(dest->is_valid(), "");
duke@435 197 ResolveNode* source = source_node(src);
duke@435 198 source->append(destination_node(dest));
duke@435 199 }
duke@435 200
duke@435 201
duke@435 202 //--------------------------------------------------------------
duke@435 203 // LIRItem
duke@435 204
duke@435 205 void LIRItem::set_result(LIR_Opr opr) {
duke@435 206 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
duke@435 207 value()->set_operand(opr);
duke@435 208
duke@435 209 if (opr->is_virtual()) {
duke@435 210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
duke@435 211 }
duke@435 212
duke@435 213 _result = opr;
duke@435 214 }
duke@435 215
duke@435 216 void LIRItem::load_item() {
duke@435 217 if (result()->is_illegal()) {
duke@435 218 // update the items result
duke@435 219 _result = value()->operand();
duke@435 220 }
duke@435 221 if (!result()->is_register()) {
duke@435 222 LIR_Opr reg = _gen->new_register(value()->type());
duke@435 223 __ move(result(), reg);
duke@435 224 if (result()->is_constant()) {
duke@435 225 _result = reg;
duke@435 226 } else {
duke@435 227 set_result(reg);
duke@435 228 }
duke@435 229 }
duke@435 230 }
duke@435 231
duke@435 232
duke@435 233 void LIRItem::load_for_store(BasicType type) {
duke@435 234 if (_gen->can_store_as_constant(value(), type)) {
duke@435 235 _result = value()->operand();
duke@435 236 if (!_result->is_constant()) {
duke@435 237 _result = LIR_OprFact::value_type(value()->type());
duke@435 238 }
duke@435 239 } else if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 240 load_byte_item();
duke@435 241 } else {
duke@435 242 load_item();
duke@435 243 }
duke@435 244 }
duke@435 245
duke@435 246 void LIRItem::load_item_force(LIR_Opr reg) {
duke@435 247 LIR_Opr r = result();
duke@435 248 if (r != reg) {
bobv@2036 249 #if !defined(ARM) && !defined(E500V2)
duke@435 250 if (r->type() != reg->type()) {
duke@435 251 // moves between different types need an intervening spill slot
bobv@2036 252 r = _gen->force_to_spill(r, reg->type());
duke@435 253 }
bobv@2036 254 #endif
bobv@2036 255 __ move(r, reg);
duke@435 256 _result = reg;
duke@435 257 }
duke@435 258 }
duke@435 259
duke@435 260 ciObject* LIRItem::get_jobject_constant() const {
duke@435 261 ObjectType* oc = type()->as_ObjectType();
duke@435 262 if (oc) {
duke@435 263 return oc->constant_value();
duke@435 264 }
duke@435 265 return NULL;
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 jint LIRItem::get_jint_constant() const {
duke@435 270 assert(is_constant() && value() != NULL, "");
duke@435 271 assert(type()->as_IntConstant() != NULL, "type check");
duke@435 272 return type()->as_IntConstant()->value();
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 jint LIRItem::get_address_constant() const {
duke@435 277 assert(is_constant() && value() != NULL, "");
duke@435 278 assert(type()->as_AddressConstant() != NULL, "type check");
duke@435 279 return type()->as_AddressConstant()->value();
duke@435 280 }
duke@435 281
duke@435 282
duke@435 283 jfloat LIRItem::get_jfloat_constant() const {
duke@435 284 assert(is_constant() && value() != NULL, "");
duke@435 285 assert(type()->as_FloatConstant() != NULL, "type check");
duke@435 286 return type()->as_FloatConstant()->value();
duke@435 287 }
duke@435 288
duke@435 289
duke@435 290 jdouble LIRItem::get_jdouble_constant() const {
duke@435 291 assert(is_constant() && value() != NULL, "");
duke@435 292 assert(type()->as_DoubleConstant() != NULL, "type check");
duke@435 293 return type()->as_DoubleConstant()->value();
duke@435 294 }
duke@435 295
duke@435 296
duke@435 297 jlong LIRItem::get_jlong_constant() const {
duke@435 298 assert(is_constant() && value() != NULL, "");
duke@435 299 assert(type()->as_LongConstant() != NULL, "type check");
duke@435 300 return type()->as_LongConstant()->value();
duke@435 301 }
duke@435 302
duke@435 303
duke@435 304
duke@435 305 //--------------------------------------------------------------
duke@435 306
duke@435 307
duke@435 308 void LIRGenerator::init() {
ysr@777 309 _bs = Universe::heap()->barrier_set();
duke@435 310 }
duke@435 311
duke@435 312
duke@435 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
duke@435 314 #ifndef PRODUCT
duke@435 315 if (PrintIRWithLIR) {
duke@435 316 block->print();
duke@435 317 }
duke@435 318 #endif
duke@435 319
duke@435 320 // set up the list of LIR instructions
duke@435 321 assert(block->lir() == NULL, "LIR list already computed for this block");
duke@435 322 _lir = new LIR_List(compilation(), block);
duke@435 323 block->set_lir(_lir);
duke@435 324
duke@435 325 __ branch_destination(block->label());
duke@435 326
duke@435 327 if (LIRTraceExecution &&
iveresov@1939 328 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
duke@435 329 !block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 330 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
duke@435 331 trace_block_entry(block);
duke@435 332 }
duke@435 333 }
duke@435 334
duke@435 335
duke@435 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
duke@435 337 #ifndef PRODUCT
duke@435 338 if (PrintIRWithLIR) {
duke@435 339 tty->cr();
duke@435 340 }
duke@435 341 #endif
duke@435 342
duke@435 343 // LIR_Opr for unpinned constants shouldn't be referenced by other
duke@435 344 // blocks so clear them out after processing the block.
duke@435 345 for (int i = 0; i < _unpinned_constants.length(); i++) {
duke@435 346 _unpinned_constants.at(i)->clear_operand();
duke@435 347 }
duke@435 348 _unpinned_constants.trunc_to(0);
duke@435 349
duke@435 350 // clear our any registers for other local constants
duke@435 351 _constants.trunc_to(0);
duke@435 352 _reg_for_constants.trunc_to(0);
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 void LIRGenerator::block_do(BlockBegin* block) {
duke@435 357 CHECK_BAILOUT();
duke@435 358
duke@435 359 block_do_prolog(block);
duke@435 360 set_block(block);
duke@435 361
duke@435 362 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
duke@435 363 if (instr->is_pinned()) do_root(instr);
duke@435 364 }
duke@435 365
duke@435 366 set_block(NULL);
duke@435 367 block_do_epilog(block);
duke@435 368 }
duke@435 369
duke@435 370
duke@435 371 //-------------------------LIRGenerator-----------------------------
duke@435 372
duke@435 373 // This is where the tree-walk starts; instr must be root;
duke@435 374 void LIRGenerator::do_root(Value instr) {
duke@435 375 CHECK_BAILOUT();
duke@435 376
duke@435 377 InstructionMark im(compilation(), instr);
duke@435 378
duke@435 379 assert(instr->is_pinned(), "use only with roots");
duke@435 380 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 381
duke@435 382 instr->visit(this);
duke@435 383
duke@435 384 assert(!instr->has_uses() || instr->operand()->is_valid() ||
duke@435 385 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
duke@435 386 }
duke@435 387
duke@435 388
duke@435 389 // This is called for each node in tree; the walk stops if a root is reached
duke@435 390 void LIRGenerator::walk(Value instr) {
duke@435 391 InstructionMark im(compilation(), instr);
duke@435 392 //stop walk when encounter a root
duke@435 393 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
duke@435 394 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
duke@435 395 } else {
duke@435 396 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 397 instr->visit(this);
duke@435 398 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
duke@435 399 }
duke@435 400 }
duke@435 401
duke@435 402
duke@435 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
roland@2174 404 assert(state != NULL, "state must be defined");
roland@2174 405
roland@4860 406 #ifndef PRODUCT
roland@4860 407 state->verify();
roland@4860 408 #endif
roland@4860 409
roland@2174 410 ValueStack* s = state;
roland@2174 411 for_each_state(s) {
roland@2174 412 if (s->kind() == ValueStack::EmptyExceptionState) {
roland@2174 413 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
roland@2174 414 continue;
duke@435 415 }
roland@2174 416
roland@2174 417 int index;
roland@2174 418 Value value;
roland@2174 419 for_each_stack_value(s, index, value) {
roland@2174 420 assert(value->subst() == value, "missed substitution");
roland@2174 421 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
roland@2174 422 walk(value);
roland@2174 423 assert(value->operand()->is_valid(), "must be evaluated now");
roland@2174 424 }
roland@2174 425 }
roland@2174 426
roland@2174 427 int bci = s->bci();
duke@435 428 IRScope* scope = s->scope();
duke@435 429 ciMethod* method = scope->method();
duke@435 430
duke@435 431 MethodLivenessResult liveness = method->liveness_at_bci(bci);
duke@435 432 if (bci == SynchronizationEntryBCI) {
duke@435 433 if (x->as_ExceptionObject() || x->as_Throw()) {
duke@435 434 // all locals are dead on exit from the synthetic unlocker
duke@435 435 liveness.clear();
duke@435 436 } else {
iveresov@3312 437 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
duke@435 438 }
duke@435 439 }
duke@435 440 if (!liveness.is_valid()) {
duke@435 441 // Degenerate or breakpointed method.
duke@435 442 bailout("Degenerate or breakpointed method");
duke@435 443 } else {
duke@435 444 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
duke@435 445 for_each_local_value(s, index, value) {
duke@435 446 assert(value->subst() == value, "missed substition");
duke@435 447 if (liveness.at(index) && !value->type()->is_illegal()) {
duke@435 448 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 449 walk(value);
duke@435 450 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 451 }
duke@435 452 } else {
duke@435 453 // NULL out this local so that linear scan can assume that all non-NULL values are live.
duke@435 454 s->invalidate_local(index);
duke@435 455 }
duke@435 456 }
duke@435 457 }
duke@435 458 }
duke@435 459
roland@4860 460 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
duke@435 461 }
duke@435 462
duke@435 463
duke@435 464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
roland@2174 465 return state_for(x, x->exception_state());
duke@435 466 }
duke@435 467
duke@435 468
coleenp@4037 469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
duke@435 470 if (!obj->is_loaded() || PatchALot) {
duke@435 471 assert(info != NULL, "info must be set if class is not loaded");
coleenp@4037 472 __ klass2reg_patch(NULL, r, info);
duke@435 473 } else {
duke@435 474 // no patching needed
roland@4051 475 __ metadata2reg(obj->constant_encoding(), r);
duke@435 476 }
duke@435 477 }
duke@435 478
duke@435 479
duke@435 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
duke@435 481 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
duke@435 482 CodeStub* stub = new RangeCheckStub(range_check_info, index);
duke@435 483 if (index->is_constant()) {
duke@435 484 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
duke@435 485 index->as_jint(), null_check_info);
duke@435 486 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 487 } else {
duke@435 488 cmp_reg_mem(lir_cond_aboveEqual, index, array,
duke@435 489 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
duke@435 490 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 491 }
duke@435 492 }
duke@435 493
duke@435 494
duke@435 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
duke@435 496 CodeStub* stub = new RangeCheckStub(info, index, true);
duke@435 497 if (index->is_constant()) {
duke@435 498 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
duke@435 499 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 500 } else {
duke@435 501 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
duke@435 502 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 503 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 504 }
duke@435 505 __ move(index, result);
duke@435 506 }
duke@435 507
duke@435 508
duke@435 509
duke@435 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
duke@435 511 LIR_Opr result_op = result;
duke@435 512 LIR_Opr left_op = left;
duke@435 513 LIR_Opr right_op = right;
duke@435 514
duke@435 515 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 516 assert(right_op != result_op, "malformed");
duke@435 517 __ move(left_op, result_op);
duke@435 518 left_op = result_op;
duke@435 519 }
duke@435 520
duke@435 521 switch(code) {
duke@435 522 case Bytecodes::_dadd:
duke@435 523 case Bytecodes::_fadd:
duke@435 524 case Bytecodes::_ladd:
duke@435 525 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
duke@435 526 case Bytecodes::_fmul:
duke@435 527 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
duke@435 528
duke@435 529 case Bytecodes::_dmul:
duke@435 530 {
duke@435 531 if (is_strictfp) {
duke@435 532 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
duke@435 533 } else {
duke@435 534 __ mul(left_op, right_op, result_op); break;
duke@435 535 }
duke@435 536 }
duke@435 537 break;
duke@435 538
duke@435 539 case Bytecodes::_imul:
duke@435 540 {
duke@435 541 bool did_strength_reduce = false;
duke@435 542
duke@435 543 if (right->is_constant()) {
duke@435 544 int c = right->as_jint();
duke@435 545 if (is_power_of_2(c)) {
duke@435 546 // do not need tmp here
duke@435 547 __ shift_left(left_op, exact_log2(c), result_op);
duke@435 548 did_strength_reduce = true;
duke@435 549 } else {
duke@435 550 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
duke@435 551 }
duke@435 552 }
duke@435 553 // we couldn't strength reduce so just emit the multiply
duke@435 554 if (!did_strength_reduce) {
duke@435 555 __ mul(left_op, right_op, result_op);
duke@435 556 }
duke@435 557 }
duke@435 558 break;
duke@435 559
duke@435 560 case Bytecodes::_dsub:
duke@435 561 case Bytecodes::_fsub:
duke@435 562 case Bytecodes::_lsub:
duke@435 563 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
duke@435 564
duke@435 565 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
duke@435 566 // ldiv and lrem are implemented with a direct runtime call
duke@435 567
duke@435 568 case Bytecodes::_ddiv:
duke@435 569 {
duke@435 570 if (is_strictfp) {
duke@435 571 __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
duke@435 572 } else {
duke@435 573 __ div (left_op, right_op, result_op); break;
duke@435 574 }
duke@435 575 }
duke@435 576 break;
duke@435 577
duke@435 578 case Bytecodes::_drem:
duke@435 579 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
duke@435 580
duke@435 581 default: ShouldNotReachHere();
duke@435 582 }
duke@435 583 }
duke@435 584
duke@435 585
duke@435 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
duke@435 587 arithmetic_op(code, result, left, right, false, tmp);
duke@435 588 }
duke@435 589
duke@435 590
duke@435 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
duke@435 592 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
duke@435 593 }
duke@435 594
duke@435 595
duke@435 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
duke@435 597 arithmetic_op(code, result, left, right, is_strictfp, tmp);
duke@435 598 }
duke@435 599
duke@435 600
duke@435 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
duke@435 602 if (TwoOperandLIRForm && value != result_op) {
duke@435 603 assert(count != result_op, "malformed");
duke@435 604 __ move(value, result_op);
duke@435 605 value = result_op;
duke@435 606 }
duke@435 607
duke@435 608 assert(count->is_constant() || count->is_register(), "must be");
duke@435 609 switch(code) {
duke@435 610 case Bytecodes::_ishl:
duke@435 611 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
duke@435 612 case Bytecodes::_ishr:
duke@435 613 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
duke@435 614 case Bytecodes::_iushr:
duke@435 615 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
duke@435 616 default: ShouldNotReachHere();
duke@435 617 }
duke@435 618 }
duke@435 619
duke@435 620
duke@435 621 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
duke@435 622 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 623 assert(right_op != result_op, "malformed");
duke@435 624 __ move(left_op, result_op);
duke@435 625 left_op = result_op;
duke@435 626 }
duke@435 627
duke@435 628 switch(code) {
duke@435 629 case Bytecodes::_iand:
duke@435 630 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
duke@435 631
duke@435 632 case Bytecodes::_ior:
duke@435 633 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
duke@435 634
duke@435 635 case Bytecodes::_ixor:
duke@435 636 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
duke@435 637
duke@435 638 default: ShouldNotReachHere();
duke@435 639 }
duke@435 640 }
duke@435 641
duke@435 642
duke@435 643 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
duke@435 644 if (!GenerateSynchronizationCode) return;
duke@435 645 // for slow path, use debug info for state after successful locking
duke@435 646 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
duke@435 647 __ load_stack_address_monitor(monitor_no, lock);
duke@435 648 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
duke@435 649 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
duke@435 650 }
duke@435 651
duke@435 652
bobv@2036 653 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
duke@435 654 if (!GenerateSynchronizationCode) return;
duke@435 655 // setup registers
duke@435 656 LIR_Opr hdr = lock;
duke@435 657 lock = new_hdr;
duke@435 658 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
duke@435 659 __ load_stack_address_monitor(monitor_no, lock);
bobv@2036 660 __ unlock_object(hdr, object, lock, scratch, slow_path);
duke@435 661 }
duke@435 662
duke@435 663
duke@435 664 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
coleenp@4037 665 klass2reg_with_patching(klass_reg, klass, info);
duke@435 666 // If klass is not loaded we do not know if the klass has finalizers:
duke@435 667 if (UseFastNewInstance && klass->is_loaded()
duke@435 668 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
duke@435 669
duke@435 670 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
duke@435 671
duke@435 672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
duke@435 673
duke@435 674 assert(klass->is_loaded(), "must be loaded");
duke@435 675 // allocate space for instance
duke@435 676 assert(klass->size_helper() >= 0, "illegal instance size");
duke@435 677 const int instance_size = align_object_size(klass->size_helper());
duke@435 678 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
duke@435 679 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
duke@435 680 } else {
duke@435 681 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
duke@435 682 __ branch(lir_cond_always, T_ILLEGAL, slow_path);
duke@435 683 __ branch_destination(slow_path->continuation());
duke@435 684 }
duke@435 685 }
duke@435 686
duke@435 687
duke@435 688 static bool is_constant_zero(Instruction* inst) {
duke@435 689 IntConstant* c = inst->type()->as_IntConstant();
duke@435 690 if (c) {
duke@435 691 return (c->value() == 0);
duke@435 692 }
duke@435 693 return false;
duke@435 694 }
duke@435 695
duke@435 696
duke@435 697 static bool positive_constant(Instruction* inst) {
duke@435 698 IntConstant* c = inst->type()->as_IntConstant();
duke@435 699 if (c) {
duke@435 700 return (c->value() >= 0);
duke@435 701 }
duke@435 702 return false;
duke@435 703 }
duke@435 704
duke@435 705
duke@435 706 static ciArrayKlass* as_array_klass(ciType* type) {
duke@435 707 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
duke@435 708 return (ciArrayKlass*)type;
duke@435 709 } else {
duke@435 710 return NULL;
duke@435 711 }
duke@435 712 }
duke@435 713
roland@2728 714 static ciType* phi_declared_type(Phi* phi) {
roland@2728 715 ciType* t = phi->operand_at(0)->declared_type();
roland@2728 716 if (t == NULL) {
roland@2728 717 return NULL;
roland@2728 718 }
roland@2728 719 for(int i = 1; i < phi->operand_count(); i++) {
roland@2728 720 if (t != phi->operand_at(i)->declared_type()) {
roland@2728 721 return NULL;
roland@2728 722 }
roland@2728 723 }
roland@2728 724 return t;
roland@2728 725 }
roland@2728 726
duke@435 727 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
duke@435 728 Instruction* src = x->argument_at(0);
duke@435 729 Instruction* src_pos = x->argument_at(1);
duke@435 730 Instruction* dst = x->argument_at(2);
duke@435 731 Instruction* dst_pos = x->argument_at(3);
duke@435 732 Instruction* length = x->argument_at(4);
duke@435 733
duke@435 734 // first try to identify the likely type of the arrays involved
duke@435 735 ciArrayKlass* expected_type = NULL;
roland@2728 736 bool is_exact = false, src_objarray = false, dst_objarray = false;
duke@435 737 {
duke@435 738 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
duke@435 739 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
roland@2728 740 Phi* phi;
roland@2728 741 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
roland@2728 742 src_declared_type = as_array_klass(phi_declared_type(phi));
roland@2728 743 }
duke@435 744 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
duke@435 745 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
roland@2728 746 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
roland@2728 747 dst_declared_type = as_array_klass(phi_declared_type(phi));
roland@2728 748 }
roland@2728 749
duke@435 750 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
duke@435 751 // the types exactly match so the type is fully known
duke@435 752 is_exact = true;
duke@435 753 expected_type = src_exact_type;
duke@435 754 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
duke@435 755 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
duke@435 756 ciArrayKlass* src_type = NULL;
duke@435 757 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
duke@435 758 src_type = (ciArrayKlass*) src_exact_type;
duke@435 759 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
duke@435 760 src_type = (ciArrayKlass*) src_declared_type;
duke@435 761 }
duke@435 762 if (src_type != NULL) {
duke@435 763 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
duke@435 764 is_exact = true;
duke@435 765 expected_type = dst_type;
duke@435 766 }
duke@435 767 }
duke@435 768 }
duke@435 769 // at least pass along a good guess
duke@435 770 if (expected_type == NULL) expected_type = dst_exact_type;
duke@435 771 if (expected_type == NULL) expected_type = src_declared_type;
duke@435 772 if (expected_type == NULL) expected_type = dst_declared_type;
roland@2728 773
roland@2728 774 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
roland@2728 775 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
duke@435 776 }
duke@435 777
duke@435 778 // if a probable array type has been identified, figure out if any
duke@435 779 // of the required checks for a fast case can be elided.
duke@435 780 int flags = LIR_OpArrayCopy::all_flags;
roland@2728 781
roland@2728 782 if (!src_objarray)
roland@2728 783 flags &= ~LIR_OpArrayCopy::src_objarray;
roland@2728 784 if (!dst_objarray)
roland@2728 785 flags &= ~LIR_OpArrayCopy::dst_objarray;
roland@2728 786
roland@2728 787 if (!x->arg_needs_null_check(0))
roland@2728 788 flags &= ~LIR_OpArrayCopy::src_null_check;
roland@2728 789 if (!x->arg_needs_null_check(2))
roland@2728 790 flags &= ~LIR_OpArrayCopy::dst_null_check;
roland@2728 791
roland@2728 792
duke@435 793 if (expected_type != NULL) {
roland@2728 794 Value length_limit = NULL;
roland@2728 795
roland@2728 796 IfOp* ifop = length->as_IfOp();
roland@2728 797 if (ifop != NULL) {
roland@2728 798 // look for expressions like min(v, a.length) which ends up as
roland@2728 799 // x > y ? y : x or x >= y ? y : x
roland@2728 800 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
roland@2728 801 ifop->x() == ifop->fval() &&
roland@2728 802 ifop->y() == ifop->tval()) {
roland@2728 803 length_limit = ifop->y();
roland@2728 804 }
roland@2728 805 }
roland@2728 806
roland@2728 807 // try to skip null checks and range checks
roland@2728 808 NewArray* src_array = src->as_NewArray();
roland@2728 809 if (src_array != NULL) {
duke@435 810 flags &= ~LIR_OpArrayCopy::src_null_check;
roland@2728 811 if (length_limit != NULL &&
roland@2728 812 src_array->length() == length_limit &&
roland@2728 813 is_constant_zero(src_pos)) {
roland@2728 814 flags &= ~LIR_OpArrayCopy::src_range_check;
roland@2728 815 }
roland@2728 816 }
roland@2728 817
roland@2728 818 NewArray* dst_array = dst->as_NewArray();
roland@2728 819 if (dst_array != NULL) {
duke@435 820 flags &= ~LIR_OpArrayCopy::dst_null_check;
roland@2728 821 if (length_limit != NULL &&
roland@2728 822 dst_array->length() == length_limit &&
roland@2728 823 is_constant_zero(dst_pos)) {
roland@2728 824 flags &= ~LIR_OpArrayCopy::dst_range_check;
roland@2728 825 }
roland@2728 826 }
duke@435 827
duke@435 828 // check from incoming constant values
duke@435 829 if (positive_constant(src_pos))
duke@435 830 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
duke@435 831 if (positive_constant(dst_pos))
duke@435 832 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
duke@435 833 if (positive_constant(length))
duke@435 834 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 835
duke@435 836 // see if the range check can be elided, which might also imply
duke@435 837 // that src or dst is non-null.
duke@435 838 ArrayLength* al = length->as_ArrayLength();
duke@435 839 if (al != NULL) {
duke@435 840 if (al->array() == src) {
duke@435 841 // it's the length of the source array
duke@435 842 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 843 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 844 if (is_constant_zero(src_pos))
duke@435 845 flags &= ~LIR_OpArrayCopy::src_range_check;
duke@435 846 }
duke@435 847 if (al->array() == dst) {
duke@435 848 // it's the length of the destination array
duke@435 849 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 850 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 851 if (is_constant_zero(dst_pos))
duke@435 852 flags &= ~LIR_OpArrayCopy::dst_range_check;
duke@435 853 }
duke@435 854 }
duke@435 855 if (is_exact) {
duke@435 856 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 857 }
duke@435 858 }
duke@435 859
roland@2728 860 IntConstant* src_int = src_pos->type()->as_IntConstant();
roland@2728 861 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
roland@2728 862 if (src_int && dst_int) {
roland@2728 863 int s_offs = src_int->value();
roland@2728 864 int d_offs = dst_int->value();
roland@2728 865 if (src_int->value() >= dst_int->value()) {
roland@2728 866 flags &= ~LIR_OpArrayCopy::overlapping;
roland@2728 867 }
roland@2728 868 if (expected_type != NULL) {
roland@2728 869 BasicType t = expected_type->element_type()->basic_type();
roland@2728 870 int element_size = type2aelembytes(t);
roland@2728 871 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
roland@2728 872 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
roland@2728 873 flags &= ~LIR_OpArrayCopy::unaligned;
roland@2728 874 }
roland@2728 875 }
roland@2728 876 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
roland@2728 877 // src and dest positions are the same, or dst is zero so assume
roland@2728 878 // nonoverlapping copy.
roland@2728 879 flags &= ~LIR_OpArrayCopy::overlapping;
roland@2728 880 }
roland@2728 881
duke@435 882 if (src == dst) {
duke@435 883 // moving within a single array so no type checks are needed
duke@435 884 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 885 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 886 }
duke@435 887 }
duke@435 888 *flagsp = flags;
duke@435 889 *expected_typep = (ciArrayKlass*)expected_type;
duke@435 890 }
duke@435 891
duke@435 892
duke@435 893 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
duke@435 894 assert(opr->is_register(), "why spill if item is not register?");
duke@435 895
duke@435 896 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
duke@435 897 LIR_Opr result = new_register(T_FLOAT);
duke@435 898 set_vreg_flag(result, must_start_in_memory);
duke@435 899 assert(opr->is_register(), "only a register can be spilled");
duke@435 900 assert(opr->value_type()->is_float(), "rounding only for floats available");
duke@435 901 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
duke@435 902 return result;
duke@435 903 }
duke@435 904 return opr;
duke@435 905 }
duke@435 906
duke@435 907
duke@435 908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
twisti@4003 909 assert(type2size[t] == type2size[value->type()],
twisti@4003 910 err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
duke@435 911 if (!value->is_register()) {
duke@435 912 // force into a register
duke@435 913 LIR_Opr r = new_register(value->type());
duke@435 914 __ move(value, r);
duke@435 915 value = r;
duke@435 916 }
duke@435 917
duke@435 918 // create a spill location
duke@435 919 LIR_Opr tmp = new_register(t);
duke@435 920 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
duke@435 921
duke@435 922 // move from register to spill
duke@435 923 __ move(value, tmp);
duke@435 924 return tmp;
duke@435 925 }
duke@435 926
duke@435 927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
duke@435 928 if (if_instr->should_profile()) {
duke@435 929 ciMethod* method = if_instr->profiled_method();
duke@435 930 assert(method != NULL, "method should be set if branch is profiled");
iveresov@2349 931 ciMethodData* md = method->method_data_or_null();
iveresov@2349 932 assert(md != NULL, "Sanity");
duke@435 933 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
duke@435 934 assert(data != NULL, "must have profiling data");
duke@435 935 assert(data->is_BranchData(), "need BranchData for two-way branches");
duke@435 936 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
duke@435 937 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 938 if (if_instr->is_swapped()) {
iveresov@2138 939 int t = taken_count_offset;
iveresov@2138 940 taken_count_offset = not_taken_count_offset;
iveresov@2138 941 not_taken_count_offset = t;
iveresov@2138 942 }
iveresov@2138 943
roland@4051 944 LIR_Opr md_reg = new_register(T_METADATA);
roland@4051 945 __ metadata2reg(md->constant_encoding(), md_reg);
iveresov@2138 946
iveresov@2138 947 LIR_Opr data_offset_reg = new_pointer_register();
duke@435 948 __ cmove(lir_cond(cond),
iveresov@2138 949 LIR_OprFact::intptrConst(taken_count_offset),
iveresov@2138 950 LIR_OprFact::intptrConst(not_taken_count_offset),
iveresov@2412 951 data_offset_reg, as_BasicType(if_instr->x()->type()));
iveresov@2138 952
iveresov@2138 953 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
iveresov@2138 954 LIR_Opr data_reg = new_pointer_register();
iveresov@2138 955 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
iveresov@2344 956 __ move(data_addr, data_reg);
iveresov@2138 957 // Use leal instead of add to avoid destroying condition codes on x86
duke@435 958 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
duke@435 959 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
iveresov@2344 960 __ move(data_reg, data_addr);
duke@435 961 }
duke@435 962 }
duke@435 963
duke@435 964 // Phi technique:
duke@435 965 // This is about passing live values from one basic block to the other.
duke@435 966 // In code generated with Java it is rather rare that more than one
duke@435 967 // value is on the stack from one basic block to the other.
duke@435 968 // We optimize our technique for efficient passing of one value
duke@435 969 // (of type long, int, double..) but it can be extended.
duke@435 970 // When entering or leaving a basic block, all registers and all spill
duke@435 971 // slots are release and empty. We use the released registers
duke@435 972 // and spill slots to pass the live values from one block
duke@435 973 // to the other. The topmost value, i.e., the value on TOS of expression
duke@435 974 // stack is passed in registers. All other values are stored in spilling
duke@435 975 // area. Every Phi has an index which designates its spill slot
duke@435 976 // At exit of a basic block, we fill the register(s) and spill slots.
duke@435 977 // At entry of a basic block, the block_prolog sets up the content of phi nodes
duke@435 978 // and locks necessary registers and spilling slots.
duke@435 979
duke@435 980
duke@435 981 // move current value to referenced phi function
duke@435 982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
duke@435 983 Phi* phi = sux_val->as_Phi();
duke@435 984 // cur_val can be null without phi being null in conjunction with inlining
duke@435 985 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
duke@435 986 LIR_Opr operand = cur_val->operand();
duke@435 987 if (cur_val->operand()->is_illegal()) {
duke@435 988 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
duke@435 989 "these can be produced lazily");
duke@435 990 operand = operand_for_instruction(cur_val);
duke@435 991 }
duke@435 992 resolver->move(operand, operand_for_instruction(phi));
duke@435 993 }
duke@435 994 }
duke@435 995
duke@435 996
duke@435 997 // Moves all stack values into their PHI position
duke@435 998 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
duke@435 999 BlockBegin* bb = block();
duke@435 1000 if (bb->number_of_sux() == 1) {
duke@435 1001 BlockBegin* sux = bb->sux_at(0);
duke@435 1002 assert(sux->number_of_preds() > 0, "invalid CFG");
duke@435 1003
duke@435 1004 // a block with only one predecessor never has phi functions
duke@435 1005 if (sux->number_of_preds() > 1) {
duke@435 1006 int max_phis = cur_state->stack_size() + cur_state->locals_size();
duke@435 1007 PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
duke@435 1008
duke@435 1009 ValueStack* sux_state = sux->state();
duke@435 1010 Value sux_value;
duke@435 1011 int index;
duke@435 1012
roland@2174 1013 assert(cur_state->scope() == sux_state->scope(), "not matching");
roland@2174 1014 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
roland@2174 1015 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
roland@2174 1016
duke@435 1017 for_each_stack_value(sux_state, index, sux_value) {
duke@435 1018 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
duke@435 1019 }
duke@435 1020
duke@435 1021 for_each_local_value(sux_state, index, sux_value) {
duke@435 1022 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
duke@435 1023 }
duke@435 1024
duke@435 1025 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
duke@435 1026 }
duke@435 1027 }
duke@435 1028 }
duke@435 1029
duke@435 1030
duke@435 1031 LIR_Opr LIRGenerator::new_register(BasicType type) {
duke@435 1032 int vreg = _virtual_register_number;
duke@435 1033 // add a little fudge factor for the bailout, since the bailout is
duke@435 1034 // only checked periodically. This gives a few extra registers to
duke@435 1035 // hand out before we really run out, which helps us keep from
duke@435 1036 // tripping over assertions.
duke@435 1037 if (vreg + 20 >= LIR_OprDesc::vreg_max) {
duke@435 1038 bailout("out of virtual registers");
duke@435 1039 if (vreg + 2 >= LIR_OprDesc::vreg_max) {
duke@435 1040 // wrap it around
duke@435 1041 _virtual_register_number = LIR_OprDesc::vreg_base;
duke@435 1042 }
duke@435 1043 }
duke@435 1044 _virtual_register_number += 1;
duke@435 1045 return LIR_OprFact::virtual_register(vreg, type);
duke@435 1046 }
duke@435 1047
duke@435 1048
duke@435 1049 // Try to lock using register in hint
duke@435 1050 LIR_Opr LIRGenerator::rlock(Value instr) {
duke@435 1051 return new_register(instr->type());
duke@435 1052 }
duke@435 1053
duke@435 1054
duke@435 1055 // does an rlock and sets result
duke@435 1056 LIR_Opr LIRGenerator::rlock_result(Value x) {
duke@435 1057 LIR_Opr reg = rlock(x);
duke@435 1058 set_result(x, reg);
duke@435 1059 return reg;
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 // does an rlock and sets result
duke@435 1064 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
duke@435 1065 LIR_Opr reg;
duke@435 1066 switch (type) {
duke@435 1067 case T_BYTE:
duke@435 1068 case T_BOOLEAN:
duke@435 1069 reg = rlock_byte(type);
duke@435 1070 break;
duke@435 1071 default:
duke@435 1072 reg = rlock(x);
duke@435 1073 break;
duke@435 1074 }
duke@435 1075
duke@435 1076 set_result(x, reg);
duke@435 1077 return reg;
duke@435 1078 }
duke@435 1079
duke@435 1080
duke@435 1081 //---------------------------------------------------------------------
duke@435 1082 ciObject* LIRGenerator::get_jobject_constant(Value value) {
duke@435 1083 ObjectType* oc = value->type()->as_ObjectType();
duke@435 1084 if (oc) {
duke@435 1085 return oc->constant_value();
duke@435 1086 }
duke@435 1087 return NULL;
duke@435 1088 }
duke@435 1089
duke@435 1090
duke@435 1091 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
duke@435 1092 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
duke@435 1093 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
duke@435 1094
duke@435 1095 // no moves are created for phi functions at the begin of exception
duke@435 1096 // handlers, so assign operands manually here
duke@435 1097 for_each_phi_fun(block(), phi,
duke@435 1098 operand_for_instruction(phi));
duke@435 1099
duke@435 1100 LIR_Opr thread_reg = getThreadPointer();
iveresov@2344 1101 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
iveresov@2344 1102 exceptionOopOpr());
iveresov@2344 1103 __ move_wide(LIR_OprFact::oopConst(NULL),
iveresov@2344 1104 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
iveresov@2344 1105 __ move_wide(LIR_OprFact::oopConst(NULL),
iveresov@2344 1106 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
duke@435 1107
duke@435 1108 LIR_Opr result = new_register(T_OBJECT);
duke@435 1109 __ move(exceptionOopOpr(), result);
duke@435 1110 set_result(x, result);
duke@435 1111 }
duke@435 1112
duke@435 1113
duke@435 1114 //----------------------------------------------------------------------
duke@435 1115 //----------------------------------------------------------------------
duke@435 1116 //----------------------------------------------------------------------
duke@435 1117 //----------------------------------------------------------------------
duke@435 1118 // visitor functions
duke@435 1119 //----------------------------------------------------------------------
duke@435 1120 //----------------------------------------------------------------------
duke@435 1121 //----------------------------------------------------------------------
duke@435 1122 //----------------------------------------------------------------------
duke@435 1123
duke@435 1124 void LIRGenerator::do_Phi(Phi* x) {
duke@435 1125 // phi functions are never visited directly
duke@435 1126 ShouldNotReachHere();
duke@435 1127 }
duke@435 1128
duke@435 1129
duke@435 1130 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
duke@435 1131 void LIRGenerator::do_Constant(Constant* x) {
roland@2174 1132 if (x->state_before() != NULL) {
duke@435 1133 // Any constant with a ValueStack requires patching so emit the patch here
duke@435 1134 LIR_Opr reg = rlock_result(x);
roland@2174 1135 CodeEmitInfo* info = state_for(x, x->state_before());
duke@435 1136 __ oop2reg_patch(NULL, reg, info);
duke@435 1137 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
duke@435 1138 if (!x->is_pinned()) {
duke@435 1139 // unpinned constants are handled specially so that they can be
duke@435 1140 // put into registers when they are used multiple times within a
duke@435 1141 // block. After the block completes their operand will be
duke@435 1142 // cleared so that other blocks can't refer to that register.
duke@435 1143 set_result(x, load_constant(x));
duke@435 1144 } else {
duke@435 1145 LIR_Opr res = x->operand();
duke@435 1146 if (!res->is_valid()) {
duke@435 1147 res = LIR_OprFact::value_type(x->type());
duke@435 1148 }
duke@435 1149 if (res->is_constant()) {
duke@435 1150 LIR_Opr reg = rlock_result(x);
duke@435 1151 __ move(res, reg);
duke@435 1152 } else {
duke@435 1153 set_result(x, res);
duke@435 1154 }
duke@435 1155 }
duke@435 1156 } else {
duke@435 1157 set_result(x, LIR_OprFact::value_type(x->type()));
duke@435 1158 }
duke@435 1159 }
duke@435 1160
duke@435 1161
duke@435 1162 void LIRGenerator::do_Local(Local* x) {
duke@435 1163 // operand_for_instruction has the side effect of setting the result
duke@435 1164 // so there's no need to do it here.
duke@435 1165 operand_for_instruction(x);
duke@435 1166 }
duke@435 1167
duke@435 1168
duke@435 1169 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
duke@435 1170 Unimplemented();
duke@435 1171 }
duke@435 1172
duke@435 1173
duke@435 1174 void LIRGenerator::do_Return(Return* x) {
kvn@1215 1175 if (compilation()->env()->dtrace_method_probes()) {
duke@435 1176 BasicTypeList signature;
iveresov@2344 1177 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
coleenp@4037 1178 signature.append(T_OBJECT); // Method*
duke@435 1179 LIR_OprList* args = new LIR_OprList();
duke@435 1180 args->append(getThreadPointer());
roland@4051 1181 LIR_Opr meth = new_register(T_METADATA);
roland@4051 1182 __ metadata2reg(method()->constant_encoding(), meth);
duke@435 1183 args->append(meth);
duke@435 1184 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
duke@435 1185 }
duke@435 1186
duke@435 1187 if (x->type()->is_void()) {
duke@435 1188 __ return_op(LIR_OprFact::illegalOpr);
duke@435 1189 } else {
duke@435 1190 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
duke@435 1191 LIRItem result(x->result(), this);
duke@435 1192
duke@435 1193 result.load_item_force(reg);
duke@435 1194 __ return_op(result.result());
duke@435 1195 }
duke@435 1196 set_no_result(x);
duke@435 1197 }
duke@435 1198
johnc@2781 1199 // Examble: ref.get()
johnc@2781 1200 // Combination of LoadField and g1 pre-write barrier
johnc@2781 1201 void LIRGenerator::do_Reference_get(Intrinsic* x) {
johnc@2781 1202
johnc@2781 1203 const int referent_offset = java_lang_ref_Reference::referent_offset;
johnc@2781 1204 guarantee(referent_offset > 0, "referent offset not initialized");
johnc@2781 1205
johnc@2781 1206 assert(x->number_of_arguments() == 1, "wrong type");
johnc@2781 1207
johnc@2781 1208 LIRItem reference(x->argument_at(0), this);
johnc@2781 1209 reference.load_item();
johnc@2781 1210
johnc@2781 1211 // need to perform the null check on the reference objecy
johnc@2781 1212 CodeEmitInfo* info = NULL;
johnc@2781 1213 if (x->needs_null_check()) {
johnc@2781 1214 info = state_for(x);
johnc@2781 1215 }
johnc@2781 1216
johnc@2781 1217 LIR_Address* referent_field_adr =
johnc@2781 1218 new LIR_Address(reference.result(), referent_offset, T_OBJECT);
johnc@2781 1219
johnc@2781 1220 LIR_Opr result = rlock_result(x);
johnc@2781 1221
johnc@2781 1222 __ load(referent_field_adr, result, info);
johnc@2781 1223
johnc@2781 1224 // Register the value in the referent field with the pre-barrier
johnc@2781 1225 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
johnc@2781 1226 result /* pre_val */,
johnc@2781 1227 false /* do_load */,
johnc@2781 1228 false /* patch */,
johnc@2781 1229 NULL /* info */);
johnc@2781 1230 }
duke@435 1231
roland@3838 1232 // Example: clazz.isInstance(object)
roland@3838 1233 void LIRGenerator::do_isInstance(Intrinsic* x) {
roland@3838 1234 assert(x->number_of_arguments() == 2, "wrong type");
roland@3838 1235
roland@3838 1236 // TODO could try to substitute this node with an equivalent InstanceOf
roland@3838 1237 // if clazz is known to be a constant Class. This will pick up newly found
roland@3838 1238 // constants after HIR construction. I'll leave this to a future change.
roland@3838 1239
roland@3838 1240 // as a first cut, make a simple leaf call to runtime to stay platform independent.
roland@3838 1241 // could follow the aastore example in a future change.
roland@3838 1242
roland@3838 1243 LIRItem clazz(x->argument_at(0), this);
roland@3838 1244 LIRItem object(x->argument_at(1), this);
roland@3838 1245 clazz.load_item();
roland@3838 1246 object.load_item();
roland@3838 1247 LIR_Opr result = rlock_result(x);
roland@3838 1248
roland@3838 1249 // need to perform null check on clazz
roland@3838 1250 if (x->needs_null_check()) {
roland@3838 1251 CodeEmitInfo* info = state_for(x);
roland@3838 1252 __ null_check(clazz.result(), info);
roland@3838 1253 }
roland@3838 1254
roland@3838 1255 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
roland@3838 1256 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
roland@3838 1257 x->type(),
roland@3838 1258 NULL); // NULL CodeEmitInfo results in a leaf call
roland@3838 1259 __ move(call_result, result);
roland@3838 1260 }
roland@3838 1261
duke@435 1262 // Example: object.getClass ()
duke@435 1263 void LIRGenerator::do_getClass(Intrinsic* x) {
duke@435 1264 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1265
duke@435 1266 LIRItem rcvr(x->argument_at(0), this);
duke@435 1267 rcvr.load_item();
duke@435 1268 LIR_Opr result = rlock_result(x);
duke@435 1269
duke@435 1270 // need to perform the null check on the rcvr
duke@435 1271 CodeEmitInfo* info = NULL;
duke@435 1272 if (x->needs_null_check()) {
roland@2174 1273 info = state_for(x);
duke@435 1274 }
roland@4159 1275 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
stefank@3391 1276 __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
duke@435 1277 }
duke@435 1278
duke@435 1279
duke@435 1280 // Example: Thread.currentThread()
duke@435 1281 void LIRGenerator::do_currentThread(Intrinsic* x) {
duke@435 1282 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 1283 LIR_Opr reg = rlock_result(x);
iveresov@2344 1284 __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
duke@435 1285 }
duke@435 1286
duke@435 1287
duke@435 1288 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
duke@435 1289 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1290 LIRItem receiver(x->argument_at(0), this);
duke@435 1291
duke@435 1292 receiver.load_item();
duke@435 1293 BasicTypeList signature;
duke@435 1294 signature.append(T_OBJECT); // receiver
duke@435 1295 LIR_OprList* args = new LIR_OprList();
duke@435 1296 args->append(receiver.result());
duke@435 1297 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1298 call_runtime(&signature, args,
duke@435 1299 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
duke@435 1300 voidType, info);
duke@435 1301
duke@435 1302 set_no_result(x);
duke@435 1303 }
duke@435 1304
duke@435 1305
duke@435 1306 //------------------------local access--------------------------------------
duke@435 1307
duke@435 1308 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
duke@435 1309 if (x->operand()->is_illegal()) {
duke@435 1310 Constant* c = x->as_Constant();
duke@435 1311 if (c != NULL) {
duke@435 1312 x->set_operand(LIR_OprFact::value_type(c->type()));
duke@435 1313 } else {
duke@435 1314 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
duke@435 1315 // allocate a virtual register for this local or phi
duke@435 1316 x->set_operand(rlock(x));
duke@435 1317 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
duke@435 1318 }
duke@435 1319 }
duke@435 1320 return x->operand();
duke@435 1321 }
duke@435 1322
duke@435 1323
duke@435 1324 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
duke@435 1325 if (opr->is_virtual()) {
duke@435 1326 return instruction_for_vreg(opr->vreg_number());
duke@435 1327 }
duke@435 1328 return NULL;
duke@435 1329 }
duke@435 1330
duke@435 1331
duke@435 1332 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
duke@435 1333 if (reg_num < _instruction_for_operand.length()) {
duke@435 1334 return _instruction_for_operand.at(reg_num);
duke@435 1335 }
duke@435 1336 return NULL;
duke@435 1337 }
duke@435 1338
duke@435 1339
duke@435 1340 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
duke@435 1341 if (_vreg_flags.size_in_bits() == 0) {
duke@435 1342 BitMap2D temp(100, num_vreg_flags);
duke@435 1343 temp.clear();
duke@435 1344 _vreg_flags = temp;
duke@435 1345 }
duke@435 1346 _vreg_flags.at_put_grow(vreg_num, f, true);
duke@435 1347 }
duke@435 1348
duke@435 1349 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
duke@435 1350 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
duke@435 1351 return false;
duke@435 1352 }
duke@435 1353 return _vreg_flags.at(vreg_num, f);
duke@435 1354 }
duke@435 1355
duke@435 1356
duke@435 1357 // Block local constant handling. This code is useful for keeping
duke@435 1358 // unpinned constants and constants which aren't exposed in the IR in
duke@435 1359 // registers. Unpinned Constant instructions have their operands
duke@435 1360 // cleared when the block is finished so that other blocks can't end
duke@435 1361 // up referring to their registers.
duke@435 1362
duke@435 1363 LIR_Opr LIRGenerator::load_constant(Constant* x) {
duke@435 1364 assert(!x->is_pinned(), "only for unpinned constants");
duke@435 1365 _unpinned_constants.append(x);
duke@435 1366 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
duke@435 1367 }
duke@435 1368
duke@435 1369
duke@435 1370 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
duke@435 1371 BasicType t = c->type();
duke@435 1372 for (int i = 0; i < _constants.length(); i++) {
duke@435 1373 LIR_Const* other = _constants.at(i);
duke@435 1374 if (t == other->type()) {
duke@435 1375 switch (t) {
duke@435 1376 case T_INT:
duke@435 1377 case T_FLOAT:
duke@435 1378 if (c->as_jint_bits() != other->as_jint_bits()) continue;
duke@435 1379 break;
duke@435 1380 case T_LONG:
duke@435 1381 case T_DOUBLE:
never@921 1382 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
never@921 1383 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
duke@435 1384 break;
duke@435 1385 case T_OBJECT:
duke@435 1386 if (c->as_jobject() != other->as_jobject()) continue;
duke@435 1387 break;
duke@435 1388 }
duke@435 1389 return _reg_for_constants.at(i);
duke@435 1390 }
duke@435 1391 }
duke@435 1392
duke@435 1393 LIR_Opr result = new_register(t);
duke@435 1394 __ move((LIR_Opr)c, result);
duke@435 1395 _constants.append(c);
duke@435 1396 _reg_for_constants.append(result);
duke@435 1397 return result;
duke@435 1398 }
duke@435 1399
duke@435 1400 // Various barriers
duke@435 1401
johnc@2781 1402 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
johnc@2781 1403 bool do_load, bool patch, CodeEmitInfo* info) {
ysr@777 1404 // Do the pre-write barrier, if any.
ysr@777 1405 switch (_bs->kind()) {
jprovino@4542 1406 #if INCLUDE_ALL_GCS
ysr@777 1407 case BarrierSet::G1SATBCT:
ysr@777 1408 case BarrierSet::G1SATBCTLogging:
johnc@2781 1409 G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
ysr@777 1410 break;
jprovino@4542 1411 #endif // INCLUDE_ALL_GCS
ysr@777 1412 case BarrierSet::CardTableModRef:
ysr@777 1413 case BarrierSet::CardTableExtension:
ysr@777 1414 // No pre barriers
ysr@777 1415 break;
ysr@777 1416 case BarrierSet::ModRef:
ysr@777 1417 case BarrierSet::Other:
ysr@777 1418 // No pre barriers
ysr@777 1419 break;
ysr@777 1420 default :
ysr@777 1421 ShouldNotReachHere();
ysr@777 1422
ysr@777 1423 }
ysr@777 1424 }
ysr@777 1425
duke@435 1426 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1427 switch (_bs->kind()) {
jprovino@4542 1428 #if INCLUDE_ALL_GCS
ysr@777 1429 case BarrierSet::G1SATBCT:
ysr@777 1430 case BarrierSet::G1SATBCTLogging:
ysr@777 1431 G1SATBCardTableModRef_post_barrier(addr, new_val);
ysr@777 1432 break;
jprovino@4542 1433 #endif // INCLUDE_ALL_GCS
duke@435 1434 case BarrierSet::CardTableModRef:
duke@435 1435 case BarrierSet::CardTableExtension:
duke@435 1436 CardTableModRef_post_barrier(addr, new_val);
duke@435 1437 break;
duke@435 1438 case BarrierSet::ModRef:
duke@435 1439 case BarrierSet::Other:
duke@435 1440 // No post barriers
duke@435 1441 break;
duke@435 1442 default :
duke@435 1443 ShouldNotReachHere();
duke@435 1444 }
duke@435 1445 }
duke@435 1446
ysr@777 1447 ////////////////////////////////////////////////////////////////////////
jprovino@4542 1448 #if INCLUDE_ALL_GCS
ysr@777 1449
johnc@2781 1450 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
johnc@2781 1451 bool do_load, bool patch, CodeEmitInfo* info) {
ysr@777 1452 // First we test whether marking is in progress.
ysr@777 1453 BasicType flag_type;
ysr@777 1454 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 1455 flag_type = T_INT;
ysr@777 1456 } else {
ysr@777 1457 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 1458 "Assumption");
ysr@777 1459 flag_type = T_BYTE;
ysr@777 1460 }
ysr@777 1461 LIR_Opr thrd = getThreadPointer();
ysr@777 1462 LIR_Address* mark_active_flag_addr =
ysr@777 1463 new LIR_Address(thrd,
ysr@777 1464 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1465 PtrQueue::byte_offset_of_active()),
ysr@777 1466 flag_type);
ysr@777 1467 // Read the marking-in-progress flag.
ysr@777 1468 LIR_Opr flag_val = new_register(T_INT);
ysr@777 1469 __ load(mark_active_flag_addr, flag_val);
ysr@777 1470 __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
johnc@2781 1471
johnc@2781 1472 LIR_PatchCode pre_val_patch_code = lir_patch_none;
johnc@2781 1473
johnc@2781 1474 CodeStub* slow;
johnc@2781 1475
johnc@2781 1476 if (do_load) {
johnc@2781 1477 assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
johnc@2781 1478 assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
johnc@2781 1479
johnc@2781 1480 if (patch)
johnc@2781 1481 pre_val_patch_code = lir_patch_normal;
johnc@2781 1482
johnc@2781 1483 pre_val = new_register(T_OBJECT);
johnc@2781 1484
johnc@2781 1485 if (!addr_opr->is_address()) {
johnc@2781 1486 assert(addr_opr->is_register(), "must be");
johnc@2781 1487 addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
johnc@2781 1488 }
johnc@2781 1489 slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
johnc@2781 1490 } else {
johnc@2781 1491 assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
johnc@2781 1492 assert(pre_val->is_register(), "must be");
johnc@2781 1493 assert(pre_val->type() == T_OBJECT, "must be an object");
johnc@2781 1494 assert(info == NULL, "sanity");
johnc@2781 1495
johnc@2781 1496 slow = new G1PreBarrierStub(pre_val);
ysr@777 1497 }
johnc@2781 1498
ysr@777 1499 __ branch(lir_cond_notEqual, T_INT, slow);
ysr@777 1500 __ branch_destination(slow->continuation());
ysr@777 1501 }
ysr@777 1502
ysr@777 1503 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1504 // If the "new_val" is a constant NULL, no barrier is necessary.
ysr@777 1505 if (new_val->is_constant() &&
ysr@777 1506 new_val->as_constant_ptr()->as_jobject() == NULL) return;
ysr@777 1507
ysr@777 1508 if (!new_val->is_register()) {
iveresov@1927 1509 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1510 if (new_val->is_constant()) {
ysr@777 1511 __ move(new_val, new_val_reg);
ysr@777 1512 } else {
ysr@777 1513 __ leal(new_val, new_val_reg);
ysr@777 1514 }
ysr@777 1515 new_val = new_val_reg;
ysr@777 1516 }
ysr@777 1517 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1518
ysr@777 1519 if (addr->is_address()) {
ysr@777 1520 LIR_Address* address = addr->as_address_ptr();
iveresov@2746 1521 LIR_Opr ptr = new_pointer_register();
ysr@777 1522 if (!address->index()->is_valid() && address->disp() == 0) {
ysr@777 1523 __ move(address->base(), ptr);
ysr@777 1524 } else {
ysr@777 1525 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
ysr@777 1526 __ leal(addr, ptr);
ysr@777 1527 }
ysr@777 1528 addr = ptr;
ysr@777 1529 }
ysr@777 1530 assert(addr->is_register(), "must be a register at this point");
ysr@777 1531
ysr@777 1532 LIR_Opr xor_res = new_pointer_register();
ysr@777 1533 LIR_Opr xor_shift_res = new_pointer_register();
ysr@777 1534 if (TwoOperandLIRForm ) {
ysr@777 1535 __ move(addr, xor_res);
ysr@777 1536 __ logical_xor(xor_res, new_val, xor_res);
ysr@777 1537 __ move(xor_res, xor_shift_res);
ysr@777 1538 __ unsigned_shift_right(xor_shift_res,
ysr@777 1539 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1540 xor_shift_res,
ysr@777 1541 LIR_OprDesc::illegalOpr());
ysr@777 1542 } else {
ysr@777 1543 __ logical_xor(addr, new_val, xor_res);
ysr@777 1544 __ unsigned_shift_right(xor_res,
ysr@777 1545 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1546 xor_shift_res,
ysr@777 1547 LIR_OprDesc::illegalOpr());
ysr@777 1548 }
ysr@777 1549
ysr@777 1550 if (!new_val->is_register()) {
iveresov@1927 1551 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1552 __ leal(new_val, new_val_reg);
ysr@777 1553 new_val = new_val_reg;
ysr@777 1554 }
ysr@777 1555 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1556
ysr@777 1557 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
ysr@777 1558
ysr@777 1559 CodeStub* slow = new G1PostBarrierStub(addr, new_val);
iveresov@1927 1560 __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
ysr@777 1561 __ branch_destination(slow->continuation());
ysr@777 1562 }
ysr@777 1563
jprovino@4542 1564 #endif // INCLUDE_ALL_GCS
ysr@777 1565 ////////////////////////////////////////////////////////////////////////
ysr@777 1566
duke@435 1567 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
duke@435 1568
ysr@777 1569 assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
ysr@777 1570 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
duke@435 1571 if (addr->is_address()) {
duke@435 1572 LIR_Address* address = addr->as_address_ptr();
iveresov@2746 1573 // ptr cannot be an object because we use this barrier for array card marks
iveresov@2746 1574 // and addr can point in the middle of an array.
iveresov@2746 1575 LIR_Opr ptr = new_pointer_register();
duke@435 1576 if (!address->index()->is_valid() && address->disp() == 0) {
duke@435 1577 __ move(address->base(), ptr);
duke@435 1578 } else {
duke@435 1579 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
duke@435 1580 __ leal(addr, ptr);
duke@435 1581 }
duke@435 1582 addr = ptr;
duke@435 1583 }
duke@435 1584 assert(addr->is_register(), "must be a register at this point");
duke@435 1585
bobv@2036 1586 #ifdef ARM
bobv@2036 1587 // TODO: ARM - move to platform-dependent code
bobv@2036 1588 LIR_Opr tmp = FrameMap::R14_opr;
bobv@2036 1589 if (VM_Version::supports_movw()) {
bobv@2036 1590 __ move((LIR_Opr)card_table_base, tmp);
bobv@2036 1591 } else {
bobv@2036 1592 __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
bobv@2036 1593 }
bobv@2036 1594
bobv@2036 1595 CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
bobv@2036 1596 LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
bobv@2036 1597 if(((int)ct->byte_map_base & 0xff) == 0) {
bobv@2036 1598 __ move(tmp, card_addr);
bobv@2036 1599 } else {
bobv@2036 1600 LIR_Opr tmp_zero = new_register(T_INT);
bobv@2036 1601 __ move(LIR_OprFact::intConst(0), tmp_zero);
bobv@2036 1602 __ move(tmp_zero, card_addr);
bobv@2036 1603 }
bobv@2036 1604 #else // ARM
duke@435 1605 LIR_Opr tmp = new_pointer_register();
duke@435 1606 if (TwoOperandLIRForm) {
duke@435 1607 __ move(addr, tmp);
duke@435 1608 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
duke@435 1609 } else {
duke@435 1610 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
duke@435 1611 }
duke@435 1612 if (can_inline_as_constant(card_table_base)) {
duke@435 1613 __ move(LIR_OprFact::intConst(0),
duke@435 1614 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
duke@435 1615 } else {
duke@435 1616 __ move(LIR_OprFact::intConst(0),
duke@435 1617 new LIR_Address(tmp, load_constant(card_table_base),
duke@435 1618 T_BYTE));
duke@435 1619 }
bobv@2036 1620 #endif // ARM
duke@435 1621 }
duke@435 1622
duke@435 1623
duke@435 1624 //------------------------field access--------------------------------------
duke@435 1625
duke@435 1626 // Comment copied form templateTable_i486.cpp
duke@435 1627 // ----------------------------------------------------------------------------
duke@435 1628 // Volatile variables demand their effects be made known to all CPU's in
duke@435 1629 // order. Store buffers on most chips allow reads & writes to reorder; the
duke@435 1630 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
duke@435 1631 // memory barrier (i.e., it's not sufficient that the interpreter does not
duke@435 1632 // reorder volatile references, the hardware also must not reorder them).
duke@435 1633 //
duke@435 1634 // According to the new Java Memory Model (JMM):
duke@435 1635 // (1) All volatiles are serialized wrt to each other.
duke@435 1636 // ALSO reads & writes act as aquire & release, so:
duke@435 1637 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
duke@435 1638 // the read float up to before the read. It's OK for non-volatile memory refs
duke@435 1639 // that happen before the volatile read to float down below it.
duke@435 1640 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
duke@435 1641 // that happen BEFORE the write float down to after the write. It's OK for
duke@435 1642 // non-volatile memory refs that happen after the volatile write to float up
duke@435 1643 // before it.
duke@435 1644 //
duke@435 1645 // We only put in barriers around volatile refs (they are expensive), not
duke@435 1646 // _between_ memory refs (that would require us to track the flavor of the
duke@435 1647 // previous memory refs). Requirements (2) and (3) require some barriers
duke@435 1648 // before volatile stores and after volatile loads. These nearly cover
duke@435 1649 // requirement (1) but miss the volatile-store-volatile-load case. This final
duke@435 1650 // case is placed after volatile-stores although it could just as well go
duke@435 1651 // before volatile-loads.
duke@435 1652
duke@435 1653
duke@435 1654 void LIRGenerator::do_StoreField(StoreField* x) {
duke@435 1655 bool needs_patching = x->needs_patching();
duke@435 1656 bool is_volatile = x->field()->is_volatile();
duke@435 1657 BasicType field_type = x->field_type();
duke@435 1658 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
duke@435 1659
duke@435 1660 CodeEmitInfo* info = NULL;
duke@435 1661 if (needs_patching) {
duke@435 1662 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1663 info = state_for(x, x->state_before());
duke@435 1664 } else if (x->needs_null_check()) {
duke@435 1665 NullCheck* nc = x->explicit_null_check();
duke@435 1666 if (nc == NULL) {
roland@2174 1667 info = state_for(x);
duke@435 1668 } else {
duke@435 1669 info = state_for(nc);
duke@435 1670 }
duke@435 1671 }
duke@435 1672
duke@435 1673
duke@435 1674 LIRItem object(x->obj(), this);
duke@435 1675 LIRItem value(x->value(), this);
duke@435 1676
duke@435 1677 object.load_item();
duke@435 1678
duke@435 1679 if (is_volatile || needs_patching) {
duke@435 1680 // load item if field is volatile (fewer special cases for volatiles)
duke@435 1681 // load item if field not initialized
duke@435 1682 // load item if field not constant
duke@435 1683 // because of code patching we cannot inline constants
duke@435 1684 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
duke@435 1685 value.load_byte_item();
duke@435 1686 } else {
duke@435 1687 value.load_item();
duke@435 1688 }
duke@435 1689 } else {
duke@435 1690 value.load_for_store(field_type);
duke@435 1691 }
duke@435 1692
duke@435 1693 set_no_result(x);
duke@435 1694
roland@2174 1695 #ifndef PRODUCT
duke@435 1696 if (PrintNotLoaded && needs_patching) {
duke@435 1697 tty->print_cr(" ###class not loaded at store_%s bci %d",
roland@2174 1698 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1699 }
roland@2174 1700 #endif
duke@435 1701
duke@435 1702 if (x->needs_null_check() &&
duke@435 1703 (needs_patching ||
duke@435 1704 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1705 // emit an explicit null check because the offset is too large
duke@435 1706 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1707 }
duke@435 1708
duke@435 1709 LIR_Address* address;
duke@435 1710 if (needs_patching) {
duke@435 1711 // we need to patch the offset in the instruction so don't allow
duke@435 1712 // generate_address to try to be smart about emitting the -1.
duke@435 1713 // Otherwise the patching code won't know how to find the
duke@435 1714 // instruction to patch.
bobv@2036 1715 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1716 } else {
duke@435 1717 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1718 }
duke@435 1719
duke@435 1720 if (is_volatile && os::is_MP()) {
duke@435 1721 __ membar_release();
duke@435 1722 }
duke@435 1723
ysr@777 1724 if (is_oop) {
ysr@777 1725 // Do the pre-write barrier, if any.
ysr@777 1726 pre_barrier(LIR_OprFact::address(address),
johnc@2781 1727 LIR_OprFact::illegalOpr /* pre_val */,
johnc@2781 1728 true /* do_load*/,
ysr@777 1729 needs_patching,
ysr@777 1730 (info ? new CodeEmitInfo(info) : NULL));
ysr@777 1731 }
ysr@777 1732
never@2634 1733 if (is_volatile && !needs_patching) {
duke@435 1734 volatile_field_store(value.result(), address, info);
duke@435 1735 } else {
duke@435 1736 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1737 __ store(value.result(), address, info, patch_code);
duke@435 1738 }
duke@435 1739
duke@435 1740 if (is_oop) {
never@1254 1741 // Store to object so mark the card of the header
duke@435 1742 post_barrier(object.result(), value.result());
duke@435 1743 }
duke@435 1744
duke@435 1745 if (is_volatile && os::is_MP()) {
duke@435 1746 __ membar();
duke@435 1747 }
duke@435 1748 }
duke@435 1749
duke@435 1750
duke@435 1751 void LIRGenerator::do_LoadField(LoadField* x) {
duke@435 1752 bool needs_patching = x->needs_patching();
duke@435 1753 bool is_volatile = x->field()->is_volatile();
duke@435 1754 BasicType field_type = x->field_type();
duke@435 1755
duke@435 1756 CodeEmitInfo* info = NULL;
duke@435 1757 if (needs_patching) {
duke@435 1758 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1759 info = state_for(x, x->state_before());
duke@435 1760 } else if (x->needs_null_check()) {
duke@435 1761 NullCheck* nc = x->explicit_null_check();
duke@435 1762 if (nc == NULL) {
roland@2174 1763 info = state_for(x);
duke@435 1764 } else {
duke@435 1765 info = state_for(nc);
duke@435 1766 }
duke@435 1767 }
duke@435 1768
duke@435 1769 LIRItem object(x->obj(), this);
duke@435 1770
duke@435 1771 object.load_item();
duke@435 1772
roland@2174 1773 #ifndef PRODUCT
duke@435 1774 if (PrintNotLoaded && needs_patching) {
duke@435 1775 tty->print_cr(" ###class not loaded at load_%s bci %d",
roland@2174 1776 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1777 }
roland@2174 1778 #endif
duke@435 1779
roland@4860 1780 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
duke@435 1781 if (x->needs_null_check() &&
duke@435 1782 (needs_patching ||
roland@4860 1783 MacroAssembler::needs_explicit_null_check(x->offset()) ||
roland@4860 1784 stress_deopt)) {
roland@4860 1785 LIR_Opr obj = object.result();
roland@4860 1786 if (stress_deopt) {
roland@4860 1787 obj = new_register(T_OBJECT);
roland@4860 1788 __ move(LIR_OprFact::oopConst(NULL), obj);
roland@4860 1789 }
duke@435 1790 // emit an explicit null check because the offset is too large
roland@4860 1791 __ null_check(obj, new CodeEmitInfo(info));
duke@435 1792 }
duke@435 1793
duke@435 1794 LIR_Opr reg = rlock_result(x, field_type);
duke@435 1795 LIR_Address* address;
duke@435 1796 if (needs_patching) {
duke@435 1797 // we need to patch the offset in the instruction so don't allow
duke@435 1798 // generate_address to try to be smart about emitting the -1.
duke@435 1799 // Otherwise the patching code won't know how to find the
duke@435 1800 // instruction to patch.
bobv@2036 1801 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1802 } else {
duke@435 1803 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1804 }
duke@435 1805
never@2634 1806 if (is_volatile && !needs_patching) {
duke@435 1807 volatile_field_load(address, reg, info);
duke@435 1808 } else {
duke@435 1809 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1810 __ load(address, reg, info, patch_code);
duke@435 1811 }
duke@435 1812
duke@435 1813 if (is_volatile && os::is_MP()) {
duke@435 1814 __ membar_acquire();
duke@435 1815 }
duke@435 1816 }
duke@435 1817
duke@435 1818
duke@435 1819 //------------------------java.nio.Buffer.checkIndex------------------------
duke@435 1820
duke@435 1821 // int java.nio.Buffer.checkIndex(int)
duke@435 1822 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
duke@435 1823 // NOTE: by the time we are in checkIndex() we are guaranteed that
duke@435 1824 // the buffer is non-null (because checkIndex is package-private and
duke@435 1825 // only called from within other methods in the buffer).
duke@435 1826 assert(x->number_of_arguments() == 2, "wrong type");
duke@435 1827 LIRItem buf (x->argument_at(0), this);
duke@435 1828 LIRItem index(x->argument_at(1), this);
duke@435 1829 buf.load_item();
duke@435 1830 index.load_item();
duke@435 1831
duke@435 1832 LIR_Opr result = rlock_result(x);
duke@435 1833 if (GenerateRangeChecks) {
duke@435 1834 CodeEmitInfo* info = state_for(x);
duke@435 1835 CodeStub* stub = new RangeCheckStub(info, index.result(), true);
duke@435 1836 if (index.result()->is_constant()) {
duke@435 1837 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
duke@435 1838 __ branch(lir_cond_belowEqual, T_INT, stub);
duke@435 1839 } else {
duke@435 1840 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
duke@435 1841 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 1842 __ branch(lir_cond_aboveEqual, T_INT, stub);
duke@435 1843 }
duke@435 1844 __ move(index.result(), result);
duke@435 1845 } else {
duke@435 1846 // Just load the index into the result register
duke@435 1847 __ move(index.result(), result);
duke@435 1848 }
duke@435 1849 }
duke@435 1850
duke@435 1851
duke@435 1852 //------------------------array access--------------------------------------
duke@435 1853
duke@435 1854
duke@435 1855 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
duke@435 1856 LIRItem array(x->array(), this);
duke@435 1857 array.load_item();
duke@435 1858 LIR_Opr reg = rlock_result(x);
duke@435 1859
duke@435 1860 CodeEmitInfo* info = NULL;
duke@435 1861 if (x->needs_null_check()) {
duke@435 1862 NullCheck* nc = x->explicit_null_check();
duke@435 1863 if (nc == NULL) {
duke@435 1864 info = state_for(x);
duke@435 1865 } else {
duke@435 1866 info = state_for(nc);
duke@435 1867 }
roland@4860 1868 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
roland@4860 1869 LIR_Opr obj = new_register(T_OBJECT);
roland@4860 1870 __ move(LIR_OprFact::oopConst(NULL), obj);
roland@4860 1871 __ null_check(obj, new CodeEmitInfo(info));
roland@4860 1872 }
duke@435 1873 }
duke@435 1874 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
duke@435 1875 }
duke@435 1876
duke@435 1877
duke@435 1878 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
duke@435 1879 bool use_length = x->length() != NULL;
duke@435 1880 LIRItem array(x->array(), this);
duke@435 1881 LIRItem index(x->index(), this);
duke@435 1882 LIRItem length(this);
roland@4860 1883 bool needs_range_check = x->compute_needs_range_check();
roland@4860 1884
roland@4860 1885 if (use_length && needs_range_check) {
roland@4860 1886 length.set_instruction(x->length());
roland@4860 1887 length.load_item();
duke@435 1888 }
duke@435 1889
duke@435 1890 array.load_item();
duke@435 1891 if (index.is_constant() && can_inline_as_constant(x->index())) {
duke@435 1892 // let it be a constant
duke@435 1893 index.dont_load_item();
duke@435 1894 } else {
duke@435 1895 index.load_item();
duke@435 1896 }
duke@435 1897
duke@435 1898 CodeEmitInfo* range_check_info = state_for(x);
duke@435 1899 CodeEmitInfo* null_check_info = NULL;
duke@435 1900 if (x->needs_null_check()) {
duke@435 1901 NullCheck* nc = x->explicit_null_check();
duke@435 1902 if (nc != NULL) {
duke@435 1903 null_check_info = state_for(nc);
duke@435 1904 } else {
duke@435 1905 null_check_info = range_check_info;
duke@435 1906 }
roland@4860 1907 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
roland@4860 1908 LIR_Opr obj = new_register(T_OBJECT);
roland@4860 1909 __ move(LIR_OprFact::oopConst(NULL), obj);
roland@4860 1910 __ null_check(obj, new CodeEmitInfo(null_check_info));
roland@4860 1911 }
duke@435 1912 }
duke@435 1913
duke@435 1914 // emit array address setup early so it schedules better
duke@435 1915 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
duke@435 1916
duke@435 1917 if (GenerateRangeChecks && needs_range_check) {
roland@4860 1918 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
roland@4860 1919 __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
roland@4860 1920 } else if (use_length) {
duke@435 1921 // TODO: use a (modified) version of array_range_check that does not require a
duke@435 1922 // constant length to be loaded to a register
duke@435 1923 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 1924 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 1925 } else {
duke@435 1926 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 1927 // The range check performs the null check, so clear it out for the load
duke@435 1928 null_check_info = NULL;
duke@435 1929 }
duke@435 1930 }
duke@435 1931
duke@435 1932 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
duke@435 1933 }
duke@435 1934
duke@435 1935
duke@435 1936 void LIRGenerator::do_NullCheck(NullCheck* x) {
duke@435 1937 if (x->can_trap()) {
duke@435 1938 LIRItem value(x->obj(), this);
duke@435 1939 value.load_item();
duke@435 1940 CodeEmitInfo* info = state_for(x);
duke@435 1941 __ null_check(value.result(), info);
duke@435 1942 }
duke@435 1943 }
duke@435 1944
duke@435 1945
twisti@3969 1946 void LIRGenerator::do_TypeCast(TypeCast* x) {
twisti@3969 1947 LIRItem value(x->obj(), this);
twisti@3969 1948 value.load_item();
twisti@3969 1949 // the result is the same as from the node we are casting
twisti@3969 1950 set_result(x, value.result());
twisti@3969 1951 }
twisti@3969 1952
twisti@3969 1953
duke@435 1954 void LIRGenerator::do_Throw(Throw* x) {
duke@435 1955 LIRItem exception(x->exception(), this);
duke@435 1956 exception.load_item();
duke@435 1957 set_no_result(x);
duke@435 1958 LIR_Opr exception_opr = exception.result();
duke@435 1959 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1960
duke@435 1961 #ifndef PRODUCT
duke@435 1962 if (PrintC1Statistics) {
iveresov@2138 1963 increment_counter(Runtime1::throw_count_address(), T_INT);
duke@435 1964 }
duke@435 1965 #endif
duke@435 1966
duke@435 1967 // check if the instruction has an xhandler in any of the nested scopes
duke@435 1968 bool unwind = false;
duke@435 1969 if (info->exception_handlers()->length() == 0) {
duke@435 1970 // this throw is not inside an xhandler
duke@435 1971 unwind = true;
duke@435 1972 } else {
duke@435 1973 // get some idea of the throw type
duke@435 1974 bool type_is_exact = true;
duke@435 1975 ciType* throw_type = x->exception()->exact_type();
duke@435 1976 if (throw_type == NULL) {
duke@435 1977 type_is_exact = false;
duke@435 1978 throw_type = x->exception()->declared_type();
duke@435 1979 }
duke@435 1980 if (throw_type != NULL && throw_type->is_instance_klass()) {
duke@435 1981 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
duke@435 1982 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
duke@435 1983 }
duke@435 1984 }
duke@435 1985
duke@435 1986 // do null check before moving exception oop into fixed register
duke@435 1987 // to avoid a fixed interval with an oop during the null check.
duke@435 1988 // Use a copy of the CodeEmitInfo because debug information is
duke@435 1989 // different for null_check and throw.
duke@435 1990 if (GenerateCompilerNullChecks &&
duke@435 1991 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
duke@435 1992 // if the exception object wasn't created using new then it might be null.
roland@2174 1993 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
duke@435 1994 }
duke@435 1995
never@1813 1996 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
duke@435 1997 // we need to go through the exception lookup path to get JVMTI
duke@435 1998 // notification done
duke@435 1999 unwind = false;
duke@435 2000 }
duke@435 2001
duke@435 2002 // move exception oop into fixed register
duke@435 2003 __ move(exception_opr, exceptionOopOpr());
duke@435 2004
duke@435 2005 if (unwind) {
never@1813 2006 __ unwind_exception(exceptionOopOpr());
duke@435 2007 } else {
duke@435 2008 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
duke@435 2009 }
duke@435 2010 }
duke@435 2011
duke@435 2012
duke@435 2013 void LIRGenerator::do_RoundFP(RoundFP* x) {
duke@435 2014 LIRItem input(x->input(), this);
duke@435 2015 input.load_item();
duke@435 2016 LIR_Opr input_opr = input.result();
duke@435 2017 assert(input_opr->is_register(), "why round if value is not in a register?");
duke@435 2018 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
duke@435 2019 if (input_opr->is_single_fpu()) {
duke@435 2020 set_result(x, round_item(input_opr)); // This code path not currently taken
duke@435 2021 } else {
duke@435 2022 LIR_Opr result = new_register(T_DOUBLE);
duke@435 2023 set_vreg_flag(result, must_start_in_memory);
duke@435 2024 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
duke@435 2025 set_result(x, result);
duke@435 2026 }
duke@435 2027 }
duke@435 2028
duke@435 2029 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
duke@435 2030 LIRItem base(x->base(), this);
duke@435 2031 LIRItem idx(this);
duke@435 2032
duke@435 2033 base.load_item();
duke@435 2034 if (x->has_index()) {
duke@435 2035 idx.set_instruction(x->index());
duke@435 2036 idx.load_nonconstant();
duke@435 2037 }
duke@435 2038
duke@435 2039 LIR_Opr reg = rlock_result(x, x->basic_type());
duke@435 2040
duke@435 2041 int log2_scale = 0;
duke@435 2042 if (x->has_index()) {
duke@435 2043 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 2044 log2_scale = x->log2_scale();
duke@435 2045 }
duke@435 2046
duke@435 2047 assert(!x->has_index() || idx.value() == x->index(), "should match");
duke@435 2048
duke@435 2049 LIR_Opr base_op = base.result();
duke@435 2050 #ifndef _LP64
duke@435 2051 if (x->base()->type()->tag() == longTag) {
duke@435 2052 base_op = new_register(T_INT);
duke@435 2053 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 2054 } else {
duke@435 2055 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 2056 }
duke@435 2057 #endif
duke@435 2058
duke@435 2059 BasicType dst_type = x->basic_type();
duke@435 2060 LIR_Opr index_op = idx.result();
duke@435 2061
duke@435 2062 LIR_Address* addr;
duke@435 2063 if (index_op->is_constant()) {
duke@435 2064 assert(log2_scale == 0, "must not have a scale");
duke@435 2065 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
duke@435 2066 } else {
never@739 2067 #ifdef X86
roland@1495 2068 #ifdef _LP64
roland@1495 2069 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 2070 LIR_Opr tmp = new_pointer_register();
roland@1495 2071 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 2072 index_op = tmp;
roland@1495 2073 }
roland@1495 2074 #endif
duke@435 2075 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
bobv@2036 2076 #elif defined(ARM)
bobv@2036 2077 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
duke@435 2078 #else
duke@435 2079 if (index_op->is_illegal() || log2_scale == 0) {
roland@1495 2080 #ifdef _LP64
roland@1495 2081 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 2082 LIR_Opr tmp = new_pointer_register();
roland@1495 2083 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 2084 index_op = tmp;
roland@1495 2085 }
roland@1495 2086 #endif
duke@435 2087 addr = new LIR_Address(base_op, index_op, dst_type);
duke@435 2088 } else {
roland@1495 2089 LIR_Opr tmp = new_pointer_register();
duke@435 2090 __ shift_left(index_op, log2_scale, tmp);
duke@435 2091 addr = new LIR_Address(base_op, tmp, dst_type);
duke@435 2092 }
duke@435 2093 #endif
duke@435 2094 }
duke@435 2095
duke@435 2096 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
duke@435 2097 __ unaligned_move(addr, reg);
duke@435 2098 } else {
iveresov@2344 2099 if (dst_type == T_OBJECT && x->is_wide()) {
iveresov@2344 2100 __ move_wide(addr, reg);
iveresov@2344 2101 } else {
iveresov@2344 2102 __ move(addr, reg);
iveresov@2344 2103 }
duke@435 2104 }
duke@435 2105 }
duke@435 2106
duke@435 2107
duke@435 2108 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
duke@435 2109 int log2_scale = 0;
duke@435 2110 BasicType type = x->basic_type();
duke@435 2111
duke@435 2112 if (x->has_index()) {
duke@435 2113 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 2114 log2_scale = x->log2_scale();
duke@435 2115 }
duke@435 2116
duke@435 2117 LIRItem base(x->base(), this);
duke@435 2118 LIRItem value(x->value(), this);
duke@435 2119 LIRItem idx(this);
duke@435 2120
duke@435 2121 base.load_item();
duke@435 2122 if (x->has_index()) {
duke@435 2123 idx.set_instruction(x->index());
duke@435 2124 idx.load_item();
duke@435 2125 }
duke@435 2126
duke@435 2127 if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 2128 value.load_byte_item();
duke@435 2129 } else {
duke@435 2130 value.load_item();
duke@435 2131 }
duke@435 2132
duke@435 2133 set_no_result(x);
duke@435 2134
duke@435 2135 LIR_Opr base_op = base.result();
duke@435 2136 #ifndef _LP64
duke@435 2137 if (x->base()->type()->tag() == longTag) {
duke@435 2138 base_op = new_register(T_INT);
duke@435 2139 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 2140 } else {
duke@435 2141 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 2142 }
duke@435 2143 #endif
duke@435 2144
duke@435 2145 LIR_Opr index_op = idx.result();
duke@435 2146 if (log2_scale != 0) {
duke@435 2147 // temporary fix (platform dependent code without shift on Intel would be better)
roland@1495 2148 index_op = new_pointer_register();
roland@1495 2149 #ifdef _LP64
roland@1495 2150 if(idx.result()->type() == T_INT) {
roland@1495 2151 __ convert(Bytecodes::_i2l, idx.result(), index_op);
roland@1495 2152 } else {
roland@1495 2153 #endif
bobv@2036 2154 // TODO: ARM also allows embedded shift in the address
roland@1495 2155 __ move(idx.result(), index_op);
roland@1495 2156 #ifdef _LP64
roland@1495 2157 }
roland@1495 2158 #endif
duke@435 2159 __ shift_left(index_op, log2_scale, index_op);
duke@435 2160 }
roland@1495 2161 #ifdef _LP64
roland@1495 2162 else if(!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 2163 LIR_Opr tmp = new_pointer_register();
roland@1495 2164 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 2165 index_op = tmp;
roland@1495 2166 }
roland@1495 2167 #endif
duke@435 2168
duke@435 2169 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
duke@435 2170 __ move(value.result(), addr);
duke@435 2171 }
duke@435 2172
duke@435 2173
duke@435 2174 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
duke@435 2175 BasicType type = x->basic_type();
duke@435 2176 LIRItem src(x->object(), this);
duke@435 2177 LIRItem off(x->offset(), this);
duke@435 2178
duke@435 2179 off.load_item();
duke@435 2180 src.load_item();
duke@435 2181
kvn@4002 2182 LIR_Opr value = rlock_result(x, x->basic_type());
kvn@4002 2183
kvn@4002 2184 get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
johnc@2781 2185
jprovino@4542 2186 #if INCLUDE_ALL_GCS
johnc@2781 2187 // We might be reading the value of the referent field of a
johnc@2781 2188 // Reference object in order to attach it back to the live
johnc@2781 2189 // object graph. If G1 is enabled then we need to record
johnc@2781 2190 // the value that is being returned in an SATB log buffer.
johnc@2781 2191 //
johnc@2781 2192 // We need to generate code similar to the following...
johnc@2781 2193 //
johnc@2781 2194 // if (offset == java_lang_ref_Reference::referent_offset) {
johnc@2781 2195 // if (src != NULL) {
johnc@2781 2196 // if (klass(src)->reference_type() != REF_NONE) {
kvn@4002 2197 // pre_barrier(..., value, ...);
johnc@2781 2198 // }
johnc@2781 2199 // }
johnc@2781 2200 // }
johnc@2781 2201
johnc@2781 2202 if (UseG1GC && type == T_OBJECT) {
kvn@4002 2203 bool gen_pre_barrier = true; // Assume we need to generate pre_barrier.
kvn@4002 2204 bool gen_offset_check = true; // Assume we need to generate the offset guard.
kvn@4002 2205 bool gen_source_check = true; // Assume we need to check the src object for null.
kvn@4002 2206 bool gen_type_check = true; // Assume we need to check the reference_type.
johnc@2781 2207
johnc@2781 2208 if (off.is_constant()) {
johnc@2786 2209 jlong off_con = (off.type()->is_int() ?
johnc@2786 2210 (jlong) off.get_jint_constant() :
johnc@2786 2211 off.get_jlong_constant());
johnc@2786 2212
johnc@2786 2213
johnc@2786 2214 if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
johnc@2781 2215 // The constant offset is something other than referent_offset.
johnc@2781 2216 // We can skip generating/checking the remaining guards and
johnc@2781 2217 // skip generation of the code stub.
kvn@4002 2218 gen_pre_barrier = false;
johnc@2781 2219 } else {
johnc@2781 2220 // The constant offset is the same as referent_offset -
johnc@2781 2221 // we do not need to generate a runtime offset check.
johnc@2781 2222 gen_offset_check = false;
johnc@2781 2223 }
johnc@2781 2224 }
johnc@2781 2225
johnc@2781 2226 // We don't need to generate stub if the source object is an array
kvn@4002 2227 if (gen_pre_barrier && src.type()->is_array()) {
kvn@4002 2228 gen_pre_barrier = false;
johnc@2781 2229 }
johnc@2781 2230
kvn@4002 2231 if (gen_pre_barrier) {
johnc@2781 2232 // We still need to continue with the checks.
johnc@2781 2233 if (src.is_constant()) {
johnc@2781 2234 ciObject* src_con = src.get_jobject_constant();
morris@5229 2235 guarantee(src_con != NULL, "no source constant");
johnc@2781 2236
johnc@2781 2237 if (src_con->is_null_object()) {
johnc@2781 2238 // The constant src object is null - We can skip
johnc@2781 2239 // generating the code stub.
kvn@4002 2240 gen_pre_barrier = false;
johnc@2781 2241 } else {
johnc@2781 2242 // Non-null constant source object. We still have to generate
johnc@2781 2243 // the slow stub - but we don't need to generate the runtime
johnc@2781 2244 // null object check.
johnc@2781 2245 gen_source_check = false;
johnc@2781 2246 }
johnc@2781 2247 }
johnc@2781 2248 }
kvn@4002 2249 if (gen_pre_barrier && !PatchALot) {
kvn@4002 2250 // Can the klass of object be statically determined to be
kvn@4002 2251 // a sub-class of Reference?
kvn@4002 2252 ciType* type = src.value()->declared_type();
kvn@4002 2253 if ((type != NULL) && type->is_loaded()) {
kvn@4002 2254 if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
kvn@4002 2255 gen_type_check = false;
kvn@4002 2256 } else if (type->is_klass() &&
kvn@4002 2257 !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
kvn@4002 2258 // Not Reference and not Object klass.
kvn@4002 2259 gen_pre_barrier = false;
kvn@4002 2260 }
kvn@4002 2261 }
kvn@4002 2262 }
kvn@4002 2263
kvn@4002 2264 if (gen_pre_barrier) {
kvn@4002 2265 LabelObj* Lcont = new LabelObj();
johnc@2781 2266
johnc@2781 2267 // We can have generate one runtime check here. Let's start with
johnc@2781 2268 // the offset check.
johnc@2781 2269 if (gen_offset_check) {
kvn@4002 2270 // if (offset != referent_offset) -> continue
johnc@2786 2271 // If offset is an int then we can do the comparison with the
johnc@2786 2272 // referent_offset constant; otherwise we need to move
johnc@2786 2273 // referent_offset into a temporary register and generate
johnc@2786 2274 // a reg-reg compare.
johnc@2786 2275
johnc@2786 2276 LIR_Opr referent_off;
johnc@2786 2277
johnc@2786 2278 if (off.type()->is_int()) {
johnc@2786 2279 referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
johnc@2786 2280 } else {
johnc@2786 2281 assert(off.type()->is_long(), "what else?");
johnc@2786 2282 referent_off = new_register(T_LONG);
johnc@2786 2283 __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
johnc@2786 2284 }
kvn@4002 2285 __ cmp(lir_cond_notEqual, off.result(), referent_off);
kvn@4002 2286 __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
johnc@2781 2287 }
kvn@4002 2288 if (gen_source_check) {
kvn@4002 2289 // offset is a const and equals referent offset
kvn@4002 2290 // if (source == null) -> continue
kvn@4002 2291 __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
kvn@4002 2292 __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
kvn@4002 2293 }
kvn@4002 2294 LIR_Opr src_klass = new_register(T_OBJECT);
kvn@4002 2295 if (gen_type_check) {
kvn@4002 2296 // We have determined that offset == referent_offset && src != null.
kvn@4002 2297 // if (src->_klass->_reference_type == REF_NONE) -> continue
stefank@4043 2298 __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
coleenp@4037 2299 LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
kvn@4002 2300 LIR_Opr reference_type = new_register(T_INT);
kvn@4002 2301 __ move(reference_type_addr, reference_type);
kvn@4002 2302 __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
kvn@4002 2303 __ branch(lir_cond_equal, T_INT, Lcont->label());
kvn@4002 2304 }
kvn@4002 2305 {
kvn@4002 2306 // We have determined that src->_klass->_reference_type != REF_NONE
kvn@4002 2307 // so register the value in the referent field with the pre-barrier.
kvn@4002 2308 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
kvn@4002 2309 value /* pre_val */,
kvn@4002 2310 false /* do_load */,
kvn@4002 2311 false /* patch */,
kvn@4002 2312 NULL /* info */);
kvn@4002 2313 }
kvn@4002 2314 __ branch_destination(Lcont->label());
johnc@2781 2315 }
johnc@2781 2316 }
jprovino@4542 2317 #endif // INCLUDE_ALL_GCS
johnc@2781 2318
duke@435 2319 if (x->is_volatile() && os::is_MP()) __ membar_acquire();
duke@435 2320 }
duke@435 2321
duke@435 2322
duke@435 2323 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
duke@435 2324 BasicType type = x->basic_type();
duke@435 2325 LIRItem src(x->object(), this);
duke@435 2326 LIRItem off(x->offset(), this);
duke@435 2327 LIRItem data(x->value(), this);
duke@435 2328
duke@435 2329 src.load_item();
duke@435 2330 if (type == T_BOOLEAN || type == T_BYTE) {
duke@435 2331 data.load_byte_item();
duke@435 2332 } else {
duke@435 2333 data.load_item();
duke@435 2334 }
duke@435 2335 off.load_item();
duke@435 2336
duke@435 2337 set_no_result(x);
duke@435 2338
duke@435 2339 if (x->is_volatile() && os::is_MP()) __ membar_release();
duke@435 2340 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
dholmes@2443 2341 if (x->is_volatile() && os::is_MP()) __ membar();
duke@435 2342 }
duke@435 2343
duke@435 2344
duke@435 2345 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
duke@435 2346 LIRItem src(x->object(), this);
duke@435 2347 LIRItem off(x->offset(), this);
duke@435 2348
duke@435 2349 src.load_item();
duke@435 2350 if (off.is_constant() && can_inline_as_constant(x->offset())) {
duke@435 2351 // let it be a constant
duke@435 2352 off.dont_load_item();
duke@435 2353 } else {
duke@435 2354 off.load_item();
duke@435 2355 }
duke@435 2356
duke@435 2357 set_no_result(x);
duke@435 2358
duke@435 2359 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
duke@435 2360 __ prefetch(addr, is_store);
duke@435 2361 }
duke@435 2362
duke@435 2363
duke@435 2364 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
duke@435 2365 do_UnsafePrefetch(x, false);
duke@435 2366 }
duke@435 2367
duke@435 2368
duke@435 2369 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
duke@435 2370 do_UnsafePrefetch(x, true);
duke@435 2371 }
duke@435 2372
duke@435 2373
duke@435 2374 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
duke@435 2375 int lng = x->length();
duke@435 2376
duke@435 2377 for (int i = 0; i < lng; i++) {
duke@435 2378 SwitchRange* one_range = x->at(i);
duke@435 2379 int low_key = one_range->low_key();
duke@435 2380 int high_key = one_range->high_key();
duke@435 2381 BlockBegin* dest = one_range->sux();
duke@435 2382 if (low_key == high_key) {
duke@435 2383 __ cmp(lir_cond_equal, value, low_key);
duke@435 2384 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2385 } else if (high_key - low_key == 1) {
duke@435 2386 __ cmp(lir_cond_equal, value, low_key);
duke@435 2387 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2388 __ cmp(lir_cond_equal, value, high_key);
duke@435 2389 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2390 } else {
duke@435 2391 LabelObj* L = new LabelObj();
duke@435 2392 __ cmp(lir_cond_less, value, low_key);
iveresov@3443 2393 __ branch(lir_cond_less, T_INT, L->label());
duke@435 2394 __ cmp(lir_cond_lessEqual, value, high_key);
duke@435 2395 __ branch(lir_cond_lessEqual, T_INT, dest);
duke@435 2396 __ branch_destination(L->label());
duke@435 2397 }
duke@435 2398 }
duke@435 2399 __ jump(default_sux);
duke@435 2400 }
duke@435 2401
duke@435 2402
duke@435 2403 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
duke@435 2404 SwitchRangeList* res = new SwitchRangeList();
duke@435 2405 int len = x->length();
duke@435 2406 if (len > 0) {
duke@435 2407 BlockBegin* sux = x->sux_at(0);
duke@435 2408 int key = x->lo_key();
duke@435 2409 BlockBegin* default_sux = x->default_sux();
duke@435 2410 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2411 for (int i = 0; i < len; i++, key++) {
duke@435 2412 BlockBegin* new_sux = x->sux_at(i);
duke@435 2413 if (sux == new_sux) {
duke@435 2414 // still in same range
duke@435 2415 range->set_high_key(key);
duke@435 2416 } else {
duke@435 2417 // skip tests which explicitly dispatch to the default
duke@435 2418 if (sux != default_sux) {
duke@435 2419 res->append(range);
duke@435 2420 }
duke@435 2421 range = new SwitchRange(key, new_sux);
duke@435 2422 }
duke@435 2423 sux = new_sux;
duke@435 2424 }
duke@435 2425 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2426 }
duke@435 2427 return res;
duke@435 2428 }
duke@435 2429
duke@435 2430
duke@435 2431 // we expect the keys to be sorted by increasing value
duke@435 2432 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
duke@435 2433 SwitchRangeList* res = new SwitchRangeList();
duke@435 2434 int len = x->length();
duke@435 2435 if (len > 0) {
duke@435 2436 BlockBegin* default_sux = x->default_sux();
duke@435 2437 int key = x->key_at(0);
duke@435 2438 BlockBegin* sux = x->sux_at(0);
duke@435 2439 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2440 for (int i = 1; i < len; i++) {
duke@435 2441 int new_key = x->key_at(i);
duke@435 2442 BlockBegin* new_sux = x->sux_at(i);
duke@435 2443 if (key+1 == new_key && sux == new_sux) {
duke@435 2444 // still in same range
duke@435 2445 range->set_high_key(new_key);
duke@435 2446 } else {
duke@435 2447 // skip tests which explicitly dispatch to the default
duke@435 2448 if (range->sux() != default_sux) {
duke@435 2449 res->append(range);
duke@435 2450 }
duke@435 2451 range = new SwitchRange(new_key, new_sux);
duke@435 2452 }
duke@435 2453 key = new_key;
duke@435 2454 sux = new_sux;
duke@435 2455 }
duke@435 2456 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2457 }
duke@435 2458 return res;
duke@435 2459 }
duke@435 2460
duke@435 2461
duke@435 2462 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
duke@435 2463 LIRItem tag(x->tag(), this);
duke@435 2464 tag.load_item();
duke@435 2465 set_no_result(x);
duke@435 2466
duke@435 2467 if (x->is_safepoint()) {
duke@435 2468 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2469 }
duke@435 2470
duke@435 2471 // move values into phi locations
duke@435 2472 move_to_phi(x->state());
duke@435 2473
duke@435 2474 int lo_key = x->lo_key();
duke@435 2475 int hi_key = x->hi_key();
duke@435 2476 int len = x->length();
duke@435 2477 LIR_Opr value = tag.result();
duke@435 2478 if (UseTableRanges) {
duke@435 2479 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2480 } else {
duke@435 2481 for (int i = 0; i < len; i++) {
duke@435 2482 __ cmp(lir_cond_equal, value, i + lo_key);
duke@435 2483 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2484 }
duke@435 2485 __ jump(x->default_sux());
duke@435 2486 }
duke@435 2487 }
duke@435 2488
duke@435 2489
duke@435 2490 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
duke@435 2491 LIRItem tag(x->tag(), this);
duke@435 2492 tag.load_item();
duke@435 2493 set_no_result(x);
duke@435 2494
duke@435 2495 if (x->is_safepoint()) {
duke@435 2496 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2497 }
duke@435 2498
duke@435 2499 // move values into phi locations
duke@435 2500 move_to_phi(x->state());
duke@435 2501
duke@435 2502 LIR_Opr value = tag.result();
duke@435 2503 if (UseTableRanges) {
duke@435 2504 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2505 } else {
duke@435 2506 int len = x->length();
duke@435 2507 for (int i = 0; i < len; i++) {
duke@435 2508 __ cmp(lir_cond_equal, value, x->key_at(i));
duke@435 2509 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2510 }
duke@435 2511 __ jump(x->default_sux());
duke@435 2512 }
duke@435 2513 }
duke@435 2514
duke@435 2515
duke@435 2516 void LIRGenerator::do_Goto(Goto* x) {
duke@435 2517 set_no_result(x);
duke@435 2518
duke@435 2519 if (block()->next()->as_OsrEntry()) {
duke@435 2520 // need to free up storage used for OSR entry point
duke@435 2521 LIR_Opr osrBuffer = block()->next()->operand();
duke@435 2522 BasicTypeList signature;
duke@435 2523 signature.append(T_INT);
duke@435 2524 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 2525 __ move(osrBuffer, cc->args()->at(0));
duke@435 2526 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
duke@435 2527 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
duke@435 2528 }
duke@435 2529
duke@435 2530 if (x->is_safepoint()) {
duke@435 2531 ValueStack* state = x->state_before() ? x->state_before() : x->state();
duke@435 2532
duke@435 2533 // increment backedge counter if needed
iveresov@2138 2534 CodeEmitInfo* info = state_for(x, state);
iveresov@3193 2535 increment_backedge_counter(info, x->profiled_bci());
duke@435 2536 CodeEmitInfo* safepoint_info = state_for(x, state);
duke@435 2537 __ safepoint(safepoint_poll_register(), safepoint_info);
duke@435 2538 }
duke@435 2539
iveresov@2138 2540 // Gotos can be folded Ifs, handle this case.
iveresov@2138 2541 if (x->should_profile()) {
iveresov@2138 2542 ciMethod* method = x->profiled_method();
iveresov@2138 2543 assert(method != NULL, "method should be set if branch is profiled");
iveresov@2349 2544 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2545 assert(md != NULL, "Sanity");
iveresov@2138 2546 ciProfileData* data = md->bci_to_data(x->profiled_bci());
iveresov@2138 2547 assert(data != NULL, "must have profiling data");
iveresov@2138 2548 int offset;
iveresov@2138 2549 if (x->direction() == Goto::taken) {
iveresov@2138 2550 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2551 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
iveresov@2138 2552 } else if (x->direction() == Goto::not_taken) {
iveresov@2138 2553 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2554 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 2555 } else {
iveresov@2138 2556 assert(data->is_JumpData(), "need JumpData for branches");
iveresov@2138 2557 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
iveresov@2138 2558 }
roland@4051 2559 LIR_Opr md_reg = new_register(T_METADATA);
roland@4051 2560 __ metadata2reg(md->constant_encoding(), md_reg);
iveresov@2138 2561
iveresov@2138 2562 increment_counter(new LIR_Address(md_reg, offset,
iveresov@2138 2563 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
iveresov@2138 2564 }
iveresov@2138 2565
duke@435 2566 // emit phi-instruction move after safepoint since this simplifies
duke@435 2567 // describing the state as the safepoint.
duke@435 2568 move_to_phi(x->state());
duke@435 2569
duke@435 2570 __ jump(x->default_sux());
duke@435 2571 }
duke@435 2572
duke@435 2573
duke@435 2574 void LIRGenerator::do_Base(Base* x) {
duke@435 2575 __ std_entry(LIR_OprFact::illegalOpr);
duke@435 2576 // Emit moves from physical registers / stack slots to virtual registers
duke@435 2577 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
duke@435 2578 IRScope* irScope = compilation()->hir()->top_scope();
duke@435 2579 int java_index = 0;
duke@435 2580 for (int i = 0; i < args->length(); i++) {
duke@435 2581 LIR_Opr src = args->at(i);
duke@435 2582 assert(!src->is_illegal(), "check");
duke@435 2583 BasicType t = src->type();
duke@435 2584
duke@435 2585 // Types which are smaller than int are passed as int, so
duke@435 2586 // correct the type which passed.
duke@435 2587 switch (t) {
duke@435 2588 case T_BYTE:
duke@435 2589 case T_BOOLEAN:
duke@435 2590 case T_SHORT:
duke@435 2591 case T_CHAR:
duke@435 2592 t = T_INT;
duke@435 2593 break;
duke@435 2594 }
duke@435 2595
duke@435 2596 LIR_Opr dest = new_register(t);
duke@435 2597 __ move(src, dest);
duke@435 2598
duke@435 2599 // Assign new location to Local instruction for this local
duke@435 2600 Local* local = x->state()->local_at(java_index)->as_Local();
duke@435 2601 assert(local != NULL, "Locals for incoming arguments must have been created");
bobv@2036 2602 #ifndef __SOFTFP__
bobv@2036 2603 // The java calling convention passes double as long and float as int.
duke@435 2604 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
bobv@2036 2605 #endif // __SOFTFP__
duke@435 2606 local->set_operand(dest);
duke@435 2607 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
duke@435 2608 java_index += type2size[t];
duke@435 2609 }
duke@435 2610
kvn@1215 2611 if (compilation()->env()->dtrace_method_probes()) {
duke@435 2612 BasicTypeList signature;
iveresov@2344 2613 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
coleenp@4037 2614 signature.append(T_OBJECT); // Method*
duke@435 2615 LIR_OprList* args = new LIR_OprList();
duke@435 2616 args->append(getThreadPointer());
roland@4051 2617 LIR_Opr meth = new_register(T_METADATA);
roland@4051 2618 __ metadata2reg(method()->constant_encoding(), meth);
duke@435 2619 args->append(meth);
duke@435 2620 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
duke@435 2621 }
duke@435 2622
duke@435 2623 if (method()->is_synchronized()) {
duke@435 2624 LIR_Opr obj;
duke@435 2625 if (method()->is_static()) {
duke@435 2626 obj = new_register(T_OBJECT);
jrose@1424 2627 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
duke@435 2628 } else {
duke@435 2629 Local* receiver = x->state()->local_at(0)->as_Local();
duke@435 2630 assert(receiver != NULL, "must already exist");
duke@435 2631 obj = receiver->operand();
duke@435 2632 }
duke@435 2633 assert(obj->is_valid(), "must be valid");
duke@435 2634
duke@435 2635 if (method()->is_synchronized() && GenerateSynchronizationCode) {
duke@435 2636 LIR_Opr lock = new_register(T_INT);
duke@435 2637 __ load_stack_address_monitor(0, lock);
duke@435 2638
roland@4860 2639 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
duke@435 2640 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
duke@435 2641
duke@435 2642 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
duke@435 2643 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
duke@435 2644 }
duke@435 2645 }
duke@435 2646
duke@435 2647 // increment invocation counters if needed
iveresov@2138 2648 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
roland@4860 2649 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
iveresov@2138 2650 increment_invocation_counter(info);
iveresov@2138 2651 }
duke@435 2652
duke@435 2653 // all blocks with a successor must end with an unconditional jump
duke@435 2654 // to the successor even if they are consecutive
duke@435 2655 __ jump(x->default_sux());
duke@435 2656 }
duke@435 2657
duke@435 2658
duke@435 2659 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
duke@435 2660 // construct our frame and model the production of incoming pointer
duke@435 2661 // to the OSR buffer.
duke@435 2662 __ osr_entry(LIR_Assembler::osrBufferPointer());
duke@435 2663 LIR_Opr result = rlock_result(x);
duke@435 2664 __ move(LIR_Assembler::osrBufferPointer(), result);
duke@435 2665 }
duke@435 2666
duke@435 2667
duke@435 2668 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
twisti@4003 2669 assert(args->length() == arg_list->length(),
twisti@4003 2670 err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
twisti@4003 2671 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
duke@435 2672 LIRItem* param = args->at(i);
duke@435 2673 LIR_Opr loc = arg_list->at(i);
duke@435 2674 if (loc->is_register()) {
duke@435 2675 param->load_item_force(loc);
duke@435 2676 } else {
duke@435 2677 LIR_Address* addr = loc->as_address_ptr();
duke@435 2678 param->load_for_store(addr->type());
iveresov@2344 2679 if (addr->type() == T_OBJECT) {
iveresov@2344 2680 __ move_wide(param->result(), addr);
iveresov@2344 2681 } else
iveresov@2344 2682 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
iveresov@2344 2683 __ unaligned_move(param->result(), addr);
iveresov@2344 2684 } else {
iveresov@2344 2685 __ move(param->result(), addr);
iveresov@2344 2686 }
duke@435 2687 }
duke@435 2688 }
duke@435 2689
duke@435 2690 if (x->has_receiver()) {
duke@435 2691 LIRItem* receiver = args->at(0);
duke@435 2692 LIR_Opr loc = arg_list->at(0);
duke@435 2693 if (loc->is_register()) {
duke@435 2694 receiver->load_item_force(loc);
duke@435 2695 } else {
duke@435 2696 assert(loc->is_address(), "just checking");
duke@435 2697 receiver->load_for_store(T_OBJECT);
iveresov@2344 2698 __ move_wide(receiver->result(), loc->as_address_ptr());
duke@435 2699 }
duke@435 2700 }
duke@435 2701 }
duke@435 2702
duke@435 2703
duke@435 2704 // Visits all arguments, returns appropriate items without loading them
duke@435 2705 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
duke@435 2706 LIRItemList* argument_items = new LIRItemList();
duke@435 2707 if (x->has_receiver()) {
duke@435 2708 LIRItem* receiver = new LIRItem(x->receiver(), this);
duke@435 2709 argument_items->append(receiver);
duke@435 2710 }
duke@435 2711 for (int i = 0; i < x->number_of_arguments(); i++) {
duke@435 2712 LIRItem* param = new LIRItem(x->argument_at(i), this);
duke@435 2713 argument_items->append(param);
duke@435 2714 }
duke@435 2715 return argument_items;
duke@435 2716 }
duke@435 2717
duke@435 2718
duke@435 2719 // The invoke with receiver has following phases:
duke@435 2720 // a) traverse and load/lock receiver;
duke@435 2721 // b) traverse all arguments -> item-array (invoke_visit_argument)
duke@435 2722 // c) push receiver on stack
duke@435 2723 // d) load each of the items and push on stack
duke@435 2724 // e) unlock receiver
duke@435 2725 // f) move receiver into receiver-register %o0
duke@435 2726 // g) lock result registers and emit call operation
duke@435 2727 //
duke@435 2728 // Before issuing a call, we must spill-save all values on stack
duke@435 2729 // that are in caller-save register. "spill-save" moves thos registers
duke@435 2730 // either in a free callee-save register or spills them if no free
duke@435 2731 // callee save register is available.
duke@435 2732 //
duke@435 2733 // The problem is where to invoke spill-save.
duke@435 2734 // - if invoked between e) and f), we may lock callee save
duke@435 2735 // register in "spill-save" that destroys the receiver register
duke@435 2736 // before f) is executed
duke@435 2737 // - if we rearange the f) to be earlier, by loading %o0, it
duke@435 2738 // may destroy a value on the stack that is currently in %o0
duke@435 2739 // and is waiting to be spilled
duke@435 2740 // - if we keep the receiver locked while doing spill-save,
duke@435 2741 // we cannot spill it as it is spill-locked
duke@435 2742 //
duke@435 2743 void LIRGenerator::do_Invoke(Invoke* x) {
duke@435 2744 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
duke@435 2745
duke@435 2746 LIR_OprList* arg_list = cc->args();
duke@435 2747 LIRItemList* args = invoke_visit_arguments(x);
duke@435 2748 LIR_Opr receiver = LIR_OprFact::illegalOpr;
duke@435 2749
duke@435 2750 // setup result register
duke@435 2751 LIR_Opr result_register = LIR_OprFact::illegalOpr;
duke@435 2752 if (x->type() != voidType) {
duke@435 2753 result_register = result_register_for(x->type());
duke@435 2754 }
duke@435 2755
duke@435 2756 CodeEmitInfo* info = state_for(x, x->state());
duke@435 2757
duke@435 2758 invoke_load_arguments(x, args, arg_list);
duke@435 2759
duke@435 2760 if (x->has_receiver()) {
duke@435 2761 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
duke@435 2762 receiver = args->at(0)->result();
duke@435 2763 }
duke@435 2764
duke@435 2765 // emit invoke code
duke@435 2766 bool optimized = x->target_is_loaded() && x->target_is_final();
duke@435 2767 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
duke@435 2768
twisti@1919 2769 // JSR 292
twisti@1919 2770 // Preserve the SP over MethodHandle call sites.
twisti@1919 2771 ciMethod* target = x->target();
twisti@3969 2772 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
twisti@3969 2773 target->is_method_handle_intrinsic() ||
twisti@3969 2774 target->is_compiled_lambda_form());
twisti@3969 2775 if (is_method_handle_invoke) {
twisti@1919 2776 info->set_is_method_handle_invoke(true);
twisti@1919 2777 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
twisti@1919 2778 }
twisti@1919 2779
duke@435 2780 switch (x->code()) {
duke@435 2781 case Bytecodes::_invokestatic:
twisti@1919 2782 __ call_static(target, result_register,
duke@435 2783 SharedRuntime::get_resolve_static_call_stub(),
duke@435 2784 arg_list, info);
duke@435 2785 break;
duke@435 2786 case Bytecodes::_invokespecial:
duke@435 2787 case Bytecodes::_invokevirtual:
duke@435 2788 case Bytecodes::_invokeinterface:
duke@435 2789 // for final target we still produce an inline cache, in order
duke@435 2790 // to be able to call mixed mode
duke@435 2791 if (x->code() == Bytecodes::_invokespecial || optimized) {
twisti@1919 2792 __ call_opt_virtual(target, receiver, result_register,
duke@435 2793 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 2794 arg_list, info);
duke@435 2795 } else if (x->vtable_index() < 0) {
twisti@1919 2796 __ call_icvirtual(target, receiver, result_register,
duke@435 2797 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 2798 arg_list, info);
duke@435 2799 } else {
coleenp@4037 2800 int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
duke@435 2801 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
twisti@1919 2802 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
duke@435 2803 }
duke@435 2804 break;
twisti@1730 2805 case Bytecodes::_invokedynamic: {
twisti@1919 2806 __ call_dynamic(target, receiver, result_register,
twisti@4003 2807 SharedRuntime::get_resolve_static_call_stub(),
twisti@1730 2808 arg_list, info);
twisti@1730 2809 break;
twisti@1730 2810 }
duke@435 2811 default:
twisti@3848 2812 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
duke@435 2813 break;
duke@435 2814 }
duke@435 2815
twisti@1919 2816 // JSR 292
twisti@1919 2817 // Restore the SP after MethodHandle call sites.
twisti@3969 2818 if (is_method_handle_invoke) {
twisti@1919 2819 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
twisti@1919 2820 }
twisti@1919 2821
duke@435 2822 if (x->type()->is_float() || x->type()->is_double()) {
duke@435 2823 // Force rounding of results from non-strictfp when in strictfp
duke@435 2824 // scope (or when we don't know the strictness of the callee, to
duke@435 2825 // be safe.)
duke@435 2826 if (method()->is_strict()) {
duke@435 2827 if (!x->target_is_loaded() || !x->target_is_strictfp()) {
duke@435 2828 result_register = round_item(result_register);
duke@435 2829 }
duke@435 2830 }
duke@435 2831 }
duke@435 2832
duke@435 2833 if (result_register->is_valid()) {
duke@435 2834 LIR_Opr result = rlock_result(x);
duke@435 2835 __ move(result_register, result);
duke@435 2836 }
duke@435 2837 }
duke@435 2838
duke@435 2839
duke@435 2840 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
duke@435 2841 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 2842 LIRItem value (x->argument_at(0), this);
duke@435 2843 LIR_Opr reg = rlock_result(x);
duke@435 2844 value.load_item();
duke@435 2845 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
duke@435 2846 __ move(tmp, reg);
duke@435 2847 }
duke@435 2848
duke@435 2849
duke@435 2850
duke@435 2851 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
duke@435 2852 void LIRGenerator::do_IfOp(IfOp* x) {
duke@435 2853 #ifdef ASSERT
duke@435 2854 {
duke@435 2855 ValueTag xtag = x->x()->type()->tag();
duke@435 2856 ValueTag ttag = x->tval()->type()->tag();
duke@435 2857 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
duke@435 2858 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
duke@435 2859 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
duke@435 2860 }
duke@435 2861 #endif
duke@435 2862
duke@435 2863 LIRItem left(x->x(), this);
duke@435 2864 LIRItem right(x->y(), this);
duke@435 2865 left.load_item();
duke@435 2866 if (can_inline_as_constant(right.value())) {
duke@435 2867 right.dont_load_item();
duke@435 2868 } else {
duke@435 2869 right.load_item();
duke@435 2870 }
duke@435 2871
duke@435 2872 LIRItem t_val(x->tval(), this);
duke@435 2873 LIRItem f_val(x->fval(), this);
duke@435 2874 t_val.dont_load_item();
duke@435 2875 f_val.dont_load_item();
duke@435 2876 LIR_Opr reg = rlock_result(x);
duke@435 2877
duke@435 2878 __ cmp(lir_cond(x->cond()), left.result(), right.result());
iveresov@2412 2879 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
duke@435 2880 }
duke@435 2881
rbackman@3709 2882 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
rbackman@3709 2883 assert(x->number_of_arguments() == expected_arguments, "wrong type");
rbackman@3709 2884 LIR_Opr reg = result_register_for(x->type());
rbackman@3709 2885 __ call_runtime_leaf(routine, getThreadTemp(),
rbackman@3709 2886 reg, new LIR_OprList());
rbackman@3709 2887 LIR_Opr result = rlock_result(x);
rbackman@3709 2888 __ move(reg, result);
rbackman@3709 2889 }
rbackman@3709 2890
rbackman@3709 2891 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2892 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
rbackman@3709 2893 LIR_Opr thread = getThreadPointer();
rbackman@3709 2894 LIR_Opr osthread = new_pointer_register();
rbackman@3709 2895 __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
rbackman@3709 2896 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 2897 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 2898 LIR_Opr id = new_register(T_LONG);
rbackman@3709 2899 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
rbackman@3709 2900 __ convert(Bytecodes::_l2i, id, rlock_result(x));
rbackman@3709 2901 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 2902 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
rbackman@3709 2903 } else {
rbackman@3709 2904 ShouldNotReachHere();
rbackman@3709 2905 }
rbackman@3709 2906 }
rbackman@3709 2907
rbackman@3709 2908 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
rbackman@3709 2909 CodeEmitInfo* info = state_for(x);
rbackman@3709 2910 CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
coleenp@4037 2911 BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
rbackman@3709 2912 assert(info != NULL, "must have info");
rbackman@3709 2913 LIRItem arg(x->argument_at(1), this);
rbackman@3709 2914 arg.load_item();
coleenp@4037 2915 LIR_Opr klass = new_pointer_register();
coleenp@4037 2916 __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
rbackman@3709 2917 LIR_Opr id = new_register(T_LONG);
rbackman@3709 2918 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 2919 LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
rbackman@3709 2920 __ move(trace_id_addr, id);
rbackman@3709 2921 __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
rbackman@3709 2922 __ store(id, trace_id_addr);
rbackman@3709 2923 __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
rbackman@3709 2924 __ move(id, rlock_result(x));
rbackman@3709 2925 }
rbackman@3709 2926 #endif
duke@435 2927
duke@435 2928 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
duke@435 2929 switch (x->id()) {
duke@435 2930 case vmIntrinsics::_intBitsToFloat :
duke@435 2931 case vmIntrinsics::_doubleToRawLongBits :
duke@435 2932 case vmIntrinsics::_longBitsToDouble :
duke@435 2933 case vmIntrinsics::_floatToRawIntBits : {
duke@435 2934 do_FPIntrinsics(x);
duke@435 2935 break;
duke@435 2936 }
duke@435 2937
rbackman@3709 2938 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2939 case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
rbackman@3709 2940 case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
rbackman@3709 2941 case vmIntrinsics::_counterTime:
rbackman@3709 2942 do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
duke@435 2943 break;
rbackman@3709 2944 #endif
rbackman@3709 2945
rbackman@3709 2946 case vmIntrinsics::_currentTimeMillis:
rbackman@3709 2947 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
duke@435 2948 break;
rbackman@3709 2949
rbackman@3709 2950 case vmIntrinsics::_nanoTime:
rbackman@3709 2951 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
rbackman@3709 2952 break;
duke@435 2953
duke@435 2954 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
roland@3838 2955 case vmIntrinsics::_isInstance: do_isInstance(x); break;
duke@435 2956 case vmIntrinsics::_getClass: do_getClass(x); break;
duke@435 2957 case vmIntrinsics::_currentThread: do_currentThread(x); break;
duke@435 2958
duke@435 2959 case vmIntrinsics::_dlog: // fall through
duke@435 2960 case vmIntrinsics::_dlog10: // fall through
duke@435 2961 case vmIntrinsics::_dabs: // fall through
duke@435 2962 case vmIntrinsics::_dsqrt: // fall through
duke@435 2963 case vmIntrinsics::_dtan: // fall through
duke@435 2964 case vmIntrinsics::_dsin : // fall through
roland@3787 2965 case vmIntrinsics::_dcos : // fall through
roland@3787 2966 case vmIntrinsics::_dexp : // fall through
roland@3787 2967 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
duke@435 2968 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
duke@435 2969
duke@435 2970 // java.nio.Buffer.checkIndex
duke@435 2971 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
duke@435 2972
duke@435 2973 case vmIntrinsics::_compareAndSwapObject:
duke@435 2974 do_CompareAndSwap(x, objectType);
duke@435 2975 break;
duke@435 2976 case vmIntrinsics::_compareAndSwapInt:
duke@435 2977 do_CompareAndSwap(x, intType);
duke@435 2978 break;
duke@435 2979 case vmIntrinsics::_compareAndSwapLong:
duke@435 2980 do_CompareAndSwap(x, longType);
duke@435 2981 break;
duke@435 2982
kvn@4361 2983 case vmIntrinsics::_loadFence :
kvn@4361 2984 if (os::is_MP()) __ membar_acquire();
kvn@4361 2985 break;
kvn@4361 2986 case vmIntrinsics::_storeFence:
kvn@4361 2987 if (os::is_MP()) __ membar_release();
kvn@4361 2988 break;
kvn@4361 2989 case vmIntrinsics::_fullFence :
kvn@4361 2990 if (os::is_MP()) __ membar();
kvn@4361 2991 break;
kvn@4361 2992
johnc@2781 2993 case vmIntrinsics::_Reference_get:
johnc@2781 2994 do_Reference_get(x);
johnc@2781 2995 break;
johnc@2781 2996
duke@435 2997 default: ShouldNotReachHere(); break;
duke@435 2998 }
duke@435 2999 }
duke@435 3000
duke@435 3001 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
duke@435 3002 // Need recv in a temporary register so it interferes with the other temporaries
duke@435 3003 LIR_Opr recv = LIR_OprFact::illegalOpr;
duke@435 3004 LIR_Opr mdo = new_register(T_OBJECT);
iveresov@2138 3005 // tmp is used to hold the counters on SPARC
iveresov@2138 3006 LIR_Opr tmp = new_pointer_register();
duke@435 3007 if (x->recv() != NULL) {
duke@435 3008 LIRItem value(x->recv(), this);
duke@435 3009 value.load_item();
duke@435 3010 recv = new_register(T_OBJECT);
duke@435 3011 __ move(value.result(), recv);
duke@435 3012 }
twisti@3969 3013 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
duke@435 3014 }
duke@435 3015
iveresov@2138 3016 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
iveresov@2138 3017 // We can safely ignore accessors here, since c2 will inline them anyway,
iveresov@2138 3018 // accessors are also always mature.
iveresov@2138 3019 if (!x->inlinee()->is_accessor()) {
iveresov@2138 3020 CodeEmitInfo* info = state_for(x, x->state(), true);
iveresov@3160 3021 // Notify the runtime very infrequently only to take care of counter overflows
iveresov@3160 3022 increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
iveresov@2138 3023 }
duke@435 3024 }
duke@435 3025
iveresov@2138 3026 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
iveresov@2138 3027 int freq_log;
iveresov@2138 3028 int level = compilation()->env()->comp_level();
iveresov@2138 3029 if (level == CompLevel_limited_profile) {
iveresov@2138 3030 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
iveresov@2138 3031 } else if (level == CompLevel_full_profile) {
iveresov@2138 3032 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
iveresov@2138 3033 } else {
iveresov@2138 3034 ShouldNotReachHere();
iveresov@2138 3035 }
iveresov@2138 3036 // Increment the appropriate invocation/backedge counter and notify the runtime.
iveresov@2138 3037 increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
iveresov@2138 3038 }
iveresov@2138 3039
iveresov@2138 3040 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
iveresov@2138 3041 ciMethod *method, int frequency,
iveresov@2138 3042 int bci, bool backedge, bool notify) {
iveresov@2138 3043 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
iveresov@2138 3044 int level = _compilation->env()->comp_level();
iveresov@2138 3045 assert(level > CompLevel_simple, "Shouldn't be here");
iveresov@2138 3046
iveresov@2138 3047 int offset = -1;
jiangli@4936 3048 LIR_Opr counter_holder;
iveresov@2138 3049 if (level == CompLevel_limited_profile) {
jiangli@4936 3050 address counters_adr = method->ensure_method_counters();
jiangli@4936 3051 counter_holder = new_pointer_register();
jiangli@4936 3052 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
jiangli@4936 3053 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
jiangli@4936 3054 MethodCounters::invocation_counter_offset());
iveresov@2138 3055 } else if (level == CompLevel_full_profile) {
jiangli@4936 3056 counter_holder = new_register(T_METADATA);
coleenp@4037 3057 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
coleenp@4037 3058 MethodData::invocation_counter_offset());
iveresov@2349 3059 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3060 assert(md != NULL, "Sanity");
roland@4051 3061 __ metadata2reg(md->constant_encoding(), counter_holder);
iveresov@2138 3062 } else {
iveresov@2138 3063 ShouldNotReachHere();
iveresov@2138 3064 }
iveresov@2138 3065 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
iveresov@2138 3066 LIR_Opr result = new_register(T_INT);
iveresov@2138 3067 __ load(counter, result);
iveresov@2138 3068 __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
iveresov@2138 3069 __ store(result, counter);
iveresov@2138 3070 if (notify) {
iveresov@2138 3071 LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
jiangli@4936 3072 LIR_Opr meth = new_register(T_METADATA);
jiangli@4936 3073 __ metadata2reg(method->constant_encoding(), meth);
iveresov@2138 3074 __ logical_and(result, mask, result);
iveresov@2138 3075 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
iveresov@2138 3076 // The bci for info can point to cmp for if's we want the if bci
iveresov@2138 3077 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
iveresov@2138 3078 __ branch(lir_cond_equal, T_INT, overflow);
iveresov@2138 3079 __ branch_destination(overflow->continuation());
iveresov@2138 3080 }
iveresov@2138 3081 }
duke@435 3082
never@2486 3083 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
never@2486 3084 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
never@2486 3085 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
never@2486 3086
never@2486 3087 if (x->pass_thread()) {
never@2486 3088 signature->append(T_ADDRESS);
never@2486 3089 args->append(getThreadPointer());
never@2486 3090 }
never@2486 3091
never@2486 3092 for (int i = 0; i < x->number_of_arguments(); i++) {
never@2486 3093 Value a = x->argument_at(i);
never@2486 3094 LIRItem* item = new LIRItem(a, this);
never@2486 3095 item->load_item();
never@2486 3096 args->append(item->result());
never@2486 3097 signature->append(as_BasicType(a->type()));
never@2486 3098 }
never@2486 3099
never@2486 3100 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
never@2486 3101 if (x->type() == voidType) {
never@2486 3102 set_no_result(x);
never@2486 3103 } else {
never@2486 3104 __ move(result, rlock_result(x));
never@2486 3105 }
never@2486 3106 }
never@2486 3107
roland@4947 3108 #ifdef ASSERT
roland@4860 3109 void LIRGenerator::do_Assert(Assert *x) {
roland@4860 3110 ValueTag tag = x->x()->type()->tag();
roland@4860 3111 If::Condition cond = x->cond();
roland@4860 3112
roland@4860 3113 LIRItem xitem(x->x(), this);
roland@4860 3114 LIRItem yitem(x->y(), this);
roland@4860 3115 LIRItem* xin = &xitem;
roland@4860 3116 LIRItem* yin = &yitem;
roland@4860 3117
roland@4860 3118 assert(tag == intTag, "Only integer assertions are valid!");
roland@4860 3119
roland@4860 3120 xin->load_item();
roland@4860 3121 yin->dont_load_item();
roland@4860 3122
roland@4860 3123 set_no_result(x);
roland@4860 3124
roland@4860 3125 LIR_Opr left = xin->result();
roland@4860 3126 LIR_Opr right = yin->result();
roland@4860 3127
roland@4860 3128 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
roland@4947 3129 }
roland@4860 3130 #endif
roland@4860 3131
roland@4860 3132 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
roland@4860 3133
roland@4860 3134
roland@4860 3135 Instruction *a = x->x();
roland@4860 3136 Instruction *b = x->y();
roland@4860 3137 if (!a || StressRangeCheckElimination) {
roland@4860 3138 assert(!b || StressRangeCheckElimination, "B must also be null");
roland@4860 3139
roland@4860 3140 CodeEmitInfo *info = state_for(x, x->state());
roland@4860 3141 CodeStub* stub = new PredicateFailedStub(info);
roland@4860 3142
roland@4860 3143 __ jump(stub);
roland@4860 3144 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
roland@4860 3145 int a_int = a->type()->as_IntConstant()->value();
roland@4860 3146 int b_int = b->type()->as_IntConstant()->value();
roland@4860 3147
roland@4860 3148 bool ok = false;
roland@4860 3149
roland@4860 3150 switch(x->cond()) {
roland@4860 3151 case Instruction::eql: ok = (a_int == b_int); break;
roland@4860 3152 case Instruction::neq: ok = (a_int != b_int); break;
roland@4860 3153 case Instruction::lss: ok = (a_int < b_int); break;
roland@4860 3154 case Instruction::leq: ok = (a_int <= b_int); break;
roland@4860 3155 case Instruction::gtr: ok = (a_int > b_int); break;
roland@4860 3156 case Instruction::geq: ok = (a_int >= b_int); break;
roland@4860 3157 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
roland@4860 3158 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
roland@4860 3159 default: ShouldNotReachHere();
roland@4860 3160 }
roland@4860 3161
roland@4860 3162 if (ok) {
roland@4860 3163
roland@4860 3164 CodeEmitInfo *info = state_for(x, x->state());
roland@4860 3165 CodeStub* stub = new PredicateFailedStub(info);
roland@4860 3166
roland@4860 3167 __ jump(stub);
roland@4860 3168 }
roland@4860 3169 } else {
roland@4860 3170
roland@4860 3171 ValueTag tag = x->x()->type()->tag();
roland@4860 3172 If::Condition cond = x->cond();
roland@4860 3173 LIRItem xitem(x->x(), this);
roland@4860 3174 LIRItem yitem(x->y(), this);
roland@4860 3175 LIRItem* xin = &xitem;
roland@4860 3176 LIRItem* yin = &yitem;
roland@4860 3177
roland@4860 3178 assert(tag == intTag, "Only integer deoptimizations are valid!");
roland@4860 3179
roland@4860 3180 xin->load_item();
roland@4860 3181 yin->dont_load_item();
roland@4860 3182 set_no_result(x);
roland@4860 3183
roland@4860 3184 LIR_Opr left = xin->result();
roland@4860 3185 LIR_Opr right = yin->result();
roland@4860 3186
roland@4860 3187 CodeEmitInfo *info = state_for(x, x->state());
roland@4860 3188 CodeStub* stub = new PredicateFailedStub(info);
roland@4860 3189
roland@4860 3190 __ cmp(lir_cond(cond), left, right);
roland@4860 3191 __ branch(lir_cond(cond), right->type(), stub);
roland@4860 3192 }
roland@4860 3193 }
roland@4860 3194
roland@4860 3195
duke@435 3196 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3197 LIRItemList args(1);
duke@435 3198 LIRItem value(arg1, this);
duke@435 3199 args.append(&value);
duke@435 3200 BasicTypeList signature;
duke@435 3201 signature.append(as_BasicType(arg1->type()));
duke@435 3202
duke@435 3203 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 3204 }
duke@435 3205
duke@435 3206
duke@435 3207 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3208 LIRItemList args(2);
duke@435 3209 LIRItem value1(arg1, this);
duke@435 3210 LIRItem value2(arg2, this);
duke@435 3211 args.append(&value1);
duke@435 3212 args.append(&value2);
duke@435 3213 BasicTypeList signature;
duke@435 3214 signature.append(as_BasicType(arg1->type()));
duke@435 3215 signature.append(as_BasicType(arg2->type()));
duke@435 3216
duke@435 3217 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 3218 }
duke@435 3219
duke@435 3220
duke@435 3221 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
duke@435 3222 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3223 // get a result register
duke@435 3224 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 3225 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 3226 if (result_type->tag() != voidTag) {
duke@435 3227 result = new_register(result_type);
duke@435 3228 phys_reg = result_register_for(result_type);
duke@435 3229 }
duke@435 3230
duke@435 3231 // move the arguments into the correct location
duke@435 3232 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 3233 assert(cc->length() == args->length(), "argument mismatch");
duke@435 3234 for (int i = 0; i < args->length(); i++) {
duke@435 3235 LIR_Opr arg = args->at(i);
duke@435 3236 LIR_Opr loc = cc->at(i);
duke@435 3237 if (loc->is_register()) {
duke@435 3238 __ move(arg, loc);
duke@435 3239 } else {
duke@435 3240 LIR_Address* addr = loc->as_address_ptr();
duke@435 3241 // if (!can_store_as_constant(arg)) {
duke@435 3242 // LIR_Opr tmp = new_register(arg->type());
duke@435 3243 // __ move(arg, tmp);
duke@435 3244 // arg = tmp;
duke@435 3245 // }
duke@435 3246 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 3247 __ unaligned_move(arg, addr);
duke@435 3248 } else {
duke@435 3249 __ move(arg, addr);
duke@435 3250 }
duke@435 3251 }
duke@435 3252 }
duke@435 3253
duke@435 3254 if (info) {
duke@435 3255 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 3256 } else {
duke@435 3257 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 3258 }
duke@435 3259 if (result->is_valid()) {
duke@435 3260 __ move(phys_reg, result);
duke@435 3261 }
duke@435 3262 return result;
duke@435 3263 }
duke@435 3264
duke@435 3265
duke@435 3266 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
duke@435 3267 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3268 // get a result register
duke@435 3269 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 3270 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 3271 if (result_type->tag() != voidTag) {
duke@435 3272 result = new_register(result_type);
duke@435 3273 phys_reg = result_register_for(result_type);
duke@435 3274 }
duke@435 3275
duke@435 3276 // move the arguments into the correct location
duke@435 3277 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 3278
duke@435 3279 assert(cc->length() == args->length(), "argument mismatch");
duke@435 3280 for (int i = 0; i < args->length(); i++) {
duke@435 3281 LIRItem* arg = args->at(i);
duke@435 3282 LIR_Opr loc = cc->at(i);
duke@435 3283 if (loc->is_register()) {
duke@435 3284 arg->load_item_force(loc);
duke@435 3285 } else {
duke@435 3286 LIR_Address* addr = loc->as_address_ptr();
duke@435 3287 arg->load_for_store(addr->type());
duke@435 3288 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 3289 __ unaligned_move(arg->result(), addr);
duke@435 3290 } else {
duke@435 3291 __ move(arg->result(), addr);
duke@435 3292 }
duke@435 3293 }
duke@435 3294 }
duke@435 3295
duke@435 3296 if (info) {
duke@435 3297 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 3298 } else {
duke@435 3299 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 3300 }
duke@435 3301 if (result->is_valid()) {
duke@435 3302 __ move(phys_reg, result);
duke@435 3303 }
duke@435 3304 return result;
duke@435 3305 }
jiangli@3592 3306
jiangli@3592 3307 void LIRGenerator::do_MemBar(MemBar* x) {
jiangli@3592 3308 if (os::is_MP()) {
jiangli@3592 3309 LIR_Code code = x->code();
jiangli@3592 3310 switch(code) {
jiangli@3592 3311 case lir_membar_acquire : __ membar_acquire(); break;
jiangli@3592 3312 case lir_membar_release : __ membar_release(); break;
jiangli@3592 3313 case lir_membar : __ membar(); break;
jiangli@3592 3314 case lir_membar_loadload : __ membar_loadload(); break;
jiangli@3592 3315 case lir_membar_storestore: __ membar_storestore(); break;
jiangli@3592 3316 case lir_membar_loadstore : __ membar_loadstore(); break;
jiangli@3592 3317 case lir_membar_storeload : __ membar_storeload(); break;
jiangli@3592 3318 default : ShouldNotReachHere(); break;
jiangli@3592 3319 }
jiangli@3592 3320 }
jiangli@3592 3321 }

mercurial