src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Fri, 17 May 2013 11:57:05 +0200

author
ehelin
date
Fri, 17 May 2013 11:57:05 +0200
changeset 5159
001ec9515f84
parent 5123
48391ab0687e
child 5237
f2110083203d
permissions
-rw-r--r--

8014277: Remove ObjectClosure as base class for BoolObjectClosure
Reviewed-by: brutisso, tschatzl

ysr@777 1 /*
johnc@4929 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
brutisso@3923 39 class G1GCPhaseTimes;
ysr@777 40
brutisso@3812 41 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
brutisso@3812 42 // (the latter may contain non-young regions - i.e. regions that are
brutisso@3812 43 // technically in Gen1) while TraceGen1Time collects data about full GCs.
zgu@3900 44 class TraceGen0TimeData : public CHeapObj<mtGC> {
brutisso@3812 45 private:
brutisso@3812 46 unsigned _young_pause_num;
brutisso@3812 47 unsigned _mixed_pause_num;
ysr@777 48
brutisso@3812 49 NumberSeq _all_stop_world_times_ms;
brutisso@3812 50 NumberSeq _all_yield_times_ms;
ysr@777 51
brutisso@3812 52 NumberSeq _total;
brutisso@3812 53 NumberSeq _other;
brutisso@3812 54 NumberSeq _root_region_scan_wait;
brutisso@3812 55 NumberSeq _parallel;
brutisso@3812 56 NumberSeq _ext_root_scan;
brutisso@3812 57 NumberSeq _satb_filtering;
brutisso@3812 58 NumberSeq _update_rs;
brutisso@3812 59 NumberSeq _scan_rs;
brutisso@3812 60 NumberSeq _obj_copy;
brutisso@3812 61 NumberSeq _termination;
brutisso@3812 62 NumberSeq _parallel_other;
brutisso@3812 63 NumberSeq _clear_ct;
ysr@777 64
brutisso@3923 65 void print_summary(const char* str, const NumberSeq* seq) const;
brutisso@3923 66 void print_summary_sd(const char* str, const NumberSeq* seq) const;
ysr@777 67
ysr@777 68 public:
brutisso@3812 69 TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
brutisso@3812 70 void record_start_collection(double time_to_stop_the_world_ms);
brutisso@3812 71 void record_yield_time(double yield_time_ms);
brutisso@3923 72 void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
brutisso@3812 73 void increment_young_collection_count();
brutisso@3812 74 void increment_mixed_collection_count();
brutisso@3812 75 void print() const;
ysr@777 76 };
ysr@777 77
zgu@3900 78 class TraceGen1TimeData : public CHeapObj<mtGC> {
brutisso@3812 79 private:
brutisso@3812 80 NumberSeq _all_full_gc_times;
ysr@777 81
brutisso@3812 82 public:
brutisso@3812 83 void record_full_collection(double full_gc_time_ms);
brutisso@3812 84 void print() const;
ysr@777 85 };
ysr@777 86
brutisso@3358 87 // There are three command line options related to the young gen size:
brutisso@3358 88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
brutisso@3358 89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
brutisso@3358 90 // heuristics to calculate the actual young gen size, so these options
brutisso@3358 91 // basically only limit the range within which G1 can pick a young gen
brutisso@3358 92 // size. Also, these are general options taking byte sizes. G1 will
brutisso@3358 93 // internally work with a number of regions instead. So, some rounding
brutisso@3358 94 // will occur.
brutisso@3358 95 //
brutisso@3358 96 // If nothing related to the the young gen size is set on the command
johnc@4385 97 // line we should allow the young gen to be between G1NewSizePercent
johnc@4385 98 // and G1MaxNewSizePercent of the heap size. This means that every time
johnc@4385 99 // the heap size changes, the limits for the young gen size will be
johnc@4385 100 // recalculated.
brutisso@3358 101 //
brutisso@3358 102 // If only -XX:NewSize is set we should use the specified value as the
johnc@4385 103 // minimum size for young gen. Still using G1MaxNewSizePercent of the
johnc@4385 104 // heap as maximum.
brutisso@3358 105 //
brutisso@3358 106 // If only -XX:MaxNewSize is set we should use the specified value as the
johnc@4385 107 // maximum size for young gen. Still using G1NewSizePercent of the heap
johnc@4385 108 // as minimum.
brutisso@3358 109 //
brutisso@3358 110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
brutisso@3358 111 // No updates when the heap size changes. There is a special case when
brutisso@3358 112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
brutisso@3358 113 // different heuristic for calculating the collection set when we do mixed
brutisso@3358 114 // collection.
brutisso@3358 115 //
brutisso@3358 116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
brutisso@3358 117 // as both min and max. This will be interpreted as "fixed" just like the
brutisso@3358 118 // NewSize==MaxNewSize case above. But we will update the min and max
brutisso@3358 119 // everytime the heap size changes.
brutisso@3358 120 //
brutisso@3358 121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
brutisso@3358 122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
zgu@3900 123 class G1YoungGenSizer : public CHeapObj<mtGC> {
brutisso@3358 124 private:
brutisso@3358 125 enum SizerKind {
brutisso@3358 126 SizerDefaults,
brutisso@3358 127 SizerNewSizeOnly,
brutisso@3358 128 SizerMaxNewSizeOnly,
brutisso@3358 129 SizerMaxAndNewSize,
brutisso@3358 130 SizerNewRatio
brutisso@3358 131 };
brutisso@3358 132 SizerKind _sizer_kind;
tonyp@3713 133 uint _min_desired_young_length;
tonyp@3713 134 uint _max_desired_young_length;
brutisso@3358 135 bool _adaptive_size;
tonyp@3713 136 uint calculate_default_min_length(uint new_number_of_heap_regions);
tonyp@3713 137 uint calculate_default_max_length(uint new_number_of_heap_regions);
brutisso@3358 138
brutisso@3358 139 public:
brutisso@3358 140 G1YoungGenSizer();
tonyp@3713 141 void heap_size_changed(uint new_number_of_heap_regions);
tonyp@3713 142 uint min_desired_young_length() {
brutisso@3358 143 return _min_desired_young_length;
brutisso@3358 144 }
tonyp@3713 145 uint max_desired_young_length() {
brutisso@3358 146 return _max_desired_young_length;
brutisso@3358 147 }
brutisso@3358 148 bool adaptive_young_list_length() {
brutisso@3358 149 return _adaptive_size;
brutisso@3358 150 }
brutisso@3358 151 };
brutisso@3358 152
ysr@777 153 class G1CollectorPolicy: public CollectorPolicy {
tonyp@3209 154 private:
ysr@777 155 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 156 // has been set, or 1 otherwise
ysr@777 157 int _parallel_gc_threads;
ysr@777 158
jmasa@3294 159 // The number of GC threads currently active.
jmasa@3294 160 uintx _no_of_gc_threads;
jmasa@3294 161
ysr@777 162 enum SomePrivateConstants {
tonyp@1377 163 NumPrevPausesForHeuristics = 10
ysr@777 164 };
ysr@777 165
ysr@777 166 G1MMUTracker* _mmu_tracker;
ysr@777 167
ysr@777 168 void initialize_flags();
ysr@777 169
ysr@777 170 void initialize_all() {
ysr@777 171 initialize_flags();
ysr@777 172 initialize_size_info();
ysr@777 173 }
ysr@777 174
tonyp@3209 175 CollectionSetChooser* _collectionSetChooser;
ysr@777 176
brutisso@3923 177 double _full_collection_start_sec;
tonyp@3713 178 uint _cur_collection_pause_used_regions_at_start;
johnc@1325 179
ysr@777 180 // These exclude marking times.
ysr@777 181 TruncatedSeq* _recent_gc_times_ms;
ysr@777 182
ysr@777 183 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 184 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 185
brutisso@3812 186 TraceGen0TimeData _trace_gen0_time_data;
brutisso@3812 187 TraceGen1TimeData _trace_gen1_time_data;
ysr@777 188
ysr@777 189 double _stop_world_start;
ysr@777 190
tonyp@3337 191 // indicates whether we are in young or mixed GC mode
tonyp@3337 192 bool _gcs_are_young;
ysr@777 193
tonyp@3713 194 uint _young_list_target_length;
tonyp@3713 195 uint _young_list_fixed_length;
ysr@777 196
tonyp@2333 197 // The max number of regions we can extend the eden by while the GC
tonyp@2333 198 // locker is active. This should be >= _young_list_target_length;
tonyp@3713 199 uint _young_list_max_length;
tonyp@2333 200
tonyp@3337 201 bool _last_gc_was_young;
ysr@777 202
ysr@777 203 bool _during_marking;
ysr@777 204 bool _in_marking_window;
ysr@777 205 bool _in_marking_window_im;
ysr@777 206
ysr@777 207 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 208 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 209 // add here any more surv rate groups
ysr@777 210
tonyp@1791 211 double _gc_overhead_perc;
tonyp@1791 212
tonyp@3119 213 double _reserve_factor;
tonyp@3713 214 uint _reserve_regions;
tonyp@3119 215
ysr@777 216 bool during_marking() {
ysr@777 217 return _during_marking;
ysr@777 218 }
ysr@777 219
ysr@777 220 private:
ysr@777 221 enum PredictionConstants {
ysr@777 222 TruncatedSeqLength = 10
ysr@777 223 };
ysr@777 224
ysr@777 225 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 226 double _prev_collection_pause_end_ms;
ysr@777 227
ysr@777 228 TruncatedSeq* _rs_length_diff_seq;
ysr@777 229 TruncatedSeq* _cost_per_card_ms_seq;
tonyp@3337 230 TruncatedSeq* _young_cards_per_entry_ratio_seq;
tonyp@3337 231 TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
ysr@777 232 TruncatedSeq* _cost_per_entry_ms_seq;
tonyp@3337 233 TruncatedSeq* _mixed_cost_per_entry_ms_seq;
ysr@777 234 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 235 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 236 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 237 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 238
ysr@777 239 TruncatedSeq* _pending_cards_seq;
ysr@777 240 TruncatedSeq* _rs_lengths_seq;
ysr@777 241
ysr@777 242 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 243
brutisso@3358 244 G1YoungGenSizer* _young_gen_sizer;
brutisso@3120 245
tonyp@3713 246 uint _eden_cset_region_length;
tonyp@3713 247 uint _survivor_cset_region_length;
tonyp@3713 248 uint _old_cset_region_length;
tonyp@3289 249
tonyp@3713 250 void init_cset_region_lengths(uint eden_cset_region_length,
tonyp@3713 251 uint survivor_cset_region_length);
tonyp@3289 252
tonyp@3713 253 uint eden_cset_region_length() { return _eden_cset_region_length; }
tonyp@3713 254 uint survivor_cset_region_length() { return _survivor_cset_region_length; }
tonyp@3713 255 uint old_cset_region_length() { return _old_cset_region_length; }
ysr@777 256
tonyp@3713 257 uint _free_regions_at_end_of_collection;
ysr@777 258
ysr@777 259 size_t _recorded_rs_lengths;
ysr@777 260 size_t _max_rs_lengths;
ysr@777 261 double _sigma;
ysr@777 262
ysr@777 263 size_t _rs_lengths_prediction;
ysr@777 264
tonyp@3539 265 double sigma() { return _sigma; }
ysr@777 266
ysr@777 267 // A function that prevents us putting too much stock in small sample
ysr@777 268 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 269 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 270 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 271 double confidence_factor(int samples) {
ysr@777 272 if (samples > 4) return 1.0;
ysr@777 273 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 274 }
ysr@777 275
ysr@777 276 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 277 return seq->davg() - sigma() * seq->dsd();
ysr@777 278 }
ysr@777 279
ysr@777 280 #ifndef PRODUCT
ysr@777 281 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 282 #endif // PRODUCT
ysr@777 283
iveresov@1546 284 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 285 double update_rs_processed_buffers,
iveresov@1546 286 double goal_ms);
iveresov@1546 287
jmasa@3294 288 uintx no_of_gc_threads() { return _no_of_gc_threads; }
jmasa@3294 289 void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
jmasa@3294 290
ysr@777 291 double _pause_time_target_ms;
brutisso@3923 292
ysr@777 293 size_t _pending_cards;
ysr@777 294
ysr@777 295 public:
jmasa@3294 296 // Accessors
ysr@777 297
tonyp@3289 298 void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 299 hr->set_young();
ysr@777 300 hr->install_surv_rate_group(_short_lived_surv_rate_group);
tonyp@3289 301 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 302 }
ysr@777 303
tonyp@3289 304 void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 305 assert(hr->is_young() && hr->is_survivor(), "pre-condition");
ysr@777 306 hr->install_surv_rate_group(_survivor_surv_rate_group);
tonyp@3289 307 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 308 }
ysr@777 309
ysr@777 310 #ifndef PRODUCT
ysr@777 311 bool verify_young_ages();
ysr@777 312 #endif // PRODUCT
ysr@777 313
ysr@777 314 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 315 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 316 seq->davg() * confidence_factor(seq->num()));
ysr@777 317 }
ysr@777 318
ysr@777 319 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 320 _max_rs_lengths = rs_lengths;
ysr@777 321 }
ysr@777 322
ysr@777 323 size_t predict_rs_length_diff() {
ysr@777 324 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 325 }
ysr@777 326
ysr@777 327 double predict_alloc_rate_ms() {
ysr@777 328 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 329 }
ysr@777 330
ysr@777 331 double predict_cost_per_card_ms() {
ysr@777 332 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 333 }
ysr@777 334
ysr@777 335 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 336 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 337 }
ysr@777 338
tonyp@3337 339 double predict_young_cards_per_entry_ratio() {
tonyp@3337 340 return get_new_prediction(_young_cards_per_entry_ratio_seq);
ysr@777 341 }
ysr@777 342
tonyp@3337 343 double predict_mixed_cards_per_entry_ratio() {
tonyp@3337 344 if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
tonyp@3337 345 return predict_young_cards_per_entry_ratio();
tonyp@3337 346 } else {
tonyp@3337 347 return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
tonyp@3337 348 }
ysr@777 349 }
ysr@777 350
ysr@777 351 size_t predict_young_card_num(size_t rs_length) {
ysr@777 352 return (size_t) ((double) rs_length *
tonyp@3337 353 predict_young_cards_per_entry_ratio());
ysr@777 354 }
ysr@777 355
ysr@777 356 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 357 return (size_t) ((double) rs_length *
tonyp@3337 358 predict_mixed_cards_per_entry_ratio());
ysr@777 359 }
ysr@777 360
ysr@777 361 double predict_rs_scan_time_ms(size_t card_num) {
tonyp@3337 362 if (gcs_are_young()) {
ysr@777 363 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 364 } else {
tonyp@3337 365 return predict_mixed_rs_scan_time_ms(card_num);
tonyp@3337 366 }
ysr@777 367 }
ysr@777 368
tonyp@3337 369 double predict_mixed_rs_scan_time_ms(size_t card_num) {
tonyp@3337 370 if (_mixed_cost_per_entry_ms_seq->num() < 3) {
ysr@777 371 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 372 } else {
tonyp@3337 373 return (double) (card_num *
tonyp@3337 374 get_new_prediction(_mixed_cost_per_entry_ms_seq));
tonyp@3337 375 }
ysr@777 376 }
ysr@777 377
ysr@777 378 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
tonyp@3337 379 if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
tonyp@3337 380 return (1.1 * (double) bytes_to_copy) *
tonyp@3337 381 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 382 } else {
ysr@777 383 return (double) bytes_to_copy *
tonyp@3337 384 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
tonyp@3337 385 }
ysr@777 386 }
ysr@777 387
ysr@777 388 double predict_object_copy_time_ms(size_t bytes_to_copy) {
tonyp@3337 389 if (_in_marking_window && !_in_marking_window_im) {
ysr@777 390 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
tonyp@3337 391 } else {
ysr@777 392 return (double) bytes_to_copy *
tonyp@3337 393 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 394 }
ysr@777 395 }
ysr@777 396
ysr@777 397 double predict_constant_other_time_ms() {
ysr@777 398 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 399 }
ysr@777 400
ysr@777 401 double predict_young_other_time_ms(size_t young_num) {
tonyp@3337 402 return (double) young_num *
tonyp@3337 403 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 404 }
ysr@777 405
ysr@777 406 double predict_non_young_other_time_ms(size_t non_young_num) {
tonyp@3337 407 return (double) non_young_num *
tonyp@3337 408 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 409 }
ysr@777 410
ysr@777 411 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 412 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 413 size_t scanned_cards);
ysr@777 414 size_t predict_bytes_to_copy(HeapRegion* hr);
johnc@3998 415 double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
ysr@777 416
tonyp@3289 417 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 418
tonyp@3713 419 uint cset_region_length() { return young_cset_region_length() +
tonyp@3713 420 old_cset_region_length(); }
tonyp@3713 421 uint young_cset_region_length() { return eden_cset_region_length() +
tonyp@3713 422 survivor_cset_region_length(); }
ysr@777 423
apetrusenko@980 424 double predict_survivor_regions_evac_time();
apetrusenko@980 425
ysr@777 426 void cset_regions_freed() {
tonyp@3337 427 bool propagate = _last_gc_was_young && !_in_marking_window;
ysr@777 428 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 429 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 430 // also call it on any more surv rate groups
ysr@777 431 }
ysr@777 432
ysr@777 433 G1MMUTracker* mmu_tracker() {
ysr@777 434 return _mmu_tracker;
ysr@777 435 }
ysr@777 436
tonyp@2011 437 double max_pause_time_ms() {
tonyp@2011 438 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 439 }
tonyp@2011 440
ysr@777 441 double predict_remark_time_ms() {
ysr@777 442 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 443 }
ysr@777 444
ysr@777 445 double predict_cleanup_time_ms() {
ysr@777 446 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 447 }
ysr@777 448
ysr@777 449 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 450 // "yg_age".
apetrusenko@980 451 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 452 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 453 if (seq->num() == 0)
ysr@777 454 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 455 guarantee( seq->num() > 0, "invariant" );
ysr@777 456 double pred = get_new_prediction(seq);
ysr@777 457 if (pred > 1.0)
ysr@777 458 pred = 1.0;
ysr@777 459 return pred;
ysr@777 460 }
ysr@777 461
apetrusenko@980 462 double predict_yg_surv_rate(int age) {
apetrusenko@980 463 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 464 }
apetrusenko@980 465
ysr@777 466 double accum_yg_surv_rate_pred(int age) {
ysr@777 467 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 468 }
ysr@777 469
tonyp@3209 470 private:
ysr@777 471 // Statistics kept per GC stoppage, pause or full.
ysr@777 472 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 473
ysr@777 474 // Add a new GC of the given duration and end time to the record.
ysr@777 475 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 476
ysr@777 477 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 478 // current collection set. Set from the incrementally built collection
johnc@1829 479 // set at the start of the pause.
ysr@777 480 HeapRegion* _collection_set;
johnc@1829 481
johnc@1829 482 // The number of bytes in the collection set before the pause. Set from
johnc@1829 483 // the incrementally built collection set at the start of an evacuation
johnc@3998 484 // pause, and incremented in finalize_cset() when adding old regions
johnc@3998 485 // (if any) to the collection set.
ysr@777 486 size_t _collection_set_bytes_used_before;
ysr@777 487
johnc@3998 488 // The number of bytes copied during the GC.
johnc@3998 489 size_t _bytes_copied_during_gc;
johnc@3998 490
johnc@1829 491 // The associated information that is maintained while the incremental
johnc@1829 492 // collection set is being built with young regions. Used to populate
johnc@1829 493 // the recorded info for the evacuation pause.
johnc@1829 494
johnc@1829 495 enum CSetBuildType {
johnc@1829 496 Active, // We are actively building the collection set
johnc@1829 497 Inactive // We are not actively building the collection set
johnc@1829 498 };
johnc@1829 499
johnc@1829 500 CSetBuildType _inc_cset_build_state;
johnc@1829 501
johnc@1829 502 // The head of the incrementally built collection set.
johnc@1829 503 HeapRegion* _inc_cset_head;
johnc@1829 504
johnc@1829 505 // The tail of the incrementally built collection set.
johnc@1829 506 HeapRegion* _inc_cset_tail;
johnc@1829 507
johnc@1829 508 // The number of bytes in the incrementally built collection set.
johnc@1829 509 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 510 // an evacuation pause.
johnc@1829 511 size_t _inc_cset_bytes_used_before;
johnc@1829 512
johnc@1829 513 // Used to record the highest end of heap region in collection set
johnc@1829 514 HeapWord* _inc_cset_max_finger;
johnc@1829 515
tonyp@3356 516 // The RSet lengths recorded for regions in the CSet. It is updated
tonyp@3356 517 // by the thread that adds a new region to the CSet. We assume that
tonyp@3356 518 // only one thread can be allocating a new CSet region (currently,
tonyp@3356 519 // it does so after taking the Heap_lock) hence no need to
tonyp@3356 520 // synchronize updates to this field.
johnc@1829 521 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 522
tonyp@3356 523 // A concurrent refinement thread periodcially samples the young
tonyp@3356 524 // region RSets and needs to update _inc_cset_recorded_rs_lengths as
tonyp@3356 525 // the RSets grow. Instead of having to syncronize updates to that
tonyp@3356 526 // field we accumulate them in this field and add it to
tonyp@3356 527 // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
tonyp@3356 528 ssize_t _inc_cset_recorded_rs_lengths_diffs;
tonyp@3356 529
tonyp@3356 530 // The predicted elapsed time it will take to collect the regions in
tonyp@3356 531 // the CSet. This is updated by the thread that adds a new region to
tonyp@3356 532 // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
tonyp@3356 533 // MT-safety assumptions.
johnc@1829 534 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 535
tonyp@3356 536 // See the comment for _inc_cset_recorded_rs_lengths_diffs.
tonyp@3356 537 double _inc_cset_predicted_elapsed_time_ms_diffs;
tonyp@3356 538
ysr@777 539 // Stash a pointer to the g1 heap.
ysr@777 540 G1CollectedHeap* _g1;
ysr@777 541
brutisso@3923 542 G1GCPhaseTimes* _phase_times;
brutisso@3923 543
ysr@777 544 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 545 double _recent_avg_pause_time_ratio;
ysr@777 546
ysr@777 547 double recent_avg_pause_time_ratio() {
ysr@777 548 return _recent_avg_pause_time_ratio;
ysr@777 549 }
ysr@777 550
tonyp@1794 551 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 552 // whether we will start a marking cycle during the next pause. If
tonyp@1794 553 // we decide that we want to do that, we will set this parameter to
tonyp@1794 554 // true. So, this parameter will stay true between the end of a
tonyp@1794 555 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 556 // the next one, see the comments on the next field) when we decide
tonyp@1794 557 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 558 // work.
tonyp@1794 559 volatile bool _initiate_conc_mark_if_possible;
ysr@777 560
tonyp@1794 561 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 562 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 563 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 564 // that the concurrent marking thread is still finishing up the
tonyp@1794 565 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 566 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 567 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 568 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 569 // initiation decision for the next pause. When we eventually decide
tonyp@1794 570 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 571 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 572 // the condition that indicates that a pause is doing the
tonyp@1794 573 // initial-mark work.
tonyp@1794 574 volatile bool _during_initial_mark_pause;
tonyp@1794 575
tonyp@3337 576 bool _last_young_gc;
ysr@777 577
ysr@777 578 // This set of variables tracks the collector efficiency, in order to
ysr@777 579 // determine whether we should initiate a new marking.
ysr@777 580 double _cur_mark_stop_world_time_ms;
ysr@777 581 double _mark_remark_start_sec;
ysr@777 582 double _mark_cleanup_start_sec;
ysr@777 583
tonyp@3119 584 // Update the young list target length either by setting it to the
tonyp@3119 585 // desired fixed value or by calculating it using G1's pause
tonyp@3119 586 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 587 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 588 // given rs_lengths as the prediction.
tonyp@3119 589 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 590
tonyp@3119 591 // Calculate and return the minimum desired young list target
tonyp@3119 592 // length. This is the minimum desired young list length according
tonyp@3119 593 // to the user's inputs.
tonyp@3713 594 uint calculate_young_list_desired_min_length(uint base_min_length);
tonyp@3119 595
tonyp@3119 596 // Calculate and return the maximum desired young list target
tonyp@3119 597 // length. This is the maximum desired young list length according
tonyp@3119 598 // to the user's inputs.
tonyp@3713 599 uint calculate_young_list_desired_max_length();
tonyp@3119 600
tonyp@3119 601 // Calculate and return the maximum young list target length that
tonyp@3119 602 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 603 // represent the prediction of how large the young RSet lengths will
tonyp@3119 604 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 605 // the young list, min_length and max_length are the desired min and
tonyp@3119 606 // max young list length according to the user's inputs.
tonyp@3713 607 uint calculate_young_list_target_length(size_t rs_lengths,
tonyp@3713 608 uint base_min_length,
tonyp@3713 609 uint desired_min_length,
tonyp@3713 610 uint desired_max_length);
tonyp@3119 611
tonyp@3119 612 // Check whether a given young length (young_length) fits into the
tonyp@3119 613 // given target pause time and whether the prediction for the amount
tonyp@3119 614 // of objects to be copied for the given length will fit into the
tonyp@3119 615 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 616 // calculate_young_list_target_length().
tonyp@3713 617 bool predict_will_fit(uint young_length, double base_time_ms,
tonyp@3713 618 uint base_free_regions, double target_pause_time_ms);
ysr@777 619
johnc@4681 620 // Calculate the minimum number of old regions we'll add to the CSet
johnc@4681 621 // during a mixed GC.
johnc@4681 622 uint calc_min_old_cset_length();
johnc@4681 623
johnc@4681 624 // Calculate the maximum number of old regions we'll add to the CSet
johnc@4681 625 // during a mixed GC.
johnc@4681 626 uint calc_max_old_cset_length();
johnc@4681 627
johnc@4681 628 // Returns the given amount of uncollected reclaimable space
johnc@4681 629 // as a percentage of the current heap capacity.
johnc@4681 630 double reclaimable_bytes_perc(size_t reclaimable_bytes);
johnc@4681 631
ysr@777 632 public:
ysr@777 633
ysr@777 634 G1CollectorPolicy();
ysr@777 635
ysr@777 636 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 637
ysr@777 638 virtual CollectorPolicy::Name kind() {
ysr@777 639 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 640 }
ysr@777 641
brutisso@3923 642 G1GCPhaseTimes* phase_times() const { return _phase_times; }
brutisso@3923 643
tonyp@3119 644 // Check the current value of the young list RSet lengths and
tonyp@3119 645 // compare it against the last prediction. If the current value is
tonyp@3119 646 // higher, recalculate the young list target length prediction.
tonyp@3119 647 void revise_young_list_target_length_if_necessary();
ysr@777 648
brutisso@3120 649 // This should be called after the heap is resized.
tonyp@3713 650 void record_new_heap_size(uint new_number_of_regions);
tonyp@3119 651
tonyp@3209 652 void init();
ysr@777 653
apetrusenko@980 654 // Create jstat counters for the policy.
apetrusenko@980 655 virtual void initialize_gc_policy_counters();
apetrusenko@980 656
ysr@777 657 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 658 bool is_tlab,
ysr@777 659 bool* gc_overhead_limit_was_exceeded);
ysr@777 660
ysr@777 661 // This method controls how a collector handles one or more
ysr@777 662 // of its generations being fully allocated.
ysr@777 663 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 664 bool is_tlab);
ysr@777 665
ysr@777 666 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 667
ysr@777 668 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 669
brutisso@3461 670 bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
brutisso@3456 671
johnc@4929 672 // Record the start and end of an evacuation pause.
johnc@4929 673 void record_collection_pause_start(double start_time_sec);
johnc@4929 674 void record_collection_pause_end(double pause_time_ms);
ysr@777 675
johnc@4929 676 // Record the start and end of a full collection.
johnc@4929 677 void record_full_collection_start();
johnc@4929 678 void record_full_collection_end();
ysr@777 679
ysr@777 680 // Must currently be called while the world is stopped.
johnc@4929 681 void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
ysr@777 682
johnc@4929 683 // Record start and end of remark.
tonyp@3209 684 void record_concurrent_mark_remark_start();
tonyp@3209 685 void record_concurrent_mark_remark_end();
ysr@777 686
johnc@4929 687 // Record start, end, and completion of cleanup.
tonyp@3209 688 void record_concurrent_mark_cleanup_start();
jmasa@3294 689 void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
tonyp@3209 690 void record_concurrent_mark_cleanup_completed();
ysr@777 691
johnc@4929 692 // Records the information about the heap size for reporting in
johnc@4929 693 // print_detailed_heap_transition
johnc@5123 694 void record_heap_size_info_at_start(bool full);
ysr@777 695
johnc@4929 696 // Print heap sizing transition (with less and more detail).
tonyp@2961 697 void print_heap_transition();
johnc@5123 698 void print_detailed_heap_transition(bool full = false);
ysr@777 699
johnc@4929 700 void record_stop_world_start();
johnc@4929 701 void record_concurrent_pause();
ysr@777 702
tonyp@3028 703 // Record how much space we copied during a GC. This is typically
tonyp@3028 704 // called when a GC alloc region is being retired.
tonyp@3028 705 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 706 _bytes_copied_during_gc += bytes;
tonyp@3028 707 }
tonyp@3028 708
tonyp@3028 709 // The amount of space we copied during a GC.
tonyp@3028 710 size_t bytes_copied_during_gc() {
tonyp@3028 711 return _bytes_copied_during_gc;
tonyp@3028 712 }
ysr@777 713
brutisso@3675 714 // Determine whether there are candidate regions so that the
brutisso@3675 715 // next GC should be mixed. The two action strings are used
brutisso@3675 716 // in the ergo output when the method returns true or false.
tonyp@3539 717 bool next_gc_should_be_mixed(const char* true_action_str,
tonyp@3539 718 const char* false_action_str);
tonyp@3539 719
ysr@777 720 // Choose a new collection set. Marks the chosen regions as being
ysr@777 721 // "in_collection_set", and links them together. The head and number of
ysr@777 722 // the collection set are available via access methods.
tonyp@3539 723 void finalize_cset(double target_pause_time_ms);
ysr@777 724
ysr@777 725 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 726 // current collection set.
ysr@777 727 HeapRegion* collection_set() { return _collection_set; }
ysr@777 728
johnc@1829 729 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 730
tonyp@3289 731 // Add old region "hr" to the CSet.
tonyp@3289 732 void add_old_region_to_cset(HeapRegion* hr);
ysr@777 733
johnc@1829 734 // Incremental CSet Support
johnc@1829 735
johnc@1829 736 // The head of the incrementally built collection set.
johnc@1829 737 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 738
johnc@1829 739 // The tail of the incrementally built collection set.
johnc@1829 740 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 741
johnc@1829 742 // Initialize incremental collection set info.
johnc@1829 743 void start_incremental_cset_building();
johnc@1829 744
tonyp@3356 745 // Perform any final calculations on the incremental CSet fields
tonyp@3356 746 // before we can use them.
tonyp@3356 747 void finalize_incremental_cset_building();
tonyp@3356 748
johnc@1829 749 void clear_incremental_cset() {
johnc@1829 750 _inc_cset_head = NULL;
johnc@1829 751 _inc_cset_tail = NULL;
johnc@1829 752 }
johnc@1829 753
johnc@1829 754 // Stop adding regions to the incremental collection set
johnc@1829 755 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 756
tonyp@3356 757 // Add information about hr to the aggregated information for the
tonyp@3356 758 // incrementally built collection set.
johnc@1829 759 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 760
johnc@1829 761 // Update information about hr in the aggregated information for
johnc@1829 762 // the incrementally built collection set.
johnc@1829 763 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 764
johnc@1829 765 private:
johnc@1829 766 // Update the incremental cset information when adding a region
johnc@1829 767 // (should not be called directly).
johnc@1829 768 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 769
johnc@1829 770 public:
johnc@1829 771 // Add hr to the LHS of the incremental collection set.
johnc@1829 772 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 773
johnc@1829 774 // Add hr to the RHS of the incremental collection set.
johnc@1829 775 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 776
johnc@1829 777 #ifndef PRODUCT
johnc@1829 778 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 779 #endif // !PRODUCT
johnc@1829 780
tonyp@1794 781 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 782 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 783 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 784
tonyp@1794 785 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 786 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 787 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 788
tonyp@2011 789 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 790 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 791 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 792 // progress or not is stable.
tonyp@3114 793 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 794
tonyp@1794 795 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 796 // has to be the first thing that the pause does). If
tonyp@1794 797 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 798 // marking thread has completed its work during the previous cycle,
tonyp@1794 799 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 800 // the initial-mark work and start a marking cycle.
tonyp@1794 801 void decide_on_conc_mark_initiation();
ysr@777 802
ysr@777 803 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 804 // exceeded the desired limit, return an amount to expand by.
tonyp@3209 805 size_t expansion_amount();
ysr@777 806
ysr@777 807 // Print tracing information.
ysr@777 808 void print_tracing_info() const;
ysr@777 809
ysr@777 810 // Print stats on young survival ratio
ysr@777 811 void print_yg_surv_rate_info() const;
ysr@777 812
apetrusenko@980 813 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 814 if (is_survivors) {
apetrusenko@980 815 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 816 } else {
apetrusenko@980 817 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 818 }
ysr@777 819 // do that for any other surv rate groups
ysr@777 820 }
ysr@777 821
tonyp@2315 822 bool is_young_list_full() {
tonyp@3713 823 uint young_list_length = _g1->young_list()->length();
tonyp@3713 824 uint young_list_target_length = _young_list_target_length;
tonyp@2333 825 return young_list_length >= young_list_target_length;
tonyp@2333 826 }
tonyp@2333 827
tonyp@2333 828 bool can_expand_young_list() {
tonyp@3713 829 uint young_list_length = _g1->young_list()->length();
tonyp@3713 830 uint young_list_max_length = _young_list_max_length;
tonyp@2333 831 return young_list_length < young_list_max_length;
tonyp@2333 832 }
tonyp@2315 833
tonyp@3713 834 uint young_list_max_length() {
tonyp@3176 835 return _young_list_max_length;
tonyp@3176 836 }
tonyp@3176 837
tonyp@3337 838 bool gcs_are_young() {
tonyp@3337 839 return _gcs_are_young;
ysr@777 840 }
tonyp@3337 841 void set_gcs_are_young(bool gcs_are_young) {
tonyp@3337 842 _gcs_are_young = gcs_are_young;
ysr@777 843 }
ysr@777 844
ysr@777 845 bool adaptive_young_list_length() {
brutisso@3358 846 return _young_gen_sizer->adaptive_young_list_length();
ysr@777 847 }
ysr@777 848
tonyp@3209 849 private:
ysr@777 850 //
ysr@777 851 // Survivor regions policy.
ysr@777 852 //
ysr@777 853
ysr@777 854 // Current tenuring threshold, set to 0 if the collector reaches the
jwilhelm@4129 855 // maximum amount of survivors regions.
jwilhelm@4129 856 uint _tenuring_threshold;
ysr@777 857
apetrusenko@980 858 // The limit on the number of regions allocated for survivors.
tonyp@3713 859 uint _max_survivor_regions;
apetrusenko@980 860
tonyp@2961 861 // For reporting purposes.
johnc@5123 862 // The value of _heap_bytes_before_gc is also used to calculate
johnc@5123 863 // the cost of copying.
johnc@5123 864
johnc@5123 865 size_t _eden_used_bytes_before_gc; // Eden occupancy before GC
johnc@5123 866 size_t _survivor_used_bytes_before_gc; // Survivor occupancy before GC
johnc@5123 867 size_t _heap_used_bytes_before_gc; // Heap occupancy before GC
johnc@5123 868 size_t _metaspace_used_bytes_before_gc; // Metaspace occupancy before GC
johnc@5123 869
johnc@5123 870 size_t _eden_capacity_bytes_before_gc; // Eden capacity before GC
johnc@5123 871 size_t _heap_capacity_bytes_before_gc; // Heap capacity before GC
tonyp@2961 872
jwilhelm@4129 873 // The amount of survivor regions after a collection.
tonyp@3713 874 uint _recorded_survivor_regions;
apetrusenko@980 875 // List of survivor regions.
apetrusenko@980 876 HeapRegion* _recorded_survivor_head;
apetrusenko@980 877 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 878
apetrusenko@980 879 ageTable _survivors_age_table;
apetrusenko@980 880
ysr@777 881 public:
ysr@777 882
ysr@777 883 inline GCAllocPurpose
jwilhelm@4129 884 evacuation_destination(HeapRegion* src_region, uint age, size_t word_sz) {
ysr@777 885 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 886 return GCAllocForSurvived;
ysr@777 887 } else {
ysr@777 888 return GCAllocForTenured;
ysr@777 889 }
ysr@777 890 }
ysr@777 891
ysr@777 892 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 893 return purpose == GCAllocForSurvived;
ysr@777 894 }
ysr@777 895
tonyp@3713 896 static const uint REGIONS_UNLIMITED = (uint) -1;
apetrusenko@980 897
tonyp@3713 898 uint max_regions(int purpose);
ysr@777 899
ysr@777 900 // The limit on regions for a particular purpose is reached.
ysr@777 901 void note_alloc_region_limit_reached(int purpose) {
ysr@777 902 if (purpose == GCAllocForSurvived) {
ysr@777 903 _tenuring_threshold = 0;
ysr@777 904 }
ysr@777 905 }
ysr@777 906
ysr@777 907 void note_start_adding_survivor_regions() {
ysr@777 908 _survivor_surv_rate_group->start_adding_regions();
ysr@777 909 }
ysr@777 910
ysr@777 911 void note_stop_adding_survivor_regions() {
ysr@777 912 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 913 }
apetrusenko@980 914
tonyp@3713 915 void record_survivor_regions(uint regions,
apetrusenko@980 916 HeapRegion* head,
apetrusenko@980 917 HeapRegion* tail) {
apetrusenko@980 918 _recorded_survivor_regions = regions;
apetrusenko@980 919 _recorded_survivor_head = head;
apetrusenko@980 920 _recorded_survivor_tail = tail;
apetrusenko@980 921 }
apetrusenko@980 922
tonyp@3713 923 uint recorded_survivor_regions() {
tonyp@1273 924 return _recorded_survivor_regions;
tonyp@1273 925 }
tonyp@1273 926
tonyp@3713 927 void record_thread_age_table(ageTable* age_table) {
apetrusenko@980 928 _survivors_age_table.merge_par(age_table);
apetrusenko@980 929 }
apetrusenko@980 930
tonyp@3119 931 void update_max_gc_locker_expansion();
tonyp@2333 932
apetrusenko@980 933 // Calculates survivor space parameters.
tonyp@3119 934 void update_survivors_policy();
apetrusenko@980 935
ysr@777 936 };
ysr@777 937
ysr@777 938 // This should move to some place more general...
ysr@777 939
ysr@777 940 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 941 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 942 // sequence.
ysr@777 943 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 944 double n_d = (double)n;
ysr@777 945 double avg = sum/n_d;
ysr@777 946 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 947 }
ysr@777 948
stefank@2314 949 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial