src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 17 May 2013 11:57:05 +0200

author
ehelin
date
Fri, 17 May 2013 11:57:05 +0200
changeset 5159
001ec9515f84
parent 5014
5c93c1f61226
child 5206
87c64c0438fb
permissions
-rw-r--r--

8014277: Remove ObjectClosure as base class for BoolObjectClosure
Reviewed-by: brutisso, tschatzl

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
tonyp@2715 29 #include "gc_implementation/g1/g1AllocRegion.hpp"
tonyp@2975 30 #include "gc_implementation/g1/g1HRPrinter.hpp"
stefank@2314 31 #include "gc_implementation/g1/g1RemSet.hpp"
jmasa@2821 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
tonyp@2963 33 #include "gc_implementation/g1/heapRegionSeq.hpp"
tonyp@2472 34 #include "gc_implementation/g1/heapRegionSets.hpp"
jmasa@2821 35 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 36 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 37 #include "memory/barrierSet.hpp"
stefank@2314 38 #include "memory/memRegion.hpp"
stefank@2314 39 #include "memory/sharedHeap.hpp"
brutisso@4579 40 #include "utilities/stack.hpp"
stefank@2314 41
ysr@777 42 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 43 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 44 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 45 // heap subsets that will yield large amounts of garbage.
ysr@777 46
ysr@777 47 class HeapRegion;
tonyp@2493 48 class HRRSCleanupTask;
ysr@777 49 class GenerationSpec;
ysr@777 50 class OopsInHeapRegionClosure;
coleenp@4037 51 class G1KlassScanClosure;
ysr@777 52 class G1ScanHeapEvacClosure;
ysr@777 53 class ObjectClosure;
ysr@777 54 class SpaceClosure;
ysr@777 55 class CompactibleSpaceClosure;
ysr@777 56 class Space;
ysr@777 57 class G1CollectorPolicy;
ysr@777 58 class GenRemSet;
ysr@777 59 class G1RemSet;
ysr@777 60 class HeapRegionRemSetIterator;
ysr@777 61 class ConcurrentMark;
ysr@777 62 class ConcurrentMarkThread;
ysr@777 63 class ConcurrentG1Refine;
jmasa@2821 64 class GenerationCounters;
ysr@777 65
zgu@3900 66 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 67 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 68
johnc@1242 69 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 70 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 71
ysr@777 72 enum GCAllocPurpose {
ysr@777 73 GCAllocForTenured,
ysr@777 74 GCAllocForSurvived,
ysr@777 75 GCAllocPurposeCount
ysr@777 76 };
ysr@777 77
zgu@3900 78 class YoungList : public CHeapObj<mtGC> {
ysr@777 79 private:
ysr@777 80 G1CollectedHeap* _g1h;
ysr@777 81
ysr@777 82 HeapRegion* _head;
ysr@777 83
johnc@1829 84 HeapRegion* _survivor_head;
johnc@1829 85 HeapRegion* _survivor_tail;
johnc@1829 86
johnc@1829 87 HeapRegion* _curr;
johnc@1829 88
tonyp@3713 89 uint _length;
tonyp@3713 90 uint _survivor_length;
ysr@777 91
ysr@777 92 size_t _last_sampled_rs_lengths;
ysr@777 93 size_t _sampled_rs_lengths;
ysr@777 94
johnc@1829 95 void empty_list(HeapRegion* list);
ysr@777 96
ysr@777 97 public:
ysr@777 98 YoungList(G1CollectedHeap* g1h);
ysr@777 99
johnc@1829 100 void push_region(HeapRegion* hr);
johnc@1829 101 void add_survivor_region(HeapRegion* hr);
johnc@1829 102
johnc@1829 103 void empty_list();
johnc@1829 104 bool is_empty() { return _length == 0; }
tonyp@3713 105 uint length() { return _length; }
tonyp@3713 106 uint survivor_length() { return _survivor_length; }
ysr@777 107
tonyp@2961 108 // Currently we do not keep track of the used byte sum for the
tonyp@2961 109 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 110 // do so. When we'll eventually replace the young list with
tonyp@2961 111 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 112 // we'll report the more accurate information then.
tonyp@2961 113 size_t eden_used_bytes() {
tonyp@2961 114 assert(length() >= survivor_length(), "invariant");
tonyp@3713 115 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 116 }
tonyp@2961 117 size_t survivor_used_bytes() {
tonyp@3713 118 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 119 }
tonyp@2961 120
ysr@777 121 void rs_length_sampling_init();
ysr@777 122 bool rs_length_sampling_more();
ysr@777 123 void rs_length_sampling_next();
ysr@777 124
ysr@777 125 void reset_sampled_info() {
ysr@777 126 _last_sampled_rs_lengths = 0;
ysr@777 127 }
ysr@777 128 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 129
ysr@777 130 // for development purposes
ysr@777 131 void reset_auxilary_lists();
johnc@1829 132 void clear() { _head = NULL; _length = 0; }
johnc@1829 133
johnc@1829 134 void clear_survivors() {
johnc@1829 135 _survivor_head = NULL;
johnc@1829 136 _survivor_tail = NULL;
johnc@1829 137 _survivor_length = 0;
johnc@1829 138 }
johnc@1829 139
ysr@777 140 HeapRegion* first_region() { return _head; }
ysr@777 141 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 142 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 143
ysr@777 144 // debugging
ysr@777 145 bool check_list_well_formed();
johnc@1829 146 bool check_list_empty(bool check_sample = true);
ysr@777 147 void print();
ysr@777 148 };
ysr@777 149
tonyp@2715 150 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 151 protected:
tonyp@2715 152 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 153 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 154 public:
tonyp@2715 155 MutatorAllocRegion()
tonyp@2715 156 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 157 };
tonyp@2715 158
johnc@3175 159 // The G1 STW is alive closure.
johnc@3175 160 // An instance is embedded into the G1CH and used as the
johnc@3175 161 // (optional) _is_alive_non_header closure in the STW
johnc@3175 162 // reference processor. It is also extensively used during
johnc@3175 163 // refence processing during STW evacuation pauses.
johnc@3175 164 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@3175 165 G1CollectedHeap* _g1;
johnc@3175 166 public:
johnc@3175 167 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@3175 168 bool do_object_b(oop p);
johnc@3175 169 };
johnc@3175 170
tonyp@3028 171 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 172 protected:
tonyp@3028 173 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 174 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 175 public:
tonyp@3028 176 SurvivorGCAllocRegion()
tonyp@3028 177 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 178 };
tonyp@3028 179
tonyp@3028 180 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 181 protected:
tonyp@3028 182 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 183 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 184 public:
tonyp@3028 185 OldGCAllocRegion()
tonyp@3028 186 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
tonyp@3028 187 };
tonyp@3028 188
ysr@777 189 class RefineCardTableEntryClosure;
johnc@3175 190
ysr@777 191 class G1CollectedHeap : public SharedHeap {
ysr@777 192 friend class VM_G1CollectForAllocation;
ysr@777 193 friend class VM_G1CollectFull;
ysr@777 194 friend class VM_G1IncCollectionPause;
ysr@777 195 friend class VMStructs;
tonyp@2715 196 friend class MutatorAllocRegion;
tonyp@3028 197 friend class SurvivorGCAllocRegion;
tonyp@3028 198 friend class OldGCAllocRegion;
ysr@777 199
ysr@777 200 // Closures used in implementation.
brutisso@3690 201 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
brutisso@3690 202 friend class G1ParCopyClosure;
ysr@777 203 friend class G1IsAliveClosure;
ysr@777 204 friend class G1EvacuateFollowersClosure;
ysr@777 205 friend class G1ParScanThreadState;
ysr@777 206 friend class G1ParScanClosureSuper;
ysr@777 207 friend class G1ParEvacuateFollowersClosure;
ysr@777 208 friend class G1ParTask;
ysr@777 209 friend class G1FreeGarbageRegionClosure;
ysr@777 210 friend class RefineCardTableEntryClosure;
ysr@777 211 friend class G1PrepareCompactClosure;
ysr@777 212 friend class RegionSorter;
tonyp@2472 213 friend class RegionResetter;
ysr@777 214 friend class CountRCClosure;
ysr@777 215 friend class EvacPopObjClosure;
apetrusenko@1231 216 friend class G1ParCleanupCTTask;
ysr@777 217
ysr@777 218 // Other related classes.
ysr@777 219 friend class G1MarkSweep;
ysr@777 220
ysr@777 221 private:
ysr@777 222 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 223 static G1CollectedHeap* _g1h;
ysr@777 224
tonyp@1377 225 static size_t _humongous_object_threshold_in_words;
tonyp@1377 226
coleenp@4037 227 // Storage for the G1 heap.
ysr@777 228 VirtualSpace _g1_storage;
ysr@777 229 MemRegion _g1_reserved;
ysr@777 230
ysr@777 231 // The part of _g1_storage that is currently committed.
ysr@777 232 MemRegion _g1_committed;
ysr@777 233
tonyp@2472 234 // The master free list. It will satisfy all new region allocations.
tonyp@2472 235 MasterFreeRegionList _free_list;
tonyp@2472 236
tonyp@2472 237 // The secondary free list which contains regions that have been
tonyp@2472 238 // freed up during the cleanup process. This will be appended to the
tonyp@2472 239 // master free list when appropriate.
tonyp@2472 240 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 241
tonyp@3268 242 // It keeps track of the old regions.
tonyp@3268 243 MasterOldRegionSet _old_set;
tonyp@3268 244
tonyp@2472 245 // It keeps track of the humongous regions.
tonyp@2472 246 MasterHumongousRegionSet _humongous_set;
ysr@777 247
ysr@777 248 // The number of regions we could create by expansion.
tonyp@3713 249 uint _expansion_regions;
ysr@777 250
ysr@777 251 // The block offset table for the G1 heap.
ysr@777 252 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 253
tonyp@3268 254 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 255 // regions on the heap do not belong to a region set / list. The
tonyp@3268 256 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 257 // free_list_only is true, it will only tear down the master free
tonyp@3268 258 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 259 // before heap shrinking (free_list_only == true).
tonyp@3268 260 void tear_down_region_sets(bool free_list_only);
tonyp@3268 261
tonyp@3268 262 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 263 // reflect the contents of the heap. The only exception is the
tonyp@3268 264 // humongous set which was not torn down in the first place. If
tonyp@3268 265 // free_list_only is true, it will only rebuild the master free
tonyp@3268 266 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 267 // after heap shrinking (free_list_only == true).
tonyp@3268 268 void rebuild_region_sets(bool free_list_only);
ysr@777 269
ysr@777 270 // The sequence of all heap regions in the heap.
tonyp@2963 271 HeapRegionSeq _hrs;
ysr@777 272
tonyp@2715 273 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 274 MutatorAllocRegion _mutator_alloc_region;
ysr@777 275
tonyp@3028 276 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 277 // survivor objects.
tonyp@3028 278 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 279
johnc@3982 280 // PLAB sizing policy for survivors.
johnc@3982 281 PLABStats _survivor_plab_stats;
johnc@3982 282
tonyp@3028 283 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 284 // old objects.
tonyp@3028 285 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 286
johnc@3982 287 // PLAB sizing policy for tenured objects.
johnc@3982 288 PLABStats _old_plab_stats;
johnc@3982 289
johnc@3982 290 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
johnc@3982 291 PLABStats* stats = NULL;
johnc@3982 292
johnc@3982 293 switch (purpose) {
johnc@3982 294 case GCAllocForSurvived:
johnc@3982 295 stats = &_survivor_plab_stats;
johnc@3982 296 break;
johnc@3982 297 case GCAllocForTenured:
johnc@3982 298 stats = &_old_plab_stats;
johnc@3982 299 break;
johnc@3982 300 default:
johnc@3982 301 assert(false, "unrecognized GCAllocPurpose");
johnc@3982 302 }
johnc@3982 303
johnc@3982 304 return stats;
johnc@3982 305 }
johnc@3982 306
tonyp@3028 307 // The last old region we allocated to during the last GC.
tonyp@3028 308 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 309 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 310
tonyp@3410 311 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 312 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 313 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 314 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 315 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 316 // start of each GC.
tonyp@3410 317 bool _expand_heap_after_alloc_failure;
tonyp@3410 318
tonyp@2715 319 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 320 void init_mutator_alloc_region();
tonyp@2715 321
tonyp@2715 322 // It releases the mutator alloc region.
tonyp@2715 323 void release_mutator_alloc_region();
tonyp@2715 324
tonyp@3028 325 // It initializes the GC alloc regions at the start of a GC.
tonyp@3028 326 void init_gc_alloc_regions();
tonyp@3028 327
tonyp@3028 328 // It releases the GC alloc regions at the end of a GC.
johnc@4130 329 void release_gc_alloc_regions(uint no_of_gc_workers);
tonyp@3028 330
tonyp@3028 331 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 332 // before a Full GC.
tonyp@1071 333 void abandon_gc_alloc_regions();
ysr@777 334
jmasa@2821 335 // Helper for monitoring and management support.
jmasa@2821 336 G1MonitoringSupport* _g1mm;
jmasa@2821 337
apetrusenko@1826 338 // Determines PLAB size for a particular allocation purpose.
johnc@3982 339 size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 340
ysr@777 341 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 342 // than the current allocation region.
ysr@777 343 size_t _summary_bytes_used;
ysr@777 344
tonyp@961 345 // This is used for a quick test on whether a reference points into
tonyp@961 346 // the collection set or not. Basically, we have an array, with one
tonyp@961 347 // byte per region, and that byte denotes whether the corresponding
tonyp@961 348 // region is in the collection set or not. The entry corresponding
tonyp@961 349 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 350 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 351 // biased so that it actually points to address 0 of the address
tonyp@961 352 // space, to make the test as fast as possible (we can simply shift
tonyp@961 353 // the address to address into it, instead of having to subtract the
tonyp@961 354 // bottom of the heap from the address before shifting it; basically
tonyp@961 355 // it works in the same way the card table works).
tonyp@961 356 bool* _in_cset_fast_test;
tonyp@961 357
tonyp@961 358 // The allocated array used for the fast test on whether a reference
tonyp@961 359 // points into the collection set or not. This field is also used to
tonyp@961 360 // free the array.
tonyp@961 361 bool* _in_cset_fast_test_base;
tonyp@961 362
tonyp@961 363 // The length of the _in_cset_fast_test_base array.
tonyp@3713 364 uint _in_cset_fast_test_length;
tonyp@961 365
iveresov@788 366 volatile unsigned _gc_time_stamp;
ysr@777 367
ysr@777 368 size_t* _surviving_young_words;
ysr@777 369
tonyp@2975 370 G1HRPrinter _hr_printer;
tonyp@2975 371
ysr@777 372 void setup_surviving_young_words();
ysr@777 373 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 374 void cleanup_surviving_young_words();
ysr@777 375
tonyp@2011 376 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 377 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 378 // explicitly started if:
tonyp@2011 379 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 380 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 381 // (c) cause == _g1_humongous_allocation
tonyp@2011 382 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 383
brutisso@3823 384 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 385 // concurrent cycles) we have started.
brutisso@3823 386 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 387
brutisso@3823 388 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 389 // concurrent cycles) we have completed.
brutisso@3823 390 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 391
tonyp@2817 392 // This is a non-product method that is helpful for testing. It is
tonyp@2817 393 // called at the end of a GC and artificially expands the heap by
tonyp@2817 394 // allocating a number of dead regions. This way we can induce very
tonyp@2817 395 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 396 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 397 // this method will be found dead by the marking cycle).
tonyp@2817 398 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 399
tonyp@3957 400 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 401 void clear_rsets_post_compaction();
tonyp@3957 402
tonyp@3957 403 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 404 // heap after a compaction.
tonyp@3957 405 void print_hrs_post_compaction();
tonyp@3957 406
brutisso@4015 407 double verify(bool guard, const char* msg);
brutisso@4015 408 void verify_before_gc();
brutisso@4015 409 void verify_after_gc();
brutisso@4015 410
brutisso@4063 411 void log_gc_header();
brutisso@4063 412 void log_gc_footer(double pause_time_sec);
brutisso@4063 413
tonyp@2315 414 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 415 // line number, file, etc.
tonyp@2315 416
tonyp@2643 417 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 418 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 419 (_extra_message_), \
tonyp@2472 420 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 421 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 422 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 423
tonyp@2315 424 #define assert_heap_locked() \
tonyp@2315 425 do { \
tonyp@2315 426 assert(Heap_lock->owned_by_self(), \
tonyp@2315 427 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 428 } while (0)
tonyp@2315 429
tonyp@2643 430 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 431 do { \
tonyp@2315 432 assert(Heap_lock->owned_by_self() || \
tonyp@2472 433 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 434 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 435 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 436 "should be at a safepoint")); \
tonyp@2315 437 } while (0)
tonyp@2315 438
tonyp@2315 439 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 440 do { \
tonyp@2315 441 assert(Heap_lock->owned_by_self() && \
tonyp@2315 442 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 443 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 444 "should not be at a safepoint")); \
tonyp@2315 445 } while (0)
tonyp@2315 446
tonyp@2315 447 #define assert_heap_not_locked() \
tonyp@2315 448 do { \
tonyp@2315 449 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 450 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 451 } while (0)
tonyp@2315 452
tonyp@2315 453 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 454 do { \
tonyp@2315 455 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 456 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 457 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 458 "should not be at a safepoint")); \
tonyp@2315 459 } while (0)
tonyp@2315 460
tonyp@2643 461 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 462 do { \
tonyp@2472 463 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 464 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 465 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 466 } while (0)
tonyp@2315 467
tonyp@2315 468 #define assert_not_at_safepoint() \
tonyp@2315 469 do { \
tonyp@2315 470 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 471 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 472 } while (0)
tonyp@2315 473
ysr@777 474 protected:
ysr@777 475
johnc@3021 476 // The young region list.
ysr@777 477 YoungList* _young_list;
ysr@777 478
ysr@777 479 // The current policy object for the collector.
ysr@777 480 G1CollectorPolicy* _g1_policy;
ysr@777 481
tonyp@2472 482 // This is the second level of trying to allocate a new region. If
tonyp@2715 483 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 484 // check whether there's anything available on the
tonyp@2715 485 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 486 // that list, if _free_regions_coming is set.
tonyp@2643 487 HeapRegion* new_region_try_secondary_free_list();
ysr@777 488
tonyp@2643 489 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 490 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 491 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 492 // request.
tonyp@2715 493 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 494
tonyp@2643 495 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 496 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 497 // length and remove them from the master free list. Return the
tonyp@2963 498 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 499 // was unsuccessful.
tonyp@3713 500 uint humongous_obj_allocate_find_first(uint num_regions,
tonyp@3713 501 size_t word_size);
ysr@777 502
tonyp@2643 503 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 504 // and starting at index first so that they appear as a single
tonyp@2643 505 // humongous region.
tonyp@3713 506 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 507 uint num_regions,
tonyp@2643 508 size_t word_size);
tonyp@2643 509
tonyp@2643 510 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 511 // NULL if unsuccessful.
tonyp@2472 512 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 513
tonyp@2315 514 // The following two methods, allocate_new_tlab() and
tonyp@2315 515 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 516 // into the G1's allocation routines. They have the following
tonyp@2315 517 // assumptions:
tonyp@2315 518 //
tonyp@2315 519 // * They should both be called outside safepoints.
tonyp@2315 520 //
tonyp@2315 521 // * They should both be called without holding the Heap_lock.
tonyp@2315 522 //
tonyp@2315 523 // * All allocation requests for new TLABs should go to
tonyp@2315 524 // allocate_new_tlab().
tonyp@2315 525 //
tonyp@2971 526 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 527 //
tonyp@2315 528 // * If either call cannot satisfy the allocation request using the
tonyp@2315 529 // current allocating region, they will try to get a new one. If
tonyp@2315 530 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 531 // retry the allocation.
tonyp@2315 532 //
tonyp@2315 533 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 534 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 535 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 536 // schedule a Full GC.
tonyp@2315 537 //
tonyp@2315 538 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 539 // should never be called with word_size being humongous. All
tonyp@2315 540 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 541 // will satisfy them with a special path.
ysr@777 542
tonyp@2315 543 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 544
tonyp@2315 545 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 546 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 547
tonyp@2715 548 // The following three methods take a gc_count_before_ret
tonyp@2715 549 // parameter which is used to return the GC count if the method
tonyp@2715 550 // returns NULL. Given that we are required to read the GC count
tonyp@2715 551 // while holding the Heap_lock, and these paths will take the
tonyp@2715 552 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 553 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 554 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 555 // Heap_lock just to read the GC count.
tonyp@2315 556
tonyp@2715 557 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 558 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 559 // should only be used for non-humongous allocations.
tonyp@2715 560 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 561 unsigned int* gc_count_before_ret,
mgerdin@4853 562 int* gclocker_retry_count_ret);
tonyp@2315 563
tonyp@2715 564 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 565 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 566 // pause. This should only be used for non-humongous allocations.
tonyp@2715 567 HeapWord* attempt_allocation_slow(size_t word_size,
mgerdin@4853 568 unsigned int* gc_count_before_ret,
mgerdin@4853 569 int* gclocker_retry_count_ret);
tonyp@2315 570
tonyp@2715 571 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 572 // potentially schedule a GC pause.
tonyp@2715 573 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 574 unsigned int* gc_count_before_ret,
mgerdin@4853 575 int* gclocker_retry_count_ret);
tonyp@2454 576
tonyp@2715 577 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 578 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 579 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 580 // or not.
tonyp@2315 581 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 582 bool expect_null_mutator_alloc_region);
tonyp@2315 583
tonyp@2315 584 // It dirties the cards that cover the block so that so that the post
tonyp@2315 585 // write barrier never queues anything when updating objects on this
tonyp@2315 586 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 587 // belongs to a young region.
tonyp@2315 588 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 589
ysr@777 590 // Allocate blocks during garbage collection. Will ensure an
ysr@777 591 // allocation region, either by picking one or expanding the
ysr@777 592 // heap, and then allocate a block of the given size. The block
ysr@777 593 // may not be a humongous - it must fit into a single heap region.
ysr@777 594 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 595
ysr@777 596 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 597 HeapRegion* alloc_region,
ysr@777 598 bool par,
ysr@777 599 size_t word_size);
ysr@777 600
ysr@777 601 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 602 // that parallel threads might be attempting allocations.
ysr@777 603 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 604
tonyp@3028 605 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 606 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 607
tonyp@3028 608 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 609 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 610
tonyp@3028 611 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 612
tonyp@3028 613 // For mutator alloc regions.
tonyp@2715 614 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 615 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 616 size_t allocated_bytes);
tonyp@2715 617
tonyp@3028 618 // For GC alloc regions.
tonyp@3713 619 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 620 GCAllocPurpose ap);
tonyp@3028 621 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 622 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 623
tonyp@2011 624 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 625 // inspection request and should collect the entire heap
tonyp@2315 626 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 627 // cleared during the GC
tonyp@2011 628 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 629 // the GC should attempt (at least) to satisfy
tonyp@2315 630 // - it returns false if it is unable to do the collection due to the
tonyp@2315 631 // GC locker being active, true otherwise
tonyp@2315 632 bool do_collection(bool explicit_gc,
tonyp@2011 633 bool clear_all_soft_refs,
ysr@777 634 size_t word_size);
ysr@777 635
ysr@777 636 // Callback from VM_G1CollectFull operation.
ysr@777 637 // Perform a full collection.
coleenp@4037 638 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 639
ysr@777 640 // Resize the heap if necessary after a full collection. If this is
ysr@777 641 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 642 // and will be considered part of the used portion of the heap.
ysr@777 643 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 644
ysr@777 645 // Callback from VM_G1CollectForAllocation operation.
ysr@777 646 // This function does everything necessary/possible to satisfy a
ysr@777 647 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 648 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 649
ysr@777 650 // Attempting to expand the heap sufficiently
ysr@777 651 // to support an allocation of the given "word_size". If
ysr@777 652 // successful, perform the allocation and return the address of the
ysr@777 653 // allocated block, or else "NULL".
tonyp@2315 654 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 655
johnc@3175 656 // Process any reference objects discovered during
johnc@3175 657 // an incremental evacuation pause.
johnc@4130 658 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 659
johnc@3175 660 // Enqueue any remaining discovered references
johnc@3175 661 // after processing.
johnc@4130 662 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 663
ysr@777 664 public:
jmasa@2821 665
tonyp@3176 666 G1MonitoringSupport* g1mm() {
tonyp@3176 667 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 668 return _g1mm;
tonyp@3176 669 }
jmasa@2821 670
ysr@777 671 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 672 // Returns true if the heap was expanded by the requested amount;
johnc@2504 673 // false otherwise.
ysr@777 674 // (Rounds up to a HeapRegion boundary.)
johnc@2504 675 bool expand(size_t expand_bytes);
ysr@777 676
ysr@777 677 // Do anything common to GC's.
ysr@777 678 virtual void gc_prologue(bool full);
ysr@777 679 virtual void gc_epilogue(bool full);
ysr@777 680
tonyp@961 681 // We register a region with the fast "in collection set" test. We
tonyp@961 682 // simply set to true the array slot corresponding to this region.
tonyp@961 683 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 684 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 685 assert(r->in_collection_set(), "invariant");
tonyp@3713 686 uint index = r->hrs_index();
tonyp@2963 687 assert(index < _in_cset_fast_test_length, "invariant");
tonyp@961 688 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 689 _in_cset_fast_test_base[index] = true;
tonyp@961 690 }
tonyp@961 691
tonyp@961 692 // This is a fast test on whether a reference points into the
tonyp@961 693 // collection set or not. It does not assume that the reference
tonyp@961 694 // points into the heap; if it doesn't, it will return false.
tonyp@961 695 bool in_cset_fast_test(oop obj) {
tonyp@961 696 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 697 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 698 // no need to subtract the bottom of the heap from obj,
tonyp@961 699 // _in_cset_fast_test is biased
tonyp@3713 700 uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 701 bool ret = _in_cset_fast_test[index];
tonyp@961 702 // let's make sure the result is consistent with what the slower
tonyp@961 703 // test returns
tonyp@961 704 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 705 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 706 return ret;
tonyp@961 707 } else {
tonyp@961 708 return false;
tonyp@961 709 }
tonyp@961 710 }
tonyp@961 711
johnc@1829 712 void clear_cset_fast_test() {
johnc@1829 713 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 714 memset(_in_cset_fast_test_base, false,
tonyp@3713 715 (size_t) _in_cset_fast_test_length * sizeof(bool));
johnc@1829 716 }
johnc@1829 717
brutisso@3823 718 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 719 // GC to update the number of old marking cycles started.
brutisso@3823 720 void increment_old_marking_cycles_started();
brutisso@3823 721
tonyp@2011 722 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 723 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 724 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 725 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 726 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 727 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 728 // tighter consistency checking in the method. If concurrent is
tonyp@2372 729 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 730 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 731 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 732 // not currently supported. The end of this call also notifies
tonyp@2372 733 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 734 // GC to happen (e.g., it called System.gc() with
tonyp@2011 735 // +ExplicitGCInvokesConcurrent).
brutisso@3823 736 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 737
brutisso@3823 738 unsigned int old_marking_cycles_completed() {
brutisso@3823 739 return _old_marking_cycles_completed;
tonyp@2011 740 }
tonyp@2011 741
tonyp@2975 742 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 743
ysr@777 744 protected:
ysr@777 745
ysr@777 746 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 747 // (Rounds down to a HeapRegion boundary.)
ysr@777 748 virtual void shrink(size_t expand_bytes);
ysr@777 749 void shrink_helper(size_t expand_bytes);
ysr@777 750
jcoomes@2064 751 #if TASKQUEUE_STATS
jcoomes@2064 752 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 753 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 754 void reset_taskqueue_stats();
jcoomes@2064 755 #endif // TASKQUEUE_STATS
jcoomes@2064 756
tonyp@2315 757 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 758 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 759 // return whether the VM operation was successful (it did do an
tonyp@2315 760 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 761 // locker was active). Given that we should not be holding the
tonyp@2315 762 // Heap_lock when we enter this method, we will pass the
tonyp@2315 763 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 764 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 765 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 766 // before the call, so it's easy to read gc_count_before just before.
tonyp@2315 767 HeapWord* do_collection_pause(size_t word_size,
tonyp@2315 768 unsigned int gc_count_before,
tonyp@2315 769 bool* succeeded);
ysr@777 770
ysr@777 771 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 772 // thread. It returns false if it is unable to do the collection due
tonyp@2315 773 // to the GC locker being active, true otherwise
tonyp@2315 774 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 775
ysr@777 776 // Actually do the work of evacuating the collection set.
tonyp@2315 777 void evacuate_collection_set();
ysr@777 778
ysr@777 779 // The g1 remembered set of the heap.
ysr@777 780 G1RemSet* _g1_rem_set;
ysr@777 781 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 782 ModRefBarrierSet* _mr_bs;
ysr@777 783
iveresov@1051 784 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 785 // concurrently after the collection.
iveresov@1051 786 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 787
ysr@777 788 // The closure used to refine a single card.
ysr@777 789 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 790
ysr@777 791 // A function to check the consistency of dirty card logs.
ysr@777 792 void check_ct_logs_at_safepoint();
ysr@777 793
johnc@2060 794 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 795 // references into the current collection set. This is used to
johnc@2060 796 // update the remembered sets of the regions in the collection
johnc@2060 797 // set in the event of an evacuation failure.
johnc@2060 798 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 799
ysr@777 800 // After a collection pause, make the regions in the CS into free
ysr@777 801 // regions.
ysr@777 802 void free_collection_set(HeapRegion* cs_head);
ysr@777 803
johnc@1829 804 // Abandon the current collection set without recording policy
johnc@1829 805 // statistics or updating free lists.
johnc@1829 806 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 807
ysr@777 808 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 809 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 810 // indicate the region in which the root resides),
coleenp@4037 811 // and does "scan_metadata" If "scan_rs" is
ysr@777 812 // NULL, then this step is skipped. The "worker_i"
ysr@777 813 // param is for use with parallel roots processing, and should be
ysr@777 814 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 815 // In the sequential case this param will be ignored.
coleenp@4037 816 void g1_process_strong_roots(bool is_scavenging,
tonyp@3537 817 ScanningOption so,
ysr@777 818 OopClosure* scan_non_heap_roots,
ysr@777 819 OopsInHeapRegionClosure* scan_rs,
coleenp@4037 820 G1KlassScanClosure* scan_klasses,
ysr@777 821 int worker_i);
ysr@777 822
ysr@777 823 // Apply "blk" to all the weak roots of the system. These include
ysr@777 824 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 825 // string table, and referents of reachable weak refs.
stefank@5011 826 void g1_process_weak_roots(OopClosure* root_closure);
ysr@777 827
tonyp@2643 828 // Frees a non-humongous region by initializing its contents and
tonyp@2472 829 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 830 // usually a local list which will be appended to the master free
tonyp@2472 831 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 832 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 833 // up. The assumption is that this will be done later.
tonyp@2472 834 void free_region(HeapRegion* hr,
tonyp@2472 835 size_t* pre_used,
tonyp@2472 836 FreeRegionList* free_list,
tonyp@2472 837 bool par);
ysr@777 838
tonyp@2643 839 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 840 // and calling free_region() for each of them. The freed regions
tonyp@2643 841 // will be added to the free list that's passed as a parameter (this
tonyp@2643 842 // is usually a local list which will be appended to the master free
tonyp@2643 843 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 844 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 845 // up. The assumption is that this will be done later.
tonyp@2472 846 void free_humongous_region(HeapRegion* hr,
tonyp@2472 847 size_t* pre_used,
tonyp@2472 848 FreeRegionList* free_list,
tonyp@2472 849 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 850 bool par);
ysr@777 851
tonyp@2963 852 // Notifies all the necessary spaces that the committed space has
tonyp@2963 853 // been updated (either expanded or shrunk). It should be called
tonyp@2963 854 // after _g1_storage is updated.
tonyp@2963 855 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 856
ysr@777 857 // The concurrent marker (and the thread it runs in.)
ysr@777 858 ConcurrentMark* _cm;
ysr@777 859 ConcurrentMarkThread* _cmThread;
ysr@777 860 bool _mark_in_progress;
ysr@777 861
ysr@777 862 // The concurrent refiner.
ysr@777 863 ConcurrentG1Refine* _cg1r;
ysr@777 864
ysr@777 865 // The parallel task queues
ysr@777 866 RefToScanQueueSet *_task_queues;
ysr@777 867
ysr@777 868 // True iff a evacuation has failed in the current collection.
ysr@777 869 bool _evacuation_failed;
ysr@777 870
ysr@777 871 // Set the attribute indicating whether evacuation has failed in the
ysr@777 872 // current collection.
ysr@777 873 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 874
ysr@777 875 // Failed evacuations cause some logical from-space objects to have
ysr@777 876 // forwarding pointers to themselves. Reset them.
ysr@777 877 void remove_self_forwarding_pointers();
ysr@777 878
brutisso@4579 879 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 880 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 881 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 882
ysr@777 883 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 884 // word being overwritten with a self-forwarding-pointer.
ysr@777 885 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 886
ysr@777 887 // The stack of evac-failure objects left to be scanned.
ysr@777 888 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 889 // The closure to apply to evac-failure objects.
ysr@777 890
ysr@777 891 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 892 // Set the field above.
ysr@777 893 void
ysr@777 894 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 895 _evac_failure_closure = evac_failure_closure;
ysr@777 896 }
ysr@777 897
ysr@777 898 // Push "obj" on the scan stack.
ysr@777 899 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 900 // Process scan stack entries until the stack is empty.
ysr@777 901 void drain_evac_failure_scan_stack();
ysr@777 902 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 903 // prevent unnecessary recursion.
ysr@777 904 bool _drain_in_progress;
ysr@777 905
ysr@777 906 // Do any necessary initialization for evacuation-failure handling.
ysr@777 907 // "cl" is the closure that will be used to process evac-failure
ysr@777 908 // objects.
ysr@777 909 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 910 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 911 // structures.
ysr@777 912 void finalize_for_evac_failure();
ysr@777 913
ysr@777 914 // An attempt to evacuate "obj" has failed; take necessary steps.
tonyp@3416 915 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 916 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 917
johnc@4016 918 #ifndef PRODUCT
johnc@4016 919 // Support for forcing evacuation failures. Analogous to
johnc@4016 920 // PromotionFailureALot for the other collectors.
johnc@4016 921
johnc@4016 922 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 923 // for the current GC
johnc@4016 924 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 925
johnc@4016 926 // Used to record the GC number for interval checking when
johnc@4016 927 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 928 // for the current GC.
johnc@4016 929 size_t _evacuation_failure_alot_gc_number;
johnc@4016 930
johnc@4016 931 // Count of the number of evacuations between failures.
johnc@4016 932 volatile size_t _evacuation_failure_alot_count;
johnc@4016 933
johnc@4016 934 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 935 // for the current GC (based upon the type of GC and which
johnc@4016 936 // command line flags are set);
johnc@4016 937 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 938 bool during_initial_mark,
johnc@4016 939 bool during_marking);
johnc@4016 940
johnc@4016 941 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 942
johnc@4016 943 // Return true if it's time to cause an evacuation failure.
johnc@4016 944 inline bool evacuation_should_fail();
johnc@4016 945
johnc@4016 946 // Reset the G1EvacuationFailureALot counters. Should be called at
johnc@4016 947 // the end of an evacuation pause in which an evacuation failure ocurred.
johnc@4016 948 inline void reset_evacuation_should_fail();
johnc@4016 949 #endif // !PRODUCT
johnc@4016 950
johnc@3175 951 // ("Weak") Reference processing support.
johnc@3175 952 //
johnc@3175 953 // G1 has 2 instances of the referece processor class. One
johnc@3175 954 // (_ref_processor_cm) handles reference object discovery
johnc@3175 955 // and subsequent processing during concurrent marking cycles.
johnc@3175 956 //
johnc@3175 957 // The other (_ref_processor_stw) handles reference object
johnc@3175 958 // discovery and processing during full GCs and incremental
johnc@3175 959 // evacuation pauses.
johnc@3175 960 //
johnc@3175 961 // During an incremental pause, reference discovery will be
johnc@3175 962 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 963 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 964 // pause references discovered by _ref_processor_stw will be
johnc@3175 965 // processed and discovery will be disabled. The previous
johnc@3175 966 // setting for reference object discovery for _ref_processor_cm
johnc@3175 967 // will be re-instated.
johnc@3175 968 //
johnc@3175 969 // At the start of marking:
johnc@3175 970 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 971 // and it's discovered lists are empty.
johnc@3175 972 // * Discovery by the CM ref processor is then enabled.
johnc@3175 973 //
johnc@3175 974 // At the end of marking:
johnc@3175 975 // * Any references on the CM ref processor's discovered
johnc@3175 976 // lists are processed (possibly MT).
johnc@3175 977 //
johnc@3175 978 // At the start of full GC we:
johnc@3175 979 // * Disable discovery by the CM ref processor and
johnc@3175 980 // empty CM ref processor's discovered lists
johnc@3175 981 // (without processing any entries).
johnc@3175 982 // * Verify that the STW ref processor is inactive and it's
johnc@3175 983 // discovered lists are empty.
johnc@3175 984 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 985 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 986 // field.
johnc@3175 987 // * Finally enable discovery by the STW ref processor.
johnc@3175 988 //
johnc@3175 989 // The STW ref processor is used to record any discovered
johnc@3175 990 // references during the full GC.
johnc@3175 991 //
johnc@3175 992 // At the end of a full GC we:
johnc@3175 993 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 994 // that have non-live referents. This has the side-effect of
johnc@3175 995 // making the STW ref processor inactive by disabling discovery.
johnc@3175 996 // * Verify that the CM ref processor is still inactive
johnc@3175 997 // and no references have been placed on it's discovered
johnc@3175 998 // lists (also checked as a precondition during initial marking).
johnc@3175 999
johnc@3175 1000 // The (stw) reference processor...
johnc@3175 1001 ReferenceProcessor* _ref_processor_stw;
johnc@3175 1002
johnc@3175 1003 // During reference object discovery, the _is_alive_non_header
johnc@3175 1004 // closure (if non-null) is applied to the referent object to
johnc@3175 1005 // determine whether the referent is live. If so then the
johnc@3175 1006 // reference object does not need to be 'discovered' and can
johnc@3175 1007 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 1008 // the number of 'discovered' reference objects that need to
johnc@3175 1009 // be processed.
johnc@3175 1010 //
johnc@3175 1011 // Instance of the is_alive closure for embedding into the
johnc@3175 1012 // STW reference processor as the _is_alive_non_header field.
johnc@3175 1013 // Supplying a value for the _is_alive_non_header field is
johnc@3175 1014 // optional but doing so prevents unnecessary additions to
johnc@3175 1015 // the discovered lists during reference discovery.
johnc@3175 1016 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 1017
johnc@3175 1018 // The (concurrent marking) reference processor...
johnc@3175 1019 ReferenceProcessor* _ref_processor_cm;
johnc@3175 1020
johnc@2379 1021 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 1022 // into the Concurrent Marking reference processor as the
johnc@3175 1023 // _is_alive_non_header field. Supplying a value for the
johnc@3175 1024 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 1025 // unnecessary additions to the discovered lists during reference
johnc@3175 1026 // discovery.
johnc@3175 1027 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 1028
johnc@3336 1029 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1030 HeapRegion** _worker_cset_start_region;
johnc@3336 1031
johnc@3336 1032 // Time stamp to validate the regions recorded in the cache
johnc@3336 1033 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1034 // The heap region entry for a given worker is valid iff
johnc@3336 1035 // the associated time stamp value matches the current value
johnc@3336 1036 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1037 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1038
ysr@777 1039 enum G1H_process_strong_roots_tasks {
tonyp@3416 1040 G1H_PS_filter_satb_buffers,
ysr@777 1041 G1H_PS_refProcessor_oops_do,
ysr@777 1042 // Leave this one last.
ysr@777 1043 G1H_PS_NumElements
ysr@777 1044 };
ysr@777 1045
ysr@777 1046 SubTasksDone* _process_strong_tasks;
ysr@777 1047
tonyp@2472 1048 volatile bool _free_regions_coming;
ysr@777 1049
ysr@777 1050 public:
jmasa@2188 1051
jmasa@2188 1052 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1053
ysr@777 1054 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1055
jcoomes@2064 1056 RefToScanQueue *task_queue(int i) const;
ysr@777 1057
iveresov@1051 1058 // A set of cards where updates happened during the GC
iveresov@1051 1059 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1060
johnc@2060 1061 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1062 // references into the current collection set. This is used to
johnc@2060 1063 // update the remembered sets of the regions in the collection
johnc@2060 1064 // set in the event of an evacuation failure.
johnc@2060 1065 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1066 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1067
ysr@777 1068 // Create a G1CollectedHeap with the specified policy.
ysr@777 1069 // Must call the initialize method afterwards.
ysr@777 1070 // May not return if something goes wrong.
ysr@777 1071 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1072
ysr@777 1073 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1074 // maximum sizes and remembered and barrier sets
ysr@777 1075 // specified by the policy object.
ysr@777 1076 jint initialize();
ysr@777 1077
johnc@3175 1078 // Initialize weak reference processing.
johnc@2379 1079 virtual void ref_processing_init();
ysr@777 1080
jmasa@3357 1081 void set_par_threads(uint t) {
ysr@777 1082 SharedHeap::set_par_threads(t);
jmasa@3294 1083 // Done in SharedHeap but oddly there are
jmasa@3294 1084 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1085 // so do it here too.
jmasa@3294 1086 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1087 }
jmasa@3294 1088
jmasa@3294 1089 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1090 void set_par_threads();
jmasa@3294 1091
jmasa@3294 1092 void set_n_termination(int t) {
jmasa@2188 1093 _process_strong_tasks->set_n_threads(t);
ysr@777 1094 }
ysr@777 1095
ysr@777 1096 virtual CollectedHeap::Name kind() const {
ysr@777 1097 return CollectedHeap::G1CollectedHeap;
ysr@777 1098 }
ysr@777 1099
ysr@777 1100 // The current policy object for the collector.
ysr@777 1101 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1102
coleenp@4037 1103 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1104
ysr@777 1105 // Adaptive size policy. No such thing for g1.
ysr@777 1106 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1107
ysr@777 1108 // The rem set and barrier set.
ysr@777 1109 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1110 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 1111
ysr@777 1112 unsigned get_gc_time_stamp() {
ysr@777 1113 return _gc_time_stamp;
ysr@777 1114 }
ysr@777 1115
ysr@777 1116 void reset_gc_time_stamp() {
ysr@777 1117 _gc_time_stamp = 0;
iveresov@788 1118 OrderAccess::fence();
johnc@3336 1119 // Clear the cached CSet starting regions and time stamps.
johnc@3336 1120 // Their validity is dependent on the GC timestamp.
johnc@3336 1121 clear_cset_start_regions();
iveresov@788 1122 }
iveresov@788 1123
tonyp@3957 1124 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1125
iveresov@788 1126 void increment_gc_time_stamp() {
iveresov@788 1127 ++_gc_time_stamp;
iveresov@788 1128 OrderAccess::fence();
ysr@777 1129 }
ysr@777 1130
tonyp@3957 1131 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1132 // also reset the GC timestamp of its corresponding
tonyp@3957 1133 // continues humongous regions too.
tonyp@3957 1134 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1135
johnc@2060 1136 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1137 DirtyCardQueue* into_cset_dcq,
johnc@2060 1138 bool concurrent, int worker_i);
ysr@777 1139
ysr@777 1140 // The shared block offset table array.
ysr@777 1141 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1142
johnc@3175 1143 // Reference Processing accessors
johnc@3175 1144
johnc@3175 1145 // The STW reference processor....
johnc@3175 1146 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1147
johnc@3175 1148 // The Concurent Marking reference processor...
johnc@3175 1149 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1150
ysr@777 1151 virtual size_t capacity() const;
ysr@777 1152 virtual size_t used() const;
tonyp@1281 1153 // This should be called when we're not holding the heap lock. The
tonyp@1281 1154 // result might be a bit inaccurate.
tonyp@1281 1155 size_t used_unlocked() const;
ysr@777 1156 size_t recalculate_used() const;
ysr@777 1157
ysr@777 1158 // These virtual functions do the actual allocation.
ysr@777 1159 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1160 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1161 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1162 // But G1CollectedHeap doesn't yet support this.
ysr@777 1163
ysr@777 1164 // Return an estimate of the maximum allocation that could be performed
ysr@777 1165 // without triggering any collection or expansion activity. In a
ysr@777 1166 // generational collector, for example, this is probably the largest
ysr@777 1167 // allocation that could be supported (without expansion) in the youngest
ysr@777 1168 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 1169 // should be treated as an approximation, not a guarantee, for use in
ysr@777 1170 // heuristic resizing decisions.
ysr@777 1171 virtual size_t unsafe_max_alloc();
ysr@777 1172
ysr@777 1173 virtual bool is_maximal_no_gc() const {
ysr@777 1174 return _g1_storage.uncommitted_size() == 0;
ysr@777 1175 }
ysr@777 1176
ysr@777 1177 // The total number of regions in the heap.
tonyp@3713 1178 uint n_regions() { return _hrs.length(); }
tonyp@2963 1179
tonyp@2963 1180 // The max number of regions in the heap.
tonyp@3713 1181 uint max_regions() { return _hrs.max_length(); }
ysr@777 1182
ysr@777 1183 // The number of regions that are completely free.
tonyp@3713 1184 uint free_regions() { return _free_list.length(); }
ysr@777 1185
ysr@777 1186 // The number of regions that are not completely free.
tonyp@3713 1187 uint used_regions() { return n_regions() - free_regions(); }
ysr@777 1188
ysr@777 1189 // The number of regions available for "regular" expansion.
tonyp@3713 1190 uint expansion_regions() { return _expansion_regions; }
ysr@777 1191
tonyp@2963 1192 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 1193 // the allocation fails.
tonyp@3713 1194 HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
tonyp@2963 1195
tonyp@2849 1196 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1197 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1198 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1199 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1200
tonyp@2472 1201 // verify_region_sets() performs verification over the region
tonyp@2472 1202 // lists. It will be compiled in the product code to be used when
tonyp@2472 1203 // necessary (i.e., during heap verification).
tonyp@2472 1204 void verify_region_sets();
ysr@777 1205
tonyp@2472 1206 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1207 // list verification in non-product builds (and it can be enabled in
tonyp@2472 1208 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1209 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1210 void verify_region_sets_optional() {
tonyp@2472 1211 verify_region_sets();
tonyp@2472 1212 }
tonyp@2472 1213 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1214 void verify_region_sets_optional() { }
tonyp@2472 1215 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1216
tonyp@2472 1217 #ifdef ASSERT
tonyp@2643 1218 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 1219 return hr->containing_set() == &_free_list;
tonyp@2472 1220 }
ysr@777 1221
tonyp@2643 1222 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 1223 return hr->containing_set() == &_humongous_set;
tonyp@2643 1224 }
tonyp@2472 1225 #endif // ASSERT
ysr@777 1226
tonyp@2472 1227 // Wrapper for the region list operations that can be called from
tonyp@2472 1228 // methods outside this class.
ysr@777 1229
tonyp@2472 1230 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 1231 _secondary_free_list.add_as_tail(list);
tonyp@2472 1232 }
ysr@777 1233
tonyp@2472 1234 void append_secondary_free_list() {
tonyp@2714 1235 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 1236 }
ysr@777 1237
tonyp@2643 1238 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1239 // If the secondary free list looks empty there's no reason to
tonyp@2643 1240 // take the lock and then try to append it.
tonyp@2472 1241 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1242 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1243 append_secondary_free_list();
tonyp@2472 1244 }
tonyp@2472 1245 }
ysr@777 1246
tonyp@3268 1247 void old_set_remove(HeapRegion* hr) {
tonyp@3268 1248 _old_set.remove(hr);
tonyp@3268 1249 }
tonyp@3268 1250
brutisso@3456 1251 size_t non_young_capacity_bytes() {
brutisso@3456 1252 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1253 }
brutisso@3456 1254
tonyp@2472 1255 void set_free_regions_coming();
tonyp@2472 1256 void reset_free_regions_coming();
tonyp@2472 1257 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1258 void wait_while_free_regions_coming();
ysr@777 1259
tonyp@3539 1260 // Determine whether the given region is one that we are using as an
tonyp@3539 1261 // old GC alloc region.
tonyp@3539 1262 bool is_old_gc_alloc_region(HeapRegion* hr) {
tonyp@3539 1263 return hr == _retained_old_gc_alloc_region;
tonyp@3539 1264 }
tonyp@3539 1265
ysr@777 1266 // Perform a collection of the heap; intended for use in implementing
ysr@777 1267 // "System.gc". This probably implies as full a collection as the
ysr@777 1268 // "CollectedHeap" supports.
ysr@777 1269 virtual void collect(GCCause::Cause cause);
ysr@777 1270
ysr@777 1271 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1272 void collect_locked(GCCause::Cause cause);
ysr@777 1273
ysr@777 1274 // True iff a evacuation has failed in the most-recent collection.
ysr@777 1275 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1276
tonyp@2472 1277 // It will free a region if it has allocated objects in it that are
tonyp@2472 1278 // all dead. It calls either free_region() or
tonyp@2472 1279 // free_humongous_region() depending on the type of the region that
tonyp@2472 1280 // is passed to it.
tonyp@2493 1281 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1282 size_t* pre_used,
tonyp@2493 1283 FreeRegionList* free_list,
tonyp@3268 1284 OldRegionSet* old_proxy_set,
tonyp@2493 1285 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1286 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1287 bool par);
ysr@777 1288
tonyp@2472 1289 // It appends the free list to the master free list and updates the
tonyp@2472 1290 // master humongous list according to the contents of the proxy
tonyp@2472 1291 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1292 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1293 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1294 FreeRegionList* free_list,
tonyp@3268 1295 OldRegionSet* old_proxy_set,
tonyp@2472 1296 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1297 bool par);
ysr@777 1298
stefank@3335 1299 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1300 virtual bool is_in(const void* p) const;
ysr@777 1301
ysr@777 1302 // Return "TRUE" iff the given object address is within the collection
ysr@777 1303 // set.
ysr@777 1304 inline bool obj_in_cs(oop obj);
ysr@777 1305
ysr@777 1306 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1307 // region of g1.
ysr@777 1308 bool is_in_g1_reserved(const void* p) const {
ysr@777 1309 return _g1_reserved.contains(p);
ysr@777 1310 }
ysr@777 1311
tonyp@2717 1312 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1313 // reserved for the heap
tonyp@2717 1314 MemRegion g1_reserved() {
tonyp@2717 1315 return _g1_reserved;
tonyp@2717 1316 }
tonyp@2717 1317
tonyp@2717 1318 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1319 // committed in the heap
ysr@777 1320 MemRegion g1_committed() {
ysr@777 1321 return _g1_committed;
ysr@777 1322 }
ysr@777 1323
johnc@2593 1324 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1325
ysr@777 1326 // This resets the card table to all zeros. It is used after
ysr@777 1327 // a collection pause which used the card table to claim cards.
ysr@777 1328 void cleanUpCardTable();
ysr@777 1329
ysr@777 1330 // Iteration functions.
ysr@777 1331
ysr@777 1332 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1333 // "cl.do_oop" on each.
coleenp@4037 1334 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1335
ysr@777 1336 // Same as above, restricted to a memory region.
coleenp@4037 1337 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 1338
ysr@777 1339 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1340 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1341
coleenp@4037 1342 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1343 object_iterate(cl);
iveresov@1113 1344 }
ysr@777 1345
ysr@777 1346 // Iterate over all objects allocated since the last collection, calling
ysr@777 1347 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 1348 // to support this function, or else this call will fail.
ysr@777 1349 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 1350
ysr@777 1351 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1352 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1353
ysr@777 1354 // Iterate over heap regions, in address order, terminating the
ysr@777 1355 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1356 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1357
tonyp@2963 1358 // Return the region with the given index. It assumes the index is valid.
tonyp@3713 1359 HeapRegion* region_at(uint index) const { return _hrs.at(index); }
ysr@777 1360
ysr@777 1361 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1362 // of regions divided by the number of parallel threads times some
ysr@777 1363 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1364 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1365 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1366 // calls will use the same "claim_value", and that that claim value is
ysr@777 1367 // different from the claim_value of any heap region before the start of
ysr@777 1368 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1369 // attempting to claim the first region in each chunk, and, if
ysr@777 1370 // successful, applying the closure to each region in the chunk (and
ysr@777 1371 // setting the claim value of the second and subsequent regions of the
ysr@777 1372 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1373 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1374 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
jmasa@3357 1375 uint worker,
jmasa@3357 1376 uint no_of_par_workers,
ysr@777 1377 jint claim_value);
ysr@777 1378
tonyp@825 1379 // It resets all the region claim values to the default.
tonyp@825 1380 void reset_heap_region_claim_values();
tonyp@825 1381
johnc@3412 1382 // Resets the claim values of regions in the current
johnc@3412 1383 // collection set to the default.
johnc@3412 1384 void reset_cset_heap_region_claim_values();
johnc@3412 1385
tonyp@790 1386 #ifdef ASSERT
tonyp@790 1387 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1388
johnc@3296 1389 // Same as the routine above but only checks regions in the
johnc@3296 1390 // current collection set.
johnc@3296 1391 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1392 #endif // ASSERT
tonyp@790 1393
johnc@3336 1394 // Clear the cached cset start regions and (more importantly)
johnc@3336 1395 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1396 void clear_cset_start_regions();
johnc@3336 1397
johnc@3336 1398 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1399 // starting region for iterating over the current collection set.
johnc@3296 1400 HeapRegion* start_cset_region_for_worker(int worker_i);
johnc@3296 1401
tonyp@3957 1402 // This is a convenience method that is used by the
tonyp@3957 1403 // HeapRegionIterator classes to calculate the starting region for
tonyp@3957 1404 // each worker so that they do not all start from the same region.
tonyp@3957 1405 HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
tonyp@3957 1406
ysr@777 1407 // Iterate over the regions (if any) in the current collection set.
ysr@777 1408 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1409
ysr@777 1410 // As above but starting from region r
ysr@777 1411 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1412
ysr@777 1413 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1414 virtual CompactibleSpace* first_compactible_space();
ysr@777 1415
ysr@777 1416 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1417 // space containing a given address, or else returns NULL.
ysr@777 1418 virtual Space* space_containing(const void* addr) const;
ysr@777 1419
ysr@777 1420 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1421 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1422 template <class T>
tonyp@2963 1423 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1424
ysr@777 1425 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1426 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1427 // region.
tonyp@2963 1428 template <class T>
tonyp@2963 1429 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1430
ysr@777 1431 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1432 // each address in the (reserved) heap is a member of exactly
ysr@777 1433 // one block. The defining characteristic of a block is that it is
ysr@777 1434 // possible to find its size, and thus to progress forward to the next
ysr@777 1435 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1436 // represent Java objects, or they might be free blocks in a
ysr@777 1437 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1438 // distinguishable and the size of each is determinable.
ysr@777 1439
ysr@777 1440 // Returns the address of the start of the "block" that contains the
ysr@777 1441 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1442 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1443 // non-object.
ysr@777 1444 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1445
ysr@777 1446 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1447 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1448 // of the active area of the heap.
ysr@777 1449 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1450
ysr@777 1451 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1452 // the block is an object.
ysr@777 1453 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1454
ysr@777 1455 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1456 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1457
ysr@777 1458 // Section on thread-local allocation buffers (TLABs)
ysr@777 1459 // See CollectedHeap for semantics.
ysr@777 1460
ysr@777 1461 virtual bool supports_tlab_allocation() const;
ysr@777 1462 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1463 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1464
ysr@777 1465 // Can a compiler initialize a new object without store barriers?
ysr@777 1466 // This permission only extends from the creation of a new object
ysr@1462 1467 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1468 // is granted for this heap type, the compiler promises to call
ysr@1462 1469 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1470 // a new object for which such initializing store barriers will
ysr@1462 1471 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1472 // ready to provide a compensating write barrier as necessary
ysr@1462 1473 // if that storage came out of a non-young region. The efficiency
ysr@1462 1474 // of this implementation depends crucially on being able to
ysr@1462 1475 // answer very efficiently in constant time whether a piece of
ysr@1462 1476 // storage in the heap comes from a young region or not.
ysr@1462 1477 // See ReduceInitialCardMarks.
ysr@777 1478 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1479 return true;
ysr@1462 1480 }
ysr@1462 1481
ysr@1601 1482 virtual bool card_mark_must_follow_store() const {
ysr@1601 1483 return true;
ysr@1601 1484 }
ysr@1601 1485
tonyp@2963 1486 bool is_in_young(const oop obj) {
ysr@1462 1487 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1488 return hr != NULL && hr->is_young();
ysr@1462 1489 }
ysr@1462 1490
jmasa@2909 1491 #ifdef ASSERT
jmasa@2909 1492 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1493 #endif
jmasa@2909 1494
jmasa@2909 1495 virtual bool is_scavengable(const void* addr);
jmasa@2909 1496
ysr@1462 1497 // We don't need barriers for initializing stores to objects
ysr@1462 1498 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1499 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1500 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1501 // information for young gen objects.
ysr@1462 1502 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 1503 return is_in_young(new_obj);
ysr@777 1504 }
ysr@777 1505
ysr@777 1506 // Returns "true" iff the given word_size is "very large".
ysr@777 1507 static bool isHumongous(size_t word_size) {
johnc@1748 1508 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1509 // are capped at the humongous thresold and we want to
johnc@1748 1510 // ensure that we don't try to allocate a TLAB as
johnc@1748 1511 // humongous and that we don't allocate a humongous
johnc@1748 1512 // object in a TLAB.
johnc@1748 1513 return word_size > _humongous_object_threshold_in_words;
ysr@777 1514 }
ysr@777 1515
ysr@777 1516 // Update mod union table with the set of dirty cards.
ysr@777 1517 void updateModUnion();
ysr@777 1518
ysr@777 1519 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1520 // that this is always a safe operation, since it doesn't clear any
ysr@777 1521 // bits.
ysr@777 1522 void markModUnionRange(MemRegion mr);
ysr@777 1523
ysr@777 1524 // Records the fact that a marking phase is no longer in progress.
ysr@777 1525 void set_marking_complete() {
ysr@777 1526 _mark_in_progress = false;
ysr@777 1527 }
ysr@777 1528 void set_marking_started() {
ysr@777 1529 _mark_in_progress = true;
ysr@777 1530 }
ysr@777 1531 bool mark_in_progress() {
ysr@777 1532 return _mark_in_progress;
ysr@777 1533 }
ysr@777 1534
ysr@777 1535 // Print the maximum heap capacity.
ysr@777 1536 virtual size_t max_capacity() const;
ysr@777 1537
ysr@777 1538 virtual jlong millis_since_last_gc();
ysr@777 1539
ysr@777 1540 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1541 virtual void prepare_for_verify();
ysr@777 1542
ysr@777 1543 // Perform verification.
tonyp@1246 1544
johnc@2969 1545 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1546 // vo == UseNextMarking -> use "next" marking information
johnc@2969 1547 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 1548 //
tonyp@1246 1549 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1550 // consistent most of the time, so most calls to this should use
johnc@2969 1551 // vo == UsePrevMarking.
johnc@2969 1552 // Currently, there is only one case where this is called with
johnc@2969 1553 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 1554 // information at the end of remark.
johnc@2969 1555 // Currently there is only one place where this is called with
johnc@2969 1556 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 1557 // full GC.
brutisso@3711 1558 void verify(bool silent, VerifyOption vo);
tonyp@1246 1559
tonyp@1246 1560 // Override; it uses the "prev" marking information
brutisso@3711 1561 virtual void verify(bool silent);
ysr@777 1562 virtual void print_on(outputStream* st) const;
tonyp@3269 1563 virtual void print_extended_on(outputStream* st) const;
stefank@4904 1564 virtual void print_on_error(outputStream* st) const;
ysr@777 1565
ysr@777 1566 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1567 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1568
ysr@777 1569 // Override
ysr@777 1570 void print_tracing_info() const;
ysr@777 1571
tonyp@2974 1572 // The following two methods are helpful for debugging RSet issues.
tonyp@2974 1573 void print_cset_rsets() PRODUCT_RETURN;
tonyp@2974 1574 void print_all_rsets() PRODUCT_RETURN;
tonyp@2974 1575
ysr@777 1576 // Convenience function to be used in situations where the heap type can be
ysr@777 1577 // asserted to be this type.
ysr@777 1578 static G1CollectedHeap* heap();
ysr@777 1579
ysr@777 1580 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1581 // add appropriate methods for any other surv rate groups
ysr@777 1582
johnc@1829 1583 YoungList* young_list() { return _young_list; }
ysr@777 1584
ysr@777 1585 // debugging
ysr@777 1586 bool check_young_list_well_formed() {
ysr@777 1587 return _young_list->check_list_well_formed();
ysr@777 1588 }
johnc@1829 1589
johnc@1829 1590 bool check_young_list_empty(bool check_heap,
ysr@777 1591 bool check_sample = true);
ysr@777 1592
ysr@777 1593 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1594 // many of these need to be public.
ysr@777 1595
ysr@777 1596 // The functions below are helper functions that a subclass of
ysr@777 1597 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1598 // functions.
ysr@777 1599 // This performs a concurrent marking of the live objects in a
ysr@777 1600 // bitmap off to the side.
ysr@777 1601 void doConcurrentMark();
ysr@777 1602
ysr@777 1603 bool isMarkedPrev(oop obj) const;
ysr@777 1604 bool isMarkedNext(oop obj) const;
ysr@777 1605
ysr@777 1606 // Determine if an object is dead, given the object and also
ysr@777 1607 // the region to which the object belongs. An object is dead
ysr@777 1608 // iff a) it was not allocated since the last mark and b) it
ysr@777 1609 // is not marked.
ysr@777 1610
ysr@777 1611 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1612 return
ysr@777 1613 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1614 !isMarkedPrev(obj);
ysr@777 1615 }
ysr@777 1616
ysr@777 1617 // This function returns true when an object has been
ysr@777 1618 // around since the previous marking and hasn't yet
ysr@777 1619 // been marked during this marking.
ysr@777 1620
ysr@777 1621 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1622 return
ysr@777 1623 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1624 !isMarkedNext(obj);
ysr@777 1625 }
ysr@777 1626
ysr@777 1627 // Determine if an object is dead, given only the object itself.
ysr@777 1628 // This will find the region to which the object belongs and
ysr@777 1629 // then call the region version of the same function.
ysr@777 1630
ysr@777 1631 // Added if it is NULL it isn't dead.
ysr@777 1632
johnc@2969 1633 bool is_obj_dead(const oop obj) const {
tonyp@1246 1634 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1635 if (hr == NULL) {
coleenp@4037 1636 if (obj == NULL) return false;
ysr@777 1637 else return true;
ysr@777 1638 }
ysr@777 1639 else return is_obj_dead(obj, hr);
ysr@777 1640 }
ysr@777 1641
johnc@2969 1642 bool is_obj_ill(const oop obj) const {
tonyp@1246 1643 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1644 if (hr == NULL) {
coleenp@4037 1645 if (obj == NULL) return false;
ysr@777 1646 else return true;
ysr@777 1647 }
ysr@777 1648 else return is_obj_ill(obj, hr);
ysr@777 1649 }
ysr@777 1650
tonyp@3957 1651 // The methods below are here for convenience and dispatch the
tonyp@3957 1652 // appropriate method depending on value of the given VerifyOption
tonyp@3957 1653 // parameter. The options for that parameter are:
tonyp@3957 1654 //
tonyp@3957 1655 // vo == UsePrevMarking -> use "prev" marking information,
tonyp@3957 1656 // vo == UseNextMarking -> use "next" marking information,
tonyp@3957 1657 // vo == UseMarkWord -> use mark word from object header
tonyp@3957 1658
tonyp@3957 1659 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1660 const HeapRegion* hr,
tonyp@3957 1661 const VerifyOption vo) const {
tonyp@3957 1662 switch (vo) {
tonyp@3957 1663 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
tonyp@3957 1664 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
tonyp@3957 1665 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
tonyp@3957 1666 default: ShouldNotReachHere();
tonyp@3957 1667 }
tonyp@3957 1668 return false; // keep some compilers happy
tonyp@3957 1669 }
tonyp@3957 1670
tonyp@3957 1671 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1672 const VerifyOption vo) const {
tonyp@3957 1673 switch (vo) {
tonyp@3957 1674 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
tonyp@3957 1675 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
tonyp@3957 1676 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
tonyp@3957 1677 default: ShouldNotReachHere();
tonyp@3957 1678 }
tonyp@3957 1679 return false; // keep some compilers happy
tonyp@3957 1680 }
tonyp@3957 1681
tonyp@3957 1682 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
tonyp@3957 1683 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
tonyp@3957 1684 bool is_marked(oop obj, VerifyOption vo);
tonyp@3957 1685 const char* top_at_mark_start_str(VerifyOption vo);
tonyp@3957 1686
ysr@777 1687 // The following is just to alert the verification code
ysr@777 1688 // that a full collection has occurred and that the
ysr@777 1689 // remembered sets are no longer up to date.
ysr@777 1690 bool _full_collection;
ysr@777 1691 void set_full_collection() { _full_collection = true;}
ysr@777 1692 void clear_full_collection() {_full_collection = false;}
ysr@777 1693 bool full_collection() {return _full_collection;}
ysr@777 1694
ysr@777 1695 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1696 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1697
apetrusenko@1231 1698 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1699 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1700 // remembered set scanning and drained during the card table
apetrusenko@1231 1701 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1702 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1703 // element on the list points to itself.
apetrusenko@1231 1704 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1705 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1706 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1707
ysr@777 1708 public:
ysr@777 1709 void stop_conc_gc_threads();
ysr@777 1710
ysr@777 1711 size_t pending_card_num();
ysr@777 1712 size_t cards_scanned();
ysr@777 1713
ysr@777 1714 protected:
ysr@777 1715 size_t _max_heap_capacity;
ysr@777 1716 };
ysr@777 1717
ysr@1280 1718 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1719 private:
ysr@1280 1720 bool _retired;
ysr@1280 1721
ysr@1280 1722 public:
johnc@3086 1723 G1ParGCAllocBuffer(size_t gclab_word_size);
ysr@1280 1724
tonyp@3416 1725 void set_buf(HeapWord* buf) {
ysr@1280 1726 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1727 _retired = false;
ysr@1280 1728 }
ysr@1280 1729
tonyp@3416 1730 void retire(bool end_of_gc, bool retain) {
ysr@1280 1731 if (_retired)
ysr@1280 1732 return;
ysr@1280 1733 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1734 _retired = true;
ysr@1280 1735 }
ysr@1280 1736 };
ysr@1280 1737
ysr@1280 1738 class G1ParScanThreadState : public StackObj {
ysr@1280 1739 protected:
ysr@1280 1740 G1CollectedHeap* _g1h;
ysr@1280 1741 RefToScanQueue* _refs;
ysr@1280 1742 DirtyCardQueue _dcq;
ysr@1280 1743 CardTableModRefBS* _ct_bs;
ysr@1280 1744 G1RemSet* _g1_rem;
ysr@1280 1745
apetrusenko@1826 1746 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1747 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1748 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1749 ageTable _age_table;
ysr@1280 1750
ysr@1280 1751 size_t _alloc_buffer_waste;
ysr@1280 1752 size_t _undo_waste;
ysr@1280 1753
ysr@1280 1754 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1755 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1756 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1757
ysr@1280 1758 int _hash_seed;
johnc@3463 1759 uint _queue_num;
ysr@1280 1760
tonyp@1966 1761 size_t _term_attempts;
ysr@1280 1762
ysr@1280 1763 double _start;
ysr@1280 1764 double _start_strong_roots;
ysr@1280 1765 double _strong_roots_time;
ysr@1280 1766 double _start_term;
ysr@1280 1767 double _term_time;
ysr@1280 1768
ysr@1280 1769 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1770 // surviving words. base is what we get back from the malloc call
ysr@1280 1771 size_t* _surviving_young_words_base;
ysr@1280 1772 // this points into the array, as we use the first few entries for padding
ysr@1280 1773 size_t* _surviving_young_words;
ysr@1280 1774
jcoomes@2064 1775 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1776
ysr@1280 1777 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1778
ysr@1280 1779 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1780
ysr@1280 1781 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1782 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1783
ysr@1280 1784 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1785 if (!from->is_survivor()) {
ysr@1280 1786 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1787 }
ysr@1280 1788 }
ysr@1280 1789
ysr@1280 1790 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1791 // If the new value of the field points to the same region or
ysr@1280 1792 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1793 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1794 size_t card_index = ctbs()->index_for(p);
ysr@1280 1795 // If the card hasn't been added to the buffer, do it.
ysr@1280 1796 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1797 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1798 }
ysr@1280 1799 }
ysr@1280 1800 }
ysr@1280 1801
ysr@1280 1802 public:
johnc@3463 1803 G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
ysr@1280 1804
ysr@1280 1805 ~G1ParScanThreadState() {
zgu@3900 1806 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
ysr@1280 1807 }
ysr@1280 1808
ysr@1280 1809 RefToScanQueue* refs() { return _refs; }
ysr@1280 1810 ageTable* age_table() { return &_age_table; }
ysr@1280 1811
ysr@1280 1812 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1813 return _alloc_buffers[purpose];
ysr@1280 1814 }
ysr@1280 1815
jcoomes@2064 1816 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1817 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1818
jcoomes@2217 1819 #ifdef ASSERT
jcoomes@2217 1820 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1821 bool verify_ref(oop* ref) const;
jcoomes@2217 1822 bool verify_task(StarTask ref) const;
jcoomes@2217 1823 #endif // ASSERT
jcoomes@2217 1824
ysr@1280 1825 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1826 assert(verify_ref(ref), "sanity");
jcoomes@2064 1827 refs()->push(ref);
ysr@1280 1828 }
ysr@1280 1829
ysr@1280 1830 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1831 if (G1DeferredRSUpdate) {
ysr@1280 1832 deferred_rs_update(from, p, tid);
ysr@1280 1833 } else {
ysr@1280 1834 immediate_rs_update(from, p, tid);
ysr@1280 1835 }
ysr@1280 1836 }
ysr@1280 1837
ysr@1280 1838 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1839 HeapWord* obj = NULL;
apetrusenko@1826 1840 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1841 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1842 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
ysr@1280 1843 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
johnc@4067 1844 alloc_buf->retire(false /* end_of_gc */, false /* retain */);
ysr@1280 1845
apetrusenko@1826 1846 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1847 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1848 // Otherwise.
johnc@3982 1849 alloc_buf->set_word_size(gclab_word_size);
ysr@1280 1850 alloc_buf->set_buf(buf);
ysr@1280 1851
ysr@1280 1852 obj = alloc_buf->allocate(word_sz);
ysr@1280 1853 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1854 } else {
ysr@1280 1855 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1856 }
ysr@1280 1857 return obj;
ysr@1280 1858 }
ysr@1280 1859
ysr@1280 1860 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1861 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1862 if (obj != NULL) return obj;
ysr@1280 1863 return allocate_slow(purpose, word_sz);
ysr@1280 1864 }
ysr@1280 1865
ysr@1280 1866 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1867 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1868 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1869 "should contain whole object");
ysr@1280 1870 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1871 } else {
ysr@1280 1872 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1873 add_to_undo_waste(word_sz);
ysr@1280 1874 }
ysr@1280 1875 }
ysr@1280 1876
ysr@1280 1877 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1878 _evac_failure_cl = evac_failure_cl;
ysr@1280 1879 }
ysr@1280 1880 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1881 return _evac_failure_cl;
ysr@1280 1882 }
ysr@1280 1883
ysr@1280 1884 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 1885 _evac_cl = evac_cl;
ysr@1280 1886 }
ysr@1280 1887
ysr@1280 1888 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 1889 _partial_scan_cl = partial_scan_cl;
ysr@1280 1890 }
ysr@1280 1891
ysr@1280 1892 int* hash_seed() { return &_hash_seed; }
johnc@3463 1893 uint queue_num() { return _queue_num; }
ysr@1280 1894
jcoomes@2064 1895 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 1896 void note_term_attempt() { _term_attempts++; }
ysr@1280 1897
ysr@1280 1898 void start_strong_roots() {
ysr@1280 1899 _start_strong_roots = os::elapsedTime();
ysr@1280 1900 }
ysr@1280 1901 void end_strong_roots() {
ysr@1280 1902 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1903 }
jcoomes@2064 1904 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 1905
ysr@1280 1906 void start_term_time() {
ysr@1280 1907 note_term_attempt();
ysr@1280 1908 _start_term = os::elapsedTime();
ysr@1280 1909 }
ysr@1280 1910 void end_term_time() {
ysr@1280 1911 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1912 }
jcoomes@2064 1913 double term_time() const { return _term_time; }
ysr@1280 1914
jcoomes@2064 1915 double elapsed_time() const {
ysr@1280 1916 return os::elapsedTime() - _start;
ysr@1280 1917 }
ysr@1280 1918
jcoomes@2064 1919 static void
jcoomes@2064 1920 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 1921 void
jcoomes@2064 1922 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 1923
ysr@1280 1924 size_t* surviving_young_words() {
ysr@1280 1925 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1926 // age -1 regions (i.e. non-young ones)
ysr@1280 1927 return _surviving_young_words;
ysr@1280 1928 }
ysr@1280 1929
ysr@1280 1930 void retire_alloc_buffers() {
ysr@1280 1931 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 1932 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 1933 add_to_alloc_buffer_waste(waste);
johnc@3982 1934 _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
johnc@3982 1935 true /* end_of_gc */,
johnc@3982 1936 false /* retain */);
ysr@1280 1937 }
ysr@1280 1938 }
ysr@1280 1939
ysr@1280 1940 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 1941 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 1942 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 1943 } else {
ysr@1280 1944 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 1945 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 1946 // humongous region.
ysr@1280 1947 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 1948 _evac_cl->set_region(r);
ysr@1280 1949 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 1950 }
ysr@1280 1951 }
ysr@1280 1952
jcoomes@2217 1953 void deal_with_reference(StarTask ref) {
jcoomes@2217 1954 assert(verify_task(ref), "sanity");
jcoomes@2217 1955 if (ref.is_narrow()) {
jcoomes@2217 1956 deal_with_reference((narrowOop*)ref);
jcoomes@2217 1957 } else {
jcoomes@2217 1958 deal_with_reference((oop*)ref);
ysr@1280 1959 }
ysr@1280 1960 }
jcoomes@2217 1961
jcoomes@2217 1962 public:
jcoomes@2217 1963 void trim_queue();
ysr@1280 1964 };
stefank@2314 1965
stefank@2314 1966 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial