src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 28 Dec 2010 15:54:52 -0800

author
ohair
date
Tue, 28 Dec 2010 15:54:52 -0800
changeset 798
4868a36f6fd8
parent 795
7b99f98b3035
child 815
d17f37522154
permissions
-rw-r--r--

6962318: Update copyright year
Reviewed-by: xdono

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.tools.javac.code.*;
    34 import com.sun.tools.javac.jvm.*;
    35 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    38 import com.sun.tools.javac.util.List;
    40 import com.sun.tools.javac.jvm.Target;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.tree.JCTree.*;
    44 import com.sun.tools.javac.code.Type.*;
    46 import com.sun.source.tree.IdentifierTree;
    47 import com.sun.source.tree.MemberSelectTree;
    48 import com.sun.source.tree.TreeVisitor;
    49 import com.sun.source.util.SimpleTreeVisitor;
    51 import static com.sun.tools.javac.code.Flags.*;
    52 import static com.sun.tools.javac.code.Kinds.*;
    53 import static com.sun.tools.javac.code.TypeTags.*;
    55 /** This is the main context-dependent analysis phase in GJC. It
    56  *  encompasses name resolution, type checking and constant folding as
    57  *  subtasks. Some subtasks involve auxiliary classes.
    58  *  @see Check
    59  *  @see Resolve
    60  *  @see ConstFold
    61  *  @see Infer
    62  *
    63  *  <p><b>This is NOT part of any supported API.
    64  *  If you write code that depends on this, you do so at your own risk.
    65  *  This code and its internal interfaces are subject to change or
    66  *  deletion without notice.</b>
    67  */
    68 public class Attr extends JCTree.Visitor {
    69     protected static final Context.Key<Attr> attrKey =
    70         new Context.Key<Attr>();
    72     final Names names;
    73     final Log log;
    74     final Symtab syms;
    75     final Resolve rs;
    76     final Infer infer;
    77     final Check chk;
    78     final MemberEnter memberEnter;
    79     final TreeMaker make;
    80     final ConstFold cfolder;
    81     final Enter enter;
    82     final Target target;
    83     final Types types;
    84     final JCDiagnostic.Factory diags;
    85     final Annotate annotate;
    87     public static Attr instance(Context context) {
    88         Attr instance = context.get(attrKey);
    89         if (instance == null)
    90             instance = new Attr(context);
    91         return instance;
    92     }
    94     protected Attr(Context context) {
    95         context.put(attrKey, this);
    97         names = Names.instance(context);
    98         log = Log.instance(context);
    99         syms = Symtab.instance(context);
   100         rs = Resolve.instance(context);
   101         chk = Check.instance(context);
   102         memberEnter = MemberEnter.instance(context);
   103         make = TreeMaker.instance(context);
   104         enter = Enter.instance(context);
   105         infer = Infer.instance(context);
   106         cfolder = ConstFold.instance(context);
   107         target = Target.instance(context);
   108         types = Types.instance(context);
   109         diags = JCDiagnostic.Factory.instance(context);
   110         annotate = Annotate.instance(context);
   112         Options options = Options.instance(context);
   114         Source source = Source.instance(context);
   115         allowGenerics = source.allowGenerics();
   116         allowVarargs = source.allowVarargs();
   117         allowEnums = source.allowEnums();
   118         allowBoxing = source.allowBoxing();
   119         allowCovariantReturns = source.allowCovariantReturns();
   120         allowAnonOuterThis = source.allowAnonOuterThis();
   121         allowStringsInSwitch = source.allowStringsInSwitch();
   122         sourceName = source.name;
   123         relax = (options.isSet("-retrofit") ||
   124                  options.isSet("-relax"));
   125         findDiamonds = options.get("findDiamond") != null &&
   126                  source.allowDiamond();
   127         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   128         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   129     }
   131     /** Switch: relax some constraints for retrofit mode.
   132      */
   133     boolean relax;
   135     /** Switch: support generics?
   136      */
   137     boolean allowGenerics;
   139     /** Switch: allow variable-arity methods.
   140      */
   141     boolean allowVarargs;
   143     /** Switch: support enums?
   144      */
   145     boolean allowEnums;
   147     /** Switch: support boxing and unboxing?
   148      */
   149     boolean allowBoxing;
   151     /** Switch: support covariant result types?
   152      */
   153     boolean allowCovariantReturns;
   155     /** Switch: allow references to surrounding object from anonymous
   156      * objects during constructor call?
   157      */
   158     boolean allowAnonOuterThis;
   160     /** Switch: generates a warning if diamond can be safely applied
   161      *  to a given new expression
   162      */
   163     boolean findDiamonds;
   165     /**
   166      * Internally enables/disables diamond finder feature
   167      */
   168     static final boolean allowDiamondFinder = true;
   170     /**
   171      * Switch: warn about use of variable before declaration?
   172      * RFE: 6425594
   173      */
   174     boolean useBeforeDeclarationWarning;
   176     /**
   177      * Switch: allow lint infrastructure to control proprietary
   178      * API warnings.
   179      */
   180     boolean enableSunApiLintControl;
   182     /**
   183      * Switch: allow strings in switch?
   184      */
   185     boolean allowStringsInSwitch;
   187     /**
   188      * Switch: name of source level; used for error reporting.
   189      */
   190     String sourceName;
   192     /** Check kind and type of given tree against protokind and prototype.
   193      *  If check succeeds, store type in tree and return it.
   194      *  If check fails, store errType in tree and return it.
   195      *  No checks are performed if the prototype is a method type.
   196      *  It is not necessary in this case since we know that kind and type
   197      *  are correct.
   198      *
   199      *  @param tree     The tree whose kind and type is checked
   200      *  @param owntype  The computed type of the tree
   201      *  @param ownkind  The computed kind of the tree
   202      *  @param pkind    The expected kind (or: protokind) of the tree
   203      *  @param pt       The expected type (or: prototype) of the tree
   204      */
   205     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
   206         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
   207             if ((ownkind & ~pkind) == 0) {
   208                 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
   209             } else {
   210                 log.error(tree.pos(), "unexpected.type",
   211                           kindNames(pkind),
   212                           kindName(ownkind));
   213                 owntype = types.createErrorType(owntype);
   214             }
   215         }
   216         tree.type = owntype;
   217         return owntype;
   218     }
   220     /** Is given blank final variable assignable, i.e. in a scope where it
   221      *  may be assigned to even though it is final?
   222      *  @param v      The blank final variable.
   223      *  @param env    The current environment.
   224      */
   225     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   226         Symbol owner = env.info.scope.owner;
   227            // owner refers to the innermost variable, method or
   228            // initializer block declaration at this point.
   229         return
   230             v.owner == owner
   231             ||
   232             ((owner.name == names.init ||    // i.e. we are in a constructor
   233               owner.kind == VAR ||           // i.e. we are in a variable initializer
   234               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   235              &&
   236              v.owner == owner.owner
   237              &&
   238              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   239     }
   241     /** Check that variable can be assigned to.
   242      *  @param pos    The current source code position.
   243      *  @param v      The assigned varaible
   244      *  @param base   If the variable is referred to in a Select, the part
   245      *                to the left of the `.', null otherwise.
   246      *  @param env    The current environment.
   247      */
   248     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   249         if ((v.flags() & FINAL) != 0 &&
   250             ((v.flags() & HASINIT) != 0
   251              ||
   252              !((base == null ||
   253                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
   254                isAssignableAsBlankFinal(v, env)))) {
   255             if (v.isResourceVariable()) { //TWR resource
   256                 log.error(pos, "try.resource.may.not.be.assigned", v);
   257             } else {
   258                 log.error(pos, "cant.assign.val.to.final.var", v);
   259             }
   260         } else if ((v.flags() & EFFECTIVELY_FINAL) != 0) {
   261             v.flags_field &= ~EFFECTIVELY_FINAL;
   262         }
   263     }
   265     /** Does tree represent a static reference to an identifier?
   266      *  It is assumed that tree is either a SELECT or an IDENT.
   267      *  We have to weed out selects from non-type names here.
   268      *  @param tree    The candidate tree.
   269      */
   270     boolean isStaticReference(JCTree tree) {
   271         if (tree.getTag() == JCTree.SELECT) {
   272             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   273             if (lsym == null || lsym.kind != TYP) {
   274                 return false;
   275             }
   276         }
   277         return true;
   278     }
   280     /** Is this symbol a type?
   281      */
   282     static boolean isType(Symbol sym) {
   283         return sym != null && sym.kind == TYP;
   284     }
   286     /** The current `this' symbol.
   287      *  @param env    The current environment.
   288      */
   289     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   290         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   291     }
   293     /** Attribute a parsed identifier.
   294      * @param tree Parsed identifier name
   295      * @param topLevel The toplevel to use
   296      */
   297     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   298         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   299         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   300                                            syms.errSymbol.name,
   301                                            null, null, null, null);
   302         localEnv.enclClass.sym = syms.errSymbol;
   303         return tree.accept(identAttributer, localEnv);
   304     }
   305     // where
   306         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   307         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   308             @Override
   309             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   310                 Symbol site = visit(node.getExpression(), env);
   311                 if (site.kind == ERR)
   312                     return site;
   313                 Name name = (Name)node.getIdentifier();
   314                 if (site.kind == PCK) {
   315                     env.toplevel.packge = (PackageSymbol)site;
   316                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   317                 } else {
   318                     env.enclClass.sym = (ClassSymbol)site;
   319                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   320                 }
   321             }
   323             @Override
   324             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   325                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   326             }
   327         }
   329     public Type coerce(Type etype, Type ttype) {
   330         return cfolder.coerce(etype, ttype);
   331     }
   333     public Type attribType(JCTree node, TypeSymbol sym) {
   334         Env<AttrContext> env = enter.typeEnvs.get(sym);
   335         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   336         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
   337     }
   339     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   340         breakTree = tree;
   341         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   342         try {
   343             attribExpr(expr, env);
   344         } catch (BreakAttr b) {
   345             return b.env;
   346         } catch (AssertionError ae) {
   347             if (ae.getCause() instanceof BreakAttr) {
   348                 return ((BreakAttr)(ae.getCause())).env;
   349             } else {
   350                 throw ae;
   351             }
   352         } finally {
   353             breakTree = null;
   354             log.useSource(prev);
   355         }
   356         return env;
   357     }
   359     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   360         breakTree = tree;
   361         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   362         try {
   363             attribStat(stmt, env);
   364         } catch (BreakAttr b) {
   365             return b.env;
   366         } catch (AssertionError ae) {
   367             if (ae.getCause() instanceof BreakAttr) {
   368                 return ((BreakAttr)(ae.getCause())).env;
   369             } else {
   370                 throw ae;
   371             }
   372         } finally {
   373             breakTree = null;
   374             log.useSource(prev);
   375         }
   376         return env;
   377     }
   379     private JCTree breakTree = null;
   381     private static class BreakAttr extends RuntimeException {
   382         static final long serialVersionUID = -6924771130405446405L;
   383         private Env<AttrContext> env;
   384         private BreakAttr(Env<AttrContext> env) {
   385             this.env = env;
   386         }
   387     }
   390 /* ************************************************************************
   391  * Visitor methods
   392  *************************************************************************/
   394     /** Visitor argument: the current environment.
   395      */
   396     Env<AttrContext> env;
   398     /** Visitor argument: the currently expected proto-kind.
   399      */
   400     int pkind;
   402     /** Visitor argument: the currently expected proto-type.
   403      */
   404     Type pt;
   406     /** Visitor argument: the error key to be generated when a type error occurs
   407      */
   408     String errKey;
   410     /** Visitor result: the computed type.
   411      */
   412     Type result;
   414     /** Visitor method: attribute a tree, catching any completion failure
   415      *  exceptions. Return the tree's type.
   416      *
   417      *  @param tree    The tree to be visited.
   418      *  @param env     The environment visitor argument.
   419      *  @param pkind   The protokind visitor argument.
   420      *  @param pt      The prototype visitor argument.
   421      */
   422     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
   423         return attribTree(tree, env, pkind, pt, "incompatible.types");
   424     }
   426     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
   427         Env<AttrContext> prevEnv = this.env;
   428         int prevPkind = this.pkind;
   429         Type prevPt = this.pt;
   430         String prevErrKey = this.errKey;
   431         try {
   432             this.env = env;
   433             this.pkind = pkind;
   434             this.pt = pt;
   435             this.errKey = errKey;
   436             tree.accept(this);
   437             if (tree == breakTree)
   438                 throw new BreakAttr(env);
   439             return result;
   440         } catch (CompletionFailure ex) {
   441             tree.type = syms.errType;
   442             return chk.completionError(tree.pos(), ex);
   443         } finally {
   444             this.env = prevEnv;
   445             this.pkind = prevPkind;
   446             this.pt = prevPt;
   447             this.errKey = prevErrKey;
   448         }
   449     }
   451     /** Derived visitor method: attribute an expression tree.
   452      */
   453     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   454         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
   455     }
   457     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
   458         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
   459     }
   461     /** Derived visitor method: attribute an expression tree with
   462      *  no constraints on the computed type.
   463      */
   464     Type attribExpr(JCTree tree, Env<AttrContext> env) {
   465         return attribTree(tree, env, VAL, Type.noType);
   466     }
   468     /** Derived visitor method: attribute a type tree.
   469      */
   470     Type attribType(JCTree tree, Env<AttrContext> env) {
   471         Type result = attribType(tree, env, Type.noType);
   472         return result;
   473     }
   475     /** Derived visitor method: attribute a type tree.
   476      */
   477     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   478         Type result = attribTree(tree, env, TYP, pt);
   479         return result;
   480     }
   482     /** Derived visitor method: attribute a statement or definition tree.
   483      */
   484     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   485         return attribTree(tree, env, NIL, Type.noType);
   486     }
   488     /** Attribute a list of expressions, returning a list of types.
   489      */
   490     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   491         ListBuffer<Type> ts = new ListBuffer<Type>();
   492         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   493             ts.append(attribExpr(l.head, env, pt));
   494         return ts.toList();
   495     }
   497     /** Attribute a list of statements, returning nothing.
   498      */
   499     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   500         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   501             attribStat(l.head, env);
   502     }
   504     /** Attribute the arguments in a method call, returning a list of types.
   505      */
   506     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   507         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   508         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   509             argtypes.append(chk.checkNonVoid(
   510                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
   511         return argtypes.toList();
   512     }
   514     /** Attribute a type argument list, returning a list of types.
   515      *  Caller is responsible for calling checkRefTypes.
   516      */
   517     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   518         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   519         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   520             argtypes.append(attribType(l.head, env));
   521         return argtypes.toList();
   522     }
   524     /** Attribute a type argument list, returning a list of types.
   525      *  Check that all the types are references.
   526      */
   527     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   528         List<Type> types = attribAnyTypes(trees, env);
   529         return chk.checkRefTypes(trees, types);
   530     }
   532     /**
   533      * Attribute type variables (of generic classes or methods).
   534      * Compound types are attributed later in attribBounds.
   535      * @param typarams the type variables to enter
   536      * @param env      the current environment
   537      */
   538     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   539         for (JCTypeParameter tvar : typarams) {
   540             TypeVar a = (TypeVar)tvar.type;
   541             a.tsym.flags_field |= UNATTRIBUTED;
   542             a.bound = Type.noType;
   543             if (!tvar.bounds.isEmpty()) {
   544                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   545                 for (JCExpression bound : tvar.bounds.tail)
   546                     bounds = bounds.prepend(attribType(bound, env));
   547                 types.setBounds(a, bounds.reverse());
   548             } else {
   549                 // if no bounds are given, assume a single bound of
   550                 // java.lang.Object.
   551                 types.setBounds(a, List.of(syms.objectType));
   552             }
   553             a.tsym.flags_field &= ~UNATTRIBUTED;
   554         }
   555         for (JCTypeParameter tvar : typarams)
   556             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   557         attribStats(typarams, env);
   558     }
   560     void attribBounds(List<JCTypeParameter> typarams) {
   561         for (JCTypeParameter typaram : typarams) {
   562             Type bound = typaram.type.getUpperBound();
   563             if (bound != null && bound.tsym instanceof ClassSymbol) {
   564                 ClassSymbol c = (ClassSymbol)bound.tsym;
   565                 if ((c.flags_field & COMPOUND) != 0) {
   566                     assert (c.flags_field & UNATTRIBUTED) != 0 : c;
   567                     attribClass(typaram.pos(), c);
   568                 }
   569             }
   570         }
   571     }
   573     /**
   574      * Attribute the type references in a list of annotations.
   575      */
   576     void attribAnnotationTypes(List<JCAnnotation> annotations,
   577                                Env<AttrContext> env) {
   578         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   579             JCAnnotation a = al.head;
   580             attribType(a.annotationType, env);
   581         }
   582     }
   584     /** Attribute type reference in an `extends' or `implements' clause.
   585      *  Supertypes of anonymous inner classes are usually already attributed.
   586      *
   587      *  @param tree              The tree making up the type reference.
   588      *  @param env               The environment current at the reference.
   589      *  @param classExpected     true if only a class is expected here.
   590      *  @param interfaceExpected true if only an interface is expected here.
   591      */
   592     Type attribBase(JCTree tree,
   593                     Env<AttrContext> env,
   594                     boolean classExpected,
   595                     boolean interfaceExpected,
   596                     boolean checkExtensible) {
   597         Type t = tree.type != null ?
   598             tree.type :
   599             attribType(tree, env);
   600         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   601     }
   602     Type checkBase(Type t,
   603                    JCTree tree,
   604                    Env<AttrContext> env,
   605                    boolean classExpected,
   606                    boolean interfaceExpected,
   607                    boolean checkExtensible) {
   608         if (t.isErroneous())
   609             return t;
   610         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
   611             // check that type variable is already visible
   612             if (t.getUpperBound() == null) {
   613                 log.error(tree.pos(), "illegal.forward.ref");
   614                 return types.createErrorType(t);
   615             }
   616         } else {
   617             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   618         }
   619         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   620             log.error(tree.pos(), "intf.expected.here");
   621             // return errType is necessary since otherwise there might
   622             // be undetected cycles which cause attribution to loop
   623             return types.createErrorType(t);
   624         } else if (checkExtensible &&
   625                    classExpected &&
   626                    (t.tsym.flags() & INTERFACE) != 0) {
   627                 log.error(tree.pos(), "no.intf.expected.here");
   628             return types.createErrorType(t);
   629         }
   630         if (checkExtensible &&
   631             ((t.tsym.flags() & FINAL) != 0)) {
   632             log.error(tree.pos(),
   633                       "cant.inherit.from.final", t.tsym);
   634         }
   635         chk.checkNonCyclic(tree.pos(), t);
   636         return t;
   637     }
   639     public void visitClassDef(JCClassDecl tree) {
   640         // Local classes have not been entered yet, so we need to do it now:
   641         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   642             enter.classEnter(tree, env);
   644         ClassSymbol c = tree.sym;
   645         if (c == null) {
   646             // exit in case something drastic went wrong during enter.
   647             result = null;
   648         } else {
   649             // make sure class has been completed:
   650             c.complete();
   652             // If this class appears as an anonymous class
   653             // in a superclass constructor call where
   654             // no explicit outer instance is given,
   655             // disable implicit outer instance from being passed.
   656             // (This would be an illegal access to "this before super").
   657             if (env.info.isSelfCall &&
   658                 env.tree.getTag() == JCTree.NEWCLASS &&
   659                 ((JCNewClass) env.tree).encl == null)
   660             {
   661                 c.flags_field |= NOOUTERTHIS;
   662             }
   663             attribClass(tree.pos(), c);
   664             result = tree.type = c.type;
   665         }
   666     }
   668     public void visitMethodDef(JCMethodDecl tree) {
   669         MethodSymbol m = tree.sym;
   671         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
   672         Lint prevLint = chk.setLint(lint);
   673         MethodSymbol prevMethod = chk.setMethod(m);
   674         try {
   675             chk.checkDeprecatedAnnotation(tree.pos(), m);
   677             attribBounds(tree.typarams);
   679             // If we override any other methods, check that we do so properly.
   680             // JLS ???
   681             chk.checkClashes(tree.pos(), env.enclClass.type, m);
   682             chk.checkOverride(tree, m);
   684             // Create a new environment with local scope
   685             // for attributing the method.
   686             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   688             localEnv.info.lint = lint;
   690             // Enter all type parameters into the local method scope.
   691             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   692                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   694             ClassSymbol owner = env.enclClass.sym;
   695             if ((owner.flags() & ANNOTATION) != 0 &&
   696                 tree.params.nonEmpty())
   697                 log.error(tree.params.head.pos(),
   698                           "intf.annotation.members.cant.have.params");
   700             // Attribute all value parameters.
   701             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   702                 attribStat(l.head, localEnv);
   703             }
   705             chk.checkVarargsMethodDecl(localEnv, tree);
   707             // Check that type parameters are well-formed.
   708             chk.validate(tree.typarams, localEnv);
   710             // Check that result type is well-formed.
   711             chk.validate(tree.restype, localEnv);
   713             // annotation method checks
   714             if ((owner.flags() & ANNOTATION) != 0) {
   715                 // annotation method cannot have throws clause
   716                 if (tree.thrown.nonEmpty()) {
   717                     log.error(tree.thrown.head.pos(),
   718                             "throws.not.allowed.in.intf.annotation");
   719                 }
   720                 // annotation method cannot declare type-parameters
   721                 if (tree.typarams.nonEmpty()) {
   722                     log.error(tree.typarams.head.pos(),
   723                             "intf.annotation.members.cant.have.type.params");
   724                 }
   725                 // validate annotation method's return type (could be an annotation type)
   726                 chk.validateAnnotationType(tree.restype);
   727                 // ensure that annotation method does not clash with members of Object/Annotation
   728                 chk.validateAnnotationMethod(tree.pos(), m);
   730                 if (tree.defaultValue != null) {
   731                     // if default value is an annotation, check it is a well-formed
   732                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   733                     chk.validateAnnotationTree(tree.defaultValue);
   734                 }
   735             }
   737             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   738                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   740             if (tree.body == null) {
   741                 // Empty bodies are only allowed for
   742                 // abstract, native, or interface methods, or for methods
   743                 // in a retrofit signature class.
   744                 if ((owner.flags() & INTERFACE) == 0 &&
   745                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
   746                     !relax)
   747                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   748                 if (tree.defaultValue != null) {
   749                     if ((owner.flags() & ANNOTATION) == 0)
   750                         log.error(tree.pos(),
   751                                   "default.allowed.in.intf.annotation.member");
   752                 }
   753             } else if ((owner.flags() & INTERFACE) != 0) {
   754                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
   755             } else if ((tree.mods.flags & ABSTRACT) != 0) {
   756                 log.error(tree.pos(), "abstract.meth.cant.have.body");
   757             } else if ((tree.mods.flags & NATIVE) != 0) {
   758                 log.error(tree.pos(), "native.meth.cant.have.body");
   759             } else {
   760                 // Add an implicit super() call unless an explicit call to
   761                 // super(...) or this(...) is given
   762                 // or we are compiling class java.lang.Object.
   763                 if (tree.name == names.init && owner.type != syms.objectType) {
   764                     JCBlock body = tree.body;
   765                     if (body.stats.isEmpty() ||
   766                         !TreeInfo.isSelfCall(body.stats.head)) {
   767                         body.stats = body.stats.
   768                             prepend(memberEnter.SuperCall(make.at(body.pos),
   769                                                           List.<Type>nil(),
   770                                                           List.<JCVariableDecl>nil(),
   771                                                           false));
   772                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   773                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   774                                TreeInfo.isSuperCall(body.stats.head)) {
   775                         // enum constructors are not allowed to call super
   776                         // directly, so make sure there aren't any super calls
   777                         // in enum constructors, except in the compiler
   778                         // generated one.
   779                         log.error(tree.body.stats.head.pos(),
   780                                   "call.to.super.not.allowed.in.enum.ctor",
   781                                   env.enclClass.sym);
   782                     }
   783                 }
   785                 // Attribute method body.
   786                 attribStat(tree.body, localEnv);
   787             }
   788             localEnv.info.scope.leave();
   789             result = tree.type = m.type;
   790             chk.validateAnnotations(tree.mods.annotations, m);
   791         }
   792         finally {
   793             chk.setLint(prevLint);
   794             chk.setMethod(prevMethod);
   795         }
   796     }
   798     public void visitVarDef(JCVariableDecl tree) {
   799         // Local variables have not been entered yet, so we need to do it now:
   800         if (env.info.scope.owner.kind == MTH) {
   801             if (tree.sym != null) {
   802                 // parameters have already been entered
   803                 env.info.scope.enter(tree.sym);
   804             } else {
   805                 memberEnter.memberEnter(tree, env);
   806                 annotate.flush();
   807             }
   808             tree.sym.flags_field |= EFFECTIVELY_FINAL;
   809         }
   811         VarSymbol v = tree.sym;
   812         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
   813         Lint prevLint = chk.setLint(lint);
   815         // Check that the variable's declared type is well-formed.
   816         chk.validate(tree.vartype, env);
   818         try {
   819             chk.checkDeprecatedAnnotation(tree.pos(), v);
   821             if (tree.init != null) {
   822                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
   823                     // In this case, `v' is final.  Ensure that it's initializer is
   824                     // evaluated.
   825                     v.getConstValue(); // ensure initializer is evaluated
   826                 } else {
   827                     // Attribute initializer in a new environment
   828                     // with the declared variable as owner.
   829                     // Check that initializer conforms to variable's declared type.
   830                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
   831                     initEnv.info.lint = lint;
   832                     // In order to catch self-references, we set the variable's
   833                     // declaration position to maximal possible value, effectively
   834                     // marking the variable as undefined.
   835                     initEnv.info.enclVar = v;
   836                     attribExpr(tree.init, initEnv, v.type);
   837                 }
   838             }
   839             result = tree.type = v.type;
   840             chk.validateAnnotations(tree.mods.annotations, v);
   841         }
   842         finally {
   843             chk.setLint(prevLint);
   844         }
   845     }
   847     public void visitSkip(JCSkip tree) {
   848         result = null;
   849     }
   851     public void visitBlock(JCBlock tree) {
   852         if (env.info.scope.owner.kind == TYP) {
   853             // Block is a static or instance initializer;
   854             // let the owner of the environment be a freshly
   855             // created BLOCK-method.
   856             Env<AttrContext> localEnv =
   857                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
   858             localEnv.info.scope.owner =
   859                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
   860                                  env.info.scope.owner);
   861             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
   862             attribStats(tree.stats, localEnv);
   863         } else {
   864             // Create a new local environment with a local scope.
   865             Env<AttrContext> localEnv =
   866                 env.dup(tree, env.info.dup(env.info.scope.dup()));
   867             attribStats(tree.stats, localEnv);
   868             localEnv.info.scope.leave();
   869         }
   870         result = null;
   871     }
   873     public void visitDoLoop(JCDoWhileLoop tree) {
   874         attribStat(tree.body, env.dup(tree));
   875         attribExpr(tree.cond, env, syms.booleanType);
   876         result = null;
   877     }
   879     public void visitWhileLoop(JCWhileLoop tree) {
   880         attribExpr(tree.cond, env, syms.booleanType);
   881         attribStat(tree.body, env.dup(tree));
   882         result = null;
   883     }
   885     public void visitForLoop(JCForLoop tree) {
   886         Env<AttrContext> loopEnv =
   887             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   888         attribStats(tree.init, loopEnv);
   889         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
   890         loopEnv.tree = tree; // before, we were not in loop!
   891         attribStats(tree.step, loopEnv);
   892         attribStat(tree.body, loopEnv);
   893         loopEnv.info.scope.leave();
   894         result = null;
   895     }
   897     public void visitForeachLoop(JCEnhancedForLoop tree) {
   898         Env<AttrContext> loopEnv =
   899             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   900         attribStat(tree.var, loopEnv);
   901         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
   902         chk.checkNonVoid(tree.pos(), exprType);
   903         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
   904         if (elemtype == null) {
   905             // or perhaps expr implements Iterable<T>?
   906             Type base = types.asSuper(exprType, syms.iterableType.tsym);
   907             if (base == null) {
   908                 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
   909                 elemtype = types.createErrorType(exprType);
   910             } else {
   911                 List<Type> iterableParams = base.allparams();
   912                 elemtype = iterableParams.isEmpty()
   913                     ? syms.objectType
   914                     : types.upperBound(iterableParams.head);
   915             }
   916         }
   917         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
   918         loopEnv.tree = tree; // before, we were not in loop!
   919         attribStat(tree.body, loopEnv);
   920         loopEnv.info.scope.leave();
   921         result = null;
   922     }
   924     public void visitLabelled(JCLabeledStatement tree) {
   925         // Check that label is not used in an enclosing statement
   926         Env<AttrContext> env1 = env;
   927         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
   928             if (env1.tree.getTag() == JCTree.LABELLED &&
   929                 ((JCLabeledStatement) env1.tree).label == tree.label) {
   930                 log.error(tree.pos(), "label.already.in.use",
   931                           tree.label);
   932                 break;
   933             }
   934             env1 = env1.next;
   935         }
   937         attribStat(tree.body, env.dup(tree));
   938         result = null;
   939     }
   941     public void visitSwitch(JCSwitch tree) {
   942         Type seltype = attribExpr(tree.selector, env);
   944         Env<AttrContext> switchEnv =
   945             env.dup(tree, env.info.dup(env.info.scope.dup()));
   947         boolean enumSwitch =
   948             allowEnums &&
   949             (seltype.tsym.flags() & Flags.ENUM) != 0;
   950         boolean stringSwitch = false;
   951         if (types.isSameType(seltype, syms.stringType)) {
   952             if (allowStringsInSwitch) {
   953                 stringSwitch = true;
   954             } else {
   955                 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
   956             }
   957         }
   958         if (!enumSwitch && !stringSwitch)
   959             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
   961         // Attribute all cases and
   962         // check that there are no duplicate case labels or default clauses.
   963         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
   964         boolean hasDefault = false;      // Is there a default label?
   965         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
   966             JCCase c = l.head;
   967             Env<AttrContext> caseEnv =
   968                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
   969             if (c.pat != null) {
   970                 if (enumSwitch) {
   971                     Symbol sym = enumConstant(c.pat, seltype);
   972                     if (sym == null) {
   973                         log.error(c.pat.pos(), "enum.const.req");
   974                     } else if (!labels.add(sym)) {
   975                         log.error(c.pos(), "duplicate.case.label");
   976                     }
   977                 } else {
   978                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
   979                     if (pattype.tag != ERROR) {
   980                         if (pattype.constValue() == null) {
   981                             log.error(c.pat.pos(),
   982                                       (stringSwitch ? "string.const.req" : "const.expr.req"));
   983                         } else if (labels.contains(pattype.constValue())) {
   984                             log.error(c.pos(), "duplicate.case.label");
   985                         } else {
   986                             labels.add(pattype.constValue());
   987                         }
   988                     }
   989                 }
   990             } else if (hasDefault) {
   991                 log.error(c.pos(), "duplicate.default.label");
   992             } else {
   993                 hasDefault = true;
   994             }
   995             attribStats(c.stats, caseEnv);
   996             caseEnv.info.scope.leave();
   997             addVars(c.stats, switchEnv.info.scope);
   998         }
  1000         switchEnv.info.scope.leave();
  1001         result = null;
  1003     // where
  1004         /** Add any variables defined in stats to the switch scope. */
  1005         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1006             for (;stats.nonEmpty(); stats = stats.tail) {
  1007                 JCTree stat = stats.head;
  1008                 if (stat.getTag() == JCTree.VARDEF)
  1009                     switchScope.enter(((JCVariableDecl) stat).sym);
  1012     // where
  1013     /** Return the selected enumeration constant symbol, or null. */
  1014     private Symbol enumConstant(JCTree tree, Type enumType) {
  1015         if (tree.getTag() != JCTree.IDENT) {
  1016             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1017             return syms.errSymbol;
  1019         JCIdent ident = (JCIdent)tree;
  1020         Name name = ident.name;
  1021         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1022              e.scope != null; e = e.next()) {
  1023             if (e.sym.kind == VAR) {
  1024                 Symbol s = ident.sym = e.sym;
  1025                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1026                 ident.type = s.type;
  1027                 return ((s.flags_field & Flags.ENUM) == 0)
  1028                     ? null : s;
  1031         return null;
  1034     public void visitSynchronized(JCSynchronized tree) {
  1035         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1036         attribStat(tree.body, env);
  1037         result = null;
  1040     public void visitTry(JCTry tree) {
  1041         // Create a new local environment with a local
  1042         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1043         boolean isTryWithResource = tree.resources.nonEmpty();
  1044         // Create a nested environment for attributing the try block if needed
  1045         Env<AttrContext> tryEnv = isTryWithResource ?
  1046             env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1047             localEnv;
  1048         // Attribute resource declarations
  1049         for (JCTree resource : tree.resources) {
  1050             if (resource.getTag() == JCTree.VARDEF) {
  1051                 attribStat(resource, tryEnv);
  1052                 chk.checkType(resource, resource.type, syms.autoCloseableType, "try.not.applicable.to.type");
  1053                 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1054                 var.setData(ElementKind.RESOURCE_VARIABLE);
  1055             } else {
  1056                 attribExpr(resource, tryEnv, syms.autoCloseableType, "try.not.applicable.to.type");
  1059         // Attribute body
  1060         attribStat(tree.body, tryEnv);
  1061         if (isTryWithResource)
  1062             tryEnv.info.scope.leave();
  1064         // Attribute catch clauses
  1065         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1066             JCCatch c = l.head;
  1067             Env<AttrContext> catchEnv =
  1068                 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1069             Type ctype = attribStat(c.param, catchEnv);
  1070             if (TreeInfo.isMultiCatch(c)) {
  1071                 //multi-catch parameter is implicitly marked as final
  1072                 c.param.sym.flags_field |= FINAL | DISJUNCTION;
  1074             if (c.param.sym.kind == Kinds.VAR) {
  1075                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1077             chk.checkType(c.param.vartype.pos(),
  1078                           chk.checkClassType(c.param.vartype.pos(), ctype),
  1079                           syms.throwableType);
  1080             attribStat(c.body, catchEnv);
  1081             catchEnv.info.scope.leave();
  1084         // Attribute finalizer
  1085         if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1087         localEnv.info.scope.leave();
  1088         result = null;
  1091     public void visitConditional(JCConditional tree) {
  1092         attribExpr(tree.cond, env, syms.booleanType);
  1093         attribExpr(tree.truepart, env);
  1094         attribExpr(tree.falsepart, env);
  1095         result = check(tree,
  1096                        capture(condType(tree.pos(), tree.cond.type,
  1097                                         tree.truepart.type, tree.falsepart.type)),
  1098                        VAL, pkind, pt);
  1100     //where
  1101         /** Compute the type of a conditional expression, after
  1102          *  checking that it exists. See Spec 15.25.
  1104          *  @param pos      The source position to be used for
  1105          *                  error diagnostics.
  1106          *  @param condtype The type of the expression's condition.
  1107          *  @param thentype The type of the expression's then-part.
  1108          *  @param elsetype The type of the expression's else-part.
  1109          */
  1110         private Type condType(DiagnosticPosition pos,
  1111                               Type condtype,
  1112                               Type thentype,
  1113                               Type elsetype) {
  1114             Type ctype = condType1(pos, condtype, thentype, elsetype);
  1116             // If condition and both arms are numeric constants,
  1117             // evaluate at compile-time.
  1118             return ((condtype.constValue() != null) &&
  1119                     (thentype.constValue() != null) &&
  1120                     (elsetype.constValue() != null))
  1121                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
  1122                 : ctype;
  1124         /** Compute the type of a conditional expression, after
  1125          *  checking that it exists.  Does not take into
  1126          *  account the special case where condition and both arms
  1127          *  are constants.
  1129          *  @param pos      The source position to be used for error
  1130          *                  diagnostics.
  1131          *  @param condtype The type of the expression's condition.
  1132          *  @param thentype The type of the expression's then-part.
  1133          *  @param elsetype The type of the expression's else-part.
  1134          */
  1135         private Type condType1(DiagnosticPosition pos, Type condtype,
  1136                                Type thentype, Type elsetype) {
  1137             // If same type, that is the result
  1138             if (types.isSameType(thentype, elsetype))
  1139                 return thentype.baseType();
  1141             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1142                 ? thentype : types.unboxedType(thentype);
  1143             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1144                 ? elsetype : types.unboxedType(elsetype);
  1146             // Otherwise, if both arms can be converted to a numeric
  1147             // type, return the least numeric type that fits both arms
  1148             // (i.e. return larger of the two, or return int if one
  1149             // arm is short, the other is char).
  1150             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1151                 // If one arm has an integer subrange type (i.e., byte,
  1152                 // short, or char), and the other is an integer constant
  1153                 // that fits into the subrange, return the subrange type.
  1154                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
  1155                     types.isAssignable(elseUnboxed, thenUnboxed))
  1156                     return thenUnboxed.baseType();
  1157                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
  1158                     types.isAssignable(thenUnboxed, elseUnboxed))
  1159                     return elseUnboxed.baseType();
  1161                 for (int i = BYTE; i < VOID; i++) {
  1162                     Type candidate = syms.typeOfTag[i];
  1163                     if (types.isSubtype(thenUnboxed, candidate) &&
  1164                         types.isSubtype(elseUnboxed, candidate))
  1165                         return candidate;
  1169             // Those were all the cases that could result in a primitive
  1170             if (allowBoxing) {
  1171                 if (thentype.isPrimitive())
  1172                     thentype = types.boxedClass(thentype).type;
  1173                 if (elsetype.isPrimitive())
  1174                     elsetype = types.boxedClass(elsetype).type;
  1177             if (types.isSubtype(thentype, elsetype))
  1178                 return elsetype.baseType();
  1179             if (types.isSubtype(elsetype, thentype))
  1180                 return thentype.baseType();
  1182             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
  1183                 log.error(pos, "neither.conditional.subtype",
  1184                           thentype, elsetype);
  1185                 return thentype.baseType();
  1188             // both are known to be reference types.  The result is
  1189             // lub(thentype,elsetype). This cannot fail, as it will
  1190             // always be possible to infer "Object" if nothing better.
  1191             return types.lub(thentype.baseType(), elsetype.baseType());
  1194     public void visitIf(JCIf tree) {
  1195         attribExpr(tree.cond, env, syms.booleanType);
  1196         attribStat(tree.thenpart, env);
  1197         if (tree.elsepart != null)
  1198             attribStat(tree.elsepart, env);
  1199         chk.checkEmptyIf(tree);
  1200         result = null;
  1203     public void visitExec(JCExpressionStatement tree) {
  1204         //a fresh environment is required for 292 inference to work properly ---
  1205         //see Infer.instantiatePolymorphicSignatureInstance()
  1206         Env<AttrContext> localEnv = env.dup(tree);
  1207         attribExpr(tree.expr, localEnv);
  1208         result = null;
  1211     public void visitBreak(JCBreak tree) {
  1212         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1213         result = null;
  1216     public void visitContinue(JCContinue tree) {
  1217         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1218         result = null;
  1220     //where
  1221         /** Return the target of a break or continue statement, if it exists,
  1222          *  report an error if not.
  1223          *  Note: The target of a labelled break or continue is the
  1224          *  (non-labelled) statement tree referred to by the label,
  1225          *  not the tree representing the labelled statement itself.
  1227          *  @param pos     The position to be used for error diagnostics
  1228          *  @param tag     The tag of the jump statement. This is either
  1229          *                 Tree.BREAK or Tree.CONTINUE.
  1230          *  @param label   The label of the jump statement, or null if no
  1231          *                 label is given.
  1232          *  @param env     The environment current at the jump statement.
  1233          */
  1234         private JCTree findJumpTarget(DiagnosticPosition pos,
  1235                                     int tag,
  1236                                     Name label,
  1237                                     Env<AttrContext> env) {
  1238             // Search environments outwards from the point of jump.
  1239             Env<AttrContext> env1 = env;
  1240             LOOP:
  1241             while (env1 != null) {
  1242                 switch (env1.tree.getTag()) {
  1243                 case JCTree.LABELLED:
  1244                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1245                     if (label == labelled.label) {
  1246                         // If jump is a continue, check that target is a loop.
  1247                         if (tag == JCTree.CONTINUE) {
  1248                             if (labelled.body.getTag() != JCTree.DOLOOP &&
  1249                                 labelled.body.getTag() != JCTree.WHILELOOP &&
  1250                                 labelled.body.getTag() != JCTree.FORLOOP &&
  1251                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
  1252                                 log.error(pos, "not.loop.label", label);
  1253                             // Found labelled statement target, now go inwards
  1254                             // to next non-labelled tree.
  1255                             return TreeInfo.referencedStatement(labelled);
  1256                         } else {
  1257                             return labelled;
  1260                     break;
  1261                 case JCTree.DOLOOP:
  1262                 case JCTree.WHILELOOP:
  1263                 case JCTree.FORLOOP:
  1264                 case JCTree.FOREACHLOOP:
  1265                     if (label == null) return env1.tree;
  1266                     break;
  1267                 case JCTree.SWITCH:
  1268                     if (label == null && tag == JCTree.BREAK) return env1.tree;
  1269                     break;
  1270                 case JCTree.METHODDEF:
  1271                 case JCTree.CLASSDEF:
  1272                     break LOOP;
  1273                 default:
  1275                 env1 = env1.next;
  1277             if (label != null)
  1278                 log.error(pos, "undef.label", label);
  1279             else if (tag == JCTree.CONTINUE)
  1280                 log.error(pos, "cont.outside.loop");
  1281             else
  1282                 log.error(pos, "break.outside.switch.loop");
  1283             return null;
  1286     public void visitReturn(JCReturn tree) {
  1287         // Check that there is an enclosing method which is
  1288         // nested within than the enclosing class.
  1289         if (env.enclMethod == null ||
  1290             env.enclMethod.sym.owner != env.enclClass.sym) {
  1291             log.error(tree.pos(), "ret.outside.meth");
  1293         } else {
  1294             // Attribute return expression, if it exists, and check that
  1295             // it conforms to result type of enclosing method.
  1296             Symbol m = env.enclMethod.sym;
  1297             if (m.type.getReturnType().tag == VOID) {
  1298                 if (tree.expr != null)
  1299                     log.error(tree.expr.pos(),
  1300                               "cant.ret.val.from.meth.decl.void");
  1301             } else if (tree.expr == null) {
  1302                 log.error(tree.pos(), "missing.ret.val");
  1303             } else {
  1304                 attribExpr(tree.expr, env, m.type.getReturnType());
  1307         result = null;
  1310     public void visitThrow(JCThrow tree) {
  1311         attribExpr(tree.expr, env, syms.throwableType);
  1312         result = null;
  1315     public void visitAssert(JCAssert tree) {
  1316         attribExpr(tree.cond, env, syms.booleanType);
  1317         if (tree.detail != null) {
  1318             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1320         result = null;
  1323      /** Visitor method for method invocations.
  1324      *  NOTE: The method part of an application will have in its type field
  1325      *        the return type of the method, not the method's type itself!
  1326      */
  1327     public void visitApply(JCMethodInvocation tree) {
  1328         // The local environment of a method application is
  1329         // a new environment nested in the current one.
  1330         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1332         // The types of the actual method arguments.
  1333         List<Type> argtypes;
  1335         // The types of the actual method type arguments.
  1336         List<Type> typeargtypes = null;
  1337         boolean typeargtypesNonRefOK = false;
  1339         Name methName = TreeInfo.name(tree.meth);
  1341         boolean isConstructorCall =
  1342             methName == names._this || methName == names._super;
  1344         if (isConstructorCall) {
  1345             // We are seeing a ...this(...) or ...super(...) call.
  1346             // Check that this is the first statement in a constructor.
  1347             if (checkFirstConstructorStat(tree, env)) {
  1349                 // Record the fact
  1350                 // that this is a constructor call (using isSelfCall).
  1351                 localEnv.info.isSelfCall = true;
  1353                 // Attribute arguments, yielding list of argument types.
  1354                 argtypes = attribArgs(tree.args, localEnv);
  1355                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1357                 // Variable `site' points to the class in which the called
  1358                 // constructor is defined.
  1359                 Type site = env.enclClass.sym.type;
  1360                 if (methName == names._super) {
  1361                     if (site == syms.objectType) {
  1362                         log.error(tree.meth.pos(), "no.superclass", site);
  1363                         site = types.createErrorType(syms.objectType);
  1364                     } else {
  1365                         site = types.supertype(site);
  1369                 if (site.tag == CLASS) {
  1370                     Type encl = site.getEnclosingType();
  1371                     while (encl != null && encl.tag == TYPEVAR)
  1372                         encl = encl.getUpperBound();
  1373                     if (encl.tag == CLASS) {
  1374                         // we are calling a nested class
  1376                         if (tree.meth.getTag() == JCTree.SELECT) {
  1377                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1379                             // We are seeing a prefixed call, of the form
  1380                             //     <expr>.super(...).
  1381                             // Check that the prefix expression conforms
  1382                             // to the outer instance type of the class.
  1383                             chk.checkRefType(qualifier.pos(),
  1384                                              attribExpr(qualifier, localEnv,
  1385                                                         encl));
  1386                         } else if (methName == names._super) {
  1387                             // qualifier omitted; check for existence
  1388                             // of an appropriate implicit qualifier.
  1389                             rs.resolveImplicitThis(tree.meth.pos(),
  1390                                                    localEnv, site);
  1392                     } else if (tree.meth.getTag() == JCTree.SELECT) {
  1393                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1394                                   site.tsym);
  1397                     // if we're calling a java.lang.Enum constructor,
  1398                     // prefix the implicit String and int parameters
  1399                     if (site.tsym == syms.enumSym && allowEnums)
  1400                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1402                     // Resolve the called constructor under the assumption
  1403                     // that we are referring to a superclass instance of the
  1404                     // current instance (JLS ???).
  1405                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1406                     localEnv.info.selectSuper = true;
  1407                     localEnv.info.varArgs = false;
  1408                     Symbol sym = rs.resolveConstructor(
  1409                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1410                     localEnv.info.selectSuper = selectSuperPrev;
  1412                     // Set method symbol to resolved constructor...
  1413                     TreeInfo.setSymbol(tree.meth, sym);
  1415                     // ...and check that it is legal in the current context.
  1416                     // (this will also set the tree's type)
  1417                     Type mpt = newMethTemplate(argtypes, typeargtypes);
  1418                     checkId(tree.meth, site, sym, localEnv, MTH,
  1419                             mpt, tree.varargsElement != null);
  1421                 // Otherwise, `site' is an error type and we do nothing
  1423             result = tree.type = syms.voidType;
  1424         } else {
  1425             // Otherwise, we are seeing a regular method call.
  1426             // Attribute the arguments, yielding list of argument types, ...
  1427             argtypes = attribArgs(tree.args, localEnv);
  1428             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1430             // ... and attribute the method using as a prototype a methodtype
  1431             // whose formal argument types is exactly the list of actual
  1432             // arguments (this will also set the method symbol).
  1433             Type mpt = newMethTemplate(argtypes, typeargtypes);
  1434             localEnv.info.varArgs = false;
  1435             Type mtype = attribExpr(tree.meth, localEnv, mpt);
  1436             if (localEnv.info.varArgs)
  1437                 assert mtype.isErroneous() || tree.varargsElement != null;
  1439             // Compute the result type.
  1440             Type restype = mtype.getReturnType();
  1441             if (restype.tag == WILDCARD)
  1442                 throw new AssertionError(mtype);
  1444             // as a special case, array.clone() has a result that is
  1445             // the same as static type of the array being cloned
  1446             if (tree.meth.getTag() == JCTree.SELECT &&
  1447                 allowCovariantReturns &&
  1448                 methName == names.clone &&
  1449                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
  1450                 restype = ((JCFieldAccess) tree.meth).selected.type;
  1452             // as a special case, x.getClass() has type Class<? extends |X|>
  1453             if (allowGenerics &&
  1454                 methName == names.getClass && tree.args.isEmpty()) {
  1455                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
  1456                     ? ((JCFieldAccess) tree.meth).selected.type
  1457                     : env.enclClass.sym.type;
  1458                 restype = new
  1459                     ClassType(restype.getEnclosingType(),
  1460                               List.<Type>of(new WildcardType(types.erasure(qualifier),
  1461                                                                BoundKind.EXTENDS,
  1462                                                                syms.boundClass)),
  1463                               restype.tsym);
  1466             // Special case logic for JSR 292 types.
  1467             if (rs.allowTransitionalJSR292 &&
  1468                     tree.meth.getTag() == JCTree.SELECT &&
  1469                     !typeargtypes.isEmpty()) {
  1470                 JCFieldAccess mfield = (JCFieldAccess) tree.meth;
  1471                 // MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
  1472                 // has type <T>, and T can be a primitive type.
  1473                 if (mfield.sym != null &&
  1474                         mfield.sym.isPolymorphicSignatureInstance())
  1475                     typeargtypesNonRefOK = true;
  1478             if (!(rs.allowTransitionalJSR292 && typeargtypesNonRefOK)) {
  1479                 chk.checkRefTypes(tree.typeargs, typeargtypes);
  1482             // Check that value of resulting type is admissible in the
  1483             // current context.  Also, capture the return type
  1484             result = check(tree, capture(restype), VAL, pkind, pt);
  1486         chk.validate(tree.typeargs, localEnv);
  1488     //where
  1489         /** Check that given application node appears as first statement
  1490          *  in a constructor call.
  1491          *  @param tree   The application node
  1492          *  @param env    The environment current at the application.
  1493          */
  1494         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1495             JCMethodDecl enclMethod = env.enclMethod;
  1496             if (enclMethod != null && enclMethod.name == names.init) {
  1497                 JCBlock body = enclMethod.body;
  1498                 if (body.stats.head.getTag() == JCTree.EXEC &&
  1499                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1500                     return true;
  1502             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1503                       TreeInfo.name(tree.meth));
  1504             return false;
  1507         /** Obtain a method type with given argument types.
  1508          */
  1509         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
  1510             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
  1511             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1514     public void visitNewClass(JCNewClass tree) {
  1515         Type owntype = types.createErrorType(tree.type);
  1517         // The local environment of a class creation is
  1518         // a new environment nested in the current one.
  1519         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1521         // The anonymous inner class definition of the new expression,
  1522         // if one is defined by it.
  1523         JCClassDecl cdef = tree.def;
  1525         // If enclosing class is given, attribute it, and
  1526         // complete class name to be fully qualified
  1527         JCExpression clazz = tree.clazz; // Class field following new
  1528         JCExpression clazzid =          // Identifier in class field
  1529             (clazz.getTag() == JCTree.TYPEAPPLY)
  1530             ? ((JCTypeApply) clazz).clazz
  1531             : clazz;
  1533         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1535         if (tree.encl != null) {
  1536             // We are seeing a qualified new, of the form
  1537             //    <expr>.new C <...> (...) ...
  1538             // In this case, we let clazz stand for the name of the
  1539             // allocated class C prefixed with the type of the qualifier
  1540             // expression, so that we can
  1541             // resolve it with standard techniques later. I.e., if
  1542             // <expr> has type T, then <expr>.new C <...> (...)
  1543             // yields a clazz T.C.
  1544             Type encltype = chk.checkRefType(tree.encl.pos(),
  1545                                              attribExpr(tree.encl, env));
  1546             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1547                                                  ((JCIdent) clazzid).name);
  1548             if (clazz.getTag() == JCTree.TYPEAPPLY)
  1549                 clazz = make.at(tree.pos).
  1550                     TypeApply(clazzid1,
  1551                               ((JCTypeApply) clazz).arguments);
  1552             else
  1553                 clazz = clazzid1;
  1556         // Attribute clazz expression and store
  1557         // symbol + type back into the attributed tree.
  1558         Type clazztype = attribType(clazz, env);
  1559         Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype, cdef != null);
  1560         if (!TreeInfo.isDiamond(tree)) {
  1561             clazztype = chk.checkClassType(
  1562                 tree.clazz.pos(), clazztype, true);
  1564         chk.validate(clazz, localEnv);
  1565         if (tree.encl != null) {
  1566             // We have to work in this case to store
  1567             // symbol + type back into the attributed tree.
  1568             tree.clazz.type = clazztype;
  1569             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1570             clazzid.type = ((JCIdent) clazzid).sym.type;
  1571             if (!clazztype.isErroneous()) {
  1572                 if (cdef != null && clazztype.tsym.isInterface()) {
  1573                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1574                 } else if (clazztype.tsym.isStatic()) {
  1575                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1578         } else if (!clazztype.tsym.isInterface() &&
  1579                    clazztype.getEnclosingType().tag == CLASS) {
  1580             // Check for the existence of an apropos outer instance
  1581             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1584         // Attribute constructor arguments.
  1585         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1586         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1588         if (TreeInfo.isDiamond(tree)) {
  1589             clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
  1590             clazz.type = clazztype;
  1591         } else if (allowDiamondFinder &&
  1592                 clazztype.getTypeArguments().nonEmpty() &&
  1593                 findDiamonds) {
  1594             boolean prevDeferDiags = log.deferDiagnostics;
  1595             Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
  1596             Type inferred = null;
  1597             try {
  1598                 //disable diamond-related diagnostics
  1599                 log.deferDiagnostics = true;
  1600                 log.deferredDiagnostics = ListBuffer.lb();
  1601                 inferred = attribDiamond(localEnv,
  1602                         tree,
  1603                         clazztype,
  1604                         mapping,
  1605                         argtypes,
  1606                         typeargtypes);
  1608             finally {
  1609                 log.deferDiagnostics = prevDeferDiags;
  1610                 log.deferredDiagnostics = prevDeferredDiags;
  1612             if (inferred != null &&
  1613                     !inferred.isErroneous() &&
  1614                     inferred.tag == CLASS &&
  1615                     types.isAssignable(inferred, pt.tag == NONE ? clazztype : pt, Warner.noWarnings) &&
  1616                     chk.checkDiamond((ClassType)inferred).isEmpty()) {
  1617                 String key = types.isSameType(clazztype, inferred) ?
  1618                     "diamond.redundant.args" :
  1619                     "diamond.redundant.args.1";
  1620                 log.warning(tree.clazz.pos(), key, clazztype, inferred);
  1624         // If we have made no mistakes in the class type...
  1625         if (clazztype.tag == CLASS) {
  1626             // Enums may not be instantiated except implicitly
  1627             if (allowEnums &&
  1628                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1629                 (env.tree.getTag() != JCTree.VARDEF ||
  1630                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1631                  ((JCVariableDecl) env.tree).init != tree))
  1632                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1633             // Check that class is not abstract
  1634             if (cdef == null &&
  1635                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1636                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1637                           clazztype.tsym);
  1638             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1639                 // Check that no constructor arguments are given to
  1640                 // anonymous classes implementing an interface
  1641                 if (!argtypes.isEmpty())
  1642                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1644                 if (!typeargtypes.isEmpty())
  1645                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1647                 // Error recovery: pretend no arguments were supplied.
  1648                 argtypes = List.nil();
  1649                 typeargtypes = List.nil();
  1652             // Resolve the called constructor under the assumption
  1653             // that we are referring to a superclass instance of the
  1654             // current instance (JLS ???).
  1655             else {
  1656                 localEnv.info.selectSuper = cdef != null;
  1657                 localEnv.info.varArgs = false;
  1658                 tree.constructor = rs.resolveConstructor(
  1659                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  1660                 tree.constructorType = tree.constructor.type.isErroneous() ?
  1661                     syms.errType :
  1662                     checkMethod(clazztype,
  1663                         tree.constructor,
  1664                         localEnv,
  1665                         tree.args,
  1666                         argtypes,
  1667                         typeargtypes,
  1668                         localEnv.info.varArgs);
  1669                 if (localEnv.info.varArgs)
  1670                     assert tree.constructorType.isErroneous() || tree.varargsElement != null;
  1673             if (cdef != null) {
  1674                 // We are seeing an anonymous class instance creation.
  1675                 // In this case, the class instance creation
  1676                 // expression
  1677                 //
  1678                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1679                 //
  1680                 // is represented internally as
  1681                 //
  1682                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  1683                 //
  1684                 // This expression is then *transformed* as follows:
  1685                 //
  1686                 // (1) add a STATIC flag to the class definition
  1687                 //     if the current environment is static
  1688                 // (2) add an extends or implements clause
  1689                 // (3) add a constructor.
  1690                 //
  1691                 // For instance, if C is a class, and ET is the type of E,
  1692                 // the expression
  1693                 //
  1694                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1695                 //
  1696                 // is translated to (where X is a fresh name and typarams is the
  1697                 // parameter list of the super constructor):
  1698                 //
  1699                 //   new <typeargs1>X(<*nullchk*>E, args) where
  1700                 //     X extends C<typargs2> {
  1701                 //       <typarams> X(ET e, args) {
  1702                 //         e.<typeargs1>super(args)
  1703                 //       }
  1704                 //       ...
  1705                 //     }
  1706                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  1708                 if (clazztype.tsym.isInterface()) {
  1709                     cdef.implementing = List.of(clazz);
  1710                 } else {
  1711                     cdef.extending = clazz;
  1714                 attribStat(cdef, localEnv);
  1716                 // If an outer instance is given,
  1717                 // prefix it to the constructor arguments
  1718                 // and delete it from the new expression
  1719                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  1720                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  1721                     argtypes = argtypes.prepend(tree.encl.type);
  1722                     tree.encl = null;
  1725                 // Reassign clazztype and recompute constructor.
  1726                 clazztype = cdef.sym.type;
  1727                 Symbol sym = rs.resolveConstructor(
  1728                     tree.pos(), localEnv, clazztype, argtypes,
  1729                     typeargtypes, true, tree.varargsElement != null);
  1730                 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
  1731                 tree.constructor = sym;
  1732                 if (tree.constructor.kind > ERRONEOUS) {
  1733                     tree.constructorType =  syms.errType;
  1735                 else {
  1736                     tree.constructorType = checkMethod(clazztype,
  1737                             tree.constructor,
  1738                             localEnv,
  1739                             tree.args,
  1740                             argtypes,
  1741                             typeargtypes,
  1742                             localEnv.info.varArgs);
  1746             if (tree.constructor != null && tree.constructor.kind == MTH)
  1747                 owntype = clazztype;
  1749         result = check(tree, owntype, VAL, pkind, pt);
  1750         chk.validate(tree.typeargs, localEnv);
  1753     Type attribDiamond(Env<AttrContext> env,
  1754                         JCNewClass tree,
  1755                         Type clazztype,
  1756                         Pair<Scope, Scope> mapping,
  1757                         List<Type> argtypes,
  1758                         List<Type> typeargtypes) {
  1759         if (clazztype.isErroneous() || mapping == erroneousMapping) {
  1760             //if the type of the instance creation expression is erroneous,
  1761             //or something prevented us to form a valid mapping, return the
  1762             //(possibly erroneous) type unchanged
  1763             return clazztype;
  1765         else if (clazztype.isInterface()) {
  1766             //if the type of the instance creation expression is an interface
  1767             //skip the method resolution step (JLS 15.12.2.7). The type to be
  1768             //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
  1769             clazztype = new ForAll(clazztype.tsym.type.allparams(), clazztype.tsym.type) {
  1770                 @Override
  1771                 public List<Type> getConstraints(TypeVar tv, ConstraintKind ck) {
  1772                     switch (ck) {
  1773                         case EXTENDS: return types.getBounds(tv);
  1774                         default: return List.nil();
  1777                 @Override
  1778                 public Type inst(List<Type> inferred, Types types) throws Infer.NoInstanceException {
  1779                     // check that inferred bounds conform to their bounds
  1780                     infer.checkWithinBounds(tvars,
  1781                            types.subst(tvars, tvars, inferred), Warner.noWarnings);
  1782                     return super.inst(inferred, types);
  1784             };
  1785         } else {
  1786             //if the type of the instance creation expression is a class type
  1787             //apply method resolution inference (JLS 15.12.2.7). The return type
  1788             //of the resolved constructor will be a partially instantiated type
  1789             ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
  1790             Symbol constructor;
  1791             try {
  1792                 constructor = rs.resolveDiamond(tree.pos(),
  1793                         env,
  1794                         clazztype.tsym.type,
  1795                         argtypes,
  1796                         typeargtypes);
  1797             } finally {
  1798                 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
  1800             if (constructor.kind == MTH) {
  1801                 ClassType ct = new ClassType(clazztype.getEnclosingType(),
  1802                         clazztype.tsym.type.getTypeArguments(),
  1803                         clazztype.tsym);
  1804                 clazztype = checkMethod(ct,
  1805                         constructor,
  1806                         env,
  1807                         tree.args,
  1808                         argtypes,
  1809                         typeargtypes,
  1810                         env.info.varArgs).getReturnType();
  1811             } else {
  1812                 clazztype = syms.errType;
  1815         if (clazztype.tag == FORALL && !pt.isErroneous()) {
  1816             //if the resolved constructor's return type has some uninferred
  1817             //type-variables, infer them using the expected type and declared
  1818             //bounds (JLS 15.12.2.8).
  1819             try {
  1820                 clazztype = infer.instantiateExpr((ForAll) clazztype,
  1821                         pt.tag == NONE ? syms.objectType : pt,
  1822                         Warner.noWarnings);
  1823             } catch (Infer.InferenceException ex) {
  1824                 //an error occurred while inferring uninstantiated type-variables
  1825                 log.error(tree.clazz.pos(),
  1826                         "cant.apply.diamond.1",
  1827                         diags.fragment("diamond", clazztype.tsym),
  1828                         ex.diagnostic);
  1831         clazztype = chk.checkClassType(tree.clazz.pos(),
  1832                 clazztype,
  1833                 true);
  1834         if (clazztype.tag == CLASS) {
  1835             List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
  1836             if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
  1837                 //one or more types inferred in the previous steps is either a
  1838                 //captured type or an intersection type --- we need to report an error.
  1839                 String subkey = invalidDiamondArgs.size() > 1 ?
  1840                     "diamond.invalid.args" :
  1841                     "diamond.invalid.arg";
  1842                 //The error message is of the kind:
  1843                 //
  1844                 //cannot infer type arguments for {clazztype}<>;
  1845                 //reason: {subkey}
  1846                 //
  1847                 //where subkey is a fragment of the kind:
  1848                 //
  1849                 //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
  1850                 log.error(tree.clazz.pos(),
  1851                             "cant.apply.diamond.1",
  1852                             diags.fragment("diamond", clazztype.tsym),
  1853                             diags.fragment(subkey,
  1854                                            invalidDiamondArgs,
  1855                                            diags.fragment("diamond", clazztype.tsym)));
  1858         return clazztype;
  1861     /** Creates a synthetic scope containing fake generic constructors.
  1862      *  Assuming that the original scope contains a constructor of the kind:
  1863      *  Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
  1864      *  the synthetic scope is added a generic constructor of the kind:
  1865      *  <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
  1866      *  inference. The inferred return type of the synthetic constructor IS
  1867      *  the inferred type for the diamond operator.
  1868      */
  1869     private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype, boolean overrideProtectedAccess) {
  1870         if (ctype.tag != CLASS) {
  1871             return erroneousMapping;
  1873         Pair<Scope, Scope> mapping =
  1874                 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
  1875         List<Type> typevars = ctype.tsym.type.getTypeArguments();
  1876         for (Scope.Entry e = mapping.fst.lookup(names.init);
  1877                 e.scope != null;
  1878                 e = e.next()) {
  1879             MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
  1880             if (overrideProtectedAccess && (newConstr.flags() & PROTECTED) != 0) {
  1881                 //make protected constructor public (this is required for
  1882                 //anonymous inner class creation expressions using diamond)
  1883                 newConstr.flags_field |= PUBLIC;
  1884                 newConstr.flags_field &= ~PROTECTED;
  1886             newConstr.name = names.init;
  1887             List<Type> oldTypeargs = List.nil();
  1888             if (newConstr.type.tag == FORALL) {
  1889                 oldTypeargs = ((ForAll) newConstr.type).tvars;
  1891             newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
  1892                     new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
  1893                     newConstr.type.getThrownTypes(),
  1894                     syms.methodClass);
  1895             newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
  1896             mapping.snd.enter(newConstr);
  1898         return mapping;
  1901     private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
  1903     /** Make an attributed null check tree.
  1904      */
  1905     public JCExpression makeNullCheck(JCExpression arg) {
  1906         // optimization: X.this is never null; skip null check
  1907         Name name = TreeInfo.name(arg);
  1908         if (name == names._this || name == names._super) return arg;
  1910         int optag = JCTree.NULLCHK;
  1911         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  1912         tree.operator = syms.nullcheck;
  1913         tree.type = arg.type;
  1914         return tree;
  1917     public void visitNewArray(JCNewArray tree) {
  1918         Type owntype = types.createErrorType(tree.type);
  1919         Type elemtype;
  1920         if (tree.elemtype != null) {
  1921             elemtype = attribType(tree.elemtype, env);
  1922             chk.validate(tree.elemtype, env);
  1923             owntype = elemtype;
  1924             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  1925                 attribExpr(l.head, env, syms.intType);
  1926                 owntype = new ArrayType(owntype, syms.arrayClass);
  1928         } else {
  1929             // we are seeing an untyped aggregate { ... }
  1930             // this is allowed only if the prototype is an array
  1931             if (pt.tag == ARRAY) {
  1932                 elemtype = types.elemtype(pt);
  1933             } else {
  1934                 if (pt.tag != ERROR) {
  1935                     log.error(tree.pos(), "illegal.initializer.for.type",
  1936                               pt);
  1938                 elemtype = types.createErrorType(pt);
  1941         if (tree.elems != null) {
  1942             attribExprs(tree.elems, env, elemtype);
  1943             owntype = new ArrayType(elemtype, syms.arrayClass);
  1945         if (!types.isReifiable(elemtype))
  1946             log.error(tree.pos(), "generic.array.creation");
  1947         result = check(tree, owntype, VAL, pkind, pt);
  1950     public void visitParens(JCParens tree) {
  1951         Type owntype = attribTree(tree.expr, env, pkind, pt);
  1952         result = check(tree, owntype, pkind, pkind, pt);
  1953         Symbol sym = TreeInfo.symbol(tree);
  1954         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  1955             log.error(tree.pos(), "illegal.start.of.type");
  1958     public void visitAssign(JCAssign tree) {
  1959         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
  1960         Type capturedType = capture(owntype);
  1961         attribExpr(tree.rhs, env, owntype);
  1962         result = check(tree, capturedType, VAL, pkind, pt);
  1965     public void visitAssignop(JCAssignOp tree) {
  1966         // Attribute arguments.
  1967         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
  1968         Type operand = attribExpr(tree.rhs, env);
  1969         // Find operator.
  1970         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  1971             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
  1972             owntype, operand);
  1974         if (operator.kind == MTH) {
  1975             chk.checkOperator(tree.pos(),
  1976                               (OperatorSymbol)operator,
  1977                               tree.getTag() - JCTree.ASGOffset,
  1978                               owntype,
  1979                               operand);
  1980             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  1981             chk.checkCastable(tree.rhs.pos(),
  1982                               operator.type.getReturnType(),
  1983                               owntype);
  1985         result = check(tree, owntype, VAL, pkind, pt);
  1988     public void visitUnary(JCUnary tree) {
  1989         // Attribute arguments.
  1990         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1991             ? attribTree(tree.arg, env, VAR, Type.noType)
  1992             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  1994         // Find operator.
  1995         Symbol operator = tree.operator =
  1996             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  1998         Type owntype = types.createErrorType(tree.type);
  1999         if (operator.kind == MTH) {
  2000             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  2001                 ? tree.arg.type
  2002                 : operator.type.getReturnType();
  2003             int opc = ((OperatorSymbol)operator).opcode;
  2005             // If the argument is constant, fold it.
  2006             if (argtype.constValue() != null) {
  2007                 Type ctype = cfolder.fold1(opc, argtype);
  2008                 if (ctype != null) {
  2009                     owntype = cfolder.coerce(ctype, owntype);
  2011                     // Remove constant types from arguments to
  2012                     // conserve space. The parser will fold concatenations
  2013                     // of string literals; the code here also
  2014                     // gets rid of intermediate results when some of the
  2015                     // operands are constant identifiers.
  2016                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  2017                         tree.arg.type = syms.stringType;
  2022         result = check(tree, owntype, VAL, pkind, pt);
  2025     public void visitBinary(JCBinary tree) {
  2026         // Attribute arguments.
  2027         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2028         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2030         // Find operator.
  2031         Symbol operator = tree.operator =
  2032             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2034         Type owntype = types.createErrorType(tree.type);
  2035         if (operator.kind == MTH) {
  2036             owntype = operator.type.getReturnType();
  2037             int opc = chk.checkOperator(tree.lhs.pos(),
  2038                                         (OperatorSymbol)operator,
  2039                                         tree.getTag(),
  2040                                         left,
  2041                                         right);
  2043             // If both arguments are constants, fold them.
  2044             if (left.constValue() != null && right.constValue() != null) {
  2045                 Type ctype = cfolder.fold2(opc, left, right);
  2046                 if (ctype != null) {
  2047                     owntype = cfolder.coerce(ctype, owntype);
  2049                     // Remove constant types from arguments to
  2050                     // conserve space. The parser will fold concatenations
  2051                     // of string literals; the code here also
  2052                     // gets rid of intermediate results when some of the
  2053                     // operands are constant identifiers.
  2054                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  2055                         tree.lhs.type = syms.stringType;
  2057                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  2058                         tree.rhs.type = syms.stringType;
  2063             // Check that argument types of a reference ==, != are
  2064             // castable to each other, (JLS???).
  2065             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  2066                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2067                     log.error(tree.pos(), "incomparable.types", left, right);
  2071             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2073         result = check(tree, owntype, VAL, pkind, pt);
  2076     public void visitTypeCast(JCTypeCast tree) {
  2077         Type clazztype = attribType(tree.clazz, env);
  2078         chk.validate(tree.clazz, env, false);
  2079         //a fresh environment is required for 292 inference to work properly ---
  2080         //see Infer.instantiatePolymorphicSignatureInstance()
  2081         Env<AttrContext> localEnv = env.dup(tree);
  2082         Type exprtype = attribExpr(tree.expr, localEnv, Infer.anyPoly);
  2083         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2084         if (exprtype.constValue() != null)
  2085             owntype = cfolder.coerce(exprtype, owntype);
  2086         result = check(tree, capture(owntype), VAL, pkind, pt);
  2089     public void visitTypeTest(JCInstanceOf tree) {
  2090         Type exprtype = chk.checkNullOrRefType(
  2091             tree.expr.pos(), attribExpr(tree.expr, env));
  2092         Type clazztype = chk.checkReifiableReferenceType(
  2093             tree.clazz.pos(), attribType(tree.clazz, env));
  2094         chk.validate(tree.clazz, env, false);
  2095         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2096         result = check(tree, syms.booleanType, VAL, pkind, pt);
  2099     public void visitIndexed(JCArrayAccess tree) {
  2100         Type owntype = types.createErrorType(tree.type);
  2101         Type atype = attribExpr(tree.indexed, env);
  2102         attribExpr(tree.index, env, syms.intType);
  2103         if (types.isArray(atype))
  2104             owntype = types.elemtype(atype);
  2105         else if (atype.tag != ERROR)
  2106             log.error(tree.pos(), "array.req.but.found", atype);
  2107         if ((pkind & VAR) == 0) owntype = capture(owntype);
  2108         result = check(tree, owntype, VAR, pkind, pt);
  2111     public void visitIdent(JCIdent tree) {
  2112         Symbol sym;
  2113         boolean varArgs = false;
  2115         // Find symbol
  2116         if (pt.tag == METHOD || pt.tag == FORALL) {
  2117             // If we are looking for a method, the prototype `pt' will be a
  2118             // method type with the type of the call's arguments as parameters.
  2119             env.info.varArgs = false;
  2120             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
  2121             varArgs = env.info.varArgs;
  2122         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2123             sym = tree.sym;
  2124         } else {
  2125             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
  2127         tree.sym = sym;
  2129         // (1) Also find the environment current for the class where
  2130         //     sym is defined (`symEnv').
  2131         // Only for pre-tiger versions (1.4 and earlier):
  2132         // (2) Also determine whether we access symbol out of an anonymous
  2133         //     class in a this or super call.  This is illegal for instance
  2134         //     members since such classes don't carry a this$n link.
  2135         //     (`noOuterThisPath').
  2136         Env<AttrContext> symEnv = env;
  2137         boolean noOuterThisPath = false;
  2138         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2139             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2140             sym.owner.kind == TYP &&
  2141             tree.name != names._this && tree.name != names._super) {
  2143             // Find environment in which identifier is defined.
  2144             while (symEnv.outer != null &&
  2145                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2146                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2147                     noOuterThisPath = !allowAnonOuterThis;
  2148                 symEnv = symEnv.outer;
  2152         // If symbol is a variable, ...
  2153         if (sym.kind == VAR) {
  2154             VarSymbol v = (VarSymbol)sym;
  2156             // ..., evaluate its initializer, if it has one, and check for
  2157             // illegal forward reference.
  2158             checkInit(tree, env, v, false);
  2160             // If symbol is a local variable accessed from an embedded
  2161             // inner class check that it is final.
  2162             if (v.owner.kind == MTH &&
  2163                 v.owner != env.info.scope.owner &&
  2164                 (v.flags_field & FINAL) == 0) {
  2165                 log.error(tree.pos(),
  2166                           "local.var.accessed.from.icls.needs.final",
  2167                           v);
  2170             // If we are expecting a variable (as opposed to a value), check
  2171             // that the variable is assignable in the current environment.
  2172             if (pkind == VAR)
  2173                 checkAssignable(tree.pos(), v, null, env);
  2176         // In a constructor body,
  2177         // if symbol is a field or instance method, check that it is
  2178         // not accessed before the supertype constructor is called.
  2179         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  2180             (sym.kind & (VAR | MTH)) != 0 &&
  2181             sym.owner.kind == TYP &&
  2182             (sym.flags() & STATIC) == 0) {
  2183             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  2185         Env<AttrContext> env1 = env;
  2186         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  2187             // If the found symbol is inaccessible, then it is
  2188             // accessed through an enclosing instance.  Locate this
  2189             // enclosing instance:
  2190             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  2191                 env1 = env1.outer;
  2193         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
  2196     public void visitSelect(JCFieldAccess tree) {
  2197         // Determine the expected kind of the qualifier expression.
  2198         int skind = 0;
  2199         if (tree.name == names._this || tree.name == names._super ||
  2200             tree.name == names._class)
  2202             skind = TYP;
  2203         } else {
  2204             if ((pkind & PCK) != 0) skind = skind | PCK;
  2205             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
  2206             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  2209         // Attribute the qualifier expression, and determine its symbol (if any).
  2210         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
  2211         if ((pkind & (PCK | TYP)) == 0)
  2212             site = capture(site); // Capture field access
  2214         // don't allow T.class T[].class, etc
  2215         if (skind == TYP) {
  2216             Type elt = site;
  2217             while (elt.tag == ARRAY)
  2218                 elt = ((ArrayType)elt).elemtype;
  2219             if (elt.tag == TYPEVAR) {
  2220                 log.error(tree.pos(), "type.var.cant.be.deref");
  2221                 result = types.createErrorType(tree.type);
  2222                 return;
  2226         // If qualifier symbol is a type or `super', assert `selectSuper'
  2227         // for the selection. This is relevant for determining whether
  2228         // protected symbols are accessible.
  2229         Symbol sitesym = TreeInfo.symbol(tree.selected);
  2230         boolean selectSuperPrev = env.info.selectSuper;
  2231         env.info.selectSuper =
  2232             sitesym != null &&
  2233             sitesym.name == names._super;
  2235         // If selected expression is polymorphic, strip
  2236         // type parameters and remember in env.info.tvars, so that
  2237         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
  2238         if (tree.selected.type.tag == FORALL) {
  2239             ForAll pstype = (ForAll)tree.selected.type;
  2240             env.info.tvars = pstype.tvars;
  2241             site = tree.selected.type = pstype.qtype;
  2244         // Determine the symbol represented by the selection.
  2245         env.info.varArgs = false;
  2246         Symbol sym = selectSym(tree, site, env, pt, pkind);
  2247         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
  2248             site = capture(site);
  2249             sym = selectSym(tree, site, env, pt, pkind);
  2251         boolean varArgs = env.info.varArgs;
  2252         tree.sym = sym;
  2254         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
  2255             while (site.tag == TYPEVAR) site = site.getUpperBound();
  2256             site = capture(site);
  2259         // If that symbol is a variable, ...
  2260         if (sym.kind == VAR) {
  2261             VarSymbol v = (VarSymbol)sym;
  2263             // ..., evaluate its initializer, if it has one, and check for
  2264             // illegal forward reference.
  2265             checkInit(tree, env, v, true);
  2267             // If we are expecting a variable (as opposed to a value), check
  2268             // that the variable is assignable in the current environment.
  2269             if (pkind == VAR)
  2270                 checkAssignable(tree.pos(), v, tree.selected, env);
  2273         if (sitesym != null &&
  2274                 sitesym.kind == VAR &&
  2275                 ((VarSymbol)sitesym).isResourceVariable() &&
  2276                 sym.kind == MTH &&
  2277                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  2278                 env.info.lint.isEnabled(LintCategory.TRY)) {
  2279             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  2282         // Disallow selecting a type from an expression
  2283         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  2284             tree.type = check(tree.selected, pt,
  2285                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
  2288         if (isType(sitesym)) {
  2289             if (sym.name == names._this) {
  2290                 // If `C' is the currently compiled class, check that
  2291                 // C.this' does not appear in a call to a super(...)
  2292                 if (env.info.isSelfCall &&
  2293                     site.tsym == env.enclClass.sym) {
  2294                     chk.earlyRefError(tree.pos(), sym);
  2296             } else {
  2297                 // Check if type-qualified fields or methods are static (JLS)
  2298                 if ((sym.flags() & STATIC) == 0 &&
  2299                     sym.name != names._super &&
  2300                     (sym.kind == VAR || sym.kind == MTH)) {
  2301                     rs.access(rs.new StaticError(sym),
  2302                               tree.pos(), site, sym.name, true);
  2305         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  2306             // If the qualified item is not a type and the selected item is static, report
  2307             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  2308             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  2311         // If we are selecting an instance member via a `super', ...
  2312         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  2314             // Check that super-qualified symbols are not abstract (JLS)
  2315             rs.checkNonAbstract(tree.pos(), sym);
  2317             if (site.isRaw()) {
  2318                 // Determine argument types for site.
  2319                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  2320                 if (site1 != null) site = site1;
  2324         env.info.selectSuper = selectSuperPrev;
  2325         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
  2326         env.info.tvars = List.nil();
  2328     //where
  2329         /** Determine symbol referenced by a Select expression,
  2331          *  @param tree   The select tree.
  2332          *  @param site   The type of the selected expression,
  2333          *  @param env    The current environment.
  2334          *  @param pt     The current prototype.
  2335          *  @param pkind  The expected kind(s) of the Select expression.
  2336          */
  2337         private Symbol selectSym(JCFieldAccess tree,
  2338                                  Type site,
  2339                                  Env<AttrContext> env,
  2340                                  Type pt,
  2341                                  int pkind) {
  2342             DiagnosticPosition pos = tree.pos();
  2343             Name name = tree.name;
  2345             switch (site.tag) {
  2346             case PACKAGE:
  2347                 return rs.access(
  2348                     rs.findIdentInPackage(env, site.tsym, name, pkind),
  2349                     pos, site, name, true);
  2350             case ARRAY:
  2351             case CLASS:
  2352                 if (pt.tag == METHOD || pt.tag == FORALL) {
  2353                     return rs.resolveQualifiedMethod(
  2354                         pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
  2355                 } else if (name == names._this || name == names._super) {
  2356                     return rs.resolveSelf(pos, env, site.tsym, name);
  2357                 } else if (name == names._class) {
  2358                     // In this case, we have already made sure in
  2359                     // visitSelect that qualifier expression is a type.
  2360                     Type t = syms.classType;
  2361                     List<Type> typeargs = allowGenerics
  2362                         ? List.of(types.erasure(site))
  2363                         : List.<Type>nil();
  2364                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  2365                     return new VarSymbol(
  2366                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2367                 } else {
  2368                     // We are seeing a plain identifier as selector.
  2369                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
  2370                     if ((pkind & ERRONEOUS) == 0)
  2371                         sym = rs.access(sym, pos, site, name, true);
  2372                     return sym;
  2374             case WILDCARD:
  2375                 throw new AssertionError(tree);
  2376             case TYPEVAR:
  2377                 // Normally, site.getUpperBound() shouldn't be null.
  2378                 // It should only happen during memberEnter/attribBase
  2379                 // when determining the super type which *must* be
  2380                 // done before attributing the type variables.  In
  2381                 // other words, we are seeing this illegal program:
  2382                 // class B<T> extends A<T.foo> {}
  2383                 Symbol sym = (site.getUpperBound() != null)
  2384                     ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
  2385                     : null;
  2386                 if (sym == null) {
  2387                     log.error(pos, "type.var.cant.be.deref");
  2388                     return syms.errSymbol;
  2389                 } else {
  2390                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  2391                         rs.new AccessError(env, site, sym) :
  2392                                 sym;
  2393                     rs.access(sym2, pos, site, name, true);
  2394                     return sym;
  2396             case ERROR:
  2397                 // preserve identifier names through errors
  2398                 return types.createErrorType(name, site.tsym, site).tsym;
  2399             default:
  2400                 // The qualifier expression is of a primitive type -- only
  2401                 // .class is allowed for these.
  2402                 if (name == names._class) {
  2403                     // In this case, we have already made sure in Select that
  2404                     // qualifier expression is a type.
  2405                     Type t = syms.classType;
  2406                     Type arg = types.boxedClass(site).type;
  2407                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  2408                     return new VarSymbol(
  2409                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2410                 } else {
  2411                     log.error(pos, "cant.deref", site);
  2412                     return syms.errSymbol;
  2417         /** Determine type of identifier or select expression and check that
  2418          *  (1) the referenced symbol is not deprecated
  2419          *  (2) the symbol's type is safe (@see checkSafe)
  2420          *  (3) if symbol is a variable, check that its type and kind are
  2421          *      compatible with the prototype and protokind.
  2422          *  (4) if symbol is an instance field of a raw type,
  2423          *      which is being assigned to, issue an unchecked warning if its
  2424          *      type changes under erasure.
  2425          *  (5) if symbol is an instance method of a raw type, issue an
  2426          *      unchecked warning if its argument types change under erasure.
  2427          *  If checks succeed:
  2428          *    If symbol is a constant, return its constant type
  2429          *    else if symbol is a method, return its result type
  2430          *    otherwise return its type.
  2431          *  Otherwise return errType.
  2433          *  @param tree       The syntax tree representing the identifier
  2434          *  @param site       If this is a select, the type of the selected
  2435          *                    expression, otherwise the type of the current class.
  2436          *  @param sym        The symbol representing the identifier.
  2437          *  @param env        The current environment.
  2438          *  @param pkind      The set of expected kinds.
  2439          *  @param pt         The expected type.
  2440          */
  2441         Type checkId(JCTree tree,
  2442                      Type site,
  2443                      Symbol sym,
  2444                      Env<AttrContext> env,
  2445                      int pkind,
  2446                      Type pt,
  2447                      boolean useVarargs) {
  2448             if (pt.isErroneous()) return types.createErrorType(site);
  2449             Type owntype; // The computed type of this identifier occurrence.
  2450             switch (sym.kind) {
  2451             case TYP:
  2452                 // For types, the computed type equals the symbol's type,
  2453                 // except for two situations:
  2454                 owntype = sym.type;
  2455                 if (owntype.tag == CLASS) {
  2456                     Type ownOuter = owntype.getEnclosingType();
  2458                     // (a) If the symbol's type is parameterized, erase it
  2459                     // because no type parameters were given.
  2460                     // We recover generic outer type later in visitTypeApply.
  2461                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  2462                         owntype = types.erasure(owntype);
  2465                     // (b) If the symbol's type is an inner class, then
  2466                     // we have to interpret its outer type as a superclass
  2467                     // of the site type. Example:
  2468                     //
  2469                     // class Tree<A> { class Visitor { ... } }
  2470                     // class PointTree extends Tree<Point> { ... }
  2471                     // ...PointTree.Visitor...
  2472                     //
  2473                     // Then the type of the last expression above is
  2474                     // Tree<Point>.Visitor.
  2475                     else if (ownOuter.tag == CLASS && site != ownOuter) {
  2476                         Type normOuter = site;
  2477                         if (normOuter.tag == CLASS)
  2478                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  2479                         if (normOuter == null) // perhaps from an import
  2480                             normOuter = types.erasure(ownOuter);
  2481                         if (normOuter != ownOuter)
  2482                             owntype = new ClassType(
  2483                                 normOuter, List.<Type>nil(), owntype.tsym);
  2486                 break;
  2487             case VAR:
  2488                 VarSymbol v = (VarSymbol)sym;
  2489                 // Test (4): if symbol is an instance field of a raw type,
  2490                 // which is being assigned to, issue an unchecked warning if
  2491                 // its type changes under erasure.
  2492                 if (allowGenerics &&
  2493                     pkind == VAR &&
  2494                     v.owner.kind == TYP &&
  2495                     (v.flags() & STATIC) == 0 &&
  2496                     (site.tag == CLASS || site.tag == TYPEVAR)) {
  2497                     Type s = types.asOuterSuper(site, v.owner);
  2498                     if (s != null &&
  2499                         s.isRaw() &&
  2500                         !types.isSameType(v.type, v.erasure(types))) {
  2501                         chk.warnUnchecked(tree.pos(),
  2502                                           "unchecked.assign.to.var",
  2503                                           v, s);
  2506                 // The computed type of a variable is the type of the
  2507                 // variable symbol, taken as a member of the site type.
  2508                 owntype = (sym.owner.kind == TYP &&
  2509                            sym.name != names._this && sym.name != names._super)
  2510                     ? types.memberType(site, sym)
  2511                     : sym.type;
  2513                 if (env.info.tvars.nonEmpty()) {
  2514                     Type owntype1 = new ForAll(env.info.tvars, owntype);
  2515                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
  2516                         if (!owntype.contains(l.head)) {
  2517                             log.error(tree.pos(), "undetermined.type", owntype1);
  2518                             owntype1 = types.createErrorType(owntype1);
  2520                     owntype = owntype1;
  2523                 // If the variable is a constant, record constant value in
  2524                 // computed type.
  2525                 if (v.getConstValue() != null && isStaticReference(tree))
  2526                     owntype = owntype.constType(v.getConstValue());
  2528                 if (pkind == VAL) {
  2529                     owntype = capture(owntype); // capture "names as expressions"
  2531                 break;
  2532             case MTH: {
  2533                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
  2534                 owntype = checkMethod(site, sym, env, app.args,
  2535                                       pt.getParameterTypes(), pt.getTypeArguments(),
  2536                                       env.info.varArgs);
  2537                 break;
  2539             case PCK: case ERR:
  2540                 owntype = sym.type;
  2541                 break;
  2542             default:
  2543                 throw new AssertionError("unexpected kind: " + sym.kind +
  2544                                          " in tree " + tree);
  2547             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  2548             // (for constructors, the error was given when the constructor was
  2549             // resolved)
  2550             if (sym.name != names.init &&
  2551                 (sym.flags() & DEPRECATED) != 0 &&
  2552                 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
  2553                 sym.outermostClass() != env.info.scope.owner.outermostClass())
  2554                 chk.warnDeprecated(tree.pos(), sym);
  2556             if ((sym.flags() & PROPRIETARY) != 0) {
  2557                 if (enableSunApiLintControl)
  2558                   chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
  2559                 else
  2560                   log.strictWarning(tree.pos(), "sun.proprietary", sym);
  2563             // Test (3): if symbol is a variable, check that its type and
  2564             // kind are compatible with the prototype and protokind.
  2565             return check(tree, owntype, sym.kind, pkind, pt);
  2568         /** Check that variable is initialized and evaluate the variable's
  2569          *  initializer, if not yet done. Also check that variable is not
  2570          *  referenced before it is defined.
  2571          *  @param tree    The tree making up the variable reference.
  2572          *  @param env     The current environment.
  2573          *  @param v       The variable's symbol.
  2574          */
  2575         private void checkInit(JCTree tree,
  2576                                Env<AttrContext> env,
  2577                                VarSymbol v,
  2578                                boolean onlyWarning) {
  2579 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  2580 //                             tree.pos + " " + v.pos + " " +
  2581 //                             Resolve.isStatic(env));//DEBUG
  2583             // A forward reference is diagnosed if the declaration position
  2584             // of the variable is greater than the current tree position
  2585             // and the tree and variable definition occur in the same class
  2586             // definition.  Note that writes don't count as references.
  2587             // This check applies only to class and instance
  2588             // variables.  Local variables follow different scope rules,
  2589             // and are subject to definite assignment checking.
  2590             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  2591                 v.owner.kind == TYP &&
  2592                 canOwnInitializer(env.info.scope.owner) &&
  2593                 v.owner == env.info.scope.owner.enclClass() &&
  2594                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  2595                 (env.tree.getTag() != JCTree.ASSIGN ||
  2596                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  2597                 String suffix = (env.info.enclVar == v) ?
  2598                                 "self.ref" : "forward.ref";
  2599                 if (!onlyWarning || isStaticEnumField(v)) {
  2600                     log.error(tree.pos(), "illegal." + suffix);
  2601                 } else if (useBeforeDeclarationWarning) {
  2602                     log.warning(tree.pos(), suffix, v);
  2606             v.getConstValue(); // ensure initializer is evaluated
  2608             checkEnumInitializer(tree, env, v);
  2611         /**
  2612          * Check for illegal references to static members of enum.  In
  2613          * an enum type, constructors and initializers may not
  2614          * reference its static members unless they are constant.
  2616          * @param tree    The tree making up the variable reference.
  2617          * @param env     The current environment.
  2618          * @param v       The variable's symbol.
  2619          * @see JLS 3rd Ed. (8.9 Enums)
  2620          */
  2621         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  2622             // JLS 3rd Ed.:
  2623             //
  2624             // "It is a compile-time error to reference a static field
  2625             // of an enum type that is not a compile-time constant
  2626             // (15.28) from constructors, instance initializer blocks,
  2627             // or instance variable initializer expressions of that
  2628             // type. It is a compile-time error for the constructors,
  2629             // instance initializer blocks, or instance variable
  2630             // initializer expressions of an enum constant e to refer
  2631             // to itself or to an enum constant of the same type that
  2632             // is declared to the right of e."
  2633             if (isStaticEnumField(v)) {
  2634                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  2636                 if (enclClass == null || enclClass.owner == null)
  2637                     return;
  2639                 // See if the enclosing class is the enum (or a
  2640                 // subclass thereof) declaring v.  If not, this
  2641                 // reference is OK.
  2642                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  2643                     return;
  2645                 // If the reference isn't from an initializer, then
  2646                 // the reference is OK.
  2647                 if (!Resolve.isInitializer(env))
  2648                     return;
  2650                 log.error(tree.pos(), "illegal.enum.static.ref");
  2654         /** Is the given symbol a static, non-constant field of an Enum?
  2655          *  Note: enum literals should not be regarded as such
  2656          */
  2657         private boolean isStaticEnumField(VarSymbol v) {
  2658             return Flags.isEnum(v.owner) &&
  2659                    Flags.isStatic(v) &&
  2660                    !Flags.isConstant(v) &&
  2661                    v.name != names._class;
  2664         /** Can the given symbol be the owner of code which forms part
  2665          *  if class initialization? This is the case if the symbol is
  2666          *  a type or field, or if the symbol is the synthetic method.
  2667          *  owning a block.
  2668          */
  2669         private boolean canOwnInitializer(Symbol sym) {
  2670             return
  2671                 (sym.kind & (VAR | TYP)) != 0 ||
  2672                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  2675     Warner noteWarner = new Warner();
  2677     /**
  2678      * Check that method arguments conform to its instantation.
  2679      **/
  2680     public Type checkMethod(Type site,
  2681                             Symbol sym,
  2682                             Env<AttrContext> env,
  2683                             final List<JCExpression> argtrees,
  2684                             List<Type> argtypes,
  2685                             List<Type> typeargtypes,
  2686                             boolean useVarargs) {
  2687         // Test (5): if symbol is an instance method of a raw type, issue
  2688         // an unchecked warning if its argument types change under erasure.
  2689         if (allowGenerics &&
  2690             (sym.flags() & STATIC) == 0 &&
  2691             (site.tag == CLASS || site.tag == TYPEVAR)) {
  2692             Type s = types.asOuterSuper(site, sym.owner);
  2693             if (s != null && s.isRaw() &&
  2694                 !types.isSameTypes(sym.type.getParameterTypes(),
  2695                                    sym.erasure(types).getParameterTypes())) {
  2696                 chk.warnUnchecked(env.tree.pos(),
  2697                                   "unchecked.call.mbr.of.raw.type",
  2698                                   sym, s);
  2702         // Compute the identifier's instantiated type.
  2703         // For methods, we need to compute the instance type by
  2704         // Resolve.instantiate from the symbol's type as well as
  2705         // any type arguments and value arguments.
  2706         noteWarner.clear();
  2707         Type owntype = rs.instantiate(env,
  2708                                       site,
  2709                                       sym,
  2710                                       argtypes,
  2711                                       typeargtypes,
  2712                                       true,
  2713                                       useVarargs,
  2714                                       noteWarner);
  2715         boolean warned = noteWarner.hasNonSilentLint(LintCategory.UNCHECKED);
  2717         // If this fails, something went wrong; we should not have
  2718         // found the identifier in the first place.
  2719         if (owntype == null) {
  2720             if (!pt.isErroneous())
  2721                 log.error(env.tree.pos(),
  2722                           "internal.error.cant.instantiate",
  2723                           sym, site,
  2724                           Type.toString(pt.getParameterTypes()));
  2725             owntype = types.createErrorType(site);
  2726         } else {
  2727             // System.out.println("call   : " + env.tree);
  2728             // System.out.println("method : " + owntype);
  2729             // System.out.println("actuals: " + argtypes);
  2730             List<Type> formals = owntype.getParameterTypes();
  2731             Type last = useVarargs ? formals.last() : null;
  2732             if (sym.name==names.init &&
  2733                 sym.owner == syms.enumSym)
  2734                 formals = formals.tail.tail;
  2735             List<JCExpression> args = argtrees;
  2736             while (formals.head != last) {
  2737                 JCTree arg = args.head;
  2738                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
  2739                 assertConvertible(arg, arg.type, formals.head, warn);
  2740                 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
  2741                 args = args.tail;
  2742                 formals = formals.tail;
  2744             if (useVarargs) {
  2745                 Type varArg = types.elemtype(last);
  2746                 while (args.tail != null) {
  2747                     JCTree arg = args.head;
  2748                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
  2749                     assertConvertible(arg, arg.type, varArg, warn);
  2750                     warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
  2751                     args = args.tail;
  2753             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
  2754                 // non-varargs call to varargs method
  2755                 Type varParam = owntype.getParameterTypes().last();
  2756                 Type lastArg = argtypes.last();
  2757                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
  2758                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
  2759                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
  2760                                 types.elemtype(varParam),
  2761                                 varParam);
  2764             if (warned && sym.type.tag == FORALL) {
  2765                 chk.warnUnchecked(env.tree.pos(),
  2766                                   "unchecked.meth.invocation.applied",
  2767                                   kindName(sym),
  2768                                   sym.name,
  2769                                   rs.methodArguments(sym.type.getParameterTypes()),
  2770                                   rs.methodArguments(argtypes),
  2771                                   kindName(sym.location()),
  2772                                   sym.location());
  2773                 owntype = new MethodType(owntype.getParameterTypes(),
  2774                                          types.erasure(owntype.getReturnType()),
  2775                                          owntype.getThrownTypes(),
  2776                                          syms.methodClass);
  2778             if (useVarargs) {
  2779                 JCTree tree = env.tree;
  2780                 Type argtype = owntype.getParameterTypes().last();
  2781                 if (owntype.getReturnType().tag != FORALL || warned) {
  2782                     chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym);
  2784                 Type elemtype = types.elemtype(argtype);
  2785                 switch (tree.getTag()) {
  2786                 case JCTree.APPLY:
  2787                     ((JCMethodInvocation) tree).varargsElement = elemtype;
  2788                     break;
  2789                 case JCTree.NEWCLASS:
  2790                     ((JCNewClass) tree).varargsElement = elemtype;
  2791                     break;
  2792                 default:
  2793                     throw new AssertionError(""+tree);
  2797         return owntype;
  2800     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
  2801         if (types.isConvertible(actual, formal, warn))
  2802             return;
  2804         if (formal.isCompound()
  2805             && types.isSubtype(actual, types.supertype(formal))
  2806             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
  2807             return;
  2809         if (false) {
  2810             // TODO: make assertConvertible work
  2811             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
  2812             throw new AssertionError("Tree: " + tree
  2813                                      + " actual:" + actual
  2814                                      + " formal: " + formal);
  2818     public void visitLiteral(JCLiteral tree) {
  2819         result = check(
  2820             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
  2822     //where
  2823     /** Return the type of a literal with given type tag.
  2824      */
  2825     Type litType(int tag) {
  2826         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
  2829     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  2830         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
  2833     public void visitTypeArray(JCArrayTypeTree tree) {
  2834         Type etype = attribType(tree.elemtype, env);
  2835         Type type = new ArrayType(etype, syms.arrayClass);
  2836         result = check(tree, type, TYP, pkind, pt);
  2839     /** Visitor method for parameterized types.
  2840      *  Bound checking is left until later, since types are attributed
  2841      *  before supertype structure is completely known
  2842      */
  2843     public void visitTypeApply(JCTypeApply tree) {
  2844         Type owntype = types.createErrorType(tree.type);
  2846         // Attribute functor part of application and make sure it's a class.
  2847         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  2849         // Attribute type parameters
  2850         List<Type> actuals = attribTypes(tree.arguments, env);
  2852         if (clazztype.tag == CLASS) {
  2853             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  2855             if (actuals.length() == formals.length() || actuals.length() == 0) {
  2856                 List<Type> a = actuals;
  2857                 List<Type> f = formals;
  2858                 while (a.nonEmpty()) {
  2859                     a.head = a.head.withTypeVar(f.head);
  2860                     a = a.tail;
  2861                     f = f.tail;
  2863                 // Compute the proper generic outer
  2864                 Type clazzOuter = clazztype.getEnclosingType();
  2865                 if (clazzOuter.tag == CLASS) {
  2866                     Type site;
  2867                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  2868                     if (clazz.getTag() == JCTree.IDENT) {
  2869                         site = env.enclClass.sym.type;
  2870                     } else if (clazz.getTag() == JCTree.SELECT) {
  2871                         site = ((JCFieldAccess) clazz).selected.type;
  2872                     } else throw new AssertionError(""+tree);
  2873                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
  2874                         if (site.tag == CLASS)
  2875                             site = types.asOuterSuper(site, clazzOuter.tsym);
  2876                         if (site == null)
  2877                             site = types.erasure(clazzOuter);
  2878                         clazzOuter = site;
  2881                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  2882             } else {
  2883                 if (formals.length() != 0) {
  2884                     log.error(tree.pos(), "wrong.number.type.args",
  2885                               Integer.toString(formals.length()));
  2886                 } else {
  2887                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  2889                 owntype = types.createErrorType(tree.type);
  2892         result = check(tree, owntype, TYP, pkind, pt);
  2895     public void visitTypeDisjunction(JCTypeDisjunction tree) {
  2896         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  2897         for (JCExpression typeTree : tree.alternatives) {
  2898             Type ctype = attribType(typeTree, env);
  2899             ctype = chk.checkType(typeTree.pos(),
  2900                           chk.checkClassType(typeTree.pos(), ctype),
  2901                           syms.throwableType);
  2902             multicatchTypes.append(ctype);
  2904         tree.type = result = check(tree, types.lub(multicatchTypes.toList()), TYP, pkind, pt);
  2907     public void visitTypeParameter(JCTypeParameter tree) {
  2908         TypeVar a = (TypeVar)tree.type;
  2909         Set<Type> boundSet = new HashSet<Type>();
  2910         if (a.bound.isErroneous())
  2911             return;
  2912         List<Type> bs = types.getBounds(a);
  2913         if (tree.bounds.nonEmpty()) {
  2914             // accept class or interface or typevar as first bound.
  2915             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
  2916             boundSet.add(types.erasure(b));
  2917             if (b.isErroneous()) {
  2918                 a.bound = b;
  2920             else if (b.tag == TYPEVAR) {
  2921                 // if first bound was a typevar, do not accept further bounds.
  2922                 if (tree.bounds.tail.nonEmpty()) {
  2923                     log.error(tree.bounds.tail.head.pos(),
  2924                               "type.var.may.not.be.followed.by.other.bounds");
  2925                     tree.bounds = List.of(tree.bounds.head);
  2926                     a.bound = bs.head;
  2928             } else {
  2929                 // if first bound was a class or interface, accept only interfaces
  2930                 // as further bounds.
  2931                 for (JCExpression bound : tree.bounds.tail) {
  2932                     bs = bs.tail;
  2933                     Type i = checkBase(bs.head, bound, env, false, true, false);
  2934                     if (i.isErroneous())
  2935                         a.bound = i;
  2936                     else if (i.tag == CLASS)
  2937                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
  2941         bs = types.getBounds(a);
  2943         // in case of multiple bounds ...
  2944         if (bs.length() > 1) {
  2945             // ... the variable's bound is a class type flagged COMPOUND
  2946             // (see comment for TypeVar.bound).
  2947             // In this case, generate a class tree that represents the
  2948             // bound class, ...
  2949             JCTree extending;
  2950             List<JCExpression> implementing;
  2951             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
  2952                 extending = tree.bounds.head;
  2953                 implementing = tree.bounds.tail;
  2954             } else {
  2955                 extending = null;
  2956                 implementing = tree.bounds;
  2958             JCClassDecl cd = make.at(tree.pos).ClassDef(
  2959                 make.Modifiers(PUBLIC | ABSTRACT),
  2960                 tree.name, List.<JCTypeParameter>nil(),
  2961                 extending, implementing, List.<JCTree>nil());
  2963             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
  2964             assert (c.flags() & COMPOUND) != 0;
  2965             cd.sym = c;
  2966             c.sourcefile = env.toplevel.sourcefile;
  2968             // ... and attribute the bound class
  2969             c.flags_field |= UNATTRIBUTED;
  2970             Env<AttrContext> cenv = enter.classEnv(cd, env);
  2971             enter.typeEnvs.put(c, cenv);
  2976     public void visitWildcard(JCWildcard tree) {
  2977         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  2978         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  2979             ? syms.objectType
  2980             : attribType(tree.inner, env);
  2981         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  2982                                               tree.kind.kind,
  2983                                               syms.boundClass),
  2984                        TYP, pkind, pt);
  2987     public void visitAnnotation(JCAnnotation tree) {
  2988         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
  2989         result = tree.type = syms.errType;
  2992     public void visitAnnotatedType(JCAnnotatedType tree) {
  2993         result = tree.type = attribType(tree.getUnderlyingType(), env);
  2996     public void visitErroneous(JCErroneous tree) {
  2997         if (tree.errs != null)
  2998             for (JCTree err : tree.errs)
  2999                 attribTree(err, env, ERR, pt);
  3000         result = tree.type = syms.errType;
  3003     /** Default visitor method for all other trees.
  3004      */
  3005     public void visitTree(JCTree tree) {
  3006         throw new AssertionError();
  3009     /** Main method: attribute class definition associated with given class symbol.
  3010      *  reporting completion failures at the given position.
  3011      *  @param pos The source position at which completion errors are to be
  3012      *             reported.
  3013      *  @param c   The class symbol whose definition will be attributed.
  3014      */
  3015     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  3016         try {
  3017             annotate.flush();
  3018             attribClass(c);
  3019         } catch (CompletionFailure ex) {
  3020             chk.completionError(pos, ex);
  3024     /** Attribute class definition associated with given class symbol.
  3025      *  @param c   The class symbol whose definition will be attributed.
  3026      */
  3027     void attribClass(ClassSymbol c) throws CompletionFailure {
  3028         if (c.type.tag == ERROR) return;
  3030         // Check for cycles in the inheritance graph, which can arise from
  3031         // ill-formed class files.
  3032         chk.checkNonCyclic(null, c.type);
  3034         Type st = types.supertype(c.type);
  3035         if ((c.flags_field & Flags.COMPOUND) == 0) {
  3036             // First, attribute superclass.
  3037             if (st.tag == CLASS)
  3038                 attribClass((ClassSymbol)st.tsym);
  3040             // Next attribute owner, if it is a class.
  3041             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
  3042                 attribClass((ClassSymbol)c.owner);
  3045         // The previous operations might have attributed the current class
  3046         // if there was a cycle. So we test first whether the class is still
  3047         // UNATTRIBUTED.
  3048         if ((c.flags_field & UNATTRIBUTED) != 0) {
  3049             c.flags_field &= ~UNATTRIBUTED;
  3051             // Get environment current at the point of class definition.
  3052             Env<AttrContext> env = enter.typeEnvs.get(c);
  3054             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  3055             // because the annotations were not available at the time the env was created. Therefore,
  3056             // we look up the environment chain for the first enclosing environment for which the
  3057             // lint value is set. Typically, this is the parent env, but might be further if there
  3058             // are any envs created as a result of TypeParameter nodes.
  3059             Env<AttrContext> lintEnv = env;
  3060             while (lintEnv.info.lint == null)
  3061                 lintEnv = lintEnv.next;
  3063             // Having found the enclosing lint value, we can initialize the lint value for this class
  3064             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
  3066             Lint prevLint = chk.setLint(env.info.lint);
  3067             JavaFileObject prev = log.useSource(c.sourcefile);
  3069             try {
  3070                 // java.lang.Enum may not be subclassed by a non-enum
  3071                 if (st.tsym == syms.enumSym &&
  3072                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  3073                     log.error(env.tree.pos(), "enum.no.subclassing");
  3075                 // Enums may not be extended by source-level classes
  3076                 if (st.tsym != null &&
  3077                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3078                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3079                     !target.compilerBootstrap(c)) {
  3080                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3082                 attribClassBody(env, c);
  3084                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3085             } finally {
  3086                 log.useSource(prev);
  3087                 chk.setLint(prevLint);
  3093     public void visitImport(JCImport tree) {
  3094         // nothing to do
  3097     /** Finish the attribution of a class. */
  3098     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  3099         JCClassDecl tree = (JCClassDecl)env.tree;
  3100         assert c == tree.sym;
  3102         // Validate annotations
  3103         chk.validateAnnotations(tree.mods.annotations, c);
  3105         // Validate type parameters, supertype and interfaces.
  3106         attribBounds(tree.typarams);
  3107         if (!c.isAnonymous()) {
  3108             //already checked if anonymous
  3109             chk.validate(tree.typarams, env);
  3110             chk.validate(tree.extending, env);
  3111             chk.validate(tree.implementing, env);
  3114         // If this is a non-abstract class, check that it has no abstract
  3115         // methods or unimplemented methods of an implemented interface.
  3116         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  3117             if (!relax)
  3118                 chk.checkAllDefined(tree.pos(), c);
  3121         if ((c.flags() & ANNOTATION) != 0) {
  3122             if (tree.implementing.nonEmpty())
  3123                 log.error(tree.implementing.head.pos(),
  3124                           "cant.extend.intf.annotation");
  3125             if (tree.typarams.nonEmpty())
  3126                 log.error(tree.typarams.head.pos(),
  3127                           "intf.annotation.cant.have.type.params");
  3128         } else {
  3129             // Check that all extended classes and interfaces
  3130             // are compatible (i.e. no two define methods with same arguments
  3131             // yet different return types).  (JLS 8.4.6.3)
  3132             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  3135         // Check that class does not import the same parameterized interface
  3136         // with two different argument lists.
  3137         chk.checkClassBounds(tree.pos(), c.type);
  3139         tree.type = c.type;
  3141         boolean assertsEnabled = false;
  3142         assert assertsEnabled = true;
  3143         if (assertsEnabled) {
  3144             for (List<JCTypeParameter> l = tree.typarams;
  3145                  l.nonEmpty(); l = l.tail)
  3146                 assert env.info.scope.lookup(l.head.name).scope != null;
  3149         // Check that a generic class doesn't extend Throwable
  3150         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  3151             log.error(tree.extending.pos(), "generic.throwable");
  3153         // Check that all methods which implement some
  3154         // method conform to the method they implement.
  3155         chk.checkImplementations(tree);
  3157         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3158             // Attribute declaration
  3159             attribStat(l.head, env);
  3160             // Check that declarations in inner classes are not static (JLS 8.1.2)
  3161             // Make an exception for static constants.
  3162             if (c.owner.kind != PCK &&
  3163                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  3164                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  3165                 Symbol sym = null;
  3166                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
  3167                 if (sym == null ||
  3168                     sym.kind != VAR ||
  3169                     ((VarSymbol) sym).getConstValue() == null)
  3170                     log.error(l.head.pos(), "icls.cant.have.static.decl");
  3174         // Check for cycles among non-initial constructors.
  3175         chk.checkCyclicConstructors(tree);
  3177         // Check for cycles among annotation elements.
  3178         chk.checkNonCyclicElements(tree);
  3180         // Check for proper use of serialVersionUID
  3181         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  3182             isSerializable(c) &&
  3183             (c.flags() & Flags.ENUM) == 0 &&
  3184             (c.flags() & ABSTRACT) == 0) {
  3185             checkSerialVersionUID(tree, c);
  3188         // Check type annotations applicability rules
  3189         validateTypeAnnotations(tree);
  3191         // where
  3192         /** check if a class is a subtype of Serializable, if that is available. */
  3193         private boolean isSerializable(ClassSymbol c) {
  3194             try {
  3195                 syms.serializableType.complete();
  3197             catch (CompletionFailure e) {
  3198                 return false;
  3200             return types.isSubtype(c.type, syms.serializableType);
  3203         /** Check that an appropriate serialVersionUID member is defined. */
  3204         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  3206             // check for presence of serialVersionUID
  3207             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  3208             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  3209             if (e.scope == null) {
  3210                 log.warning(LintCategory.SERIAL,
  3211                         tree.pos(), "missing.SVUID", c);
  3212                 return;
  3215             // check that it is static final
  3216             VarSymbol svuid = (VarSymbol)e.sym;
  3217             if ((svuid.flags() & (STATIC | FINAL)) !=
  3218                 (STATIC | FINAL))
  3219                 log.warning(LintCategory.SERIAL,
  3220                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  3222             // check that it is long
  3223             else if (svuid.type.tag != TypeTags.LONG)
  3224                 log.warning(LintCategory.SERIAL,
  3225                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  3227             // check constant
  3228             else if (svuid.getConstValue() == null)
  3229                 log.warning(LintCategory.SERIAL,
  3230                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  3233     private Type capture(Type type) {
  3234         return types.capture(type);
  3237     private void validateTypeAnnotations(JCTree tree) {
  3238         tree.accept(typeAnnotationsValidator);
  3240     //where
  3241     private final JCTree.Visitor typeAnnotationsValidator =
  3242         new TreeScanner() {
  3243         public void visitAnnotation(JCAnnotation tree) {
  3244             if (tree instanceof JCTypeAnnotation) {
  3245                 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
  3247             super.visitAnnotation(tree);
  3249         public void visitTypeParameter(JCTypeParameter tree) {
  3250             chk.validateTypeAnnotations(tree.annotations, true);
  3251             // don't call super. skip type annotations
  3252             scan(tree.bounds);
  3254         public void visitMethodDef(JCMethodDecl tree) {
  3255             // need to check static methods
  3256             if ((tree.sym.flags() & Flags.STATIC) != 0) {
  3257                 for (JCTypeAnnotation a : tree.receiverAnnotations) {
  3258                     if (chk.isTypeAnnotation(a, false))
  3259                         log.error(a.pos(), "annotation.type.not.applicable");
  3262             super.visitMethodDef(tree);
  3264     };
  3266     // <editor-fold desc="post-attribution visitor">
  3268     /**
  3269      * Handle missing types/symbols in an AST. This routine is useful when
  3270      * the compiler has encountered some errors (which might have ended up
  3271      * terminating attribution abruptly); if the compiler is used in fail-over
  3272      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  3273      * prevents NPE to be progagated during subsequent compilation steps.
  3274      */
  3275     public void postAttr(Env<AttrContext> env) {
  3276         new PostAttrAnalyzer().scan(env.tree);
  3279     class PostAttrAnalyzer extends TreeScanner {
  3281         private void initTypeIfNeeded(JCTree that) {
  3282             if (that.type == null) {
  3283                 that.type = syms.unknownType;
  3287         @Override
  3288         public void scan(JCTree tree) {
  3289             if (tree == null) return;
  3290             if (tree instanceof JCExpression) {
  3291                 initTypeIfNeeded(tree);
  3293             super.scan(tree);
  3296         @Override
  3297         public void visitIdent(JCIdent that) {
  3298             if (that.sym == null) {
  3299                 that.sym = syms.unknownSymbol;
  3303         @Override
  3304         public void visitSelect(JCFieldAccess that) {
  3305             if (that.sym == null) {
  3306                 that.sym = syms.unknownSymbol;
  3308             super.visitSelect(that);
  3311         @Override
  3312         public void visitClassDef(JCClassDecl that) {
  3313             initTypeIfNeeded(that);
  3314             if (that.sym == null) {
  3315                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  3317             super.visitClassDef(that);
  3320         @Override
  3321         public void visitMethodDef(JCMethodDecl that) {
  3322             initTypeIfNeeded(that);
  3323             if (that.sym == null) {
  3324                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  3326             super.visitMethodDef(that);
  3329         @Override
  3330         public void visitVarDef(JCVariableDecl that) {
  3331             initTypeIfNeeded(that);
  3332             if (that.sym == null) {
  3333                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  3334                 that.sym.adr = 0;
  3336             super.visitVarDef(that);
  3339         @Override
  3340         public void visitNewClass(JCNewClass that) {
  3341             if (that.constructor == null) {
  3342                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  3344             if (that.constructorType == null) {
  3345                 that.constructorType = syms.unknownType;
  3347             super.visitNewClass(that);
  3350         @Override
  3351         public void visitBinary(JCBinary that) {
  3352             if (that.operator == null)
  3353                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3354             super.visitBinary(that);
  3357         @Override
  3358         public void visitUnary(JCUnary that) {
  3359             if (that.operator == null)
  3360                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3361             super.visitUnary(that);
  3364     // </editor-fold>

mercurial