src/cpu/x86/vm/assembler_x86_64.cpp

Wed, 28 May 2008 21:06:24 -0700

author
coleenp
date
Wed, 28 May 2008 21:06:24 -0700
changeset 602
feeb96a45707
parent 599
c436414a719e
child 614
1f809e010142
child 617
44abbb0d4c18
permissions
-rw-r--r--

6696264: assert("narrow oop can never be zero") for GCBasher & ParNewGC
Summary: decouple set_klass() with zeroing the gap when compressed.
Reviewed-by: kvn, ysr, jrose

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_assembler_x86_64.cpp.incl"
duke@435 27
duke@435 28 // Implementation of AddressLiteral
duke@435 29
duke@435 30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
duke@435 31 _is_lval = false;
duke@435 32 _target = target;
duke@435 33 switch (rtype) {
duke@435 34 case relocInfo::oop_type:
duke@435 35 // Oops are a special case. Normally they would be their own section
duke@435 36 // but in cases like icBuffer they are literals in the code stream that
duke@435 37 // we don't have a section for. We use none so that we get a literal address
duke@435 38 // which is always patchable.
duke@435 39 break;
duke@435 40 case relocInfo::external_word_type:
duke@435 41 _rspec = external_word_Relocation::spec(target);
duke@435 42 break;
duke@435 43 case relocInfo::internal_word_type:
duke@435 44 _rspec = internal_word_Relocation::spec(target);
duke@435 45 break;
duke@435 46 case relocInfo::opt_virtual_call_type:
duke@435 47 _rspec = opt_virtual_call_Relocation::spec();
duke@435 48 break;
duke@435 49 case relocInfo::static_call_type:
duke@435 50 _rspec = static_call_Relocation::spec();
duke@435 51 break;
duke@435 52 case relocInfo::runtime_call_type:
duke@435 53 _rspec = runtime_call_Relocation::spec();
duke@435 54 break;
duke@435 55 case relocInfo::none:
duke@435 56 break;
duke@435 57 default:
duke@435 58 ShouldNotReachHere();
duke@435 59 break;
duke@435 60 }
duke@435 61 }
duke@435 62
duke@435 63 // Implementation of Address
duke@435 64
duke@435 65 Address Address::make_array(ArrayAddress adr) {
duke@435 66 #ifdef _LP64
duke@435 67 // Not implementable on 64bit machines
duke@435 68 // Should have been handled higher up the call chain.
duke@435 69 ShouldNotReachHere();
duke@435 70 return Address();
duke@435 71 #else
duke@435 72 AddressLiteral base = adr.base();
duke@435 73 Address index = adr.index();
duke@435 74 assert(index._disp == 0, "must not have disp"); // maybe it can?
duke@435 75 Address array(index._base, index._index, index._scale, (intptr_t) base.target());
duke@435 76 array._rspec = base._rspec;
duke@435 77 return array;
duke@435 78 #endif // _LP64
duke@435 79 }
duke@435 80
duke@435 81 // exceedingly dangerous constructor
duke@435 82 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
duke@435 83 _base = noreg;
duke@435 84 _index = noreg;
duke@435 85 _scale = no_scale;
duke@435 86 _disp = disp;
duke@435 87 switch (rtype) {
duke@435 88 case relocInfo::external_word_type:
duke@435 89 _rspec = external_word_Relocation::spec(loc);
duke@435 90 break;
duke@435 91 case relocInfo::internal_word_type:
duke@435 92 _rspec = internal_word_Relocation::spec(loc);
duke@435 93 break;
duke@435 94 case relocInfo::runtime_call_type:
duke@435 95 // HMM
duke@435 96 _rspec = runtime_call_Relocation::spec();
duke@435 97 break;
duke@435 98 case relocInfo::none:
duke@435 99 break;
duke@435 100 default:
duke@435 101 ShouldNotReachHere();
duke@435 102 }
duke@435 103 }
duke@435 104
duke@435 105 // Convert the raw encoding form into the form expected by the constructor for
duke@435 106 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 107 // that to noreg for the Address constructor.
duke@435 108 Address Address::make_raw(int base, int index, int scale, int disp) {
duke@435 109 bool valid_index = index != rsp->encoding();
duke@435 110 if (valid_index) {
duke@435 111 Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
duke@435 112 return madr;
duke@435 113 } else {
duke@435 114 Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
duke@435 115 return madr;
duke@435 116 }
duke@435 117 }
duke@435 118
duke@435 119
duke@435 120 // Implementation of Assembler
duke@435 121 int AbstractAssembler::code_fill_byte() {
duke@435 122 return (u_char)'\xF4'; // hlt
duke@435 123 }
duke@435 124
duke@435 125 // This should only be used by 64bit instructions that can use rip-relative
duke@435 126 // it cannot be used by instructions that want an immediate value.
duke@435 127
duke@435 128 bool Assembler::reachable(AddressLiteral adr) {
duke@435 129 int64_t disp;
coleenp@548 130
duke@435 131 // None will force a 64bit literal to the code stream. Likely a placeholder
duke@435 132 // for something that will be patched later and we need to certain it will
duke@435 133 // always be reachable.
duke@435 134 if (adr.reloc() == relocInfo::none) {
duke@435 135 return false;
duke@435 136 }
duke@435 137 if (adr.reloc() == relocInfo::internal_word_type) {
duke@435 138 // This should be rip relative and easily reachable.
duke@435 139 return true;
duke@435 140 }
duke@435 141 if (adr.reloc() != relocInfo::external_word_type &&
duke@435 142 adr.reloc() != relocInfo::runtime_call_type ) {
duke@435 143 return false;
duke@435 144 }
duke@435 145
duke@435 146 // Stress the correction code
duke@435 147 if (ForceUnreachable) {
duke@435 148 // Must be runtimecall reloc, see if it is in the codecache
duke@435 149 // Flipping stuff in the codecache to be unreachable causes issues
duke@435 150 // with things like inline caches where the additional instructions
duke@435 151 // are not handled.
duke@435 152 if (CodeCache::find_blob(adr._target) == NULL) {
duke@435 153 return false;
duke@435 154 }
duke@435 155 }
duke@435 156 // For external_word_type/runtime_call_type if it is reachable from where we
duke@435 157 // are now (possibly a temp buffer) and where we might end up
duke@435 158 // anywhere in the codeCache then we are always reachable.
duke@435 159 // This would have to change if we ever save/restore shared code
duke@435 160 // to be more pessimistic.
duke@435 161
duke@435 162 disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
duke@435 163 if (!is_simm32(disp)) return false;
duke@435 164 disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
duke@435 165 if (!is_simm32(disp)) return false;
duke@435 166
duke@435 167 disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
duke@435 168
duke@435 169 // Because rip relative is a disp + address_of_next_instruction and we
duke@435 170 // don't know the value of address_of_next_instruction we apply a fudge factor
duke@435 171 // to make sure we will be ok no matter the size of the instruction we get placed into.
duke@435 172 // We don't have to fudge the checks above here because they are already worst case.
duke@435 173
duke@435 174 // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
duke@435 175 // + 4 because better safe than sorry.
duke@435 176 const int fudge = 12 + 4;
duke@435 177 if (disp < 0) {
duke@435 178 disp -= fudge;
duke@435 179 } else {
duke@435 180 disp += fudge;
duke@435 181 }
duke@435 182 return is_simm32(disp);
duke@435 183 }
duke@435 184
duke@435 185
duke@435 186 // make this go away eventually
duke@435 187 void Assembler::emit_data(jint data,
duke@435 188 relocInfo::relocType rtype,
duke@435 189 int format) {
duke@435 190 if (rtype == relocInfo::none) {
duke@435 191 emit_long(data);
duke@435 192 } else {
duke@435 193 emit_data(data, Relocation::spec_simple(rtype), format);
duke@435 194 }
duke@435 195 }
duke@435 196
duke@435 197 void Assembler::emit_data(jint data,
duke@435 198 RelocationHolder const& rspec,
duke@435 199 int format) {
duke@435 200 assert(imm64_operand == 0, "default format must be imm64 in this file");
duke@435 201 assert(imm64_operand != format, "must not be imm64");
duke@435 202 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 203 if (rspec.type() != relocInfo::none) {
duke@435 204 #ifdef ASSERT
duke@435 205 check_relocation(rspec, format);
duke@435 206 #endif
duke@435 207 // Do not use AbstractAssembler::relocate, which is not intended for
duke@435 208 // embedded words. Instead, relocate to the enclosing instruction.
duke@435 209
duke@435 210 // hack. call32 is too wide for mask so use disp32
duke@435 211 if (format == call32_operand)
duke@435 212 code_section()->relocate(inst_mark(), rspec, disp32_operand);
duke@435 213 else
duke@435 214 code_section()->relocate(inst_mark(), rspec, format);
duke@435 215 }
duke@435 216 emit_long(data);
duke@435 217 }
duke@435 218
duke@435 219 void Assembler::emit_data64(jlong data,
duke@435 220 relocInfo::relocType rtype,
duke@435 221 int format) {
duke@435 222 if (rtype == relocInfo::none) {
duke@435 223 emit_long64(data);
duke@435 224 } else {
duke@435 225 emit_data64(data, Relocation::spec_simple(rtype), format);
duke@435 226 }
duke@435 227 }
duke@435 228
duke@435 229 void Assembler::emit_data64(jlong data,
duke@435 230 RelocationHolder const& rspec,
duke@435 231 int format) {
duke@435 232 assert(imm64_operand == 0, "default format must be imm64 in this file");
duke@435 233 assert(imm64_operand == format, "must be imm64");
duke@435 234 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 235 // Do not use AbstractAssembler::relocate, which is not intended for
duke@435 236 // embedded words. Instead, relocate to the enclosing instruction.
duke@435 237 code_section()->relocate(inst_mark(), rspec, format);
duke@435 238 #ifdef ASSERT
duke@435 239 check_relocation(rspec, format);
duke@435 240 #endif
duke@435 241 emit_long64(data);
duke@435 242 }
duke@435 243
duke@435 244 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
duke@435 245 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 246 assert(isByte(imm8), "not a byte");
duke@435 247 assert((op1 & 0x01) == 0, "should be 8bit operation");
duke@435 248 int dstenc = dst->encoding();
duke@435 249 if (dstenc >= 8) {
duke@435 250 dstenc -= 8;
duke@435 251 }
duke@435 252 emit_byte(op1);
duke@435 253 emit_byte(op2 | dstenc);
duke@435 254 emit_byte(imm8);
duke@435 255 }
duke@435 256
duke@435 257 void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
duke@435 258 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 259 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 260 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 261 int dstenc = dst->encoding();
duke@435 262 if (dstenc >= 8) {
duke@435 263 dstenc -= 8;
duke@435 264 }
duke@435 265 if (is8bit(imm32)) {
duke@435 266 emit_byte(op1 | 0x02); // set sign bit
duke@435 267 emit_byte(op2 | dstenc);
duke@435 268 emit_byte(imm32 & 0xFF);
duke@435 269 } else {
duke@435 270 emit_byte(op1);
duke@435 271 emit_byte(op2 | dstenc);
duke@435 272 emit_long(imm32);
duke@435 273 }
duke@435 274 }
duke@435 275
duke@435 276 // immediate-to-memory forms
duke@435 277 void Assembler::emit_arith_operand(int op1,
duke@435 278 Register rm, Address adr,
duke@435 279 int imm32) {
duke@435 280 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 281 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 282 if (is8bit(imm32)) {
duke@435 283 emit_byte(op1 | 0x02); // set sign bit
duke@435 284 emit_operand(rm, adr, 1);
duke@435 285 emit_byte(imm32 & 0xFF);
duke@435 286 } else {
duke@435 287 emit_byte(op1);
duke@435 288 emit_operand(rm, adr, 4);
duke@435 289 emit_long(imm32);
duke@435 290 }
duke@435 291 }
duke@435 292
duke@435 293
duke@435 294 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
duke@435 295 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 296 int dstenc = dst->encoding();
duke@435 297 int srcenc = src->encoding();
duke@435 298 if (dstenc >= 8) {
duke@435 299 dstenc -= 8;
duke@435 300 }
duke@435 301 if (srcenc >= 8) {
duke@435 302 srcenc -= 8;
duke@435 303 }
duke@435 304 emit_byte(op1);
duke@435 305 emit_byte(op2 | dstenc << 3 | srcenc);
duke@435 306 }
duke@435 307
duke@435 308 void Assembler::emit_operand(Register reg, Register base, Register index,
duke@435 309 Address::ScaleFactor scale, int disp,
duke@435 310 RelocationHolder const& rspec,
duke@435 311 int rip_relative_correction) {
duke@435 312 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
duke@435 313 int regenc = reg->encoding();
duke@435 314 if (regenc >= 8) {
duke@435 315 regenc -= 8;
duke@435 316 }
duke@435 317 if (base->is_valid()) {
duke@435 318 if (index->is_valid()) {
duke@435 319 assert(scale != Address::no_scale, "inconsistent address");
duke@435 320 int indexenc = index->encoding();
duke@435 321 if (indexenc >= 8) {
duke@435 322 indexenc -= 8;
duke@435 323 }
duke@435 324 int baseenc = base->encoding();
duke@435 325 if (baseenc >= 8) {
duke@435 326 baseenc -= 8;
duke@435 327 }
duke@435 328 // [base + index*scale + disp]
duke@435 329 if (disp == 0 && rtype == relocInfo::none &&
duke@435 330 base != rbp && base != r13) {
duke@435 331 // [base + index*scale]
duke@435 332 // [00 reg 100][ss index base]
duke@435 333 assert(index != rsp, "illegal addressing mode");
duke@435 334 emit_byte(0x04 | regenc << 3);
duke@435 335 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 336 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 337 // [base + index*scale + imm8]
duke@435 338 // [01 reg 100][ss index base] imm8
duke@435 339 assert(index != rsp, "illegal addressing mode");
duke@435 340 emit_byte(0x44 | regenc << 3);
duke@435 341 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 342 emit_byte(disp & 0xFF);
duke@435 343 } else {
duke@435 344 // [base + index*scale + disp32]
duke@435 345 // [10 reg 100][ss index base] disp32
duke@435 346 assert(index != rsp, "illegal addressing mode");
duke@435 347 emit_byte(0x84 | regenc << 3);
duke@435 348 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 349 emit_data(disp, rspec, disp32_operand);
duke@435 350 }
duke@435 351 } else if (base == rsp || base == r12) {
duke@435 352 // [rsp + disp]
duke@435 353 if (disp == 0 && rtype == relocInfo::none) {
duke@435 354 // [rsp]
duke@435 355 // [00 reg 100][00 100 100]
duke@435 356 emit_byte(0x04 | regenc << 3);
duke@435 357 emit_byte(0x24);
duke@435 358 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 359 // [rsp + imm8]
duke@435 360 // [01 reg 100][00 100 100] disp8
duke@435 361 emit_byte(0x44 | regenc << 3);
duke@435 362 emit_byte(0x24);
duke@435 363 emit_byte(disp & 0xFF);
duke@435 364 } else {
duke@435 365 // [rsp + imm32]
duke@435 366 // [10 reg 100][00 100 100] disp32
duke@435 367 emit_byte(0x84 | regenc << 3);
duke@435 368 emit_byte(0x24);
duke@435 369 emit_data(disp, rspec, disp32_operand);
duke@435 370 }
duke@435 371 } else {
duke@435 372 // [base + disp]
duke@435 373 assert(base != rsp && base != r12, "illegal addressing mode");
duke@435 374 int baseenc = base->encoding();
duke@435 375 if (baseenc >= 8) {
duke@435 376 baseenc -= 8;
duke@435 377 }
duke@435 378 if (disp == 0 && rtype == relocInfo::none &&
duke@435 379 base != rbp && base != r13) {
duke@435 380 // [base]
duke@435 381 // [00 reg base]
duke@435 382 emit_byte(0x00 | regenc << 3 | baseenc);
duke@435 383 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 384 // [base + disp8]
duke@435 385 // [01 reg base] disp8
duke@435 386 emit_byte(0x40 | regenc << 3 | baseenc);
duke@435 387 emit_byte(disp & 0xFF);
duke@435 388 } else {
duke@435 389 // [base + disp32]
duke@435 390 // [10 reg base] disp32
duke@435 391 emit_byte(0x80 | regenc << 3 | baseenc);
duke@435 392 emit_data(disp, rspec, disp32_operand);
duke@435 393 }
duke@435 394 }
duke@435 395 } else {
duke@435 396 if (index->is_valid()) {
duke@435 397 assert(scale != Address::no_scale, "inconsistent address");
duke@435 398 int indexenc = index->encoding();
duke@435 399 if (indexenc >= 8) {
duke@435 400 indexenc -= 8;
duke@435 401 }
duke@435 402 // [index*scale + disp]
duke@435 403 // [00 reg 100][ss index 101] disp32
duke@435 404 assert(index != rsp, "illegal addressing mode");
duke@435 405 emit_byte(0x04 | regenc << 3);
duke@435 406 emit_byte(scale << 6 | indexenc << 3 | 0x05);
duke@435 407 emit_data(disp, rspec, disp32_operand);
duke@435 408 #ifdef _LP64
duke@435 409 } else if (rtype != relocInfo::none ) {
duke@435 410 // [disp] RIP-RELATIVE
duke@435 411 // [00 000 101] disp32
duke@435 412
duke@435 413 emit_byte(0x05 | regenc << 3);
duke@435 414 // Note that the RIP-rel. correction applies to the generated
duke@435 415 // disp field, but _not_ to the target address in the rspec.
duke@435 416
duke@435 417 // disp was created by converting the target address minus the pc
duke@435 418 // at the start of the instruction. That needs more correction here.
duke@435 419 // intptr_t disp = target - next_ip;
duke@435 420 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 421 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
duke@435 422 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
duke@435 423 assert(is_simm32(adjusted),
duke@435 424 "must be 32bit offset (RIP relative address)");
duke@435 425 emit_data((int) adjusted, rspec, disp32_operand);
duke@435 426
duke@435 427 #endif // _LP64
duke@435 428 } else {
duke@435 429 // [disp] ABSOLUTE
duke@435 430 // [00 reg 100][00 100 101] disp32
duke@435 431 emit_byte(0x04 | regenc << 3);
duke@435 432 emit_byte(0x25);
duke@435 433 emit_data(disp, rspec, disp32_operand);
duke@435 434 }
duke@435 435 }
duke@435 436 }
duke@435 437
duke@435 438 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
duke@435 439 Address::ScaleFactor scale, int disp,
duke@435 440 RelocationHolder const& rspec,
duke@435 441 int rip_relative_correction) {
duke@435 442 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
duke@435 443 int regenc = reg->encoding();
duke@435 444 if (regenc >= 8) {
duke@435 445 regenc -= 8;
duke@435 446 }
duke@435 447 if (base->is_valid()) {
duke@435 448 if (index->is_valid()) {
duke@435 449 assert(scale != Address::no_scale, "inconsistent address");
duke@435 450 int indexenc = index->encoding();
duke@435 451 if (indexenc >= 8) {
duke@435 452 indexenc -= 8;
duke@435 453 }
duke@435 454 int baseenc = base->encoding();
duke@435 455 if (baseenc >= 8) {
duke@435 456 baseenc -= 8;
duke@435 457 }
duke@435 458 // [base + index*scale + disp]
duke@435 459 if (disp == 0 && rtype == relocInfo::none &&
duke@435 460 base != rbp && base != r13) {
duke@435 461 // [base + index*scale]
duke@435 462 // [00 reg 100][ss index base]
duke@435 463 assert(index != rsp, "illegal addressing mode");
duke@435 464 emit_byte(0x04 | regenc << 3);
duke@435 465 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 466 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 467 // [base + index*scale + disp8]
duke@435 468 // [01 reg 100][ss index base] disp8
duke@435 469 assert(index != rsp, "illegal addressing mode");
duke@435 470 emit_byte(0x44 | regenc << 3);
duke@435 471 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 472 emit_byte(disp & 0xFF);
duke@435 473 } else {
duke@435 474 // [base + index*scale + disp32]
duke@435 475 // [10 reg 100][ss index base] disp32
duke@435 476 assert(index != rsp, "illegal addressing mode");
duke@435 477 emit_byte(0x84 | regenc << 3);
duke@435 478 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 479 emit_data(disp, rspec, disp32_operand);
duke@435 480 }
duke@435 481 } else if (base == rsp || base == r12) {
duke@435 482 // [rsp + disp]
duke@435 483 if (disp == 0 && rtype == relocInfo::none) {
duke@435 484 // [rsp]
duke@435 485 // [00 reg 100][00 100 100]
duke@435 486 emit_byte(0x04 | regenc << 3);
duke@435 487 emit_byte(0x24);
duke@435 488 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 489 // [rsp + imm8]
duke@435 490 // [01 reg 100][00 100 100] disp8
duke@435 491 emit_byte(0x44 | regenc << 3);
duke@435 492 emit_byte(0x24);
duke@435 493 emit_byte(disp & 0xFF);
duke@435 494 } else {
duke@435 495 // [rsp + imm32]
duke@435 496 // [10 reg 100][00 100 100] disp32
duke@435 497 emit_byte(0x84 | regenc << 3);
duke@435 498 emit_byte(0x24);
duke@435 499 emit_data(disp, rspec, disp32_operand);
duke@435 500 }
duke@435 501 } else {
duke@435 502 // [base + disp]
duke@435 503 assert(base != rsp && base != r12, "illegal addressing mode");
duke@435 504 int baseenc = base->encoding();
duke@435 505 if (baseenc >= 8) {
duke@435 506 baseenc -= 8;
duke@435 507 }
duke@435 508 if (disp == 0 && rtype == relocInfo::none &&
duke@435 509 base != rbp && base != r13) {
duke@435 510 // [base]
duke@435 511 // [00 reg base]
duke@435 512 emit_byte(0x00 | regenc << 3 | baseenc);
duke@435 513 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 514 // [base + imm8]
duke@435 515 // [01 reg base] disp8
duke@435 516 emit_byte(0x40 | regenc << 3 | baseenc);
duke@435 517 emit_byte(disp & 0xFF);
duke@435 518 } else {
duke@435 519 // [base + imm32]
duke@435 520 // [10 reg base] disp32
duke@435 521 emit_byte(0x80 | regenc << 3 | baseenc);
duke@435 522 emit_data(disp, rspec, disp32_operand);
duke@435 523 }
duke@435 524 }
duke@435 525 } else {
duke@435 526 if (index->is_valid()) {
duke@435 527 assert(scale != Address::no_scale, "inconsistent address");
duke@435 528 int indexenc = index->encoding();
duke@435 529 if (indexenc >= 8) {
duke@435 530 indexenc -= 8;
duke@435 531 }
duke@435 532 // [index*scale + disp]
duke@435 533 // [00 reg 100][ss index 101] disp32
duke@435 534 assert(index != rsp, "illegal addressing mode");
duke@435 535 emit_byte(0x04 | regenc << 3);
duke@435 536 emit_byte(scale << 6 | indexenc << 3 | 0x05);
duke@435 537 emit_data(disp, rspec, disp32_operand);
duke@435 538 #ifdef _LP64
duke@435 539 } else if ( rtype != relocInfo::none ) {
duke@435 540 // [disp] RIP-RELATIVE
duke@435 541 // [00 reg 101] disp32
duke@435 542 emit_byte(0x05 | regenc << 3);
duke@435 543 // Note that the RIP-rel. correction applies to the generated
duke@435 544 // disp field, but _not_ to the target address in the rspec.
duke@435 545
duke@435 546 // disp was created by converting the target address minus the pc
duke@435 547 // at the start of the instruction. That needs more correction here.
duke@435 548 // intptr_t disp = target - next_ip;
duke@435 549
duke@435 550 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 551 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
duke@435 552
duke@435 553 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
duke@435 554 assert(is_simm32(adjusted),
duke@435 555 "must be 32bit offset (RIP relative address)");
duke@435 556 emit_data((int) adjusted, rspec, disp32_operand);
duke@435 557 #endif // _LP64
duke@435 558 } else {
duke@435 559 // [disp] ABSOLUTE
duke@435 560 // [00 reg 100][00 100 101] disp32
duke@435 561 emit_byte(0x04 | regenc << 3);
duke@435 562 emit_byte(0x25);
duke@435 563 emit_data(disp, rspec, disp32_operand);
duke@435 564 }
duke@435 565 }
duke@435 566 }
duke@435 567
duke@435 568 // Secret local extension to Assembler::WhichOperand:
duke@435 569 #define end_pc_operand (_WhichOperand_limit)
duke@435 570
duke@435 571 address Assembler::locate_operand(address inst, WhichOperand which) {
duke@435 572 // Decode the given instruction, and return the address of
duke@435 573 // an embedded 32-bit operand word.
duke@435 574
duke@435 575 // If "which" is disp32_operand, selects the displacement portion
duke@435 576 // of an effective address specifier.
duke@435 577 // If "which" is imm64_operand, selects the trailing immediate constant.
duke@435 578 // If "which" is call32_operand, selects the displacement of a call or jump.
duke@435 579 // Caller is responsible for ensuring that there is such an operand,
duke@435 580 // and that it is 32/64 bits wide.
duke@435 581
duke@435 582 // If "which" is end_pc_operand, find the end of the instruction.
duke@435 583
duke@435 584 address ip = inst;
duke@435 585 bool is_64bit = false;
duke@435 586
duke@435 587 debug_only(bool has_disp32 = false);
duke@435 588 int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
duke@435 589
duke@435 590 again_after_prefix:
duke@435 591 switch (0xFF & *ip++) {
duke@435 592
duke@435 593 // These convenience macros generate groups of "case" labels for the switch.
duke@435 594 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
duke@435 595 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
duke@435 596 case (x)+4: case (x)+5: case (x)+6: case (x)+7
duke@435 597 #define REP16(x) REP8((x)+0): \
duke@435 598 case REP8((x)+8)
duke@435 599
duke@435 600 case CS_segment:
duke@435 601 case SS_segment:
duke@435 602 case DS_segment:
duke@435 603 case ES_segment:
duke@435 604 case FS_segment:
duke@435 605 case GS_segment:
duke@435 606 assert(0, "shouldn't have that prefix");
duke@435 607 assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed");
duke@435 608 goto again_after_prefix;
duke@435 609
duke@435 610 case 0x67:
duke@435 611 case REX:
duke@435 612 case REX_B:
duke@435 613 case REX_X:
duke@435 614 case REX_XB:
duke@435 615 case REX_R:
duke@435 616 case REX_RB:
duke@435 617 case REX_RX:
duke@435 618 case REX_RXB:
duke@435 619 // assert(ip == inst + 1, "only one prefix allowed");
duke@435 620 goto again_after_prefix;
duke@435 621
duke@435 622 case REX_W:
duke@435 623 case REX_WB:
duke@435 624 case REX_WX:
duke@435 625 case REX_WXB:
duke@435 626 case REX_WR:
duke@435 627 case REX_WRB:
duke@435 628 case REX_WRX:
duke@435 629 case REX_WRXB:
duke@435 630 is_64bit = true;
duke@435 631 // assert(ip == inst + 1, "only one prefix allowed");
duke@435 632 goto again_after_prefix;
duke@435 633
duke@435 634 case 0xFF: // pushq a; decl a; incl a; call a; jmp a
duke@435 635 case 0x88: // movb a, r
duke@435 636 case 0x89: // movl a, r
duke@435 637 case 0x8A: // movb r, a
duke@435 638 case 0x8B: // movl r, a
duke@435 639 case 0x8F: // popl a
coleenp@548 640 debug_only(has_disp32 = true;)
duke@435 641 break;
duke@435 642
duke@435 643 case 0x68: // pushq #32
duke@435 644 if (which == end_pc_operand) {
duke@435 645 return ip + 4;
duke@435 646 }
duke@435 647 assert(0, "pushq has no disp32 or imm64");
duke@435 648 ShouldNotReachHere();
duke@435 649
duke@435 650 case 0x66: // movw ... (size prefix)
duke@435 651 again_after_size_prefix2:
duke@435 652 switch (0xFF & *ip++) {
duke@435 653 case REX:
duke@435 654 case REX_B:
duke@435 655 case REX_X:
duke@435 656 case REX_XB:
duke@435 657 case REX_R:
duke@435 658 case REX_RB:
duke@435 659 case REX_RX:
duke@435 660 case REX_RXB:
duke@435 661 case REX_W:
duke@435 662 case REX_WB:
duke@435 663 case REX_WX:
duke@435 664 case REX_WXB:
duke@435 665 case REX_WR:
duke@435 666 case REX_WRB:
duke@435 667 case REX_WRX:
duke@435 668 case REX_WRXB:
duke@435 669 goto again_after_size_prefix2;
duke@435 670 case 0x8B: // movw r, a
duke@435 671 case 0x89: // movw a, r
duke@435 672 break;
duke@435 673 case 0xC7: // movw a, #16
duke@435 674 tail_size = 2; // the imm16
duke@435 675 break;
duke@435 676 case 0x0F: // several SSE/SSE2 variants
duke@435 677 ip--; // reparse the 0x0F
duke@435 678 goto again_after_prefix;
duke@435 679 default:
duke@435 680 ShouldNotReachHere();
duke@435 681 }
duke@435 682 break;
duke@435 683
duke@435 684 case REP8(0xB8): // movl/q r, #32/#64(oop?)
duke@435 685 if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4);
kvn@599 686 assert((which == call32_operand || which == imm64_operand) && is_64bit ||
kvn@599 687 which == narrow_oop_operand && !is_64bit, "");
duke@435 688 return ip;
duke@435 689
duke@435 690 case 0x69: // imul r, a, #32
duke@435 691 case 0xC7: // movl a, #32(oop?)
duke@435 692 tail_size = 4;
duke@435 693 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 694 break;
duke@435 695
duke@435 696 case 0x0F: // movx..., etc.
duke@435 697 switch (0xFF & *ip++) {
duke@435 698 case 0x12: // movlps
duke@435 699 case 0x28: // movaps
duke@435 700 case 0x2E: // ucomiss
duke@435 701 case 0x2F: // comiss
duke@435 702 case 0x54: // andps
duke@435 703 case 0x57: // xorps
duke@435 704 case 0x6E: // movd
duke@435 705 case 0x7E: // movd
duke@435 706 case 0xAE: // ldmxcsr a
duke@435 707 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 708 break;
duke@435 709 case 0xAD: // shrd r, a, %cl
duke@435 710 case 0xAF: // imul r, a
duke@435 711 case 0xBE: // movsbl r, a
duke@435 712 case 0xBF: // movswl r, a
duke@435 713 case 0xB6: // movzbl r, a
duke@435 714 case 0xB7: // movzwl r, a
duke@435 715 case REP16(0x40): // cmovl cc, r, a
duke@435 716 case 0xB0: // cmpxchgb
duke@435 717 case 0xB1: // cmpxchg
duke@435 718 case 0xC1: // xaddl
duke@435 719 case 0xC7: // cmpxchg8
duke@435 720 case REP16(0x90): // setcc a
duke@435 721 debug_only(has_disp32 = true);
duke@435 722 // fall out of the switch to decode the address
duke@435 723 break;
duke@435 724 case 0xAC: // shrd r, a, #8
duke@435 725 debug_only(has_disp32 = true);
duke@435 726 tail_size = 1; // the imm8
duke@435 727 break;
duke@435 728 case REP16(0x80): // jcc rdisp32
duke@435 729 if (which == end_pc_operand) return ip + 4;
duke@435 730 assert(which == call32_operand, "jcc has no disp32 or imm64");
duke@435 731 return ip;
duke@435 732 default:
duke@435 733 ShouldNotReachHere();
duke@435 734 }
duke@435 735 break;
duke@435 736
duke@435 737 case 0x81: // addl a, #32; addl r, #32
duke@435 738 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 739 tail_size = 4;
duke@435 740 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 741 break;
duke@435 742
duke@435 743 case 0x83: // addl a, #8; addl r, #8
duke@435 744 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 745 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 746 tail_size = 1;
duke@435 747 break;
duke@435 748
duke@435 749 case 0x9B:
duke@435 750 switch (0xFF & *ip++) {
duke@435 751 case 0xD9: // fnstcw a
duke@435 752 debug_only(has_disp32 = true);
duke@435 753 break;
duke@435 754 default:
duke@435 755 ShouldNotReachHere();
duke@435 756 }
duke@435 757 break;
duke@435 758
duke@435 759 case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
duke@435 760 case REP4(0x10): // adc...
duke@435 761 case REP4(0x20): // and...
duke@435 762 case REP4(0x30): // xor...
duke@435 763 case REP4(0x08): // or...
duke@435 764 case REP4(0x18): // sbb...
duke@435 765 case REP4(0x28): // sub...
duke@435 766 case 0xF7: // mull a
duke@435 767 case 0x87: // xchg r, a
duke@435 768 debug_only(has_disp32 = true);
duke@435 769 break;
duke@435 770 case REP4(0x38): // cmp...
duke@435 771 case 0x8D: // lea r, a
duke@435 772 case 0x85: // test r, a
duke@435 773 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 774 break;
duke@435 775
duke@435 776 case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
duke@435 777 case 0xC6: // movb a, #8
duke@435 778 case 0x80: // cmpb a, #8
duke@435 779 case 0x6B: // imul r, a, #8
duke@435 780 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 781 tail_size = 1; // the imm8
duke@435 782 break;
duke@435 783
duke@435 784 case 0xE8: // call rdisp32
duke@435 785 case 0xE9: // jmp rdisp32
duke@435 786 if (which == end_pc_operand) return ip + 4;
duke@435 787 assert(which == call32_operand, "call has no disp32 or imm32");
duke@435 788 return ip;
duke@435 789
duke@435 790 case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
duke@435 791 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
duke@435 792 case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
duke@435 793 case 0xDD: // fld_d a; fst_d a; fstp_d a
duke@435 794 case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
duke@435 795 case 0xDF: // fild_d a; fistp_d a
duke@435 796 case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
duke@435 797 case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
duke@435 798 case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
duke@435 799 debug_only(has_disp32 = true);
duke@435 800 break;
duke@435 801
duke@435 802 case 0xF3: // For SSE
duke@435 803 case 0xF2: // For SSE2
duke@435 804 switch (0xFF & *ip++) {
duke@435 805 case REX:
duke@435 806 case REX_B:
duke@435 807 case REX_X:
duke@435 808 case REX_XB:
duke@435 809 case REX_R:
duke@435 810 case REX_RB:
duke@435 811 case REX_RX:
duke@435 812 case REX_RXB:
duke@435 813 case REX_W:
duke@435 814 case REX_WB:
duke@435 815 case REX_WX:
duke@435 816 case REX_WXB:
duke@435 817 case REX_WR:
duke@435 818 case REX_WRB:
duke@435 819 case REX_WRX:
duke@435 820 case REX_WRXB:
duke@435 821 ip++;
duke@435 822 default:
duke@435 823 ip++;
duke@435 824 }
duke@435 825 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 826 break;
duke@435 827
duke@435 828 default:
duke@435 829 ShouldNotReachHere();
duke@435 830
duke@435 831 #undef REP8
duke@435 832 #undef REP16
duke@435 833 }
duke@435 834
duke@435 835 assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
duke@435 836 assert(which != imm64_operand, "instruction is not a movq reg, imm64");
duke@435 837 assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
duke@435 838
duke@435 839 // parse the output of emit_operand
duke@435 840 int op2 = 0xFF & *ip++;
duke@435 841 int base = op2 & 0x07;
duke@435 842 int op3 = -1;
duke@435 843 const int b100 = 4;
duke@435 844 const int b101 = 5;
duke@435 845 if (base == b100 && (op2 >> 6) != 3) {
duke@435 846 op3 = 0xFF & *ip++;
duke@435 847 base = op3 & 0x07; // refetch the base
duke@435 848 }
duke@435 849 // now ip points at the disp (if any)
duke@435 850
duke@435 851 switch (op2 >> 6) {
duke@435 852 case 0:
duke@435 853 // [00 reg 100][ss index base]
duke@435 854 // [00 reg 100][00 100 esp]
duke@435 855 // [00 reg base]
duke@435 856 // [00 reg 100][ss index 101][disp32]
duke@435 857 // [00 reg 101] [disp32]
duke@435 858
duke@435 859 if (base == b101) {
duke@435 860 if (which == disp32_operand)
duke@435 861 return ip; // caller wants the disp32
duke@435 862 ip += 4; // skip the disp32
duke@435 863 }
duke@435 864 break;
duke@435 865
duke@435 866 case 1:
duke@435 867 // [01 reg 100][ss index base][disp8]
duke@435 868 // [01 reg 100][00 100 esp][disp8]
duke@435 869 // [01 reg base] [disp8]
duke@435 870 ip += 1; // skip the disp8
duke@435 871 break;
duke@435 872
duke@435 873 case 2:
duke@435 874 // [10 reg 100][ss index base][disp32]
duke@435 875 // [10 reg 100][00 100 esp][disp32]
duke@435 876 // [10 reg base] [disp32]
duke@435 877 if (which == disp32_operand)
duke@435 878 return ip; // caller wants the disp32
duke@435 879 ip += 4; // skip the disp32
duke@435 880 break;
duke@435 881
duke@435 882 case 3:
duke@435 883 // [11 reg base] (not a memory addressing mode)
duke@435 884 break;
duke@435 885 }
duke@435 886
duke@435 887 if (which == end_pc_operand) {
duke@435 888 return ip + tail_size;
duke@435 889 }
duke@435 890
duke@435 891 assert(0, "fix locate_operand");
duke@435 892 return ip;
duke@435 893 }
duke@435 894
duke@435 895 address Assembler::locate_next_instruction(address inst) {
duke@435 896 // Secretly share code with locate_operand:
duke@435 897 return locate_operand(inst, end_pc_operand);
duke@435 898 }
duke@435 899
duke@435 900 #ifdef ASSERT
duke@435 901 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
duke@435 902 address inst = inst_mark();
duke@435 903 assert(inst != NULL && inst < pc(),
duke@435 904 "must point to beginning of instruction");
duke@435 905 address opnd;
duke@435 906
duke@435 907 Relocation* r = rspec.reloc();
duke@435 908 if (r->type() == relocInfo::none) {
duke@435 909 return;
duke@435 910 } else if (r->is_call() || format == call32_operand) {
duke@435 911 opnd = locate_operand(inst, call32_operand);
duke@435 912 } else if (r->is_data()) {
kvn@599 913 assert(format == imm64_operand || format == disp32_operand ||
kvn@599 914 format == narrow_oop_operand, "format ok");
duke@435 915 opnd = locate_operand(inst, (WhichOperand) format);
duke@435 916 } else {
duke@435 917 assert(format == 0, "cannot specify a format");
duke@435 918 return;
duke@435 919 }
duke@435 920 assert(opnd == pc(), "must put operand where relocs can find it");
duke@435 921 }
duke@435 922 #endif
duke@435 923
duke@435 924 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
duke@435 925 if (reg_enc >= 8) {
duke@435 926 prefix(REX_B);
duke@435 927 reg_enc -= 8;
duke@435 928 } else if (byteinst && reg_enc >= 4) {
duke@435 929 prefix(REX);
duke@435 930 }
duke@435 931 return reg_enc;
duke@435 932 }
duke@435 933
duke@435 934 int Assembler::prefixq_and_encode(int reg_enc) {
duke@435 935 if (reg_enc < 8) {
duke@435 936 prefix(REX_W);
duke@435 937 } else {
duke@435 938 prefix(REX_WB);
duke@435 939 reg_enc -= 8;
duke@435 940 }
duke@435 941 return reg_enc;
duke@435 942 }
duke@435 943
duke@435 944 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
duke@435 945 if (dst_enc < 8) {
duke@435 946 if (src_enc >= 8) {
duke@435 947 prefix(REX_B);
duke@435 948 src_enc -= 8;
duke@435 949 } else if (byteinst && src_enc >= 4) {
duke@435 950 prefix(REX);
duke@435 951 }
duke@435 952 } else {
duke@435 953 if (src_enc < 8) {
duke@435 954 prefix(REX_R);
duke@435 955 } else {
duke@435 956 prefix(REX_RB);
duke@435 957 src_enc -= 8;
duke@435 958 }
duke@435 959 dst_enc -= 8;
duke@435 960 }
duke@435 961 return dst_enc << 3 | src_enc;
duke@435 962 }
duke@435 963
duke@435 964 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
duke@435 965 if (dst_enc < 8) {
duke@435 966 if (src_enc < 8) {
duke@435 967 prefix(REX_W);
duke@435 968 } else {
duke@435 969 prefix(REX_WB);
duke@435 970 src_enc -= 8;
duke@435 971 }
duke@435 972 } else {
duke@435 973 if (src_enc < 8) {
duke@435 974 prefix(REX_WR);
duke@435 975 } else {
duke@435 976 prefix(REX_WRB);
duke@435 977 src_enc -= 8;
duke@435 978 }
duke@435 979 dst_enc -= 8;
duke@435 980 }
duke@435 981 return dst_enc << 3 | src_enc;
duke@435 982 }
duke@435 983
duke@435 984 void Assembler::prefix(Register reg) {
duke@435 985 if (reg->encoding() >= 8) {
duke@435 986 prefix(REX_B);
duke@435 987 }
duke@435 988 }
duke@435 989
duke@435 990 void Assembler::prefix(Address adr) {
duke@435 991 if (adr.base_needs_rex()) {
duke@435 992 if (adr.index_needs_rex()) {
duke@435 993 prefix(REX_XB);
duke@435 994 } else {
duke@435 995 prefix(REX_B);
duke@435 996 }
duke@435 997 } else {
duke@435 998 if (adr.index_needs_rex()) {
duke@435 999 prefix(REX_X);
duke@435 1000 }
duke@435 1001 }
duke@435 1002 }
duke@435 1003
duke@435 1004 void Assembler::prefixq(Address adr) {
duke@435 1005 if (adr.base_needs_rex()) {
duke@435 1006 if (adr.index_needs_rex()) {
duke@435 1007 prefix(REX_WXB);
duke@435 1008 } else {
duke@435 1009 prefix(REX_WB);
duke@435 1010 }
duke@435 1011 } else {
duke@435 1012 if (adr.index_needs_rex()) {
duke@435 1013 prefix(REX_WX);
duke@435 1014 } else {
duke@435 1015 prefix(REX_W);
duke@435 1016 }
duke@435 1017 }
duke@435 1018 }
duke@435 1019
duke@435 1020
duke@435 1021 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
duke@435 1022 if (reg->encoding() < 8) {
duke@435 1023 if (adr.base_needs_rex()) {
duke@435 1024 if (adr.index_needs_rex()) {
duke@435 1025 prefix(REX_XB);
duke@435 1026 } else {
duke@435 1027 prefix(REX_B);
duke@435 1028 }
duke@435 1029 } else {
duke@435 1030 if (adr.index_needs_rex()) {
duke@435 1031 prefix(REX_X);
duke@435 1032 } else if (reg->encoding() >= 4 ) {
duke@435 1033 prefix(REX);
duke@435 1034 }
duke@435 1035 }
duke@435 1036 } else {
duke@435 1037 if (adr.base_needs_rex()) {
duke@435 1038 if (adr.index_needs_rex()) {
duke@435 1039 prefix(REX_RXB);
duke@435 1040 } else {
duke@435 1041 prefix(REX_RB);
duke@435 1042 }
duke@435 1043 } else {
duke@435 1044 if (adr.index_needs_rex()) {
duke@435 1045 prefix(REX_RX);
duke@435 1046 } else {
duke@435 1047 prefix(REX_R);
duke@435 1048 }
duke@435 1049 }
duke@435 1050 }
duke@435 1051 }
duke@435 1052
duke@435 1053 void Assembler::prefixq(Address adr, Register src) {
duke@435 1054 if (src->encoding() < 8) {
duke@435 1055 if (adr.base_needs_rex()) {
duke@435 1056 if (adr.index_needs_rex()) {
duke@435 1057 prefix(REX_WXB);
duke@435 1058 } else {
duke@435 1059 prefix(REX_WB);
duke@435 1060 }
duke@435 1061 } else {
duke@435 1062 if (adr.index_needs_rex()) {
duke@435 1063 prefix(REX_WX);
duke@435 1064 } else {
duke@435 1065 prefix(REX_W);
duke@435 1066 }
duke@435 1067 }
duke@435 1068 } else {
duke@435 1069 if (adr.base_needs_rex()) {
duke@435 1070 if (adr.index_needs_rex()) {
duke@435 1071 prefix(REX_WRXB);
duke@435 1072 } else {
duke@435 1073 prefix(REX_WRB);
duke@435 1074 }
duke@435 1075 } else {
duke@435 1076 if (adr.index_needs_rex()) {
duke@435 1077 prefix(REX_WRX);
duke@435 1078 } else {
duke@435 1079 prefix(REX_WR);
duke@435 1080 }
duke@435 1081 }
duke@435 1082 }
duke@435 1083 }
duke@435 1084
duke@435 1085 void Assembler::prefix(Address adr, XMMRegister reg) {
duke@435 1086 if (reg->encoding() < 8) {
duke@435 1087 if (adr.base_needs_rex()) {
duke@435 1088 if (adr.index_needs_rex()) {
duke@435 1089 prefix(REX_XB);
duke@435 1090 } else {
duke@435 1091 prefix(REX_B);
duke@435 1092 }
duke@435 1093 } else {
duke@435 1094 if (adr.index_needs_rex()) {
duke@435 1095 prefix(REX_X);
duke@435 1096 }
duke@435 1097 }
duke@435 1098 } else {
duke@435 1099 if (adr.base_needs_rex()) {
duke@435 1100 if (adr.index_needs_rex()) {
duke@435 1101 prefix(REX_RXB);
duke@435 1102 } else {
duke@435 1103 prefix(REX_RB);
duke@435 1104 }
duke@435 1105 } else {
duke@435 1106 if (adr.index_needs_rex()) {
duke@435 1107 prefix(REX_RX);
duke@435 1108 } else {
duke@435 1109 prefix(REX_R);
duke@435 1110 }
duke@435 1111 }
duke@435 1112 }
duke@435 1113 }
duke@435 1114
duke@435 1115 void Assembler::emit_operand(Register reg, Address adr,
duke@435 1116 int rip_relative_correction) {
duke@435 1117 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
duke@435 1118 adr._rspec,
duke@435 1119 rip_relative_correction);
duke@435 1120 }
duke@435 1121
duke@435 1122 void Assembler::emit_operand(XMMRegister reg, Address adr,
duke@435 1123 int rip_relative_correction) {
duke@435 1124 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
duke@435 1125 adr._rspec,
duke@435 1126 rip_relative_correction);
duke@435 1127 }
duke@435 1128
duke@435 1129 void Assembler::emit_farith(int b1, int b2, int i) {
duke@435 1130 assert(isByte(b1) && isByte(b2), "wrong opcode");
duke@435 1131 assert(0 <= i && i < 8, "illegal stack offset");
duke@435 1132 emit_byte(b1);
duke@435 1133 emit_byte(b2 + i);
duke@435 1134 }
duke@435 1135
duke@435 1136 // pushad is invalid, use this instead.
duke@435 1137 // NOTE: Kills flags!!
duke@435 1138 void Assembler::pushaq() {
duke@435 1139 // we have to store original rsp. ABI says that 128 bytes
duke@435 1140 // below rsp are local scratch.
duke@435 1141 movq(Address(rsp, -5 * wordSize), rsp);
duke@435 1142
duke@435 1143 subq(rsp, 16 * wordSize);
duke@435 1144
duke@435 1145 movq(Address(rsp, 15 * wordSize), rax);
duke@435 1146 movq(Address(rsp, 14 * wordSize), rcx);
duke@435 1147 movq(Address(rsp, 13 * wordSize), rdx);
duke@435 1148 movq(Address(rsp, 12 * wordSize), rbx);
duke@435 1149 // skip rsp
duke@435 1150 movq(Address(rsp, 10 * wordSize), rbp);
duke@435 1151 movq(Address(rsp, 9 * wordSize), rsi);
duke@435 1152 movq(Address(rsp, 8 * wordSize), rdi);
duke@435 1153 movq(Address(rsp, 7 * wordSize), r8);
duke@435 1154 movq(Address(rsp, 6 * wordSize), r9);
duke@435 1155 movq(Address(rsp, 5 * wordSize), r10);
duke@435 1156 movq(Address(rsp, 4 * wordSize), r11);
duke@435 1157 movq(Address(rsp, 3 * wordSize), r12);
duke@435 1158 movq(Address(rsp, 2 * wordSize), r13);
duke@435 1159 movq(Address(rsp, wordSize), r14);
duke@435 1160 movq(Address(rsp, 0), r15);
duke@435 1161 }
duke@435 1162
duke@435 1163 // popad is invalid, use this instead
duke@435 1164 // NOTE: Kills flags!!
duke@435 1165 void Assembler::popaq() {
duke@435 1166 movq(r15, Address(rsp, 0));
duke@435 1167 movq(r14, Address(rsp, wordSize));
duke@435 1168 movq(r13, Address(rsp, 2 * wordSize));
duke@435 1169 movq(r12, Address(rsp, 3 * wordSize));
duke@435 1170 movq(r11, Address(rsp, 4 * wordSize));
duke@435 1171 movq(r10, Address(rsp, 5 * wordSize));
duke@435 1172 movq(r9, Address(rsp, 6 * wordSize));
duke@435 1173 movq(r8, Address(rsp, 7 * wordSize));
duke@435 1174 movq(rdi, Address(rsp, 8 * wordSize));
duke@435 1175 movq(rsi, Address(rsp, 9 * wordSize));
duke@435 1176 movq(rbp, Address(rsp, 10 * wordSize));
duke@435 1177 // skip rsp
duke@435 1178 movq(rbx, Address(rsp, 12 * wordSize));
duke@435 1179 movq(rdx, Address(rsp, 13 * wordSize));
duke@435 1180 movq(rcx, Address(rsp, 14 * wordSize));
duke@435 1181 movq(rax, Address(rsp, 15 * wordSize));
duke@435 1182
duke@435 1183 addq(rsp, 16 * wordSize);
duke@435 1184 }
duke@435 1185
duke@435 1186 void Assembler::pushfq() {
duke@435 1187 emit_byte(0x9C);
duke@435 1188 }
duke@435 1189
duke@435 1190 void Assembler::popfq() {
duke@435 1191 emit_byte(0x9D);
duke@435 1192 }
duke@435 1193
duke@435 1194 void Assembler::pushq(int imm32) {
duke@435 1195 emit_byte(0x68);
duke@435 1196 emit_long(imm32);
duke@435 1197 }
duke@435 1198
duke@435 1199 void Assembler::pushq(Register src) {
duke@435 1200 int encode = prefix_and_encode(src->encoding());
duke@435 1201
duke@435 1202 emit_byte(0x50 | encode);
duke@435 1203 }
duke@435 1204
duke@435 1205 void Assembler::pushq(Address src) {
duke@435 1206 InstructionMark im(this);
duke@435 1207 prefix(src);
duke@435 1208 emit_byte(0xFF);
duke@435 1209 emit_operand(rsi, src);
duke@435 1210 }
duke@435 1211
duke@435 1212 void Assembler::popq(Register dst) {
duke@435 1213 int encode = prefix_and_encode(dst->encoding());
duke@435 1214 emit_byte(0x58 | encode);
duke@435 1215 }
duke@435 1216
duke@435 1217 void Assembler::popq(Address dst) {
duke@435 1218 InstructionMark im(this);
duke@435 1219 prefix(dst);
duke@435 1220 emit_byte(0x8F);
duke@435 1221 emit_operand(rax, dst);
duke@435 1222 }
duke@435 1223
duke@435 1224 void Assembler::prefix(Prefix p) {
duke@435 1225 a_byte(p);
duke@435 1226 }
duke@435 1227
duke@435 1228 void Assembler::movb(Register dst, Address src) {
duke@435 1229 InstructionMark im(this);
duke@435 1230 prefix(src, dst, true);
duke@435 1231 emit_byte(0x8A);
duke@435 1232 emit_operand(dst, src);
duke@435 1233 }
duke@435 1234
duke@435 1235 void Assembler::movb(Address dst, int imm8) {
duke@435 1236 InstructionMark im(this);
duke@435 1237 prefix(dst);
duke@435 1238 emit_byte(0xC6);
duke@435 1239 emit_operand(rax, dst, 1);
duke@435 1240 emit_byte(imm8);
duke@435 1241 }
duke@435 1242
duke@435 1243 void Assembler::movb(Address dst, Register src) {
duke@435 1244 InstructionMark im(this);
duke@435 1245 prefix(dst, src, true);
duke@435 1246 emit_byte(0x88);
duke@435 1247 emit_operand(src, dst);
duke@435 1248 }
duke@435 1249
duke@435 1250 void Assembler::movw(Address dst, int imm16) {
duke@435 1251 InstructionMark im(this);
duke@435 1252 emit_byte(0x66); // switch to 16-bit mode
duke@435 1253 prefix(dst);
duke@435 1254 emit_byte(0xC7);
duke@435 1255 emit_operand(rax, dst, 2);
duke@435 1256 emit_word(imm16);
duke@435 1257 }
duke@435 1258
duke@435 1259 void Assembler::movw(Register dst, Address src) {
duke@435 1260 InstructionMark im(this);
duke@435 1261 emit_byte(0x66);
duke@435 1262 prefix(src, dst);
duke@435 1263 emit_byte(0x8B);
duke@435 1264 emit_operand(dst, src);
duke@435 1265 }
duke@435 1266
duke@435 1267 void Assembler::movw(Address dst, Register src) {
duke@435 1268 InstructionMark im(this);
duke@435 1269 emit_byte(0x66);
duke@435 1270 prefix(dst, src);
duke@435 1271 emit_byte(0x89);
duke@435 1272 emit_operand(src, dst);
duke@435 1273 }
duke@435 1274
duke@435 1275 // Uses zero extension.
duke@435 1276 void Assembler::movl(Register dst, int imm32) {
duke@435 1277 int encode = prefix_and_encode(dst->encoding());
duke@435 1278 emit_byte(0xB8 | encode);
duke@435 1279 emit_long(imm32);
duke@435 1280 }
duke@435 1281
duke@435 1282 void Assembler::movl(Register dst, Register src) {
duke@435 1283 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1284 emit_byte(0x8B);
duke@435 1285 emit_byte(0xC0 | encode);
duke@435 1286 }
duke@435 1287
duke@435 1288 void Assembler::movl(Register dst, Address src) {
duke@435 1289 InstructionMark im(this);
duke@435 1290 prefix(src, dst);
duke@435 1291 emit_byte(0x8B);
duke@435 1292 emit_operand(dst, src);
duke@435 1293 }
duke@435 1294
duke@435 1295 void Assembler::movl(Address dst, int imm32) {
duke@435 1296 InstructionMark im(this);
duke@435 1297 prefix(dst);
duke@435 1298 emit_byte(0xC7);
duke@435 1299 emit_operand(rax, dst, 4);
duke@435 1300 emit_long(imm32);
duke@435 1301 }
duke@435 1302
duke@435 1303 void Assembler::movl(Address dst, Register src) {
duke@435 1304 InstructionMark im(this);
duke@435 1305 prefix(dst, src);
duke@435 1306 emit_byte(0x89);
duke@435 1307 emit_operand(src, dst);
duke@435 1308 }
duke@435 1309
dcubed@485 1310 void Assembler::mov64(Register dst, intptr_t imm64) {
duke@435 1311 InstructionMark im(this);
duke@435 1312 int encode = prefixq_and_encode(dst->encoding());
duke@435 1313 emit_byte(0xB8 | encode);
duke@435 1314 emit_long64(imm64);
duke@435 1315 }
duke@435 1316
duke@435 1317 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
duke@435 1318 InstructionMark im(this);
duke@435 1319 int encode = prefixq_and_encode(dst->encoding());
duke@435 1320 emit_byte(0xB8 | encode);
duke@435 1321 emit_data64(imm64, rspec);
duke@435 1322 }
duke@435 1323
duke@435 1324 void Assembler::movq(Register dst, Register src) {
duke@435 1325 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1326 emit_byte(0x8B);
duke@435 1327 emit_byte(0xC0 | encode);
duke@435 1328 }
duke@435 1329
duke@435 1330 void Assembler::movq(Register dst, Address src) {
duke@435 1331 InstructionMark im(this);
duke@435 1332 prefixq(src, dst);
duke@435 1333 emit_byte(0x8B);
duke@435 1334 emit_operand(dst, src);
duke@435 1335 }
duke@435 1336
dcubed@485 1337 void Assembler::mov64(Address dst, intptr_t imm32) {
duke@435 1338 assert(is_simm32(imm32), "lost bits");
duke@435 1339 InstructionMark im(this);
duke@435 1340 prefixq(dst);
duke@435 1341 emit_byte(0xC7);
duke@435 1342 emit_operand(rax, dst, 4);
duke@435 1343 emit_long(imm32);
duke@435 1344 }
duke@435 1345
duke@435 1346 void Assembler::movq(Address dst, Register src) {
duke@435 1347 InstructionMark im(this);
duke@435 1348 prefixq(dst, src);
duke@435 1349 emit_byte(0x89);
duke@435 1350 emit_operand(src, dst);
duke@435 1351 }
duke@435 1352
duke@435 1353 void Assembler::movsbl(Register dst, Address src) {
duke@435 1354 InstructionMark im(this);
duke@435 1355 prefix(src, dst);
duke@435 1356 emit_byte(0x0F);
duke@435 1357 emit_byte(0xBE);
duke@435 1358 emit_operand(dst, src);
duke@435 1359 }
duke@435 1360
duke@435 1361 void Assembler::movsbl(Register dst, Register src) {
duke@435 1362 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
duke@435 1363 emit_byte(0x0F);
duke@435 1364 emit_byte(0xBE);
duke@435 1365 emit_byte(0xC0 | encode);
duke@435 1366 }
duke@435 1367
duke@435 1368 void Assembler::movswl(Register dst, Address src) {
duke@435 1369 InstructionMark im(this);
duke@435 1370 prefix(src, dst);
duke@435 1371 emit_byte(0x0F);
duke@435 1372 emit_byte(0xBF);
duke@435 1373 emit_operand(dst, src);
duke@435 1374 }
duke@435 1375
duke@435 1376 void Assembler::movswl(Register dst, Register src) {
duke@435 1377 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1378 emit_byte(0x0F);
duke@435 1379 emit_byte(0xBF);
duke@435 1380 emit_byte(0xC0 | encode);
duke@435 1381 }
duke@435 1382
duke@435 1383 void Assembler::movslq(Register dst, Address src) {
duke@435 1384 InstructionMark im(this);
duke@435 1385 prefixq(src, dst);
duke@435 1386 emit_byte(0x63);
duke@435 1387 emit_operand(dst, src);
duke@435 1388 }
duke@435 1389
duke@435 1390 void Assembler::movslq(Register dst, Register src) {
duke@435 1391 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1392 emit_byte(0x63);
duke@435 1393 emit_byte(0xC0 | encode);
duke@435 1394 }
duke@435 1395
duke@435 1396 void Assembler::movzbl(Register dst, Address src) {
duke@435 1397 InstructionMark im(this);
duke@435 1398 prefix(src, dst);
duke@435 1399 emit_byte(0x0F);
duke@435 1400 emit_byte(0xB6);
duke@435 1401 emit_operand(dst, src);
duke@435 1402 }
duke@435 1403
duke@435 1404 void Assembler::movzbl(Register dst, Register src) {
duke@435 1405 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
duke@435 1406 emit_byte(0x0F);
duke@435 1407 emit_byte(0xB6);
duke@435 1408 emit_byte(0xC0 | encode);
duke@435 1409 }
duke@435 1410
duke@435 1411 void Assembler::movzwl(Register dst, Address src) {
duke@435 1412 InstructionMark im(this);
duke@435 1413 prefix(src, dst);
duke@435 1414 emit_byte(0x0F);
duke@435 1415 emit_byte(0xB7);
duke@435 1416 emit_operand(dst, src);
duke@435 1417 }
duke@435 1418
duke@435 1419 void Assembler::movzwl(Register dst, Register src) {
duke@435 1420 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1421 emit_byte(0x0F);
duke@435 1422 emit_byte(0xB7);
duke@435 1423 emit_byte(0xC0 | encode);
duke@435 1424 }
duke@435 1425
duke@435 1426 void Assembler::movss(XMMRegister dst, XMMRegister src) {
duke@435 1427 emit_byte(0xF3);
duke@435 1428 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1429 emit_byte(0x0F);
duke@435 1430 emit_byte(0x10);
duke@435 1431 emit_byte(0xC0 | encode);
duke@435 1432 }
duke@435 1433
duke@435 1434 void Assembler::movss(XMMRegister dst, Address src) {
duke@435 1435 InstructionMark im(this);
duke@435 1436 emit_byte(0xF3);
duke@435 1437 prefix(src, dst);
duke@435 1438 emit_byte(0x0F);
duke@435 1439 emit_byte(0x10);
duke@435 1440 emit_operand(dst, src);
duke@435 1441 }
duke@435 1442
duke@435 1443 void Assembler::movss(Address dst, XMMRegister src) {
duke@435 1444 InstructionMark im(this);
duke@435 1445 emit_byte(0xF3);
duke@435 1446 prefix(dst, src);
duke@435 1447 emit_byte(0x0F);
duke@435 1448 emit_byte(0x11);
duke@435 1449 emit_operand(src, dst);
duke@435 1450 }
duke@435 1451
duke@435 1452 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
duke@435 1453 emit_byte(0xF2);
duke@435 1454 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1455 emit_byte(0x0F);
duke@435 1456 emit_byte(0x10);
duke@435 1457 emit_byte(0xC0 | encode);
duke@435 1458 }
duke@435 1459
duke@435 1460 void Assembler::movsd(XMMRegister dst, Address src) {
duke@435 1461 InstructionMark im(this);
duke@435 1462 emit_byte(0xF2);
duke@435 1463 prefix(src, dst);
duke@435 1464 emit_byte(0x0F);
duke@435 1465 emit_byte(0x10);
duke@435 1466 emit_operand(dst, src);
duke@435 1467 }
duke@435 1468
duke@435 1469 void Assembler::movsd(Address dst, XMMRegister src) {
duke@435 1470 InstructionMark im(this);
duke@435 1471 emit_byte(0xF2);
duke@435 1472 prefix(dst, src);
duke@435 1473 emit_byte(0x0F);
duke@435 1474 emit_byte(0x11);
duke@435 1475 emit_operand(src, dst);
duke@435 1476 }
duke@435 1477
duke@435 1478 // New cpus require to use movsd and movss to avoid partial register stall
duke@435 1479 // when loading from memory. But for old Opteron use movlpd instead of movsd.
duke@435 1480 // The selection is done in MacroAssembler::movdbl() and movflt().
duke@435 1481 void Assembler::movlpd(XMMRegister dst, Address src) {
duke@435 1482 InstructionMark im(this);
duke@435 1483 emit_byte(0x66);
duke@435 1484 prefix(src, dst);
duke@435 1485 emit_byte(0x0F);
duke@435 1486 emit_byte(0x12);
duke@435 1487 emit_operand(dst, src);
duke@435 1488 }
duke@435 1489
duke@435 1490 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
duke@435 1491 int dstenc = dst->encoding();
duke@435 1492 int srcenc = src->encoding();
duke@435 1493 emit_byte(0x66);
duke@435 1494 if (dstenc < 8) {
duke@435 1495 if (srcenc >= 8) {
duke@435 1496 prefix(REX_B);
duke@435 1497 srcenc -= 8;
duke@435 1498 }
duke@435 1499 } else {
duke@435 1500 if (srcenc < 8) {
duke@435 1501 prefix(REX_R);
duke@435 1502 } else {
duke@435 1503 prefix(REX_RB);
duke@435 1504 srcenc -= 8;
duke@435 1505 }
duke@435 1506 dstenc -= 8;
duke@435 1507 }
duke@435 1508 emit_byte(0x0F);
duke@435 1509 emit_byte(0x28);
duke@435 1510 emit_byte(0xC0 | dstenc << 3 | srcenc);
duke@435 1511 }
duke@435 1512
duke@435 1513 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
duke@435 1514 int dstenc = dst->encoding();
duke@435 1515 int srcenc = src->encoding();
duke@435 1516 if (dstenc < 8) {
duke@435 1517 if (srcenc >= 8) {
duke@435 1518 prefix(REX_B);
duke@435 1519 srcenc -= 8;
duke@435 1520 }
duke@435 1521 } else {
duke@435 1522 if (srcenc < 8) {
duke@435 1523 prefix(REX_R);
duke@435 1524 } else {
duke@435 1525 prefix(REX_RB);
duke@435 1526 srcenc -= 8;
duke@435 1527 }
duke@435 1528 dstenc -= 8;
duke@435 1529 }
duke@435 1530 emit_byte(0x0F);
duke@435 1531 emit_byte(0x28);
duke@435 1532 emit_byte(0xC0 | dstenc << 3 | srcenc);
duke@435 1533 }
duke@435 1534
duke@435 1535 void Assembler::movdl(XMMRegister dst, Register src) {
duke@435 1536 emit_byte(0x66);
duke@435 1537 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1538 emit_byte(0x0F);
duke@435 1539 emit_byte(0x6E);
duke@435 1540 emit_byte(0xC0 | encode);
duke@435 1541 }
duke@435 1542
duke@435 1543 void Assembler::movdl(Register dst, XMMRegister src) {
duke@435 1544 emit_byte(0x66);
duke@435 1545 // swap src/dst to get correct prefix
duke@435 1546 int encode = prefix_and_encode(src->encoding(), dst->encoding());
duke@435 1547 emit_byte(0x0F);
duke@435 1548 emit_byte(0x7E);
duke@435 1549 emit_byte(0xC0 | encode);
duke@435 1550 }
duke@435 1551
duke@435 1552 void Assembler::movdq(XMMRegister dst, Register src) {
duke@435 1553 emit_byte(0x66);
duke@435 1554 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1555 emit_byte(0x0F);
duke@435 1556 emit_byte(0x6E);
duke@435 1557 emit_byte(0xC0 | encode);
duke@435 1558 }
duke@435 1559
duke@435 1560 void Assembler::movdq(Register dst, XMMRegister src) {
duke@435 1561 emit_byte(0x66);
duke@435 1562 // swap src/dst to get correct prefix
duke@435 1563 int encode = prefixq_and_encode(src->encoding(), dst->encoding());
duke@435 1564 emit_byte(0x0F);
duke@435 1565 emit_byte(0x7E);
duke@435 1566 emit_byte(0xC0 | encode);
duke@435 1567 }
duke@435 1568
duke@435 1569 void Assembler::pxor(XMMRegister dst, Address src) {
duke@435 1570 InstructionMark im(this);
duke@435 1571 emit_byte(0x66);
duke@435 1572 prefix(src, dst);
duke@435 1573 emit_byte(0x0F);
duke@435 1574 emit_byte(0xEF);
duke@435 1575 emit_operand(dst, src);
duke@435 1576 }
duke@435 1577
duke@435 1578 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
duke@435 1579 InstructionMark im(this);
duke@435 1580 emit_byte(0x66);
duke@435 1581 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1582 emit_byte(0x0F);
duke@435 1583 emit_byte(0xEF);
duke@435 1584 emit_byte(0xC0 | encode);
duke@435 1585 }
duke@435 1586
duke@435 1587 void Assembler::movdqa(XMMRegister dst, Address src) {
duke@435 1588 InstructionMark im(this);
duke@435 1589 emit_byte(0x66);
duke@435 1590 prefix(src, dst);
duke@435 1591 emit_byte(0x0F);
duke@435 1592 emit_byte(0x6F);
duke@435 1593 emit_operand(dst, src);
duke@435 1594 }
duke@435 1595
duke@435 1596 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
duke@435 1597 emit_byte(0x66);
duke@435 1598 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1599 emit_byte(0x0F);
duke@435 1600 emit_byte(0x6F);
duke@435 1601 emit_byte(0xC0 | encode);
duke@435 1602 }
duke@435 1603
duke@435 1604 void Assembler::movdqa(Address dst, XMMRegister src) {
duke@435 1605 InstructionMark im(this);
duke@435 1606 emit_byte(0x66);
duke@435 1607 prefix(dst, src);
duke@435 1608 emit_byte(0x0F);
duke@435 1609 emit_byte(0x7F);
duke@435 1610 emit_operand(src, dst);
duke@435 1611 }
duke@435 1612
duke@435 1613 void Assembler::movq(XMMRegister dst, Address src) {
duke@435 1614 InstructionMark im(this);
duke@435 1615 emit_byte(0xF3);
duke@435 1616 prefix(src, dst);
duke@435 1617 emit_byte(0x0F);
duke@435 1618 emit_byte(0x7E);
duke@435 1619 emit_operand(dst, src);
duke@435 1620 }
duke@435 1621
duke@435 1622 void Assembler::movq(Address dst, XMMRegister src) {
duke@435 1623 InstructionMark im(this);
duke@435 1624 emit_byte(0x66);
duke@435 1625 prefix(dst, src);
duke@435 1626 emit_byte(0x0F);
duke@435 1627 emit_byte(0xD6);
duke@435 1628 emit_operand(src, dst);
duke@435 1629 }
duke@435 1630
duke@435 1631 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
duke@435 1632 assert(isByte(mode), "invalid value");
duke@435 1633 emit_byte(0x66);
duke@435 1634 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1635 emit_byte(0x0F);
duke@435 1636 emit_byte(0x70);
duke@435 1637 emit_byte(0xC0 | encode);
duke@435 1638 emit_byte(mode & 0xFF);
duke@435 1639 }
duke@435 1640
duke@435 1641 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
duke@435 1642 assert(isByte(mode), "invalid value");
duke@435 1643 InstructionMark im(this);
duke@435 1644 emit_byte(0x66);
duke@435 1645 emit_byte(0x0F);
duke@435 1646 emit_byte(0x70);
duke@435 1647 emit_operand(dst, src);
duke@435 1648 emit_byte(mode & 0xFF);
duke@435 1649 }
duke@435 1650
duke@435 1651 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
duke@435 1652 assert(isByte(mode), "invalid value");
duke@435 1653 emit_byte(0xF2);
duke@435 1654 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1655 emit_byte(0x0F);
duke@435 1656 emit_byte(0x70);
duke@435 1657 emit_byte(0xC0 | encode);
duke@435 1658 emit_byte(mode & 0xFF);
duke@435 1659 }
duke@435 1660
duke@435 1661 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
duke@435 1662 assert(isByte(mode), "invalid value");
duke@435 1663 InstructionMark im(this);
duke@435 1664 emit_byte(0xF2);
duke@435 1665 emit_byte(0x0F);
duke@435 1666 emit_byte(0x70);
duke@435 1667 emit_operand(dst, src);
duke@435 1668 emit_byte(mode & 0xFF);
duke@435 1669 }
duke@435 1670
duke@435 1671 void Assembler::cmovl(Condition cc, Register dst, Register src) {
duke@435 1672 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1673 emit_byte(0x0F);
duke@435 1674 emit_byte(0x40 | cc);
duke@435 1675 emit_byte(0xC0 | encode);
duke@435 1676 }
duke@435 1677
duke@435 1678 void Assembler::cmovl(Condition cc, Register dst, Address src) {
duke@435 1679 InstructionMark im(this);
duke@435 1680 prefix(src, dst);
duke@435 1681 emit_byte(0x0F);
duke@435 1682 emit_byte(0x40 | cc);
duke@435 1683 emit_operand(dst, src);
duke@435 1684 }
duke@435 1685
duke@435 1686 void Assembler::cmovq(Condition cc, Register dst, Register src) {
duke@435 1687 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1688 emit_byte(0x0F);
duke@435 1689 emit_byte(0x40 | cc);
duke@435 1690 emit_byte(0xC0 | encode);
duke@435 1691 }
duke@435 1692
duke@435 1693 void Assembler::cmovq(Condition cc, Register dst, Address src) {
duke@435 1694 InstructionMark im(this);
duke@435 1695 prefixq(src, dst);
duke@435 1696 emit_byte(0x0F);
duke@435 1697 emit_byte(0x40 | cc);
duke@435 1698 emit_operand(dst, src);
duke@435 1699 }
duke@435 1700
duke@435 1701 void Assembler::prefetch_prefix(Address src) {
duke@435 1702 prefix(src);
duke@435 1703 emit_byte(0x0F);
duke@435 1704 }
duke@435 1705
duke@435 1706 void Assembler::prefetcht0(Address src) {
duke@435 1707 InstructionMark im(this);
duke@435 1708 prefetch_prefix(src);
duke@435 1709 emit_byte(0x18);
duke@435 1710 emit_operand(rcx, src); // 1, src
duke@435 1711 }
duke@435 1712
duke@435 1713 void Assembler::prefetcht1(Address src) {
duke@435 1714 InstructionMark im(this);
duke@435 1715 prefetch_prefix(src);
duke@435 1716 emit_byte(0x18);
duke@435 1717 emit_operand(rdx, src); // 2, src
duke@435 1718 }
duke@435 1719
duke@435 1720 void Assembler::prefetcht2(Address src) {
duke@435 1721 InstructionMark im(this);
duke@435 1722 prefetch_prefix(src);
duke@435 1723 emit_byte(0x18);
duke@435 1724 emit_operand(rbx, src); // 3, src
duke@435 1725 }
duke@435 1726
duke@435 1727 void Assembler::prefetchnta(Address src) {
duke@435 1728 InstructionMark im(this);
duke@435 1729 prefetch_prefix(src);
duke@435 1730 emit_byte(0x18);
duke@435 1731 emit_operand(rax, src); // 0, src
duke@435 1732 }
duke@435 1733
duke@435 1734 void Assembler::prefetchw(Address src) {
duke@435 1735 InstructionMark im(this);
duke@435 1736 prefetch_prefix(src);
duke@435 1737 emit_byte(0x0D);
duke@435 1738 emit_operand(rcx, src); // 1, src
duke@435 1739 }
duke@435 1740
duke@435 1741 void Assembler::adcl(Register dst, int imm32) {
duke@435 1742 prefix(dst);
duke@435 1743 emit_arith(0x81, 0xD0, dst, imm32);
duke@435 1744 }
duke@435 1745
duke@435 1746 void Assembler::adcl(Register dst, Address src) {
duke@435 1747 InstructionMark im(this);
duke@435 1748 prefix(src, dst);
duke@435 1749 emit_byte(0x13);
duke@435 1750 emit_operand(dst, src);
duke@435 1751 }
duke@435 1752
duke@435 1753 void Assembler::adcl(Register dst, Register src) {
duke@435 1754 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1755 emit_arith(0x13, 0xC0, dst, src);
duke@435 1756 }
duke@435 1757
duke@435 1758 void Assembler::adcq(Register dst, int imm32) {
duke@435 1759 (void) prefixq_and_encode(dst->encoding());
duke@435 1760 emit_arith(0x81, 0xD0, dst, imm32);
duke@435 1761 }
duke@435 1762
duke@435 1763 void Assembler::adcq(Register dst, Address src) {
duke@435 1764 InstructionMark im(this);
duke@435 1765 prefixq(src, dst);
duke@435 1766 emit_byte(0x13);
duke@435 1767 emit_operand(dst, src);
duke@435 1768 }
duke@435 1769
duke@435 1770 void Assembler::adcq(Register dst, Register src) {
duke@435 1771 (int) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1772 emit_arith(0x13, 0xC0, dst, src);
duke@435 1773 }
duke@435 1774
duke@435 1775 void Assembler::addl(Address dst, int imm32) {
duke@435 1776 InstructionMark im(this);
duke@435 1777 prefix(dst);
duke@435 1778 emit_arith_operand(0x81, rax, dst,imm32);
duke@435 1779 }
duke@435 1780
duke@435 1781 void Assembler::addl(Address dst, Register src) {
duke@435 1782 InstructionMark im(this);
duke@435 1783 prefix(dst, src);
duke@435 1784 emit_byte(0x01);
duke@435 1785 emit_operand(src, dst);
duke@435 1786 }
duke@435 1787
duke@435 1788 void Assembler::addl(Register dst, int imm32) {
duke@435 1789 prefix(dst);
duke@435 1790 emit_arith(0x81, 0xC0, dst, imm32);
duke@435 1791 }
duke@435 1792
duke@435 1793 void Assembler::addl(Register dst, Address src) {
duke@435 1794 InstructionMark im(this);
duke@435 1795 prefix(src, dst);
duke@435 1796 emit_byte(0x03);
duke@435 1797 emit_operand(dst, src);
duke@435 1798 }
duke@435 1799
duke@435 1800 void Assembler::addl(Register dst, Register src) {
duke@435 1801 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1802 emit_arith(0x03, 0xC0, dst, src);
duke@435 1803 }
duke@435 1804
duke@435 1805 void Assembler::addq(Address dst, int imm32) {
duke@435 1806 InstructionMark im(this);
duke@435 1807 prefixq(dst);
duke@435 1808 emit_arith_operand(0x81, rax, dst,imm32);
duke@435 1809 }
duke@435 1810
duke@435 1811 void Assembler::addq(Address dst, Register src) {
duke@435 1812 InstructionMark im(this);
duke@435 1813 prefixq(dst, src);
duke@435 1814 emit_byte(0x01);
duke@435 1815 emit_operand(src, dst);
duke@435 1816 }
duke@435 1817
duke@435 1818 void Assembler::addq(Register dst, int imm32) {
duke@435 1819 (void) prefixq_and_encode(dst->encoding());
duke@435 1820 emit_arith(0x81, 0xC0, dst, imm32);
duke@435 1821 }
duke@435 1822
duke@435 1823 void Assembler::addq(Register dst, Address src) {
duke@435 1824 InstructionMark im(this);
duke@435 1825 prefixq(src, dst);
duke@435 1826 emit_byte(0x03);
duke@435 1827 emit_operand(dst, src);
duke@435 1828 }
duke@435 1829
duke@435 1830 void Assembler::addq(Register dst, Register src) {
duke@435 1831 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1832 emit_arith(0x03, 0xC0, dst, src);
duke@435 1833 }
duke@435 1834
duke@435 1835 void Assembler::andl(Register dst, int imm32) {
duke@435 1836 prefix(dst);
duke@435 1837 emit_arith(0x81, 0xE0, dst, imm32);
duke@435 1838 }
duke@435 1839
duke@435 1840 void Assembler::andl(Register dst, Address src) {
duke@435 1841 InstructionMark im(this);
duke@435 1842 prefix(src, dst);
duke@435 1843 emit_byte(0x23);
duke@435 1844 emit_operand(dst, src);
duke@435 1845 }
duke@435 1846
duke@435 1847 void Assembler::andl(Register dst, Register src) {
duke@435 1848 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1849 emit_arith(0x23, 0xC0, dst, src);
duke@435 1850 }
duke@435 1851
duke@435 1852 void Assembler::andq(Register dst, int imm32) {
duke@435 1853 (void) prefixq_and_encode(dst->encoding());
duke@435 1854 emit_arith(0x81, 0xE0, dst, imm32);
duke@435 1855 }
duke@435 1856
duke@435 1857 void Assembler::andq(Register dst, Address src) {
duke@435 1858 InstructionMark im(this);
duke@435 1859 prefixq(src, dst);
duke@435 1860 emit_byte(0x23);
duke@435 1861 emit_operand(dst, src);
duke@435 1862 }
duke@435 1863
duke@435 1864 void Assembler::andq(Register dst, Register src) {
duke@435 1865 (int) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1866 emit_arith(0x23, 0xC0, dst, src);
duke@435 1867 }
duke@435 1868
duke@435 1869 void Assembler::cmpb(Address dst, int imm8) {
duke@435 1870 InstructionMark im(this);
duke@435 1871 prefix(dst);
duke@435 1872 emit_byte(0x80);
duke@435 1873 emit_operand(rdi, dst, 1);
duke@435 1874 emit_byte(imm8);
duke@435 1875 }
duke@435 1876
duke@435 1877 void Assembler::cmpl(Address dst, int imm32) {
duke@435 1878 InstructionMark im(this);
duke@435 1879 prefix(dst);
duke@435 1880 emit_byte(0x81);
duke@435 1881 emit_operand(rdi, dst, 4);
duke@435 1882 emit_long(imm32);
duke@435 1883 }
duke@435 1884
duke@435 1885 void Assembler::cmpl(Register dst, int imm32) {
duke@435 1886 prefix(dst);
duke@435 1887 emit_arith(0x81, 0xF8, dst, imm32);
duke@435 1888 }
duke@435 1889
duke@435 1890 void Assembler::cmpl(Register dst, Register src) {
duke@435 1891 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1892 emit_arith(0x3B, 0xC0, dst, src);
duke@435 1893 }
duke@435 1894
duke@435 1895 void Assembler::cmpl(Register dst, Address src) {
duke@435 1896 InstructionMark im(this);
duke@435 1897 prefix(src, dst);
duke@435 1898 emit_byte(0x3B);
duke@435 1899 emit_operand(dst, src);
duke@435 1900 }
duke@435 1901
duke@435 1902 void Assembler::cmpq(Address dst, int imm32) {
duke@435 1903 InstructionMark im(this);
duke@435 1904 prefixq(dst);
duke@435 1905 emit_byte(0x81);
duke@435 1906 emit_operand(rdi, dst, 4);
duke@435 1907 emit_long(imm32);
duke@435 1908 }
duke@435 1909
duke@435 1910 void Assembler::cmpq(Register dst, int imm32) {
duke@435 1911 (void) prefixq_and_encode(dst->encoding());
duke@435 1912 emit_arith(0x81, 0xF8, dst, imm32);
duke@435 1913 }
duke@435 1914
duke@435 1915 void Assembler::cmpq(Address dst, Register src) {
duke@435 1916 prefixq(dst, src);
duke@435 1917 emit_byte(0x3B);
duke@435 1918 emit_operand(src, dst);
duke@435 1919 }
duke@435 1920
duke@435 1921 void Assembler::cmpq(Register dst, Register src) {
duke@435 1922 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1923 emit_arith(0x3B, 0xC0, dst, src);
duke@435 1924 }
duke@435 1925
duke@435 1926 void Assembler::cmpq(Register dst, Address src) {
duke@435 1927 InstructionMark im(this);
duke@435 1928 prefixq(src, dst);
duke@435 1929 emit_byte(0x3B);
duke@435 1930 emit_operand(dst, src);
duke@435 1931 }
duke@435 1932
duke@435 1933 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
duke@435 1934 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1935 emit_byte(0x0F);
duke@435 1936 emit_byte(0x2E);
duke@435 1937 emit_byte(0xC0 | encode);
duke@435 1938 }
duke@435 1939
duke@435 1940 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
duke@435 1941 emit_byte(0x66);
duke@435 1942 ucomiss(dst, src);
duke@435 1943 }
duke@435 1944
duke@435 1945 void Assembler::decl(Register dst) {
duke@435 1946 // Don't use it directly. Use MacroAssembler::decrementl() instead.
duke@435 1947 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 1948 int encode = prefix_and_encode(dst->encoding());
duke@435 1949 emit_byte(0xFF);
duke@435 1950 emit_byte(0xC8 | encode);
duke@435 1951 }
duke@435 1952
duke@435 1953 void Assembler::decl(Address dst) {
duke@435 1954 // Don't use it directly. Use MacroAssembler::decrementl() instead.
duke@435 1955 InstructionMark im(this);
duke@435 1956 prefix(dst);
duke@435 1957 emit_byte(0xFF);
duke@435 1958 emit_operand(rcx, dst);
duke@435 1959 }
duke@435 1960
duke@435 1961 void Assembler::decq(Register dst) {
duke@435 1962 // Don't use it directly. Use MacroAssembler::decrementq() instead.
duke@435 1963 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 1964 int encode = prefixq_and_encode(dst->encoding());
duke@435 1965 emit_byte(0xFF);
duke@435 1966 emit_byte(0xC8 | encode);
duke@435 1967 }
duke@435 1968
duke@435 1969 void Assembler::decq(Address dst) {
duke@435 1970 // Don't use it directly. Use MacroAssembler::decrementq() instead.
duke@435 1971 InstructionMark im(this);
duke@435 1972 prefixq(dst);
duke@435 1973 emit_byte(0xFF);
duke@435 1974 emit_operand(rcx, dst);
duke@435 1975 }
duke@435 1976
duke@435 1977 void Assembler::idivl(Register src) {
duke@435 1978 int encode = prefix_and_encode(src->encoding());
duke@435 1979 emit_byte(0xF7);
duke@435 1980 emit_byte(0xF8 | encode);
duke@435 1981 }
duke@435 1982
duke@435 1983 void Assembler::idivq(Register src) {
duke@435 1984 int encode = prefixq_and_encode(src->encoding());
duke@435 1985 emit_byte(0xF7);
duke@435 1986 emit_byte(0xF8 | encode);
duke@435 1987 }
duke@435 1988
duke@435 1989 void Assembler::cdql() {
duke@435 1990 emit_byte(0x99);
duke@435 1991 }
duke@435 1992
duke@435 1993 void Assembler::cdqq() {
duke@435 1994 prefix(REX_W);
duke@435 1995 emit_byte(0x99);
duke@435 1996 }
duke@435 1997
duke@435 1998 void Assembler::imull(Register dst, Register src) {
duke@435 1999 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2000 emit_byte(0x0F);
duke@435 2001 emit_byte(0xAF);
duke@435 2002 emit_byte(0xC0 | encode);
duke@435 2003 }
duke@435 2004
duke@435 2005 void Assembler::imull(Register dst, Register src, int value) {
duke@435 2006 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2007 if (is8bit(value)) {
duke@435 2008 emit_byte(0x6B);
duke@435 2009 emit_byte(0xC0 | encode);
duke@435 2010 emit_byte(value);
duke@435 2011 } else {
duke@435 2012 emit_byte(0x69);
duke@435 2013 emit_byte(0xC0 | encode);
duke@435 2014 emit_long(value);
duke@435 2015 }
duke@435 2016 }
duke@435 2017
duke@435 2018 void Assembler::imulq(Register dst, Register src) {
duke@435 2019 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2020 emit_byte(0x0F);
duke@435 2021 emit_byte(0xAF);
duke@435 2022 emit_byte(0xC0 | encode);
duke@435 2023 }
duke@435 2024
duke@435 2025 void Assembler::imulq(Register dst, Register src, int value) {
duke@435 2026 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2027 if (is8bit(value)) {
duke@435 2028 emit_byte(0x6B);
duke@435 2029 emit_byte(0xC0 | encode);
duke@435 2030 emit_byte(value);
duke@435 2031 } else {
duke@435 2032 emit_byte(0x69);
duke@435 2033 emit_byte(0xC0 | encode);
duke@435 2034 emit_long(value);
duke@435 2035 }
duke@435 2036 }
duke@435 2037
duke@435 2038 void Assembler::incl(Register dst) {
duke@435 2039 // Don't use it directly. Use MacroAssembler::incrementl() instead.
duke@435 2040 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 2041 int encode = prefix_and_encode(dst->encoding());
duke@435 2042 emit_byte(0xFF);
duke@435 2043 emit_byte(0xC0 | encode);
duke@435 2044 }
duke@435 2045
duke@435 2046 void Assembler::incl(Address dst) {
duke@435 2047 // Don't use it directly. Use MacroAssembler::incrementl() instead.
duke@435 2048 InstructionMark im(this);
duke@435 2049 prefix(dst);
duke@435 2050 emit_byte(0xFF);
duke@435 2051 emit_operand(rax, dst);
duke@435 2052 }
duke@435 2053
duke@435 2054 void Assembler::incq(Register dst) {
duke@435 2055 // Don't use it directly. Use MacroAssembler::incrementq() instead.
duke@435 2056 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 2057 int encode = prefixq_and_encode(dst->encoding());
duke@435 2058 emit_byte(0xFF);
duke@435 2059 emit_byte(0xC0 | encode);
duke@435 2060 }
duke@435 2061
duke@435 2062 void Assembler::incq(Address dst) {
duke@435 2063 // Don't use it directly. Use MacroAssembler::incrementq() instead.
duke@435 2064 InstructionMark im(this);
duke@435 2065 prefixq(dst);
duke@435 2066 emit_byte(0xFF);
duke@435 2067 emit_operand(rax, dst);
duke@435 2068 }
duke@435 2069
duke@435 2070 void Assembler::leal(Register dst, Address src) {
duke@435 2071 InstructionMark im(this);
duke@435 2072 emit_byte(0x67); // addr32
duke@435 2073 prefix(src, dst);
duke@435 2074 emit_byte(0x8D);
duke@435 2075 emit_operand(dst, src);
duke@435 2076 }
duke@435 2077
duke@435 2078 void Assembler::leaq(Register dst, Address src) {
duke@435 2079 InstructionMark im(this);
duke@435 2080 prefixq(src, dst);
duke@435 2081 emit_byte(0x8D);
duke@435 2082 emit_operand(dst, src);
duke@435 2083 }
duke@435 2084
duke@435 2085 void Assembler::mull(Address src) {
duke@435 2086 InstructionMark im(this);
duke@435 2087 // was missing
duke@435 2088 prefix(src);
duke@435 2089 emit_byte(0xF7);
duke@435 2090 emit_operand(rsp, src);
duke@435 2091 }
duke@435 2092
duke@435 2093 void Assembler::mull(Register src) {
duke@435 2094 // was missing
duke@435 2095 int encode = prefix_and_encode(src->encoding());
duke@435 2096 emit_byte(0xF7);
duke@435 2097 emit_byte(0xE0 | encode);
duke@435 2098 }
duke@435 2099
duke@435 2100 void Assembler::negl(Register dst) {
duke@435 2101 int encode = prefix_and_encode(dst->encoding());
duke@435 2102 emit_byte(0xF7);
duke@435 2103 emit_byte(0xD8 | encode);
duke@435 2104 }
duke@435 2105
duke@435 2106 void Assembler::negq(Register dst) {
duke@435 2107 int encode = prefixq_and_encode(dst->encoding());
duke@435 2108 emit_byte(0xF7);
duke@435 2109 emit_byte(0xD8 | encode);
duke@435 2110 }
duke@435 2111
duke@435 2112 void Assembler::notl(Register dst) {
duke@435 2113 int encode = prefix_and_encode(dst->encoding());
duke@435 2114 emit_byte(0xF7);
duke@435 2115 emit_byte(0xD0 | encode);
duke@435 2116 }
duke@435 2117
duke@435 2118 void Assembler::notq(Register dst) {
duke@435 2119 int encode = prefixq_and_encode(dst->encoding());
duke@435 2120 emit_byte(0xF7);
duke@435 2121 emit_byte(0xD0 | encode);
duke@435 2122 }
duke@435 2123
duke@435 2124 void Assembler::orl(Address dst, int imm32) {
duke@435 2125 InstructionMark im(this);
duke@435 2126 prefix(dst);
duke@435 2127 emit_byte(0x81);
duke@435 2128 emit_operand(rcx, dst, 4);
duke@435 2129 emit_long(imm32);
duke@435 2130 }
duke@435 2131
duke@435 2132 void Assembler::orl(Register dst, int imm32) {
duke@435 2133 prefix(dst);
duke@435 2134 emit_arith(0x81, 0xC8, dst, imm32);
duke@435 2135 }
duke@435 2136
duke@435 2137 void Assembler::orl(Register dst, Address src) {
duke@435 2138 InstructionMark im(this);
duke@435 2139 prefix(src, dst);
duke@435 2140 emit_byte(0x0B);
duke@435 2141 emit_operand(dst, src);
duke@435 2142 }
duke@435 2143
duke@435 2144 void Assembler::orl(Register dst, Register src) {
duke@435 2145 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2146 emit_arith(0x0B, 0xC0, dst, src);
duke@435 2147 }
duke@435 2148
duke@435 2149 void Assembler::orq(Address dst, int imm32) {
duke@435 2150 InstructionMark im(this);
duke@435 2151 prefixq(dst);
duke@435 2152 emit_byte(0x81);
duke@435 2153 emit_operand(rcx, dst, 4);
duke@435 2154 emit_long(imm32);
duke@435 2155 }
duke@435 2156
duke@435 2157 void Assembler::orq(Register dst, int imm32) {
duke@435 2158 (void) prefixq_and_encode(dst->encoding());
duke@435 2159 emit_arith(0x81, 0xC8, dst, imm32);
duke@435 2160 }
duke@435 2161
duke@435 2162 void Assembler::orq(Register dst, Address src) {
duke@435 2163 InstructionMark im(this);
duke@435 2164 prefixq(src, dst);
duke@435 2165 emit_byte(0x0B);
duke@435 2166 emit_operand(dst, src);
duke@435 2167 }
duke@435 2168
duke@435 2169 void Assembler::orq(Register dst, Register src) {
duke@435 2170 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2171 emit_arith(0x0B, 0xC0, dst, src);
duke@435 2172 }
duke@435 2173
duke@435 2174 void Assembler::rcll(Register dst, int imm8) {
duke@435 2175 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2176 int encode = prefix_and_encode(dst->encoding());
duke@435 2177 if (imm8 == 1) {
duke@435 2178 emit_byte(0xD1);
duke@435 2179 emit_byte(0xD0 | encode);
duke@435 2180 } else {
duke@435 2181 emit_byte(0xC1);
duke@435 2182 emit_byte(0xD0 | encode);
duke@435 2183 emit_byte(imm8);
duke@435 2184 }
duke@435 2185 }
duke@435 2186
duke@435 2187 void Assembler::rclq(Register dst, int imm8) {
duke@435 2188 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2189 int encode = prefixq_and_encode(dst->encoding());
duke@435 2190 if (imm8 == 1) {
duke@435 2191 emit_byte(0xD1);
duke@435 2192 emit_byte(0xD0 | encode);
duke@435 2193 } else {
duke@435 2194 emit_byte(0xC1);
duke@435 2195 emit_byte(0xD0 | encode);
duke@435 2196 emit_byte(imm8);
duke@435 2197 }
duke@435 2198 }
duke@435 2199
duke@435 2200 void Assembler::sarl(Register dst, int imm8) {
duke@435 2201 int encode = prefix_and_encode(dst->encoding());
duke@435 2202 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2203 if (imm8 == 1) {
duke@435 2204 emit_byte(0xD1);
duke@435 2205 emit_byte(0xF8 | encode);
duke@435 2206 } else {
duke@435 2207 emit_byte(0xC1);
duke@435 2208 emit_byte(0xF8 | encode);
duke@435 2209 emit_byte(imm8);
duke@435 2210 }
duke@435 2211 }
duke@435 2212
duke@435 2213 void Assembler::sarl(Register dst) {
duke@435 2214 int encode = prefix_and_encode(dst->encoding());
duke@435 2215 emit_byte(0xD3);
duke@435 2216 emit_byte(0xF8 | encode);
duke@435 2217 }
duke@435 2218
duke@435 2219 void Assembler::sarq(Register dst, int imm8) {
duke@435 2220 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2221 int encode = prefixq_and_encode(dst->encoding());
duke@435 2222 if (imm8 == 1) {
duke@435 2223 emit_byte(0xD1);
duke@435 2224 emit_byte(0xF8 | encode);
duke@435 2225 } else {
duke@435 2226 emit_byte(0xC1);
duke@435 2227 emit_byte(0xF8 | encode);
duke@435 2228 emit_byte(imm8);
duke@435 2229 }
duke@435 2230 }
duke@435 2231
duke@435 2232 void Assembler::sarq(Register dst) {
duke@435 2233 int encode = prefixq_and_encode(dst->encoding());
duke@435 2234 emit_byte(0xD3);
duke@435 2235 emit_byte(0xF8 | encode);
duke@435 2236 }
duke@435 2237
duke@435 2238 void Assembler::sbbl(Address dst, int imm32) {
duke@435 2239 InstructionMark im(this);
duke@435 2240 prefix(dst);
duke@435 2241 emit_arith_operand(0x81, rbx, dst, imm32);
duke@435 2242 }
duke@435 2243
duke@435 2244 void Assembler::sbbl(Register dst, int imm32) {
duke@435 2245 prefix(dst);
duke@435 2246 emit_arith(0x81, 0xD8, dst, imm32);
duke@435 2247 }
duke@435 2248
duke@435 2249 void Assembler::sbbl(Register dst, Address src) {
duke@435 2250 InstructionMark im(this);
duke@435 2251 prefix(src, dst);
duke@435 2252 emit_byte(0x1B);
duke@435 2253 emit_operand(dst, src);
duke@435 2254 }
duke@435 2255
duke@435 2256 void Assembler::sbbl(Register dst, Register src) {
duke@435 2257 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2258 emit_arith(0x1B, 0xC0, dst, src);
duke@435 2259 }
duke@435 2260
duke@435 2261 void Assembler::sbbq(Address dst, int imm32) {
duke@435 2262 InstructionMark im(this);
duke@435 2263 prefixq(dst);
duke@435 2264 emit_arith_operand(0x81, rbx, dst, imm32);
duke@435 2265 }
duke@435 2266
duke@435 2267 void Assembler::sbbq(Register dst, int imm32) {
duke@435 2268 (void) prefixq_and_encode(dst->encoding());
duke@435 2269 emit_arith(0x81, 0xD8, dst, imm32);
duke@435 2270 }
duke@435 2271
duke@435 2272 void Assembler::sbbq(Register dst, Address src) {
duke@435 2273 InstructionMark im(this);
duke@435 2274 prefixq(src, dst);
duke@435 2275 emit_byte(0x1B);
duke@435 2276 emit_operand(dst, src);
duke@435 2277 }
duke@435 2278
duke@435 2279 void Assembler::sbbq(Register dst, Register src) {
duke@435 2280 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2281 emit_arith(0x1B, 0xC0, dst, src);
duke@435 2282 }
duke@435 2283
duke@435 2284 void Assembler::shll(Register dst, int imm8) {
duke@435 2285 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2286 int encode = prefix_and_encode(dst->encoding());
duke@435 2287 if (imm8 == 1 ) {
duke@435 2288 emit_byte(0xD1);
duke@435 2289 emit_byte(0xE0 | encode);
duke@435 2290 } else {
duke@435 2291 emit_byte(0xC1);
duke@435 2292 emit_byte(0xE0 | encode);
duke@435 2293 emit_byte(imm8);
duke@435 2294 }
duke@435 2295 }
duke@435 2296
duke@435 2297 void Assembler::shll(Register dst) {
duke@435 2298 int encode = prefix_and_encode(dst->encoding());
duke@435 2299 emit_byte(0xD3);
duke@435 2300 emit_byte(0xE0 | encode);
duke@435 2301 }
duke@435 2302
duke@435 2303 void Assembler::shlq(Register dst, int imm8) {
duke@435 2304 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2305 int encode = prefixq_and_encode(dst->encoding());
duke@435 2306 if (imm8 == 1) {
duke@435 2307 emit_byte(0xD1);
duke@435 2308 emit_byte(0xE0 | encode);
duke@435 2309 } else {
duke@435 2310 emit_byte(0xC1);
duke@435 2311 emit_byte(0xE0 | encode);
duke@435 2312 emit_byte(imm8);
duke@435 2313 }
duke@435 2314 }
duke@435 2315
duke@435 2316 void Assembler::shlq(Register dst) {
duke@435 2317 int encode = prefixq_and_encode(dst->encoding());
duke@435 2318 emit_byte(0xD3);
duke@435 2319 emit_byte(0xE0 | encode);
duke@435 2320 }
duke@435 2321
duke@435 2322 void Assembler::shrl(Register dst, int imm8) {
duke@435 2323 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2324 int encode = prefix_and_encode(dst->encoding());
duke@435 2325 emit_byte(0xC1);
duke@435 2326 emit_byte(0xE8 | encode);
duke@435 2327 emit_byte(imm8);
duke@435 2328 }
duke@435 2329
duke@435 2330 void Assembler::shrl(Register dst) {
duke@435 2331 int encode = prefix_and_encode(dst->encoding());
duke@435 2332 emit_byte(0xD3);
duke@435 2333 emit_byte(0xE8 | encode);
duke@435 2334 }
duke@435 2335
duke@435 2336 void Assembler::shrq(Register dst, int imm8) {
duke@435 2337 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2338 int encode = prefixq_and_encode(dst->encoding());
duke@435 2339 emit_byte(0xC1);
duke@435 2340 emit_byte(0xE8 | encode);
duke@435 2341 emit_byte(imm8);
duke@435 2342 }
duke@435 2343
duke@435 2344 void Assembler::shrq(Register dst) {
duke@435 2345 int encode = prefixq_and_encode(dst->encoding());
duke@435 2346 emit_byte(0xD3);
duke@435 2347 emit_byte(0xE8 | encode);
duke@435 2348 }
duke@435 2349
duke@435 2350 void Assembler::subl(Address dst, int imm32) {
duke@435 2351 InstructionMark im(this);
duke@435 2352 prefix(dst);
duke@435 2353 if (is8bit(imm32)) {
duke@435 2354 emit_byte(0x83);
duke@435 2355 emit_operand(rbp, dst, 1);
duke@435 2356 emit_byte(imm32 & 0xFF);
duke@435 2357 } else {
duke@435 2358 emit_byte(0x81);
duke@435 2359 emit_operand(rbp, dst, 4);
duke@435 2360 emit_long(imm32);
duke@435 2361 }
duke@435 2362 }
duke@435 2363
duke@435 2364 void Assembler::subl(Register dst, int imm32) {
duke@435 2365 prefix(dst);
duke@435 2366 emit_arith(0x81, 0xE8, dst, imm32);
duke@435 2367 }
duke@435 2368
duke@435 2369 void Assembler::subl(Address dst, Register src) {
duke@435 2370 InstructionMark im(this);
duke@435 2371 prefix(dst, src);
duke@435 2372 emit_byte(0x29);
duke@435 2373 emit_operand(src, dst);
duke@435 2374 }
duke@435 2375
duke@435 2376 void Assembler::subl(Register dst, Address src) {
duke@435 2377 InstructionMark im(this);
duke@435 2378 prefix(src, dst);
duke@435 2379 emit_byte(0x2B);
duke@435 2380 emit_operand(dst, src);
duke@435 2381 }
duke@435 2382
duke@435 2383 void Assembler::subl(Register dst, Register src) {
duke@435 2384 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2385 emit_arith(0x2B, 0xC0, dst, src);
duke@435 2386 }
duke@435 2387
duke@435 2388 void Assembler::subq(Address dst, int imm32) {
duke@435 2389 InstructionMark im(this);
duke@435 2390 prefixq(dst);
duke@435 2391 if (is8bit(imm32)) {
duke@435 2392 emit_byte(0x83);
duke@435 2393 emit_operand(rbp, dst, 1);
duke@435 2394 emit_byte(imm32 & 0xFF);
duke@435 2395 } else {
duke@435 2396 emit_byte(0x81);
duke@435 2397 emit_operand(rbp, dst, 4);
duke@435 2398 emit_long(imm32);
duke@435 2399 }
duke@435 2400 }
duke@435 2401
duke@435 2402 void Assembler::subq(Register dst, int imm32) {
duke@435 2403 (void) prefixq_and_encode(dst->encoding());
duke@435 2404 emit_arith(0x81, 0xE8, dst, imm32);
duke@435 2405 }
duke@435 2406
duke@435 2407 void Assembler::subq(Address dst, Register src) {
duke@435 2408 InstructionMark im(this);
duke@435 2409 prefixq(dst, src);
duke@435 2410 emit_byte(0x29);
duke@435 2411 emit_operand(src, dst);
duke@435 2412 }
duke@435 2413
duke@435 2414 void Assembler::subq(Register dst, Address src) {
duke@435 2415 InstructionMark im(this);
duke@435 2416 prefixq(src, dst);
duke@435 2417 emit_byte(0x2B);
duke@435 2418 emit_operand(dst, src);
duke@435 2419 }
duke@435 2420
duke@435 2421 void Assembler::subq(Register dst, Register src) {
duke@435 2422 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2423 emit_arith(0x2B, 0xC0, dst, src);
duke@435 2424 }
duke@435 2425
duke@435 2426 void Assembler::testb(Register dst, int imm8) {
duke@435 2427 (void) prefix_and_encode(dst->encoding(), true);
duke@435 2428 emit_arith_b(0xF6, 0xC0, dst, imm8);
duke@435 2429 }
duke@435 2430
duke@435 2431 void Assembler::testl(Register dst, int imm32) {
duke@435 2432 // not using emit_arith because test
duke@435 2433 // doesn't support sign-extension of
duke@435 2434 // 8bit operands
duke@435 2435 int encode = dst->encoding();
duke@435 2436 if (encode == 0) {
duke@435 2437 emit_byte(0xA9);
duke@435 2438 } else {
duke@435 2439 encode = prefix_and_encode(encode);
duke@435 2440 emit_byte(0xF7);
duke@435 2441 emit_byte(0xC0 | encode);
duke@435 2442 }
duke@435 2443 emit_long(imm32);
duke@435 2444 }
duke@435 2445
duke@435 2446 void Assembler::testl(Register dst, Register src) {
duke@435 2447 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2448 emit_arith(0x85, 0xC0, dst, src);
duke@435 2449 }
duke@435 2450
duke@435 2451 void Assembler::testq(Register dst, int imm32) {
duke@435 2452 // not using emit_arith because test
duke@435 2453 // doesn't support sign-extension of
duke@435 2454 // 8bit operands
duke@435 2455 int encode = dst->encoding();
duke@435 2456 if (encode == 0) {
duke@435 2457 prefix(REX_W);
duke@435 2458 emit_byte(0xA9);
duke@435 2459 } else {
duke@435 2460 encode = prefixq_and_encode(encode);
duke@435 2461 emit_byte(0xF7);
duke@435 2462 emit_byte(0xC0 | encode);
duke@435 2463 }
duke@435 2464 emit_long(imm32);
duke@435 2465 }
duke@435 2466
duke@435 2467 void Assembler::testq(Register dst, Register src) {
duke@435 2468 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2469 emit_arith(0x85, 0xC0, dst, src);
duke@435 2470 }
duke@435 2471
duke@435 2472 void Assembler::xaddl(Address dst, Register src) {
duke@435 2473 InstructionMark im(this);
duke@435 2474 prefix(dst, src);
duke@435 2475 emit_byte(0x0F);
duke@435 2476 emit_byte(0xC1);
duke@435 2477 emit_operand(src, dst);
duke@435 2478 }
duke@435 2479
duke@435 2480 void Assembler::xaddq(Address dst, Register src) {
duke@435 2481 InstructionMark im(this);
duke@435 2482 prefixq(dst, src);
duke@435 2483 emit_byte(0x0F);
duke@435 2484 emit_byte(0xC1);
duke@435 2485 emit_operand(src, dst);
duke@435 2486 }
duke@435 2487
duke@435 2488 void Assembler::xorl(Register dst, int imm32) {
duke@435 2489 prefix(dst);
duke@435 2490 emit_arith(0x81, 0xF0, dst, imm32);
duke@435 2491 }
duke@435 2492
duke@435 2493 void Assembler::xorl(Register dst, Register src) {
duke@435 2494 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2495 emit_arith(0x33, 0xC0, dst, src);
duke@435 2496 }
duke@435 2497
duke@435 2498 void Assembler::xorl(Register dst, Address src) {
duke@435 2499 InstructionMark im(this);
duke@435 2500 prefix(src, dst);
duke@435 2501 emit_byte(0x33);
duke@435 2502 emit_operand(dst, src);
duke@435 2503 }
duke@435 2504
duke@435 2505 void Assembler::xorq(Register dst, int imm32) {
duke@435 2506 (void) prefixq_and_encode(dst->encoding());
duke@435 2507 emit_arith(0x81, 0xF0, dst, imm32);
duke@435 2508 }
duke@435 2509
duke@435 2510 void Assembler::xorq(Register dst, Register src) {
duke@435 2511 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2512 emit_arith(0x33, 0xC0, dst, src);
duke@435 2513 }
duke@435 2514
duke@435 2515 void Assembler::xorq(Register dst, Address src) {
duke@435 2516 InstructionMark im(this);
duke@435 2517 prefixq(src, dst);
duke@435 2518 emit_byte(0x33);
duke@435 2519 emit_operand(dst, src);
duke@435 2520 }
duke@435 2521
duke@435 2522 void Assembler::bswapl(Register reg) {
duke@435 2523 int encode = prefix_and_encode(reg->encoding());
duke@435 2524 emit_byte(0x0F);
duke@435 2525 emit_byte(0xC8 | encode);
duke@435 2526 }
duke@435 2527
duke@435 2528 void Assembler::bswapq(Register reg) {
duke@435 2529 int encode = prefixq_and_encode(reg->encoding());
duke@435 2530 emit_byte(0x0F);
duke@435 2531 emit_byte(0xC8 | encode);
duke@435 2532 }
duke@435 2533
duke@435 2534 void Assembler::lock() {
duke@435 2535 emit_byte(0xF0);
duke@435 2536 }
duke@435 2537
duke@435 2538 void Assembler::xchgl(Register dst, Address src) {
duke@435 2539 InstructionMark im(this);
duke@435 2540 prefix(src, dst);
duke@435 2541 emit_byte(0x87);
duke@435 2542 emit_operand(dst, src);
duke@435 2543 }
duke@435 2544
duke@435 2545 void Assembler::xchgl(Register dst, Register src) {
duke@435 2546 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2547 emit_byte(0x87);
duke@435 2548 emit_byte(0xc0 | encode);
duke@435 2549 }
duke@435 2550
duke@435 2551 void Assembler::xchgq(Register dst, Address src) {
duke@435 2552 InstructionMark im(this);
duke@435 2553 prefixq(src, dst);
duke@435 2554 emit_byte(0x87);
duke@435 2555 emit_operand(dst, src);
duke@435 2556 }
duke@435 2557
duke@435 2558 void Assembler::xchgq(Register dst, Register src) {
duke@435 2559 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2560 emit_byte(0x87);
duke@435 2561 emit_byte(0xc0 | encode);
duke@435 2562 }
duke@435 2563
duke@435 2564 void Assembler::cmpxchgl(Register reg, Address adr) {
duke@435 2565 InstructionMark im(this);
duke@435 2566 prefix(adr, reg);
duke@435 2567 emit_byte(0x0F);
duke@435 2568 emit_byte(0xB1);
duke@435 2569 emit_operand(reg, adr);
duke@435 2570 }
duke@435 2571
duke@435 2572 void Assembler::cmpxchgq(Register reg, Address adr) {
duke@435 2573 InstructionMark im(this);
duke@435 2574 prefixq(adr, reg);
duke@435 2575 emit_byte(0x0F);
duke@435 2576 emit_byte(0xB1);
duke@435 2577 emit_operand(reg, adr);
duke@435 2578 }
duke@435 2579
duke@435 2580 void Assembler::hlt() {
duke@435 2581 emit_byte(0xF4);
duke@435 2582 }
duke@435 2583
duke@435 2584
duke@435 2585 void Assembler::addr_nop_4() {
duke@435 2586 // 4 bytes: NOP DWORD PTR [EAX+0]
duke@435 2587 emit_byte(0x0F);
duke@435 2588 emit_byte(0x1F);
duke@435 2589 emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
duke@435 2590 emit_byte(0); // 8-bits offset (1 byte)
duke@435 2591 }
duke@435 2592
duke@435 2593 void Assembler::addr_nop_5() {
duke@435 2594 // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
duke@435 2595 emit_byte(0x0F);
duke@435 2596 emit_byte(0x1F);
duke@435 2597 emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
duke@435 2598 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 2599 emit_byte(0); // 8-bits offset (1 byte)
duke@435 2600 }
duke@435 2601
duke@435 2602 void Assembler::addr_nop_7() {
duke@435 2603 // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
duke@435 2604 emit_byte(0x0F);
duke@435 2605 emit_byte(0x1F);
duke@435 2606 emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
duke@435 2607 emit_long(0); // 32-bits offset (4 bytes)
duke@435 2608 }
duke@435 2609
duke@435 2610 void Assembler::addr_nop_8() {
duke@435 2611 // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
duke@435 2612 emit_byte(0x0F);
duke@435 2613 emit_byte(0x1F);
duke@435 2614 emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
duke@435 2615 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 2616 emit_long(0); // 32-bits offset (4 bytes)
duke@435 2617 }
duke@435 2618
duke@435 2619 void Assembler::nop(int i) {
duke@435 2620 assert(i > 0, " ");
duke@435 2621 if (UseAddressNop && VM_Version::is_intel()) {
duke@435 2622 //
duke@435 2623 // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
duke@435 2624 // 1: 0x90
duke@435 2625 // 2: 0x66 0x90
duke@435 2626 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 2627 // 4: 0x0F 0x1F 0x40 0x00
duke@435 2628 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 2629 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2630 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2631 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2632 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2633 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2634 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2635
duke@435 2636 // The rest coding is Intel specific - don't use consecutive address nops
duke@435 2637
duke@435 2638 // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2639 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2640 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2641 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2642
duke@435 2643 while(i >= 15) {
duke@435 2644 // For Intel don't generate consecutive addess nops (mix with regular nops)
duke@435 2645 i -= 15;
duke@435 2646 emit_byte(0x66); // size prefix
duke@435 2647 emit_byte(0x66); // size prefix
duke@435 2648 emit_byte(0x66); // size prefix
duke@435 2649 addr_nop_8();
duke@435 2650 emit_byte(0x66); // size prefix
duke@435 2651 emit_byte(0x66); // size prefix
duke@435 2652 emit_byte(0x66); // size prefix
duke@435 2653 emit_byte(0x90); // nop
duke@435 2654 }
duke@435 2655 switch (i) {
duke@435 2656 case 14:
duke@435 2657 emit_byte(0x66); // size prefix
duke@435 2658 case 13:
duke@435 2659 emit_byte(0x66); // size prefix
duke@435 2660 case 12:
duke@435 2661 addr_nop_8();
duke@435 2662 emit_byte(0x66); // size prefix
duke@435 2663 emit_byte(0x66); // size prefix
duke@435 2664 emit_byte(0x66); // size prefix
duke@435 2665 emit_byte(0x90); // nop
duke@435 2666 break;
duke@435 2667 case 11:
duke@435 2668 emit_byte(0x66); // size prefix
duke@435 2669 case 10:
duke@435 2670 emit_byte(0x66); // size prefix
duke@435 2671 case 9:
duke@435 2672 emit_byte(0x66); // size prefix
duke@435 2673 case 8:
duke@435 2674 addr_nop_8();
duke@435 2675 break;
duke@435 2676 case 7:
duke@435 2677 addr_nop_7();
duke@435 2678 break;
duke@435 2679 case 6:
duke@435 2680 emit_byte(0x66); // size prefix
duke@435 2681 case 5:
duke@435 2682 addr_nop_5();
duke@435 2683 break;
duke@435 2684 case 4:
duke@435 2685 addr_nop_4();
duke@435 2686 break;
duke@435 2687 case 3:
duke@435 2688 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 2689 emit_byte(0x66); // size prefix
duke@435 2690 case 2:
duke@435 2691 emit_byte(0x66); // size prefix
duke@435 2692 case 1:
duke@435 2693 emit_byte(0x90); // nop
duke@435 2694 break;
duke@435 2695 default:
duke@435 2696 assert(i == 0, " ");
duke@435 2697 }
duke@435 2698 return;
duke@435 2699 }
duke@435 2700 if (UseAddressNop && VM_Version::is_amd()) {
duke@435 2701 //
duke@435 2702 // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
duke@435 2703 // 1: 0x90
duke@435 2704 // 2: 0x66 0x90
duke@435 2705 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 2706 // 4: 0x0F 0x1F 0x40 0x00
duke@435 2707 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 2708 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2709 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2710 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2711 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2712 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2713 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2714
duke@435 2715 // The rest coding is AMD specific - use consecutive address nops
duke@435 2716
duke@435 2717 // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2718 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2719 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2720 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2721 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2722 // Size prefixes (0x66) are added for larger sizes
duke@435 2723
duke@435 2724 while(i >= 22) {
duke@435 2725 i -= 11;
duke@435 2726 emit_byte(0x66); // size prefix
duke@435 2727 emit_byte(0x66); // size prefix
duke@435 2728 emit_byte(0x66); // size prefix
duke@435 2729 addr_nop_8();
duke@435 2730 }
duke@435 2731 // Generate first nop for size between 21-12
duke@435 2732 switch (i) {
duke@435 2733 case 21:
duke@435 2734 i -= 1;
duke@435 2735 emit_byte(0x66); // size prefix
duke@435 2736 case 20:
duke@435 2737 case 19:
duke@435 2738 i -= 1;
duke@435 2739 emit_byte(0x66); // size prefix
duke@435 2740 case 18:
duke@435 2741 case 17:
duke@435 2742 i -= 1;
duke@435 2743 emit_byte(0x66); // size prefix
duke@435 2744 case 16:
duke@435 2745 case 15:
duke@435 2746 i -= 8;
duke@435 2747 addr_nop_8();
duke@435 2748 break;
duke@435 2749 case 14:
duke@435 2750 case 13:
duke@435 2751 i -= 7;
duke@435 2752 addr_nop_7();
duke@435 2753 break;
duke@435 2754 case 12:
duke@435 2755 i -= 6;
duke@435 2756 emit_byte(0x66); // size prefix
duke@435 2757 addr_nop_5();
duke@435 2758 break;
duke@435 2759 default:
duke@435 2760 assert(i < 12, " ");
duke@435 2761 }
duke@435 2762
duke@435 2763 // Generate second nop for size between 11-1
duke@435 2764 switch (i) {
duke@435 2765 case 11:
duke@435 2766 emit_byte(0x66); // size prefix
duke@435 2767 case 10:
duke@435 2768 emit_byte(0x66); // size prefix
duke@435 2769 case 9:
duke@435 2770 emit_byte(0x66); // size prefix
duke@435 2771 case 8:
duke@435 2772 addr_nop_8();
duke@435 2773 break;
duke@435 2774 case 7:
duke@435 2775 addr_nop_7();
duke@435 2776 break;
duke@435 2777 case 6:
duke@435 2778 emit_byte(0x66); // size prefix
duke@435 2779 case 5:
duke@435 2780 addr_nop_5();
duke@435 2781 break;
duke@435 2782 case 4:
duke@435 2783 addr_nop_4();
duke@435 2784 break;
duke@435 2785 case 3:
duke@435 2786 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 2787 emit_byte(0x66); // size prefix
duke@435 2788 case 2:
duke@435 2789 emit_byte(0x66); // size prefix
duke@435 2790 case 1:
duke@435 2791 emit_byte(0x90); // nop
duke@435 2792 break;
duke@435 2793 default:
duke@435 2794 assert(i == 0, " ");
duke@435 2795 }
duke@435 2796 return;
duke@435 2797 }
duke@435 2798
duke@435 2799 // Using nops with size prefixes "0x66 0x90".
duke@435 2800 // From AMD Optimization Guide:
duke@435 2801 // 1: 0x90
duke@435 2802 // 2: 0x66 0x90
duke@435 2803 // 3: 0x66 0x66 0x90
duke@435 2804 // 4: 0x66 0x66 0x66 0x90
duke@435 2805 // 5: 0x66 0x66 0x90 0x66 0x90
duke@435 2806 // 6: 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2807 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2808 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
duke@435 2809 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2810 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2811 //
duke@435 2812 while(i > 12) {
duke@435 2813 i -= 4;
duke@435 2814 emit_byte(0x66); // size prefix
duke@435 2815 emit_byte(0x66);
duke@435 2816 emit_byte(0x66);
duke@435 2817 emit_byte(0x90); // nop
duke@435 2818 }
duke@435 2819 // 1 - 12 nops
duke@435 2820 if(i > 8) {
duke@435 2821 if(i > 9) {
duke@435 2822 i -= 1;
duke@435 2823 emit_byte(0x66);
duke@435 2824 }
duke@435 2825 i -= 3;
duke@435 2826 emit_byte(0x66);
duke@435 2827 emit_byte(0x66);
duke@435 2828 emit_byte(0x90);
duke@435 2829 }
duke@435 2830 // 1 - 8 nops
duke@435 2831 if(i > 4) {
duke@435 2832 if(i > 6) {
duke@435 2833 i -= 1;
duke@435 2834 emit_byte(0x66);
duke@435 2835 }
duke@435 2836 i -= 3;
duke@435 2837 emit_byte(0x66);
duke@435 2838 emit_byte(0x66);
duke@435 2839 emit_byte(0x90);
duke@435 2840 }
duke@435 2841 switch (i) {
duke@435 2842 case 4:
duke@435 2843 emit_byte(0x66);
duke@435 2844 case 3:
duke@435 2845 emit_byte(0x66);
duke@435 2846 case 2:
duke@435 2847 emit_byte(0x66);
duke@435 2848 case 1:
duke@435 2849 emit_byte(0x90);
duke@435 2850 break;
duke@435 2851 default:
duke@435 2852 assert(i == 0, " ");
duke@435 2853 }
duke@435 2854 }
duke@435 2855
duke@435 2856 void Assembler::ret(int imm16) {
duke@435 2857 if (imm16 == 0) {
duke@435 2858 emit_byte(0xC3);
duke@435 2859 } else {
duke@435 2860 emit_byte(0xC2);
duke@435 2861 emit_word(imm16);
duke@435 2862 }
duke@435 2863 }
duke@435 2864
duke@435 2865 // copies a single word from [esi] to [edi]
duke@435 2866 void Assembler::smovl() {
duke@435 2867 emit_byte(0xA5);
duke@435 2868 }
duke@435 2869
duke@435 2870 // copies data from [rsi] to [rdi] using rcx words (m32)
duke@435 2871 void Assembler::rep_movl() {
duke@435 2872 // REP
duke@435 2873 emit_byte(0xF3);
duke@435 2874 // MOVSL
duke@435 2875 emit_byte(0xA5);
duke@435 2876 }
duke@435 2877
duke@435 2878 // copies data from [rsi] to [rdi] using rcx double words (m64)
duke@435 2879 void Assembler::rep_movq() {
duke@435 2880 // REP
duke@435 2881 emit_byte(0xF3);
duke@435 2882 // MOVSQ
duke@435 2883 prefix(REX_W);
duke@435 2884 emit_byte(0xA5);
duke@435 2885 }
duke@435 2886
duke@435 2887 // sets rcx double words (m64) with rax value at [rdi]
duke@435 2888 void Assembler::rep_set() {
duke@435 2889 // REP
duke@435 2890 emit_byte(0xF3);
duke@435 2891 // STOSQ
duke@435 2892 prefix(REX_W);
duke@435 2893 emit_byte(0xAB);
duke@435 2894 }
duke@435 2895
duke@435 2896 // scans rcx double words (m64) at [rdi] for occurance of rax
coleenp@548 2897 void Assembler::repne_scanq() {
duke@435 2898 // REPNE/REPNZ
duke@435 2899 emit_byte(0xF2);
duke@435 2900 // SCASQ
duke@435 2901 prefix(REX_W);
duke@435 2902 emit_byte(0xAF);
duke@435 2903 }
duke@435 2904
coleenp@548 2905 void Assembler::repne_scanl() {
coleenp@548 2906 // REPNE/REPNZ
coleenp@548 2907 emit_byte(0xF2);
coleenp@548 2908 // SCASL
coleenp@548 2909 emit_byte(0xAF);
coleenp@548 2910 }
coleenp@548 2911
coleenp@548 2912
duke@435 2913 void Assembler::setb(Condition cc, Register dst) {
duke@435 2914 assert(0 <= cc && cc < 16, "illegal cc");
duke@435 2915 int encode = prefix_and_encode(dst->encoding(), true);
duke@435 2916 emit_byte(0x0F);
duke@435 2917 emit_byte(0x90 | cc);
duke@435 2918 emit_byte(0xC0 | encode);
duke@435 2919 }
duke@435 2920
duke@435 2921 void Assembler::clflush(Address adr) {
duke@435 2922 prefix(adr);
duke@435 2923 emit_byte(0x0F);
duke@435 2924 emit_byte(0xAE);
duke@435 2925 emit_operand(rdi, adr);
duke@435 2926 }
duke@435 2927
duke@435 2928 void Assembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 2929 if (L.is_bound()) {
duke@435 2930 const int long_size = 5;
duke@435 2931 int offs = (int)( target(L) - pc() );
duke@435 2932 assert(offs <= 0, "assembler error");
duke@435 2933 InstructionMark im(this);
duke@435 2934 // 1110 1000 #32-bit disp
duke@435 2935 emit_byte(0xE8);
duke@435 2936 emit_data(offs - long_size, rtype, disp32_operand);
duke@435 2937 } else {
duke@435 2938 InstructionMark im(this);
duke@435 2939 // 1110 1000 #32-bit disp
duke@435 2940 L.add_patch_at(code(), locator());
duke@435 2941
duke@435 2942 emit_byte(0xE8);
duke@435 2943 emit_data(int(0), rtype, disp32_operand);
duke@435 2944 }
duke@435 2945 }
duke@435 2946
duke@435 2947 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
duke@435 2948 assert(entry != NULL, "call most probably wrong");
duke@435 2949 InstructionMark im(this);
duke@435 2950 emit_byte(0xE8);
duke@435 2951 intptr_t disp = entry - (_code_pos + sizeof(int32_t));
duke@435 2952 assert(is_simm32(disp), "must be 32bit offset (call2)");
duke@435 2953 // Technically, should use call32_operand, but this format is
duke@435 2954 // implied by the fact that we're emitting a call instruction.
duke@435 2955 emit_data((int) disp, rspec, disp32_operand);
duke@435 2956 }
duke@435 2957
duke@435 2958
duke@435 2959 void Assembler::call(Register dst) {
duke@435 2960 // This was originally using a 32bit register encoding
duke@435 2961 // and surely we want 64bit!
duke@435 2962 // this is a 32bit encoding but in 64bit mode the default
duke@435 2963 // operand size is 64bit so there is no need for the
duke@435 2964 // wide prefix. So prefix only happens if we use the
duke@435 2965 // new registers. Much like push/pop.
duke@435 2966 int encode = prefixq_and_encode(dst->encoding());
duke@435 2967 emit_byte(0xFF);
duke@435 2968 emit_byte(0xD0 | encode);
duke@435 2969 }
duke@435 2970
duke@435 2971 void Assembler::call(Address adr) {
duke@435 2972 InstructionMark im(this);
duke@435 2973 prefix(adr);
duke@435 2974 emit_byte(0xFF);
duke@435 2975 emit_operand(rdx, adr);
duke@435 2976 }
duke@435 2977
duke@435 2978 void Assembler::jmp(Register reg) {
duke@435 2979 int encode = prefix_and_encode(reg->encoding());
duke@435 2980 emit_byte(0xFF);
duke@435 2981 emit_byte(0xE0 | encode);
duke@435 2982 }
duke@435 2983
duke@435 2984 void Assembler::jmp(Address adr) {
duke@435 2985 InstructionMark im(this);
duke@435 2986 prefix(adr);
duke@435 2987 emit_byte(0xFF);
duke@435 2988 emit_operand(rsp, adr);
duke@435 2989 }
duke@435 2990
duke@435 2991 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
duke@435 2992 InstructionMark im(this);
duke@435 2993 emit_byte(0xE9);
duke@435 2994 assert(dest != NULL, "must have a target");
duke@435 2995 intptr_t disp = dest - (_code_pos + sizeof(int32_t));
duke@435 2996 assert(is_simm32(disp), "must be 32bit offset (jmp)");
duke@435 2997 emit_data(disp, rspec.reloc(), call32_operand);
duke@435 2998 }
duke@435 2999
duke@435 3000 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
duke@435 3001 if (L.is_bound()) {
duke@435 3002 address entry = target(L);
duke@435 3003 assert(entry != NULL, "jmp most probably wrong");
duke@435 3004 InstructionMark im(this);
duke@435 3005 const int short_size = 2;
duke@435 3006 const int long_size = 5;
duke@435 3007 intptr_t offs = entry - _code_pos;
duke@435 3008 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3009 emit_byte(0xEB);
duke@435 3010 emit_byte((offs - short_size) & 0xFF);
duke@435 3011 } else {
duke@435 3012 emit_byte(0xE9);
duke@435 3013 emit_long(offs - long_size);
duke@435 3014 }
duke@435 3015 } else {
duke@435 3016 // By default, forward jumps are always 32-bit displacements, since
duke@435 3017 // we can't yet know where the label will be bound. If you're sure that
duke@435 3018 // the forward jump will not run beyond 256 bytes, use jmpb to
duke@435 3019 // force an 8-bit displacement.
duke@435 3020 InstructionMark im(this);
duke@435 3021 relocate(rtype);
duke@435 3022 L.add_patch_at(code(), locator());
duke@435 3023 emit_byte(0xE9);
duke@435 3024 emit_long(0);
duke@435 3025 }
duke@435 3026 }
duke@435 3027
duke@435 3028 void Assembler::jmpb(Label& L) {
duke@435 3029 if (L.is_bound()) {
duke@435 3030 const int short_size = 2;
duke@435 3031 address entry = target(L);
duke@435 3032 assert(is8bit((entry - _code_pos) + short_size),
duke@435 3033 "Dispacement too large for a short jmp");
duke@435 3034 assert(entry != NULL, "jmp most probably wrong");
duke@435 3035 intptr_t offs = entry - _code_pos;
duke@435 3036 emit_byte(0xEB);
duke@435 3037 emit_byte((offs - short_size) & 0xFF);
duke@435 3038 } else {
duke@435 3039 InstructionMark im(this);
duke@435 3040 L.add_patch_at(code(), locator());
duke@435 3041 emit_byte(0xEB);
duke@435 3042 emit_byte(0);
duke@435 3043 }
duke@435 3044 }
duke@435 3045
duke@435 3046 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
duke@435 3047 InstructionMark im(this);
duke@435 3048 relocate(rtype);
duke@435 3049 assert((0 <= cc) && (cc < 16), "illegal cc");
duke@435 3050 if (L.is_bound()) {
duke@435 3051 address dst = target(L);
duke@435 3052 assert(dst != NULL, "jcc most probably wrong");
duke@435 3053
duke@435 3054 const int short_size = 2;
duke@435 3055 const int long_size = 6;
duke@435 3056 intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
duke@435 3057 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3058 // 0111 tttn #8-bit disp
duke@435 3059 emit_byte(0x70 | cc);
duke@435 3060 emit_byte((offs - short_size) & 0xFF);
duke@435 3061 } else {
duke@435 3062 // 0000 1111 1000 tttn #32-bit disp
duke@435 3063 assert(is_simm32(offs - long_size),
duke@435 3064 "must be 32bit offset (call4)");
duke@435 3065 emit_byte(0x0F);
duke@435 3066 emit_byte(0x80 | cc);
duke@435 3067 emit_long(offs - long_size);
duke@435 3068 }
duke@435 3069 } else {
duke@435 3070 // Note: could eliminate cond. jumps to this jump if condition
duke@435 3071 // is the same however, seems to be rather unlikely case.
duke@435 3072 // Note: use jccb() if label to be bound is very close to get
duke@435 3073 // an 8-bit displacement
duke@435 3074 L.add_patch_at(code(), locator());
duke@435 3075 emit_byte(0x0F);
duke@435 3076 emit_byte(0x80 | cc);
duke@435 3077 emit_long(0);
duke@435 3078 }
duke@435 3079 }
duke@435 3080
duke@435 3081 void Assembler::jccb(Condition cc, Label& L) {
duke@435 3082 if (L.is_bound()) {
duke@435 3083 const int short_size = 2;
duke@435 3084 const int long_size = 6;
duke@435 3085 address entry = target(L);
duke@435 3086 assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
duke@435 3087 "Dispacement too large for a short jmp");
duke@435 3088 intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
duke@435 3089 // 0111 tttn #8-bit disp
duke@435 3090 emit_byte(0x70 | cc);
duke@435 3091 emit_byte((offs - short_size) & 0xFF);
duke@435 3092 } else {
duke@435 3093 InstructionMark im(this);
duke@435 3094 L.add_patch_at(code(), locator());
duke@435 3095 emit_byte(0x70 | cc);
duke@435 3096 emit_byte(0);
duke@435 3097 }
duke@435 3098 }
duke@435 3099
duke@435 3100 // FP instructions
duke@435 3101
duke@435 3102 void Assembler::fxsave(Address dst) {
duke@435 3103 prefixq(dst);
duke@435 3104 emit_byte(0x0F);
duke@435 3105 emit_byte(0xAE);
duke@435 3106 emit_operand(as_Register(0), dst);
duke@435 3107 }
duke@435 3108
duke@435 3109 void Assembler::fxrstor(Address src) {
duke@435 3110 prefixq(src);
duke@435 3111 emit_byte(0x0F);
duke@435 3112 emit_byte(0xAE);
duke@435 3113 emit_operand(as_Register(1), src);
duke@435 3114 }
duke@435 3115
duke@435 3116 void Assembler::ldmxcsr(Address src) {
duke@435 3117 InstructionMark im(this);
duke@435 3118 prefix(src);
duke@435 3119 emit_byte(0x0F);
duke@435 3120 emit_byte(0xAE);
duke@435 3121 emit_operand(as_Register(2), src);
duke@435 3122 }
duke@435 3123
duke@435 3124 void Assembler::stmxcsr(Address dst) {
duke@435 3125 InstructionMark im(this);
duke@435 3126 prefix(dst);
duke@435 3127 emit_byte(0x0F);
duke@435 3128 emit_byte(0xAE);
duke@435 3129 emit_operand(as_Register(3), dst);
duke@435 3130 }
duke@435 3131
duke@435 3132 void Assembler::addss(XMMRegister dst, XMMRegister src) {
duke@435 3133 emit_byte(0xF3);
duke@435 3134 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3135 emit_byte(0x0F);
duke@435 3136 emit_byte(0x58);
duke@435 3137 emit_byte(0xC0 | encode);
duke@435 3138 }
duke@435 3139
duke@435 3140 void Assembler::addss(XMMRegister dst, Address src) {
duke@435 3141 InstructionMark im(this);
duke@435 3142 emit_byte(0xF3);
duke@435 3143 prefix(src, dst);
duke@435 3144 emit_byte(0x0F);
duke@435 3145 emit_byte(0x58);
duke@435 3146 emit_operand(dst, src);
duke@435 3147 }
duke@435 3148
duke@435 3149 void Assembler::subss(XMMRegister dst, XMMRegister src) {
duke@435 3150 emit_byte(0xF3);
duke@435 3151 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3152 emit_byte(0x0F);
duke@435 3153 emit_byte(0x5C);
duke@435 3154 emit_byte(0xC0 | encode);
duke@435 3155 }
duke@435 3156
duke@435 3157 void Assembler::subss(XMMRegister dst, Address src) {
duke@435 3158 InstructionMark im(this);
duke@435 3159 emit_byte(0xF3);
duke@435 3160 prefix(src, dst);
duke@435 3161 emit_byte(0x0F);
duke@435 3162 emit_byte(0x5C);
duke@435 3163 emit_operand(dst, src);
duke@435 3164 }
duke@435 3165
duke@435 3166 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
duke@435 3167 emit_byte(0xF3);
duke@435 3168 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3169 emit_byte(0x0F);
duke@435 3170 emit_byte(0x59);
duke@435 3171 emit_byte(0xC0 | encode);
duke@435 3172 }
duke@435 3173
duke@435 3174 void Assembler::mulss(XMMRegister dst, Address src) {
duke@435 3175 InstructionMark im(this);
duke@435 3176 emit_byte(0xF3);
duke@435 3177 prefix(src, dst);
duke@435 3178 emit_byte(0x0F);
duke@435 3179 emit_byte(0x59);
duke@435 3180 emit_operand(dst, src);
duke@435 3181 }
duke@435 3182
duke@435 3183 void Assembler::divss(XMMRegister dst, XMMRegister src) {
duke@435 3184 emit_byte(0xF3);
duke@435 3185 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3186 emit_byte(0x0F);
duke@435 3187 emit_byte(0x5E);
duke@435 3188 emit_byte(0xC0 | encode);
duke@435 3189 }
duke@435 3190
duke@435 3191 void Assembler::divss(XMMRegister dst, Address src) {
duke@435 3192 InstructionMark im(this);
duke@435 3193 emit_byte(0xF3);
duke@435 3194 prefix(src, dst);
duke@435 3195 emit_byte(0x0F);
duke@435 3196 emit_byte(0x5E);
duke@435 3197 emit_operand(dst, src);
duke@435 3198 }
duke@435 3199
duke@435 3200 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
duke@435 3201 emit_byte(0xF2);
duke@435 3202 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3203 emit_byte(0x0F);
duke@435 3204 emit_byte(0x58);
duke@435 3205 emit_byte(0xC0 | encode);
duke@435 3206 }
duke@435 3207
duke@435 3208 void Assembler::addsd(XMMRegister dst, Address src) {
duke@435 3209 InstructionMark im(this);
duke@435 3210 emit_byte(0xF2);
duke@435 3211 prefix(src, dst);
duke@435 3212 emit_byte(0x0F);
duke@435 3213 emit_byte(0x58);
duke@435 3214 emit_operand(dst, src);
duke@435 3215 }
duke@435 3216
duke@435 3217 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
duke@435 3218 emit_byte(0xF2);
duke@435 3219 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3220 emit_byte(0x0F);
duke@435 3221 emit_byte(0x5C);
duke@435 3222 emit_byte(0xC0 | encode);
duke@435 3223 }
duke@435 3224
duke@435 3225 void Assembler::subsd(XMMRegister dst, Address src) {
duke@435 3226 InstructionMark im(this);
duke@435 3227 emit_byte(0xF2);
duke@435 3228 prefix(src, dst);
duke@435 3229 emit_byte(0x0F);
duke@435 3230 emit_byte(0x5C);
duke@435 3231 emit_operand(dst, src);
duke@435 3232 }
duke@435 3233
duke@435 3234 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
duke@435 3235 emit_byte(0xF2);
duke@435 3236 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3237 emit_byte(0x0F);
duke@435 3238 emit_byte(0x59);
duke@435 3239 emit_byte(0xC0 | encode);
duke@435 3240 }
duke@435 3241
duke@435 3242 void Assembler::mulsd(XMMRegister dst, Address src) {
duke@435 3243 InstructionMark im(this);
duke@435 3244 emit_byte(0xF2);
duke@435 3245 prefix(src, dst);
duke@435 3246 emit_byte(0x0F);
duke@435 3247 emit_byte(0x59);
duke@435 3248 emit_operand(dst, src);
duke@435 3249 }
duke@435 3250
duke@435 3251 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
duke@435 3252 emit_byte(0xF2);
duke@435 3253 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3254 emit_byte(0x0F);
duke@435 3255 emit_byte(0x5E);
duke@435 3256 emit_byte(0xC0 | encode);
duke@435 3257 }
duke@435 3258
duke@435 3259 void Assembler::divsd(XMMRegister dst, Address src) {
duke@435 3260 InstructionMark im(this);
duke@435 3261 emit_byte(0xF2);
duke@435 3262 prefix(src, dst);
duke@435 3263 emit_byte(0x0F);
duke@435 3264 emit_byte(0x5E);
duke@435 3265 emit_operand(dst, src);
duke@435 3266 }
duke@435 3267
duke@435 3268 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
duke@435 3269 emit_byte(0xF2);
duke@435 3270 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3271 emit_byte(0x0F);
duke@435 3272 emit_byte(0x51);
duke@435 3273 emit_byte(0xC0 | encode);
duke@435 3274 }
duke@435 3275
duke@435 3276 void Assembler::sqrtsd(XMMRegister dst, Address src) {
duke@435 3277 InstructionMark im(this);
duke@435 3278 emit_byte(0xF2);
duke@435 3279 prefix(src, dst);
duke@435 3280 emit_byte(0x0F);
duke@435 3281 emit_byte(0x51);
duke@435 3282 emit_operand(dst, src);
duke@435 3283 }
duke@435 3284
duke@435 3285 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
duke@435 3286 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3287 emit_byte(0x0F);
duke@435 3288 emit_byte(0x57);
duke@435 3289 emit_byte(0xC0 | encode);
duke@435 3290 }
duke@435 3291
duke@435 3292 void Assembler::xorps(XMMRegister dst, Address src) {
duke@435 3293 InstructionMark im(this);
duke@435 3294 prefix(src, dst);
duke@435 3295 emit_byte(0x0F);
duke@435 3296 emit_byte(0x57);
duke@435 3297 emit_operand(dst, src);
duke@435 3298 }
duke@435 3299
duke@435 3300 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
duke@435 3301 emit_byte(0x66);
duke@435 3302 xorps(dst, src);
duke@435 3303 }
duke@435 3304
duke@435 3305 void Assembler::xorpd(XMMRegister dst, Address src) {
duke@435 3306 InstructionMark im(this);
duke@435 3307 emit_byte(0x66);
duke@435 3308 prefix(src, dst);
duke@435 3309 emit_byte(0x0F);
duke@435 3310 emit_byte(0x57);
duke@435 3311 emit_operand(dst, src);
duke@435 3312 }
duke@435 3313
duke@435 3314 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
duke@435 3315 emit_byte(0xF3);
duke@435 3316 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3317 emit_byte(0x0F);
duke@435 3318 emit_byte(0x2A);
duke@435 3319 emit_byte(0xC0 | encode);
duke@435 3320 }
duke@435 3321
duke@435 3322 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
duke@435 3323 emit_byte(0xF3);
duke@435 3324 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3325 emit_byte(0x0F);
duke@435 3326 emit_byte(0x2A);
duke@435 3327 emit_byte(0xC0 | encode);
duke@435 3328 }
duke@435 3329
duke@435 3330 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
duke@435 3331 emit_byte(0xF2);
duke@435 3332 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3333 emit_byte(0x0F);
duke@435 3334 emit_byte(0x2A);
duke@435 3335 emit_byte(0xC0 | encode);
duke@435 3336 }
duke@435 3337
duke@435 3338 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
duke@435 3339 emit_byte(0xF2);
duke@435 3340 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3341 emit_byte(0x0F);
duke@435 3342 emit_byte(0x2A);
duke@435 3343 emit_byte(0xC0 | encode);
duke@435 3344 }
duke@435 3345
duke@435 3346 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
duke@435 3347 emit_byte(0xF3);
duke@435 3348 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3349 emit_byte(0x0F);
duke@435 3350 emit_byte(0x2C);
duke@435 3351 emit_byte(0xC0 | encode);
duke@435 3352 }
duke@435 3353
duke@435 3354 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
duke@435 3355 emit_byte(0xF3);
duke@435 3356 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3357 emit_byte(0x0F);
duke@435 3358 emit_byte(0x2C);
duke@435 3359 emit_byte(0xC0 | encode);
duke@435 3360 }
duke@435 3361
duke@435 3362 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
duke@435 3363 emit_byte(0xF2);
duke@435 3364 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3365 emit_byte(0x0F);
duke@435 3366 emit_byte(0x2C);
duke@435 3367 emit_byte(0xC0 | encode);
duke@435 3368 }
duke@435 3369
duke@435 3370 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
duke@435 3371 emit_byte(0xF2);
duke@435 3372 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3373 emit_byte(0x0F);
duke@435 3374 emit_byte(0x2C);
duke@435 3375 emit_byte(0xC0 | encode);
duke@435 3376 }
duke@435 3377
duke@435 3378 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
duke@435 3379 emit_byte(0xF3);
duke@435 3380 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3381 emit_byte(0x0F);
duke@435 3382 emit_byte(0x5A);
duke@435 3383 emit_byte(0xC0 | encode);
duke@435 3384 }
duke@435 3385
kvn@506 3386 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
kvn@506 3387 emit_byte(0xF3);
kvn@506 3388 int encode = prefix_and_encode(dst->encoding(), src->encoding());
kvn@506 3389 emit_byte(0x0F);
kvn@506 3390 emit_byte(0xE6);
kvn@506 3391 emit_byte(0xC0 | encode);
kvn@506 3392 }
kvn@506 3393
kvn@506 3394 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
kvn@506 3395 int encode = prefix_and_encode(dst->encoding(), src->encoding());
kvn@506 3396 emit_byte(0x0F);
kvn@506 3397 emit_byte(0x5B);
kvn@506 3398 emit_byte(0xC0 | encode);
kvn@506 3399 }
kvn@506 3400
duke@435 3401 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
duke@435 3402 emit_byte(0xF2);
duke@435 3403 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3404 emit_byte(0x0F);
duke@435 3405 emit_byte(0x5A);
duke@435 3406 emit_byte(0xC0 | encode);
duke@435 3407 }
duke@435 3408
duke@435 3409 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
duke@435 3410 emit_byte(0x66);
duke@435 3411 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3412 emit_byte(0x0F);
duke@435 3413 emit_byte(0x60);
duke@435 3414 emit_byte(0xC0 | encode);
duke@435 3415 }
duke@435 3416
duke@435 3417 // Implementation of MacroAssembler
duke@435 3418
duke@435 3419 // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement
duke@435 3420 Address MacroAssembler::as_Address(AddressLiteral adr) {
duke@435 3421 assert(!adr.is_lval(), "must be rval");
duke@435 3422 assert(reachable(adr), "must be");
duke@435 3423 return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
duke@435 3424 }
duke@435 3425
duke@435 3426 Address MacroAssembler::as_Address(ArrayAddress adr) {
duke@435 3427 #ifdef _LP64
duke@435 3428 AddressLiteral base = adr.base();
duke@435 3429 lea(rscratch1, base);
duke@435 3430 Address index = adr.index();
duke@435 3431 assert(index._disp == 0, "must not have disp"); // maybe it can?
duke@435 3432 Address array(rscratch1, index._index, index._scale, index._disp);
duke@435 3433 return array;
duke@435 3434 #else
duke@435 3435 return Address::make_array(adr);
duke@435 3436 #endif // _LP64
duke@435 3437
duke@435 3438 }
duke@435 3439
duke@435 3440 void MacroAssembler::fat_nop() {
duke@435 3441 // A 5 byte nop that is safe for patching (see patch_verified_entry)
duke@435 3442 // Recommened sequence from 'Software Optimization Guide for the AMD
duke@435 3443 // Hammer Processor'
duke@435 3444 emit_byte(0x66);
duke@435 3445 emit_byte(0x66);
duke@435 3446 emit_byte(0x90);
duke@435 3447 emit_byte(0x66);
duke@435 3448 emit_byte(0x90);
duke@435 3449 }
duke@435 3450
duke@435 3451 static Assembler::Condition reverse[] = {
duke@435 3452 Assembler::noOverflow /* overflow = 0x0 */ ,
duke@435 3453 Assembler::overflow /* noOverflow = 0x1 */ ,
duke@435 3454 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
duke@435 3455 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
duke@435 3456 Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
duke@435 3457 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
duke@435 3458 Assembler::above /* belowEqual = 0x6 */ ,
duke@435 3459 Assembler::belowEqual /* above = 0x7 */ ,
duke@435 3460 Assembler::positive /* negative = 0x8 */ ,
duke@435 3461 Assembler::negative /* positive = 0x9 */ ,
duke@435 3462 Assembler::noParity /* parity = 0xa */ ,
duke@435 3463 Assembler::parity /* noParity = 0xb */ ,
duke@435 3464 Assembler::greaterEqual /* less = 0xc */ ,
duke@435 3465 Assembler::less /* greaterEqual = 0xd */ ,
duke@435 3466 Assembler::greater /* lessEqual = 0xe */ ,
duke@435 3467 Assembler::lessEqual /* greater = 0xf, */
duke@435 3468
duke@435 3469 };
duke@435 3470
duke@435 3471 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 3472 // to be installed in the Address class
duke@435 3473 void MacroAssembler::jump(ArrayAddress entry) {
duke@435 3474 #ifdef _LP64
duke@435 3475 lea(rscratch1, entry.base());
duke@435 3476 Address dispatch = entry.index();
duke@435 3477 assert(dispatch._base == noreg, "must be");
duke@435 3478 dispatch._base = rscratch1;
duke@435 3479 jmp(dispatch);
duke@435 3480 #else
duke@435 3481 jmp(as_Address(entry));
duke@435 3482 #endif // _LP64
duke@435 3483 }
duke@435 3484
duke@435 3485 void MacroAssembler::jump(AddressLiteral dst) {
duke@435 3486 if (reachable(dst)) {
duke@435 3487 jmp_literal(dst.target(), dst.rspec());
duke@435 3488 } else {
duke@435 3489 lea(rscratch1, dst);
duke@435 3490 jmp(rscratch1);
duke@435 3491 }
duke@435 3492 }
duke@435 3493
duke@435 3494 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
duke@435 3495 if (reachable(dst)) {
duke@435 3496 InstructionMark im(this);
duke@435 3497 relocate(dst.reloc());
duke@435 3498 const int short_size = 2;
duke@435 3499 const int long_size = 6;
duke@435 3500 int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
duke@435 3501 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3502 // 0111 tttn #8-bit disp
duke@435 3503 emit_byte(0x70 | cc);
duke@435 3504 emit_byte((offs - short_size) & 0xFF);
duke@435 3505 } else {
duke@435 3506 // 0000 1111 1000 tttn #32-bit disp
duke@435 3507 emit_byte(0x0F);
duke@435 3508 emit_byte(0x80 | cc);
duke@435 3509 emit_long(offs - long_size);
duke@435 3510 }
duke@435 3511 } else {
duke@435 3512 #ifdef ASSERT
duke@435 3513 warning("reversing conditional branch");
duke@435 3514 #endif /* ASSERT */
duke@435 3515 Label skip;
duke@435 3516 jccb(reverse[cc], skip);
duke@435 3517 lea(rscratch1, dst);
duke@435 3518 Assembler::jmp(rscratch1);
duke@435 3519 bind(skip);
duke@435 3520 }
duke@435 3521 }
duke@435 3522
duke@435 3523 // Wouldn't need if AddressLiteral version had new name
duke@435 3524 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 3525 Assembler::call(L, rtype);
duke@435 3526 }
duke@435 3527
duke@435 3528 // Wouldn't need if AddressLiteral version had new name
duke@435 3529 void MacroAssembler::call(Register entry) {
duke@435 3530 Assembler::call(entry);
duke@435 3531 }
duke@435 3532
duke@435 3533 void MacroAssembler::call(AddressLiteral entry) {
duke@435 3534 if (reachable(entry)) {
duke@435 3535 Assembler::call_literal(entry.target(), entry.rspec());
duke@435 3536 } else {
duke@435 3537 lea(rscratch1, entry);
duke@435 3538 Assembler::call(rscratch1);
duke@435 3539 }
duke@435 3540 }
duke@435 3541
duke@435 3542 void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) {
duke@435 3543 if (reachable(src1)) {
duke@435 3544 cmpb(as_Address(src1), src2);
duke@435 3545 } else {
duke@435 3546 lea(rscratch1, src1);
duke@435 3547 cmpb(Address(rscratch1, 0), src2);
duke@435 3548 }
duke@435 3549 }
duke@435 3550
duke@435 3551 void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) {
duke@435 3552 if (reachable(src1)) {
duke@435 3553 cmpl(as_Address(src1), src2);
duke@435 3554 } else {
duke@435 3555 lea(rscratch1, src1);
duke@435 3556 cmpl(Address(rscratch1, 0), src2);
duke@435 3557 }
duke@435 3558 }
duke@435 3559
duke@435 3560 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
duke@435 3561 if (reachable(src2)) {
duke@435 3562 cmpl(src1, as_Address(src2));
duke@435 3563 } else {
duke@435 3564 lea(rscratch1, src2);
duke@435 3565 cmpl(src1, Address(rscratch1, 0));
duke@435 3566 }
duke@435 3567 }
duke@435 3568
duke@435 3569 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
duke@435 3570 #ifdef _LP64
duke@435 3571 if (src2.is_lval()) {
duke@435 3572 movptr(rscratch1, src2);
duke@435 3573 Assembler::cmpq(src1, rscratch1);
duke@435 3574 } else if (reachable(src2)) {
duke@435 3575 cmpq(src1, as_Address(src2));
duke@435 3576 } else {
duke@435 3577 lea(rscratch1, src2);
duke@435 3578 Assembler::cmpq(src1, Address(rscratch1, 0));
duke@435 3579 }
duke@435 3580 #else
duke@435 3581 if (src2.is_lval()) {
duke@435 3582 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 3583 } else {
duke@435 3584 cmpl(src1, as_Address(src2));
duke@435 3585 }
duke@435 3586 #endif // _LP64
duke@435 3587 }
duke@435 3588
duke@435 3589 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
duke@435 3590 assert(src2.is_lval(), "not a mem-mem compare");
duke@435 3591 #ifdef _LP64
duke@435 3592 // moves src2's literal address
duke@435 3593 movptr(rscratch1, src2);
duke@435 3594 Assembler::cmpq(src1, rscratch1);
duke@435 3595 #else
duke@435 3596 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 3597 #endif // _LP64
duke@435 3598 }
duke@435 3599
duke@435 3600 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
duke@435 3601 assert(!src2.is_lval(), "should use cmpptr");
duke@435 3602
duke@435 3603 if (reachable(src2)) {
duke@435 3604 #ifdef _LP64
duke@435 3605 cmpq(src1, as_Address(src2));
duke@435 3606 #else
duke@435 3607 ShouldNotReachHere();
duke@435 3608 #endif // _LP64
duke@435 3609 } else {
duke@435 3610 lea(rscratch1, src2);
duke@435 3611 Assembler::cmpq(src1, Address(rscratch1, 0));
duke@435 3612 }
duke@435 3613 }
duke@435 3614
duke@435 3615 void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
duke@435 3616 if (reachable(adr)) {
duke@435 3617 #ifdef _LP64
duke@435 3618 cmpxchgq(reg, as_Address(adr));
duke@435 3619 #else
duke@435 3620 cmpxchgl(reg, as_Address(adr));
duke@435 3621 #endif // _LP64
duke@435 3622 } else {
duke@435 3623 lea(rscratch1, adr);
duke@435 3624 cmpxchgq(reg, Address(rscratch1, 0));
duke@435 3625 }
duke@435 3626 }
duke@435 3627
duke@435 3628 void MacroAssembler::incrementl(AddressLiteral dst) {
duke@435 3629 if (reachable(dst)) {
duke@435 3630 incrementl(as_Address(dst));
duke@435 3631 } else {
duke@435 3632 lea(rscratch1, dst);
duke@435 3633 incrementl(Address(rscratch1, 0));
duke@435 3634 }
duke@435 3635 }
duke@435 3636
duke@435 3637 void MacroAssembler::incrementl(ArrayAddress dst) {
duke@435 3638 incrementl(as_Address(dst));
duke@435 3639 }
duke@435 3640
duke@435 3641 void MacroAssembler::lea(Register dst, Address src) {
duke@435 3642 #ifdef _LP64
duke@435 3643 leaq(dst, src);
duke@435 3644 #else
duke@435 3645 leal(dst, src);
duke@435 3646 #endif // _LP64
duke@435 3647 }
duke@435 3648
duke@435 3649 void MacroAssembler::lea(Register dst, AddressLiteral src) {
duke@435 3650 #ifdef _LP64
duke@435 3651 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
duke@435 3652 #else
duke@435 3653 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
duke@435 3654 #endif // _LP64
duke@435 3655 }
duke@435 3656
duke@435 3657 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
duke@435 3658 if (reachable(dst)) {
duke@435 3659 movl(as_Address(dst), src);
duke@435 3660 } else {
duke@435 3661 lea(rscratch1, dst);
duke@435 3662 movl(Address(rscratch1, 0), src);
duke@435 3663 }
duke@435 3664 }
duke@435 3665
duke@435 3666 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
duke@435 3667 if (reachable(src)) {
duke@435 3668 movl(dst, as_Address(src));
duke@435 3669 } else {
duke@435 3670 lea(rscratch1, src);
duke@435 3671 movl(dst, Address(rscratch1, 0));
duke@435 3672 }
duke@435 3673 }
duke@435 3674
duke@435 3675 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
duke@435 3676 if (reachable(src)) {
duke@435 3677 if (UseXmmLoadAndClearUpper) {
duke@435 3678 movsd (dst, as_Address(src));
duke@435 3679 } else {
duke@435 3680 movlpd(dst, as_Address(src));
duke@435 3681 }
duke@435 3682 } else {
duke@435 3683 lea(rscratch1, src);
duke@435 3684 if (UseXmmLoadAndClearUpper) {
duke@435 3685 movsd (dst, Address(rscratch1, 0));
duke@435 3686 } else {
duke@435 3687 movlpd(dst, Address(rscratch1, 0));
duke@435 3688 }
duke@435 3689 }
duke@435 3690 }
duke@435 3691
duke@435 3692 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
duke@435 3693 if (reachable(src)) {
duke@435 3694 movss(dst, as_Address(src));
duke@435 3695 } else {
duke@435 3696 lea(rscratch1, src);
duke@435 3697 movss(dst, Address(rscratch1, 0));
duke@435 3698 }
duke@435 3699 }
duke@435 3700
duke@435 3701 void MacroAssembler::movoop(Register dst, jobject obj) {
duke@435 3702 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3703 }
duke@435 3704
duke@435 3705 void MacroAssembler::movoop(Address dst, jobject obj) {
duke@435 3706 mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3707 movq(dst, rscratch1);
duke@435 3708 }
duke@435 3709
duke@435 3710 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
duke@435 3711 #ifdef _LP64
duke@435 3712 if (src.is_lval()) {
duke@435 3713 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
duke@435 3714 } else {
duke@435 3715 if (reachable(src)) {
duke@435 3716 movq(dst, as_Address(src));
duke@435 3717 } else {
duke@435 3718 lea(rscratch1, src);
duke@435 3719 movq(dst, Address(rscratch1,0));
duke@435 3720 }
duke@435 3721 }
duke@435 3722 #else
duke@435 3723 if (src.is_lval()) {
duke@435 3724 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
duke@435 3725 } else {
duke@435 3726 movl(dst, as_Address(src));
duke@435 3727 }
duke@435 3728 #endif // LP64
duke@435 3729 }
duke@435 3730
duke@435 3731 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
duke@435 3732 #ifdef _LP64
duke@435 3733 movq(as_Address(dst), src);
duke@435 3734 #else
duke@435 3735 movl(as_Address(dst), src);
duke@435 3736 #endif // _LP64
duke@435 3737 }
duke@435 3738
duke@435 3739 void MacroAssembler::pushoop(jobject obj) {
duke@435 3740 #ifdef _LP64
duke@435 3741 movoop(rscratch1, obj);
duke@435 3742 pushq(rscratch1);
duke@435 3743 #else
duke@435 3744 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3745 #endif // _LP64
duke@435 3746 }
duke@435 3747
duke@435 3748 void MacroAssembler::pushptr(AddressLiteral src) {
duke@435 3749 #ifdef _LP64
duke@435 3750 lea(rscratch1, src);
duke@435 3751 if (src.is_lval()) {
duke@435 3752 pushq(rscratch1);
duke@435 3753 } else {
duke@435 3754 pushq(Address(rscratch1, 0));
duke@435 3755 }
duke@435 3756 #else
duke@435 3757 if (src.is_lval()) {
duke@435 3758 push_literal((int32_t)src.target(), src.rspec());
duke@435 3759 else {
duke@435 3760 pushl(as_Address(src));
duke@435 3761 }
duke@435 3762 #endif // _LP64
duke@435 3763 }
duke@435 3764
duke@435 3765 void MacroAssembler::ldmxcsr(AddressLiteral src) {
duke@435 3766 if (reachable(src)) {
duke@435 3767 Assembler::ldmxcsr(as_Address(src));
duke@435 3768 } else {
duke@435 3769 lea(rscratch1, src);
duke@435 3770 Assembler::ldmxcsr(Address(rscratch1, 0));
duke@435 3771 }
duke@435 3772 }
duke@435 3773
duke@435 3774 void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) {
duke@435 3775 if (reachable(src)) {
duke@435 3776 movlpd(dst, as_Address(src));
duke@435 3777 } else {
duke@435 3778 lea(rscratch1, src);
duke@435 3779 movlpd(dst, Address(rscratch1, 0));
duke@435 3780 }
duke@435 3781 }
duke@435 3782
duke@435 3783 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
duke@435 3784 if (reachable(src)) {
duke@435 3785 movss(dst, as_Address(src));
duke@435 3786 } else {
duke@435 3787 lea(rscratch1, src);
duke@435 3788 movss(dst, Address(rscratch1, 0));
duke@435 3789 }
duke@435 3790 }
duke@435 3791 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
duke@435 3792 if (reachable(src)) {
duke@435 3793 xorpd(dst, as_Address(src));
duke@435 3794 } else {
duke@435 3795 lea(rscratch1, src);
duke@435 3796 xorpd(dst, Address(rscratch1, 0));
duke@435 3797 }
duke@435 3798 }
duke@435 3799
duke@435 3800 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
duke@435 3801 if (reachable(src)) {
duke@435 3802 xorps(dst, as_Address(src));
duke@435 3803 } else {
duke@435 3804 lea(rscratch1, src);
duke@435 3805 xorps(dst, Address(rscratch1, 0));
duke@435 3806 }
duke@435 3807 }
duke@435 3808
duke@435 3809 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 3810 if (needs_explicit_null_check(offset)) {
duke@435 3811 // provoke OS NULL exception if reg = NULL by
duke@435 3812 // accessing M[reg] w/o changing any (non-CC) registers
duke@435 3813 cmpq(rax, Address(reg, 0));
duke@435 3814 // Note: should probably use testl(rax, Address(reg, 0));
duke@435 3815 // may be shorter code (however, this version of
duke@435 3816 // testl needs to be implemented first)
duke@435 3817 } else {
duke@435 3818 // nothing to do, (later) access of M[reg + offset]
duke@435 3819 // will provoke OS NULL exception if reg = NULL
duke@435 3820 }
duke@435 3821 }
duke@435 3822
duke@435 3823 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
duke@435 3824 int off = offset();
duke@435 3825 movzbl(dst, src);
duke@435 3826 return off;
duke@435 3827 }
duke@435 3828
duke@435 3829 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
duke@435 3830 int off = offset();
duke@435 3831 movzwl(dst, src);
duke@435 3832 return off;
duke@435 3833 }
duke@435 3834
duke@435 3835 int MacroAssembler::load_signed_byte(Register dst, Address src) {
duke@435 3836 int off = offset();
duke@435 3837 movsbl(dst, src);
duke@435 3838 return off;
duke@435 3839 }
duke@435 3840
duke@435 3841 int MacroAssembler::load_signed_word(Register dst, Address src) {
duke@435 3842 int off = offset();
duke@435 3843 movswl(dst, src);
duke@435 3844 return off;
duke@435 3845 }
duke@435 3846
duke@435 3847 void MacroAssembler::incrementl(Register reg, int value) {
duke@435 3848 if (value == min_jint) { addl(reg, value); return; }
duke@435 3849 if (value < 0) { decrementl(reg, -value); return; }
duke@435 3850 if (value == 0) { ; return; }
duke@435 3851 if (value == 1 && UseIncDec) { incl(reg) ; return; }
duke@435 3852 /* else */ { addl(reg, value) ; return; }
duke@435 3853 }
duke@435 3854
duke@435 3855 void MacroAssembler::decrementl(Register reg, int value) {
duke@435 3856 if (value == min_jint) { subl(reg, value); return; }
duke@435 3857 if (value < 0) { incrementl(reg, -value); return; }
duke@435 3858 if (value == 0) { ; return; }
duke@435 3859 if (value == 1 && UseIncDec) { decl(reg) ; return; }
duke@435 3860 /* else */ { subl(reg, value) ; return; }
duke@435 3861 }
duke@435 3862
duke@435 3863 void MacroAssembler::incrementq(Register reg, int value) {
duke@435 3864 if (value == min_jint) { addq(reg, value); return; }
duke@435 3865 if (value < 0) { decrementq(reg, -value); return; }
duke@435 3866 if (value == 0) { ; return; }
duke@435 3867 if (value == 1 && UseIncDec) { incq(reg) ; return; }
duke@435 3868 /* else */ { addq(reg, value) ; return; }
duke@435 3869 }
duke@435 3870
duke@435 3871 void MacroAssembler::decrementq(Register reg, int value) {
duke@435 3872 if (value == min_jint) { subq(reg, value); return; }
duke@435 3873 if (value < 0) { incrementq(reg, -value); return; }
duke@435 3874 if (value == 0) { ; return; }
duke@435 3875 if (value == 1 && UseIncDec) { decq(reg) ; return; }
duke@435 3876 /* else */ { subq(reg, value) ; return; }
duke@435 3877 }
duke@435 3878
duke@435 3879 void MacroAssembler::incrementl(Address dst, int value) {
duke@435 3880 if (value == min_jint) { addl(dst, value); return; }
duke@435 3881 if (value < 0) { decrementl(dst, -value); return; }
duke@435 3882 if (value == 0) { ; return; }
duke@435 3883 if (value == 1 && UseIncDec) { incl(dst) ; return; }
duke@435 3884 /* else */ { addl(dst, value) ; return; }
duke@435 3885 }
duke@435 3886
duke@435 3887 void MacroAssembler::decrementl(Address dst, int value) {
duke@435 3888 if (value == min_jint) { subl(dst, value); return; }
duke@435 3889 if (value < 0) { incrementl(dst, -value); return; }
duke@435 3890 if (value == 0) { ; return; }
duke@435 3891 if (value == 1 && UseIncDec) { decl(dst) ; return; }
duke@435 3892 /* else */ { subl(dst, value) ; return; }
duke@435 3893 }
duke@435 3894
duke@435 3895 void MacroAssembler::incrementq(Address dst, int value) {
duke@435 3896 if (value == min_jint) { addq(dst, value); return; }
duke@435 3897 if (value < 0) { decrementq(dst, -value); return; }
duke@435 3898 if (value == 0) { ; return; }
duke@435 3899 if (value == 1 && UseIncDec) { incq(dst) ; return; }
duke@435 3900 /* else */ { addq(dst, value) ; return; }
duke@435 3901 }
duke@435 3902
duke@435 3903 void MacroAssembler::decrementq(Address dst, int value) {
duke@435 3904 if (value == min_jint) { subq(dst, value); return; }
duke@435 3905 if (value < 0) { incrementq(dst, -value); return; }
duke@435 3906 if (value == 0) { ; return; }
duke@435 3907 if (value == 1 && UseIncDec) { decq(dst) ; return; }
duke@435 3908 /* else */ { subq(dst, value) ; return; }
duke@435 3909 }
duke@435 3910
duke@435 3911 void MacroAssembler::align(int modulus) {
duke@435 3912 if (offset() % modulus != 0) {
duke@435 3913 nop(modulus - (offset() % modulus));
duke@435 3914 }
duke@435 3915 }
duke@435 3916
duke@435 3917 void MacroAssembler::enter() {
duke@435 3918 pushq(rbp);
duke@435 3919 movq(rbp, rsp);
duke@435 3920 }
duke@435 3921
duke@435 3922 void MacroAssembler::leave() {
duke@435 3923 emit_byte(0xC9); // LEAVE
duke@435 3924 }
duke@435 3925
duke@435 3926 // C++ bool manipulation
duke@435 3927
duke@435 3928 void MacroAssembler::movbool(Register dst, Address src) {
duke@435 3929 if(sizeof(bool) == 1)
duke@435 3930 movb(dst, src);
duke@435 3931 else if(sizeof(bool) == 2)
duke@435 3932 movw(dst, src);
duke@435 3933 else if(sizeof(bool) == 4)
duke@435 3934 movl(dst, src);
duke@435 3935 else {
duke@435 3936 // unsupported
duke@435 3937 ShouldNotReachHere();
duke@435 3938 }
duke@435 3939 }
duke@435 3940
duke@435 3941 void MacroAssembler::movbool(Address dst, bool boolconst) {
duke@435 3942 if(sizeof(bool) == 1)
duke@435 3943 movb(dst, (int) boolconst);
duke@435 3944 else if(sizeof(bool) == 2)
duke@435 3945 movw(dst, (int) boolconst);
duke@435 3946 else if(sizeof(bool) == 4)
duke@435 3947 movl(dst, (int) boolconst);
duke@435 3948 else {
duke@435 3949 // unsupported
duke@435 3950 ShouldNotReachHere();
duke@435 3951 }
duke@435 3952 }
duke@435 3953
duke@435 3954 void MacroAssembler::movbool(Address dst, Register src) {
duke@435 3955 if(sizeof(bool) == 1)
duke@435 3956 movb(dst, src);
duke@435 3957 else if(sizeof(bool) == 2)
duke@435 3958 movw(dst, src);
duke@435 3959 else if(sizeof(bool) == 4)
duke@435 3960 movl(dst, src);
duke@435 3961 else {
duke@435 3962 // unsupported
duke@435 3963 ShouldNotReachHere();
duke@435 3964 }
duke@435 3965 }
duke@435 3966
duke@435 3967 void MacroAssembler::testbool(Register dst) {
duke@435 3968 if(sizeof(bool) == 1)
duke@435 3969 testb(dst, (int) 0xff);
duke@435 3970 else if(sizeof(bool) == 2) {
duke@435 3971 // need testw impl
duke@435 3972 ShouldNotReachHere();
duke@435 3973 } else if(sizeof(bool) == 4)
duke@435 3974 testl(dst, dst);
duke@435 3975 else {
duke@435 3976 // unsupported
duke@435 3977 ShouldNotReachHere();
duke@435 3978 }
duke@435 3979 }
duke@435 3980
duke@435 3981 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
duke@435 3982 Register last_java_fp,
duke@435 3983 address last_java_pc) {
duke@435 3984 // determine last_java_sp register
duke@435 3985 if (!last_java_sp->is_valid()) {
duke@435 3986 last_java_sp = rsp;
duke@435 3987 }
duke@435 3988
duke@435 3989 // last_java_fp is optional
duke@435 3990 if (last_java_fp->is_valid()) {
duke@435 3991 movq(Address(r15_thread, JavaThread::last_Java_fp_offset()),
duke@435 3992 last_java_fp);
duke@435 3993 }
duke@435 3994
duke@435 3995 // last_java_pc is optional
duke@435 3996 if (last_java_pc != NULL) {
duke@435 3997 Address java_pc(r15_thread,
duke@435 3998 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
duke@435 3999 lea(rscratch1, InternalAddress(last_java_pc));
duke@435 4000 movq(java_pc, rscratch1);
duke@435 4001 }
duke@435 4002
duke@435 4003 movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
duke@435 4004 }
duke@435 4005
duke@435 4006 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
duke@435 4007 bool clear_pc) {
duke@435 4008 // we must set sp to zero to clear frame
duke@435 4009 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
duke@435 4010 // must clear fp, so that compiled frames are not confused; it is
duke@435 4011 // possible that we need it only for debugging
duke@435 4012 if (clear_fp) {
duke@435 4013 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
duke@435 4014 }
duke@435 4015
duke@435 4016 if (clear_pc) {
duke@435 4017 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
duke@435 4018 }
duke@435 4019 }
duke@435 4020
duke@435 4021
duke@435 4022 // Implementation of call_VM versions
duke@435 4023
duke@435 4024 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
duke@435 4025 Label L, E;
duke@435 4026
duke@435 4027 #ifdef _WIN64
duke@435 4028 // Windows always allocates space for it's register args
duke@435 4029 assert(num_args <= 4, "only register arguments supported");
duke@435 4030 subq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4031 #endif
duke@435 4032
duke@435 4033 // Align stack if necessary
duke@435 4034 testl(rsp, 15);
duke@435 4035 jcc(Assembler::zero, L);
duke@435 4036
duke@435 4037 subq(rsp, 8);
duke@435 4038 {
duke@435 4039 call(RuntimeAddress(entry_point));
duke@435 4040 }
duke@435 4041 addq(rsp, 8);
duke@435 4042 jmp(E);
duke@435 4043
duke@435 4044 bind(L);
duke@435 4045 {
duke@435 4046 call(RuntimeAddress(entry_point));
duke@435 4047 }
duke@435 4048
duke@435 4049 bind(E);
duke@435 4050
duke@435 4051 #ifdef _WIN64
duke@435 4052 // restore stack pointer
duke@435 4053 addq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4054 #endif
duke@435 4055
duke@435 4056 }
duke@435 4057
duke@435 4058
duke@435 4059 void MacroAssembler::call_VM_base(Register oop_result,
duke@435 4060 Register java_thread,
duke@435 4061 Register last_java_sp,
duke@435 4062 address entry_point,
duke@435 4063 int num_args,
duke@435 4064 bool check_exceptions) {
duke@435 4065 // determine last_java_sp register
duke@435 4066 if (!last_java_sp->is_valid()) {
duke@435 4067 last_java_sp = rsp;
duke@435 4068 }
duke@435 4069
duke@435 4070 // debugging support
duke@435 4071 assert(num_args >= 0, "cannot have negative number of arguments");
duke@435 4072 assert(r15_thread != oop_result,
duke@435 4073 "cannot use the same register for java_thread & oop_result");
duke@435 4074 assert(r15_thread != last_java_sp,
duke@435 4075 "cannot use the same register for java_thread & last_java_sp");
duke@435 4076
duke@435 4077 // set last Java frame before call
duke@435 4078
duke@435 4079 // This sets last_Java_fp which is only needed from interpreted frames
duke@435 4080 // and should really be done only from the interp_masm version before
duke@435 4081 // calling the underlying call_VM. That doesn't happen yet so we set
duke@435 4082 // last_Java_fp here even though some callers don't need it and
duke@435 4083 // also clear it below.
duke@435 4084 set_last_Java_frame(last_java_sp, rbp, NULL);
duke@435 4085
duke@435 4086 {
duke@435 4087 Label L, E;
duke@435 4088
duke@435 4089 // Align stack if necessary
duke@435 4090 #ifdef _WIN64
duke@435 4091 assert(num_args <= 4, "only register arguments supported");
duke@435 4092 // Windows always allocates space for it's register args
duke@435 4093 subq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4094 #endif
duke@435 4095 testl(rsp, 15);
duke@435 4096 jcc(Assembler::zero, L);
duke@435 4097
duke@435 4098 subq(rsp, 8);
duke@435 4099 {
duke@435 4100 call(RuntimeAddress(entry_point));
duke@435 4101 }
duke@435 4102 addq(rsp, 8);
duke@435 4103 jmp(E);
duke@435 4104
duke@435 4105
duke@435 4106 bind(L);
duke@435 4107 {
duke@435 4108 call(RuntimeAddress(entry_point));
duke@435 4109 }
duke@435 4110
duke@435 4111 bind(E);
duke@435 4112
duke@435 4113 #ifdef _WIN64
duke@435 4114 // restore stack pointer
duke@435 4115 addq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4116 #endif
duke@435 4117 }
duke@435 4118
duke@435 4119 #ifdef ASSERT
duke@435 4120 pushq(rax);
duke@435 4121 {
duke@435 4122 Label L;
duke@435 4123 get_thread(rax);
duke@435 4124 cmpq(r15_thread, rax);
duke@435 4125 jcc(Assembler::equal, L);
duke@435 4126 stop("MacroAssembler::call_VM_base: register not callee saved?");
duke@435 4127 bind(L);
duke@435 4128 }
duke@435 4129 popq(rax);
duke@435 4130 #endif
duke@435 4131
duke@435 4132 // reset last Java frame
duke@435 4133 // This really shouldn't have to clear fp set note above at the
duke@435 4134 // call to set_last_Java_frame
duke@435 4135 reset_last_Java_frame(true, false);
duke@435 4136
duke@435 4137 check_and_handle_popframe(noreg);
duke@435 4138 check_and_handle_earlyret(noreg);
duke@435 4139
duke@435 4140 if (check_exceptions) {
duke@435 4141 cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
duke@435 4142 // This used to conditionally jump to forward_exception however it is
duke@435 4143 // possible if we relocate that the branch will not reach. So we must jump
duke@435 4144 // around so we can always reach
duke@435 4145 Label ok;
duke@435 4146 jcc(Assembler::equal, ok);
duke@435 4147 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 4148 bind(ok);
duke@435 4149 }
duke@435 4150
duke@435 4151 // get oop result if there is one and reset the value in the thread
duke@435 4152 if (oop_result->is_valid()) {
duke@435 4153 movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
duke@435 4154 movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
kvn@559 4155 verify_oop(oop_result, "broken oop in call_VM_base");
duke@435 4156 }
duke@435 4157 }
duke@435 4158
duke@435 4159 void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
duke@435 4160 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
duke@435 4161
duke@435 4162 void MacroAssembler::call_VM_helper(Register oop_result,
duke@435 4163 address entry_point,
duke@435 4164 int num_args,
duke@435 4165 bool check_exceptions) {
duke@435 4166 // Java thread becomes first argument of C function
duke@435 4167 movq(c_rarg0, r15_thread);
duke@435 4168
duke@435 4169 // We've pushed one address, correct last_Java_sp
duke@435 4170 leaq(rax, Address(rsp, wordSize));
duke@435 4171
duke@435 4172 call_VM_base(oop_result, noreg, rax, entry_point, num_args,
duke@435 4173 check_exceptions);
duke@435 4174 }
duke@435 4175
duke@435 4176
duke@435 4177 void MacroAssembler::call_VM(Register oop_result,
duke@435 4178 address entry_point,
duke@435 4179 bool check_exceptions) {
duke@435 4180 Label C, E;
duke@435 4181 Assembler::call(C, relocInfo::none);
duke@435 4182 jmp(E);
duke@435 4183
duke@435 4184 bind(C);
duke@435 4185 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
duke@435 4186 ret(0);
duke@435 4187
duke@435 4188 bind(E);
duke@435 4189 }
duke@435 4190
duke@435 4191
duke@435 4192 void MacroAssembler::call_VM(Register oop_result,
duke@435 4193 address entry_point,
duke@435 4194 Register arg_1,
duke@435 4195 bool check_exceptions) {
duke@435 4196 assert(rax != arg_1, "smashed argument");
duke@435 4197 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4198
duke@435 4199 Label C, E;
duke@435 4200 Assembler::call(C, relocInfo::none);
duke@435 4201 jmp(E);
duke@435 4202
duke@435 4203 bind(C);
duke@435 4204 // c_rarg0 is reserved for thread
duke@435 4205 if (c_rarg1 != arg_1) {
duke@435 4206 movq(c_rarg1, arg_1);
duke@435 4207 }
duke@435 4208 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
duke@435 4209 ret(0);
duke@435 4210
duke@435 4211 bind(E);
duke@435 4212 }
duke@435 4213
duke@435 4214 void MacroAssembler::call_VM(Register oop_result,
duke@435 4215 address entry_point,
duke@435 4216 Register arg_1,
duke@435 4217 Register arg_2,
duke@435 4218 bool check_exceptions) {
duke@435 4219 assert(rax != arg_1, "smashed argument");
duke@435 4220 assert(rax != arg_2, "smashed argument");
duke@435 4221 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4222 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4223 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4224 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4225
duke@435 4226 Label C, E;
duke@435 4227 Assembler::call(C, relocInfo::none);
duke@435 4228 jmp(E);
duke@435 4229
duke@435 4230 bind(C);
duke@435 4231 // c_rarg0 is reserved for thread
duke@435 4232 if (c_rarg1 != arg_1) {
duke@435 4233 movq(c_rarg1, arg_1);
duke@435 4234 }
duke@435 4235 if (c_rarg2 != arg_2) {
duke@435 4236 movq(c_rarg2, arg_2);
duke@435 4237 }
duke@435 4238 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
duke@435 4239 ret(0);
duke@435 4240
duke@435 4241 bind(E);
duke@435 4242 }
duke@435 4243
duke@435 4244
duke@435 4245 void MacroAssembler::call_VM(Register oop_result,
duke@435 4246 address entry_point,
duke@435 4247 Register arg_1,
duke@435 4248 Register arg_2,
duke@435 4249 Register arg_3,
duke@435 4250 bool check_exceptions) {
duke@435 4251 assert(rax != arg_1, "smashed argument");
duke@435 4252 assert(rax != arg_2, "smashed argument");
duke@435 4253 assert(rax != arg_3, "smashed argument");
duke@435 4254 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4255 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4256 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4257 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4258 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4259 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4260 assert(c_rarg2 != arg_3, "smashed argument");
duke@435 4261 assert(c_rarg3 != arg_1, "smashed argument");
duke@435 4262 assert(c_rarg3 != arg_2, "smashed argument");
duke@435 4263
duke@435 4264 Label C, E;
duke@435 4265 Assembler::call(C, relocInfo::none);
duke@435 4266 jmp(E);
duke@435 4267
duke@435 4268 bind(C);
duke@435 4269 // c_rarg0 is reserved for thread
duke@435 4270 if (c_rarg1 != arg_1) {
duke@435 4271 movq(c_rarg1, arg_1);
duke@435 4272 }
duke@435 4273 if (c_rarg2 != arg_2) {
duke@435 4274 movq(c_rarg2, arg_2);
duke@435 4275 }
duke@435 4276 if (c_rarg3 != arg_3) {
duke@435 4277 movq(c_rarg3, arg_3);
duke@435 4278 }
duke@435 4279 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
duke@435 4280 ret(0);
duke@435 4281
duke@435 4282 bind(E);
duke@435 4283 }
duke@435 4284
duke@435 4285 void MacroAssembler::call_VM(Register oop_result,
duke@435 4286 Register last_java_sp,
duke@435 4287 address entry_point,
duke@435 4288 int num_args,
duke@435 4289 bool check_exceptions) {
duke@435 4290 call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args,
duke@435 4291 check_exceptions);
duke@435 4292 }
duke@435 4293
duke@435 4294 void MacroAssembler::call_VM(Register oop_result,
duke@435 4295 Register last_java_sp,
duke@435 4296 address entry_point,
duke@435 4297 Register arg_1,
duke@435 4298 bool check_exceptions) {
duke@435 4299 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4300 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4301 // c_rarg0 is reserved for thread
duke@435 4302 if (c_rarg1 != arg_1) {
duke@435 4303 movq(c_rarg1, arg_1);
duke@435 4304 }
duke@435 4305 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 4306 }
duke@435 4307
duke@435 4308 void MacroAssembler::call_VM(Register oop_result,
duke@435 4309 Register last_java_sp,
duke@435 4310 address entry_point,
duke@435 4311 Register arg_1,
duke@435 4312 Register arg_2,
duke@435 4313 bool check_exceptions) {
duke@435 4314 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4315 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4316 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4317 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4318 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4319 assert(c_rarg2 != last_java_sp, "smashed argument");
duke@435 4320 // c_rarg0 is reserved for thread
duke@435 4321 if (c_rarg1 != arg_1) {
duke@435 4322 movq(c_rarg1, arg_1);
duke@435 4323 }
duke@435 4324 if (c_rarg2 != arg_2) {
duke@435 4325 movq(c_rarg2, arg_2);
duke@435 4326 }
duke@435 4327 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 4328 }
duke@435 4329
duke@435 4330
duke@435 4331 void MacroAssembler::call_VM(Register oop_result,
duke@435 4332 Register last_java_sp,
duke@435 4333 address entry_point,
duke@435 4334 Register arg_1,
duke@435 4335 Register arg_2,
duke@435 4336 Register arg_3,
duke@435 4337 bool check_exceptions) {
duke@435 4338 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4339 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4340 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4341 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4342 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4343 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4344 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4345 assert(c_rarg2 != arg_3, "smashed argument");
duke@435 4346 assert(c_rarg2 != last_java_sp, "smashed argument");
duke@435 4347 assert(c_rarg3 != arg_1, "smashed argument");
duke@435 4348 assert(c_rarg3 != arg_2, "smashed argument");
duke@435 4349 assert(c_rarg3 != last_java_sp, "smashed argument");
duke@435 4350 // c_rarg0 is reserved for thread
duke@435 4351 if (c_rarg1 != arg_1) {
duke@435 4352 movq(c_rarg1, arg_1);
duke@435 4353 }
duke@435 4354 if (c_rarg2 != arg_2) {
duke@435 4355 movq(c_rarg2, arg_2);
duke@435 4356 }
duke@435 4357 if (c_rarg3 != arg_3) {
duke@435 4358 movq(c_rarg2, arg_3);
duke@435 4359 }
duke@435 4360 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 4361 }
duke@435 4362
duke@435 4363 void MacroAssembler::call_VM_leaf(address entry_point, int num_args) {
duke@435 4364 call_VM_leaf_base(entry_point, num_args);
duke@435 4365 }
duke@435 4366
duke@435 4367 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
duke@435 4368 if (c_rarg0 != arg_1) {
duke@435 4369 movq(c_rarg0, arg_1);
duke@435 4370 }
duke@435 4371 call_VM_leaf(entry_point, 1);
duke@435 4372 }
duke@435 4373
duke@435 4374 void MacroAssembler::call_VM_leaf(address entry_point,
duke@435 4375 Register arg_1,
duke@435 4376 Register arg_2) {
duke@435 4377 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4378 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 4379 if (c_rarg0 != arg_1) {
duke@435 4380 movq(c_rarg0, arg_1);
duke@435 4381 }
duke@435 4382 if (c_rarg1 != arg_2) {
duke@435 4383 movq(c_rarg1, arg_2);
duke@435 4384 }
duke@435 4385 call_VM_leaf(entry_point, 2);
duke@435 4386 }
duke@435 4387
duke@435 4388 void MacroAssembler::call_VM_leaf(address entry_point,
duke@435 4389 Register arg_1,
duke@435 4390 Register arg_2,
duke@435 4391 Register arg_3) {
duke@435 4392 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4393 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4394 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 4395 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4396 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4397 assert(c_rarg2 != arg_2, "smashed argument");
duke@435 4398 if (c_rarg0 != arg_1) {
duke@435 4399 movq(c_rarg0, arg_1);
duke@435 4400 }
duke@435 4401 if (c_rarg1 != arg_2) {
duke@435 4402 movq(c_rarg1, arg_2);
duke@435 4403 }
duke@435 4404 if (c_rarg2 != arg_3) {
duke@435 4405 movq(c_rarg2, arg_3);
duke@435 4406 }
duke@435 4407 call_VM_leaf(entry_point, 3);
duke@435 4408 }
duke@435 4409
duke@435 4410
duke@435 4411 // Calls to C land
duke@435 4412 //
duke@435 4413 // When entering C land, the rbp & rsp of the last Java frame have to
duke@435 4414 // be recorded in the (thread-local) JavaThread object. When leaving C
duke@435 4415 // land, the last Java fp has to be reset to 0. This is required to
duke@435 4416 // allow proper stack traversal.
duke@435 4417 void MacroAssembler::store_check(Register obj) {
duke@435 4418 // Does a store check for the oop in register obj. The content of
duke@435 4419 // register obj is destroyed afterwards.
duke@435 4420 store_check_part_1(obj);
duke@435 4421 store_check_part_2(obj);
duke@435 4422 }
duke@435 4423
duke@435 4424 void MacroAssembler::store_check(Register obj, Address dst) {
duke@435 4425 store_check(obj);
duke@435 4426 }
duke@435 4427
duke@435 4428 // split the store check operation so that other instructions can be
duke@435 4429 // scheduled inbetween
duke@435 4430 void MacroAssembler::store_check_part_1(Register obj) {
duke@435 4431 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 4432 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 4433 shrq(obj, CardTableModRefBS::card_shift);
duke@435 4434 }
duke@435 4435
duke@435 4436 void MacroAssembler::store_check_part_2(Register obj) {
duke@435 4437 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 4438 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 4439 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 4440 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
sgoldman@552 4441
sgoldman@552 4442 // The calculation for byte_map_base is as follows:
sgoldman@552 4443 // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
sgoldman@552 4444 // So this essentially converts an address to a displacement and
sgoldman@552 4445 // it will never need to be relocated. On 64bit however the value may be too
sgoldman@552 4446 // large for a 32bit displacement
sgoldman@552 4447
sgoldman@552 4448 intptr_t disp = (intptr_t) ct->byte_map_base;
sgoldman@552 4449 if (is_simm32(disp)) {
sgoldman@552 4450 Address cardtable(noreg, obj, Address::times_1, disp);
sgoldman@552 4451 movb(cardtable, 0);
sgoldman@552 4452 } else {
sgoldman@552 4453 // By doing it as an ExternalAddress disp could be converted to a rip-relative
sgoldman@552 4454 // displacement and done in a single instruction given favorable mapping and
sgoldman@552 4455 // a smarter version of as_Address. Worst case it is two instructions which
sgoldman@552 4456 // is no worse off then loading disp into a register and doing as a simple
sgoldman@552 4457 // Address() as above.
sgoldman@552 4458 // We can't do as ExternalAddress as the only style since if disp == 0 we'll
sgoldman@552 4459 // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
sgoldman@552 4460 // in some cases we'll get a single instruction version.
sgoldman@552 4461
sgoldman@552 4462 ExternalAddress cardtable((address)disp);
sgoldman@552 4463 Address index(noreg, obj, Address::times_1);
sgoldman@552 4464 movb(as_Address(ArrayAddress(cardtable, index)), 0);
sgoldman@552 4465 }
sgoldman@552 4466
duke@435 4467 }
duke@435 4468
duke@435 4469 void MacroAssembler::c2bool(Register x) {
duke@435 4470 // implements x == 0 ? 0 : 1
duke@435 4471 // note: must only look at least-significant byte of x
duke@435 4472 // since C-style booleans are stored in one byte
duke@435 4473 // only! (was bug)
duke@435 4474 andl(x, 0xFF);
duke@435 4475 setb(Assembler::notZero, x);
duke@435 4476 }
duke@435 4477
duke@435 4478 int MacroAssembler::corrected_idivl(Register reg) {
duke@435 4479 // Full implementation of Java idiv and irem; checks for special
duke@435 4480 // case as described in JVM spec., p.243 & p.271. The function
duke@435 4481 // returns the (pc) offset of the idivl instruction - may be needed
duke@435 4482 // for implicit exceptions.
duke@435 4483 //
duke@435 4484 // normal case special case
duke@435 4485 //
duke@435 4486 // input : eax: dividend min_int
duke@435 4487 // reg: divisor (may not be eax/edx) -1
duke@435 4488 //
duke@435 4489 // output: eax: quotient (= eax idiv reg) min_int
duke@435 4490 // edx: remainder (= eax irem reg) 0
duke@435 4491 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
duke@435 4492 const int min_int = 0x80000000;
duke@435 4493 Label normal_case, special_case;
duke@435 4494
duke@435 4495 // check for special case
duke@435 4496 cmpl(rax, min_int);
duke@435 4497 jcc(Assembler::notEqual, normal_case);
duke@435 4498 xorl(rdx, rdx); // prepare edx for possible special case (where
duke@435 4499 // remainder = 0)
duke@435 4500 cmpl(reg, -1);
duke@435 4501 jcc(Assembler::equal, special_case);
duke@435 4502
duke@435 4503 // handle normal case
duke@435 4504 bind(normal_case);
duke@435 4505 cdql();
duke@435 4506 int idivl_offset = offset();
duke@435 4507 idivl(reg);
duke@435 4508
duke@435 4509 // normal and special case exit
duke@435 4510 bind(special_case);
duke@435 4511
duke@435 4512 return idivl_offset;
duke@435 4513 }
duke@435 4514
duke@435 4515 int MacroAssembler::corrected_idivq(Register reg) {
duke@435 4516 // Full implementation of Java ldiv and lrem; checks for special
duke@435 4517 // case as described in JVM spec., p.243 & p.271. The function
duke@435 4518 // returns the (pc) offset of the idivl instruction - may be needed
duke@435 4519 // for implicit exceptions.
duke@435 4520 //
duke@435 4521 // normal case special case
duke@435 4522 //
duke@435 4523 // input : rax: dividend min_long
duke@435 4524 // reg: divisor (may not be eax/edx) -1
duke@435 4525 //
duke@435 4526 // output: rax: quotient (= rax idiv reg) min_long
duke@435 4527 // rdx: remainder (= rax irem reg) 0
duke@435 4528 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
duke@435 4529 static const int64_t min_long = 0x8000000000000000;
duke@435 4530 Label normal_case, special_case;
duke@435 4531
duke@435 4532 // check for special case
duke@435 4533 cmp64(rax, ExternalAddress((address) &min_long));
duke@435 4534 jcc(Assembler::notEqual, normal_case);
duke@435 4535 xorl(rdx, rdx); // prepare rdx for possible special case (where
duke@435 4536 // remainder = 0)
duke@435 4537 cmpq(reg, -1);
duke@435 4538 jcc(Assembler::equal, special_case);
duke@435 4539
duke@435 4540 // handle normal case
duke@435 4541 bind(normal_case);
duke@435 4542 cdqq();
duke@435 4543 int idivq_offset = offset();
duke@435 4544 idivq(reg);
duke@435 4545
duke@435 4546 // normal and special case exit
duke@435 4547 bind(special_case);
duke@435 4548
duke@435 4549 return idivq_offset;
duke@435 4550 }
duke@435 4551
duke@435 4552 void MacroAssembler::push_IU_state() {
duke@435 4553 pushfq(); // Push flags first because pushaq kills them
duke@435 4554 subq(rsp, 8); // Make sure rsp stays 16-byte aligned
duke@435 4555 pushaq();
duke@435 4556 }
duke@435 4557
duke@435 4558 void MacroAssembler::pop_IU_state() {
duke@435 4559 popaq();
duke@435 4560 addq(rsp, 8);
duke@435 4561 popfq();
duke@435 4562 }
duke@435 4563
duke@435 4564 void MacroAssembler::push_FPU_state() {
duke@435 4565 subq(rsp, FPUStateSizeInWords * wordSize);
duke@435 4566 fxsave(Address(rsp, 0));
duke@435 4567 }
duke@435 4568
duke@435 4569 void MacroAssembler::pop_FPU_state() {
duke@435 4570 fxrstor(Address(rsp, 0));
duke@435 4571 addq(rsp, FPUStateSizeInWords * wordSize);
duke@435 4572 }
duke@435 4573
duke@435 4574 // Save Integer and Float state
duke@435 4575 // Warning: Stack must be 16 byte aligned
duke@435 4576 void MacroAssembler::push_CPU_state() {
duke@435 4577 push_IU_state();
duke@435 4578 push_FPU_state();
duke@435 4579 }
duke@435 4580
duke@435 4581 void MacroAssembler::pop_CPU_state() {
duke@435 4582 pop_FPU_state();
duke@435 4583 pop_IU_state();
duke@435 4584 }
duke@435 4585
duke@435 4586 void MacroAssembler::sign_extend_short(Register reg) {
duke@435 4587 movswl(reg, reg);
duke@435 4588 }
duke@435 4589
duke@435 4590 void MacroAssembler::sign_extend_byte(Register reg) {
duke@435 4591 movsbl(reg, reg);
duke@435 4592 }
duke@435 4593
duke@435 4594 void MacroAssembler::division_with_shift(Register reg, int shift_value) {
duke@435 4595 assert (shift_value > 0, "illegal shift value");
duke@435 4596 Label _is_positive;
duke@435 4597 testl (reg, reg);
duke@435 4598 jcc (Assembler::positive, _is_positive);
duke@435 4599 int offset = (1 << shift_value) - 1 ;
duke@435 4600
duke@435 4601 if (offset == 1) {
duke@435 4602 incrementl(reg);
duke@435 4603 } else {
duke@435 4604 addl(reg, offset);
duke@435 4605 }
duke@435 4606
duke@435 4607 bind (_is_positive);
duke@435 4608 sarl(reg, shift_value);
duke@435 4609 }
duke@435 4610
duke@435 4611 void MacroAssembler::round_to_l(Register reg, int modulus) {
duke@435 4612 addl(reg, modulus - 1);
duke@435 4613 andl(reg, -modulus);
duke@435 4614 }
duke@435 4615
duke@435 4616 void MacroAssembler::round_to_q(Register reg, int modulus) {
duke@435 4617 addq(reg, modulus - 1);
duke@435 4618 andq(reg, -modulus);
duke@435 4619 }
duke@435 4620
duke@435 4621 void MacroAssembler::verify_oop(Register reg, const char* s) {
duke@435 4622 if (!VerifyOops) {
duke@435 4623 return;
duke@435 4624 }
duke@435 4625
duke@435 4626 // Pass register number to verify_oop_subroutine
duke@435 4627 char* b = new char[strlen(s) + 50];
duke@435 4628 sprintf(b, "verify_oop: %s: %s", reg->name(), s);
duke@435 4629
duke@435 4630 pushq(rax); // save rax, restored by receiver
duke@435 4631
duke@435 4632 // pass args on stack, only touch rax
duke@435 4633 pushq(reg);
duke@435 4634 // avoid using pushptr, as it modifies scratch registers
duke@435 4635 // and our contract is not to modify anything
duke@435 4636 ExternalAddress buffer((address)b);
duke@435 4637 movptr(rax, buffer.addr());
duke@435 4638 pushq(rax);
duke@435 4639
duke@435 4640 // call indirectly to solve generation ordering problem
duke@435 4641 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 4642 call(rax); // no alignment requirement
duke@435 4643 // everything popped by receiver
duke@435 4644 }
duke@435 4645
duke@435 4646 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
duke@435 4647 if (!VerifyOops) return;
duke@435 4648 // Pass register number to verify_oop_subroutine
duke@435 4649 char* b = new char[strlen(s) + 50];
duke@435 4650 sprintf(b, "verify_oop_addr: %s", s);
duke@435 4651 pushq(rax); // save rax
duke@435 4652 movq(addr, rax);
duke@435 4653 pushq(rax); // pass register argument
duke@435 4654
duke@435 4655
duke@435 4656 // avoid using pushptr, as it modifies scratch registers
duke@435 4657 // and our contract is not to modify anything
duke@435 4658 ExternalAddress buffer((address)b);
duke@435 4659 movptr(rax, buffer.addr());
duke@435 4660 pushq(rax);
duke@435 4661
duke@435 4662 // call indirectly to solve generation ordering problem
duke@435 4663 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 4664 call(rax); // no alignment requirement
duke@435 4665 // everything popped by receiver
duke@435 4666 }
duke@435 4667
duke@435 4668
duke@435 4669 void MacroAssembler::stop(const char* msg) {
duke@435 4670 address rip = pc();
duke@435 4671 pushaq(); // get regs on stack
duke@435 4672 lea(c_rarg0, ExternalAddress((address) msg));
duke@435 4673 lea(c_rarg1, InternalAddress(rip));
duke@435 4674 movq(c_rarg2, rsp); // pass pointer to regs array
duke@435 4675 andq(rsp, -16); // align stack as required by ABI
duke@435 4676 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
duke@435 4677 hlt();
duke@435 4678 }
duke@435 4679
duke@435 4680 void MacroAssembler::warn(const char* msg) {
duke@435 4681 pushq(r12);
duke@435 4682 movq(r12, rsp);
duke@435 4683 andq(rsp, -16); // align stack as required by push_CPU_state and call
duke@435 4684
duke@435 4685 push_CPU_state(); // keeps alignment at 16 bytes
duke@435 4686 lea(c_rarg0, ExternalAddress((address) msg));
duke@435 4687 call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
duke@435 4688 pop_CPU_state();
duke@435 4689
duke@435 4690 movq(rsp, r12);
duke@435 4691 popq(r12);
duke@435 4692 }
duke@435 4693
kvn@559 4694 #ifndef PRODUCT
kvn@559 4695 extern "C" void findpc(intptr_t x);
kvn@559 4696 #endif
kvn@559 4697
duke@435 4698 void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
duke@435 4699 // In order to get locks to work, we need to fake a in_VM state
duke@435 4700 if (ShowMessageBoxOnError ) {
duke@435 4701 JavaThread* thread = JavaThread::current();
duke@435 4702 JavaThreadState saved_state = thread->thread_state();
duke@435 4703 thread->set_thread_state(_thread_in_vm);
duke@435 4704 #ifndef PRODUCT
duke@435 4705 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
coleenp@548 4706 ttyLocker ttyl;
duke@435 4707 BytecodeCounter::print();
duke@435 4708 }
duke@435 4709 #endif
duke@435 4710 // To see where a verify_oop failed, get $ebx+40/X for this frame.
duke@435 4711 // XXX correct this offset for amd64
duke@435 4712 // This is the value of eip which points to where verify_oop will return.
duke@435 4713 if (os::message_box(msg, "Execution stopped, print registers?")) {
coleenp@548 4714 ttyLocker ttyl;
duke@435 4715 tty->print_cr("rip = 0x%016lx", pc);
kvn@559 4716 #ifndef PRODUCT
kvn@559 4717 tty->cr();
kvn@559 4718 findpc(pc);
kvn@559 4719 tty->cr();
kvn@559 4720 #endif
duke@435 4721 tty->print_cr("rax = 0x%016lx", regs[15]);
duke@435 4722 tty->print_cr("rbx = 0x%016lx", regs[12]);
duke@435 4723 tty->print_cr("rcx = 0x%016lx", regs[14]);
duke@435 4724 tty->print_cr("rdx = 0x%016lx", regs[13]);
duke@435 4725 tty->print_cr("rdi = 0x%016lx", regs[8]);
duke@435 4726 tty->print_cr("rsi = 0x%016lx", regs[9]);
duke@435 4727 tty->print_cr("rbp = 0x%016lx", regs[10]);
duke@435 4728 tty->print_cr("rsp = 0x%016lx", regs[11]);
duke@435 4729 tty->print_cr("r8 = 0x%016lx", regs[7]);
duke@435 4730 tty->print_cr("r9 = 0x%016lx", regs[6]);
duke@435 4731 tty->print_cr("r10 = 0x%016lx", regs[5]);
duke@435 4732 tty->print_cr("r11 = 0x%016lx", regs[4]);
duke@435 4733 tty->print_cr("r12 = 0x%016lx", regs[3]);
duke@435 4734 tty->print_cr("r13 = 0x%016lx", regs[2]);
duke@435 4735 tty->print_cr("r14 = 0x%016lx", regs[1]);
duke@435 4736 tty->print_cr("r15 = 0x%016lx", regs[0]);
duke@435 4737 BREAKPOINT;
duke@435 4738 }
duke@435 4739 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
duke@435 4740 } else {
coleenp@548 4741 ttyLocker ttyl;
duke@435 4742 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
duke@435 4743 msg);
duke@435 4744 }
duke@435 4745 }
duke@435 4746
duke@435 4747 void MacroAssembler::os_breakpoint() {
duke@435 4748 // instead of directly emitting a breakpoint, call os:breakpoint for
duke@435 4749 // better debugability
duke@435 4750 // This shouldn't need alignment, it's an empty function
duke@435 4751 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
duke@435 4752 }
duke@435 4753
duke@435 4754 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 4755 // We use the current thread pointer to calculate a thread specific
duke@435 4756 // offset to write to within the page. This minimizes bus traffic
duke@435 4757 // due to cache line collision.
duke@435 4758 void MacroAssembler::serialize_memory(Register thread,
duke@435 4759 Register tmp) {
duke@435 4760
duke@435 4761 movl(tmp, thread);
duke@435 4762 shrl(tmp, os::get_serialize_page_shift_count());
duke@435 4763 andl(tmp, (os::vm_page_size() - sizeof(int)));
duke@435 4764
duke@435 4765 Address index(noreg, tmp, Address::times_1);
duke@435 4766 ExternalAddress page(os::get_memory_serialize_page());
duke@435 4767
duke@435 4768 movptr(ArrayAddress(page, index), tmp);
duke@435 4769 }
duke@435 4770
duke@435 4771 void MacroAssembler::verify_tlab() {
duke@435 4772 #ifdef ASSERT
duke@435 4773 if (UseTLAB) {
duke@435 4774 Label next, ok;
duke@435 4775 Register t1 = rsi;
duke@435 4776
duke@435 4777 pushq(t1);
duke@435 4778
duke@435 4779 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4780 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
duke@435 4781 jcc(Assembler::aboveEqual, next);
duke@435 4782 stop("assert(top >= start)");
duke@435 4783 should_not_reach_here();
duke@435 4784
duke@435 4785 bind(next);
duke@435 4786 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4787 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4788 jcc(Assembler::aboveEqual, ok);
duke@435 4789 stop("assert(top <= end)");
duke@435 4790 should_not_reach_here();
duke@435 4791
duke@435 4792 bind(ok);
duke@435 4793
duke@435 4794 popq(t1);
duke@435 4795 }
duke@435 4796 #endif
duke@435 4797 }
duke@435 4798
duke@435 4799 // Defines obj, preserves var_size_in_bytes
duke@435 4800 void MacroAssembler::eden_allocate(Register obj,
duke@435 4801 Register var_size_in_bytes,
duke@435 4802 int con_size_in_bytes,
duke@435 4803 Register t1,
duke@435 4804 Label& slow_case) {
duke@435 4805 assert(obj == rax, "obj must be in rax for cmpxchg");
duke@435 4806 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4807 Register end = t1;
duke@435 4808 Label retry;
duke@435 4809 bind(retry);
duke@435 4810 ExternalAddress heap_top((address) Universe::heap()->top_addr());
duke@435 4811 movptr(obj, heap_top);
duke@435 4812 if (var_size_in_bytes == noreg) {
duke@435 4813 leaq(end, Address(obj, con_size_in_bytes));
duke@435 4814 } else {
duke@435 4815 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4816 }
duke@435 4817 // if end < obj then we wrapped around => object too long => slow case
duke@435 4818 cmpq(end, obj);
duke@435 4819 jcc(Assembler::below, slow_case);
duke@435 4820 cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
duke@435 4821
duke@435 4822 jcc(Assembler::above, slow_case);
duke@435 4823 // Compare obj with the top addr, and if still equal, store the new
duke@435 4824 // top addr in end at the address of the top addr pointer. Sets ZF
duke@435 4825 // if was equal, and clears it otherwise. Use lock prefix for
duke@435 4826 // atomicity on MPs.
duke@435 4827 if (os::is_MP()) {
duke@435 4828 lock();
duke@435 4829 }
duke@435 4830 cmpxchgptr(end, heap_top);
duke@435 4831 // if someone beat us on the allocation, try again, otherwise continue
duke@435 4832 jcc(Assembler::notEqual, retry);
duke@435 4833 }
duke@435 4834
duke@435 4835 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
duke@435 4836 void MacroAssembler::tlab_allocate(Register obj,
duke@435 4837 Register var_size_in_bytes,
duke@435 4838 int con_size_in_bytes,
duke@435 4839 Register t1,
duke@435 4840 Register t2,
duke@435 4841 Label& slow_case) {
duke@435 4842 assert_different_registers(obj, t1, t2);
duke@435 4843 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4844 Register end = t2;
duke@435 4845
duke@435 4846 verify_tlab();
duke@435 4847
duke@435 4848 movq(obj, Address(r15_thread, JavaThread::tlab_top_offset()));
duke@435 4849 if (var_size_in_bytes == noreg) {
duke@435 4850 leaq(end, Address(obj, con_size_in_bytes));
duke@435 4851 } else {
duke@435 4852 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4853 }
duke@435 4854 cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset()));
duke@435 4855 jcc(Assembler::above, slow_case);
duke@435 4856
duke@435 4857 // update the tlab top pointer
duke@435 4858 movq(Address(r15_thread, JavaThread::tlab_top_offset()), end);
duke@435 4859
duke@435 4860 // recover var_size_in_bytes if necessary
duke@435 4861 if (var_size_in_bytes == end) {
duke@435 4862 subq(var_size_in_bytes, obj);
duke@435 4863 }
duke@435 4864 verify_tlab();
duke@435 4865 }
duke@435 4866
duke@435 4867 // Preserves rbx and rdx.
duke@435 4868 void MacroAssembler::tlab_refill(Label& retry,
duke@435 4869 Label& try_eden,
duke@435 4870 Label& slow_case) {
duke@435 4871 Register top = rax;
duke@435 4872 Register t1 = rcx;
duke@435 4873 Register t2 = rsi;
duke@435 4874 Register t3 = r10;
duke@435 4875 Register thread_reg = r15_thread;
duke@435 4876 assert_different_registers(top, thread_reg, t1, t2, t3,
duke@435 4877 /* preserve: */ rbx, rdx);
duke@435 4878 Label do_refill, discard_tlab;
duke@435 4879
duke@435 4880 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4881 // No allocation in the shared eden.
duke@435 4882 jmp(slow_case);
duke@435 4883 }
duke@435 4884
duke@435 4885 movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4886 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4887
duke@435 4888 // calculate amount of free space
duke@435 4889 subq(t1, top);
duke@435 4890 shrq(t1, LogHeapWordSize);
duke@435 4891
duke@435 4892 // Retain tlab and allocate object in shared space if
duke@435 4893 // the amount free in the tlab is too large to discard.
duke@435 4894 cmpq(t1, Address(thread_reg, // size_t
duke@435 4895 in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
duke@435 4896 jcc(Assembler::lessEqual, discard_tlab);
duke@435 4897
duke@435 4898 // Retain
duke@435 4899 mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
duke@435 4900 addq(Address(thread_reg, // size_t
duke@435 4901 in_bytes(JavaThread::tlab_refill_waste_limit_offset())),
duke@435 4902 t2);
duke@435 4903 if (TLABStats) {
duke@435 4904 // increment number of slow_allocations
duke@435 4905 addl(Address(thread_reg, // unsigned int
duke@435 4906 in_bytes(JavaThread::tlab_slow_allocations_offset())),
duke@435 4907 1);
duke@435 4908 }
duke@435 4909 jmp(try_eden);
duke@435 4910
duke@435 4911 bind(discard_tlab);
duke@435 4912 if (TLABStats) {
duke@435 4913 // increment number of refills
duke@435 4914 addl(Address(thread_reg, // unsigned int
duke@435 4915 in_bytes(JavaThread::tlab_number_of_refills_offset())),
duke@435 4916 1);
duke@435 4917 // accumulate wastage -- t1 is amount free in tlab
duke@435 4918 addl(Address(thread_reg, // unsigned int
duke@435 4919 in_bytes(JavaThread::tlab_fast_refill_waste_offset())),
duke@435 4920 t1);
duke@435 4921 }
duke@435 4922
duke@435 4923 // if tlab is currently allocated (top or end != null) then
duke@435 4924 // fill [top, end + alignment_reserve) with array object
duke@435 4925 testq(top, top);
duke@435 4926 jcc(Assembler::zero, do_refill);
duke@435 4927
duke@435 4928 // set up the mark word
duke@435 4929 mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2));
duke@435 4930 movq(Address(top, oopDesc::mark_offset_in_bytes()), t3);
duke@435 4931 // set the length to the remaining space
duke@435 4932 subq(t1, typeArrayOopDesc::header_size(T_INT));
duke@435 4933 addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve());
duke@435 4934 shlq(t1, log2_intptr(HeapWordSize / sizeof(jint)));
duke@435 4935 movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
duke@435 4936 // set klass to intArrayKlass
duke@435 4937 movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
coleenp@602 4938 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 4939 // klass field is not null.
coleenp@548 4940 store_klass(top, t1);
duke@435 4941
duke@435 4942 // refill the tlab with an eden allocation
duke@435 4943 bind(do_refill);
duke@435 4944 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4945 shlq(t1, LogHeapWordSize);
duke@435 4946 // add object_size ??
duke@435 4947 eden_allocate(top, t1, 0, t2, slow_case);
duke@435 4948
duke@435 4949 // Check that t1 was preserved in eden_allocate.
duke@435 4950 #ifdef ASSERT
duke@435 4951 if (UseTLAB) {
duke@435 4952 Label ok;
duke@435 4953 Register tsize = rsi;
duke@435 4954 assert_different_registers(tsize, thread_reg, t1);
duke@435 4955 pushq(tsize);
duke@435 4956 movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4957 shlq(tsize, LogHeapWordSize);
duke@435 4958 cmpq(t1, tsize);
duke@435 4959 jcc(Assembler::equal, ok);
duke@435 4960 stop("assert(t1 != tlab size)");
duke@435 4961 should_not_reach_here();
duke@435 4962
duke@435 4963 bind(ok);
duke@435 4964 popq(tsize);
duke@435 4965 }
duke@435 4966 #endif
duke@435 4967 movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
duke@435 4968 movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
duke@435 4969 addq(top, t1);
duke@435 4970 subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
duke@435 4971 movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
duke@435 4972 verify_tlab();
duke@435 4973 jmp(retry);
duke@435 4974 }
duke@435 4975
duke@435 4976
duke@435 4977 int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
duke@435 4978 bool swap_reg_contains_mark,
duke@435 4979 Label& done, Label* slow_case,
duke@435 4980 BiasedLockingCounters* counters) {
duke@435 4981 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 4982 assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
duke@435 4983 assert(tmp_reg != noreg, "tmp_reg must be supplied");
duke@435 4984 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
duke@435 4985 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 4986 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 4987 Address saved_mark_addr(lock_reg, 0);
duke@435 4988
duke@435 4989 if (PrintBiasedLockingStatistics && counters == NULL)
duke@435 4990 counters = BiasedLocking::counters();
duke@435 4991
duke@435 4992 // Biased locking
duke@435 4993 // See whether the lock is currently biased toward our thread and
duke@435 4994 // whether the epoch is still valid
duke@435 4995 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 4996 // pointers to allow age to be placed into low bits
duke@435 4997 // First check to see whether biasing is even enabled for this object
duke@435 4998 Label cas_label;
duke@435 4999 int null_check_offset = -1;
duke@435 5000 if (!swap_reg_contains_mark) {
duke@435 5001 null_check_offset = offset();
duke@435 5002 movq(swap_reg, mark_addr);
duke@435 5003 }
duke@435 5004 movq(tmp_reg, swap_reg);
duke@435 5005 andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 5006 cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
duke@435 5007 jcc(Assembler::notEqual, cas_label);
duke@435 5008 // The bias pattern is present in the object's header. Need to check
duke@435 5009 // whether the bias owner and the epoch are both still current.
coleenp@548 5010 load_klass(tmp_reg, obj_reg);
duke@435 5011 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 5012 orq(tmp_reg, r15_thread);
duke@435 5013 xorq(tmp_reg, swap_reg);
duke@435 5014 andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
duke@435 5015 if (counters != NULL) {
duke@435 5016 cond_inc32(Assembler::zero,
duke@435 5017 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
duke@435 5018 }
duke@435 5019 jcc(Assembler::equal, done);
duke@435 5020
duke@435 5021 Label try_revoke_bias;
duke@435 5022 Label try_rebias;
duke@435 5023
duke@435 5024 // At this point we know that the header has the bias pattern and
duke@435 5025 // that we are not the bias owner in the current epoch. We need to
duke@435 5026 // figure out more details about the state of the header in order to
duke@435 5027 // know what operations can be legally performed on the object's
duke@435 5028 // header.
duke@435 5029
duke@435 5030 // If the low three bits in the xor result aren't clear, that means
duke@435 5031 // the prototype header is no longer biased and we have to revoke
duke@435 5032 // the bias on this object.
duke@435 5033 testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 5034 jcc(Assembler::notZero, try_revoke_bias);
duke@435 5035
duke@435 5036 // Biasing is still enabled for this data type. See whether the
duke@435 5037 // epoch of the current bias is still valid, meaning that the epoch
duke@435 5038 // bits of the mark word are equal to the epoch bits of the
duke@435 5039 // prototype header. (Note that the prototype header's epoch bits
duke@435 5040 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 5041 // toward the current thread. Note that we must be absolutely sure
duke@435 5042 // that the current epoch is invalid in order to do this because
duke@435 5043 // otherwise the manipulations it performs on the mark word are
duke@435 5044 // illegal.
duke@435 5045 testq(tmp_reg, markOopDesc::epoch_mask_in_place);
duke@435 5046 jcc(Assembler::notZero, try_rebias);
duke@435 5047
duke@435 5048 // The epoch of the current bias is still valid but we know nothing
duke@435 5049 // about the owner; it might be set or it might be clear. Try to
duke@435 5050 // acquire the bias of the object using an atomic operation. If this
duke@435 5051 // fails we will go in to the runtime to revoke the object's bias.
duke@435 5052 // Note that we first construct the presumed unbiased header so we
duke@435 5053 // don't accidentally blow away another thread's valid bias.
duke@435 5054 andq(swap_reg,
duke@435 5055 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
duke@435 5056 movq(tmp_reg, swap_reg);
duke@435 5057 orq(tmp_reg, r15_thread);
duke@435 5058 if (os::is_MP()) {
duke@435 5059 lock();
duke@435 5060 }
duke@435 5061 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5062 // If the biasing toward our thread failed, this means that
duke@435 5063 // another thread succeeded in biasing it toward itself and we
duke@435 5064 // need to revoke that bias. The revocation will occur in the
duke@435 5065 // interpreter runtime in the slow case.
duke@435 5066 if (counters != NULL) {
duke@435 5067 cond_inc32(Assembler::zero,
duke@435 5068 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
duke@435 5069 }
duke@435 5070 if (slow_case != NULL) {
duke@435 5071 jcc(Assembler::notZero, *slow_case);
duke@435 5072 }
duke@435 5073 jmp(done);
duke@435 5074
duke@435 5075 bind(try_rebias);
duke@435 5076 // At this point we know the epoch has expired, meaning that the
duke@435 5077 // current "bias owner", if any, is actually invalid. Under these
duke@435 5078 // circumstances _only_, we are allowed to use the current header's
duke@435 5079 // value as the comparison value when doing the cas to acquire the
duke@435 5080 // bias in the current epoch. In other words, we allow transfer of
duke@435 5081 // the bias from one thread to another directly in this situation.
duke@435 5082 //
duke@435 5083 // FIXME: due to a lack of registers we currently blow away the age
duke@435 5084 // bits in this situation. Should attempt to preserve them.
coleenp@548 5085 load_klass(tmp_reg, obj_reg);
duke@435 5086 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 5087 orq(tmp_reg, r15_thread);
duke@435 5088 if (os::is_MP()) {
duke@435 5089 lock();
duke@435 5090 }
duke@435 5091 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5092 // If the biasing toward our thread failed, then another thread
duke@435 5093 // succeeded in biasing it toward itself and we need to revoke that
duke@435 5094 // bias. The revocation will occur in the runtime in the slow case.
duke@435 5095 if (counters != NULL) {
duke@435 5096 cond_inc32(Assembler::zero,
duke@435 5097 ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
duke@435 5098 }
duke@435 5099 if (slow_case != NULL) {
duke@435 5100 jcc(Assembler::notZero, *slow_case);
duke@435 5101 }
duke@435 5102 jmp(done);
duke@435 5103
duke@435 5104 bind(try_revoke_bias);
duke@435 5105 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 5106 // more, indicating that objects of this data type are not supposed
duke@435 5107 // to be biased any more. We are going to try to reset the mark of
duke@435 5108 // this object to the prototype value and fall through to the
duke@435 5109 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 5110 // that another thread raced us for the privilege of revoking the
duke@435 5111 // bias of this particular object, so it's okay to continue in the
duke@435 5112 // normal locking code.
duke@435 5113 //
duke@435 5114 // FIXME: due to a lack of registers we currently blow away the age
duke@435 5115 // bits in this situation. Should attempt to preserve them.
coleenp@548 5116 load_klass(tmp_reg, obj_reg);
duke@435 5117 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 5118 if (os::is_MP()) {
duke@435 5119 lock();
duke@435 5120 }
duke@435 5121 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5122 // Fall through to the normal CAS-based lock, because no matter what
duke@435 5123 // the result of the above CAS, some thread must have succeeded in
duke@435 5124 // removing the bias bit from the object's header.
duke@435 5125 if (counters != NULL) {
duke@435 5126 cond_inc32(Assembler::zero,
duke@435 5127 ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
duke@435 5128 }
duke@435 5129
duke@435 5130 bind(cas_label);
duke@435 5131
duke@435 5132 return null_check_offset;
duke@435 5133 }
duke@435 5134
duke@435 5135
duke@435 5136 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
duke@435 5137 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 5138
duke@435 5139 // Check for biased locking unlock case, which is a no-op
duke@435 5140 // Note: we do not have to check the thread ID for two reasons.
duke@435 5141 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 5142 // a higher level. Second, if the bias was revoked while we held the
duke@435 5143 // lock, the object could not be rebiased toward another thread, so
duke@435 5144 // the bias bit would be clear.
duke@435 5145 movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
duke@435 5146 andq(temp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 5147 cmpq(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 5148 jcc(Assembler::equal, done);
duke@435 5149 }
duke@435 5150
duke@435 5151
coleenp@548 5152 void MacroAssembler::load_klass(Register dst, Register src) {
coleenp@548 5153 if (UseCompressedOops) {
coleenp@548 5154 movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
coleenp@548 5155 decode_heap_oop_not_null(dst);
coleenp@548 5156 } else {
coleenp@548 5157 movq(dst, Address(src, oopDesc::klass_offset_in_bytes()));
coleenp@548 5158 }
coleenp@548 5159 }
coleenp@548 5160
coleenp@548 5161 void MacroAssembler::store_klass(Register dst, Register src) {
coleenp@548 5162 if (UseCompressedOops) {
coleenp@548 5163 encode_heap_oop_not_null(src);
coleenp@602 5164 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
coleenp@602 5165 } else {
coleenp@602 5166 movq(Address(dst, oopDesc::klass_offset_in_bytes()), src);
coleenp@548 5167 }
coleenp@602 5168 }
coleenp@602 5169
coleenp@602 5170 void MacroAssembler::store_klass_gap(Register dst, Register src) {
coleenp@602 5171 if (UseCompressedOops) {
coleenp@602 5172 // Store to klass gap in destination
coleenp@602 5173 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
coleenp@602 5174 }
coleenp@548 5175 }
coleenp@548 5176
coleenp@548 5177 void MacroAssembler::load_heap_oop(Register dst, Address src) {
coleenp@548 5178 if (UseCompressedOops) {
coleenp@548 5179 movl(dst, src);
coleenp@548 5180 decode_heap_oop(dst);
coleenp@548 5181 } else {
coleenp@548 5182 movq(dst, src);
coleenp@548 5183 }
coleenp@548 5184 }
coleenp@548 5185
coleenp@548 5186 void MacroAssembler::store_heap_oop(Address dst, Register src) {
coleenp@548 5187 if (UseCompressedOops) {
coleenp@548 5188 assert(!dst.uses(src), "not enough registers");
coleenp@548 5189 encode_heap_oop(src);
coleenp@548 5190 movl(dst, src);
coleenp@548 5191 } else {
coleenp@548 5192 movq(dst, src);
coleenp@548 5193 }
coleenp@548 5194 }
coleenp@548 5195
coleenp@548 5196 // Algorithm must match oop.inline.hpp encode_heap_oop.
coleenp@548 5197 void MacroAssembler::encode_heap_oop(Register r) {
coleenp@548 5198 assert (UseCompressedOops, "should be compressed");
coleenp@548 5199 #ifdef ASSERT
kvn@599 5200 if (CheckCompressedOops) {
kvn@599 5201 Label ok;
kvn@599 5202 pushq(rscratch1); // cmpptr trashes rscratch1
kvn@599 5203 cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
kvn@599 5204 jcc(Assembler::equal, ok);
kvn@599 5205 stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
kvn@599 5206 bind(ok);
kvn@599 5207 popq(rscratch1);
kvn@599 5208 }
coleenp@548 5209 #endif
kvn@559 5210 verify_oop(r, "broken oop in encode_heap_oop");
coleenp@548 5211 testq(r, r);
coleenp@548 5212 cmovq(Assembler::equal, r, r12_heapbase);
coleenp@548 5213 subq(r, r12_heapbase);
coleenp@548 5214 shrq(r, LogMinObjAlignmentInBytes);
coleenp@548 5215 }
coleenp@548 5216
coleenp@548 5217 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 5218 assert (UseCompressedOops, "should be compressed");
coleenp@548 5219 #ifdef ASSERT
kvn@599 5220 if (CheckCompressedOops) {
kvn@599 5221 Label ok;
kvn@599 5222 testq(r, r);
kvn@599 5223 jcc(Assembler::notEqual, ok);
kvn@599 5224 stop("null oop passed to encode_heap_oop_not_null");
kvn@599 5225 bind(ok);
kvn@599 5226 }
coleenp@548 5227 #endif
kvn@559 5228 verify_oop(r, "broken oop in encode_heap_oop_not_null");
coleenp@548 5229 subq(r, r12_heapbase);
coleenp@548 5230 shrq(r, LogMinObjAlignmentInBytes);
coleenp@548 5231 }
coleenp@548 5232
kvn@559 5233 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
kvn@559 5234 assert (UseCompressedOops, "should be compressed");
kvn@559 5235 #ifdef ASSERT
kvn@599 5236 if (CheckCompressedOops) {
kvn@599 5237 Label ok;
kvn@599 5238 testq(src, src);
kvn@599 5239 jcc(Assembler::notEqual, ok);
kvn@599 5240 stop("null oop passed to encode_heap_oop_not_null2");
kvn@599 5241 bind(ok);
kvn@599 5242 }
kvn@559 5243 #endif
kvn@559 5244 verify_oop(src, "broken oop in encode_heap_oop_not_null2");
kvn@559 5245 if (dst != src) {
kvn@559 5246 movq(dst, src);
kvn@559 5247 }
kvn@559 5248 subq(dst, r12_heapbase);
kvn@559 5249 shrq(dst, LogMinObjAlignmentInBytes);
kvn@559 5250 }
kvn@559 5251
coleenp@548 5252 void MacroAssembler::decode_heap_oop(Register r) {
coleenp@548 5253 assert (UseCompressedOops, "should be compressed");
coleenp@548 5254 #ifdef ASSERT
kvn@599 5255 if (CheckCompressedOops) {
kvn@599 5256 Label ok;
kvn@599 5257 pushq(rscratch1);
kvn@599 5258 cmpptr(r12_heapbase,
kvn@599 5259 ExternalAddress((address)Universe::heap_base_addr()));
kvn@599 5260 jcc(Assembler::equal, ok);
kvn@599 5261 stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
kvn@599 5262 bind(ok);
kvn@599 5263 popq(rscratch1);
kvn@599 5264 }
coleenp@548 5265 #endif
coleenp@548 5266
coleenp@548 5267 Label done;
coleenp@548 5268 shlq(r, LogMinObjAlignmentInBytes);
coleenp@548 5269 jccb(Assembler::equal, done);
coleenp@548 5270 addq(r, r12_heapbase);
coleenp@548 5271 #if 0
coleenp@548 5272 // alternate decoding probably a wash.
coleenp@548 5273 testq(r, r);
coleenp@548 5274 jccb(Assembler::equal, done);
coleenp@548 5275 leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
coleenp@548 5276 #endif
coleenp@548 5277 bind(done);
kvn@559 5278 verify_oop(r, "broken oop in decode_heap_oop");
coleenp@548 5279 }
coleenp@548 5280
coleenp@548 5281 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 5282 assert (UseCompressedOops, "should only be used for compressed headers");
coleenp@548 5283 // Cannot assert, unverified entry point counts instructions (see .ad file)
coleenp@548 5284 // vtableStubs also counts instructions in pd_code_size_limit.
coleenp@548 5285 assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
coleenp@548 5286 leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
coleenp@548 5287 }
coleenp@548 5288
kvn@559 5289 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
kvn@559 5290 assert (UseCompressedOops, "should only be used for compressed headers");
kvn@559 5291 // Cannot assert, unverified entry point counts instructions (see .ad file)
kvn@559 5292 // vtableStubs also counts instructions in pd_code_size_limit.
kvn@559 5293 assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
kvn@559 5294 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
kvn@559 5295 }
kvn@559 5296
kvn@599 5297 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
kvn@599 5298 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 5299 int oop_index = oop_recorder()->find_index(obj);
kvn@599 5300 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 5301
kvn@599 5302 // movl dst,obj
kvn@599 5303 InstructionMark im(this);
kvn@599 5304 int encode = prefix_and_encode(dst->encoding());
kvn@599 5305 emit_byte(0xB8 | encode);
kvn@599 5306 emit_data(oop_index, rspec, narrow_oop_operand);
kvn@599 5307 }
kvn@599 5308
kvn@599 5309
duke@435 5310 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 5311 switch (cond) {
duke@435 5312 // Note some conditions are synonyms for others
duke@435 5313 case Assembler::zero: return Assembler::notZero;
duke@435 5314 case Assembler::notZero: return Assembler::zero;
duke@435 5315 case Assembler::less: return Assembler::greaterEqual;
duke@435 5316 case Assembler::lessEqual: return Assembler::greater;
duke@435 5317 case Assembler::greater: return Assembler::lessEqual;
duke@435 5318 case Assembler::greaterEqual: return Assembler::less;
duke@435 5319 case Assembler::below: return Assembler::aboveEqual;
duke@435 5320 case Assembler::belowEqual: return Assembler::above;
duke@435 5321 case Assembler::above: return Assembler::belowEqual;
duke@435 5322 case Assembler::aboveEqual: return Assembler::below;
duke@435 5323 case Assembler::overflow: return Assembler::noOverflow;
duke@435 5324 case Assembler::noOverflow: return Assembler::overflow;
duke@435 5325 case Assembler::negative: return Assembler::positive;
duke@435 5326 case Assembler::positive: return Assembler::negative;
duke@435 5327 case Assembler::parity: return Assembler::noParity;
duke@435 5328 case Assembler::noParity: return Assembler::parity;
duke@435 5329 }
duke@435 5330 ShouldNotReachHere(); return Assembler::overflow;
duke@435 5331 }
duke@435 5332
duke@435 5333
duke@435 5334 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
duke@435 5335 Condition negated_cond = negate_condition(cond);
duke@435 5336 Label L;
duke@435 5337 jcc(negated_cond, L);
duke@435 5338 atomic_incl(counter_addr);
duke@435 5339 bind(L);
duke@435 5340 }
duke@435 5341
duke@435 5342 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
duke@435 5343 pushfq();
duke@435 5344 if (os::is_MP())
duke@435 5345 lock();
duke@435 5346 incrementl(counter_addr);
duke@435 5347 popfq();
duke@435 5348 }
duke@435 5349
duke@435 5350 SkipIfEqual::SkipIfEqual(
duke@435 5351 MacroAssembler* masm, const bool* flag_addr, bool value) {
duke@435 5352 _masm = masm;
duke@435 5353 _masm->cmp8(ExternalAddress((address)flag_addr), value);
duke@435 5354 _masm->jcc(Assembler::equal, _label);
duke@435 5355 }
duke@435 5356
duke@435 5357 SkipIfEqual::~SkipIfEqual() {
duke@435 5358 _masm->bind(_label);
duke@435 5359 }
duke@435 5360
duke@435 5361 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
duke@435 5362 movq(tmp, rsp);
duke@435 5363 // Bang stack for total size given plus shadow page size.
duke@435 5364 // Bang one page at a time because large size can bang beyond yellow and
duke@435 5365 // red zones.
duke@435 5366 Label loop;
duke@435 5367 bind(loop);
duke@435 5368 movl(Address(tmp, (-os::vm_page_size())), size );
duke@435 5369 subq(tmp, os::vm_page_size());
duke@435 5370 subl(size, os::vm_page_size());
duke@435 5371 jcc(Assembler::greater, loop);
duke@435 5372
duke@435 5373 // Bang down shadow pages too.
duke@435 5374 // The -1 because we already subtracted 1 page.
duke@435 5375 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 5376 movq(Address(tmp, (-i*os::vm_page_size())), size );
duke@435 5377 }
duke@435 5378 }
coleenp@548 5379
coleenp@548 5380 void MacroAssembler::reinit_heapbase() {
coleenp@548 5381 if (UseCompressedOops) {
coleenp@548 5382 movptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
coleenp@548 5383 }
coleenp@548 5384 }

mercurial