src/cpu/mips/vm/assembler_mips.hpp

Sat, 18 Feb 2017 18:25:01 -0500

author
fujie
date
Sat, 18 Feb 2017 18:25:01 -0500
changeset 315
8ac5b6ff8466
parent 301
d585b6706dc2
child 318
b7127982c97c
permissions
-rw-r--r--

[Assembler] Add right-rotate instructions for MIPS.

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #ifndef CPU_MIPS_VM_ASSEMBLER_MIPS_HPP
    27 #define CPU_MIPS_VM_ASSEMBLER_MIPS_HPP
    29 #include "asm/register.hpp"
    31 class BiasedLockingCounters;
    34 // Note: A register location is represented via a Register, not
    35 //       via an address for efficiency & simplicity reasons.
    37 class ArrayAddress;
    39 class Address VALUE_OBJ_CLASS_SPEC {
    41  public:
    42   enum ScaleFactor {
    43     no_scale = -1,
    44     times_1  =  0,
    45     times_2  =  1,
    46     times_4  =  2,
    47     times_8  =  3,
    48     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
    49   };
    51   static ScaleFactor times(int size) {
    52     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
    53     if (size == 8)  return times_8;
    54     if (size == 4)  return times_4;
    55     if (size == 2)  return times_2;
    56     return times_1;
    57   }
    59  private:
    60   Register         _base;
    61   Register         _index;
    62   ScaleFactor      _scale;
    63   int              _disp;
    64   RelocationHolder _rspec;
    66   // Easily misused constructors make them private
    67   // %%% can we make these go away?
    68   //FIXME aoqi
    69   //NOT_LP64(Address(address loc, RelocationHolder spec);)
    70   Address(address loc, RelocationHolder spec);
    71   Address(int disp, address loc, relocInfo::relocType rtype);
    72   Address(int disp, address loc, RelocationHolder spec);
    74  public:
    76  int disp() { return _disp; }
    77   // creation
    78   Address()
    79     : _base(noreg),
    80       _index(noreg),
    81       _scale(no_scale),
    82       _disp(0) {
    83   }
    85   // No default displacement otherwise Register can be implicitly
    86   // converted to 0(Register) which is quite a different animal.
    88   Address(Register base, int disp)
    89     : _base(base),
    90       _index(noreg),
    91       _scale(no_scale),
    92       _disp(disp) {
    93   }
    95   Address(Register base)
    96    : _base(base),
    97      _index(noreg),
    98      _scale(no_scale),
    99      _disp(0) {
   100   }
   102   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   103     : _base (base),
   104       _index(index),
   105       _scale(scale),
   106       _disp (disp) {
   107     assert(!index->is_valid() == (scale == Address::no_scale),
   108            "inconsistent address");
   109   }
   111   // The following two overloads are used in connection with the
   112   // ByteSize type (see sizes.hpp).  They simplify the use of
   113   // ByteSize'd arguments in assembly code. Note that their equivalent
   114   // for the optimized build are the member functions with int disp
   115   // argument since ByteSize is mapped to an int type in that case.
   116   //
   117   // Note: DO NOT introduce similar overloaded functions for WordSize
   118   // arguments as in the optimized mode, both ByteSize and WordSize
   119   // are mapped to the same type and thus the compiler cannot make a
   120   // distinction anymore (=> compiler errors).
   122 #ifdef ASSERT
   123   Address(Register base, ByteSize disp)
   124     : _base(base),
   125       _index(noreg),
   126       _scale(no_scale),
   127       _disp(in_bytes(disp)) {
   128   }
   130   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   131     : _base(base),
   132       _index(index),
   133       _scale(scale),
   134       _disp(in_bytes(disp)) {
   135     assert(!index->is_valid() == (scale == Address::no_scale),
   136            "inconsistent address");
   137   }
   138 #endif // ASSERT
   140   // accessors
   141   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   142   Register    base()             const { return _base;  }
   143   Register    index()            const { return _index; }
   144   ScaleFactor scale()            const { return _scale; }
   145   int         disp()             const { return _disp;  }
   147   // Convert the raw encoding form into the form expected by the constructor for
   148   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   149   // that to noreg for the Address constructor.
   150   //static Address make_raw(int base, int index, int scale, int disp);
   152   static Address make_array(ArrayAddress);
   154 /*
   155  private:
   156   bool base_needs_rex() const {
   157     return _base != noreg && _base->encoding() >= 8;
   158   }
   160   bool index_needs_rex() const {
   161     return _index != noreg &&_index->encoding() >= 8;
   162   }
   164   relocInfo::relocType reloc() const { return _rspec.type(); }
   165 */
   166   friend class Assembler;
   167   friend class MacroAssembler;
   168   friend class LIR_Assembler; // base/index/scale/disp
   169 };
   172 // Calling convention
   173 class Argument VALUE_OBJ_CLASS_SPEC {
   174  private:
   175   int _number;
   176  public:
   177   enum {
   178 #ifdef _LP64
   179     n_register_parameters = 8,   // 8 integer registers used to pass parameters
   180     n_float_register_parameters = 8   // 4 float registers used to pass parameters
   181 #else
   182     n_register_parameters = 4,   // 4 integer registers used to pass parameters
   183     n_float_register_parameters = 4   // 4 float registers used to pass parameters
   184 #endif
   185   };
   187   Argument(int number):_number(number){ }
   188   Argument successor() {return Argument(number() + 1);}
   190   int number()const {return _number;}
   191   bool is_Register()const {return _number < n_register_parameters;}
   192   bool is_FloatRegister()const {return _number < n_float_register_parameters;}
   194   Register as_Register()const {
   195     assert(is_Register(), "must be a register argument");
   196     return ::as_Register(A0->encoding() + _number);
   197   }
   198   FloatRegister  as_FloatRegister()const {
   199     assert(is_FloatRegister(), "must be a float register argument");
   200     return ::as_FloatRegister(F12->encoding() + _number);
   201   }
   203   Address as_caller_address()const {return Address(SP, (number() LP64_ONLY( -n_register_parameters)) * wordSize);}
   204 };
   208 //
   209 // AddressLiteral has been split out from Address because operands of this type
   210 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   211 // the few instructions that need to deal with address literals are unique and the
   212 // MacroAssembler does not have to implement every instruction in the Assembler
   213 // in order to search for address literals that may need special handling depending
   214 // on the instruction and the platform. As small step on the way to merging i486/amd64
   215 // directories.
   216 //
   217 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   218   friend class ArrayAddress;
   219   RelocationHolder _rspec;
   220   // Typically we use AddressLiterals we want to use their rval
   221   // However in some situations we want the lval (effect address) of the item.
   222   // We provide a special factory for making those lvals.
   223   bool _is_lval;
   225   // If the target is far we'll need to load the ea of this to
   226   // a register to reach it. Otherwise if near we can do rip
   227   // relative addressing.
   229   address          _target;
   231  protected:
   232   // creation
   233   AddressLiteral()
   234     : _is_lval(false),
   235       _target(NULL)
   236   {}
   238  public:
   240   AddressLiteral(address target, relocInfo::relocType rtype);
   242   AddressLiteral(address target, RelocationHolder const& rspec)
   243     : _rspec(rspec),
   244       _is_lval(false),
   245       _target(target)
   246   {}
   247 #ifdef _LP64
   248    // 32-bit complains about a multiple declaration for int*.
   249    AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
   250      : _target((address) addr),
   251        _rspec(rspec_from_rtype(rtype, (address) addr)) {}
   252 #endif
   255   AddressLiteral addr() {
   256     AddressLiteral ret = *this;
   257     ret._is_lval = true;
   258     return ret;
   259   }
   262  private:
   264   address target() { return _target; }
   265   bool is_lval() { return _is_lval; }
   267   relocInfo::relocType reloc() const { return _rspec.type(); }
   268   const RelocationHolder& rspec() const { return _rspec; }
   270   friend class Assembler;
   271   friend class MacroAssembler;
   272   friend class Address;
   273   friend class LIR_Assembler;
   274   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
   275     switch (rtype) {
   276       case relocInfo::external_word_type:
   277         return external_word_Relocation::spec(addr);
   278       case relocInfo::internal_word_type:
   279         return internal_word_Relocation::spec(addr);
   280       case relocInfo::opt_virtual_call_type:
   281         return opt_virtual_call_Relocation::spec();
   282       case relocInfo::static_call_type:
   283         return static_call_Relocation::spec();
   284       case relocInfo::runtime_call_type:
   285         return runtime_call_Relocation::spec();
   286       case relocInfo::poll_type:
   287       case relocInfo::poll_return_type:
   288         return Relocation::spec_simple(rtype);
   289       case relocInfo::none:
   290       case relocInfo::oop_type:
   291         // Oops are a special case. Normally they would be their own section
   292         // but in cases like icBuffer they are literals in the code stream that
   293         // we don't have a section for. We use none so that we get a literal address
   294         // which is always patchable.
   295         return RelocationHolder();
   296       default:
   297         ShouldNotReachHere();
   298         return RelocationHolder();
   299     }
   300   }
   302 };
   304 // Convience classes
   305 class RuntimeAddress: public AddressLiteral {
   307  public:
   309   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   311 };
   313 class OopAddress: public AddressLiteral {
   315  public:
   317   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   319 };
   321 class ExternalAddress: public AddressLiteral {
   323  public:
   325   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   327 };
   329 class InternalAddress: public AddressLiteral {
   331  public:
   333   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   335 };
   337 // x86 can do array addressing as a single operation since disp can be an absolute
   338 // address amd64 can't. We create a class that expresses the concept but does extra
   339 // magic on amd64 to get the final result
   341 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   342   private:
   344   AddressLiteral _base;
   345   Address        _index;
   347   public:
   349   ArrayAddress() {};
   350   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   351   AddressLiteral base() { return _base; }
   352   Address index() { return _index; }
   354 };
   356 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   358 // The MIPS LOONGSON Assembler: Pure assembler doing NO optimizations on the instruction
   359 // level ; i.e., what you write is what you get. The Assembler is generating code into
   360 // a CodeBuffer.
   362 class Assembler : public AbstractAssembler  {
   363   friend class AbstractAssembler; // for the non-virtual hack
   364   friend class LIR_Assembler; // as_Address()
   365   friend class StubGenerator;
   367  public:
   368   // opcode, highest 6 bits: bits[31...26]
   369   enum ops {
   370     special_op  = 0x00, // special_ops
   371     regimm_op   = 0x01, // regimm_ops
   372     j_op        = 0x02,
   373     jal_op      = 0x03,
   374     beq_op      = 0x04,
   375     bne_op      = 0x05,
   376     blez_op     = 0x06,
   377     bgtz_op     = 0x07,
   378     addi_op     = 0x08,
   379     addiu_op    = 0x09,
   380     slti_op     = 0x0a,
   381     sltiu_op    = 0x0b,
   382     andi_op     = 0x0c,
   383     ori_op      = 0x0d,
   384     xori_op     = 0x0e,
   385     lui_op      = 0x0f,
   386     cop0_op     = 0x10, // cop0_ops
   387     cop1_op     = 0x11, // cop1_ops
   388     gs_cop2_op  = 0x12, // gs_cop2_ops
   389     cop1x_op    = 0x13, // cop1x_ops
   390     beql_op     = 0x14,
   391     bnel_op     = 0x15,
   392     blezl_op    = 0x16,
   393     bgtzl_op    = 0x17,
   394     daddi_op    = 0x18,
   395     daddiu_op   = 0x19,
   396     ldl_op      = 0x1a,
   397     ldr_op      = 0x1b,
   398     special2_op = 0x1c, // special2_ops
   399     msa_op      = 0x1e, // msa_ops
   400     special3_op = 0x1f, // special3_ops
   401     lb_op       = 0x20,
   402     lh_op       = 0x21,
   403     lwl_op      = 0x22,
   404     lw_op       = 0x23,
   405     lbu_op      = 0x24,
   406     lhu_op      = 0x25,
   407     lwr_op      = 0x26,
   408     lwu_op      = 0x27,
   409     sb_op       = 0x28,
   410     sh_op       = 0x29,
   411     swl_op      = 0x2a,
   412     sw_op       = 0x2b,
   413     sdl_op      = 0x2c,
   414     sdr_op      = 0x2d,
   415     swr_op      = 0x2e,
   416     cache_op    = 0x2f,
   417     ll_op       = 0x30,
   418     lwc1_op     = 0x31,
   419     gs_lwc2_op  = 0x32, //gs_lwc2_ops
   420     pref_op     = 0x33,
   421     lld_op      = 0x34,
   422     ldc1_op     = 0x35,
   423     gs_ldc2_op  = 0x36, //gs_ldc2_ops
   424     ld_op       = 0x37,
   425     sc_op       = 0x38,
   426     swc1_op     = 0x39,
   427     gs_swc2_op  = 0x3a, //gs_swc2_ops
   428     scd_op      = 0x3c,
   429     sdc1_op     = 0x3d,
   430     gs_sdc2_op  = 0x3e, //gs_sdc2_ops
   431     sd_op       = 0x3f
   432   };
   434   static  const char *ops_name[];
   436   //special family, the opcode is in low 6 bits.
   437   enum special_ops {
   438     sll_op       = 0x00,
   439     movci_op     = 0x01,
   440     srl_op       = 0x02,
   441     sra_op       = 0x03,
   442     sllv_op      = 0x04,
   443     srlv_op      = 0x06,
   444     srav_op      = 0x07,
   445     jr_op        = 0x08,
   446     jalr_op      = 0x09,
   447     movz_op      = 0x0a,
   448     movn_op      = 0x0b,
   449     syscall_op   = 0x0c,
   450     break_op     = 0x0d,
   451     sync_op      = 0x0f,
   452     mfhi_op      = 0x10,
   453     mthi_op      = 0x11,
   454     mflo_op      = 0x12,
   455     mtlo_op      = 0x13,
   456     dsllv_op     = 0x14,
   457     dsrlv_op     = 0x16,
   458     dsrav_op     = 0x17,
   459     mult_op      = 0x18,
   460     multu_op     = 0x19,
   461     div_op       = 0x1a,
   462     divu_op      = 0x1b,
   463     dmult_op     = 0x1c,
   464     dmultu_op    = 0x1d,
   465     ddiv_op      = 0x1e,
   466     ddivu_op     = 0x1f,
   467     add_op       = 0x20,
   468     addu_op      = 0x21,
   469     sub_op       = 0x22,
   470     subu_op      = 0x23,
   471     and_op       = 0x24,
   472     or_op        = 0x25,
   473     xor_op       = 0x26,
   474     nor_op       = 0x27,
   475     slt_op       = 0x2a,
   476     sltu_op      = 0x2b,
   477     dadd_op      = 0x2c,
   478     daddu_op     = 0x2d,
   479     dsub_op      = 0x2e,
   480     dsubu_op     = 0x2f,
   481     tge_op       = 0x30,
   482     tgeu_op      = 0x31,
   483     tlt_op       = 0x32,
   484     tltu_op      = 0x33,
   485     teq_op       = 0x34,
   486     tne_op       = 0x36,
   487     dsll_op      = 0x38,
   488     dsrl_op      = 0x3a,
   489     dsra_op      = 0x3b,
   490     dsll32_op    = 0x3c,
   491     dsrl32_op    = 0x3e,
   492     dsra32_op    = 0x3f
   493   };
   495   static  const char* special_name[];
   497   //regimm family, the opcode is in rt[16...20], 5 bits
   498   enum regimm_ops {
   499     bltz_op      = 0x00,
   500     bgez_op      = 0x01,
   501     bltzl_op     = 0x02,
   502     bgezl_op     = 0x03,
   503     tgei_op      = 0x08,
   504     tgeiu_op     = 0x09,
   505     tlti_op      = 0x0a,
   506     tltiu_op     = 0x0b,
   507     teqi_op      = 0x0c,
   508     tnei_op      = 0x0e,
   509     bltzal_op    = 0x10,
   510     bgezal_op    = 0x11,
   511     bltzall_op   = 0x12,
   512     bgezall_op   = 0x13,
   513     bposge32_op  = 0x1c,
   514     bposge64_op  = 0x1d,
   515     synci_op     = 0x1f,
   516   };
   518   static  const char* regimm_name[];
   520   //cop0 family, the ops is in bits[25...21], 5 bits
   521   enum cop0_ops {
   522     mfc0_op     = 0x00,
   523     dmfc0_op    = 0x01,
   524     //
   525     mxgc0_op    = 0x03, //MFGC0, DMFGC0, MTGC0
   526     mtc0_op     = 0x04,
   527     dmtc0_op    = 0x05,
   528     rdpgpr_op   = 0x0a,
   529     inter_op    = 0x0b,
   530     wrpgpr_op   = 0x0c
   531   };
   533   //cop1 family, the ops is in bits[25...21], 5 bits
   534   enum cop1_ops {
   535     mfc1_op     = 0x00,
   536     dmfc1_op    = 0x01,
   537     cfc1_op     = 0x02,
   538     mfhc1_op    = 0x03,
   539     mtc1_op     = 0x04,
   540     dmtc1_op    = 0x05,
   541     ctc1_op     = 0x06,
   542     mthc1_op    = 0x07,
   543     bc1f_op     = 0x08,
   544     single_fmt  = 0x10,
   545     double_fmt  = 0x11,
   546     word_fmt    = 0x14,
   547     long_fmt    = 0x15,
   548     ps_fmt      = 0x16
   549   };
   552   //2 bist (bits[17...16]) of bc1x instructions (cop1)
   553   enum bc_ops {
   554     bcf_op       = 0x0,
   555     bct_op       = 0x1,
   556     bcfl_op      = 0x2,
   557     bctl_op      = 0x3,
   558   };
   560   // low 6 bits of c_x_fmt instructions (cop1)
   561   enum c_conds {
   562     f_cond       = 0x30,
   563     un_cond      = 0x31,
   564     eq_cond      = 0x32,
   565     ueq_cond     = 0x33,
   566     olt_cond     = 0x34,
   567     ult_cond     = 0x35,
   568     ole_cond     = 0x36,
   569     ule_cond     = 0x37,
   570     sf_cond      = 0x38,
   571     ngle_cond    = 0x39,
   572     seq_cond     = 0x3a,
   573     ngl_cond     = 0x3b,
   574     lt_cond      = 0x3c,
   575     nge_cond     = 0x3d,
   576     le_cond      = 0x3e,
   577     ngt_cond     = 0x3f
   578   };
   580   // low 6 bits of cop1 instructions
   581   enum float_ops {
   582     fadd_op      = 0x00,
   583     fsub_op      = 0x01,
   584     fmul_op      = 0x02,
   585     fdiv_op      = 0x03,
   586     fsqrt_op     = 0x04,
   587     fabs_op      = 0x05,
   588     fmov_op      = 0x06,
   589     fneg_op      = 0x07,
   590     froundl_op   = 0x08,
   591     ftruncl_op   = 0x09,
   592     fceill_op    = 0x0a,
   593     ffloorl_op   = 0x0b,
   594     froundw_op   = 0x0c,
   595     ftruncw_op   = 0x0d,
   596     fceilw_op    = 0x0e,
   597     ffloorw_op   = 0x0f,
   598     movf_f_op    = 0x11,
   599     movt_f_op    = 0x11,
   600     movz_f_op    = 0x12,
   601     movn_f_op    = 0x13,
   602     frecip_op    = 0x15,
   603     frsqrt_op    = 0x16,
   604     fcvts_op     = 0x20,
   605     fcvtd_op     = 0x21,
   606     fcvtw_op     = 0x24,
   607     fcvtl_op     = 0x25,
   608     fcvtps_op    = 0x26,
   609     fcvtspl_op   = 0x28,
   610     fpll_op      = 0x2c,
   611     fplu_op      = 0x2d,
   612     fpul_op      = 0x2e,
   613     fpuu_op      = 0x2f
   614   };
   616   static const char* cop1_name[];
   618   //cop1x family, the opcode is in low 6 bits.
   619   enum cop1x_ops {
   620     lwxc1_op    = 0x00,
   621     ldxc1_op    = 0x01,
   622     luxc1_op    = 0x05,
   623     swxc1_op    = 0x08,
   624     sdxc1_op    = 0x09,
   625     suxc1_op    = 0x0d,
   626     prefx_op    = 0x0f,
   628     alnv_ps_op  = 0x1e,
   629     madd_s_op   = 0x20,
   630     madd_d_op   = 0x21,
   631     madd_ps_op  = 0x26,
   632     msub_s_op   = 0x28,
   633     msub_d_op   = 0x29,
   634     msub_ps_op  = 0x2e,
   635     nmadd_s_op  = 0x30,
   636     nmadd_d_op  = 0x31,
   637     nmadd_ps_op = 0x36,
   638     nmsub_s_op  = 0x38,
   639     nmsub_d_op  = 0x39,
   640     nmsub_ps_op = 0x3e
   641   };
   643   static const char* cop1x_name[];
   645   //special2 family, the opcode is in low 6 bits.
   646   enum special2_ops {
   647     madd_op       = 0x00,
   648     maddu_op      = 0x01,
   649     mul_op        = 0x02,
   650     gs0x03_op     = 0x03,
   651     msub_op       = 0x04,
   652     msubu_op      = 0x05,
   653     gs0x06_op     = 0x06,
   654     gsemul2_op    = 0x07,
   655     gsemul3_op    = 0x08,
   656     gsemul4_op    = 0x09,
   657     gsemul5_op    = 0x0a,
   658     gsemul6_op    = 0x0b,
   659     gsemul7_op    = 0x0c,
   660     gsemul8_op    = 0x0d,
   661     gsemul9_op    = 0x0e,
   662     gsemul10_op   = 0x0f,
   663     gsmult_op     = 0x10,
   664     gsdmult_op    = 0x11,
   665     gsmultu_op    = 0x12,
   666     gsdmultu_op   = 0x13,
   667     gsdiv_op      = 0x14,
   668     gsddiv_op     = 0x15,
   669     gsdivu_op     = 0x16,
   670     gsddivu_op    = 0x17,
   671     gsmod_op      = 0x1c,
   672     gsdmod_op     = 0x1d,
   673     gsmodu_op     = 0x1e,
   674     gsdmodu_op    = 0x1f,
   675     clz_op        = 0x20,
   676     clo_op        = 0x21,
   677     xctx_op       = 0x22, //ctz, cto, dctz, dcto, gsX
   678     gsrxr_x_op    = 0x23, //gsX
   679     dclz_op       = 0x24,
   680     dclo_op       = 0x25,
   681     gsle_op       = 0x26,
   682     gsgt_op       = 0x27,
   683     gs86j_op      = 0x28,
   684     gsloop_op     = 0x29,
   685     gsaj_op       = 0x2a,
   686     gsldpc_op     = 0x2b,
   687     gs86set_op    = 0x30,
   688     gstm_op       = 0x31,
   689     gscvt_ld_op   = 0x32,
   690     gscvt_ud_op   = 0x33,
   691     gseflag_op    = 0x34,
   692     gscam_op      = 0x35,
   693     gstop_op      = 0x36,
   694     gssettag_op   = 0x37,
   695     gssdbbp_op    = 0x38
   696   };
   698   static  const char* special2_name[];
   700   // special3 family, the opcode is in low 6 bits.
   701   enum special3_ops {
   702     ext_op         = 0x00,
   703     dextm_op       = 0x01,
   704     dextu_op       = 0x02,
   705     dext_op        = 0x03,
   706     ins_op         = 0x04,
   707     dinsm_op       = 0x05,
   708     dinsu_op       = 0x06,
   709     dins_op        = 0x07,
   710     lxx_op         = 0x0a, //lwx, lhx, lbux, ldx
   711     insv_op        = 0x0c,
   712     dinsv_op       = 0x0d,
   713     ar1_op         = 0x10, //MIPS DSP
   714     cmp1_op        = 0x11, //MIPS DSP
   715     re1_op         = 0x12, //MIPS DSP, re1_ops
   716     sh1_op         = 0x13, //MIPS DSP
   717     ar2_op         = 0x14, //MIPS DSP
   718     cmp2_op        = 0x15, //MIPS DSP
   719     re2_op         = 0x16, //MIPS DSP, re2_ops
   720     sh2_op         = 0x17, //MIPS DSP
   721     ar3_op         = 0x18, //MIPS DSP
   722     bshfl_op       = 0x20  //seb, seh  
   723   };
   725   // re1_ops
   726   enum re1_ops {
   727     absq_s_qb_op = 0x01,
   728     repl_qb_op   = 0x02,
   729     replv_qb_op  = 0x03,
   730     absq_s_ph_op = 0x09,
   731     repl_ph_op   = 0x0a,
   732     replv_ph_op  = 0x0b,
   733     absq_s_w_op  = 0x11,
   734     bitrev_op    = 0x1b
   735   };
   737   // re2_ops
   738   enum re2_ops {
   739     repl_ob_op   = 0x02,
   740     replv_ob_op  = 0x03,
   741     absq_s_qh_op = 0x09,
   742     repl_qh_op   = 0x0a,
   743     replv_qh_op  = 0x0b,
   744     absq_s_pw_op = 0x11,
   745     repl_pw_op   = 0x12,
   746     replv_pw_op  = 0x13,
   747   };
   749   static  const char* special3_name[];
   751   // lwc2/gs_lwc2 family, the opcode is in low 6 bits.
   752   enum gs_lwc2_ops {
   753     gslq_op         = 0x20
   754   };
   756   static const char* gs_lwc2_name[];
   758   // ldc2/gs_ldc2 family, the opcode is in low 3 bits.
   759   enum gs_ldc2_ops {
   760     gslbx_op        =  0x0,
   761     gslhx_op        =  0x1,
   762     gslwx_op        =  0x2,
   763     gsldx_op        =  0x3,
   764     gslwxc1_op      =  0x6,
   765     gsldxc1_op      =  0x7
   766   };
   768   static const char* gs_ldc2_name[];
   770   // swc2/gs_swc2 family, the opcode is in low 6 bits.
   771   enum gs_swc2_ops {
   772     gssq_op         = 0x20
   773   };
   775   static const char* gs_swc2_name[];
   777   // sdc2/gs_sdc2 family, the opcode is in low 3 bits.
   778   enum gs_sdc2_ops {
   779     gssbx_op        =  0x0,
   780     gsshx_op        =  0x1,
   781     gsswx_op        =  0x2,
   782     gssdx_op        =  0x3,
   783     gsswxc1_op      =  0x6,
   784     gssdxc1_op      =  0x7
   785   };
   787   static const char* gs_sdc2_name[];
   789   /* 2013.10.16 Jin: merge from OpenJDK 8 */
   790   enum WhichOperand {
   791     // input to locate_operand, and format code for relocations
   792     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   793     disp32_operand = 1,          // embedded 32-bit displacement or address
   794     call32_operand = 2,          // embedded 32-bit self-relative displacement
   795 #ifndef _LP64
   796     _WhichOperand_limit = 3
   797 #else
   798      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   799     _WhichOperand_limit = 4
   800 #endif
   801   };
   803   static int opcode(int insn) { return (insn>>26)&0x3f; }
   804   static int rs(int insn) { return (insn>>21)&0x1f; }
   805   static int rt(int insn) { return (insn>>16)&0x1f; }
   806   static int rd(int insn) { return (insn>>11)&0x1f; }
   807   static int sa(int insn) { return (insn>>6)&0x1f; }
   808   static int special(int insn) { return insn&0x3f; }
   809   static int imm_off(int insn) { return (short)low16(insn); }
   811   static int low  (int x, int l) { return bitfield(x, 0, l); }
   812   static int low16(int x)        { return low(x, 16); }
   813   static int low26(int x)        { return low(x, 26); }
   815  protected:
   816   //help methods for instruction ejection
   818   // I-Type (Immediate)
   819   // 31        26 25        21 20      16 15                              0
   820   //|   opcode   |      rs    |    rt    |            immediat             |
   821   //|            |            |          |                                 |
   822   //      6              5          5                     16
   823   static int insn_ORRI(int op, int rs, int rt, int imm) { return (op<<26) | (rs<<21) | (rt<<16) | low16(imm); }
   825   // R-Type (Register)
   826   // 31         26 25        21 20      16 15      11 10         6 5         0
   827   //|   special   |      rs    |    rt    |    rd    |     0      |   opcode  |
   828   //| 0 0 0 0 0 0 |            |          |          | 0 0 0 0 0  |           |
   829   //      6              5          5           5          5            6
   830   static int insn_RRRO(int rs, int rt, int rd,   int op) { return (rs<<21) | (rt<<16) | (rd<<11)  | op; }
   831   static int insn_RRSO(int rt, int rd, int sa,   int op) { return (rt<<16) | (rd<<11) | (sa<<6)   | op; }
   832   static int insn_RRCO(int rs, int rt, int code, int op) { return (rs<<21) | (rt<<16) | (code<<6) | op; }
   834   static int insn_COP0(int op, int rt, int rd) { return (cop0_op<<26) | (op<<21) | (rt<<16) | (rd<<11); }
   835   static int insn_COP1(int op, int rt, int fs) { return (cop1_op<<26) | (op<<21) | (rt<<16) | (fs<<11); }
   837   static int insn_F3RO(int fmt, int ft, int fs, int fd, int func) {
   838     return (cop1_op<<26) | (fmt<<21) | (ft<<16) | (fs<<11) | (fd<<6) | func;
   839   }
   840   static int insn_F3ROX(int fmt, int ft, int fs, int fd, int func) {
   841     return (cop1x_op<<26) | (fmt<<21) | (ft<<16) | (fs<<11) | (fd<<6) | func;
   842   }
   845   //static int low  (int x, int l) { return bitfield(x, 0, l); }
   846   //static int low16(int x)        { return low(x, 16); }
   847   //static int low26(int x)        { return low(x, 26); }
   849   static int high  (int x, int l) { return bitfield(x, 32-l, l); }
   850   static int high16(int x)        { return high(x, 16); }
   851   static int high6 (int x)        { return high(x, 6); }
   853   //get the offset field of jump/branch instruction
   854   int offset(address entry) {
   855     assert(is_simm16((entry - pc() - 4) / 4), "change this code");
   856     if (!is_simm16((entry - pc() - 4) / 4)) {
   857       tty->print_cr("!!! is_simm16: %x", (entry - pc() - 4) / 4);
   858     }
   859     return (entry - pc() - 4) / 4;
   860   }
   863 public:
   864   using AbstractAssembler::offset;
   866   //sign expand with the sign bit is h
   867   static int expand(int x, int h) { return -(x & (1<<h)) | x;  }
   869   // If x is a mask, return the number of one-bit in x.
   870   // else return -1.
   871   static int is_int_mask(int x);
   873   // If x is a mask, return the number of one-bit in x.
   874   // else return -1.
   875   static int is_jlong_mask(jlong x);
   877   // MIPS lui/addiu is both sign extended, so if you wan't to use off32/imm32, you have to use the follow three
   878   static int split_low(int x) {
   879     return (x & 0xffff);
   880   }
   882   static int split_high(int x) {
   883     return ( (x >> 16) + ((x & 0x8000) != 0) ) & 0xffff;
   884   }
   886   static int merge(int low, int high) {
   887     return expand(low, 15) + (high<<16);
   888   }
   890 #ifdef _LP64
   891   static intptr_t merge(intptr_t x0, intptr_t x16, intptr_t x32, intptr_t x48) {
   892     return (x48 << 48) | (x32 << 32) | (x16 << 16) | x0;
   893   }
   894 #endif
   896   // modified by spark 2005/08/18
   897   static bool is_simm  (int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
   898   static bool is_simm16(int x)            { return is_simm(x, 16); }
   900   static bool fit_in_jal(int offset) {
   901     return is_simm(offset, 26);
   902   }
   905   // test if entry can be filled in the jl/jal,
   906   // must be used just before you emit jl/jal
   907   // by yjl 6/27/2005
   908   bool fit_int_jal(address entry) {
   909     return fit_in_jal(offset(entry));
   910   }
   912   bool fit_int_branch(address entry) {
   913     return is_simm16(offset(entry));
   914   }
   916 protected:
   917 #ifdef ASSERT
   918     #define CHECK_DELAY
   919 #endif
   920 #ifdef CHECK_DELAY
   921   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
   922 #endif
   924 public:
   925   void assert_not_delayed() {
   926 #ifdef CHECK_DELAY
   927     assert_not_delayed("next instruction should not be a delay slot");
   928 #endif
   929   }
   931   void assert_not_delayed(const char* msg) {
   932 #ifdef CHECK_DELAY
   933     //guarantee( delay_state == no_delay, msg );
   934     //aoqi_test
   935     if(delay_state != no_delay){
   936     tty->print_cr("%s:%d, pc: %lx", __func__, __LINE__, pc());
   937     }
   938     assert(delay_state == no_delay, msg);
   939 #endif
   940   }
   942 protected:
   943   // Delay slot helpers
   944   // cti is called when emitting control-transfer instruction,
   945   // BEFORE doing the emitting.
   946   // Only effective when assertion-checking is enabled.
   948   // called when emitting cti with a delay slot, AFTER emitting
   949   void has_delay_slot() {
   950 #ifdef CHECK_DELAY
   951     assert_not_delayed("just checking");
   952     delay_state = at_delay_slot;
   953 #endif
   954   }
   956 public:
   957   Assembler* delayed() {
   958 #ifdef CHECK_DELAY
   959     guarantee( delay_state == at_delay_slot, "delayed instructition is not in delay slot");
   960     delay_state = filling_delay_slot;
   961 #endif
   962     return this;
   963   }
   965   void flush() {
   966 #ifdef CHECK_DELAY
   967     guarantee( delay_state == no_delay, "ending code with a delay slot");
   968 #endif
   969     AbstractAssembler::flush();
   970   }
   972   inline void emit_long(int);  // shadows AbstractAssembler::emit_long
   973   inline void emit_data(int x) { emit_long(x); }
   974   inline void emit_data(int, RelocationHolder const&);
   975   inline void emit_data(int, relocInfo::relocType rtype);
   976   inline void check_delay();
   979   // Generic instructions
   980   // Does 32bit or 64bit as needed for the platform. In some sense these
   981   // belong in macro assembler but there is no need for both varieties to exist
   983 #ifndef _LP64
   984   void add(Register rd, Register rs, Register rt)  { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), add_op)); }
   985   void addi(Register rt, Register rs, int imm)     { emit_long(insn_ORRI(addi_op, (int)rs->encoding(), (int)rt->encoding(), imm)); }
   986   void addiu(Register rt, Register rs, int imm)    { emit_long(insn_ORRI(addiu_op, (int)rs->encoding(), (int)rt->encoding(), imm)); }
   987   void addu(Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), addu_op)); }
   988 #else
   989   void add(Register rd, Register rs, Register rt)   { dadd    (rd, rs, rt); }
   990   void add32(Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), add_op)); }
   991   void addu32(Register rd, Register rs, Register rt){ emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), addu_op)); }
   992   void addiu32(Register rt, Register rs, int imm)   { emit_long(insn_ORRI(addiu_op, (int)rs->encoding(), (int)rt->encoding(), imm)); }
   993   void addi(Register rt, Register rs, int imm)      { daddi  (rt, rs, imm);}
   994   void addiu(Register rt, Register rs, int imm)     { daddiu (rt, rs, imm);}
   995   void addu(Register rd, Register rs, Register rt)  { daddu  (rd, rs, rt);  }
   996 #endif
   998   void andr(Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), and_op)); }
   999   void andi(Register rt, Register rs, int imm)     { emit_long(insn_ORRI(andi_op, (int)rs->encoding(), (int)rt->encoding(), imm)); }
  1001   void beq    (Register rs, Register rt, int off)  { emit_long(insn_ORRI(beq_op, (int)rs->encoding(), (int)rt->encoding(), off)); has_delay_slot(); }
  1002   void beql   (Register rs, Register rt, int off)  { emit_long(insn_ORRI(beql_op, (int)rs->encoding(), (int)rt->encoding(), off)); has_delay_slot(); }
  1003   void bgez   (Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bgez_op, off)); has_delay_slot(); }
  1004   void bgezal (Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bgezal_op, off)); has_delay_slot(); }
  1005   void bgezall(Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bgezall_op, off)); has_delay_slot(); }
  1006   void bgezl  (Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bgezl_op, off)); has_delay_slot(); }
  1007   void bgtz   (Register rs, int off) { emit_long(insn_ORRI(bgtz_op,   (int)rs->encoding(), 0, off)); has_delay_slot(); }
  1008   void bgtzl  (Register rs, int off) { emit_long(insn_ORRI(bgtzl_op,  (int)rs->encoding(), 0, off)); has_delay_slot(); }
  1009   void blez   (Register rs, int off) { emit_long(insn_ORRI(blez_op,   (int)rs->encoding(), 0, off)); has_delay_slot(); }
  1010   void blezl  (Register rs, int off) { emit_long(insn_ORRI(blezl_op,  (int)rs->encoding(), 0, off)); has_delay_slot(); }
  1011   void bltz   (Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bltz_op, off)); has_delay_slot(); }
  1012   void bltzal (Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bltzal_op, off)); has_delay_slot(); }
  1013   void bltzall(Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bltzall_op, off)); has_delay_slot(); }
  1014   void bltzl  (Register rs, int off) { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), bltzl_op, off)); has_delay_slot(); }
  1015   void bne    (Register rs, Register rt, int off) { emit_long(insn_ORRI(bne_op,  (int)rs->encoding(), (int)rt->encoding(), off)); has_delay_slot(); }
  1016   void bnel   (Register rs, Register rt, int off) { emit_long(insn_ORRI(bnel_op, (int)rs->encoding(), (int)rt->encoding(), off)); has_delay_slot(); }
  1017   void brk    (int code) { emit_long(break_op | (code<<16)); }
  1019   void beq    (Register rs, Register rt, address entry) { beq(rs, rt, offset(entry)); }
  1020   void beql   (Register rs, Register rt, address entry) { beql(rs, rt, offset(entry));}
  1021   void bgez   (Register rs, address entry) { bgez   (rs, offset(entry)); }
  1022   void bgezal (Register rs, address entry) { bgezal (rs, offset(entry)); }
  1023   void bgezall(Register rs, address entry) { bgezall(rs, offset(entry)); }
  1024   void bgezl  (Register rs, address entry) { bgezl  (rs, offset(entry)); }
  1025   void bgtz   (Register rs, address entry) { bgtz   (rs, offset(entry)); }
  1026   void bgtzl  (Register rs, address entry) { bgtzl  (rs, offset(entry)); }
  1027   void blez   (Register rs, address entry) { blez   (rs, offset(entry)); }
  1028   void blezl  (Register rs, address entry) { blezl  (rs, offset(entry)); }
  1029   void bltz   (Register rs, address entry) { bltz   (rs, offset(entry)); }
  1030   void bltzal (Register rs, address entry) { bltzal (rs, offset(entry)); }
  1031   void bltzall(Register rs, address entry) { bltzall(rs, offset(entry)); }
  1032   void bltzl  (Register rs, address entry) { bltzl  (rs, offset(entry)); }
  1033   void bne    (Register rs, Register rt, address entry) { bne(rs, rt, offset(entry)); }
  1034   void bnel   (Register rs, Register rt, address entry) { bnel(rs, rt, offset(entry)); }
  1036   void beq    (Register rs, Register rt, Label& L) { beq(rs, rt, target(L)); }
  1037   void beql   (Register rs, Register rt, Label& L) { beql(rs, rt, target(L)); }
  1038   void bgez   (Register rs, Label& L){ bgez   (rs, target(L)); }
  1039   void bgezal (Register rs, Label& L){ bgezal (rs, target(L)); }
  1040   void bgezall(Register rs, Label& L){ bgezall(rs, target(L)); }
  1041   void bgezl  (Register rs, Label& L){ bgezl  (rs, target(L)); }
  1042   void bgtz   (Register rs, Label& L){ bgtz   (rs, target(L)); }
  1043   void bgtzl  (Register rs, Label& L){ bgtzl  (rs, target(L)); }
  1044   void blez   (Register rs, Label& L){ blez   (rs, target(L)); }
  1045   void blezl  (Register rs, Label& L){ blezl  (rs, target(L)); }
  1046   void bltz   (Register rs, Label& L){ bltz   (rs, target(L)); }
  1047   void bltzal (Register rs, Label& L){ bltzal (rs, target(L)); }
  1048   void bltzall(Register rs, Label& L){ bltzall(rs, target(L)); }
  1049   void bltzl  (Register rs, Label& L){ bltzl  (rs, target(L)); }
  1050   void bne    (Register rs, Register rt, Label& L){ bne(rs, rt, target(L)); }
  1051   void bnel   (Register rs, Register rt, Label& L){ bnel(rs, rt, target(L)); }
  1053   void dadd  (Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), dadd_op)); }
  1054   void daddi (Register rt, Register rs, int imm)     { emit_long(insn_ORRI(daddi_op,  (int)rs->encoding(), (int)rt->encoding(), imm)); }
  1055   void daddiu(Register rt, Register rs, int imm)     { emit_long(insn_ORRI(daddiu_op, (int)rs->encoding(), (int)rt->encoding(), imm)); }
  1056   void daddu (Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), daddu_op)); }
  1057   void ddiv  (Register rs, Register rt)              { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, ddiv_op));  }
  1058   void ddivu (Register rs, Register rt)              { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, ddivu_op)); }
  1060   void movz  (Register rd, Register rs,   Register rt) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), movz_op)); }
  1061   void movn  (Register rd, Register rs,   Register rt) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), movn_op)); }
  1063   void movt  (Register rd, Register rs) { emit_long(((int)rs->encoding() << 21) | (1 << 16) | ((int)rd->encoding() << 11) | movci_op); }
  1064   void movf  (Register rd, Register rs) { emit_long(((int)rs->encoding() << 21) | ((int)rd->encoding() << 11) | movci_op); }
  1066   enum bshfl_ops {
  1067      seb_op = 0x10,
  1068      seh_op = 0x18
  1069   };
  1070   void seb  (Register rd, Register rt) { emit_long((special3_op << 26) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (seb_op << 6) | bshfl_op); }
  1071   void seh  (Register rd, Register rt) { emit_long((special3_op << 26) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (seh_op << 6) | bshfl_op); }
  1073   void ext  (Register rt, Register rs, int pos, int size) { 
  1074      guarantee((0 <= pos) && (pos < 32), "pos must be in [0, 32)");
  1075      guarantee((0 < size) && (size <= 32), "size must be in (0, 32]");
  1076      guarantee((0 < pos + size) && (pos + size <= 32), "pos + size must be in (0, 32]");
  1078      int lsb  = pos;
  1079      int msbd = size - 1;
  1081      emit_long((special3_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | (msbd << 11) | (lsb << 6) | ext_op); 
  1084   void dext  (Register rt, Register rs, int pos, int size) { 
  1085      guarantee((0 <= pos) && (pos < 32), "pos must be in [0, 32)");
  1086      guarantee((0 < size) && (size <= 32), "size must be in (0, 32]");
  1087      guarantee((0 < pos + size) && (pos + size <= 63), "pos + size must be in (0, 63]");
  1089      int lsb  = pos;
  1090      int msbd = size - 1;
  1092      emit_long((special3_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | (msbd << 11) | (lsb << 6) | dext_op); 
  1095   void rotr (Register rd, Register rt, int sa) { 
  1096      emit_long((special_op << 26) | (1 << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (low(sa, 5) << 6) | srl_op); 
  1099   void drotr (Register rd, Register rt, int sa) { 
  1100      emit_long((special_op << 26) | (1 << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (low(sa, 5) << 6) | dsrl_op); 
  1103   void drotr32 (Register rd, Register rt, int sa) { 
  1104      emit_long((special_op << 26) | (1 << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (low(sa, 5) << 6) | dsrl32_op); 
  1107   void rotrv (Register rd, Register rt, Register rs) { 
  1108      emit_long((special_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (1 << 6) | srlv_op); 
  1111   void drotrv (Register rd, Register rt, Register rs) { 
  1112      emit_long((special_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (1 << 6) | dsrlv_op); 
  1115 // Do mult and div need both 32-bit and 64-bit version? FIXME aoqi
  1116 //#ifndef _LP64
  1117 #if 1
  1118   void div   (Register rs, Register rt)              { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, div_op)); }
  1119   void divu  (Register rs, Register rt)              { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, divu_op)); }
  1120 #else
  1121   void div   (Register rs, Register rt)              { ddiv (rs, rt);}
  1122   void divu  (Register rs, Register rt)              { ddivu(rs, rt);}
  1123 #endif
  1124   void dmult (Register rs, Register rt)              { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, dmult_op)); }
  1125   void dmultu(Register rs, Register rt)              { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, dmultu_op)); }
  1126   void dsll  (Register rd, Register rt , int sa)     { emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, dsll_op)); }
  1127   void dsllv (Register rd, Register rt, Register rs) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), dsllv_op)); }
  1128   void dsll32(Register rd, Register rt , int sa)     { emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, dsll32_op)); }
  1129   void dsra  (Register rd, Register rt , int sa)     { emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, dsra_op)); }
  1130   void dsrav (Register rd, Register rt, Register rs) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), dsrav_op)); }
  1131   void dsra32(Register rd, Register rt , int sa)     { emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, dsra32_op)); }
  1132   void dsrl  (Register rd, Register rt , int sa)     { emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, dsrl_op)); }
  1133   void dsrlv (Register rd, Register rt, Register rs)  { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), dsrlv_op)); }
  1134   void dsrl32(Register rd, Register rt , int sa)     { emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, dsrl32_op)); }
  1135   void dsub  (Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), dsub_op)); }
  1136   void dsubu (Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), dsubu_op)); }
  1138   void b(int off)       { beq(R0, R0, off); }
  1139   void b(address entry) { b(offset(entry)); }
  1140   void b(Label& L)      { b(target(L)); }
  1142   void j(address entry);
  1143   void jal(address entry);
  1145   void jalr(Register rd, Register rs) { emit_long( ((int)rs->encoding()<<21) | ((int)rd->encoding()<<11) | jalr_op); has_delay_slot(); }
  1146   void jalr(Register rs)              { jalr(RA, rs); }
  1147   void jalr()                         { jalr(T9); }
  1149   void jr(Register rs) { emit_long(((int)rs->encoding()<<21) | jr_op); has_delay_slot(); }
  1151   void lb (Register rt, Register base, int off) { emit_long(insn_ORRI(lb_op,  (int)base->encoding(), (int)rt->encoding(), off)); }
  1152   void lbu(Register rt, Register base, int off) { emit_long(insn_ORRI(lbu_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1153   void ld (Register rt, Register base, int off) { emit_long(insn_ORRI(ld_op,  (int)base->encoding(), (int)rt->encoding(), off)); }
  1154   void ldl(Register rt, Register base, int off) { emit_long(insn_ORRI(ldl_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1155   void ldr(Register rt, Register base, int off) { emit_long(insn_ORRI(ldr_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1156   void lh (Register rt, Register base, int off) { emit_long(insn_ORRI(lh_op,  (int)base->encoding(), (int)rt->encoding(), off)); }
  1157   void lhu(Register rt, Register base, int off) { emit_long(insn_ORRI(lhu_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1158   void ll (Register rt, Register base, int off) { emit_long(insn_ORRI(ll_op,  (int)base->encoding(), (int)rt->encoding(), off)); }
  1159   void lld(Register rt, Register base, int off) { emit_long(insn_ORRI(lld_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1160   void lui(Register rt, int imm)                { emit_long(insn_ORRI(lui_op, 0, (int)rt->encoding(), imm)); }
  1161   void lw (Register rt, Register base, int off) { emit_long(insn_ORRI(lw_op,  (int)base->encoding(), (int)rt->encoding(), off)); }
  1162   void lwl(Register rt, Register base, int off) { emit_long(insn_ORRI(lwl_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1163   void lwr(Register rt, Register base, int off) { emit_long(insn_ORRI(lwr_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1164   void lwu(Register rt, Register base, int off) { emit_long(insn_ORRI(lwu_op, (int)base->encoding(), (int)rt->encoding(), off)); }
  1166   void lb (Register rt, Address src);
  1167   void lbu(Register rt, Address src);
  1168   void ld (Register rt, Address src);
  1169   void ldl(Register rt, Address src);
  1170   void ldr(Register rt, Address src);
  1171   void lh (Register rt, Address src);
  1172   void lhu(Register rt, Address src);
  1173   void ll (Register rt, Address src);
  1174   void lld(Register rt, Address src);
  1175   void lw (Register rt, Address src);
  1176   void lwl(Register rt, Address src);
  1177   void lwr(Register rt, Address src);
  1178   void lwu(Register rt, Address src);
  1179   void lea(Register rt, Address src);
  1180   void pref(int hint, Register base, int off) { emit_long(insn_ORRI(pref_op, (int)base->encoding(), low(hint, 5), low(off, 16))); }
  1182   void mfhi (Register rd)              { emit_long( ((int)rd->encoding()<<11) | mfhi_op ); }
  1183   void mflo (Register rd)              { emit_long( ((int)rd->encoding()<<11) | mflo_op ); }
  1184   void mthi (Register rs)              { emit_long( ((int)rs->encoding()<<21) | mthi_op ); }
  1185   void mtlo (Register rs)              { emit_long( ((int)rs->encoding()<<21) | mtlo_op ); }
  1186 // Do mult and div need both 32-bit and 64-bit version? FIXME aoqi
  1187 //#ifndef _LP64
  1188 #if 1
  1189   void mult (Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, mult_op)); }
  1190   void multu(Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), 0, multu_op)); }
  1191 #else
  1192   void mult (Register rs, Register rt) { dmult  (rs, rt); }
  1193   void multu(Register rs, Register rt) { dmultu (rs, rt); }
  1194 #endif
  1196   void nor(Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), nor_op)); }
  1198   void orr(Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), or_op)); }
  1199   void ori(Register rt, Register rs, int imm)     { emit_long(insn_ORRI(ori_op, (int)rs->encoding(), (int)rt->encoding(), imm)); }
  1201   void sb   (Register rt, Register base, int off)     { emit_long(insn_ORRI(sb_op,    (int)base->encoding(), (int)rt->encoding(), off)); }
  1202   void sc   (Register rt, Register base, int off)     { emit_long(insn_ORRI(sc_op,    (int)base->encoding(), (int)rt->encoding(), off)); }
  1203   void scd  (Register rt, Register base, int off)     { emit_long(insn_ORRI(scd_op,   (int)base->encoding(), (int)rt->encoding(), off)); }
  1204   void sd   (Register rt, Register base, int off)     { emit_long(insn_ORRI(sd_op,    (int)base->encoding(), (int)rt->encoding(), off)); }
  1205   void sdl  (Register rt, Register base, int off)     { emit_long(insn_ORRI(sdl_op,   (int)base->encoding(), (int)rt->encoding(), off)); }
  1206   void sdr  (Register rt, Register base, int off)     { emit_long(insn_ORRI(sdr_op,   (int)base->encoding(), (int)rt->encoding(), off)); }
  1207   void sh   (Register rt, Register base, int off)     { emit_long(insn_ORRI(sh_op,    (int)base->encoding(), (int)rt->encoding(), off)); }
  1208 //#ifndef _LP64
  1209 #if 1
  1210   void sll  (Register rd, Register rt ,  int sa)      { emit_long(insn_RRSO((int)rt->encoding(),  (int)rd->encoding(),   sa,      sll_op)); }
  1211   void sllv (Register rd, Register rt,   Register rs) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), sllv_op)); }
  1212 #else
  1213   void sll  (Register rd, Register rt ,  int sa)      { dsll  (rd, rt, sa);}
  1214   void sllv (Register rd, Register rt,   Register rs) { dsllv (rd, rt, rs); }
  1215 #endif
  1216   void slt  (Register rd, Register rs,   Register rt) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), slt_op)); }
  1217   void slti (Register rt, Register rs,   int imm)     { emit_long(insn_ORRI(slti_op,  (int)rs->encoding(),   (int)rt->encoding(), imm)); }
  1218   void sltiu(Register rt, Register rs,   int imm)     { emit_long(insn_ORRI(sltiu_op, (int)rs->encoding(),   (int)rt->encoding(), imm)); }
  1219   void sltu (Register rd, Register rs,   Register rt) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), sltu_op)); }
  1220 //#ifndef _LP64
  1221 #if 1
  1222   void sra  (Register rd, Register rt ,  int sa)      { emit_long(insn_RRSO((int)rt->encoding(),  (int)rd->encoding(),   sa,      sra_op)); }
  1223   void srav (Register rd, Register rt,   Register rs) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), srav_op)); }
  1224   void srl  (Register rd, Register rt ,  int sa)      { emit_long(insn_RRSO((int)rt->encoding(),  (int)rd->encoding(),   sa,      srl_op)); }
  1225   void srlv (Register rd, Register rt,   Register rs) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), srlv_op)); }
  1226 #else
  1227   void sra  (Register rd, Register rt ,  int sa)      { dsra  (rd, rt, sa); }
  1228   void srav (Register rd, Register rt,   Register rs) { dsrav (rd, rt, rs); }
  1229   void srl  (Register rd, Register rt ,  int sa)      { dsrl  (rd, rt, sa); }
  1230   void srlv (Register rd, Register rt,   Register rs) { dsrlv (rd, rt, rs); }
  1231 #endif
  1232 #ifndef _LP64
  1233   void sub  (Register rd, Register rs,   Register rt) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), sub_op)); }
  1234   void subu (Register rd, Register rs,   Register rt) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), subu_op)); }
  1235 #else
  1236   void sub  (Register rd, Register rs,   Register rt) { dsub  (rd, rs, rt); }
  1237   void subu (Register rd, Register rs,   Register rt) { dsubu (rd, rs, rt); }
  1238   void subu32 (Register rd, Register rs,   Register rt) { emit_long(insn_RRRO((int)rs->encoding(),  (int)rt->encoding(),   (int)rd->encoding(), subu_op)); }
  1239 #endif
  1240   void sw   (Register rt, Register base, int off)     { emit_long(insn_ORRI(sw_op,    (int)base->encoding(), (int)rt->encoding(), off)); }
  1241   void swl  (Register rt, Register base, int off)     { emit_long(insn_ORRI(swl_op,   (int)base->encoding(), (int)rt->encoding(), off)); }
  1242   void swr  (Register rt, Register base, int off)     { emit_long(insn_ORRI(swr_op,   (int)base->encoding(), (int)rt->encoding(), off)); }
  1243   void sync ()                                        { emit_long(sync_op); }
  1244   void syscall(int code)                              { emit_long( (code<<6) | syscall_op ); }
  1246   void sb(Register rt, Address dst);
  1247   void sc(Register rt, Address dst);
  1248   void scd(Register rt, Address dst);
  1249   void sd(Register rt, Address dst);
  1250   void sdl(Register rt, Address dst);
  1251   void sdr(Register rt, Address dst);
  1252   void sh(Register rt, Address dst);
  1253   void sw(Register rt, Address dst);
  1254   void swl(Register rt, Address dst);
  1255   void swr(Register rt, Address dst);
  1257   void teq  (Register rs, Register rt, int code) { emit_long(insn_RRCO((int)rs->encoding(),   (int)rt->encoding(), code, teq_op)); }
  1258   void teqi (Register rs, int imm)               { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), teqi_op, imm)); }
  1259   void tge  (Register rs, Register rt, int code) { emit_long(insn_RRCO((int)rs->encoding(),   (int)rt->encoding(), code, tge_op)); }
  1260   void tgei (Register rs, int imm)               { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), tgei_op, imm)); }
  1261   void tgeiu(Register rs, int imm)               { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), tgeiu_op, imm)); }
  1262   void tgeu (Register rs, Register rt, int code) { emit_long(insn_RRCO((int)rs->encoding(),   (int)rt->encoding(), code, tgeu_op)); }
  1263   void tlt  (Register rs, Register rt, int code) { emit_long(insn_RRCO((int)rs->encoding(),   (int)rt->encoding(), code, tlt_op)); }
  1264   void tlti (Register rs, int imm)               { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), tlti_op, imm)); }
  1265   void tltiu(Register rs, int imm)               { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), tltiu_op, imm)); }
  1266   void tltu (Register rs, Register rt, int code) { emit_long(insn_RRCO((int)rs->encoding(),   (int)rt->encoding(), code, tltu_op)); }
  1267   void tne  (Register rs, Register rt, int code) { emit_long(insn_RRCO((int)rs->encoding(),   (int)rt->encoding(), code, tne_op)); }
  1268   void tnei (Register rs, int imm)               { emit_long(insn_ORRI(regimm_op, (int)rs->encoding(), tnei_op, imm)); }
  1270   void xorr(Register rd, Register rs, Register rt) { emit_long(insn_RRRO((int)rs->encoding(), (int)rt->encoding(), (int)rd->encoding(), xor_op)); }
  1271   void xori(Register rt, Register rs, int imm) { emit_long(insn_ORRI(xori_op, (int)rs->encoding(), (int)rt->encoding(), imm)); }
  1273   void nop()               { emit_long(0); }
  1277   void ldc1(FloatRegister ft, Register base, int off) { emit_long(insn_ORRI(ldc1_op, (int)base->encoding(), (int)ft->encoding(), off)); }
  1278   void lwc1(FloatRegister ft, Register base, int off) { emit_long(insn_ORRI(lwc1_op, (int)base->encoding(), (int)ft->encoding(), off)); }
  1279   void ldc1(FloatRegister ft, Address src);
  1280   void lwc1(FloatRegister ft, Address src);
  1282   //COP0
  1283   void mfc0  (Register rt, Register rd)       { emit_long(insn_COP0( mfc0_op, (int)rt->encoding(), (int)rd->encoding())); }
  1284   void dmfc0 (Register rt, FloatRegister rd)  { emit_long(insn_COP0(dmfc0_op, (int)rt->encoding(), (int)rd->encoding())); }
  1285   // MFGC0, DMFGC0, MTGC0, DMTGC0 not implemented yet
  1286   void mtc0  (Register rt, Register rd)       { emit_long(insn_COP0( mtc0_op, (int)rt->encoding(), (int)rd->encoding())); }
  1287   void dmtc0 (Register rt, FloatRegister rd)  { emit_long(insn_COP0(dmtc0_op, (int)rt->encoding(), (int)rd->encoding())); }
  1288   //COP0 end
  1291   //COP1
  1292   void mfc1 (Register rt, FloatRegister fs) { emit_long(insn_COP1 (mfc1_op, (int)rt->encoding(), (int)fs->encoding())); }
  1293   void dmfc1(Register rt, FloatRegister fs) { emit_long(insn_COP1(dmfc1_op, (int)rt->encoding(), (int)fs->encoding())); }
  1294   void cfc1 (Register rt, int fs)           { emit_long(insn_COP1( cfc1_op, (int)rt->encoding(), fs)); }
  1295   void mfhc1(Register rt, int fs)           { emit_long(insn_COP1(mfhc1_op, (int)rt->encoding(), fs)); }
  1296   void mtc1 (Register rt, FloatRegister fs) { emit_long(insn_COP1( mtc1_op, (int)rt->encoding(), (int)fs->encoding())); }
  1297   void dmtc1(Register rt, FloatRegister fs) { emit_long(insn_COP1(dmtc1_op, (int)rt->encoding(), (int)fs->encoding())); }
  1298   void ctc1 (Register rt, FloatRegister fs) { emit_long(insn_COP1( ctc1_op, (int)rt->encoding(), (int)fs->encoding())); }
  1299   void ctc1 (Register rt, int fs)           { emit_long(insn_COP1(ctc1_op,  (int)rt->encoding(), fs)); }
  1300   void mthc1(Register rt, int fs)           { emit_long(insn_COP1(mthc1_op, (int)rt->encoding(), fs)); }
  1302   void bc1f (int off) { emit_long(insn_ORRI(cop1_op, bc1f_op, bcf_op, off)); has_delay_slot(); }
  1303   void bc1fl(int off) { emit_long(insn_ORRI(cop1_op, bc1f_op, bcfl_op, off)); has_delay_slot(); }
  1304   void bc1t (int off) { emit_long(insn_ORRI(cop1_op, bc1f_op, bct_op, off)); has_delay_slot(); }
  1305   void bc1tl(int off) { emit_long(insn_ORRI(cop1_op, bc1f_op, bctl_op, off));  has_delay_slot(); }
  1307   void bc1f (address entry) { bc1f(offset(entry)); }
  1308   void bc1fl(address entry) { bc1fl(offset(entry)); }
  1309   void bc1t (address entry) { bc1t(offset(entry)); }
  1310   void bc1tl(address entry) { bc1tl(offset(entry)); }
  1312   void bc1f (Label& L) { bc1f(target(L)); }
  1313   void bc1fl(Label& L) { bc1fl(target(L)); }
  1314   void bc1t (Label& L) { bc1t(target(L)); }
  1315   void bc1tl(Label& L) { bc1tl(target(L)); }
  1317 //R0->encoding() is 0; INSN_SINGLE is enclosed by {} for ctags.
  1318 #define INSN_SINGLE(r1, r2, r3, op)   \
  1319   { emit_long(insn_F3RO(single_fmt, (int)r1->encoding(), (int)r2->encoding(), (int)r3->encoding(), op));}
  1320   void add_s    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, fd, fadd_op)}
  1321   void sub_s    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, fd, fsub_op)}
  1322   void mul_s    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, fd, fmul_op)}
  1323   void div_s    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, fd, fdiv_op)}
  1324   void sqrt_s   (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fsqrt_op)}
  1325   void abs_s    (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fabs_op)}
  1326   void mov_s    (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fmov_op)}
  1327   void neg_s    (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fneg_op)}
  1328   void round_l_s(FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, froundl_op)}
  1329   void trunc_l_s(FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, ftruncl_op)}
  1330   void ceil_l_s (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fceill_op)}
  1331   void floor_l_s(FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, ffloorl_op)}
  1332   void round_w_s(FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, froundw_op)}
  1333   void trunc_w_s(FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, ftruncw_op)}
  1334   void ceil_w_s (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fceilw_op)}
  1335   void floor_w_s(FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, ffloorw_op)}
  1336   //null
  1337   //void movf_s(FloatRegister rd, FloatRegister rs, FPConditionCode cc) { unimplemented(" movf_s")}
  1338   //void movt_s(FloatRegister rd, FloatRegister rs, FPConditionCode cc) { unimplemented(" movt_s") }
  1339   void movz_s  (FloatRegister fd, FloatRegister fs, Register rt) {INSN_SINGLE(rt, fs, fd, movz_f_op)}
  1340   void movn_s  (FloatRegister fd, FloatRegister fs, Register rt) {INSN_SINGLE(rt, fs, fd, movn_f_op)}
  1341   //null
  1342   void recip_s (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, frecip_op)}
  1343   void rsqrt_s (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, frsqrt_op)}
  1344   //null
  1345   void cvt_d_s (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fcvtd_op)}
  1346   //null
  1347   void cvt_w_s (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fcvtw_op)}
  1348   void cvt_l_s (FloatRegister fd, FloatRegister fs) {INSN_SINGLE(R0, fs, fd, fcvtl_op)}
  1349   void cvt_ps_s(FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, fd, fcvtps_op)}
  1350   //null
  1351   void c_f_s   (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, f_cond)}
  1352   void c_un_s  (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, un_cond)}
  1353   void c_eq_s  (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, eq_cond)}
  1354   void c_ueq_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, ueq_cond)}
  1355   void c_olt_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, olt_cond)}
  1356   void c_ult_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, ult_cond)}
  1357   void c_ole_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, ole_cond)}
  1358   void c_ule_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, ule_cond)}
  1359   void c_sf_s  (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, sf_cond)}
  1360   void c_ngle_s(FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, ngle_cond)}
  1361   void c_seq_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, seq_cond)}
  1362   void c_ngl_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, ngl_cond)}
  1363   void c_lt_s  (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, lt_cond)}
  1364   void c_nge_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, nge_cond)}
  1365   void c_le_s  (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, le_cond)}
  1366   void c_ngt_s (FloatRegister fs, FloatRegister ft) {INSN_SINGLE(ft, fs, R0, ngt_cond)}
  1368 #undef INSN_SINGLE
  1371 //R0->encoding() is 0; INSN_DOUBLE is enclosed by {} for ctags.
  1372 #define INSN_DOUBLE(r1, r2, r3, op)   \
  1373   { emit_long(insn_F3RO(double_fmt, (int)r1->encoding(), (int)r2->encoding(), (int)r3->encoding(), op));}
  1375   void add_d    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, fd, fadd_op)}
  1376   void sub_d    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, fd, fsub_op)}
  1377   void mul_d    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, fd, fmul_op)}
  1378   void div_d    (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, fd, fdiv_op)}
  1379   void sqrt_d   (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fsqrt_op)}
  1380   void abs_d    (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fabs_op)}
  1381   void mov_d    (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fmov_op)}
  1382   void neg_d    (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fneg_op)}
  1383   void round_l_d(FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, froundl_op)}
  1384   void trunc_l_d(FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, ftruncl_op)}
  1385   void ceil_l_d (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fceill_op)}
  1386   void floor_l_d(FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, ffloorl_op)}
  1387   void round_w_d(FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, froundw_op)}
  1388   void trunc_w_d(FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, ftruncw_op)}
  1389   void ceil_w_d (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fceilw_op)}
  1390   void floor_w_d(FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, ffloorw_op)}
  1391   //null
  1392   //void movf_d(Register rd, Register rs, FPConditionCode cc) { unimplemented(" movf_d")}
  1393   //void movt_d(Register rd, Register rs, FPConditionCode cc) { unimplemented(" movt_d") }
  1394   void movz_d  (FloatRegister fd, FloatRegister fs, Register rt) {INSN_DOUBLE(rt, fs, fd, movz_f_op)}
  1395   void movn_d  (FloatRegister fd, FloatRegister fs, Register rt) {INSN_DOUBLE(rt, fs, fd, movn_f_op)}
  1396   //null
  1397   void recip_d (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, frecip_op)}
  1398   void rsqrt_d (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, frsqrt_op)}
  1399   //null
  1400   void cvt_s_d (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fcvts_op)}
  1401   void cvt_l_d (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fcvtl_op)}
  1402   //null
  1403   void cvt_w_d (FloatRegister fd, FloatRegister fs) {INSN_DOUBLE(R0, fs, fd, fcvtw_op)}
  1404   //null
  1405   void c_f_d   (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, f_cond)}
  1406   void c_un_d  (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, un_cond)}
  1407   void c_eq_d  (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, eq_cond)}
  1408   void c_ueq_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, ueq_cond)}
  1409   void c_olt_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, olt_cond)}
  1410   void c_ult_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, ult_cond)}
  1411   void c_ole_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, ole_cond)}
  1412   void c_ule_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, ule_cond)}
  1413   void c_sf_d  (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, sf_cond)}
  1414   void c_ngle_d(FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, ngle_cond)}
  1415   void c_seq_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, seq_cond)}
  1416   void c_ngl_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, ngl_cond)}
  1417   void c_lt_d  (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, lt_cond)}
  1418   void c_nge_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, nge_cond)}
  1419   void c_le_d  (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, le_cond)}
  1420   void c_ngt_d (FloatRegister fs, FloatRegister ft) {INSN_DOUBLE(ft, fs, R0, ngt_cond)}
  1422 #undef INSN_DOUBLE
  1425   //null
  1426   void cvt_s_w(FloatRegister fd, FloatRegister fs) { emit_long(insn_F3RO(word_fmt, 0, (int)fs->encoding(), (int)fd->encoding(), fcvts_op)); }
  1427   void cvt_d_w(FloatRegister fd, FloatRegister fs) { emit_long(insn_F3RO(word_fmt, 0, (int)fs->encoding(), (int)fd->encoding(), fcvtd_op)); }
  1428   //null
  1429   void cvt_s_l(FloatRegister fd, FloatRegister fs) { emit_long(insn_F3RO(long_fmt, 0, (int)fs->encoding(), (int)fd->encoding(), fcvts_op)); }
  1430   void cvt_d_l(FloatRegister fd, FloatRegister fs) { emit_long(insn_F3RO(long_fmt, 0, (int)fs->encoding(), (int)fd->encoding(), fcvtd_op)); }
  1431   //null
  1434 //R0->encoding() is 0; INSN_PS is enclosed by {} for ctags.
  1435 #define INSN_PS(r1, r2, r3, op)   \
  1436   { emit_long(insn_F3RO(ps_fmt, (int)r1->encoding(), (int)r2->encoding(), (int)r3->encoding(), op));}
  1438   void add_ps (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, fd, fadd_op)}
  1439   void sub_ps (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, fd, fsub_op)}
  1440   void mul_ps (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, fd, fmul_op)}
  1441   //null
  1442   void abs_ps (FloatRegister fd, FloatRegister fs) {INSN_PS(R0, fs, fd, fabs_op)}
  1443   void mov_ps (FloatRegister fd, FloatRegister fs) {INSN_PS(R0, fs, fd, fmov_op)}
  1444   void neg_ps (FloatRegister fd, FloatRegister fs) {INSN_PS(R0, fs, fd, fneg_op)}
  1445   //null
  1446   //void movf_ps(FloatRegister rd, FloatRegister rs, FPConditionCode cc) { unimplemented(" movf_ps")}
  1447   //void movt_ps(FloatRegister rd, FloatRegister rs, FPConditionCode cc) { unimplemented(" movt_ps") }
  1448   void movz_ps  (FloatRegister fd, FloatRegister fs, Register rt) {INSN_PS(rt, fs, fd, movz_f_op)}
  1449   void movn_ps  (FloatRegister fd, FloatRegister fs, Register rt) {INSN_PS(rt, fs, fd, movn_f_op)}
  1450   //null
  1451   void cvt_s_pu (FloatRegister fd, FloatRegister fs) {INSN_PS(R0, fs, fd, fcvts_op)}
  1452   //null
  1453   void cvt_s_pl (FloatRegister fd, FloatRegister fs) {INSN_PS(R0, fs, fd, fcvtspl_op)}
  1454   //null
  1455   void pll_ps   (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, fd, fpll_op)}
  1456   void plu_ps   (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, fd, fplu_op)}
  1457   void pul_ps   (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, fd, fpul_op)}
  1458   void puu_ps   (FloatRegister fd, FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, fd, fpuu_op)}
  1459   void c_f_ps   (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, f_cond)}
  1460   void c_un_ps  (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, un_cond)}
  1461   void c_eq_ps  (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, eq_cond)}
  1462   void c_ueq_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, ueq_cond)}
  1463   void c_olt_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, olt_cond)}
  1464   void c_ult_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, ult_cond)}
  1465   void c_ole_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, ole_cond)}
  1466   void c_ule_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, ule_cond)}
  1467   void c_sf_ps  (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, sf_cond)}
  1468   void c_ngle_ps(FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, ngle_cond)}
  1469   void c_seq_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, seq_cond)}
  1470   void c_ngl_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, ngl_cond)}
  1471   void c_lt_ps  (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, lt_cond)}
  1472   void c_nge_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, nge_cond)}
  1473   void c_le_ps  (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, le_cond)}
  1474   void c_ngt_ps (FloatRegister fs, FloatRegister ft) {INSN_PS(ft, fs, R0, ngt_cond)}
  1475   //null
  1476 #undef INSN_PS
  1477   //COP1 end
  1480   //COP1X
  1481 //R0->encoding() is 0; INSN_SINGLE is enclosed by {} for ctags.
  1482 #define INSN_COP1X(r0, r1, r2, r3, op)   \
  1483   { emit_long(insn_F3ROX((int)r0->encoding(), (int)r1->encoding(), (int)r2->encoding(), (int)r3->encoding(), op));}
  1484   void madd_s(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, madd_s_op) }
  1485   void madd_d(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, madd_d_op) }
  1486   void madd_ps(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft){INSN_COP1X(fr, ft, fs, fd, madd_ps_op) }
  1487   void msub_s(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, msub_s_op) }
  1488   void msub_d(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, msub_d_op) }
  1489   void msub_ps(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft){INSN_COP1X(fr, ft, fs, fd, msub_ps_op) }
  1490   void nmadd_s(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, nmadd_s_op) }
  1491   void nmadd_d(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, nmadd_d_op) }
  1492   void nmadd_ps(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft){INSN_COP1X(fr, ft, fs, fd, nmadd_ps_op) }
  1493   void nmsub_s(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, nmsub_s_op) }
  1494   void nmsub_d(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft) {INSN_COP1X(fr, ft, fs, fd, nmsub_d_op) }
  1495   void nmsub_ps(FloatRegister fd, FloatRegister fr, FloatRegister fs, FloatRegister ft){INSN_COP1X(fr, ft, fs, fd, nmsub_ps_op) }
  1496 #undef INSN_COP1X
  1497   //COP1X end
  1499   //SPECIAL2
  1500 //R0->encoding() is 0; INSN_PS is enclosed by {} for ctags.
  1501 #define INSN_S2(op)   \
  1502   { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | op);}
  1504   void madd (Register rs, Register rt) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | madd_op); }
  1505   void maddu(Register rs, Register rt) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | maddu_op); }
  1506   void mul  (Register rd, Register rs, Register rt) { INSN_S2(mul_op) }
  1507   void msub (Register rs, Register rt) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | msub_op); }
  1508   void msubu(Register rs, Register rt) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | msubu_op); }
  1510   void gsmult  (Register rd, Register rs, Register rt) { INSN_S2(gsmult_op)  }
  1511   void gsdmult (Register rd, Register rs, Register rt) { INSN_S2(gsdmult_op) }
  1512   void gsmultu (Register rd, Register rs, Register rt) { INSN_S2(gsmultu_op) }
  1513   void gsdmultu(Register rd, Register rs, Register rt) { INSN_S2(gsdmultu_op)}
  1514   void gsdiv   (Register rd, Register rs, Register rt) { INSN_S2(gsdiv_op)   }
  1515   void gsddiv  (Register rd, Register rs, Register rt) { INSN_S2(gsddiv_op)  }
  1516   void gsdivu  (Register rd, Register rs, Register rt) { INSN_S2(gsdivu_op)  }
  1517   void gsddivu (Register rd, Register rs, Register rt) { INSN_S2(gsddivu_op) }
  1518   void gsmod   (Register rd, Register rs, Register rt) { INSN_S2(gsmod_op)   }
  1519   void gsdmod  (Register rd, Register rs, Register rt) { INSN_S2(gsdmod_op)  }
  1520   void gsmodu  (Register rd, Register rs, Register rt) { INSN_S2(gsmodu_op)  }
  1521   void gsdmodu (Register rd, Register rs, Register rt) { INSN_S2(gsdmodu_op) }
  1522   void clz (Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | clz_op); }
  1523   void clo (Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | clo_op); }
  1524   void ctz (Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | 0 << 6| xctx_op); }
  1525   void cto (Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | 1 << 6| xctx_op); }
  1526   void dctz(Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | 2 << 6| xctx_op); }
  1527   void dcto(Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | 3 << 6| xctx_op); }
  1528   void dclz(Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | dclz_op); }
  1529   void dclo(Register rd, Register rs) { emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rd->encoding() << 16) | ((int)rd->encoding() << 11) | dclo_op); }
  1531 #undef INSN_S2
  1533   //SPECIAL3
  1534 /*
  1535 // FIXME
  1536 #define is_0_to_32(a, b) \
  1537   assert (a >= 0, " just a check"); \
  1538   assert (a <= 0, " just a check"); \
  1539   assert (b >= 0, " just a check"); \
  1540   assert (b <= 0, " just a check"); \
  1541   assert (a+b >= 0, " just a check"); \
  1542   assert (a+b <= 0, " just a check");
  1543   */
  1544 #define is_0_to_32(a, b)
  1546   void ins  (Register rt, Register rs, int pos, int size) { is_0_to_32(pos, size); emit_long((special3_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | (low(pos+size-1, 5) << 11) | (low(pos, 5) << 6) | ins_op); }
  1547   void dinsm(Register rt, Register rs, int pos, int size) { is_0_to_32(pos, size); emit_long((special3_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | (low(pos+size-33, 5) << 11) | (low(pos, 5) << 6) | dinsm_op); }
  1548   void dinsu(Register rt, Register rs, int pos, int size) { is_0_to_32(pos, size); emit_long((special3_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | (low(pos+size-33, 5) << 11) | (low(pos-32, 5) << 6) | dinsu_op); }
  1549   void dins (Register rt, Register rs, int pos, int size) { 
  1550      guarantee((0 <= pos) && (pos < 32), "pos must be in [0, 32)");
  1551      guarantee((0 < size) && (size <= 32), "size must be in (0, 32]");
  1552      guarantee((0 < pos + size) && (pos + size <= 32), "pos + size must be in (0, 32]");
  1554      emit_long((special3_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | (low(pos+size-1, 5) << 11) | (low(pos, 5) << 6) | dins_op); 
  1557   void repl_qb (Register rd, int const8)  { emit_long((special3_op << 26) | (low(const8, 8) << 16)      | ((int)rd->encoding() << 11) | repl_qb_op  << 6 | re1_op); }
  1558   void replv_qb(Register rd, Register rt) { emit_long((special3_op << 26) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | replv_qb_op << 6 | re1_op ); }
  1559   void repl_ph (Register rd, int const10) { emit_long((special3_op << 26) | (low(const10, 10) << 16)    | ((int)rd->encoding() << 11) | repl_ph_op  << 6 | re1_op); }
  1560   void replv_ph(Register rd, Register rt) { emit_long((special3_op << 26) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | replv_ph_op << 6 | re1_op ); }
  1562   void repl_ob (Register rd, int const8)  { emit_long((special3_op << 26) | (low(const8, 8) << 16)      | ((int)rd->encoding() << 11) | repl_ob_op  << 6 | re2_op); }
  1563   void replv_ob(Register rd, Register rt) { emit_long((special3_op << 26) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | replv_ob_op << 6 | re2_op ); }
  1564   void repl_qh (Register rd, int const10)  { emit_long((special3_op << 26) | (low(const10, 10) << 16)      | ((int)rd->encoding() << 11) | repl_qh_op  << 6 | re2_op); }
  1565   void replv_qh(Register rd, Register rt) { emit_long((special3_op << 26) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | replv_qh_op << 6 | re2_op ); }
  1566   void repl_pw (Register rd, int const10) { emit_long((special3_op << 26) | (low(const10, 10) << 16)    | ((int)rd->encoding() << 11) | repl_pw_op  << 6 | re2_op); }
  1567   void replv_pw(Register rd, Register rt) { emit_long((special3_op << 26) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | replv_pw_op << 6 | re2_op ); }
  1569   void sdc1(FloatRegister ft, Register base, int off) { emit_long(insn_ORRI(sdc1_op, (int)base->encoding(), (int)ft->encoding(), off)); }
  1570   void sdc1(FloatRegister ft, Address dst);
  1571   void swc1(FloatRegister ft, Register base, int off) { emit_long(insn_ORRI(swc1_op, (int)base->encoding(), (int)ft->encoding(), off)); }
  1572   void swc1(FloatRegister ft, Address dst);
  1575   void int3();
  1576   static void print_instruction(int);
  1577   int patched_branch(int dest_pos, int inst, int inst_pos);
  1578   int branch_destination(int inst, int pos);
  1580   /* Godson3 extension */
  1582   // gssq/gslq/gssqc1/gslqc1: vAddr = sign_extend(offset << 4 ) + GPR[base]. Therefore, the off should be ">> 4".
  1583   void gslq(Register rq, Register rt, Register base, int off) {
  1584     off = off >> 4;
  1585     assert(is_simm(off, 9),"gslq: off exceeds 9 bits");
  1586     emit_long((gs_lwc2_op << 26) | ((int)base->encoding() << 21) | ((int)rt->encoding() << 16) | 0 << 15 | (low(off, 9) << 6) | gslq_op | (int)rq->encoding() );
  1589   void gssq(Register rq, Register rt, Register base, int off) {
  1590     off = off >> 4;
  1591     assert(is_simm(off, 9),"gssq: off exceeds 9 bits");
  1592     emit_long((gs_swc2_op << 26) | ((int)base->encoding() << 21) | ((int)rt->encoding() << 16) | 0 << 15 | (low(off, 9) << 6) | gssq_op | (int)rq->encoding() );
  1595   void gsandn(Register rd, Register rs, Register rt) {
  1596     emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (18 << 6) | gs0x03_op );
  1599   void gsorn(Register rd, Register rs, Register rt) {
  1600     emit_long((special2_op << 26) | ((int)rs->encoding() << 21) | ((int)rt->encoding() << 16) | ((int)rd->encoding() << 11) | (18 << 6) | gs0x06_op );
  1603   //LDC2 & SDC2
  1604 #define INSN(OPS, OP) \
  1605     assert(is_simm(off, 8), "NAME: off exceeds 8 bits");                                           \
  1606     assert(UseLoongsonISA, "check LoongISA");                                                      \
  1607     emit_long( (OPS << 26) | ((int)base->encoding() << 21) | ((int)rt->encoding() << 16) |         \
  1608                ((int)index->encoding() << 11) | (low(off, 8) << 3) | OP);
  1610 #define INSN_LDC2(NAME, op)  \
  1611   void NAME(Register rt, Register base, Register index, int off) {                                 \
  1612     INSN(gs_ldc2_op, op)                                                                           \
  1615 #define INSN_LDC2_F(NAME, op)  \
  1616   void NAME(FloatRegister rt, Register base, Register index, int off) {                            \
  1617     INSN(gs_ldc2_op, op)                                                                           \
  1620 #define INSN_SDC2(NAME, op)  \
  1621   void NAME(Register rt, Register base, Register index, int off) {                                 \
  1622     INSN(gs_sdc2_op, op)                                                                           \
  1625 #define INSN_SDC2_F(NAME, op)  \
  1626   void NAME(FloatRegister rt, Register base, Register index, int off) {                            \
  1627     INSN(gs_sdc2_op, op)                                                                           \
  1630 /*
  1631  void gslbx(Register rt, Register base, Register index, int off) {
  1632     assert(is_simm(off, 8), "gslbx: off exceeds 8 bits");
  1633     assert(UseLoongsonISA, "check LoongISA");
  1634     emit_long( (gs_ldc2_op << 26) | ((int)base->encoding() << 21) | ((int)rt->encoding() << 16) |
  1635                ((int)index->encoding() << 11) | (low(off, 8) << 3) | gslbx_op);
  1636  void gslbx(Register rt, Register base, Register index, int off) {INSN(gs_ldc2_op, gslbx_op);}
  1638   INSN_LDC2(gslbx, gslbx_op)
  1639   INSN_LDC2(gslhx, gslhx_op)
  1640   INSN_LDC2(gslwx, gslwx_op)
  1641   INSN_LDC2(gsldx, gsldx_op)
  1642   INSN_LDC2_F(gslwxc1, gslwxc1_op)
  1643   INSN_LDC2_F(gsldxc1, gsldxc1_op)
  1645   INSN_SDC2(gssbx, gssbx_op)
  1646   INSN_SDC2(gsshx, gsshx_op)
  1647   INSN_SDC2(gsswx, gsswx_op)
  1648   INSN_SDC2(gssdx, gssdx_op)
  1649   INSN_SDC2_F(gsswxc1, gsswxc1_op)
  1650   INSN_SDC2_F(gssdxc1, gssdxc1_op)
  1651 */
  1652   void gslbx(Register rt, Register base, Register index, int off) {INSN(gs_ldc2_op, gslbx_op) }
  1653   void gslhx(Register rt, Register base, Register index, int off) {INSN(gs_ldc2_op, gslhx_op) }
  1654   void gslwx(Register rt, Register base, Register index, int off) {INSN(gs_ldc2_op, gslwx_op) }
  1655   void gsldx(Register rt, Register base, Register index, int off) {INSN(gs_ldc2_op, gsldx_op) }
  1656   void gslwxc1(FloatRegister rt, Register base, Register index, int off) {INSN(gs_ldc2_op, gslwxc1_op) }
  1657   void gsldxc1(FloatRegister rt, Register base, Register index, int off) {INSN(gs_ldc2_op, gsldxc1_op) }
  1659   void gssbx(Register rt, Register base, Register index, int off) {INSN(gs_sdc2_op, gssbx_op) }
  1660   void gsshx(Register rt, Register base, Register index, int off) {INSN(gs_sdc2_op, gsshx_op) }
  1661   void gsswx(Register rt, Register base, Register index, int off) {INSN(gs_sdc2_op, gsswx_op) }
  1662   void gssdx(Register rt, Register base, Register index, int off) {INSN(gs_sdc2_op, gssdx_op) }
  1663   void gsswxc1(FloatRegister rt, Register base, Register index, int off) {INSN(gs_sdc2_op, gsswxc1_op) }
  1664   void gssdxc1(FloatRegister rt, Register base, Register index, int off) {INSN(gs_sdc2_op, gssdxc1_op) }
  1666 #undef INSN
  1667 #undef INSN_LDC2
  1668 #undef INSN_LDC2_F
  1669 #undef INSN_SDC2
  1670 #undef INSN_SDC2_F
  1673 public:
  1674   // Creation
  1675   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1676 #ifdef CHECK_DELAY
  1677     delay_state = no_delay;
  1678 #endif
  1681   // Decoding
  1682   static address locate_operand(address inst, WhichOperand which);
  1683   static address locate_next_instruction(address inst);
  1684 };
  1687 // MacroAssembler extends Assembler by frequently used macros.
  1688 //
  1689 // Instructions for which a 'better' code sequence exists depending
  1690 // on arguments should also go in here.
  1692 class MacroAssembler: public Assembler {
  1693   friend class LIR_Assembler;
  1694   friend class Runtime1;      // as_Address()
  1696  public:
  1697   static intptr_t  i[32];
  1698   static float  f[32];
  1699   static void print(outputStream *s);
  1701   static int i_offset(unsigned int k);
  1702   static int f_offset(unsigned int k);
  1704   static void save_registers(MacroAssembler *masm);
  1705   static void restore_registers(MacroAssembler *masm);
  1707  protected:
  1709   Address as_Address(AddressLiteral adr);
  1710   Address as_Address(ArrayAddress adr);
  1712   // Support for VM calls
  1713   //
  1714   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1715   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1716   // additional registers when doing a VM call).
  1717 #ifdef CC_INTERP
  1718   // c++ interpreter never wants to use interp_masm version of call_VM
  1719   #define VIRTUAL
  1720 #else
  1721   #define VIRTUAL virtual
  1722 #endif
  1724   VIRTUAL void call_VM_leaf_base(
  1725     address entry_point,               // the entry point
  1726     int     number_of_arguments        // the number of arguments to pop after the call
  1727   );
  1729   // This is the base routine called by the different versions of call_VM. The interpreter
  1730   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1731   // additional registers when doing a VM call).
  1732   //
  1733   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1734   // returns the register which contains the thread upon return. If a thread register has been
  1735   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1736   // (noreg) than rsp will be used instead.
  1737   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1738     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1739     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1740     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1741     address  entry_point,              // the entry point
  1742     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1743     bool     check_exceptions          // whether to check for pending exceptions after return
  1744   );
  1746   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1747   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1748   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1749   virtual void check_and_handle_popframe(Register java_thread);
  1750   virtual void check_and_handle_earlyret(Register java_thread);
  1752   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1754   // helpers for FPU flag access
  1755   // tmp is a temporary register, if none is available use noreg
  1756   //void save_rax   (Register tmp);
  1757   //void restore_rax(Register tmp);
  1759  public:
  1760   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1762   // Support for NULL-checks
  1763   //
  1764   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1765   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1766   // offset. No explicit code generation is needed if the offset is within a certain
  1767   // range (0 <= offset <= page_size).
  1768   // use "teq 83, reg" in mips now, by yjl 6/20/2005
  1769   void null_check(Register reg, int offset = -1);
  1770   static bool needs_explicit_null_check(intptr_t offset);
  1772   // Required platform-specific helpers for Label::patch_instructions.
  1773   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1774   void pd_patch_instruction(address branch, address target);
  1776   // Alignment
  1777   void align(int modulus);
  1779   // Misc
  1780   //void fat_nop(); // 5 byte nop
  1782   // Stack frame creation/removal
  1783   void enter();
  1784   void leave();
  1786   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1787   // The pointer will be loaded into the thread register.
  1788   void get_thread(Register thread);
  1791   // Support for VM calls
  1792   //
  1793   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1794   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1795   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1798   void call_VM(Register oop_result,
  1799                address entry_point,
  1800                bool check_exceptions = true);
  1801   void call_VM(Register oop_result,
  1802                address entry_point,
  1803                Register arg_1,
  1804                bool check_exceptions = true);
  1805   void call_VM(Register oop_result,
  1806                address entry_point,
  1807                Register arg_1, Register arg_2,
  1808                bool check_exceptions = true);
  1809   void call_VM(Register oop_result,
  1810                address entry_point,
  1811                Register arg_1, Register arg_2, Register arg_3,
  1812                bool check_exceptions = true);
  1813   // Super call_VM calls - correspond to MacroAssembler::call_VM(_leaf) calls
  1814   void super_call_VM_leaf(address entry_point);
  1815   void super_call_VM_leaf(address entry_point, Register arg_1);
  1816   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
  1817   void super_call_VM_leaf(address entry_point,
  1818                           Register arg_1, Register arg_2, Register arg_3);
  1820   // Overloadings with last_Java_sp
  1821   void call_VM(Register oop_result,
  1822                Register last_java_sp,
  1823                address entry_point,
  1824                int number_of_arguments = 0,
  1825                bool check_exceptions = true);
  1826   void call_VM(Register oop_result,
  1827                Register last_java_sp,
  1828                address entry_point,
  1829                Register arg_1, bool
  1830                check_exceptions = true);
  1831   void call_VM(Register oop_result,
  1832                Register last_java_sp,
  1833                address entry_point,
  1834                Register arg_1, Register arg_2,
  1835                bool check_exceptions = true);
  1836   void call_VM(Register oop_result,
  1837                Register last_java_sp,
  1838                address entry_point,
  1839                Register arg_1, Register arg_2, Register arg_3,
  1840                bool check_exceptions = true);
  1842   void call_VM_leaf(address entry_point,
  1843                     int number_of_arguments = 0);
  1844   void call_VM_leaf(address entry_point,
  1845                     Register arg_1);
  1846   void call_VM_leaf(address entry_point,
  1847                     Register arg_1, Register arg_2);
  1848   void call_VM_leaf(address entry_point,
  1849                     Register arg_1, Register arg_2, Register arg_3);
  1851   // last Java Frame (fills frame anchor)
  1852   void set_last_Java_frame(Register thread,
  1853                            Register last_java_sp,
  1854                            Register last_java_fp,
  1855                            address last_java_pc);
  1857   // thread in the default location (r15_thread on 64bit)
  1858   void set_last_Java_frame(Register last_java_sp,
  1859                            Register last_java_fp,
  1860                            address last_java_pc);
  1862   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1864   // thread in the default location (r15_thread on 64bit)
  1865   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1867   // Stores
  1868   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1869   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1872   void g1_write_barrier_pre(Register obj,
  1873 #ifndef _LP64
  1874                             Register thread,
  1875 #endif
  1876                             Register tmp,
  1877                             Register tmp2,
  1878                             bool     tosca_live);
  1879   void g1_write_barrier_post(Register store_addr,
  1880                              Register new_val,
  1881 #ifndef _LP64
  1882                              Register thread,
  1883 #endif
  1884                              Register tmp,
  1885                              Register tmp2);
  1889   // split store_check(Register obj) to enhance instruction interleaving
  1890   void store_check_part_1(Register obj);
  1891   void store_check_part_2(Register obj);
  1893   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1894   void c2bool(Register x);
  1895   //add for compressedoops
  1896   void load_klass(Register dst, Register src);
  1897   void store_klass(Register dst, Register src);
  1898   void load_prototype_header(Register dst, Register src);
  1899 /*
  1900   // C++ bool manipulation
  1902   void movbool(Register dst, Address src);
  1903   void movbool(Address dst, bool boolconst);
  1904   void movbool(Address dst, Register src);
  1905   void testbool(Register dst);
  1907   // oop manipulations
  1908   void load_klass(Register dst, Register src);
  1909   void store_klass(Register dst, Register src);
  1911   void load_prototype_header(Register dst, Register src);*/
  1913 #ifdef _LP64
  1914   void store_klass_gap(Register dst, Register src);
  1916   void load_heap_oop(Register dst, Address src);
  1917   void store_heap_oop(Address dst, Register src);
  1918   void encode_heap_oop(Register r);
  1919   void decode_heap_oop(Register r);
  1920   void encode_heap_oop_not_null(Register r);
  1921   void decode_heap_oop_not_null(Register r);
  1922   void encode_heap_oop_not_null(Register dst, Register src);
  1923   void decode_heap_oop_not_null(Register dst, Register src);
  1925   void encode_klass_not_null(Register r);
  1926   void decode_klass_not_null(Register r);
  1927   void encode_klass_not_null(Register dst, Register src);
  1928   void decode_klass_not_null(Register dst, Register src);
  1930   //void set_narrow_oop(Register dst, jobject obj);
  1932   // Returns the byte size of the instructions generated by decode_klass_not_null()
  1933   // when compressed klass pointers are being used.
  1934   static int instr_size_for_decode_klass_not_null();
  1936   // if heap base register is used - reinit it with the correct value
  1937   void reinit_heapbase();
  1938   DEBUG_ONLY(void verify_heapbase(const char* msg);)
  1940 #endif // _LP64
  1942   void incrementl(Register reg, int value = 1);
  1944   void decrementl(Register reg, int value = 1);
  1946 /*
  1947   // Int division/remainder for Java
  1948   // (as idivl, but checks for special case as described in JVM spec.)
  1949   // returns idivl instruction offset for implicit exception handling
  1950   int corrected_idivl(Register reg);
  1952   // Long division/remainder for Java
  1953   // (as idivq, but checks for special case as described in JVM spec.)
  1954   // returns idivq instruction offset for implicit exception handling
  1955   int corrected_idivq(Register reg);
  1956 */
  1958   void int3();
  1959 /*
  1960   // Long operation macros for a 32bit cpu
  1961   // Long negation for Java
  1962   void lneg(Register hi, Register lo);
  1964   // Long multiplication for Java
  1965   // (destroys contents of eax, ebx, ecx and edx)
  1966   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1968   // Long shifts for Java
  1969   // (semantics as described in JVM spec.)
  1970   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1971   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1973   // Long compare for Java
  1974   // (semantics as described in JVM spec.)
  1975   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1978   // misc
  1979 */
  1980   // Sign extension
  1981 #ifdef _LP64
  1982   void sign_extend_short(Register reg)   { /*dsll32(reg, reg, 16); dsra32(reg, reg, 16);*/ seh(reg, reg); }
  1983   void sign_extend_byte(Register reg)  { /*dsll32(reg, reg, 24); dsra32(reg, reg, 24);*/ seb(reg, reg); }
  1984 #else
  1985   void sign_extend_short(Register reg)   { /*sll(reg, reg, 16); sra(reg, reg, 16);*/ seh(reg, reg); }
  1986   void sign_extend_byte(Register reg)  { /*sll(reg, reg, 24); sra(reg, reg, 24);*/ seb(reg, reg);}
  1987 #endif
  1988   void rem_s(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp);
  1989   void rem_d(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp);
  1991   // Inlined sin/cos generator for Java; must not use CPU instruction
  1992   // directly on Intel as it does not have high enough precision
  1993   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1994   // number of FPU stack slots in use; all but the topmost will
  1995   // require saving if a slow case is necessary. Assumes argument is
  1996   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1997   // this code.
  1998   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1999 /*
  2000   // branch to L if FPU flag C2 is set/not set
  2001   // tmp is a temporary register, if none is available use noreg
  2002   void jC2 (Register tmp, Label& L);
  2003   void jnC2(Register tmp, Label& L);
  2005   // Pop ST (ffree & fincstp combined)
  2006   void fpop();
  2008   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  2009   void push_fTOS();
  2011   // pops double TOS element from CPU stack and pushes on FPU stack
  2012   void pop_fTOS();
  2014   void empty_FPU_stack();
  2016   void push_IU_state();
  2017   void pop_IU_state();
  2019   void push_FPU_state();
  2020   void pop_FPU_state();
  2022   void push_CPU_state();
  2023   void pop_CPU_state();
  2025   // Round up to a power of two
  2026   void round_to(Register reg, int modulus);
  2028   // Callee saved registers handling
  2029   void push_callee_saved_registers();
  2030   void pop_callee_saved_registers();
  2031 */
  2032   // allocation
  2033   void eden_allocate(
  2034     Register obj,                      // result: pointer to object after successful allocation
  2035     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2036     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2037     Register t1,                       // temp register
  2038     Register t2,
  2039     Label&   slow_case                 // continuation point if fast allocation fails
  2040   );
  2041   void tlab_allocate(
  2042     Register obj,                      // result: pointer to object after successful allocation
  2043     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2044     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2045     Register t1,                       // temp register
  2046     Register t2,                       // temp register
  2047     Label&   slow_case                 // continuation point if fast allocation fails
  2048     );
  2049   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  2051   //  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  2054   // Debugging
  2056   // only if +VerifyOops
  2057   void verify_oop(Register reg, const char* s = "broken oop");
  2058   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  2059   void verify_oop_subroutine();
  2060   // TODO: verify method and klass metadata (compare against vptr?)
  2061   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
  2062   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
  2064   #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
  2065   #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
  2067   // only if +VerifyFPU
  2068   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  2070   // prints msg, dumps registers and stops execution
  2071   void stop(const char* msg);
  2073   // prints msg and continues
  2074   void warn(const char* msg);
  2076   static void debug(char* msg/*, RegistersForDebugging* regs*/);
  2077   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  2078   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  2080   void print_reg(Register reg);
  2081   void print_reg(FloatRegister reg);
  2082   //void os_breakpoint();
  2084   void untested()                                { stop("untested"); }
  2086   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
  2088   void should_not_reach_here()                   { stop("should not reach here"); }
  2090   void print_CPU_state();
  2092   // Stack overflow checking
  2093   void bang_stack_with_offset(int offset) {
  2094     // stack grows down, caller passes positive offset
  2095     assert(offset > 0, "must bang with negative offset");
  2096     if (offset <= 32768) {
  2097       sw(A0, SP, -offset);
  2098     } else {
  2099 #ifdef _LP64
  2100       li(AT, offset);
  2101       dsub(AT, SP, AT);
  2102 #else
  2103       move(AT, offset);
  2104       sub(AT, SP, AT);
  2105 #endif
  2106       sw(A0, AT, 0);
  2110   // Writes to stack successive pages until offset reached to check for
  2111   // stack overflow + shadow pages.  Also, clobbers tmp
  2112   void bang_stack_size(Register size, Register tmp);
  2113   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
  2114                                                        Register tmp,
  2115                                                        int offset);
  2117   // Support for serializing memory accesses between threads
  2118   void serialize_memory(Register thread, Register tmp);
  2120   //void verify_tlab();
  2121   void verify_tlab(Register t1, Register t2);
  2123   // Biased locking support
  2124   // lock_reg and obj_reg must be loaded up with the appropriate values.
  2125   // swap_reg must be rax, and is killed.
  2126   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  2127   // be killed; if not supplied, push/pop will be used internally to
  2128   // allocate a temporary (inefficient, avoid if possible).
  2129   // Optional slow case is for implementations (interpreter and C1) which branch to
  2130   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  2131   // Returns offset of first potentially-faulting instruction for null
  2132   // check info (currently consumed only by C1). If
  2133   // swap_reg_contains_mark is true then returns -1 as it is assumed
  2134   // the calling code has already passed any potential faults.
  2135   int biased_locking_enter(Register lock_reg, Register obj_reg,
  2136       Register swap_reg, Register tmp_reg,
  2137       bool swap_reg_contains_mark,
  2138       Label& done, Label* slow_case = NULL,
  2139       BiasedLockingCounters* counters = NULL);
  2140   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  2143   // Calls
  2145   void call(address entry);
  2146   void call(address entry, relocInfo::relocType rtype);
  2147   void call(address entry, RelocationHolder& rh);
  2148   // Emit the CompiledIC call idiom
  2149   void ic_call(address entry);
  2151   void jmp(address entry);
  2152   void jmp(address entry, relocInfo::relocType rtype);
  2154   // Argument ops
  2155   /*inline void store_int_argument(Register s, Argument& a);
  2156   inline void store_long_argument(Register s, Argument& a);
  2157   inline void store_float_argument(FloatRegister s, Argument& a);
  2158   inline void store_double_argument(FloatRegister s, Argument& a);
  2159   inline void store_ptr_argument(Register s, Argument& a);*/
  2160   inline void store_int_argument(Register s, Argument &a) {
  2161     if(a.is_Register()) {
  2162       move(a.as_Register(), s);
  2163     } else {
  2164       sw(s, a.as_caller_address());
  2168   inline void store_long_argument(Register s, Argument &a) {
  2169     Argument a1 = a.successor();
  2170     if(a.is_Register() && a1.is_Register()) {
  2171       move(a.as_Register(), s);
  2172       move(a.as_Register(), s);
  2173     } else {
  2174       sd(s, a.as_caller_address());
  2178   inline void store_float_argument(FloatRegister s, Argument &a) {
  2179     if(a.is_Register()) {
  2180       mov_s(a.as_FloatRegister(), s);
  2181     } else {
  2182       swc1(s, a.as_caller_address());
  2185   inline void store_double_argument(FloatRegister s, Argument &a) {
  2186     if(a.is_Register()) {
  2187       mov_d(a.as_FloatRegister(), s);
  2188     } else {
  2189       sdc1(s, a.as_caller_address());
  2193   inline void store_ptr_argument(Register s, Argument &a) {
  2194     if(a.is_Register()) {
  2195       move(a.as_Register(), s);
  2196     } else {
  2197       st_ptr(s, a.as_caller_address());
  2201   // Load and store values by size and signed-ness
  2202   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  2203   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
  2205   // interface method calling
  2206   void lookup_interface_method(Register recv_klass,
  2207                                Register intf_klass,
  2208                                RegisterOrConstant itable_index,
  2209                                Register method_result,
  2210                                Register scan_temp,
  2211                                Label& no_such_interface);
  2212   // virtual method calling
  2213   void lookup_virtual_method(Register recv_klass,
  2214                              RegisterOrConstant vtable_index,
  2215                              Register method_result);
  2217   // ld_ptr will perform lw for 32 bit VMs and ld for 64 bit VMs
  2218   // st_ptr will perform sw for 32 bit VMs and sd for 64 bit VMs
  2219   inline void ld_ptr(Register rt, Address a){
  2220 #ifdef _LP64
  2221     ld(rt, a.base(), a.disp());
  2222 #else
  2223     lw(rt, a.base(), a.disp());
  2224 #endif
  2226   inline void ld_ptr(Register rt, Register base, int offset16){
  2227 #ifdef _LP64
  2228     ld(rt, base, offset16);
  2229 #else
  2230     lw(rt, base, offset16);
  2231 #endif
  2234   inline void st_ptr(Register rt, Address a){
  2235 #ifdef _LP64
  2236     sd(rt, a.base(), a.disp());
  2237 #else
  2238     sw(rt, a.base(), a.disp());
  2239 #endif
  2241   inline void st_ptr(Register rt, Register base, int offset16) {
  2242 #ifdef _LP64
  2243     sd(rt, base, offset16);
  2244 #else
  2245     sw(rt, base, offset16);
  2246 #endif
  2250   void ld_ptr(Register rt, Register offset, Register base);
  2251   void st_ptr(Register rt, Register offset, Register base);
  2253   // ld_long will perform lw for 32 bit VMs and ld for 64 bit VMs
  2254   // st_long will perform sw for 32 bit VMs and sd for 64 bit VMs
  2255   inline void ld_long(Register rt, Register base, int offset16);
  2256   inline void st_long(Register rt, Register base, int offset16);
  2257   inline void ld_long(Register rt, Address a);
  2258   inline void st_long(Register rt, Address a);
  2261   void ld_long(Register rt, Register offset, Register base);
  2262   void st_long(Register rt, Register offset, Register base);
  2263   // Regular vs. d* versions
  2264   inline void addu_long(Register rd, Register rs, Register rt) {
  2265 #ifdef _LP64
  2266     daddu(rd, rs, rt);
  2267 #else
  2268     addu(rd, rs, rt);
  2269 #endif
  2271   inline void addu_long(Register rd, Register rs, long imm32_64) {
  2272 #ifdef _LP64
  2273     daddiu(rd, rs, imm32_64);
  2274 #else
  2275     addiu(rd, rs, imm32_64);
  2276 #endif
  2280   // Floating
  2281  public:
  2282   // swap the two byte of the low 16-bit halfword
  2283   // this directive will use AT, be sure the high 16-bit of reg is zero
  2284   // by yjl 6/28/2005
  2285   void hswap(Register reg);
  2286   void huswap(Register reg);
  2288   // convert big endian integer to little endian integer
  2289   // by yjl 6/29/2005
  2290   void swap(Register reg);
  2292   // implement the x86 instruction semantic
  2293   // if c_reg == *dest then *dest <= x_reg
  2294   // else c_reg <= *dest
  2295   // the AT indicate if xchg occurred, 1 for xchged, else  0
  2296   // by yjl 6/28/2005
  2297   void cmpxchg(Register x_reg, Address dest, Register c_reg);
  2298 #ifdef _LP64
  2299   void cmpxchg32(Register x_reg, Address dest, Register c_reg);
  2300 #endif
  2301   void cmpxchg8(Register x_regLo, Register x_regHi, Address dest, Register c_regLo, Register c_regHi);
  2305   void round_to(Register reg, int modulus) {
  2306     assert_different_registers(reg, AT);
  2307     increment(reg, modulus - 1);
  2308     move(AT, - modulus);
  2309     andr(reg, reg, AT);
  2312   //pop & push, added by aoqi
  2313 #ifdef _LP64
  2314   void extend_sign(Register rh, Register rl) { stop("extend_sign"); }
  2315   void neg(Register reg) { dsubu(reg, R0, reg); }
  2316   void push (Register reg)      { sd  (reg, SP, -8); daddi(SP, SP, -8); }
  2317   void push (FloatRegister reg) { sdc1(reg, SP, -8); daddi(SP, SP, -8); }
  2318   void pop  (Register reg)      { ld  (reg, SP, 0);  daddi(SP, SP, 8); }
  2319   void pop  (FloatRegister reg) { ldc1(reg, SP, 0);  daddi(SP, SP, 8); }
  2320   void pop  ()                  { daddi(SP, SP, 8); }
  2321   void pop2 ()                  { daddi(SP, SP, 16); }
  2322 #else
  2323   void extend_sign(Register rh, Register rl) { sra(rh, rl, 31); }
  2324   void neg(Register reg) { subu(reg, R0, reg); }
  2325   void push (Register reg)      { sw  (reg, SP, -4); addi(SP, SP, -4); }
  2326   void push (FloatRegister reg) { swc1(reg, SP, -4); addi(SP, SP, -4); }
  2327   void pop  (Register reg)      { lw  (reg, SP, 0);  addi(SP, SP, 4); }
  2328   void pop  (FloatRegister reg) { lwc1(reg, SP, 0);  addi(SP, SP, 4); }
  2329   void pop  ()                  { addi(SP, SP, 4); }
  2330   void pop2 ()                  { addi(SP, SP, 8); }
  2331 #endif
  2332   void push2(Register reg1, Register reg2);
  2333   void pop2 (Register reg1, Register reg2);
  2334   void dpush (Register reg)     { sd  (reg, SP, -8); daddi(SP, SP, -8); }
  2335   void dpop  (Register reg)     { ld  (reg, SP, 0);  daddi(SP, SP, 8); }
  2337   /* branches may exceed 16-bit offset */
  2338   void b_far(address entry);
  2339   void b_far(Label& L);
  2341   void bne_far    (Register rs, Register rt, address entry);
  2342   void bne_far    (Register rs, Register rt, Label& L);
  2344   void beq_far    (Register rs, Register rt, address entry);
  2345   void beq_far    (Register rs, Register rt, Label& L);
  2347   //move an 32-bit immediate to Register
  2348   void move(Register reg, int imm32)  { li32(reg, imm32); }
  2349   void li  (Register rd, long imm);
  2350   void li  (Register rd, address addr) { li(rd, (long)addr); }
  2351   //replace move(Register reg, int imm)
  2352   void li32(Register rd, int imm32); // sign-extends to 64 bits on mips64
  2353 #ifdef _LP64
  2354   void set64(Register d, jlong value);
  2355   static int  insts_for_set64(jlong value);
  2357   void dli(Register rd, long imm) { li(rd, imm); }
  2358   void li64(Register rd, long imm);
  2359   void li48(Register rd, long imm);
  2360 #endif
  2362 #ifdef _LP64
  2363   void move(Register rd, Register rs)   { dadd(rd, rs, R0); }
  2364   void move_u32(Register rd, Register rs)   { addu32(rd, rs, R0); }
  2365 #else
  2366   void move(Register rd, Register rs)   { add(rd, rs, R0); }
  2367 #endif
  2368   void dmove(Register rd, Register rs)  { dadd(rd, rs, R0); }
  2370 #ifdef _LP64
  2371   void shl(Register reg, int sa)        { dsll(reg, reg, sa); }
  2372   void shr(Register reg, int sa)        { dsrl(reg, reg, sa); }
  2373   void sar(Register reg, int sa)        { dsra(reg, reg, sa); }
  2374 #else
  2375   void shl(Register reg, int sa)        { sll(reg, reg, sa); }
  2376   void shr(Register reg, int sa)        { srl(reg, reg, sa); }
  2377   void sar(Register reg, int sa)        { sra(reg, reg, sa); }
  2378 #endif
  2380 #ifndef PRODUCT
  2381   static void pd_print_patched_instruction(address branch) {
  2382     jint stub_inst = *(jint*) branch;
  2383     print_instruction(stub_inst);
  2384     ::tty->print("%s", " (unresolved)");
  2387 #endif
  2389   // the follow two might use AT register, be sure you have no meanful data in AT before you call them
  2390   void increment(Register reg, int imm);
  2391   void decrement(Register reg, int imm);
  2393   //FIXME
  2394   void empty_FPU_stack(){/*need implemented*/};
  2396   //we need 2 fun to save and resotre general register
  2397   void pushad();
  2398   void popad();
  2400   // Test sub_klass against super_klass, with fast and slow paths.
  2402   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  2403   // One of the three labels can be NULL, meaning take the fall-through.
  2404   // If super_check_offset is -1, the value is loaded up from super_klass.
  2405   // No registers are killed, except temp_reg.
  2406   void check_klass_subtype_fast_path(Register sub_klass,
  2407                                      Register super_klass,
  2408                                      Register temp_reg,
  2409                                      Label* L_success,
  2410                                      Label* L_failure,
  2411                                      Label* L_slow_path,
  2412                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  2414   // The rest of the type check; must be wired to a corresponding fast path.
  2415   // It does not repeat the fast path logic, so don't use it standalone.
  2416   // The temp_reg and temp2_reg can be noreg, if no temps are available.
  2417   // Updates the sub's secondary super cache as necessary.
  2418   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  2419   void check_klass_subtype_slow_path(Register sub_klass,
  2420                                      Register super_klass,
  2421                                      Register temp_reg,
  2422                                      Register temp2_reg,
  2423                                      Label* L_success,
  2424                                      Label* L_failure,
  2425                                      bool set_cond_codes = false);
  2427    // Simplified, combined version, good for typical uses.
  2428    // Falls through on failure.
  2429    void check_klass_subtype(Register sub_klass,
  2430                             Register super_klass,
  2431                             Register temp_reg,
  2432                             Label& L_success);
  2434   // method handles (JSR 292)
  2435   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
  2437   void get_vm_result  (Register oop_result, Register thread);
  2438   void get_vm_result_2(Register metadata_result, Register thread);
  2439 #undef VIRTUAL
  2440   void atomic_inc32(address counter_addr, int inc, Register tmp_reg1, Register tmp_reg2);
  2442   void fast_lock(Register obj, Register box, Register tmp, Register scr);
  2443   void fast_unlock(Register obj, Register box, Register tmp);
  2444 };
  2446 /**
  2447  * class SkipIfEqual:
  2449  * Instantiating this class will result in assembly code being output that will
  2450  * jump around any code emitted between the creation of the instance and it's
  2451  * automatic destruction at the end of a scope block, depending on the value of
  2452  * the flag passed to the constructor, which will be checked at run-time.
  2453  */
  2454 class SkipIfEqual {
  2455  private:
  2456   MacroAssembler* _masm;
  2457   Label _label;
  2459  public:
  2460    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2461    ~SkipIfEqual();
  2462 };
  2464 #ifdef ASSERT
  2465 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2466 #endif
  2468 #endif // CPU_MIPS_VM_ASSEMBLER_MIPS_HPP

mercurial