src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 28 Dec 2010 15:54:52 -0800

author
ohair
date
Tue, 28 Dec 2010 15:54:52 -0800
changeset 798
4868a36f6fd8
parent 795
7b99f98b3035
child 815
d17f37522154
permissions
-rw-r--r--

6962318: Update copyright year
Reviewed-by: xdono

duke@1 1 /*
ohair@798 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
mcimadamore@795 41 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43 import com.sun.tools.javac.tree.JCTree.*;
duke@1 44 import com.sun.tools.javac.code.Type.*;
duke@1 45
duke@1 46 import com.sun.source.tree.IdentifierTree;
duke@1 47 import com.sun.source.tree.MemberSelectTree;
duke@1 48 import com.sun.source.tree.TreeVisitor;
duke@1 49 import com.sun.source.util.SimpleTreeVisitor;
duke@1 50
duke@1 51 import static com.sun.tools.javac.code.Flags.*;
duke@1 52 import static com.sun.tools.javac.code.Kinds.*;
duke@1 53 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 54
duke@1 55 /** This is the main context-dependent analysis phase in GJC. It
duke@1 56 * encompasses name resolution, type checking and constant folding as
duke@1 57 * subtasks. Some subtasks involve auxiliary classes.
duke@1 58 * @see Check
duke@1 59 * @see Resolve
duke@1 60 * @see ConstFold
duke@1 61 * @see Infer
duke@1 62 *
jjg@581 63 * <p><b>This is NOT part of any supported API.
jjg@581 64 * If you write code that depends on this, you do so at your own risk.
duke@1 65 * This code and its internal interfaces are subject to change or
duke@1 66 * deletion without notice.</b>
duke@1 67 */
duke@1 68 public class Attr extends JCTree.Visitor {
duke@1 69 protected static final Context.Key<Attr> attrKey =
duke@1 70 new Context.Key<Attr>();
duke@1 71
jjg@113 72 final Names names;
duke@1 73 final Log log;
duke@1 74 final Symtab syms;
duke@1 75 final Resolve rs;
mcimadamore@537 76 final Infer infer;
duke@1 77 final Check chk;
duke@1 78 final MemberEnter memberEnter;
duke@1 79 final TreeMaker make;
duke@1 80 final ConstFold cfolder;
duke@1 81 final Enter enter;
duke@1 82 final Target target;
duke@1 83 final Types types;
mcimadamore@89 84 final JCDiagnostic.Factory diags;
duke@1 85 final Annotate annotate;
duke@1 86
duke@1 87 public static Attr instance(Context context) {
duke@1 88 Attr instance = context.get(attrKey);
duke@1 89 if (instance == null)
duke@1 90 instance = new Attr(context);
duke@1 91 return instance;
duke@1 92 }
duke@1 93
duke@1 94 protected Attr(Context context) {
duke@1 95 context.put(attrKey, this);
duke@1 96
jjg@113 97 names = Names.instance(context);
duke@1 98 log = Log.instance(context);
duke@1 99 syms = Symtab.instance(context);
duke@1 100 rs = Resolve.instance(context);
duke@1 101 chk = Check.instance(context);
duke@1 102 memberEnter = MemberEnter.instance(context);
duke@1 103 make = TreeMaker.instance(context);
duke@1 104 enter = Enter.instance(context);
mcimadamore@537 105 infer = Infer.instance(context);
duke@1 106 cfolder = ConstFold.instance(context);
duke@1 107 target = Target.instance(context);
duke@1 108 types = Types.instance(context);
mcimadamore@89 109 diags = JCDiagnostic.Factory.instance(context);
duke@1 110 annotate = Annotate.instance(context);
duke@1 111
duke@1 112 Options options = Options.instance(context);
duke@1 113
duke@1 114 Source source = Source.instance(context);
duke@1 115 allowGenerics = source.allowGenerics();
duke@1 116 allowVarargs = source.allowVarargs();
duke@1 117 allowEnums = source.allowEnums();
duke@1 118 allowBoxing = source.allowBoxing();
duke@1 119 allowCovariantReturns = source.allowCovariantReturns();
duke@1 120 allowAnonOuterThis = source.allowAnonOuterThis();
darcy@430 121 allowStringsInSwitch = source.allowStringsInSwitch();
darcy@430 122 sourceName = source.name;
jjg@700 123 relax = (options.isSet("-retrofit") ||
jjg@700 124 options.isSet("-relax"));
mcimadamore@731 125 findDiamonds = options.get("findDiamond") != null &&
mcimadamore@731 126 source.allowDiamond();
jjg@700 127 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
jjg@700 128 enableSunApiLintControl = options.isSet("enableSunApiLintControl");
duke@1 129 }
duke@1 130
duke@1 131 /** Switch: relax some constraints for retrofit mode.
duke@1 132 */
duke@1 133 boolean relax;
duke@1 134
duke@1 135 /** Switch: support generics?
duke@1 136 */
duke@1 137 boolean allowGenerics;
duke@1 138
duke@1 139 /** Switch: allow variable-arity methods.
duke@1 140 */
duke@1 141 boolean allowVarargs;
duke@1 142
duke@1 143 /** Switch: support enums?
duke@1 144 */
duke@1 145 boolean allowEnums;
duke@1 146
duke@1 147 /** Switch: support boxing and unboxing?
duke@1 148 */
duke@1 149 boolean allowBoxing;
duke@1 150
duke@1 151 /** Switch: support covariant result types?
duke@1 152 */
duke@1 153 boolean allowCovariantReturns;
duke@1 154
duke@1 155 /** Switch: allow references to surrounding object from anonymous
duke@1 156 * objects during constructor call?
duke@1 157 */
duke@1 158 boolean allowAnonOuterThis;
duke@1 159
mcimadamore@731 160 /** Switch: generates a warning if diamond can be safely applied
mcimadamore@731 161 * to a given new expression
mcimadamore@731 162 */
mcimadamore@731 163 boolean findDiamonds;
mcimadamore@731 164
mcimadamore@731 165 /**
mcimadamore@731 166 * Internally enables/disables diamond finder feature
mcimadamore@731 167 */
mcimadamore@731 168 static final boolean allowDiamondFinder = true;
mcimadamore@731 169
duke@1 170 /**
duke@1 171 * Switch: warn about use of variable before declaration?
duke@1 172 * RFE: 6425594
duke@1 173 */
duke@1 174 boolean useBeforeDeclarationWarning;
duke@1 175
jjg@377 176 /**
jjg@582 177 * Switch: allow lint infrastructure to control proprietary
jjg@377 178 * API warnings.
jjg@377 179 */
jjg@377 180 boolean enableSunApiLintControl;
jjg@377 181
darcy@430 182 /**
darcy@430 183 * Switch: allow strings in switch?
darcy@430 184 */
darcy@430 185 boolean allowStringsInSwitch;
darcy@430 186
darcy@430 187 /**
darcy@430 188 * Switch: name of source level; used for error reporting.
darcy@430 189 */
darcy@430 190 String sourceName;
darcy@430 191
duke@1 192 /** Check kind and type of given tree against protokind and prototype.
duke@1 193 * If check succeeds, store type in tree and return it.
duke@1 194 * If check fails, store errType in tree and return it.
duke@1 195 * No checks are performed if the prototype is a method type.
jjg@110 196 * It is not necessary in this case since we know that kind and type
duke@1 197 * are correct.
duke@1 198 *
duke@1 199 * @param tree The tree whose kind and type is checked
duke@1 200 * @param owntype The computed type of the tree
duke@1 201 * @param ownkind The computed kind of the tree
duke@1 202 * @param pkind The expected kind (or: protokind) of the tree
duke@1 203 * @param pt The expected type (or: prototype) of the tree
duke@1 204 */
duke@1 205 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 206 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 207 if ((ownkind & ~pkind) == 0) {
darcy@609 208 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
duke@1 209 } else {
duke@1 210 log.error(tree.pos(), "unexpected.type",
mcimadamore@80 211 kindNames(pkind),
mcimadamore@80 212 kindName(ownkind));
jjg@110 213 owntype = types.createErrorType(owntype);
duke@1 214 }
duke@1 215 }
duke@1 216 tree.type = owntype;
duke@1 217 return owntype;
duke@1 218 }
duke@1 219
duke@1 220 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 221 * may be assigned to even though it is final?
duke@1 222 * @param v The blank final variable.
duke@1 223 * @param env The current environment.
duke@1 224 */
duke@1 225 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 226 Symbol owner = env.info.scope.owner;
duke@1 227 // owner refers to the innermost variable, method or
duke@1 228 // initializer block declaration at this point.
duke@1 229 return
duke@1 230 v.owner == owner
duke@1 231 ||
duke@1 232 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 233 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 234 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 235 &&
duke@1 236 v.owner == owner.owner
duke@1 237 &&
duke@1 238 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 239 }
duke@1 240
duke@1 241 /** Check that variable can be assigned to.
duke@1 242 * @param pos The current source code position.
duke@1 243 * @param v The assigned varaible
duke@1 244 * @param base If the variable is referred to in a Select, the part
duke@1 245 * to the left of the `.', null otherwise.
duke@1 246 * @param env The current environment.
duke@1 247 */
duke@1 248 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 249 if ((v.flags() & FINAL) != 0 &&
duke@1 250 ((v.flags() & HASINIT) != 0
duke@1 251 ||
duke@1 252 !((base == null ||
duke@1 253 (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
duke@1 254 isAssignableAsBlankFinal(v, env)))) {
darcy@609 255 if (v.isResourceVariable()) { //TWR resource
mcimadamore@743 256 log.error(pos, "try.resource.may.not.be.assigned", v);
darcy@609 257 } else {
darcy@609 258 log.error(pos, "cant.assign.val.to.final.var", v);
darcy@609 259 }
mcimadamore@735 260 } else if ((v.flags() & EFFECTIVELY_FINAL) != 0) {
mcimadamore@735 261 v.flags_field &= ~EFFECTIVELY_FINAL;
duke@1 262 }
duke@1 263 }
duke@1 264
duke@1 265 /** Does tree represent a static reference to an identifier?
duke@1 266 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 267 * We have to weed out selects from non-type names here.
duke@1 268 * @param tree The candidate tree.
duke@1 269 */
duke@1 270 boolean isStaticReference(JCTree tree) {
duke@1 271 if (tree.getTag() == JCTree.SELECT) {
duke@1 272 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 273 if (lsym == null || lsym.kind != TYP) {
duke@1 274 return false;
duke@1 275 }
duke@1 276 }
duke@1 277 return true;
duke@1 278 }
duke@1 279
duke@1 280 /** Is this symbol a type?
duke@1 281 */
duke@1 282 static boolean isType(Symbol sym) {
duke@1 283 return sym != null && sym.kind == TYP;
duke@1 284 }
duke@1 285
duke@1 286 /** The current `this' symbol.
duke@1 287 * @param env The current environment.
duke@1 288 */
duke@1 289 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 290 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 291 }
duke@1 292
duke@1 293 /** Attribute a parsed identifier.
duke@1 294 * @param tree Parsed identifier name
duke@1 295 * @param topLevel The toplevel to use
duke@1 296 */
duke@1 297 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 298 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 299 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 300 syms.errSymbol.name,
duke@1 301 null, null, null, null);
duke@1 302 localEnv.enclClass.sym = syms.errSymbol;
duke@1 303 return tree.accept(identAttributer, localEnv);
duke@1 304 }
duke@1 305 // where
duke@1 306 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 307 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 308 @Override
duke@1 309 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 310 Symbol site = visit(node.getExpression(), env);
duke@1 311 if (site.kind == ERR)
duke@1 312 return site;
duke@1 313 Name name = (Name)node.getIdentifier();
duke@1 314 if (site.kind == PCK) {
duke@1 315 env.toplevel.packge = (PackageSymbol)site;
duke@1 316 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 317 } else {
duke@1 318 env.enclClass.sym = (ClassSymbol)site;
duke@1 319 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 320 }
duke@1 321 }
duke@1 322
duke@1 323 @Override
duke@1 324 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 325 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 326 }
duke@1 327 }
duke@1 328
duke@1 329 public Type coerce(Type etype, Type ttype) {
duke@1 330 return cfolder.coerce(etype, ttype);
duke@1 331 }
duke@1 332
duke@1 333 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 334 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 335 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 336 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 337 }
duke@1 338
duke@1 339 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 340 breakTree = tree;
mcimadamore@303 341 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 342 try {
duke@1 343 attribExpr(expr, env);
duke@1 344 } catch (BreakAttr b) {
duke@1 345 return b.env;
sundar@669 346 } catch (AssertionError ae) {
sundar@669 347 if (ae.getCause() instanceof BreakAttr) {
sundar@669 348 return ((BreakAttr)(ae.getCause())).env;
sundar@669 349 } else {
sundar@669 350 throw ae;
sundar@669 351 }
duke@1 352 } finally {
duke@1 353 breakTree = null;
duke@1 354 log.useSource(prev);
duke@1 355 }
duke@1 356 return env;
duke@1 357 }
duke@1 358
duke@1 359 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 360 breakTree = tree;
mcimadamore@303 361 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 362 try {
duke@1 363 attribStat(stmt, env);
duke@1 364 } catch (BreakAttr b) {
duke@1 365 return b.env;
sundar@669 366 } catch (AssertionError ae) {
sundar@669 367 if (ae.getCause() instanceof BreakAttr) {
sundar@669 368 return ((BreakAttr)(ae.getCause())).env;
sundar@669 369 } else {
sundar@669 370 throw ae;
sundar@669 371 }
duke@1 372 } finally {
duke@1 373 breakTree = null;
duke@1 374 log.useSource(prev);
duke@1 375 }
duke@1 376 return env;
duke@1 377 }
duke@1 378
duke@1 379 private JCTree breakTree = null;
duke@1 380
duke@1 381 private static class BreakAttr extends RuntimeException {
duke@1 382 static final long serialVersionUID = -6924771130405446405L;
duke@1 383 private Env<AttrContext> env;
duke@1 384 private BreakAttr(Env<AttrContext> env) {
duke@1 385 this.env = env;
duke@1 386 }
duke@1 387 }
duke@1 388
duke@1 389
duke@1 390 /* ************************************************************************
duke@1 391 * Visitor methods
duke@1 392 *************************************************************************/
duke@1 393
duke@1 394 /** Visitor argument: the current environment.
duke@1 395 */
duke@1 396 Env<AttrContext> env;
duke@1 397
duke@1 398 /** Visitor argument: the currently expected proto-kind.
duke@1 399 */
duke@1 400 int pkind;
duke@1 401
duke@1 402 /** Visitor argument: the currently expected proto-type.
duke@1 403 */
duke@1 404 Type pt;
duke@1 405
darcy@609 406 /** Visitor argument: the error key to be generated when a type error occurs
darcy@609 407 */
darcy@609 408 String errKey;
darcy@609 409
duke@1 410 /** Visitor result: the computed type.
duke@1 411 */
duke@1 412 Type result;
duke@1 413
duke@1 414 /** Visitor method: attribute a tree, catching any completion failure
duke@1 415 * exceptions. Return the tree's type.
duke@1 416 *
duke@1 417 * @param tree The tree to be visited.
duke@1 418 * @param env The environment visitor argument.
duke@1 419 * @param pkind The protokind visitor argument.
duke@1 420 * @param pt The prototype visitor argument.
duke@1 421 */
duke@1 422 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
darcy@609 423 return attribTree(tree, env, pkind, pt, "incompatible.types");
darcy@609 424 }
darcy@609 425
darcy@609 426 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
duke@1 427 Env<AttrContext> prevEnv = this.env;
duke@1 428 int prevPkind = this.pkind;
duke@1 429 Type prevPt = this.pt;
darcy@609 430 String prevErrKey = this.errKey;
duke@1 431 try {
duke@1 432 this.env = env;
duke@1 433 this.pkind = pkind;
duke@1 434 this.pt = pt;
darcy@609 435 this.errKey = errKey;
duke@1 436 tree.accept(this);
duke@1 437 if (tree == breakTree)
duke@1 438 throw new BreakAttr(env);
duke@1 439 return result;
duke@1 440 } catch (CompletionFailure ex) {
duke@1 441 tree.type = syms.errType;
duke@1 442 return chk.completionError(tree.pos(), ex);
duke@1 443 } finally {
duke@1 444 this.env = prevEnv;
duke@1 445 this.pkind = prevPkind;
duke@1 446 this.pt = prevPt;
darcy@609 447 this.errKey = prevErrKey;
duke@1 448 }
duke@1 449 }
duke@1 450
duke@1 451 /** Derived visitor method: attribute an expression tree.
duke@1 452 */
duke@1 453 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 454 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 455 }
duke@1 456
darcy@609 457 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
darcy@609 458 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
darcy@609 459 }
darcy@609 460
duke@1 461 /** Derived visitor method: attribute an expression tree with
duke@1 462 * no constraints on the computed type.
duke@1 463 */
duke@1 464 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 465 return attribTree(tree, env, VAL, Type.noType);
duke@1 466 }
duke@1 467
duke@1 468 /** Derived visitor method: attribute a type tree.
duke@1 469 */
duke@1 470 Type attribType(JCTree tree, Env<AttrContext> env) {
mcimadamore@537 471 Type result = attribType(tree, env, Type.noType);
mcimadamore@537 472 return result;
mcimadamore@537 473 }
mcimadamore@537 474
mcimadamore@537 475 /** Derived visitor method: attribute a type tree.
mcimadamore@537 476 */
mcimadamore@537 477 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
mcimadamore@537 478 Type result = attribTree(tree, env, TYP, pt);
duke@1 479 return result;
duke@1 480 }
duke@1 481
duke@1 482 /** Derived visitor method: attribute a statement or definition tree.
duke@1 483 */
duke@1 484 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 485 return attribTree(tree, env, NIL, Type.noType);
duke@1 486 }
duke@1 487
duke@1 488 /** Attribute a list of expressions, returning a list of types.
duke@1 489 */
duke@1 490 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 491 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 492 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 493 ts.append(attribExpr(l.head, env, pt));
duke@1 494 return ts.toList();
duke@1 495 }
duke@1 496
duke@1 497 /** Attribute a list of statements, returning nothing.
duke@1 498 */
duke@1 499 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 500 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 501 attribStat(l.head, env);
duke@1 502 }
duke@1 503
duke@1 504 /** Attribute the arguments in a method call, returning a list of types.
duke@1 505 */
duke@1 506 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 507 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 508 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 509 argtypes.append(chk.checkNonVoid(
duke@1 510 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 511 return argtypes.toList();
duke@1 512 }
duke@1 513
duke@1 514 /** Attribute a type argument list, returning a list of types.
jrose@267 515 * Caller is responsible for calling checkRefTypes.
duke@1 516 */
jrose@267 517 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 518 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 519 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
jrose@267 520 argtypes.append(attribType(l.head, env));
duke@1 521 return argtypes.toList();
duke@1 522 }
duke@1 523
jrose@267 524 /** Attribute a type argument list, returning a list of types.
jrose@267 525 * Check that all the types are references.
jrose@267 526 */
jrose@267 527 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
jrose@267 528 List<Type> types = attribAnyTypes(trees, env);
jrose@267 529 return chk.checkRefTypes(trees, types);
jrose@267 530 }
duke@1 531
duke@1 532 /**
duke@1 533 * Attribute type variables (of generic classes or methods).
duke@1 534 * Compound types are attributed later in attribBounds.
duke@1 535 * @param typarams the type variables to enter
duke@1 536 * @param env the current environment
duke@1 537 */
duke@1 538 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 539 for (JCTypeParameter tvar : typarams) {
duke@1 540 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 541 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 542 a.bound = Type.noType;
duke@1 543 if (!tvar.bounds.isEmpty()) {
duke@1 544 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 545 for (JCExpression bound : tvar.bounds.tail)
duke@1 546 bounds = bounds.prepend(attribType(bound, env));
duke@1 547 types.setBounds(a, bounds.reverse());
duke@1 548 } else {
duke@1 549 // if no bounds are given, assume a single bound of
duke@1 550 // java.lang.Object.
duke@1 551 types.setBounds(a, List.of(syms.objectType));
duke@1 552 }
mcimadamore@42 553 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 554 }
duke@1 555 for (JCTypeParameter tvar : typarams)
duke@1 556 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 557 attribStats(typarams, env);
mcimadamore@42 558 }
mcimadamore@42 559
mcimadamore@42 560 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 561 for (JCTypeParameter typaram : typarams) {
duke@1 562 Type bound = typaram.type.getUpperBound();
duke@1 563 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 564 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 565 if ((c.flags_field & COMPOUND) != 0) {
duke@1 566 assert (c.flags_field & UNATTRIBUTED) != 0 : c;
duke@1 567 attribClass(typaram.pos(), c);
duke@1 568 }
duke@1 569 }
duke@1 570 }
duke@1 571 }
duke@1 572
duke@1 573 /**
duke@1 574 * Attribute the type references in a list of annotations.
duke@1 575 */
duke@1 576 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 577 Env<AttrContext> env) {
duke@1 578 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 579 JCAnnotation a = al.head;
duke@1 580 attribType(a.annotationType, env);
duke@1 581 }
duke@1 582 }
duke@1 583
duke@1 584 /** Attribute type reference in an `extends' or `implements' clause.
mcimadamore@537 585 * Supertypes of anonymous inner classes are usually already attributed.
duke@1 586 *
duke@1 587 * @param tree The tree making up the type reference.
duke@1 588 * @param env The environment current at the reference.
duke@1 589 * @param classExpected true if only a class is expected here.
duke@1 590 * @param interfaceExpected true if only an interface is expected here.
duke@1 591 */
duke@1 592 Type attribBase(JCTree tree,
duke@1 593 Env<AttrContext> env,
duke@1 594 boolean classExpected,
duke@1 595 boolean interfaceExpected,
duke@1 596 boolean checkExtensible) {
mcimadamore@537 597 Type t = tree.type != null ?
mcimadamore@537 598 tree.type :
mcimadamore@537 599 attribType(tree, env);
duke@1 600 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 601 }
duke@1 602 Type checkBase(Type t,
duke@1 603 JCTree tree,
duke@1 604 Env<AttrContext> env,
duke@1 605 boolean classExpected,
duke@1 606 boolean interfaceExpected,
duke@1 607 boolean checkExtensible) {
jjg@664 608 if (t.isErroneous())
jjg@664 609 return t;
duke@1 610 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 611 // check that type variable is already visible
duke@1 612 if (t.getUpperBound() == null) {
duke@1 613 log.error(tree.pos(), "illegal.forward.ref");
jjg@110 614 return types.createErrorType(t);
duke@1 615 }
duke@1 616 } else {
duke@1 617 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 618 }
duke@1 619 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 620 log.error(tree.pos(), "intf.expected.here");
duke@1 621 // return errType is necessary since otherwise there might
duke@1 622 // be undetected cycles which cause attribution to loop
jjg@110 623 return types.createErrorType(t);
duke@1 624 } else if (checkExtensible &&
duke@1 625 classExpected &&
duke@1 626 (t.tsym.flags() & INTERFACE) != 0) {
jjg@664 627 log.error(tree.pos(), "no.intf.expected.here");
jjg@110 628 return types.createErrorType(t);
duke@1 629 }
duke@1 630 if (checkExtensible &&
duke@1 631 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 632 log.error(tree.pos(),
duke@1 633 "cant.inherit.from.final", t.tsym);
duke@1 634 }
duke@1 635 chk.checkNonCyclic(tree.pos(), t);
duke@1 636 return t;
duke@1 637 }
duke@1 638
duke@1 639 public void visitClassDef(JCClassDecl tree) {
duke@1 640 // Local classes have not been entered yet, so we need to do it now:
duke@1 641 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 642 enter.classEnter(tree, env);
duke@1 643
duke@1 644 ClassSymbol c = tree.sym;
duke@1 645 if (c == null) {
duke@1 646 // exit in case something drastic went wrong during enter.
duke@1 647 result = null;
duke@1 648 } else {
duke@1 649 // make sure class has been completed:
duke@1 650 c.complete();
duke@1 651
duke@1 652 // If this class appears as an anonymous class
duke@1 653 // in a superclass constructor call where
duke@1 654 // no explicit outer instance is given,
duke@1 655 // disable implicit outer instance from being passed.
duke@1 656 // (This would be an illegal access to "this before super").
duke@1 657 if (env.info.isSelfCall &&
duke@1 658 env.tree.getTag() == JCTree.NEWCLASS &&
duke@1 659 ((JCNewClass) env.tree).encl == null)
duke@1 660 {
duke@1 661 c.flags_field |= NOOUTERTHIS;
duke@1 662 }
duke@1 663 attribClass(tree.pos(), c);
duke@1 664 result = tree.type = c.type;
duke@1 665 }
duke@1 666 }
duke@1 667
duke@1 668 public void visitMethodDef(JCMethodDecl tree) {
duke@1 669 MethodSymbol m = tree.sym;
duke@1 670
duke@1 671 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 672 Lint prevLint = chk.setLint(lint);
mcimadamore@795 673 MethodSymbol prevMethod = chk.setMethod(m);
duke@1 674 try {
duke@1 675 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 676
mcimadamore@42 677 attribBounds(tree.typarams);
duke@1 678
duke@1 679 // If we override any other methods, check that we do so properly.
duke@1 680 // JLS ???
mcimadamore@780 681 chk.checkClashes(tree.pos(), env.enclClass.type, m);
duke@1 682 chk.checkOverride(tree, m);
duke@1 683
duke@1 684 // Create a new environment with local scope
duke@1 685 // for attributing the method.
duke@1 686 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 687
duke@1 688 localEnv.info.lint = lint;
duke@1 689
duke@1 690 // Enter all type parameters into the local method scope.
duke@1 691 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 692 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 693
duke@1 694 ClassSymbol owner = env.enclClass.sym;
duke@1 695 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 696 tree.params.nonEmpty())
duke@1 697 log.error(tree.params.head.pos(),
duke@1 698 "intf.annotation.members.cant.have.params");
duke@1 699
duke@1 700 // Attribute all value parameters.
duke@1 701 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 702 attribStat(l.head, localEnv);
duke@1 703 }
duke@1 704
mcimadamore@795 705 chk.checkVarargsMethodDecl(localEnv, tree);
mcimadamore@580 706
duke@1 707 // Check that type parameters are well-formed.
mcimadamore@122 708 chk.validate(tree.typarams, localEnv);
duke@1 709
duke@1 710 // Check that result type is well-formed.
mcimadamore@122 711 chk.validate(tree.restype, localEnv);
mcimadamore@629 712
mcimadamore@629 713 // annotation method checks
mcimadamore@629 714 if ((owner.flags() & ANNOTATION) != 0) {
mcimadamore@629 715 // annotation method cannot have throws clause
mcimadamore@629 716 if (tree.thrown.nonEmpty()) {
mcimadamore@629 717 log.error(tree.thrown.head.pos(),
mcimadamore@629 718 "throws.not.allowed.in.intf.annotation");
mcimadamore@629 719 }
mcimadamore@629 720 // annotation method cannot declare type-parameters
mcimadamore@629 721 if (tree.typarams.nonEmpty()) {
mcimadamore@629 722 log.error(tree.typarams.head.pos(),
mcimadamore@629 723 "intf.annotation.members.cant.have.type.params");
mcimadamore@629 724 }
mcimadamore@629 725 // validate annotation method's return type (could be an annotation type)
duke@1 726 chk.validateAnnotationType(tree.restype);
mcimadamore@629 727 // ensure that annotation method does not clash with members of Object/Annotation
duke@1 728 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 729
mcimadamore@634 730 if (tree.defaultValue != null) {
mcimadamore@634 731 // if default value is an annotation, check it is a well-formed
mcimadamore@634 732 // annotation value (e.g. no duplicate values, no missing values, etc.)
mcimadamore@634 733 chk.validateAnnotationTree(tree.defaultValue);
mcimadamore@634 734 }
mcimadamore@629 735 }
mcimadamore@629 736
duke@1 737 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 738 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 739
duke@1 740 if (tree.body == null) {
duke@1 741 // Empty bodies are only allowed for
duke@1 742 // abstract, native, or interface methods, or for methods
duke@1 743 // in a retrofit signature class.
duke@1 744 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 745 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 746 !relax)
duke@1 747 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 748 if (tree.defaultValue != null) {
duke@1 749 if ((owner.flags() & ANNOTATION) == 0)
duke@1 750 log.error(tree.pos(),
duke@1 751 "default.allowed.in.intf.annotation.member");
duke@1 752 }
duke@1 753 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 754 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 755 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 756 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 757 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 758 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 759 } else {
duke@1 760 // Add an implicit super() call unless an explicit call to
duke@1 761 // super(...) or this(...) is given
duke@1 762 // or we are compiling class java.lang.Object.
duke@1 763 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 764 JCBlock body = tree.body;
duke@1 765 if (body.stats.isEmpty() ||
duke@1 766 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 767 body.stats = body.stats.
duke@1 768 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 769 List.<Type>nil(),
duke@1 770 List.<JCVariableDecl>nil(),
duke@1 771 false));
duke@1 772 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 773 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 774 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 775 // enum constructors are not allowed to call super
duke@1 776 // directly, so make sure there aren't any super calls
duke@1 777 // in enum constructors, except in the compiler
duke@1 778 // generated one.
duke@1 779 log.error(tree.body.stats.head.pos(),
duke@1 780 "call.to.super.not.allowed.in.enum.ctor",
duke@1 781 env.enclClass.sym);
duke@1 782 }
duke@1 783 }
duke@1 784
duke@1 785 // Attribute method body.
duke@1 786 attribStat(tree.body, localEnv);
duke@1 787 }
duke@1 788 localEnv.info.scope.leave();
duke@1 789 result = tree.type = m.type;
duke@1 790 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 791 }
duke@1 792 finally {
duke@1 793 chk.setLint(prevLint);
mcimadamore@795 794 chk.setMethod(prevMethod);
duke@1 795 }
duke@1 796 }
duke@1 797
duke@1 798 public void visitVarDef(JCVariableDecl tree) {
duke@1 799 // Local variables have not been entered yet, so we need to do it now:
duke@1 800 if (env.info.scope.owner.kind == MTH) {
duke@1 801 if (tree.sym != null) {
duke@1 802 // parameters have already been entered
duke@1 803 env.info.scope.enter(tree.sym);
duke@1 804 } else {
duke@1 805 memberEnter.memberEnter(tree, env);
duke@1 806 annotate.flush();
duke@1 807 }
mcimadamore@735 808 tree.sym.flags_field |= EFFECTIVELY_FINAL;
duke@1 809 }
duke@1 810
duke@1 811 VarSymbol v = tree.sym;
duke@1 812 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 813 Lint prevLint = chk.setLint(lint);
duke@1 814
mcimadamore@165 815 // Check that the variable's declared type is well-formed.
mcimadamore@165 816 chk.validate(tree.vartype, env);
mcimadamore@165 817
duke@1 818 try {
duke@1 819 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 820
duke@1 821 if (tree.init != null) {
duke@1 822 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
duke@1 823 // In this case, `v' is final. Ensure that it's initializer is
duke@1 824 // evaluated.
duke@1 825 v.getConstValue(); // ensure initializer is evaluated
duke@1 826 } else {
duke@1 827 // Attribute initializer in a new environment
duke@1 828 // with the declared variable as owner.
duke@1 829 // Check that initializer conforms to variable's declared type.
duke@1 830 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 831 initEnv.info.lint = lint;
duke@1 832 // In order to catch self-references, we set the variable's
duke@1 833 // declaration position to maximal possible value, effectively
duke@1 834 // marking the variable as undefined.
mcimadamore@94 835 initEnv.info.enclVar = v;
duke@1 836 attribExpr(tree.init, initEnv, v.type);
duke@1 837 }
duke@1 838 }
duke@1 839 result = tree.type = v.type;
duke@1 840 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 841 }
duke@1 842 finally {
duke@1 843 chk.setLint(prevLint);
duke@1 844 }
duke@1 845 }
duke@1 846
duke@1 847 public void visitSkip(JCSkip tree) {
duke@1 848 result = null;
duke@1 849 }
duke@1 850
duke@1 851 public void visitBlock(JCBlock tree) {
duke@1 852 if (env.info.scope.owner.kind == TYP) {
duke@1 853 // Block is a static or instance initializer;
duke@1 854 // let the owner of the environment be a freshly
duke@1 855 // created BLOCK-method.
duke@1 856 Env<AttrContext> localEnv =
duke@1 857 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 858 localEnv.info.scope.owner =
duke@1 859 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 860 env.info.scope.owner);
duke@1 861 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 862 attribStats(tree.stats, localEnv);
duke@1 863 } else {
duke@1 864 // Create a new local environment with a local scope.
duke@1 865 Env<AttrContext> localEnv =
duke@1 866 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 867 attribStats(tree.stats, localEnv);
duke@1 868 localEnv.info.scope.leave();
duke@1 869 }
duke@1 870 result = null;
duke@1 871 }
duke@1 872
duke@1 873 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 874 attribStat(tree.body, env.dup(tree));
duke@1 875 attribExpr(tree.cond, env, syms.booleanType);
duke@1 876 result = null;
duke@1 877 }
duke@1 878
duke@1 879 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 880 attribExpr(tree.cond, env, syms.booleanType);
duke@1 881 attribStat(tree.body, env.dup(tree));
duke@1 882 result = null;
duke@1 883 }
duke@1 884
duke@1 885 public void visitForLoop(JCForLoop tree) {
duke@1 886 Env<AttrContext> loopEnv =
duke@1 887 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 888 attribStats(tree.init, loopEnv);
duke@1 889 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 890 loopEnv.tree = tree; // before, we were not in loop!
duke@1 891 attribStats(tree.step, loopEnv);
duke@1 892 attribStat(tree.body, loopEnv);
duke@1 893 loopEnv.info.scope.leave();
duke@1 894 result = null;
duke@1 895 }
duke@1 896
duke@1 897 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 898 Env<AttrContext> loopEnv =
duke@1 899 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 900 attribStat(tree.var, loopEnv);
duke@1 901 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 902 chk.checkNonVoid(tree.pos(), exprType);
duke@1 903 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 904 if (elemtype == null) {
duke@1 905 // or perhaps expr implements Iterable<T>?
duke@1 906 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 907 if (base == null) {
duke@1 908 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
jjg@110 909 elemtype = types.createErrorType(exprType);
duke@1 910 } else {
duke@1 911 List<Type> iterableParams = base.allparams();
duke@1 912 elemtype = iterableParams.isEmpty()
duke@1 913 ? syms.objectType
duke@1 914 : types.upperBound(iterableParams.head);
duke@1 915 }
duke@1 916 }
duke@1 917 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 918 loopEnv.tree = tree; // before, we were not in loop!
duke@1 919 attribStat(tree.body, loopEnv);
duke@1 920 loopEnv.info.scope.leave();
duke@1 921 result = null;
duke@1 922 }
duke@1 923
duke@1 924 public void visitLabelled(JCLabeledStatement tree) {
duke@1 925 // Check that label is not used in an enclosing statement
duke@1 926 Env<AttrContext> env1 = env;
duke@1 927 while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
duke@1 928 if (env1.tree.getTag() == JCTree.LABELLED &&
duke@1 929 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 930 log.error(tree.pos(), "label.already.in.use",
duke@1 931 tree.label);
duke@1 932 break;
duke@1 933 }
duke@1 934 env1 = env1.next;
duke@1 935 }
duke@1 936
duke@1 937 attribStat(tree.body, env.dup(tree));
duke@1 938 result = null;
duke@1 939 }
duke@1 940
duke@1 941 public void visitSwitch(JCSwitch tree) {
duke@1 942 Type seltype = attribExpr(tree.selector, env);
duke@1 943
duke@1 944 Env<AttrContext> switchEnv =
duke@1 945 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 946
duke@1 947 boolean enumSwitch =
duke@1 948 allowEnums &&
duke@1 949 (seltype.tsym.flags() & Flags.ENUM) != 0;
darcy@430 950 boolean stringSwitch = false;
darcy@430 951 if (types.isSameType(seltype, syms.stringType)) {
darcy@430 952 if (allowStringsInSwitch) {
darcy@430 953 stringSwitch = true;
darcy@430 954 } else {
darcy@430 955 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
darcy@430 956 }
darcy@430 957 }
darcy@430 958 if (!enumSwitch && !stringSwitch)
duke@1 959 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 960
duke@1 961 // Attribute all cases and
duke@1 962 // check that there are no duplicate case labels or default clauses.
duke@1 963 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 964 boolean hasDefault = false; // Is there a default label?
duke@1 965 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 966 JCCase c = l.head;
duke@1 967 Env<AttrContext> caseEnv =
duke@1 968 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 969 if (c.pat != null) {
duke@1 970 if (enumSwitch) {
duke@1 971 Symbol sym = enumConstant(c.pat, seltype);
duke@1 972 if (sym == null) {
duke@1 973 log.error(c.pat.pos(), "enum.const.req");
duke@1 974 } else if (!labels.add(sym)) {
duke@1 975 log.error(c.pos(), "duplicate.case.label");
duke@1 976 }
duke@1 977 } else {
duke@1 978 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 979 if (pattype.tag != ERROR) {
duke@1 980 if (pattype.constValue() == null) {
darcy@430 981 log.error(c.pat.pos(),
darcy@430 982 (stringSwitch ? "string.const.req" : "const.expr.req"));
duke@1 983 } else if (labels.contains(pattype.constValue())) {
duke@1 984 log.error(c.pos(), "duplicate.case.label");
duke@1 985 } else {
duke@1 986 labels.add(pattype.constValue());
duke@1 987 }
duke@1 988 }
duke@1 989 }
duke@1 990 } else if (hasDefault) {
duke@1 991 log.error(c.pos(), "duplicate.default.label");
duke@1 992 } else {
duke@1 993 hasDefault = true;
duke@1 994 }
duke@1 995 attribStats(c.stats, caseEnv);
duke@1 996 caseEnv.info.scope.leave();
duke@1 997 addVars(c.stats, switchEnv.info.scope);
duke@1 998 }
duke@1 999
duke@1 1000 switchEnv.info.scope.leave();
duke@1 1001 result = null;
duke@1 1002 }
duke@1 1003 // where
duke@1 1004 /** Add any variables defined in stats to the switch scope. */
duke@1 1005 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 1006 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 1007 JCTree stat = stats.head;
duke@1 1008 if (stat.getTag() == JCTree.VARDEF)
duke@1 1009 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 1010 }
duke@1 1011 }
duke@1 1012 // where
duke@1 1013 /** Return the selected enumeration constant symbol, or null. */
duke@1 1014 private Symbol enumConstant(JCTree tree, Type enumType) {
duke@1 1015 if (tree.getTag() != JCTree.IDENT) {
duke@1 1016 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1017 return syms.errSymbol;
duke@1 1018 }
duke@1 1019 JCIdent ident = (JCIdent)tree;
duke@1 1020 Name name = ident.name;
duke@1 1021 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 1022 e.scope != null; e = e.next()) {
duke@1 1023 if (e.sym.kind == VAR) {
duke@1 1024 Symbol s = ident.sym = e.sym;
duke@1 1025 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 1026 ident.type = s.type;
duke@1 1027 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 1028 ? null : s;
duke@1 1029 }
duke@1 1030 }
duke@1 1031 return null;
duke@1 1032 }
duke@1 1033
duke@1 1034 public void visitSynchronized(JCSynchronized tree) {
duke@1 1035 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 1036 attribStat(tree.body, env);
duke@1 1037 result = null;
duke@1 1038 }
duke@1 1039
duke@1 1040 public void visitTry(JCTry tree) {
darcy@609 1041 // Create a new local environment with a local
darcy@609 1042 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
darcy@609 1043 boolean isTryWithResource = tree.resources.nonEmpty();
darcy@609 1044 // Create a nested environment for attributing the try block if needed
darcy@609 1045 Env<AttrContext> tryEnv = isTryWithResource ?
darcy@609 1046 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
darcy@609 1047 localEnv;
darcy@609 1048 // Attribute resource declarations
darcy@609 1049 for (JCTree resource : tree.resources) {
darcy@609 1050 if (resource.getTag() == JCTree.VARDEF) {
darcy@609 1051 attribStat(resource, tryEnv);
mcimadamore@743 1052 chk.checkType(resource, resource.type, syms.autoCloseableType, "try.not.applicable.to.type");
darcy@609 1053 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
darcy@609 1054 var.setData(ElementKind.RESOURCE_VARIABLE);
darcy@609 1055 } else {
mcimadamore@743 1056 attribExpr(resource, tryEnv, syms.autoCloseableType, "try.not.applicable.to.type");
darcy@609 1057 }
darcy@609 1058 }
duke@1 1059 // Attribute body
darcy@609 1060 attribStat(tree.body, tryEnv);
darcy@609 1061 if (isTryWithResource)
darcy@609 1062 tryEnv.info.scope.leave();
duke@1 1063
duke@1 1064 // Attribute catch clauses
duke@1 1065 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1066 JCCatch c = l.head;
duke@1 1067 Env<AttrContext> catchEnv =
darcy@609 1068 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
duke@1 1069 Type ctype = attribStat(c.param, catchEnv);
mcimadamore@550 1070 if (TreeInfo.isMultiCatch(c)) {
mcimadamore@735 1071 //multi-catch parameter is implicitly marked as final
mcimadamore@735 1072 c.param.sym.flags_field |= FINAL | DISJUNCTION;
mcimadamore@550 1073 }
jjg@723 1074 if (c.param.sym.kind == Kinds.VAR) {
duke@1 1075 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 1076 }
duke@1 1077 chk.checkType(c.param.vartype.pos(),
duke@1 1078 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 1079 syms.throwableType);
duke@1 1080 attribStat(c.body, catchEnv);
duke@1 1081 catchEnv.info.scope.leave();
duke@1 1082 }
duke@1 1083
duke@1 1084 // Attribute finalizer
darcy@609 1085 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
darcy@609 1086
darcy@609 1087 localEnv.info.scope.leave();
duke@1 1088 result = null;
duke@1 1089 }
duke@1 1090
duke@1 1091 public void visitConditional(JCConditional tree) {
duke@1 1092 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1093 attribExpr(tree.truepart, env);
duke@1 1094 attribExpr(tree.falsepart, env);
duke@1 1095 result = check(tree,
duke@1 1096 capture(condType(tree.pos(), tree.cond.type,
duke@1 1097 tree.truepart.type, tree.falsepart.type)),
duke@1 1098 VAL, pkind, pt);
duke@1 1099 }
duke@1 1100 //where
duke@1 1101 /** Compute the type of a conditional expression, after
duke@1 1102 * checking that it exists. See Spec 15.25.
duke@1 1103 *
duke@1 1104 * @param pos The source position to be used for
duke@1 1105 * error diagnostics.
duke@1 1106 * @param condtype The type of the expression's condition.
duke@1 1107 * @param thentype The type of the expression's then-part.
duke@1 1108 * @param elsetype The type of the expression's else-part.
duke@1 1109 */
duke@1 1110 private Type condType(DiagnosticPosition pos,
duke@1 1111 Type condtype,
duke@1 1112 Type thentype,
duke@1 1113 Type elsetype) {
duke@1 1114 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 1115
duke@1 1116 // If condition and both arms are numeric constants,
duke@1 1117 // evaluate at compile-time.
duke@1 1118 return ((condtype.constValue() != null) &&
duke@1 1119 (thentype.constValue() != null) &&
duke@1 1120 (elsetype.constValue() != null))
duke@1 1121 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 1122 : ctype;
duke@1 1123 }
duke@1 1124 /** Compute the type of a conditional expression, after
duke@1 1125 * checking that it exists. Does not take into
duke@1 1126 * account the special case where condition and both arms
duke@1 1127 * are constants.
duke@1 1128 *
duke@1 1129 * @param pos The source position to be used for error
duke@1 1130 * diagnostics.
duke@1 1131 * @param condtype The type of the expression's condition.
duke@1 1132 * @param thentype The type of the expression's then-part.
duke@1 1133 * @param elsetype The type of the expression's else-part.
duke@1 1134 */
duke@1 1135 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 1136 Type thentype, Type elsetype) {
duke@1 1137 // If same type, that is the result
duke@1 1138 if (types.isSameType(thentype, elsetype))
duke@1 1139 return thentype.baseType();
duke@1 1140
duke@1 1141 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1142 ? thentype : types.unboxedType(thentype);
duke@1 1143 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1144 ? elsetype : types.unboxedType(elsetype);
duke@1 1145
duke@1 1146 // Otherwise, if both arms can be converted to a numeric
duke@1 1147 // type, return the least numeric type that fits both arms
duke@1 1148 // (i.e. return larger of the two, or return int if one
duke@1 1149 // arm is short, the other is char).
duke@1 1150 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1151 // If one arm has an integer subrange type (i.e., byte,
duke@1 1152 // short, or char), and the other is an integer constant
duke@1 1153 // that fits into the subrange, return the subrange type.
duke@1 1154 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1155 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1156 return thenUnboxed.baseType();
duke@1 1157 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1158 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1159 return elseUnboxed.baseType();
duke@1 1160
duke@1 1161 for (int i = BYTE; i < VOID; i++) {
duke@1 1162 Type candidate = syms.typeOfTag[i];
duke@1 1163 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1164 types.isSubtype(elseUnboxed, candidate))
duke@1 1165 return candidate;
duke@1 1166 }
duke@1 1167 }
duke@1 1168
duke@1 1169 // Those were all the cases that could result in a primitive
duke@1 1170 if (allowBoxing) {
duke@1 1171 if (thentype.isPrimitive())
duke@1 1172 thentype = types.boxedClass(thentype).type;
duke@1 1173 if (elsetype.isPrimitive())
duke@1 1174 elsetype = types.boxedClass(elsetype).type;
duke@1 1175 }
duke@1 1176
duke@1 1177 if (types.isSubtype(thentype, elsetype))
duke@1 1178 return elsetype.baseType();
duke@1 1179 if (types.isSubtype(elsetype, thentype))
duke@1 1180 return thentype.baseType();
duke@1 1181
duke@1 1182 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1183 log.error(pos, "neither.conditional.subtype",
duke@1 1184 thentype, elsetype);
duke@1 1185 return thentype.baseType();
duke@1 1186 }
duke@1 1187
duke@1 1188 // both are known to be reference types. The result is
duke@1 1189 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1190 // always be possible to infer "Object" if nothing better.
duke@1 1191 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1192 }
duke@1 1193
duke@1 1194 public void visitIf(JCIf tree) {
duke@1 1195 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1196 attribStat(tree.thenpart, env);
duke@1 1197 if (tree.elsepart != null)
duke@1 1198 attribStat(tree.elsepart, env);
duke@1 1199 chk.checkEmptyIf(tree);
duke@1 1200 result = null;
duke@1 1201 }
duke@1 1202
duke@1 1203 public void visitExec(JCExpressionStatement tree) {
mcimadamore@674 1204 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 1205 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 1206 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 1207 attribExpr(tree.expr, localEnv);
duke@1 1208 result = null;
duke@1 1209 }
duke@1 1210
duke@1 1211 public void visitBreak(JCBreak tree) {
duke@1 1212 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1213 result = null;
duke@1 1214 }
duke@1 1215
duke@1 1216 public void visitContinue(JCContinue tree) {
duke@1 1217 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1218 result = null;
duke@1 1219 }
duke@1 1220 //where
duke@1 1221 /** Return the target of a break or continue statement, if it exists,
duke@1 1222 * report an error if not.
duke@1 1223 * Note: The target of a labelled break or continue is the
duke@1 1224 * (non-labelled) statement tree referred to by the label,
duke@1 1225 * not the tree representing the labelled statement itself.
duke@1 1226 *
duke@1 1227 * @param pos The position to be used for error diagnostics
duke@1 1228 * @param tag The tag of the jump statement. This is either
duke@1 1229 * Tree.BREAK or Tree.CONTINUE.
duke@1 1230 * @param label The label of the jump statement, or null if no
duke@1 1231 * label is given.
duke@1 1232 * @param env The environment current at the jump statement.
duke@1 1233 */
duke@1 1234 private JCTree findJumpTarget(DiagnosticPosition pos,
duke@1 1235 int tag,
duke@1 1236 Name label,
duke@1 1237 Env<AttrContext> env) {
duke@1 1238 // Search environments outwards from the point of jump.
duke@1 1239 Env<AttrContext> env1 = env;
duke@1 1240 LOOP:
duke@1 1241 while (env1 != null) {
duke@1 1242 switch (env1.tree.getTag()) {
duke@1 1243 case JCTree.LABELLED:
duke@1 1244 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1245 if (label == labelled.label) {
duke@1 1246 // If jump is a continue, check that target is a loop.
duke@1 1247 if (tag == JCTree.CONTINUE) {
duke@1 1248 if (labelled.body.getTag() != JCTree.DOLOOP &&
duke@1 1249 labelled.body.getTag() != JCTree.WHILELOOP &&
duke@1 1250 labelled.body.getTag() != JCTree.FORLOOP &&
duke@1 1251 labelled.body.getTag() != JCTree.FOREACHLOOP)
duke@1 1252 log.error(pos, "not.loop.label", label);
duke@1 1253 // Found labelled statement target, now go inwards
duke@1 1254 // to next non-labelled tree.
duke@1 1255 return TreeInfo.referencedStatement(labelled);
duke@1 1256 } else {
duke@1 1257 return labelled;
duke@1 1258 }
duke@1 1259 }
duke@1 1260 break;
duke@1 1261 case JCTree.DOLOOP:
duke@1 1262 case JCTree.WHILELOOP:
duke@1 1263 case JCTree.FORLOOP:
duke@1 1264 case JCTree.FOREACHLOOP:
duke@1 1265 if (label == null) return env1.tree;
duke@1 1266 break;
duke@1 1267 case JCTree.SWITCH:
duke@1 1268 if (label == null && tag == JCTree.BREAK) return env1.tree;
duke@1 1269 break;
duke@1 1270 case JCTree.METHODDEF:
duke@1 1271 case JCTree.CLASSDEF:
duke@1 1272 break LOOP;
duke@1 1273 default:
duke@1 1274 }
duke@1 1275 env1 = env1.next;
duke@1 1276 }
duke@1 1277 if (label != null)
duke@1 1278 log.error(pos, "undef.label", label);
duke@1 1279 else if (tag == JCTree.CONTINUE)
duke@1 1280 log.error(pos, "cont.outside.loop");
duke@1 1281 else
duke@1 1282 log.error(pos, "break.outside.switch.loop");
duke@1 1283 return null;
duke@1 1284 }
duke@1 1285
duke@1 1286 public void visitReturn(JCReturn tree) {
duke@1 1287 // Check that there is an enclosing method which is
duke@1 1288 // nested within than the enclosing class.
duke@1 1289 if (env.enclMethod == null ||
duke@1 1290 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1291 log.error(tree.pos(), "ret.outside.meth");
duke@1 1292
duke@1 1293 } else {
duke@1 1294 // Attribute return expression, if it exists, and check that
duke@1 1295 // it conforms to result type of enclosing method.
duke@1 1296 Symbol m = env.enclMethod.sym;
duke@1 1297 if (m.type.getReturnType().tag == VOID) {
duke@1 1298 if (tree.expr != null)
duke@1 1299 log.error(tree.expr.pos(),
duke@1 1300 "cant.ret.val.from.meth.decl.void");
duke@1 1301 } else if (tree.expr == null) {
duke@1 1302 log.error(tree.pos(), "missing.ret.val");
duke@1 1303 } else {
duke@1 1304 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1305 }
duke@1 1306 }
duke@1 1307 result = null;
duke@1 1308 }
duke@1 1309
duke@1 1310 public void visitThrow(JCThrow tree) {
duke@1 1311 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1312 result = null;
duke@1 1313 }
duke@1 1314
duke@1 1315 public void visitAssert(JCAssert tree) {
duke@1 1316 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1317 if (tree.detail != null) {
duke@1 1318 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1319 }
duke@1 1320 result = null;
duke@1 1321 }
duke@1 1322
duke@1 1323 /** Visitor method for method invocations.
duke@1 1324 * NOTE: The method part of an application will have in its type field
duke@1 1325 * the return type of the method, not the method's type itself!
duke@1 1326 */
duke@1 1327 public void visitApply(JCMethodInvocation tree) {
duke@1 1328 // The local environment of a method application is
duke@1 1329 // a new environment nested in the current one.
duke@1 1330 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1331
duke@1 1332 // The types of the actual method arguments.
duke@1 1333 List<Type> argtypes;
duke@1 1334
duke@1 1335 // The types of the actual method type arguments.
duke@1 1336 List<Type> typeargtypes = null;
jrose@267 1337 boolean typeargtypesNonRefOK = false;
duke@1 1338
duke@1 1339 Name methName = TreeInfo.name(tree.meth);
duke@1 1340
duke@1 1341 boolean isConstructorCall =
duke@1 1342 methName == names._this || methName == names._super;
duke@1 1343
duke@1 1344 if (isConstructorCall) {
duke@1 1345 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1346 // Check that this is the first statement in a constructor.
duke@1 1347 if (checkFirstConstructorStat(tree, env)) {
duke@1 1348
duke@1 1349 // Record the fact
duke@1 1350 // that this is a constructor call (using isSelfCall).
duke@1 1351 localEnv.info.isSelfCall = true;
duke@1 1352
duke@1 1353 // Attribute arguments, yielding list of argument types.
duke@1 1354 argtypes = attribArgs(tree.args, localEnv);
duke@1 1355 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1356
duke@1 1357 // Variable `site' points to the class in which the called
duke@1 1358 // constructor is defined.
duke@1 1359 Type site = env.enclClass.sym.type;
duke@1 1360 if (methName == names._super) {
duke@1 1361 if (site == syms.objectType) {
duke@1 1362 log.error(tree.meth.pos(), "no.superclass", site);
jjg@110 1363 site = types.createErrorType(syms.objectType);
duke@1 1364 } else {
duke@1 1365 site = types.supertype(site);
duke@1 1366 }
duke@1 1367 }
duke@1 1368
duke@1 1369 if (site.tag == CLASS) {
mcimadamore@361 1370 Type encl = site.getEnclosingType();
mcimadamore@361 1371 while (encl != null && encl.tag == TYPEVAR)
mcimadamore@361 1372 encl = encl.getUpperBound();
mcimadamore@361 1373 if (encl.tag == CLASS) {
duke@1 1374 // we are calling a nested class
duke@1 1375
duke@1 1376 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1377 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1378
duke@1 1379 // We are seeing a prefixed call, of the form
duke@1 1380 // <expr>.super(...).
duke@1 1381 // Check that the prefix expression conforms
duke@1 1382 // to the outer instance type of the class.
duke@1 1383 chk.checkRefType(qualifier.pos(),
duke@1 1384 attribExpr(qualifier, localEnv,
mcimadamore@361 1385 encl));
duke@1 1386 } else if (methName == names._super) {
duke@1 1387 // qualifier omitted; check for existence
duke@1 1388 // of an appropriate implicit qualifier.
duke@1 1389 rs.resolveImplicitThis(tree.meth.pos(),
duke@1 1390 localEnv, site);
duke@1 1391 }
duke@1 1392 } else if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1393 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1394 site.tsym);
duke@1 1395 }
duke@1 1396
duke@1 1397 // if we're calling a java.lang.Enum constructor,
duke@1 1398 // prefix the implicit String and int parameters
duke@1 1399 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1400 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1401
duke@1 1402 // Resolve the called constructor under the assumption
duke@1 1403 // that we are referring to a superclass instance of the
duke@1 1404 // current instance (JLS ???).
duke@1 1405 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1406 localEnv.info.selectSuper = true;
duke@1 1407 localEnv.info.varArgs = false;
duke@1 1408 Symbol sym = rs.resolveConstructor(
duke@1 1409 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1410 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1411
duke@1 1412 // Set method symbol to resolved constructor...
duke@1 1413 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1414
duke@1 1415 // ...and check that it is legal in the current context.
duke@1 1416 // (this will also set the tree's type)
duke@1 1417 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1418 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1419 mpt, tree.varargsElement != null);
duke@1 1420 }
duke@1 1421 // Otherwise, `site' is an error type and we do nothing
duke@1 1422 }
duke@1 1423 result = tree.type = syms.voidType;
duke@1 1424 } else {
duke@1 1425 // Otherwise, we are seeing a regular method call.
duke@1 1426 // Attribute the arguments, yielding list of argument types, ...
duke@1 1427 argtypes = attribArgs(tree.args, localEnv);
jrose@267 1428 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
duke@1 1429
duke@1 1430 // ... and attribute the method using as a prototype a methodtype
duke@1 1431 // whose formal argument types is exactly the list of actual
duke@1 1432 // arguments (this will also set the method symbol).
duke@1 1433 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1434 localEnv.info.varArgs = false;
duke@1 1435 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1436 if (localEnv.info.varArgs)
duke@1 1437 assert mtype.isErroneous() || tree.varargsElement != null;
duke@1 1438
duke@1 1439 // Compute the result type.
duke@1 1440 Type restype = mtype.getReturnType();
mcimadamore@689 1441 if (restype.tag == WILDCARD)
mcimadamore@689 1442 throw new AssertionError(mtype);
duke@1 1443
duke@1 1444 // as a special case, array.clone() has a result that is
duke@1 1445 // the same as static type of the array being cloned
duke@1 1446 if (tree.meth.getTag() == JCTree.SELECT &&
duke@1 1447 allowCovariantReturns &&
duke@1 1448 methName == names.clone &&
duke@1 1449 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1450 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1451
duke@1 1452 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1453 if (allowGenerics &&
duke@1 1454 methName == names.getClass && tree.args.isEmpty()) {
duke@1 1455 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
duke@1 1456 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1457 : env.enclClass.sym.type;
duke@1 1458 restype = new
duke@1 1459 ClassType(restype.getEnclosingType(),
duke@1 1460 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1461 BoundKind.EXTENDS,
duke@1 1462 syms.boundClass)),
duke@1 1463 restype.tsym);
duke@1 1464 }
duke@1 1465
mcimadamore@674 1466 // Special case logic for JSR 292 types.
mcimadamore@674 1467 if (rs.allowTransitionalJSR292 &&
mcimadamore@674 1468 tree.meth.getTag() == JCTree.SELECT &&
mcimadamore@674 1469 !typeargtypes.isEmpty()) {
mcimadamore@674 1470 JCFieldAccess mfield = (JCFieldAccess) tree.meth;
mcimadamore@674 1471 // MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
mcimadamore@674 1472 // has type <T>, and T can be a primitive type.
mcimadamore@674 1473 if (mfield.sym != null &&
mcimadamore@674 1474 mfield.sym.isPolymorphicSignatureInstance())
mcimadamore@674 1475 typeargtypesNonRefOK = true;
jrose@267 1476 }
jrose@267 1477
mcimadamore@674 1478 if (!(rs.allowTransitionalJSR292 && typeargtypesNonRefOK)) {
jrose@267 1479 chk.checkRefTypes(tree.typeargs, typeargtypes);
jrose@267 1480 }
jrose@267 1481
duke@1 1482 // Check that value of resulting type is admissible in the
duke@1 1483 // current context. Also, capture the return type
mcimadamore@536 1484 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1485 }
mcimadamore@122 1486 chk.validate(tree.typeargs, localEnv);
duke@1 1487 }
duke@1 1488 //where
duke@1 1489 /** Check that given application node appears as first statement
duke@1 1490 * in a constructor call.
duke@1 1491 * @param tree The application node
duke@1 1492 * @param env The environment current at the application.
duke@1 1493 */
duke@1 1494 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1495 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1496 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1497 JCBlock body = enclMethod.body;
duke@1 1498 if (body.stats.head.getTag() == JCTree.EXEC &&
duke@1 1499 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1500 return true;
duke@1 1501 }
duke@1 1502 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1503 TreeInfo.name(tree.meth));
duke@1 1504 return false;
duke@1 1505 }
duke@1 1506
duke@1 1507 /** Obtain a method type with given argument types.
duke@1 1508 */
duke@1 1509 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1510 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1511 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1512 }
duke@1 1513
duke@1 1514 public void visitNewClass(JCNewClass tree) {
jjg@110 1515 Type owntype = types.createErrorType(tree.type);
duke@1 1516
duke@1 1517 // The local environment of a class creation is
duke@1 1518 // a new environment nested in the current one.
duke@1 1519 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1520
duke@1 1521 // The anonymous inner class definition of the new expression,
duke@1 1522 // if one is defined by it.
duke@1 1523 JCClassDecl cdef = tree.def;
duke@1 1524
duke@1 1525 // If enclosing class is given, attribute it, and
duke@1 1526 // complete class name to be fully qualified
duke@1 1527 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1528 JCExpression clazzid = // Identifier in class field
duke@1 1529 (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1530 ? ((JCTypeApply) clazz).clazz
duke@1 1531 : clazz;
duke@1 1532
duke@1 1533 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1534
duke@1 1535 if (tree.encl != null) {
duke@1 1536 // We are seeing a qualified new, of the form
duke@1 1537 // <expr>.new C <...> (...) ...
duke@1 1538 // In this case, we let clazz stand for the name of the
duke@1 1539 // allocated class C prefixed with the type of the qualifier
duke@1 1540 // expression, so that we can
duke@1 1541 // resolve it with standard techniques later. I.e., if
duke@1 1542 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1543 // yields a clazz T.C.
duke@1 1544 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1545 attribExpr(tree.encl, env));
duke@1 1546 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1547 ((JCIdent) clazzid).name);
duke@1 1548 if (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1549 clazz = make.at(tree.pos).
duke@1 1550 TypeApply(clazzid1,
duke@1 1551 ((JCTypeApply) clazz).arguments);
duke@1 1552 else
duke@1 1553 clazz = clazzid1;
duke@1 1554 }
duke@1 1555
duke@1 1556 // Attribute clazz expression and store
duke@1 1557 // symbol + type back into the attributed tree.
mcimadamore@537 1558 Type clazztype = attribType(clazz, env);
mcimadamore@740 1559 Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype, cdef != null);
mcimadamore@537 1560 if (!TreeInfo.isDiamond(tree)) {
mcimadamore@537 1561 clazztype = chk.checkClassType(
mcimadamore@537 1562 tree.clazz.pos(), clazztype, true);
mcimadamore@537 1563 }
mcimadamore@122 1564 chk.validate(clazz, localEnv);
duke@1 1565 if (tree.encl != null) {
duke@1 1566 // We have to work in this case to store
duke@1 1567 // symbol + type back into the attributed tree.
duke@1 1568 tree.clazz.type = clazztype;
duke@1 1569 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1570 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1571 if (!clazztype.isErroneous()) {
duke@1 1572 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1573 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1574 } else if (clazztype.tsym.isStatic()) {
duke@1 1575 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1576 }
duke@1 1577 }
duke@1 1578 } else if (!clazztype.tsym.isInterface() &&
duke@1 1579 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1580 // Check for the existence of an apropos outer instance
duke@1 1581 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1582 }
duke@1 1583
duke@1 1584 // Attribute constructor arguments.
duke@1 1585 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1586 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1587
mcimadamore@537 1588 if (TreeInfo.isDiamond(tree)) {
mcimadamore@631 1589 clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
mcimadamore@537 1590 clazz.type = clazztype;
mcimadamore@731 1591 } else if (allowDiamondFinder &&
mcimadamore@731 1592 clazztype.getTypeArguments().nonEmpty() &&
mcimadamore@731 1593 findDiamonds) {
mcimadamore@770 1594 boolean prevDeferDiags = log.deferDiagnostics;
mcimadamore@770 1595 Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
mcimadamore@770 1596 Type inferred = null;
mcimadamore@770 1597 try {
mcimadamore@770 1598 //disable diamond-related diagnostics
mcimadamore@770 1599 log.deferDiagnostics = true;
mcimadamore@770 1600 log.deferredDiagnostics = ListBuffer.lb();
mcimadamore@770 1601 inferred = attribDiamond(localEnv,
mcimadamore@770 1602 tree,
mcimadamore@770 1603 clazztype,
mcimadamore@770 1604 mapping,
mcimadamore@770 1605 argtypes,
mcimadamore@770 1606 typeargtypes);
mcimadamore@770 1607 }
mcimadamore@770 1608 finally {
mcimadamore@770 1609 log.deferDiagnostics = prevDeferDiags;
mcimadamore@770 1610 log.deferredDiagnostics = prevDeferredDiags;
mcimadamore@770 1611 }
mcimadamore@770 1612 if (inferred != null &&
mcimadamore@770 1613 !inferred.isErroneous() &&
mcimadamore@731 1614 inferred.tag == CLASS &&
mcimadamore@731 1615 types.isAssignable(inferred, pt.tag == NONE ? clazztype : pt, Warner.noWarnings) &&
mcimadamore@731 1616 chk.checkDiamond((ClassType)inferred).isEmpty()) {
mcimadamore@731 1617 String key = types.isSameType(clazztype, inferred) ?
mcimadamore@731 1618 "diamond.redundant.args" :
mcimadamore@731 1619 "diamond.redundant.args.1";
mcimadamore@731 1620 log.warning(tree.clazz.pos(), key, clazztype, inferred);
mcimadamore@731 1621 }
mcimadamore@537 1622 }
mcimadamore@537 1623
duke@1 1624 // If we have made no mistakes in the class type...
duke@1 1625 if (clazztype.tag == CLASS) {
duke@1 1626 // Enums may not be instantiated except implicitly
duke@1 1627 if (allowEnums &&
duke@1 1628 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
duke@1 1629 (env.tree.getTag() != JCTree.VARDEF ||
duke@1 1630 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1631 ((JCVariableDecl) env.tree).init != tree))
duke@1 1632 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1633 // Check that class is not abstract
duke@1 1634 if (cdef == null &&
duke@1 1635 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1636 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1637 clazztype.tsym);
duke@1 1638 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1639 // Check that no constructor arguments are given to
duke@1 1640 // anonymous classes implementing an interface
duke@1 1641 if (!argtypes.isEmpty())
duke@1 1642 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1643
duke@1 1644 if (!typeargtypes.isEmpty())
duke@1 1645 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1646
duke@1 1647 // Error recovery: pretend no arguments were supplied.
duke@1 1648 argtypes = List.nil();
duke@1 1649 typeargtypes = List.nil();
duke@1 1650 }
duke@1 1651
duke@1 1652 // Resolve the called constructor under the assumption
duke@1 1653 // that we are referring to a superclass instance of the
duke@1 1654 // current instance (JLS ???).
duke@1 1655 else {
duke@1 1656 localEnv.info.selectSuper = cdef != null;
duke@1 1657 localEnv.info.varArgs = false;
duke@1 1658 tree.constructor = rs.resolveConstructor(
duke@1 1659 tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
mcimadamore@630 1660 tree.constructorType = tree.constructor.type.isErroneous() ?
mcimadamore@630 1661 syms.errType :
mcimadamore@630 1662 checkMethod(clazztype,
mcimadamore@630 1663 tree.constructor,
mcimadamore@630 1664 localEnv,
mcimadamore@630 1665 tree.args,
mcimadamore@630 1666 argtypes,
mcimadamore@630 1667 typeargtypes,
mcimadamore@630 1668 localEnv.info.varArgs);
duke@1 1669 if (localEnv.info.varArgs)
mcimadamore@186 1670 assert tree.constructorType.isErroneous() || tree.varargsElement != null;
duke@1 1671 }
duke@1 1672
duke@1 1673 if (cdef != null) {
duke@1 1674 // We are seeing an anonymous class instance creation.
duke@1 1675 // In this case, the class instance creation
duke@1 1676 // expression
duke@1 1677 //
duke@1 1678 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1679 //
duke@1 1680 // is represented internally as
duke@1 1681 //
duke@1 1682 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1683 //
duke@1 1684 // This expression is then *transformed* as follows:
duke@1 1685 //
duke@1 1686 // (1) add a STATIC flag to the class definition
duke@1 1687 // if the current environment is static
duke@1 1688 // (2) add an extends or implements clause
duke@1 1689 // (3) add a constructor.
duke@1 1690 //
duke@1 1691 // For instance, if C is a class, and ET is the type of E,
duke@1 1692 // the expression
duke@1 1693 //
duke@1 1694 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1695 //
duke@1 1696 // is translated to (where X is a fresh name and typarams is the
duke@1 1697 // parameter list of the super constructor):
duke@1 1698 //
duke@1 1699 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1700 // X extends C<typargs2> {
duke@1 1701 // <typarams> X(ET e, args) {
duke@1 1702 // e.<typeargs1>super(args)
duke@1 1703 // }
duke@1 1704 // ...
duke@1 1705 // }
duke@1 1706 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
mcimadamore@536 1707
duke@1 1708 if (clazztype.tsym.isInterface()) {
duke@1 1709 cdef.implementing = List.of(clazz);
duke@1 1710 } else {
duke@1 1711 cdef.extending = clazz;
duke@1 1712 }
duke@1 1713
duke@1 1714 attribStat(cdef, localEnv);
duke@1 1715
duke@1 1716 // If an outer instance is given,
duke@1 1717 // prefix it to the constructor arguments
duke@1 1718 // and delete it from the new expression
duke@1 1719 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1720 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1721 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1722 tree.encl = null;
duke@1 1723 }
duke@1 1724
duke@1 1725 // Reassign clazztype and recompute constructor.
duke@1 1726 clazztype = cdef.sym.type;
duke@1 1727 Symbol sym = rs.resolveConstructor(
duke@1 1728 tree.pos(), localEnv, clazztype, argtypes,
duke@1 1729 typeargtypes, true, tree.varargsElement != null);
duke@1 1730 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
duke@1 1731 tree.constructor = sym;
mcimadamore@358 1732 if (tree.constructor.kind > ERRONEOUS) {
mcimadamore@358 1733 tree.constructorType = syms.errType;
mcimadamore@358 1734 }
mcimadamore@358 1735 else {
mcimadamore@358 1736 tree.constructorType = checkMethod(clazztype,
mcimadamore@358 1737 tree.constructor,
mcimadamore@358 1738 localEnv,
mcimadamore@358 1739 tree.args,
mcimadamore@358 1740 argtypes,
mcimadamore@358 1741 typeargtypes,
mcimadamore@358 1742 localEnv.info.varArgs);
mcimadamore@358 1743 }
duke@1 1744 }
duke@1 1745
duke@1 1746 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1747 owntype = clazztype;
duke@1 1748 }
duke@1 1749 result = check(tree, owntype, VAL, pkind, pt);
mcimadamore@122 1750 chk.validate(tree.typeargs, localEnv);
duke@1 1751 }
duke@1 1752
mcimadamore@537 1753 Type attribDiamond(Env<AttrContext> env,
mcimadamore@537 1754 JCNewClass tree,
mcimadamore@537 1755 Type clazztype,
mcimadamore@537 1756 Pair<Scope, Scope> mapping,
mcimadamore@537 1757 List<Type> argtypes,
mcimadamore@631 1758 List<Type> typeargtypes) {
mcimadamore@562 1759 if (clazztype.isErroneous() || mapping == erroneousMapping) {
mcimadamore@562 1760 //if the type of the instance creation expression is erroneous,
mcimadamore@562 1761 //or something prevented us to form a valid mapping, return the
mcimadamore@562 1762 //(possibly erroneous) type unchanged
mcimadamore@537 1763 return clazztype;
mcimadamore@537 1764 }
mcimadamore@537 1765 else if (clazztype.isInterface()) {
mcimadamore@537 1766 //if the type of the instance creation expression is an interface
mcimadamore@537 1767 //skip the method resolution step (JLS 15.12.2.7). The type to be
mcimadamore@537 1768 //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
mcimadamore@615 1769 clazztype = new ForAll(clazztype.tsym.type.allparams(), clazztype.tsym.type) {
mcimadamore@615 1770 @Override
mcimadamore@615 1771 public List<Type> getConstraints(TypeVar tv, ConstraintKind ck) {
mcimadamore@615 1772 switch (ck) {
mcimadamore@615 1773 case EXTENDS: return types.getBounds(tv);
mcimadamore@615 1774 default: return List.nil();
mcimadamore@615 1775 }
mcimadamore@615 1776 }
mcimadamore@615 1777 @Override
mcimadamore@615 1778 public Type inst(List<Type> inferred, Types types) throws Infer.NoInstanceException {
mcimadamore@615 1779 // check that inferred bounds conform to their bounds
mcimadamore@615 1780 infer.checkWithinBounds(tvars,
mcimadamore@615 1781 types.subst(tvars, tvars, inferred), Warner.noWarnings);
mcimadamore@615 1782 return super.inst(inferred, types);
mcimadamore@615 1783 }
mcimadamore@615 1784 };
mcimadamore@537 1785 } else {
mcimadamore@537 1786 //if the type of the instance creation expression is a class type
mcimadamore@537 1787 //apply method resolution inference (JLS 15.12.2.7). The return type
mcimadamore@537 1788 //of the resolved constructor will be a partially instantiated type
mcimadamore@537 1789 ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
mcimadamore@537 1790 Symbol constructor;
mcimadamore@537 1791 try {
mcimadamore@537 1792 constructor = rs.resolveDiamond(tree.pos(),
mcimadamore@537 1793 env,
mcimadamore@537 1794 clazztype.tsym.type,
mcimadamore@537 1795 argtypes,
mcimadamore@631 1796 typeargtypes);
mcimadamore@537 1797 } finally {
mcimadamore@537 1798 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
mcimadamore@537 1799 }
mcimadamore@537 1800 if (constructor.kind == MTH) {
mcimadamore@537 1801 ClassType ct = new ClassType(clazztype.getEnclosingType(),
mcimadamore@537 1802 clazztype.tsym.type.getTypeArguments(),
mcimadamore@537 1803 clazztype.tsym);
mcimadamore@537 1804 clazztype = checkMethod(ct,
mcimadamore@537 1805 constructor,
mcimadamore@537 1806 env,
mcimadamore@537 1807 tree.args,
mcimadamore@537 1808 argtypes,
mcimadamore@537 1809 typeargtypes,
mcimadamore@537 1810 env.info.varArgs).getReturnType();
mcimadamore@537 1811 } else {
mcimadamore@537 1812 clazztype = syms.errType;
mcimadamore@537 1813 }
mcimadamore@537 1814 }
mcimadamore@537 1815 if (clazztype.tag == FORALL && !pt.isErroneous()) {
mcimadamore@537 1816 //if the resolved constructor's return type has some uninferred
mcimadamore@537 1817 //type-variables, infer them using the expected type and declared
mcimadamore@537 1818 //bounds (JLS 15.12.2.8).
mcimadamore@537 1819 try {
mcimadamore@537 1820 clazztype = infer.instantiateExpr((ForAll) clazztype,
mcimadamore@537 1821 pt.tag == NONE ? syms.objectType : pt,
mcimadamore@537 1822 Warner.noWarnings);
mcimadamore@537 1823 } catch (Infer.InferenceException ex) {
mcimadamore@537 1824 //an error occurred while inferring uninstantiated type-variables
mcimadamore@631 1825 log.error(tree.clazz.pos(),
mcimadamore@631 1826 "cant.apply.diamond.1",
mcimadamore@631 1827 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1828 ex.diagnostic);
mcimadamore@631 1829 }
mcimadamore@631 1830 }
mcimadamore@631 1831 clazztype = chk.checkClassType(tree.clazz.pos(),
mcimadamore@631 1832 clazztype,
mcimadamore@631 1833 true);
mcimadamore@631 1834 if (clazztype.tag == CLASS) {
mcimadamore@631 1835 List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
mcimadamore@631 1836 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
mcimadamore@631 1837 //one or more types inferred in the previous steps is either a
mcimadamore@631 1838 //captured type or an intersection type --- we need to report an error.
mcimadamore@631 1839 String subkey = invalidDiamondArgs.size() > 1 ?
mcimadamore@631 1840 "diamond.invalid.args" :
mcimadamore@631 1841 "diamond.invalid.arg";
mcimadamore@631 1842 //The error message is of the kind:
mcimadamore@631 1843 //
mcimadamore@631 1844 //cannot infer type arguments for {clazztype}<>;
mcimadamore@631 1845 //reason: {subkey}
mcimadamore@631 1846 //
mcimadamore@631 1847 //where subkey is a fragment of the kind:
mcimadamore@631 1848 //
mcimadamore@631 1849 //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
mcimadamore@631 1850 log.error(tree.clazz.pos(),
mcimadamore@537 1851 "cant.apply.diamond.1",
mcimadamore@537 1852 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1853 diags.fragment(subkey,
mcimadamore@631 1854 invalidDiamondArgs,
mcimadamore@631 1855 diags.fragment("diamond", clazztype.tsym)));
mcimadamore@537 1856 }
mcimadamore@537 1857 }
mcimadamore@537 1858 return clazztype;
mcimadamore@537 1859 }
mcimadamore@537 1860
mcimadamore@537 1861 /** Creates a synthetic scope containing fake generic constructors.
mcimadamore@537 1862 * Assuming that the original scope contains a constructor of the kind:
mcimadamore@537 1863 * Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
mcimadamore@537 1864 * the synthetic scope is added a generic constructor of the kind:
mcimadamore@537 1865 * <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
mcimadamore@537 1866 * inference. The inferred return type of the synthetic constructor IS
mcimadamore@537 1867 * the inferred type for the diamond operator.
mcimadamore@537 1868 */
mcimadamore@740 1869 private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype, boolean overrideProtectedAccess) {
mcimadamore@562 1870 if (ctype.tag != CLASS) {
mcimadamore@562 1871 return erroneousMapping;
mcimadamore@562 1872 }
mcimadamore@537 1873 Pair<Scope, Scope> mapping =
mcimadamore@537 1874 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
mcimadamore@537 1875 List<Type> typevars = ctype.tsym.type.getTypeArguments();
mcimadamore@537 1876 for (Scope.Entry e = mapping.fst.lookup(names.init);
mcimadamore@537 1877 e.scope != null;
mcimadamore@537 1878 e = e.next()) {
mcimadamore@537 1879 MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
mcimadamore@740 1880 if (overrideProtectedAccess && (newConstr.flags() & PROTECTED) != 0) {
mcimadamore@740 1881 //make protected constructor public (this is required for
mcimadamore@740 1882 //anonymous inner class creation expressions using diamond)
mcimadamore@740 1883 newConstr.flags_field |= PUBLIC;
mcimadamore@740 1884 newConstr.flags_field &= ~PROTECTED;
mcimadamore@740 1885 }
mcimadamore@537 1886 newConstr.name = names.init;
mcimadamore@537 1887 List<Type> oldTypeargs = List.nil();
mcimadamore@537 1888 if (newConstr.type.tag == FORALL) {
mcimadamore@537 1889 oldTypeargs = ((ForAll) newConstr.type).tvars;
mcimadamore@537 1890 }
mcimadamore@537 1891 newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
mcimadamore@537 1892 new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
mcimadamore@537 1893 newConstr.type.getThrownTypes(),
mcimadamore@537 1894 syms.methodClass);
mcimadamore@537 1895 newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
mcimadamore@537 1896 mapping.snd.enter(newConstr);
mcimadamore@537 1897 }
mcimadamore@537 1898 return mapping;
mcimadamore@537 1899 }
mcimadamore@537 1900
mcimadamore@562 1901 private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
mcimadamore@562 1902
duke@1 1903 /** Make an attributed null check tree.
duke@1 1904 */
duke@1 1905 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1906 // optimization: X.this is never null; skip null check
duke@1 1907 Name name = TreeInfo.name(arg);
duke@1 1908 if (name == names._this || name == names._super) return arg;
duke@1 1909
duke@1 1910 int optag = JCTree.NULLCHK;
duke@1 1911 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1912 tree.operator = syms.nullcheck;
duke@1 1913 tree.type = arg.type;
duke@1 1914 return tree;
duke@1 1915 }
duke@1 1916
duke@1 1917 public void visitNewArray(JCNewArray tree) {
jjg@110 1918 Type owntype = types.createErrorType(tree.type);
duke@1 1919 Type elemtype;
duke@1 1920 if (tree.elemtype != null) {
duke@1 1921 elemtype = attribType(tree.elemtype, env);
mcimadamore@122 1922 chk.validate(tree.elemtype, env);
duke@1 1923 owntype = elemtype;
duke@1 1924 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1925 attribExpr(l.head, env, syms.intType);
duke@1 1926 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1927 }
duke@1 1928 } else {
duke@1 1929 // we are seeing an untyped aggregate { ... }
duke@1 1930 // this is allowed only if the prototype is an array
duke@1 1931 if (pt.tag == ARRAY) {
duke@1 1932 elemtype = types.elemtype(pt);
duke@1 1933 } else {
duke@1 1934 if (pt.tag != ERROR) {
duke@1 1935 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1936 pt);
duke@1 1937 }
jjg@110 1938 elemtype = types.createErrorType(pt);
duke@1 1939 }
duke@1 1940 }
duke@1 1941 if (tree.elems != null) {
duke@1 1942 attribExprs(tree.elems, env, elemtype);
duke@1 1943 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1944 }
duke@1 1945 if (!types.isReifiable(elemtype))
duke@1 1946 log.error(tree.pos(), "generic.array.creation");
duke@1 1947 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1948 }
duke@1 1949
duke@1 1950 public void visitParens(JCParens tree) {
duke@1 1951 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1952 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1953 Symbol sym = TreeInfo.symbol(tree);
duke@1 1954 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1955 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1956 }
duke@1 1957
duke@1 1958 public void visitAssign(JCAssign tree) {
duke@1 1959 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1960 Type capturedType = capture(owntype);
duke@1 1961 attribExpr(tree.rhs, env, owntype);
duke@1 1962 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 1963 }
duke@1 1964
duke@1 1965 public void visitAssignop(JCAssignOp tree) {
duke@1 1966 // Attribute arguments.
duke@1 1967 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 1968 Type operand = attribExpr(tree.rhs, env);
duke@1 1969 // Find operator.
duke@1 1970 Symbol operator = tree.operator = rs.resolveBinaryOperator(
duke@1 1971 tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
duke@1 1972 owntype, operand);
duke@1 1973
duke@1 1974 if (operator.kind == MTH) {
duke@1 1975 chk.checkOperator(tree.pos(),
duke@1 1976 (OperatorSymbol)operator,
duke@1 1977 tree.getTag() - JCTree.ASGOffset,
duke@1 1978 owntype,
duke@1 1979 operand);
jjg@9 1980 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 1981 chk.checkCastable(tree.rhs.pos(),
jjg@9 1982 operator.type.getReturnType(),
jjg@9 1983 owntype);
duke@1 1984 }
duke@1 1985 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1986 }
duke@1 1987
duke@1 1988 public void visitUnary(JCUnary tree) {
duke@1 1989 // Attribute arguments.
duke@1 1990 Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1991 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 1992 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 1993
duke@1 1994 // Find operator.
duke@1 1995 Symbol operator = tree.operator =
duke@1 1996 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 1997
jjg@110 1998 Type owntype = types.createErrorType(tree.type);
duke@1 1999 if (operator.kind == MTH) {
duke@1 2000 owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 2001 ? tree.arg.type
duke@1 2002 : operator.type.getReturnType();
duke@1 2003 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2004
duke@1 2005 // If the argument is constant, fold it.
duke@1 2006 if (argtype.constValue() != null) {
duke@1 2007 Type ctype = cfolder.fold1(opc, argtype);
duke@1 2008 if (ctype != null) {
duke@1 2009 owntype = cfolder.coerce(ctype, owntype);
duke@1 2010
duke@1 2011 // Remove constant types from arguments to
duke@1 2012 // conserve space. The parser will fold concatenations
duke@1 2013 // of string literals; the code here also
duke@1 2014 // gets rid of intermediate results when some of the
duke@1 2015 // operands are constant identifiers.
duke@1 2016 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 2017 tree.arg.type = syms.stringType;
duke@1 2018 }
duke@1 2019 }
duke@1 2020 }
duke@1 2021 }
duke@1 2022 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2023 }
duke@1 2024
duke@1 2025 public void visitBinary(JCBinary tree) {
duke@1 2026 // Attribute arguments.
duke@1 2027 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 2028 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 2029
duke@1 2030 // Find operator.
duke@1 2031 Symbol operator = tree.operator =
duke@1 2032 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 2033
jjg@110 2034 Type owntype = types.createErrorType(tree.type);
duke@1 2035 if (operator.kind == MTH) {
duke@1 2036 owntype = operator.type.getReturnType();
duke@1 2037 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 2038 (OperatorSymbol)operator,
duke@1 2039 tree.getTag(),
duke@1 2040 left,
duke@1 2041 right);
duke@1 2042
duke@1 2043 // If both arguments are constants, fold them.
duke@1 2044 if (left.constValue() != null && right.constValue() != null) {
duke@1 2045 Type ctype = cfolder.fold2(opc, left, right);
duke@1 2046 if (ctype != null) {
duke@1 2047 owntype = cfolder.coerce(ctype, owntype);
duke@1 2048
duke@1 2049 // Remove constant types from arguments to
duke@1 2050 // conserve space. The parser will fold concatenations
duke@1 2051 // of string literals; the code here also
duke@1 2052 // gets rid of intermediate results when some of the
duke@1 2053 // operands are constant identifiers.
duke@1 2054 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 2055 tree.lhs.type = syms.stringType;
duke@1 2056 }
duke@1 2057 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 2058 tree.rhs.type = syms.stringType;
duke@1 2059 }
duke@1 2060 }
duke@1 2061 }
duke@1 2062
duke@1 2063 // Check that argument types of a reference ==, != are
duke@1 2064 // castable to each other, (JLS???).
duke@1 2065 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 2066 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 2067 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 2068 }
duke@1 2069 }
duke@1 2070
duke@1 2071 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 2072 }
duke@1 2073 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2074 }
duke@1 2075
duke@1 2076 public void visitTypeCast(JCTypeCast tree) {
duke@1 2077 Type clazztype = attribType(tree.clazz, env);
mcimadamore@638 2078 chk.validate(tree.clazz, env, false);
mcimadamore@674 2079 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 2080 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 2081 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 2082 Type exprtype = attribExpr(tree.expr, localEnv, Infer.anyPoly);
duke@1 2083 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2084 if (exprtype.constValue() != null)
duke@1 2085 owntype = cfolder.coerce(exprtype, owntype);
duke@1 2086 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 2087 }
duke@1 2088
duke@1 2089 public void visitTypeTest(JCInstanceOf tree) {
duke@1 2090 Type exprtype = chk.checkNullOrRefType(
duke@1 2091 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 2092 Type clazztype = chk.checkReifiableReferenceType(
duke@1 2093 tree.clazz.pos(), attribType(tree.clazz, env));
mcimadamore@638 2094 chk.validate(tree.clazz, env, false);
duke@1 2095 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2096 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 2097 }
duke@1 2098
duke@1 2099 public void visitIndexed(JCArrayAccess tree) {
jjg@110 2100 Type owntype = types.createErrorType(tree.type);
duke@1 2101 Type atype = attribExpr(tree.indexed, env);
duke@1 2102 attribExpr(tree.index, env, syms.intType);
duke@1 2103 if (types.isArray(atype))
duke@1 2104 owntype = types.elemtype(atype);
duke@1 2105 else if (atype.tag != ERROR)
duke@1 2106 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 2107 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 2108 result = check(tree, owntype, VAR, pkind, pt);
duke@1 2109 }
duke@1 2110
duke@1 2111 public void visitIdent(JCIdent tree) {
duke@1 2112 Symbol sym;
duke@1 2113 boolean varArgs = false;
duke@1 2114
duke@1 2115 // Find symbol
duke@1 2116 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2117 // If we are looking for a method, the prototype `pt' will be a
duke@1 2118 // method type with the type of the call's arguments as parameters.
duke@1 2119 env.info.varArgs = false;
duke@1 2120 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2121 varArgs = env.info.varArgs;
duke@1 2122 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 2123 sym = tree.sym;
duke@1 2124 } else {
duke@1 2125 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 2126 }
duke@1 2127 tree.sym = sym;
duke@1 2128
duke@1 2129 // (1) Also find the environment current for the class where
duke@1 2130 // sym is defined (`symEnv').
duke@1 2131 // Only for pre-tiger versions (1.4 and earlier):
duke@1 2132 // (2) Also determine whether we access symbol out of an anonymous
duke@1 2133 // class in a this or super call. This is illegal for instance
duke@1 2134 // members since such classes don't carry a this$n link.
duke@1 2135 // (`noOuterThisPath').
duke@1 2136 Env<AttrContext> symEnv = env;
duke@1 2137 boolean noOuterThisPath = false;
duke@1 2138 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 2139 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 2140 sym.owner.kind == TYP &&
duke@1 2141 tree.name != names._this && tree.name != names._super) {
duke@1 2142
duke@1 2143 // Find environment in which identifier is defined.
duke@1 2144 while (symEnv.outer != null &&
duke@1 2145 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 2146 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 2147 noOuterThisPath = !allowAnonOuterThis;
duke@1 2148 symEnv = symEnv.outer;
duke@1 2149 }
duke@1 2150 }
duke@1 2151
duke@1 2152 // If symbol is a variable, ...
duke@1 2153 if (sym.kind == VAR) {
duke@1 2154 VarSymbol v = (VarSymbol)sym;
duke@1 2155
duke@1 2156 // ..., evaluate its initializer, if it has one, and check for
duke@1 2157 // illegal forward reference.
duke@1 2158 checkInit(tree, env, v, false);
duke@1 2159
duke@1 2160 // If symbol is a local variable accessed from an embedded
duke@1 2161 // inner class check that it is final.
duke@1 2162 if (v.owner.kind == MTH &&
duke@1 2163 v.owner != env.info.scope.owner &&
duke@1 2164 (v.flags_field & FINAL) == 0) {
duke@1 2165 log.error(tree.pos(),
duke@1 2166 "local.var.accessed.from.icls.needs.final",
duke@1 2167 v);
duke@1 2168 }
duke@1 2169
duke@1 2170 // If we are expecting a variable (as opposed to a value), check
duke@1 2171 // that the variable is assignable in the current environment.
duke@1 2172 if (pkind == VAR)
duke@1 2173 checkAssignable(tree.pos(), v, null, env);
duke@1 2174 }
duke@1 2175
duke@1 2176 // In a constructor body,
duke@1 2177 // if symbol is a field or instance method, check that it is
duke@1 2178 // not accessed before the supertype constructor is called.
duke@1 2179 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 2180 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 2181 sym.owner.kind == TYP &&
duke@1 2182 (sym.flags() & STATIC) == 0) {
duke@1 2183 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 2184 }
duke@1 2185 Env<AttrContext> env1 = env;
mcimadamore@28 2186 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 2187 // If the found symbol is inaccessible, then it is
duke@1 2188 // accessed through an enclosing instance. Locate this
duke@1 2189 // enclosing instance:
duke@1 2190 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 2191 env1 = env1.outer;
duke@1 2192 }
duke@1 2193 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 2194 }
duke@1 2195
duke@1 2196 public void visitSelect(JCFieldAccess tree) {
duke@1 2197 // Determine the expected kind of the qualifier expression.
duke@1 2198 int skind = 0;
duke@1 2199 if (tree.name == names._this || tree.name == names._super ||
duke@1 2200 tree.name == names._class)
duke@1 2201 {
duke@1 2202 skind = TYP;
duke@1 2203 } else {
duke@1 2204 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 2205 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 2206 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 2207 }
duke@1 2208
duke@1 2209 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 2210 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 2211 if ((pkind & (PCK | TYP)) == 0)
duke@1 2212 site = capture(site); // Capture field access
duke@1 2213
duke@1 2214 // don't allow T.class T[].class, etc
duke@1 2215 if (skind == TYP) {
duke@1 2216 Type elt = site;
duke@1 2217 while (elt.tag == ARRAY)
duke@1 2218 elt = ((ArrayType)elt).elemtype;
duke@1 2219 if (elt.tag == TYPEVAR) {
duke@1 2220 log.error(tree.pos(), "type.var.cant.be.deref");
jjg@110 2221 result = types.createErrorType(tree.type);
duke@1 2222 return;
duke@1 2223 }
duke@1 2224 }
duke@1 2225
duke@1 2226 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 2227 // for the selection. This is relevant for determining whether
duke@1 2228 // protected symbols are accessible.
duke@1 2229 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 2230 boolean selectSuperPrev = env.info.selectSuper;
duke@1 2231 env.info.selectSuper =
duke@1 2232 sitesym != null &&
duke@1 2233 sitesym.name == names._super;
duke@1 2234
duke@1 2235 // If selected expression is polymorphic, strip
duke@1 2236 // type parameters and remember in env.info.tvars, so that
duke@1 2237 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 2238 if (tree.selected.type.tag == FORALL) {
duke@1 2239 ForAll pstype = (ForAll)tree.selected.type;
duke@1 2240 env.info.tvars = pstype.tvars;
duke@1 2241 site = tree.selected.type = pstype.qtype;
duke@1 2242 }
duke@1 2243
duke@1 2244 // Determine the symbol represented by the selection.
duke@1 2245 env.info.varArgs = false;
duke@1 2246 Symbol sym = selectSym(tree, site, env, pt, pkind);
duke@1 2247 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 2248 site = capture(site);
duke@1 2249 sym = selectSym(tree, site, env, pt, pkind);
duke@1 2250 }
duke@1 2251 boolean varArgs = env.info.varArgs;
duke@1 2252 tree.sym = sym;
duke@1 2253
mcimadamore@27 2254 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 2255 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 2256 site = capture(site);
mcimadamore@27 2257 }
duke@1 2258
duke@1 2259 // If that symbol is a variable, ...
duke@1 2260 if (sym.kind == VAR) {
duke@1 2261 VarSymbol v = (VarSymbol)sym;
duke@1 2262
duke@1 2263 // ..., evaluate its initializer, if it has one, and check for
duke@1 2264 // illegal forward reference.
duke@1 2265 checkInit(tree, env, v, true);
duke@1 2266
duke@1 2267 // If we are expecting a variable (as opposed to a value), check
duke@1 2268 // that the variable is assignable in the current environment.
duke@1 2269 if (pkind == VAR)
duke@1 2270 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 2271 }
duke@1 2272
darcy@609 2273 if (sitesym != null &&
darcy@609 2274 sitesym.kind == VAR &&
darcy@609 2275 ((VarSymbol)sitesym).isResourceVariable() &&
darcy@609 2276 sym.kind == MTH &&
darcy@609 2277 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
mcimadamore@795 2278 env.info.lint.isEnabled(LintCategory.TRY)) {
mcimadamore@795 2279 log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
darcy@609 2280 }
darcy@609 2281
duke@1 2282 // Disallow selecting a type from an expression
duke@1 2283 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 2284 tree.type = check(tree.selected, pt,
duke@1 2285 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 2286 }
duke@1 2287
duke@1 2288 if (isType(sitesym)) {
duke@1 2289 if (sym.name == names._this) {
duke@1 2290 // If `C' is the currently compiled class, check that
duke@1 2291 // C.this' does not appear in a call to a super(...)
duke@1 2292 if (env.info.isSelfCall &&
duke@1 2293 site.tsym == env.enclClass.sym) {
duke@1 2294 chk.earlyRefError(tree.pos(), sym);
duke@1 2295 }
duke@1 2296 } else {
duke@1 2297 // Check if type-qualified fields or methods are static (JLS)
duke@1 2298 if ((sym.flags() & STATIC) == 0 &&
duke@1 2299 sym.name != names._super &&
duke@1 2300 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 2301 rs.access(rs.new StaticError(sym),
duke@1 2302 tree.pos(), site, sym.name, true);
duke@1 2303 }
duke@1 2304 }
jjg@505 2305 } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
jjg@505 2306 // If the qualified item is not a type and the selected item is static, report
jjg@505 2307 // a warning. Make allowance for the class of an array type e.g. Object[].class)
jjg@505 2308 chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
duke@1 2309 }
duke@1 2310
duke@1 2311 // If we are selecting an instance member via a `super', ...
duke@1 2312 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 2313
duke@1 2314 // Check that super-qualified symbols are not abstract (JLS)
duke@1 2315 rs.checkNonAbstract(tree.pos(), sym);
duke@1 2316
duke@1 2317 if (site.isRaw()) {
duke@1 2318 // Determine argument types for site.
duke@1 2319 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 2320 if (site1 != null) site = site1;
duke@1 2321 }
duke@1 2322 }
duke@1 2323
duke@1 2324 env.info.selectSuper = selectSuperPrev;
duke@1 2325 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 2326 env.info.tvars = List.nil();
duke@1 2327 }
duke@1 2328 //where
duke@1 2329 /** Determine symbol referenced by a Select expression,
duke@1 2330 *
duke@1 2331 * @param tree The select tree.
duke@1 2332 * @param site The type of the selected expression,
duke@1 2333 * @param env The current environment.
duke@1 2334 * @param pt The current prototype.
duke@1 2335 * @param pkind The expected kind(s) of the Select expression.
duke@1 2336 */
duke@1 2337 private Symbol selectSym(JCFieldAccess tree,
duke@1 2338 Type site,
duke@1 2339 Env<AttrContext> env,
duke@1 2340 Type pt,
duke@1 2341 int pkind) {
duke@1 2342 DiagnosticPosition pos = tree.pos();
duke@1 2343 Name name = tree.name;
duke@1 2344
duke@1 2345 switch (site.tag) {
duke@1 2346 case PACKAGE:
duke@1 2347 return rs.access(
duke@1 2348 rs.findIdentInPackage(env, site.tsym, name, pkind),
duke@1 2349 pos, site, name, true);
duke@1 2350 case ARRAY:
duke@1 2351 case CLASS:
duke@1 2352 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2353 return rs.resolveQualifiedMethod(
duke@1 2354 pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2355 } else if (name == names._this || name == names._super) {
duke@1 2356 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 2357 } else if (name == names._class) {
duke@1 2358 // In this case, we have already made sure in
duke@1 2359 // visitSelect that qualifier expression is a type.
duke@1 2360 Type t = syms.classType;
duke@1 2361 List<Type> typeargs = allowGenerics
duke@1 2362 ? List.of(types.erasure(site))
duke@1 2363 : List.<Type>nil();
duke@1 2364 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 2365 return new VarSymbol(
duke@1 2366 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2367 } else {
duke@1 2368 // We are seeing a plain identifier as selector.
duke@1 2369 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 2370 if ((pkind & ERRONEOUS) == 0)
duke@1 2371 sym = rs.access(sym, pos, site, name, true);
duke@1 2372 return sym;
duke@1 2373 }
duke@1 2374 case WILDCARD:
duke@1 2375 throw new AssertionError(tree);
duke@1 2376 case TYPEVAR:
duke@1 2377 // Normally, site.getUpperBound() shouldn't be null.
duke@1 2378 // It should only happen during memberEnter/attribBase
duke@1 2379 // when determining the super type which *must* be
duke@1 2380 // done before attributing the type variables. In
duke@1 2381 // other words, we are seeing this illegal program:
duke@1 2382 // class B<T> extends A<T.foo> {}
duke@1 2383 Symbol sym = (site.getUpperBound() != null)
duke@1 2384 ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2385 : null;
mcimadamore@361 2386 if (sym == null) {
duke@1 2387 log.error(pos, "type.var.cant.be.deref");
duke@1 2388 return syms.errSymbol;
duke@1 2389 } else {
mcimadamore@155 2390 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
mcimadamore@155 2391 rs.new AccessError(env, site, sym) :
mcimadamore@155 2392 sym;
mcimadamore@155 2393 rs.access(sym2, pos, site, name, true);
duke@1 2394 return sym;
duke@1 2395 }
duke@1 2396 case ERROR:
duke@1 2397 // preserve identifier names through errors
jjg@110 2398 return types.createErrorType(name, site.tsym, site).tsym;
duke@1 2399 default:
duke@1 2400 // The qualifier expression is of a primitive type -- only
duke@1 2401 // .class is allowed for these.
duke@1 2402 if (name == names._class) {
duke@1 2403 // In this case, we have already made sure in Select that
duke@1 2404 // qualifier expression is a type.
duke@1 2405 Type t = syms.classType;
duke@1 2406 Type arg = types.boxedClass(site).type;
duke@1 2407 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2408 return new VarSymbol(
duke@1 2409 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2410 } else {
duke@1 2411 log.error(pos, "cant.deref", site);
duke@1 2412 return syms.errSymbol;
duke@1 2413 }
duke@1 2414 }
duke@1 2415 }
duke@1 2416
duke@1 2417 /** Determine type of identifier or select expression and check that
duke@1 2418 * (1) the referenced symbol is not deprecated
duke@1 2419 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2420 * (3) if symbol is a variable, check that its type and kind are
duke@1 2421 * compatible with the prototype and protokind.
duke@1 2422 * (4) if symbol is an instance field of a raw type,
duke@1 2423 * which is being assigned to, issue an unchecked warning if its
duke@1 2424 * type changes under erasure.
duke@1 2425 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2426 * unchecked warning if its argument types change under erasure.
duke@1 2427 * If checks succeed:
duke@1 2428 * If symbol is a constant, return its constant type
duke@1 2429 * else if symbol is a method, return its result type
duke@1 2430 * otherwise return its type.
duke@1 2431 * Otherwise return errType.
duke@1 2432 *
duke@1 2433 * @param tree The syntax tree representing the identifier
duke@1 2434 * @param site If this is a select, the type of the selected
duke@1 2435 * expression, otherwise the type of the current class.
duke@1 2436 * @param sym The symbol representing the identifier.
duke@1 2437 * @param env The current environment.
duke@1 2438 * @param pkind The set of expected kinds.
duke@1 2439 * @param pt The expected type.
duke@1 2440 */
duke@1 2441 Type checkId(JCTree tree,
duke@1 2442 Type site,
duke@1 2443 Symbol sym,
duke@1 2444 Env<AttrContext> env,
duke@1 2445 int pkind,
duke@1 2446 Type pt,
duke@1 2447 boolean useVarargs) {
jjg@110 2448 if (pt.isErroneous()) return types.createErrorType(site);
duke@1 2449 Type owntype; // The computed type of this identifier occurrence.
duke@1 2450 switch (sym.kind) {
duke@1 2451 case TYP:
duke@1 2452 // For types, the computed type equals the symbol's type,
duke@1 2453 // except for two situations:
duke@1 2454 owntype = sym.type;
duke@1 2455 if (owntype.tag == CLASS) {
duke@1 2456 Type ownOuter = owntype.getEnclosingType();
duke@1 2457
duke@1 2458 // (a) If the symbol's type is parameterized, erase it
duke@1 2459 // because no type parameters were given.
duke@1 2460 // We recover generic outer type later in visitTypeApply.
duke@1 2461 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2462 owntype = types.erasure(owntype);
duke@1 2463 }
duke@1 2464
duke@1 2465 // (b) If the symbol's type is an inner class, then
duke@1 2466 // we have to interpret its outer type as a superclass
duke@1 2467 // of the site type. Example:
duke@1 2468 //
duke@1 2469 // class Tree<A> { class Visitor { ... } }
duke@1 2470 // class PointTree extends Tree<Point> { ... }
duke@1 2471 // ...PointTree.Visitor...
duke@1 2472 //
duke@1 2473 // Then the type of the last expression above is
duke@1 2474 // Tree<Point>.Visitor.
duke@1 2475 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2476 Type normOuter = site;
duke@1 2477 if (normOuter.tag == CLASS)
duke@1 2478 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2479 if (normOuter == null) // perhaps from an import
duke@1 2480 normOuter = types.erasure(ownOuter);
duke@1 2481 if (normOuter != ownOuter)
duke@1 2482 owntype = new ClassType(
duke@1 2483 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2484 }
duke@1 2485 }
duke@1 2486 break;
duke@1 2487 case VAR:
duke@1 2488 VarSymbol v = (VarSymbol)sym;
duke@1 2489 // Test (4): if symbol is an instance field of a raw type,
duke@1 2490 // which is being assigned to, issue an unchecked warning if
duke@1 2491 // its type changes under erasure.
duke@1 2492 if (allowGenerics &&
duke@1 2493 pkind == VAR &&
duke@1 2494 v.owner.kind == TYP &&
duke@1 2495 (v.flags() & STATIC) == 0 &&
duke@1 2496 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2497 Type s = types.asOuterSuper(site, v.owner);
duke@1 2498 if (s != null &&
duke@1 2499 s.isRaw() &&
duke@1 2500 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2501 chk.warnUnchecked(tree.pos(),
duke@1 2502 "unchecked.assign.to.var",
duke@1 2503 v, s);
duke@1 2504 }
duke@1 2505 }
duke@1 2506 // The computed type of a variable is the type of the
duke@1 2507 // variable symbol, taken as a member of the site type.
duke@1 2508 owntype = (sym.owner.kind == TYP &&
duke@1 2509 sym.name != names._this && sym.name != names._super)
duke@1 2510 ? types.memberType(site, sym)
duke@1 2511 : sym.type;
duke@1 2512
duke@1 2513 if (env.info.tvars.nonEmpty()) {
duke@1 2514 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2515 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2516 if (!owntype.contains(l.head)) {
duke@1 2517 log.error(tree.pos(), "undetermined.type", owntype1);
jjg@110 2518 owntype1 = types.createErrorType(owntype1);
duke@1 2519 }
duke@1 2520 owntype = owntype1;
duke@1 2521 }
duke@1 2522
duke@1 2523 // If the variable is a constant, record constant value in
duke@1 2524 // computed type.
duke@1 2525 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2526 owntype = owntype.constType(v.getConstValue());
duke@1 2527
duke@1 2528 if (pkind == VAL) {
duke@1 2529 owntype = capture(owntype); // capture "names as expressions"
duke@1 2530 }
duke@1 2531 break;
duke@1 2532 case MTH: {
duke@1 2533 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2534 owntype = checkMethod(site, sym, env, app.args,
duke@1 2535 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2536 env.info.varArgs);
duke@1 2537 break;
duke@1 2538 }
duke@1 2539 case PCK: case ERR:
duke@1 2540 owntype = sym.type;
duke@1 2541 break;
duke@1 2542 default:
duke@1 2543 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2544 " in tree " + tree);
duke@1 2545 }
duke@1 2546
duke@1 2547 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2548 // (for constructors, the error was given when the constructor was
duke@1 2549 // resolved)
duke@1 2550 if (sym.name != names.init &&
duke@1 2551 (sym.flags() & DEPRECATED) != 0 &&
duke@1 2552 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
duke@1 2553 sym.outermostClass() != env.info.scope.owner.outermostClass())
duke@1 2554 chk.warnDeprecated(tree.pos(), sym);
duke@1 2555
jjg@377 2556 if ((sym.flags() & PROPRIETARY) != 0) {
jjg@377 2557 if (enableSunApiLintControl)
jjg@377 2558 chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
jjg@377 2559 else
jjg@377 2560 log.strictWarning(tree.pos(), "sun.proprietary", sym);
jjg@377 2561 }
duke@1 2562
duke@1 2563 // Test (3): if symbol is a variable, check that its type and
duke@1 2564 // kind are compatible with the prototype and protokind.
duke@1 2565 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2566 }
duke@1 2567
duke@1 2568 /** Check that variable is initialized and evaluate the variable's
duke@1 2569 * initializer, if not yet done. Also check that variable is not
duke@1 2570 * referenced before it is defined.
duke@1 2571 * @param tree The tree making up the variable reference.
duke@1 2572 * @param env The current environment.
duke@1 2573 * @param v The variable's symbol.
duke@1 2574 */
duke@1 2575 private void checkInit(JCTree tree,
duke@1 2576 Env<AttrContext> env,
duke@1 2577 VarSymbol v,
duke@1 2578 boolean onlyWarning) {
duke@1 2579 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2580 // tree.pos + " " + v.pos + " " +
duke@1 2581 // Resolve.isStatic(env));//DEBUG
duke@1 2582
duke@1 2583 // A forward reference is diagnosed if the declaration position
duke@1 2584 // of the variable is greater than the current tree position
duke@1 2585 // and the tree and variable definition occur in the same class
duke@1 2586 // definition. Note that writes don't count as references.
duke@1 2587 // This check applies only to class and instance
duke@1 2588 // variables. Local variables follow different scope rules,
duke@1 2589 // and are subject to definite assignment checking.
mcimadamore@94 2590 if ((env.info.enclVar == v || v.pos > tree.pos) &&
duke@1 2591 v.owner.kind == TYP &&
duke@1 2592 canOwnInitializer(env.info.scope.owner) &&
duke@1 2593 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2594 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
duke@1 2595 (env.tree.getTag() != JCTree.ASSIGN ||
duke@1 2596 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
mcimadamore@94 2597 String suffix = (env.info.enclVar == v) ?
mcimadamore@94 2598 "self.ref" : "forward.ref";
mcimadamore@18 2599 if (!onlyWarning || isStaticEnumField(v)) {
mcimadamore@94 2600 log.error(tree.pos(), "illegal." + suffix);
duke@1 2601 } else if (useBeforeDeclarationWarning) {
mcimadamore@94 2602 log.warning(tree.pos(), suffix, v);
duke@1 2603 }
duke@1 2604 }
duke@1 2605
duke@1 2606 v.getConstValue(); // ensure initializer is evaluated
duke@1 2607
duke@1 2608 checkEnumInitializer(tree, env, v);
duke@1 2609 }
duke@1 2610
duke@1 2611 /**
duke@1 2612 * Check for illegal references to static members of enum. In
duke@1 2613 * an enum type, constructors and initializers may not
duke@1 2614 * reference its static members unless they are constant.
duke@1 2615 *
duke@1 2616 * @param tree The tree making up the variable reference.
duke@1 2617 * @param env The current environment.
duke@1 2618 * @param v The variable's symbol.
duke@1 2619 * @see JLS 3rd Ed. (8.9 Enums)
duke@1 2620 */
duke@1 2621 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
duke@1 2622 // JLS 3rd Ed.:
duke@1 2623 //
duke@1 2624 // "It is a compile-time error to reference a static field
duke@1 2625 // of an enum type that is not a compile-time constant
duke@1 2626 // (15.28) from constructors, instance initializer blocks,
duke@1 2627 // or instance variable initializer expressions of that
duke@1 2628 // type. It is a compile-time error for the constructors,
duke@1 2629 // instance initializer blocks, or instance variable
duke@1 2630 // initializer expressions of an enum constant e to refer
duke@1 2631 // to itself or to an enum constant of the same type that
duke@1 2632 // is declared to the right of e."
mcimadamore@18 2633 if (isStaticEnumField(v)) {
duke@1 2634 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2635
duke@1 2636 if (enclClass == null || enclClass.owner == null)
duke@1 2637 return;
duke@1 2638
duke@1 2639 // See if the enclosing class is the enum (or a
duke@1 2640 // subclass thereof) declaring v. If not, this
duke@1 2641 // reference is OK.
duke@1 2642 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2643 return;
duke@1 2644
duke@1 2645 // If the reference isn't from an initializer, then
duke@1 2646 // the reference is OK.
duke@1 2647 if (!Resolve.isInitializer(env))
duke@1 2648 return;
duke@1 2649
duke@1 2650 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2651 }
duke@1 2652 }
duke@1 2653
mcimadamore@18 2654 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2655 * Note: enum literals should not be regarded as such
mcimadamore@18 2656 */
mcimadamore@18 2657 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2658 return Flags.isEnum(v.owner) &&
mcimadamore@18 2659 Flags.isStatic(v) &&
mcimadamore@18 2660 !Flags.isConstant(v) &&
mcimadamore@18 2661 v.name != names._class;
duke@1 2662 }
duke@1 2663
duke@1 2664 /** Can the given symbol be the owner of code which forms part
duke@1 2665 * if class initialization? This is the case if the symbol is
duke@1 2666 * a type or field, or if the symbol is the synthetic method.
duke@1 2667 * owning a block.
duke@1 2668 */
duke@1 2669 private boolean canOwnInitializer(Symbol sym) {
duke@1 2670 return
duke@1 2671 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2672 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2673 }
duke@1 2674
duke@1 2675 Warner noteWarner = new Warner();
duke@1 2676
duke@1 2677 /**
duke@1 2678 * Check that method arguments conform to its instantation.
duke@1 2679 **/
duke@1 2680 public Type checkMethod(Type site,
duke@1 2681 Symbol sym,
duke@1 2682 Env<AttrContext> env,
duke@1 2683 final List<JCExpression> argtrees,
duke@1 2684 List<Type> argtypes,
duke@1 2685 List<Type> typeargtypes,
duke@1 2686 boolean useVarargs) {
duke@1 2687 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2688 // an unchecked warning if its argument types change under erasure.
duke@1 2689 if (allowGenerics &&
duke@1 2690 (sym.flags() & STATIC) == 0 &&
duke@1 2691 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2692 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2693 if (s != null && s.isRaw() &&
duke@1 2694 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2695 sym.erasure(types).getParameterTypes())) {
duke@1 2696 chk.warnUnchecked(env.tree.pos(),
duke@1 2697 "unchecked.call.mbr.of.raw.type",
duke@1 2698 sym, s);
duke@1 2699 }
duke@1 2700 }
duke@1 2701
duke@1 2702 // Compute the identifier's instantiated type.
duke@1 2703 // For methods, we need to compute the instance type by
duke@1 2704 // Resolve.instantiate from the symbol's type as well as
duke@1 2705 // any type arguments and value arguments.
mcimadamore@795 2706 noteWarner.clear();
duke@1 2707 Type owntype = rs.instantiate(env,
duke@1 2708 site,
duke@1 2709 sym,
duke@1 2710 argtypes,
duke@1 2711 typeargtypes,
duke@1 2712 true,
duke@1 2713 useVarargs,
duke@1 2714 noteWarner);
mcimadamore@795 2715 boolean warned = noteWarner.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2716
duke@1 2717 // If this fails, something went wrong; we should not have
duke@1 2718 // found the identifier in the first place.
duke@1 2719 if (owntype == null) {
duke@1 2720 if (!pt.isErroneous())
duke@1 2721 log.error(env.tree.pos(),
duke@1 2722 "internal.error.cant.instantiate",
duke@1 2723 sym, site,
duke@1 2724 Type.toString(pt.getParameterTypes()));
jjg@110 2725 owntype = types.createErrorType(site);
duke@1 2726 } else {
duke@1 2727 // System.out.println("call : " + env.tree);
duke@1 2728 // System.out.println("method : " + owntype);
duke@1 2729 // System.out.println("actuals: " + argtypes);
duke@1 2730 List<Type> formals = owntype.getParameterTypes();
duke@1 2731 Type last = useVarargs ? formals.last() : null;
duke@1 2732 if (sym.name==names.init &&
duke@1 2733 sym.owner == syms.enumSym)
duke@1 2734 formals = formals.tail.tail;
duke@1 2735 List<JCExpression> args = argtrees;
duke@1 2736 while (formals.head != last) {
duke@1 2737 JCTree arg = args.head;
duke@1 2738 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2739 assertConvertible(arg, arg.type, formals.head, warn);
mcimadamore@795 2740 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2741 args = args.tail;
duke@1 2742 formals = formals.tail;
duke@1 2743 }
duke@1 2744 if (useVarargs) {
duke@1 2745 Type varArg = types.elemtype(last);
duke@1 2746 while (args.tail != null) {
duke@1 2747 JCTree arg = args.head;
duke@1 2748 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2749 assertConvertible(arg, arg.type, varArg, warn);
mcimadamore@795 2750 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2751 args = args.tail;
duke@1 2752 }
duke@1 2753 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2754 // non-varargs call to varargs method
duke@1 2755 Type varParam = owntype.getParameterTypes().last();
duke@1 2756 Type lastArg = argtypes.last();
duke@1 2757 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2758 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2759 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2760 types.elemtype(varParam),
duke@1 2761 varParam);
duke@1 2762 }
duke@1 2763
duke@1 2764 if (warned && sym.type.tag == FORALL) {
duke@1 2765 chk.warnUnchecked(env.tree.pos(),
duke@1 2766 "unchecked.meth.invocation.applied",
mcimadamore@161 2767 kindName(sym),
mcimadamore@161 2768 sym.name,
mcimadamore@161 2769 rs.methodArguments(sym.type.getParameterTypes()),
mcimadamore@161 2770 rs.methodArguments(argtypes),
mcimadamore@161 2771 kindName(sym.location()),
mcimadamore@161 2772 sym.location());
duke@1 2773 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2774 types.erasure(owntype.getReturnType()),
duke@1 2775 owntype.getThrownTypes(),
duke@1 2776 syms.methodClass);
duke@1 2777 }
duke@1 2778 if (useVarargs) {
duke@1 2779 JCTree tree = env.tree;
mcimadamore@580 2780 Type argtype = owntype.getParameterTypes().last();
mcimadamore@547 2781 if (owntype.getReturnType().tag != FORALL || warned) {
mcimadamore@795 2782 chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym);
mcimadamore@547 2783 }
mcimadamore@580 2784 Type elemtype = types.elemtype(argtype);
duke@1 2785 switch (tree.getTag()) {
duke@1 2786 case JCTree.APPLY:
duke@1 2787 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2788 break;
duke@1 2789 case JCTree.NEWCLASS:
duke@1 2790 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2791 break;
duke@1 2792 default:
duke@1 2793 throw new AssertionError(""+tree);
duke@1 2794 }
duke@1 2795 }
duke@1 2796 }
duke@1 2797 return owntype;
duke@1 2798 }
duke@1 2799
duke@1 2800 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2801 if (types.isConvertible(actual, formal, warn))
duke@1 2802 return;
duke@1 2803
duke@1 2804 if (formal.isCompound()
duke@1 2805 && types.isSubtype(actual, types.supertype(formal))
duke@1 2806 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2807 return;
duke@1 2808
duke@1 2809 if (false) {
duke@1 2810 // TODO: make assertConvertible work
mcimadamore@89 2811 chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
duke@1 2812 throw new AssertionError("Tree: " + tree
duke@1 2813 + " actual:" + actual
duke@1 2814 + " formal: " + formal);
duke@1 2815 }
duke@1 2816 }
duke@1 2817
duke@1 2818 public void visitLiteral(JCLiteral tree) {
duke@1 2819 result = check(
duke@1 2820 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2821 }
duke@1 2822 //where
duke@1 2823 /** Return the type of a literal with given type tag.
duke@1 2824 */
duke@1 2825 Type litType(int tag) {
duke@1 2826 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2827 }
duke@1 2828
duke@1 2829 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2830 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2831 }
duke@1 2832
duke@1 2833 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2834 Type etype = attribType(tree.elemtype, env);
duke@1 2835 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2836 result = check(tree, type, TYP, pkind, pt);
duke@1 2837 }
duke@1 2838
duke@1 2839 /** Visitor method for parameterized types.
duke@1 2840 * Bound checking is left until later, since types are attributed
duke@1 2841 * before supertype structure is completely known
duke@1 2842 */
duke@1 2843 public void visitTypeApply(JCTypeApply tree) {
jjg@110 2844 Type owntype = types.createErrorType(tree.type);
duke@1 2845
duke@1 2846 // Attribute functor part of application and make sure it's a class.
duke@1 2847 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2848
duke@1 2849 // Attribute type parameters
duke@1 2850 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2851
duke@1 2852 if (clazztype.tag == CLASS) {
duke@1 2853 List<Type> formals = clazztype.tsym.type.getTypeArguments();
duke@1 2854
mcimadamore@537 2855 if (actuals.length() == formals.length() || actuals.length() == 0) {
duke@1 2856 List<Type> a = actuals;
duke@1 2857 List<Type> f = formals;
duke@1 2858 while (a.nonEmpty()) {
duke@1 2859 a.head = a.head.withTypeVar(f.head);
duke@1 2860 a = a.tail;
duke@1 2861 f = f.tail;
duke@1 2862 }
duke@1 2863 // Compute the proper generic outer
duke@1 2864 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2865 if (clazzOuter.tag == CLASS) {
duke@1 2866 Type site;
jjg@308 2867 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
jjg@308 2868 if (clazz.getTag() == JCTree.IDENT) {
duke@1 2869 site = env.enclClass.sym.type;
jjg@308 2870 } else if (clazz.getTag() == JCTree.SELECT) {
jjg@308 2871 site = ((JCFieldAccess) clazz).selected.type;
duke@1 2872 } else throw new AssertionError(""+tree);
duke@1 2873 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2874 if (site.tag == CLASS)
duke@1 2875 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2876 if (site == null)
duke@1 2877 site = types.erasure(clazzOuter);
duke@1 2878 clazzOuter = site;
duke@1 2879 }
duke@1 2880 }
mcimadamore@536 2881 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2882 } else {
duke@1 2883 if (formals.length() != 0) {
duke@1 2884 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2885 Integer.toString(formals.length()));
duke@1 2886 } else {
duke@1 2887 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2888 }
jjg@110 2889 owntype = types.createErrorType(tree.type);
duke@1 2890 }
duke@1 2891 }
duke@1 2892 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2893 }
duke@1 2894
jjg@724 2895 public void visitTypeDisjunction(JCTypeDisjunction tree) {
mcimadamore@774 2896 ListBuffer<Type> multicatchTypes = ListBuffer.lb();
mcimadamore@774 2897 for (JCExpression typeTree : tree.alternatives) {
mcimadamore@774 2898 Type ctype = attribType(typeTree, env);
mcimadamore@774 2899 ctype = chk.checkType(typeTree.pos(),
mcimadamore@774 2900 chk.checkClassType(typeTree.pos(), ctype),
mcimadamore@774 2901 syms.throwableType);
mcimadamore@774 2902 multicatchTypes.append(ctype);
mcimadamore@774 2903 }
mcimadamore@774 2904 tree.type = result = check(tree, types.lub(multicatchTypes.toList()), TYP, pkind, pt);
mcimadamore@550 2905 }
mcimadamore@550 2906
duke@1 2907 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2908 TypeVar a = (TypeVar)tree.type;
duke@1 2909 Set<Type> boundSet = new HashSet<Type>();
duke@1 2910 if (a.bound.isErroneous())
duke@1 2911 return;
duke@1 2912 List<Type> bs = types.getBounds(a);
duke@1 2913 if (tree.bounds.nonEmpty()) {
duke@1 2914 // accept class or interface or typevar as first bound.
duke@1 2915 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2916 boundSet.add(types.erasure(b));
mcimadamore@159 2917 if (b.isErroneous()) {
mcimadamore@159 2918 a.bound = b;
mcimadamore@159 2919 }
mcimadamore@159 2920 else if (b.tag == TYPEVAR) {
duke@1 2921 // if first bound was a typevar, do not accept further bounds.
duke@1 2922 if (tree.bounds.tail.nonEmpty()) {
duke@1 2923 log.error(tree.bounds.tail.head.pos(),
duke@1 2924 "type.var.may.not.be.followed.by.other.bounds");
duke@1 2925 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 2926 a.bound = bs.head;
duke@1 2927 }
duke@1 2928 } else {
duke@1 2929 // if first bound was a class or interface, accept only interfaces
duke@1 2930 // as further bounds.
duke@1 2931 for (JCExpression bound : tree.bounds.tail) {
duke@1 2932 bs = bs.tail;
duke@1 2933 Type i = checkBase(bs.head, bound, env, false, true, false);
mcimadamore@159 2934 if (i.isErroneous())
mcimadamore@159 2935 a.bound = i;
mcimadamore@159 2936 else if (i.tag == CLASS)
duke@1 2937 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 2938 }
duke@1 2939 }
duke@1 2940 }
duke@1 2941 bs = types.getBounds(a);
duke@1 2942
duke@1 2943 // in case of multiple bounds ...
duke@1 2944 if (bs.length() > 1) {
duke@1 2945 // ... the variable's bound is a class type flagged COMPOUND
duke@1 2946 // (see comment for TypeVar.bound).
duke@1 2947 // In this case, generate a class tree that represents the
duke@1 2948 // bound class, ...
duke@1 2949 JCTree extending;
duke@1 2950 List<JCExpression> implementing;
duke@1 2951 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 2952 extending = tree.bounds.head;
duke@1 2953 implementing = tree.bounds.tail;
duke@1 2954 } else {
duke@1 2955 extending = null;
duke@1 2956 implementing = tree.bounds;
duke@1 2957 }
duke@1 2958 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 2959 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 2960 tree.name, List.<JCTypeParameter>nil(),
duke@1 2961 extending, implementing, List.<JCTree>nil());
duke@1 2962
duke@1 2963 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
duke@1 2964 assert (c.flags() & COMPOUND) != 0;
duke@1 2965 cd.sym = c;
duke@1 2966 c.sourcefile = env.toplevel.sourcefile;
duke@1 2967
duke@1 2968 // ... and attribute the bound class
duke@1 2969 c.flags_field |= UNATTRIBUTED;
duke@1 2970 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 2971 enter.typeEnvs.put(c, cenv);
duke@1 2972 }
duke@1 2973 }
duke@1 2974
duke@1 2975
duke@1 2976 public void visitWildcard(JCWildcard tree) {
duke@1 2977 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 2978 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 2979 ? syms.objectType
duke@1 2980 : attribType(tree.inner, env);
duke@1 2981 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 2982 tree.kind.kind,
duke@1 2983 syms.boundClass),
duke@1 2984 TYP, pkind, pt);
duke@1 2985 }
duke@1 2986
duke@1 2987 public void visitAnnotation(JCAnnotation tree) {
duke@1 2988 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 2989 result = tree.type = syms.errType;
duke@1 2990 }
duke@1 2991
jjg@308 2992 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 2993 result = tree.type = attribType(tree.getUnderlyingType(), env);
jjg@308 2994 }
jjg@308 2995
duke@1 2996 public void visitErroneous(JCErroneous tree) {
duke@1 2997 if (tree.errs != null)
duke@1 2998 for (JCTree err : tree.errs)
duke@1 2999 attribTree(err, env, ERR, pt);
duke@1 3000 result = tree.type = syms.errType;
duke@1 3001 }
duke@1 3002
duke@1 3003 /** Default visitor method for all other trees.
duke@1 3004 */
duke@1 3005 public void visitTree(JCTree tree) {
duke@1 3006 throw new AssertionError();
duke@1 3007 }
duke@1 3008
duke@1 3009 /** Main method: attribute class definition associated with given class symbol.
duke@1 3010 * reporting completion failures at the given position.
duke@1 3011 * @param pos The source position at which completion errors are to be
duke@1 3012 * reported.
duke@1 3013 * @param c The class symbol whose definition will be attributed.
duke@1 3014 */
duke@1 3015 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 3016 try {
duke@1 3017 annotate.flush();
duke@1 3018 attribClass(c);
duke@1 3019 } catch (CompletionFailure ex) {
duke@1 3020 chk.completionError(pos, ex);
duke@1 3021 }
duke@1 3022 }
duke@1 3023
duke@1 3024 /** Attribute class definition associated with given class symbol.
duke@1 3025 * @param c The class symbol whose definition will be attributed.
duke@1 3026 */
duke@1 3027 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 3028 if (c.type.tag == ERROR) return;
duke@1 3029
duke@1 3030 // Check for cycles in the inheritance graph, which can arise from
duke@1 3031 // ill-formed class files.
duke@1 3032 chk.checkNonCyclic(null, c.type);
duke@1 3033
duke@1 3034 Type st = types.supertype(c.type);
duke@1 3035 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 3036 // First, attribute superclass.
duke@1 3037 if (st.tag == CLASS)
duke@1 3038 attribClass((ClassSymbol)st.tsym);
duke@1 3039
duke@1 3040 // Next attribute owner, if it is a class.
duke@1 3041 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 3042 attribClass((ClassSymbol)c.owner);
duke@1 3043 }
duke@1 3044
duke@1 3045 // The previous operations might have attributed the current class
duke@1 3046 // if there was a cycle. So we test first whether the class is still
duke@1 3047 // UNATTRIBUTED.
duke@1 3048 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 3049 c.flags_field &= ~UNATTRIBUTED;
duke@1 3050
duke@1 3051 // Get environment current at the point of class definition.
duke@1 3052 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 3053
duke@1 3054 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 3055 // because the annotations were not available at the time the env was created. Therefore,
duke@1 3056 // we look up the environment chain for the first enclosing environment for which the
duke@1 3057 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 3058 // are any envs created as a result of TypeParameter nodes.
duke@1 3059 Env<AttrContext> lintEnv = env;
duke@1 3060 while (lintEnv.info.lint == null)
duke@1 3061 lintEnv = lintEnv.next;
duke@1 3062
duke@1 3063 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 3064 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 3065
duke@1 3066 Lint prevLint = chk.setLint(env.info.lint);
duke@1 3067 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 3068
duke@1 3069 try {
duke@1 3070 // java.lang.Enum may not be subclassed by a non-enum
duke@1 3071 if (st.tsym == syms.enumSym &&
duke@1 3072 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 3073 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 3074
duke@1 3075 // Enums may not be extended by source-level classes
duke@1 3076 if (st.tsym != null &&
duke@1 3077 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
mcimadamore@82 3078 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
duke@1 3079 !target.compilerBootstrap(c)) {
duke@1 3080 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 3081 }
duke@1 3082 attribClassBody(env, c);
duke@1 3083
duke@1 3084 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 3085 } finally {
duke@1 3086 log.useSource(prev);
duke@1 3087 chk.setLint(prevLint);
duke@1 3088 }
duke@1 3089
duke@1 3090 }
duke@1 3091 }
duke@1 3092
duke@1 3093 public void visitImport(JCImport tree) {
duke@1 3094 // nothing to do
duke@1 3095 }
duke@1 3096
duke@1 3097 /** Finish the attribution of a class. */
duke@1 3098 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 3099 JCClassDecl tree = (JCClassDecl)env.tree;
duke@1 3100 assert c == tree.sym;
duke@1 3101
duke@1 3102 // Validate annotations
duke@1 3103 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 3104
duke@1 3105 // Validate type parameters, supertype and interfaces.
mcimadamore@42 3106 attribBounds(tree.typarams);
mcimadamore@537 3107 if (!c.isAnonymous()) {
mcimadamore@537 3108 //already checked if anonymous
mcimadamore@537 3109 chk.validate(tree.typarams, env);
mcimadamore@537 3110 chk.validate(tree.extending, env);
mcimadamore@537 3111 chk.validate(tree.implementing, env);
mcimadamore@537 3112 }
duke@1 3113
duke@1 3114 // If this is a non-abstract class, check that it has no abstract
duke@1 3115 // methods or unimplemented methods of an implemented interface.
duke@1 3116 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 3117 if (!relax)
duke@1 3118 chk.checkAllDefined(tree.pos(), c);
duke@1 3119 }
duke@1 3120
duke@1 3121 if ((c.flags() & ANNOTATION) != 0) {
duke@1 3122 if (tree.implementing.nonEmpty())
duke@1 3123 log.error(tree.implementing.head.pos(),
duke@1 3124 "cant.extend.intf.annotation");
duke@1 3125 if (tree.typarams.nonEmpty())
duke@1 3126 log.error(tree.typarams.head.pos(),
duke@1 3127 "intf.annotation.cant.have.type.params");
duke@1 3128 } else {
duke@1 3129 // Check that all extended classes and interfaces
duke@1 3130 // are compatible (i.e. no two define methods with same arguments
duke@1 3131 // yet different return types). (JLS 8.4.6.3)
duke@1 3132 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 3133 }
duke@1 3134
duke@1 3135 // Check that class does not import the same parameterized interface
duke@1 3136 // with two different argument lists.
duke@1 3137 chk.checkClassBounds(tree.pos(), c.type);
duke@1 3138
duke@1 3139 tree.type = c.type;
duke@1 3140
duke@1 3141 boolean assertsEnabled = false;
duke@1 3142 assert assertsEnabled = true;
duke@1 3143 if (assertsEnabled) {
duke@1 3144 for (List<JCTypeParameter> l = tree.typarams;
duke@1 3145 l.nonEmpty(); l = l.tail)
duke@1 3146 assert env.info.scope.lookup(l.head.name).scope != null;
duke@1 3147 }
duke@1 3148
duke@1 3149 // Check that a generic class doesn't extend Throwable
duke@1 3150 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 3151 log.error(tree.extending.pos(), "generic.throwable");
duke@1 3152
duke@1 3153 // Check that all methods which implement some
duke@1 3154 // method conform to the method they implement.
duke@1 3155 chk.checkImplementations(tree);
duke@1 3156
duke@1 3157 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 3158 // Attribute declaration
duke@1 3159 attribStat(l.head, env);
duke@1 3160 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 3161 // Make an exception for static constants.
duke@1 3162 if (c.owner.kind != PCK &&
duke@1 3163 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 3164 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 3165 Symbol sym = null;
duke@1 3166 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
duke@1 3167 if (sym == null ||
duke@1 3168 sym.kind != VAR ||
duke@1 3169 ((VarSymbol) sym).getConstValue() == null)
duke@1 3170 log.error(l.head.pos(), "icls.cant.have.static.decl");
duke@1 3171 }
duke@1 3172 }
duke@1 3173
duke@1 3174 // Check for cycles among non-initial constructors.
duke@1 3175 chk.checkCyclicConstructors(tree);
duke@1 3176
duke@1 3177 // Check for cycles among annotation elements.
duke@1 3178 chk.checkNonCyclicElements(tree);
duke@1 3179
duke@1 3180 // Check for proper use of serialVersionUID
mcimadamore@795 3181 if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
duke@1 3182 isSerializable(c) &&
duke@1 3183 (c.flags() & Flags.ENUM) == 0 &&
duke@1 3184 (c.flags() & ABSTRACT) == 0) {
duke@1 3185 checkSerialVersionUID(tree, c);
duke@1 3186 }
jjg@308 3187
jjg@308 3188 // Check type annotations applicability rules
jjg@308 3189 validateTypeAnnotations(tree);
duke@1 3190 }
duke@1 3191 // where
duke@1 3192 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 3193 private boolean isSerializable(ClassSymbol c) {
duke@1 3194 try {
duke@1 3195 syms.serializableType.complete();
duke@1 3196 }
duke@1 3197 catch (CompletionFailure e) {
duke@1 3198 return false;
duke@1 3199 }
duke@1 3200 return types.isSubtype(c.type, syms.serializableType);
duke@1 3201 }
duke@1 3202
duke@1 3203 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 3204 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 3205
duke@1 3206 // check for presence of serialVersionUID
duke@1 3207 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 3208 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 3209 if (e.scope == null) {
mcimadamore@795 3210 log.warning(LintCategory.SERIAL,
jjg@612 3211 tree.pos(), "missing.SVUID", c);
duke@1 3212 return;
duke@1 3213 }
duke@1 3214
duke@1 3215 // check that it is static final
duke@1 3216 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 3217 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 3218 (STATIC | FINAL))
mcimadamore@795 3219 log.warning(LintCategory.SERIAL,
jjg@612 3220 TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 3221
duke@1 3222 // check that it is long
duke@1 3223 else if (svuid.type.tag != TypeTags.LONG)
mcimadamore@795 3224 log.warning(LintCategory.SERIAL,
jjg@612 3225 TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 3226
duke@1 3227 // check constant
duke@1 3228 else if (svuid.getConstValue() == null)
mcimadamore@795 3229 log.warning(LintCategory.SERIAL,
jjg@612 3230 TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 3231 }
duke@1 3232
duke@1 3233 private Type capture(Type type) {
duke@1 3234 return types.capture(type);
duke@1 3235 }
jjg@308 3236
jjg@308 3237 private void validateTypeAnnotations(JCTree tree) {
jjg@308 3238 tree.accept(typeAnnotationsValidator);
jjg@308 3239 }
jjg@308 3240 //where
jjg@308 3241 private final JCTree.Visitor typeAnnotationsValidator =
jjg@308 3242 new TreeScanner() {
jjg@308 3243 public void visitAnnotation(JCAnnotation tree) {
jjg@308 3244 if (tree instanceof JCTypeAnnotation) {
jjg@308 3245 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
jjg@308 3246 }
jjg@308 3247 super.visitAnnotation(tree);
jjg@308 3248 }
jjg@308 3249 public void visitTypeParameter(JCTypeParameter tree) {
jjg@308 3250 chk.validateTypeAnnotations(tree.annotations, true);
jjg@308 3251 // don't call super. skip type annotations
jjg@308 3252 scan(tree.bounds);
jjg@308 3253 }
jjg@308 3254 public void visitMethodDef(JCMethodDecl tree) {
jjg@308 3255 // need to check static methods
jjg@308 3256 if ((tree.sym.flags() & Flags.STATIC) != 0) {
jjg@308 3257 for (JCTypeAnnotation a : tree.receiverAnnotations) {
jjg@308 3258 if (chk.isTypeAnnotation(a, false))
jjg@308 3259 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 3260 }
jjg@308 3261 }
jjg@308 3262 super.visitMethodDef(tree);
jjg@308 3263 }
jjg@308 3264 };
mcimadamore@676 3265
mcimadamore@676 3266 // <editor-fold desc="post-attribution visitor">
mcimadamore@676 3267
mcimadamore@676 3268 /**
mcimadamore@676 3269 * Handle missing types/symbols in an AST. This routine is useful when
mcimadamore@676 3270 * the compiler has encountered some errors (which might have ended up
mcimadamore@676 3271 * terminating attribution abruptly); if the compiler is used in fail-over
mcimadamore@676 3272 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
mcimadamore@676 3273 * prevents NPE to be progagated during subsequent compilation steps.
mcimadamore@676 3274 */
mcimadamore@676 3275 public void postAttr(Env<AttrContext> env) {
mcimadamore@676 3276 new PostAttrAnalyzer().scan(env.tree);
mcimadamore@676 3277 }
mcimadamore@676 3278
mcimadamore@676 3279 class PostAttrAnalyzer extends TreeScanner {
mcimadamore@676 3280
mcimadamore@676 3281 private void initTypeIfNeeded(JCTree that) {
mcimadamore@676 3282 if (that.type == null) {
mcimadamore@676 3283 that.type = syms.unknownType;
mcimadamore@676 3284 }
mcimadamore@676 3285 }
mcimadamore@676 3286
mcimadamore@676 3287 @Override
mcimadamore@676 3288 public void scan(JCTree tree) {
mcimadamore@676 3289 if (tree == null) return;
mcimadamore@676 3290 if (tree instanceof JCExpression) {
mcimadamore@676 3291 initTypeIfNeeded(tree);
mcimadamore@676 3292 }
mcimadamore@676 3293 super.scan(tree);
mcimadamore@676 3294 }
mcimadamore@676 3295
mcimadamore@676 3296 @Override
mcimadamore@676 3297 public void visitIdent(JCIdent that) {
mcimadamore@676 3298 if (that.sym == null) {
mcimadamore@676 3299 that.sym = syms.unknownSymbol;
mcimadamore@676 3300 }
mcimadamore@676 3301 }
mcimadamore@676 3302
mcimadamore@676 3303 @Override
mcimadamore@676 3304 public void visitSelect(JCFieldAccess that) {
mcimadamore@676 3305 if (that.sym == null) {
mcimadamore@676 3306 that.sym = syms.unknownSymbol;
mcimadamore@676 3307 }
mcimadamore@676 3308 super.visitSelect(that);
mcimadamore@676 3309 }
mcimadamore@676 3310
mcimadamore@676 3311 @Override
mcimadamore@676 3312 public void visitClassDef(JCClassDecl that) {
mcimadamore@676 3313 initTypeIfNeeded(that);
mcimadamore@676 3314 if (that.sym == null) {
mcimadamore@676 3315 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3316 }
mcimadamore@676 3317 super.visitClassDef(that);
mcimadamore@676 3318 }
mcimadamore@676 3319
mcimadamore@676 3320 @Override
mcimadamore@676 3321 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@676 3322 initTypeIfNeeded(that);
mcimadamore@676 3323 if (that.sym == null) {
mcimadamore@676 3324 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3325 }
mcimadamore@676 3326 super.visitMethodDef(that);
mcimadamore@676 3327 }
mcimadamore@676 3328
mcimadamore@676 3329 @Override
mcimadamore@676 3330 public void visitVarDef(JCVariableDecl that) {
mcimadamore@676 3331 initTypeIfNeeded(that);
mcimadamore@676 3332 if (that.sym == null) {
mcimadamore@676 3333 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3334 that.sym.adr = 0;
mcimadamore@676 3335 }
mcimadamore@676 3336 super.visitVarDef(that);
mcimadamore@676 3337 }
mcimadamore@676 3338
mcimadamore@676 3339 @Override
mcimadamore@676 3340 public void visitNewClass(JCNewClass that) {
mcimadamore@676 3341 if (that.constructor == null) {
mcimadamore@676 3342 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
mcimadamore@676 3343 }
mcimadamore@676 3344 if (that.constructorType == null) {
mcimadamore@676 3345 that.constructorType = syms.unknownType;
mcimadamore@676 3346 }
mcimadamore@676 3347 super.visitNewClass(that);
mcimadamore@676 3348 }
mcimadamore@676 3349
mcimadamore@676 3350 @Override
mcimadamore@676 3351 public void visitBinary(JCBinary that) {
mcimadamore@676 3352 if (that.operator == null)
mcimadamore@676 3353 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3354 super.visitBinary(that);
mcimadamore@676 3355 }
mcimadamore@676 3356
mcimadamore@676 3357 @Override
mcimadamore@676 3358 public void visitUnary(JCUnary that) {
mcimadamore@676 3359 if (that.operator == null)
mcimadamore@676 3360 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3361 super.visitUnary(that);
mcimadamore@676 3362 }
mcimadamore@676 3363 }
mcimadamore@676 3364 // </editor-fold>
duke@1 3365 }

mercurial