src/cpu/x86/vm/assembler_x86_64.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 485
485d403e94e1
child 506
3d62cb85208d
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_assembler_x86_64.cpp.incl"
duke@435 27
duke@435 28 // Implementation of AddressLiteral
duke@435 29
duke@435 30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
duke@435 31 _is_lval = false;
duke@435 32 _target = target;
duke@435 33 switch (rtype) {
duke@435 34 case relocInfo::oop_type:
duke@435 35 // Oops are a special case. Normally they would be their own section
duke@435 36 // but in cases like icBuffer they are literals in the code stream that
duke@435 37 // we don't have a section for. We use none so that we get a literal address
duke@435 38 // which is always patchable.
duke@435 39 break;
duke@435 40 case relocInfo::external_word_type:
duke@435 41 _rspec = external_word_Relocation::spec(target);
duke@435 42 break;
duke@435 43 case relocInfo::internal_word_type:
duke@435 44 _rspec = internal_word_Relocation::spec(target);
duke@435 45 break;
duke@435 46 case relocInfo::opt_virtual_call_type:
duke@435 47 _rspec = opt_virtual_call_Relocation::spec();
duke@435 48 break;
duke@435 49 case relocInfo::static_call_type:
duke@435 50 _rspec = static_call_Relocation::spec();
duke@435 51 break;
duke@435 52 case relocInfo::runtime_call_type:
duke@435 53 _rspec = runtime_call_Relocation::spec();
duke@435 54 break;
duke@435 55 case relocInfo::none:
duke@435 56 break;
duke@435 57 default:
duke@435 58 ShouldNotReachHere();
duke@435 59 break;
duke@435 60 }
duke@435 61 }
duke@435 62
duke@435 63 // Implementation of Address
duke@435 64
duke@435 65 Address Address::make_array(ArrayAddress adr) {
duke@435 66 #ifdef _LP64
duke@435 67 // Not implementable on 64bit machines
duke@435 68 // Should have been handled higher up the call chain.
duke@435 69 ShouldNotReachHere();
duke@435 70 return Address();
duke@435 71 #else
duke@435 72 AddressLiteral base = adr.base();
duke@435 73 Address index = adr.index();
duke@435 74 assert(index._disp == 0, "must not have disp"); // maybe it can?
duke@435 75 Address array(index._base, index._index, index._scale, (intptr_t) base.target());
duke@435 76 array._rspec = base._rspec;
duke@435 77 return array;
duke@435 78 #endif // _LP64
duke@435 79 }
duke@435 80
duke@435 81 // exceedingly dangerous constructor
duke@435 82 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
duke@435 83 _base = noreg;
duke@435 84 _index = noreg;
duke@435 85 _scale = no_scale;
duke@435 86 _disp = disp;
duke@435 87 switch (rtype) {
duke@435 88 case relocInfo::external_word_type:
duke@435 89 _rspec = external_word_Relocation::spec(loc);
duke@435 90 break;
duke@435 91 case relocInfo::internal_word_type:
duke@435 92 _rspec = internal_word_Relocation::spec(loc);
duke@435 93 break;
duke@435 94 case relocInfo::runtime_call_type:
duke@435 95 // HMM
duke@435 96 _rspec = runtime_call_Relocation::spec();
duke@435 97 break;
duke@435 98 case relocInfo::none:
duke@435 99 break;
duke@435 100 default:
duke@435 101 ShouldNotReachHere();
duke@435 102 }
duke@435 103 }
duke@435 104
duke@435 105 // Convert the raw encoding form into the form expected by the constructor for
duke@435 106 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 107 // that to noreg for the Address constructor.
duke@435 108 Address Address::make_raw(int base, int index, int scale, int disp) {
duke@435 109 bool valid_index = index != rsp->encoding();
duke@435 110 if (valid_index) {
duke@435 111 Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
duke@435 112 return madr;
duke@435 113 } else {
duke@435 114 Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
duke@435 115 return madr;
duke@435 116 }
duke@435 117 }
duke@435 118
duke@435 119
duke@435 120 // Implementation of Assembler
duke@435 121 int AbstractAssembler::code_fill_byte() {
duke@435 122 return (u_char)'\xF4'; // hlt
duke@435 123 }
duke@435 124
duke@435 125 // This should only be used by 64bit instructions that can use rip-relative
duke@435 126 // it cannot be used by instructions that want an immediate value.
duke@435 127
duke@435 128 bool Assembler::reachable(AddressLiteral adr) {
duke@435 129 int64_t disp;
duke@435 130 // None will force a 64bit literal to the code stream. Likely a placeholder
duke@435 131 // for something that will be patched later and we need to certain it will
duke@435 132 // always be reachable.
duke@435 133 if (adr.reloc() == relocInfo::none) {
duke@435 134 return false;
duke@435 135 }
duke@435 136 if (adr.reloc() == relocInfo::internal_word_type) {
duke@435 137 // This should be rip relative and easily reachable.
duke@435 138 return true;
duke@435 139 }
duke@435 140 if (adr.reloc() != relocInfo::external_word_type &&
duke@435 141 adr.reloc() != relocInfo::runtime_call_type ) {
duke@435 142 return false;
duke@435 143 }
duke@435 144
duke@435 145 // Stress the correction code
duke@435 146 if (ForceUnreachable) {
duke@435 147 // Must be runtimecall reloc, see if it is in the codecache
duke@435 148 // Flipping stuff in the codecache to be unreachable causes issues
duke@435 149 // with things like inline caches where the additional instructions
duke@435 150 // are not handled.
duke@435 151 if (CodeCache::find_blob(adr._target) == NULL) {
duke@435 152 return false;
duke@435 153 }
duke@435 154 }
duke@435 155 // For external_word_type/runtime_call_type if it is reachable from where we
duke@435 156 // are now (possibly a temp buffer) and where we might end up
duke@435 157 // anywhere in the codeCache then we are always reachable.
duke@435 158 // This would have to change if we ever save/restore shared code
duke@435 159 // to be more pessimistic.
duke@435 160
duke@435 161 disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
duke@435 162 if (!is_simm32(disp)) return false;
duke@435 163 disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
duke@435 164 if (!is_simm32(disp)) return false;
duke@435 165
duke@435 166 disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
duke@435 167
duke@435 168 // Because rip relative is a disp + address_of_next_instruction and we
duke@435 169 // don't know the value of address_of_next_instruction we apply a fudge factor
duke@435 170 // to make sure we will be ok no matter the size of the instruction we get placed into.
duke@435 171 // We don't have to fudge the checks above here because they are already worst case.
duke@435 172
duke@435 173 // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
duke@435 174 // + 4 because better safe than sorry.
duke@435 175 const int fudge = 12 + 4;
duke@435 176 if (disp < 0) {
duke@435 177 disp -= fudge;
duke@435 178 } else {
duke@435 179 disp += fudge;
duke@435 180 }
duke@435 181 return is_simm32(disp);
duke@435 182 }
duke@435 183
duke@435 184
duke@435 185 // make this go away eventually
duke@435 186 void Assembler::emit_data(jint data,
duke@435 187 relocInfo::relocType rtype,
duke@435 188 int format) {
duke@435 189 if (rtype == relocInfo::none) {
duke@435 190 emit_long(data);
duke@435 191 } else {
duke@435 192 emit_data(data, Relocation::spec_simple(rtype), format);
duke@435 193 }
duke@435 194 }
duke@435 195
duke@435 196 void Assembler::emit_data(jint data,
duke@435 197 RelocationHolder const& rspec,
duke@435 198 int format) {
duke@435 199 assert(imm64_operand == 0, "default format must be imm64 in this file");
duke@435 200 assert(imm64_operand != format, "must not be imm64");
duke@435 201 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 202 if (rspec.type() != relocInfo::none) {
duke@435 203 #ifdef ASSERT
duke@435 204 check_relocation(rspec, format);
duke@435 205 #endif
duke@435 206 // Do not use AbstractAssembler::relocate, which is not intended for
duke@435 207 // embedded words. Instead, relocate to the enclosing instruction.
duke@435 208
duke@435 209 // hack. call32 is too wide for mask so use disp32
duke@435 210 if (format == call32_operand)
duke@435 211 code_section()->relocate(inst_mark(), rspec, disp32_operand);
duke@435 212 else
duke@435 213 code_section()->relocate(inst_mark(), rspec, format);
duke@435 214 }
duke@435 215 emit_long(data);
duke@435 216 }
duke@435 217
duke@435 218 void Assembler::emit_data64(jlong data,
duke@435 219 relocInfo::relocType rtype,
duke@435 220 int format) {
duke@435 221 if (rtype == relocInfo::none) {
duke@435 222 emit_long64(data);
duke@435 223 } else {
duke@435 224 emit_data64(data, Relocation::spec_simple(rtype), format);
duke@435 225 }
duke@435 226 }
duke@435 227
duke@435 228 void Assembler::emit_data64(jlong data,
duke@435 229 RelocationHolder const& rspec,
duke@435 230 int format) {
duke@435 231 assert(imm64_operand == 0, "default format must be imm64 in this file");
duke@435 232 assert(imm64_operand == format, "must be imm64");
duke@435 233 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 234 // Do not use AbstractAssembler::relocate, which is not intended for
duke@435 235 // embedded words. Instead, relocate to the enclosing instruction.
duke@435 236 code_section()->relocate(inst_mark(), rspec, format);
duke@435 237 #ifdef ASSERT
duke@435 238 check_relocation(rspec, format);
duke@435 239 #endif
duke@435 240 emit_long64(data);
duke@435 241 }
duke@435 242
duke@435 243 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
duke@435 244 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 245 assert(isByte(imm8), "not a byte");
duke@435 246 assert((op1 & 0x01) == 0, "should be 8bit operation");
duke@435 247 int dstenc = dst->encoding();
duke@435 248 if (dstenc >= 8) {
duke@435 249 dstenc -= 8;
duke@435 250 }
duke@435 251 emit_byte(op1);
duke@435 252 emit_byte(op2 | dstenc);
duke@435 253 emit_byte(imm8);
duke@435 254 }
duke@435 255
duke@435 256 void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
duke@435 257 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 258 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 259 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 260 int dstenc = dst->encoding();
duke@435 261 if (dstenc >= 8) {
duke@435 262 dstenc -= 8;
duke@435 263 }
duke@435 264 if (is8bit(imm32)) {
duke@435 265 emit_byte(op1 | 0x02); // set sign bit
duke@435 266 emit_byte(op2 | dstenc);
duke@435 267 emit_byte(imm32 & 0xFF);
duke@435 268 } else {
duke@435 269 emit_byte(op1);
duke@435 270 emit_byte(op2 | dstenc);
duke@435 271 emit_long(imm32);
duke@435 272 }
duke@435 273 }
duke@435 274
duke@435 275 // immediate-to-memory forms
duke@435 276 void Assembler::emit_arith_operand(int op1,
duke@435 277 Register rm, Address adr,
duke@435 278 int imm32) {
duke@435 279 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 280 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 281 if (is8bit(imm32)) {
duke@435 282 emit_byte(op1 | 0x02); // set sign bit
duke@435 283 emit_operand(rm, adr, 1);
duke@435 284 emit_byte(imm32 & 0xFF);
duke@435 285 } else {
duke@435 286 emit_byte(op1);
duke@435 287 emit_operand(rm, adr, 4);
duke@435 288 emit_long(imm32);
duke@435 289 }
duke@435 290 }
duke@435 291
duke@435 292
duke@435 293 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
duke@435 294 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 295 int dstenc = dst->encoding();
duke@435 296 int srcenc = src->encoding();
duke@435 297 if (dstenc >= 8) {
duke@435 298 dstenc -= 8;
duke@435 299 }
duke@435 300 if (srcenc >= 8) {
duke@435 301 srcenc -= 8;
duke@435 302 }
duke@435 303 emit_byte(op1);
duke@435 304 emit_byte(op2 | dstenc << 3 | srcenc);
duke@435 305 }
duke@435 306
duke@435 307 void Assembler::emit_operand(Register reg, Register base, Register index,
duke@435 308 Address::ScaleFactor scale, int disp,
duke@435 309 RelocationHolder const& rspec,
duke@435 310 int rip_relative_correction) {
duke@435 311 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
duke@435 312 int regenc = reg->encoding();
duke@435 313 if (regenc >= 8) {
duke@435 314 regenc -= 8;
duke@435 315 }
duke@435 316 if (base->is_valid()) {
duke@435 317 if (index->is_valid()) {
duke@435 318 assert(scale != Address::no_scale, "inconsistent address");
duke@435 319 int indexenc = index->encoding();
duke@435 320 if (indexenc >= 8) {
duke@435 321 indexenc -= 8;
duke@435 322 }
duke@435 323 int baseenc = base->encoding();
duke@435 324 if (baseenc >= 8) {
duke@435 325 baseenc -= 8;
duke@435 326 }
duke@435 327 // [base + index*scale + disp]
duke@435 328 if (disp == 0 && rtype == relocInfo::none &&
duke@435 329 base != rbp && base != r13) {
duke@435 330 // [base + index*scale]
duke@435 331 // [00 reg 100][ss index base]
duke@435 332 assert(index != rsp, "illegal addressing mode");
duke@435 333 emit_byte(0x04 | regenc << 3);
duke@435 334 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 335 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 336 // [base + index*scale + imm8]
duke@435 337 // [01 reg 100][ss index base] imm8
duke@435 338 assert(index != rsp, "illegal addressing mode");
duke@435 339 emit_byte(0x44 | regenc << 3);
duke@435 340 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 341 emit_byte(disp & 0xFF);
duke@435 342 } else {
duke@435 343 // [base + index*scale + disp32]
duke@435 344 // [10 reg 100][ss index base] disp32
duke@435 345 assert(index != rsp, "illegal addressing mode");
duke@435 346 emit_byte(0x84 | regenc << 3);
duke@435 347 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 348 emit_data(disp, rspec, disp32_operand);
duke@435 349 }
duke@435 350 } else if (base == rsp || base == r12) {
duke@435 351 // [rsp + disp]
duke@435 352 if (disp == 0 && rtype == relocInfo::none) {
duke@435 353 // [rsp]
duke@435 354 // [00 reg 100][00 100 100]
duke@435 355 emit_byte(0x04 | regenc << 3);
duke@435 356 emit_byte(0x24);
duke@435 357 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 358 // [rsp + imm8]
duke@435 359 // [01 reg 100][00 100 100] disp8
duke@435 360 emit_byte(0x44 | regenc << 3);
duke@435 361 emit_byte(0x24);
duke@435 362 emit_byte(disp & 0xFF);
duke@435 363 } else {
duke@435 364 // [rsp + imm32]
duke@435 365 // [10 reg 100][00 100 100] disp32
duke@435 366 emit_byte(0x84 | regenc << 3);
duke@435 367 emit_byte(0x24);
duke@435 368 emit_data(disp, rspec, disp32_operand);
duke@435 369 }
duke@435 370 } else {
duke@435 371 // [base + disp]
duke@435 372 assert(base != rsp && base != r12, "illegal addressing mode");
duke@435 373 int baseenc = base->encoding();
duke@435 374 if (baseenc >= 8) {
duke@435 375 baseenc -= 8;
duke@435 376 }
duke@435 377 if (disp == 0 && rtype == relocInfo::none &&
duke@435 378 base != rbp && base != r13) {
duke@435 379 // [base]
duke@435 380 // [00 reg base]
duke@435 381 emit_byte(0x00 | regenc << 3 | baseenc);
duke@435 382 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 383 // [base + disp8]
duke@435 384 // [01 reg base] disp8
duke@435 385 emit_byte(0x40 | regenc << 3 | baseenc);
duke@435 386 emit_byte(disp & 0xFF);
duke@435 387 } else {
duke@435 388 // [base + disp32]
duke@435 389 // [10 reg base] disp32
duke@435 390 emit_byte(0x80 | regenc << 3 | baseenc);
duke@435 391 emit_data(disp, rspec, disp32_operand);
duke@435 392 }
duke@435 393 }
duke@435 394 } else {
duke@435 395 if (index->is_valid()) {
duke@435 396 assert(scale != Address::no_scale, "inconsistent address");
duke@435 397 int indexenc = index->encoding();
duke@435 398 if (indexenc >= 8) {
duke@435 399 indexenc -= 8;
duke@435 400 }
duke@435 401 // [index*scale + disp]
duke@435 402 // [00 reg 100][ss index 101] disp32
duke@435 403 assert(index != rsp, "illegal addressing mode");
duke@435 404 emit_byte(0x04 | regenc << 3);
duke@435 405 emit_byte(scale << 6 | indexenc << 3 | 0x05);
duke@435 406 emit_data(disp, rspec, disp32_operand);
duke@435 407 #ifdef _LP64
duke@435 408 } else if (rtype != relocInfo::none ) {
duke@435 409 // [disp] RIP-RELATIVE
duke@435 410 // [00 000 101] disp32
duke@435 411
duke@435 412 emit_byte(0x05 | regenc << 3);
duke@435 413 // Note that the RIP-rel. correction applies to the generated
duke@435 414 // disp field, but _not_ to the target address in the rspec.
duke@435 415
duke@435 416 // disp was created by converting the target address minus the pc
duke@435 417 // at the start of the instruction. That needs more correction here.
duke@435 418 // intptr_t disp = target - next_ip;
duke@435 419 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 420 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
duke@435 421 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
duke@435 422 assert(is_simm32(adjusted),
duke@435 423 "must be 32bit offset (RIP relative address)");
duke@435 424 emit_data((int) adjusted, rspec, disp32_operand);
duke@435 425
duke@435 426 #endif // _LP64
duke@435 427 } else {
duke@435 428 // [disp] ABSOLUTE
duke@435 429 // [00 reg 100][00 100 101] disp32
duke@435 430 emit_byte(0x04 | regenc << 3);
duke@435 431 emit_byte(0x25);
duke@435 432 emit_data(disp, rspec, disp32_operand);
duke@435 433 }
duke@435 434 }
duke@435 435 }
duke@435 436
duke@435 437 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
duke@435 438 Address::ScaleFactor scale, int disp,
duke@435 439 RelocationHolder const& rspec,
duke@435 440 int rip_relative_correction) {
duke@435 441 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
duke@435 442 int regenc = reg->encoding();
duke@435 443 if (regenc >= 8) {
duke@435 444 regenc -= 8;
duke@435 445 }
duke@435 446 if (base->is_valid()) {
duke@435 447 if (index->is_valid()) {
duke@435 448 assert(scale != Address::no_scale, "inconsistent address");
duke@435 449 int indexenc = index->encoding();
duke@435 450 if (indexenc >= 8) {
duke@435 451 indexenc -= 8;
duke@435 452 }
duke@435 453 int baseenc = base->encoding();
duke@435 454 if (baseenc >= 8) {
duke@435 455 baseenc -= 8;
duke@435 456 }
duke@435 457 // [base + index*scale + disp]
duke@435 458 if (disp == 0 && rtype == relocInfo::none &&
duke@435 459 base != rbp && base != r13) {
duke@435 460 // [base + index*scale]
duke@435 461 // [00 reg 100][ss index base]
duke@435 462 assert(index != rsp, "illegal addressing mode");
duke@435 463 emit_byte(0x04 | regenc << 3);
duke@435 464 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 465 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 466 // [base + index*scale + disp8]
duke@435 467 // [01 reg 100][ss index base] disp8
duke@435 468 assert(index != rsp, "illegal addressing mode");
duke@435 469 emit_byte(0x44 | regenc << 3);
duke@435 470 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 471 emit_byte(disp & 0xFF);
duke@435 472 } else {
duke@435 473 // [base + index*scale + disp32]
duke@435 474 // [10 reg 100][ss index base] disp32
duke@435 475 assert(index != rsp, "illegal addressing mode");
duke@435 476 emit_byte(0x84 | regenc << 3);
duke@435 477 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 478 emit_data(disp, rspec, disp32_operand);
duke@435 479 }
duke@435 480 } else if (base == rsp || base == r12) {
duke@435 481 // [rsp + disp]
duke@435 482 if (disp == 0 && rtype == relocInfo::none) {
duke@435 483 // [rsp]
duke@435 484 // [00 reg 100][00 100 100]
duke@435 485 emit_byte(0x04 | regenc << 3);
duke@435 486 emit_byte(0x24);
duke@435 487 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 488 // [rsp + imm8]
duke@435 489 // [01 reg 100][00 100 100] disp8
duke@435 490 emit_byte(0x44 | regenc << 3);
duke@435 491 emit_byte(0x24);
duke@435 492 emit_byte(disp & 0xFF);
duke@435 493 } else {
duke@435 494 // [rsp + imm32]
duke@435 495 // [10 reg 100][00 100 100] disp32
duke@435 496 emit_byte(0x84 | regenc << 3);
duke@435 497 emit_byte(0x24);
duke@435 498 emit_data(disp, rspec, disp32_operand);
duke@435 499 }
duke@435 500 } else {
duke@435 501 // [base + disp]
duke@435 502 assert(base != rsp && base != r12, "illegal addressing mode");
duke@435 503 int baseenc = base->encoding();
duke@435 504 if (baseenc >= 8) {
duke@435 505 baseenc -= 8;
duke@435 506 }
duke@435 507 if (disp == 0 && rtype == relocInfo::none &&
duke@435 508 base != rbp && base != r13) {
duke@435 509 // [base]
duke@435 510 // [00 reg base]
duke@435 511 emit_byte(0x00 | regenc << 3 | baseenc);
duke@435 512 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 513 // [base + imm8]
duke@435 514 // [01 reg base] disp8
duke@435 515 emit_byte(0x40 | regenc << 3 | baseenc);
duke@435 516 emit_byte(disp & 0xFF);
duke@435 517 } else {
duke@435 518 // [base + imm32]
duke@435 519 // [10 reg base] disp32
duke@435 520 emit_byte(0x80 | regenc << 3 | baseenc);
duke@435 521 emit_data(disp, rspec, disp32_operand);
duke@435 522 }
duke@435 523 }
duke@435 524 } else {
duke@435 525 if (index->is_valid()) {
duke@435 526 assert(scale != Address::no_scale, "inconsistent address");
duke@435 527 int indexenc = index->encoding();
duke@435 528 if (indexenc >= 8) {
duke@435 529 indexenc -= 8;
duke@435 530 }
duke@435 531 // [index*scale + disp]
duke@435 532 // [00 reg 100][ss index 101] disp32
duke@435 533 assert(index != rsp, "illegal addressing mode");
duke@435 534 emit_byte(0x04 | regenc << 3);
duke@435 535 emit_byte(scale << 6 | indexenc << 3 | 0x05);
duke@435 536 emit_data(disp, rspec, disp32_operand);
duke@435 537 #ifdef _LP64
duke@435 538 } else if ( rtype != relocInfo::none ) {
duke@435 539 // [disp] RIP-RELATIVE
duke@435 540 // [00 reg 101] disp32
duke@435 541 emit_byte(0x05 | regenc << 3);
duke@435 542 // Note that the RIP-rel. correction applies to the generated
duke@435 543 // disp field, but _not_ to the target address in the rspec.
duke@435 544
duke@435 545 // disp was created by converting the target address minus the pc
duke@435 546 // at the start of the instruction. That needs more correction here.
duke@435 547 // intptr_t disp = target - next_ip;
duke@435 548
duke@435 549 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 550 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
duke@435 551
duke@435 552 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
duke@435 553 assert(is_simm32(adjusted),
duke@435 554 "must be 32bit offset (RIP relative address)");
duke@435 555 emit_data((int) adjusted, rspec, disp32_operand);
duke@435 556 #endif // _LP64
duke@435 557 } else {
duke@435 558 // [disp] ABSOLUTE
duke@435 559 // [00 reg 100][00 100 101] disp32
duke@435 560 emit_byte(0x04 | regenc << 3);
duke@435 561 emit_byte(0x25);
duke@435 562 emit_data(disp, rspec, disp32_operand);
duke@435 563 }
duke@435 564 }
duke@435 565 }
duke@435 566
duke@435 567 // Secret local extension to Assembler::WhichOperand:
duke@435 568 #define end_pc_operand (_WhichOperand_limit)
duke@435 569
duke@435 570 address Assembler::locate_operand(address inst, WhichOperand which) {
duke@435 571 // Decode the given instruction, and return the address of
duke@435 572 // an embedded 32-bit operand word.
duke@435 573
duke@435 574 // If "which" is disp32_operand, selects the displacement portion
duke@435 575 // of an effective address specifier.
duke@435 576 // If "which" is imm64_operand, selects the trailing immediate constant.
duke@435 577 // If "which" is call32_operand, selects the displacement of a call or jump.
duke@435 578 // Caller is responsible for ensuring that there is such an operand,
duke@435 579 // and that it is 32/64 bits wide.
duke@435 580
duke@435 581 // If "which" is end_pc_operand, find the end of the instruction.
duke@435 582
duke@435 583 address ip = inst;
duke@435 584 bool is_64bit = false;
duke@435 585
duke@435 586 debug_only(bool has_disp32 = false);
duke@435 587 int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
duke@435 588
duke@435 589 again_after_prefix:
duke@435 590 switch (0xFF & *ip++) {
duke@435 591
duke@435 592 // These convenience macros generate groups of "case" labels for the switch.
duke@435 593 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
duke@435 594 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
duke@435 595 case (x)+4: case (x)+5: case (x)+6: case (x)+7
duke@435 596 #define REP16(x) REP8((x)+0): \
duke@435 597 case REP8((x)+8)
duke@435 598
duke@435 599 case CS_segment:
duke@435 600 case SS_segment:
duke@435 601 case DS_segment:
duke@435 602 case ES_segment:
duke@435 603 case FS_segment:
duke@435 604 case GS_segment:
duke@435 605 assert(0, "shouldn't have that prefix");
duke@435 606 assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed");
duke@435 607 goto again_after_prefix;
duke@435 608
duke@435 609 case 0x67:
duke@435 610 case REX:
duke@435 611 case REX_B:
duke@435 612 case REX_X:
duke@435 613 case REX_XB:
duke@435 614 case REX_R:
duke@435 615 case REX_RB:
duke@435 616 case REX_RX:
duke@435 617 case REX_RXB:
duke@435 618 // assert(ip == inst + 1, "only one prefix allowed");
duke@435 619 goto again_after_prefix;
duke@435 620
duke@435 621 case REX_W:
duke@435 622 case REX_WB:
duke@435 623 case REX_WX:
duke@435 624 case REX_WXB:
duke@435 625 case REX_WR:
duke@435 626 case REX_WRB:
duke@435 627 case REX_WRX:
duke@435 628 case REX_WRXB:
duke@435 629 is_64bit = true;
duke@435 630 // assert(ip == inst + 1, "only one prefix allowed");
duke@435 631 goto again_after_prefix;
duke@435 632
duke@435 633 case 0xFF: // pushq a; decl a; incl a; call a; jmp a
duke@435 634 case 0x88: // movb a, r
duke@435 635 case 0x89: // movl a, r
duke@435 636 case 0x8A: // movb r, a
duke@435 637 case 0x8B: // movl r, a
duke@435 638 case 0x8F: // popl a
duke@435 639 debug_only(has_disp32 = true);
duke@435 640 break;
duke@435 641
duke@435 642 case 0x68: // pushq #32
duke@435 643 if (which == end_pc_operand) {
duke@435 644 return ip + 4;
duke@435 645 }
duke@435 646 assert(0, "pushq has no disp32 or imm64");
duke@435 647 ShouldNotReachHere();
duke@435 648
duke@435 649 case 0x66: // movw ... (size prefix)
duke@435 650 again_after_size_prefix2:
duke@435 651 switch (0xFF & *ip++) {
duke@435 652 case REX:
duke@435 653 case REX_B:
duke@435 654 case REX_X:
duke@435 655 case REX_XB:
duke@435 656 case REX_R:
duke@435 657 case REX_RB:
duke@435 658 case REX_RX:
duke@435 659 case REX_RXB:
duke@435 660 case REX_W:
duke@435 661 case REX_WB:
duke@435 662 case REX_WX:
duke@435 663 case REX_WXB:
duke@435 664 case REX_WR:
duke@435 665 case REX_WRB:
duke@435 666 case REX_WRX:
duke@435 667 case REX_WRXB:
duke@435 668 goto again_after_size_prefix2;
duke@435 669 case 0x8B: // movw r, a
duke@435 670 case 0x89: // movw a, r
duke@435 671 break;
duke@435 672 case 0xC7: // movw a, #16
duke@435 673 tail_size = 2; // the imm16
duke@435 674 break;
duke@435 675 case 0x0F: // several SSE/SSE2 variants
duke@435 676 ip--; // reparse the 0x0F
duke@435 677 goto again_after_prefix;
duke@435 678 default:
duke@435 679 ShouldNotReachHere();
duke@435 680 }
duke@435 681 break;
duke@435 682
duke@435 683 case REP8(0xB8): // movl/q r, #32/#64(oop?)
duke@435 684 if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4);
duke@435 685 assert((which == call32_operand || which == imm64_operand) && is_64bit, "");
duke@435 686 return ip;
duke@435 687
duke@435 688 case 0x69: // imul r, a, #32
duke@435 689 case 0xC7: // movl a, #32(oop?)
duke@435 690 tail_size = 4;
duke@435 691 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 692 break;
duke@435 693
duke@435 694 case 0x0F: // movx..., etc.
duke@435 695 switch (0xFF & *ip++) {
duke@435 696 case 0x12: // movlps
duke@435 697 case 0x28: // movaps
duke@435 698 case 0x2E: // ucomiss
duke@435 699 case 0x2F: // comiss
duke@435 700 case 0x54: // andps
duke@435 701 case 0x57: // xorps
duke@435 702 case 0x6E: // movd
duke@435 703 case 0x7E: // movd
duke@435 704 case 0xAE: // ldmxcsr a
duke@435 705 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 706 break;
duke@435 707 case 0xAD: // shrd r, a, %cl
duke@435 708 case 0xAF: // imul r, a
duke@435 709 case 0xBE: // movsbl r, a
duke@435 710 case 0xBF: // movswl r, a
duke@435 711 case 0xB6: // movzbl r, a
duke@435 712 case 0xB7: // movzwl r, a
duke@435 713 case REP16(0x40): // cmovl cc, r, a
duke@435 714 case 0xB0: // cmpxchgb
duke@435 715 case 0xB1: // cmpxchg
duke@435 716 case 0xC1: // xaddl
duke@435 717 case 0xC7: // cmpxchg8
duke@435 718 case REP16(0x90): // setcc a
duke@435 719 debug_only(has_disp32 = true);
duke@435 720 // fall out of the switch to decode the address
duke@435 721 break;
duke@435 722 case 0xAC: // shrd r, a, #8
duke@435 723 debug_only(has_disp32 = true);
duke@435 724 tail_size = 1; // the imm8
duke@435 725 break;
duke@435 726 case REP16(0x80): // jcc rdisp32
duke@435 727 if (which == end_pc_operand) return ip + 4;
duke@435 728 assert(which == call32_operand, "jcc has no disp32 or imm64");
duke@435 729 return ip;
duke@435 730 default:
duke@435 731 ShouldNotReachHere();
duke@435 732 }
duke@435 733 break;
duke@435 734
duke@435 735 case 0x81: // addl a, #32; addl r, #32
duke@435 736 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 737 tail_size = 4;
duke@435 738 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 739 break;
duke@435 740
duke@435 741 case 0x83: // addl a, #8; addl r, #8
duke@435 742 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 743 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 744 tail_size = 1;
duke@435 745 break;
duke@435 746
duke@435 747 case 0x9B:
duke@435 748 switch (0xFF & *ip++) {
duke@435 749 case 0xD9: // fnstcw a
duke@435 750 debug_only(has_disp32 = true);
duke@435 751 break;
duke@435 752 default:
duke@435 753 ShouldNotReachHere();
duke@435 754 }
duke@435 755 break;
duke@435 756
duke@435 757 case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
duke@435 758 case REP4(0x10): // adc...
duke@435 759 case REP4(0x20): // and...
duke@435 760 case REP4(0x30): // xor...
duke@435 761 case REP4(0x08): // or...
duke@435 762 case REP4(0x18): // sbb...
duke@435 763 case REP4(0x28): // sub...
duke@435 764 case 0xF7: // mull a
duke@435 765 case 0x87: // xchg r, a
duke@435 766 debug_only(has_disp32 = true);
duke@435 767 break;
duke@435 768 case REP4(0x38): // cmp...
duke@435 769 case 0x8D: // lea r, a
duke@435 770 case 0x85: // test r, a
duke@435 771 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 772 break;
duke@435 773
duke@435 774 case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
duke@435 775 case 0xC6: // movb a, #8
duke@435 776 case 0x80: // cmpb a, #8
duke@435 777 case 0x6B: // imul r, a, #8
duke@435 778 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 779 tail_size = 1; // the imm8
duke@435 780 break;
duke@435 781
duke@435 782 case 0xE8: // call rdisp32
duke@435 783 case 0xE9: // jmp rdisp32
duke@435 784 if (which == end_pc_operand) return ip + 4;
duke@435 785 assert(which == call32_operand, "call has no disp32 or imm32");
duke@435 786 return ip;
duke@435 787
duke@435 788 case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
duke@435 789 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
duke@435 790 case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
duke@435 791 case 0xDD: // fld_d a; fst_d a; fstp_d a
duke@435 792 case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
duke@435 793 case 0xDF: // fild_d a; fistp_d a
duke@435 794 case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
duke@435 795 case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
duke@435 796 case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
duke@435 797 debug_only(has_disp32 = true);
duke@435 798 break;
duke@435 799
duke@435 800 case 0xF3: // For SSE
duke@435 801 case 0xF2: // For SSE2
duke@435 802 switch (0xFF & *ip++) {
duke@435 803 case REX:
duke@435 804 case REX_B:
duke@435 805 case REX_X:
duke@435 806 case REX_XB:
duke@435 807 case REX_R:
duke@435 808 case REX_RB:
duke@435 809 case REX_RX:
duke@435 810 case REX_RXB:
duke@435 811 case REX_W:
duke@435 812 case REX_WB:
duke@435 813 case REX_WX:
duke@435 814 case REX_WXB:
duke@435 815 case REX_WR:
duke@435 816 case REX_WRB:
duke@435 817 case REX_WRX:
duke@435 818 case REX_WRXB:
duke@435 819 ip++;
duke@435 820 default:
duke@435 821 ip++;
duke@435 822 }
duke@435 823 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 824 break;
duke@435 825
duke@435 826 default:
duke@435 827 ShouldNotReachHere();
duke@435 828
duke@435 829 #undef REP8
duke@435 830 #undef REP16
duke@435 831 }
duke@435 832
duke@435 833 assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
duke@435 834 assert(which != imm64_operand, "instruction is not a movq reg, imm64");
duke@435 835 assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
duke@435 836
duke@435 837 // parse the output of emit_operand
duke@435 838 int op2 = 0xFF & *ip++;
duke@435 839 int base = op2 & 0x07;
duke@435 840 int op3 = -1;
duke@435 841 const int b100 = 4;
duke@435 842 const int b101 = 5;
duke@435 843 if (base == b100 && (op2 >> 6) != 3) {
duke@435 844 op3 = 0xFF & *ip++;
duke@435 845 base = op3 & 0x07; // refetch the base
duke@435 846 }
duke@435 847 // now ip points at the disp (if any)
duke@435 848
duke@435 849 switch (op2 >> 6) {
duke@435 850 case 0:
duke@435 851 // [00 reg 100][ss index base]
duke@435 852 // [00 reg 100][00 100 esp]
duke@435 853 // [00 reg base]
duke@435 854 // [00 reg 100][ss index 101][disp32]
duke@435 855 // [00 reg 101] [disp32]
duke@435 856
duke@435 857 if (base == b101) {
duke@435 858 if (which == disp32_operand)
duke@435 859 return ip; // caller wants the disp32
duke@435 860 ip += 4; // skip the disp32
duke@435 861 }
duke@435 862 break;
duke@435 863
duke@435 864 case 1:
duke@435 865 // [01 reg 100][ss index base][disp8]
duke@435 866 // [01 reg 100][00 100 esp][disp8]
duke@435 867 // [01 reg base] [disp8]
duke@435 868 ip += 1; // skip the disp8
duke@435 869 break;
duke@435 870
duke@435 871 case 2:
duke@435 872 // [10 reg 100][ss index base][disp32]
duke@435 873 // [10 reg 100][00 100 esp][disp32]
duke@435 874 // [10 reg base] [disp32]
duke@435 875 if (which == disp32_operand)
duke@435 876 return ip; // caller wants the disp32
duke@435 877 ip += 4; // skip the disp32
duke@435 878 break;
duke@435 879
duke@435 880 case 3:
duke@435 881 // [11 reg base] (not a memory addressing mode)
duke@435 882 break;
duke@435 883 }
duke@435 884
duke@435 885 if (which == end_pc_operand) {
duke@435 886 return ip + tail_size;
duke@435 887 }
duke@435 888
duke@435 889 assert(0, "fix locate_operand");
duke@435 890 return ip;
duke@435 891 }
duke@435 892
duke@435 893 address Assembler::locate_next_instruction(address inst) {
duke@435 894 // Secretly share code with locate_operand:
duke@435 895 return locate_operand(inst, end_pc_operand);
duke@435 896 }
duke@435 897
duke@435 898 #ifdef ASSERT
duke@435 899 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
duke@435 900 address inst = inst_mark();
duke@435 901 assert(inst != NULL && inst < pc(),
duke@435 902 "must point to beginning of instruction");
duke@435 903 address opnd;
duke@435 904
duke@435 905 Relocation* r = rspec.reloc();
duke@435 906 if (r->type() == relocInfo::none) {
duke@435 907 return;
duke@435 908 } else if (r->is_call() || format == call32_operand) {
duke@435 909 opnd = locate_operand(inst, call32_operand);
duke@435 910 } else if (r->is_data()) {
duke@435 911 assert(format == imm64_operand || format == disp32_operand, "format ok");
duke@435 912 opnd = locate_operand(inst, (WhichOperand) format);
duke@435 913 } else {
duke@435 914 assert(format == 0, "cannot specify a format");
duke@435 915 return;
duke@435 916 }
duke@435 917 assert(opnd == pc(), "must put operand where relocs can find it");
duke@435 918 }
duke@435 919 #endif
duke@435 920
duke@435 921 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
duke@435 922 if (reg_enc >= 8) {
duke@435 923 prefix(REX_B);
duke@435 924 reg_enc -= 8;
duke@435 925 } else if (byteinst && reg_enc >= 4) {
duke@435 926 prefix(REX);
duke@435 927 }
duke@435 928 return reg_enc;
duke@435 929 }
duke@435 930
duke@435 931 int Assembler::prefixq_and_encode(int reg_enc) {
duke@435 932 if (reg_enc < 8) {
duke@435 933 prefix(REX_W);
duke@435 934 } else {
duke@435 935 prefix(REX_WB);
duke@435 936 reg_enc -= 8;
duke@435 937 }
duke@435 938 return reg_enc;
duke@435 939 }
duke@435 940
duke@435 941 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
duke@435 942 if (dst_enc < 8) {
duke@435 943 if (src_enc >= 8) {
duke@435 944 prefix(REX_B);
duke@435 945 src_enc -= 8;
duke@435 946 } else if (byteinst && src_enc >= 4) {
duke@435 947 prefix(REX);
duke@435 948 }
duke@435 949 } else {
duke@435 950 if (src_enc < 8) {
duke@435 951 prefix(REX_R);
duke@435 952 } else {
duke@435 953 prefix(REX_RB);
duke@435 954 src_enc -= 8;
duke@435 955 }
duke@435 956 dst_enc -= 8;
duke@435 957 }
duke@435 958 return dst_enc << 3 | src_enc;
duke@435 959 }
duke@435 960
duke@435 961 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
duke@435 962 if (dst_enc < 8) {
duke@435 963 if (src_enc < 8) {
duke@435 964 prefix(REX_W);
duke@435 965 } else {
duke@435 966 prefix(REX_WB);
duke@435 967 src_enc -= 8;
duke@435 968 }
duke@435 969 } else {
duke@435 970 if (src_enc < 8) {
duke@435 971 prefix(REX_WR);
duke@435 972 } else {
duke@435 973 prefix(REX_WRB);
duke@435 974 src_enc -= 8;
duke@435 975 }
duke@435 976 dst_enc -= 8;
duke@435 977 }
duke@435 978 return dst_enc << 3 | src_enc;
duke@435 979 }
duke@435 980
duke@435 981 void Assembler::prefix(Register reg) {
duke@435 982 if (reg->encoding() >= 8) {
duke@435 983 prefix(REX_B);
duke@435 984 }
duke@435 985 }
duke@435 986
duke@435 987 void Assembler::prefix(Address adr) {
duke@435 988 if (adr.base_needs_rex()) {
duke@435 989 if (adr.index_needs_rex()) {
duke@435 990 prefix(REX_XB);
duke@435 991 } else {
duke@435 992 prefix(REX_B);
duke@435 993 }
duke@435 994 } else {
duke@435 995 if (adr.index_needs_rex()) {
duke@435 996 prefix(REX_X);
duke@435 997 }
duke@435 998 }
duke@435 999 }
duke@435 1000
duke@435 1001 void Assembler::prefixq(Address adr) {
duke@435 1002 if (adr.base_needs_rex()) {
duke@435 1003 if (adr.index_needs_rex()) {
duke@435 1004 prefix(REX_WXB);
duke@435 1005 } else {
duke@435 1006 prefix(REX_WB);
duke@435 1007 }
duke@435 1008 } else {
duke@435 1009 if (adr.index_needs_rex()) {
duke@435 1010 prefix(REX_WX);
duke@435 1011 } else {
duke@435 1012 prefix(REX_W);
duke@435 1013 }
duke@435 1014 }
duke@435 1015 }
duke@435 1016
duke@435 1017
duke@435 1018 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
duke@435 1019 if (reg->encoding() < 8) {
duke@435 1020 if (adr.base_needs_rex()) {
duke@435 1021 if (adr.index_needs_rex()) {
duke@435 1022 prefix(REX_XB);
duke@435 1023 } else {
duke@435 1024 prefix(REX_B);
duke@435 1025 }
duke@435 1026 } else {
duke@435 1027 if (adr.index_needs_rex()) {
duke@435 1028 prefix(REX_X);
duke@435 1029 } else if (reg->encoding() >= 4 ) {
duke@435 1030 prefix(REX);
duke@435 1031 }
duke@435 1032 }
duke@435 1033 } else {
duke@435 1034 if (adr.base_needs_rex()) {
duke@435 1035 if (adr.index_needs_rex()) {
duke@435 1036 prefix(REX_RXB);
duke@435 1037 } else {
duke@435 1038 prefix(REX_RB);
duke@435 1039 }
duke@435 1040 } else {
duke@435 1041 if (adr.index_needs_rex()) {
duke@435 1042 prefix(REX_RX);
duke@435 1043 } else {
duke@435 1044 prefix(REX_R);
duke@435 1045 }
duke@435 1046 }
duke@435 1047 }
duke@435 1048 }
duke@435 1049
duke@435 1050 void Assembler::prefixq(Address adr, Register src) {
duke@435 1051 if (src->encoding() < 8) {
duke@435 1052 if (adr.base_needs_rex()) {
duke@435 1053 if (adr.index_needs_rex()) {
duke@435 1054 prefix(REX_WXB);
duke@435 1055 } else {
duke@435 1056 prefix(REX_WB);
duke@435 1057 }
duke@435 1058 } else {
duke@435 1059 if (adr.index_needs_rex()) {
duke@435 1060 prefix(REX_WX);
duke@435 1061 } else {
duke@435 1062 prefix(REX_W);
duke@435 1063 }
duke@435 1064 }
duke@435 1065 } else {
duke@435 1066 if (adr.base_needs_rex()) {
duke@435 1067 if (adr.index_needs_rex()) {
duke@435 1068 prefix(REX_WRXB);
duke@435 1069 } else {
duke@435 1070 prefix(REX_WRB);
duke@435 1071 }
duke@435 1072 } else {
duke@435 1073 if (adr.index_needs_rex()) {
duke@435 1074 prefix(REX_WRX);
duke@435 1075 } else {
duke@435 1076 prefix(REX_WR);
duke@435 1077 }
duke@435 1078 }
duke@435 1079 }
duke@435 1080 }
duke@435 1081
duke@435 1082 void Assembler::prefix(Address adr, XMMRegister reg) {
duke@435 1083 if (reg->encoding() < 8) {
duke@435 1084 if (adr.base_needs_rex()) {
duke@435 1085 if (adr.index_needs_rex()) {
duke@435 1086 prefix(REX_XB);
duke@435 1087 } else {
duke@435 1088 prefix(REX_B);
duke@435 1089 }
duke@435 1090 } else {
duke@435 1091 if (adr.index_needs_rex()) {
duke@435 1092 prefix(REX_X);
duke@435 1093 }
duke@435 1094 }
duke@435 1095 } else {
duke@435 1096 if (adr.base_needs_rex()) {
duke@435 1097 if (adr.index_needs_rex()) {
duke@435 1098 prefix(REX_RXB);
duke@435 1099 } else {
duke@435 1100 prefix(REX_RB);
duke@435 1101 }
duke@435 1102 } else {
duke@435 1103 if (adr.index_needs_rex()) {
duke@435 1104 prefix(REX_RX);
duke@435 1105 } else {
duke@435 1106 prefix(REX_R);
duke@435 1107 }
duke@435 1108 }
duke@435 1109 }
duke@435 1110 }
duke@435 1111
duke@435 1112 void Assembler::emit_operand(Register reg, Address adr,
duke@435 1113 int rip_relative_correction) {
duke@435 1114 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
duke@435 1115 adr._rspec,
duke@435 1116 rip_relative_correction);
duke@435 1117 }
duke@435 1118
duke@435 1119 void Assembler::emit_operand(XMMRegister reg, Address adr,
duke@435 1120 int rip_relative_correction) {
duke@435 1121 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
duke@435 1122 adr._rspec,
duke@435 1123 rip_relative_correction);
duke@435 1124 }
duke@435 1125
duke@435 1126 void Assembler::emit_farith(int b1, int b2, int i) {
duke@435 1127 assert(isByte(b1) && isByte(b2), "wrong opcode");
duke@435 1128 assert(0 <= i && i < 8, "illegal stack offset");
duke@435 1129 emit_byte(b1);
duke@435 1130 emit_byte(b2 + i);
duke@435 1131 }
duke@435 1132
duke@435 1133 // pushad is invalid, use this instead.
duke@435 1134 // NOTE: Kills flags!!
duke@435 1135 void Assembler::pushaq() {
duke@435 1136 // we have to store original rsp. ABI says that 128 bytes
duke@435 1137 // below rsp are local scratch.
duke@435 1138 movq(Address(rsp, -5 * wordSize), rsp);
duke@435 1139
duke@435 1140 subq(rsp, 16 * wordSize);
duke@435 1141
duke@435 1142 movq(Address(rsp, 15 * wordSize), rax);
duke@435 1143 movq(Address(rsp, 14 * wordSize), rcx);
duke@435 1144 movq(Address(rsp, 13 * wordSize), rdx);
duke@435 1145 movq(Address(rsp, 12 * wordSize), rbx);
duke@435 1146 // skip rsp
duke@435 1147 movq(Address(rsp, 10 * wordSize), rbp);
duke@435 1148 movq(Address(rsp, 9 * wordSize), rsi);
duke@435 1149 movq(Address(rsp, 8 * wordSize), rdi);
duke@435 1150 movq(Address(rsp, 7 * wordSize), r8);
duke@435 1151 movq(Address(rsp, 6 * wordSize), r9);
duke@435 1152 movq(Address(rsp, 5 * wordSize), r10);
duke@435 1153 movq(Address(rsp, 4 * wordSize), r11);
duke@435 1154 movq(Address(rsp, 3 * wordSize), r12);
duke@435 1155 movq(Address(rsp, 2 * wordSize), r13);
duke@435 1156 movq(Address(rsp, wordSize), r14);
duke@435 1157 movq(Address(rsp, 0), r15);
duke@435 1158 }
duke@435 1159
duke@435 1160 // popad is invalid, use this instead
duke@435 1161 // NOTE: Kills flags!!
duke@435 1162 void Assembler::popaq() {
duke@435 1163 movq(r15, Address(rsp, 0));
duke@435 1164 movq(r14, Address(rsp, wordSize));
duke@435 1165 movq(r13, Address(rsp, 2 * wordSize));
duke@435 1166 movq(r12, Address(rsp, 3 * wordSize));
duke@435 1167 movq(r11, Address(rsp, 4 * wordSize));
duke@435 1168 movq(r10, Address(rsp, 5 * wordSize));
duke@435 1169 movq(r9, Address(rsp, 6 * wordSize));
duke@435 1170 movq(r8, Address(rsp, 7 * wordSize));
duke@435 1171 movq(rdi, Address(rsp, 8 * wordSize));
duke@435 1172 movq(rsi, Address(rsp, 9 * wordSize));
duke@435 1173 movq(rbp, Address(rsp, 10 * wordSize));
duke@435 1174 // skip rsp
duke@435 1175 movq(rbx, Address(rsp, 12 * wordSize));
duke@435 1176 movq(rdx, Address(rsp, 13 * wordSize));
duke@435 1177 movq(rcx, Address(rsp, 14 * wordSize));
duke@435 1178 movq(rax, Address(rsp, 15 * wordSize));
duke@435 1179
duke@435 1180 addq(rsp, 16 * wordSize);
duke@435 1181 }
duke@435 1182
duke@435 1183 void Assembler::pushfq() {
duke@435 1184 emit_byte(0x9C);
duke@435 1185 }
duke@435 1186
duke@435 1187 void Assembler::popfq() {
duke@435 1188 emit_byte(0x9D);
duke@435 1189 }
duke@435 1190
duke@435 1191 void Assembler::pushq(int imm32) {
duke@435 1192 emit_byte(0x68);
duke@435 1193 emit_long(imm32);
duke@435 1194 }
duke@435 1195
duke@435 1196 void Assembler::pushq(Register src) {
duke@435 1197 int encode = prefix_and_encode(src->encoding());
duke@435 1198
duke@435 1199 emit_byte(0x50 | encode);
duke@435 1200 }
duke@435 1201
duke@435 1202 void Assembler::pushq(Address src) {
duke@435 1203 InstructionMark im(this);
duke@435 1204 prefix(src);
duke@435 1205 emit_byte(0xFF);
duke@435 1206 emit_operand(rsi, src);
duke@435 1207 }
duke@435 1208
duke@435 1209 void Assembler::popq(Register dst) {
duke@435 1210 int encode = prefix_and_encode(dst->encoding());
duke@435 1211 emit_byte(0x58 | encode);
duke@435 1212 }
duke@435 1213
duke@435 1214 void Assembler::popq(Address dst) {
duke@435 1215 InstructionMark im(this);
duke@435 1216 prefix(dst);
duke@435 1217 emit_byte(0x8F);
duke@435 1218 emit_operand(rax, dst);
duke@435 1219 }
duke@435 1220
duke@435 1221 void Assembler::prefix(Prefix p) {
duke@435 1222 a_byte(p);
duke@435 1223 }
duke@435 1224
duke@435 1225 void Assembler::movb(Register dst, Address src) {
duke@435 1226 InstructionMark im(this);
duke@435 1227 prefix(src, dst, true);
duke@435 1228 emit_byte(0x8A);
duke@435 1229 emit_operand(dst, src);
duke@435 1230 }
duke@435 1231
duke@435 1232 void Assembler::movb(Address dst, int imm8) {
duke@435 1233 InstructionMark im(this);
duke@435 1234 prefix(dst);
duke@435 1235 emit_byte(0xC6);
duke@435 1236 emit_operand(rax, dst, 1);
duke@435 1237 emit_byte(imm8);
duke@435 1238 }
duke@435 1239
duke@435 1240 void Assembler::movb(Address dst, Register src) {
duke@435 1241 InstructionMark im(this);
duke@435 1242 prefix(dst, src, true);
duke@435 1243 emit_byte(0x88);
duke@435 1244 emit_operand(src, dst);
duke@435 1245 }
duke@435 1246
duke@435 1247 void Assembler::movw(Address dst, int imm16) {
duke@435 1248 InstructionMark im(this);
duke@435 1249 emit_byte(0x66); // switch to 16-bit mode
duke@435 1250 prefix(dst);
duke@435 1251 emit_byte(0xC7);
duke@435 1252 emit_operand(rax, dst, 2);
duke@435 1253 emit_word(imm16);
duke@435 1254 }
duke@435 1255
duke@435 1256 void Assembler::movw(Register dst, Address src) {
duke@435 1257 InstructionMark im(this);
duke@435 1258 emit_byte(0x66);
duke@435 1259 prefix(src, dst);
duke@435 1260 emit_byte(0x8B);
duke@435 1261 emit_operand(dst, src);
duke@435 1262 }
duke@435 1263
duke@435 1264 void Assembler::movw(Address dst, Register src) {
duke@435 1265 InstructionMark im(this);
duke@435 1266 emit_byte(0x66);
duke@435 1267 prefix(dst, src);
duke@435 1268 emit_byte(0x89);
duke@435 1269 emit_operand(src, dst);
duke@435 1270 }
duke@435 1271
duke@435 1272 // Uses zero extension.
duke@435 1273 void Assembler::movl(Register dst, int imm32) {
duke@435 1274 int encode = prefix_and_encode(dst->encoding());
duke@435 1275 emit_byte(0xB8 | encode);
duke@435 1276 emit_long(imm32);
duke@435 1277 }
duke@435 1278
duke@435 1279 void Assembler::movl(Register dst, Register src) {
duke@435 1280 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1281 emit_byte(0x8B);
duke@435 1282 emit_byte(0xC0 | encode);
duke@435 1283 }
duke@435 1284
duke@435 1285 void Assembler::movl(Register dst, Address src) {
duke@435 1286 InstructionMark im(this);
duke@435 1287 prefix(src, dst);
duke@435 1288 emit_byte(0x8B);
duke@435 1289 emit_operand(dst, src);
duke@435 1290 }
duke@435 1291
duke@435 1292 void Assembler::movl(Address dst, int imm32) {
duke@435 1293 InstructionMark im(this);
duke@435 1294 prefix(dst);
duke@435 1295 emit_byte(0xC7);
duke@435 1296 emit_operand(rax, dst, 4);
duke@435 1297 emit_long(imm32);
duke@435 1298 }
duke@435 1299
duke@435 1300 void Assembler::movl(Address dst, Register src) {
duke@435 1301 InstructionMark im(this);
duke@435 1302 prefix(dst, src);
duke@435 1303 emit_byte(0x89);
duke@435 1304 emit_operand(src, dst);
duke@435 1305 }
duke@435 1306
duke@435 1307 void Assembler::mov64(Register dst, int64_t imm64) {
duke@435 1308 InstructionMark im(this);
duke@435 1309 int encode = prefixq_and_encode(dst->encoding());
duke@435 1310 emit_byte(0xB8 | encode);
duke@435 1311 emit_long64(imm64);
duke@435 1312 }
duke@435 1313
duke@435 1314 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
duke@435 1315 InstructionMark im(this);
duke@435 1316 int encode = prefixq_and_encode(dst->encoding());
duke@435 1317 emit_byte(0xB8 | encode);
duke@435 1318 emit_data64(imm64, rspec);
duke@435 1319 }
duke@435 1320
duke@435 1321 void Assembler::movq(Register dst, Register src) {
duke@435 1322 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1323 emit_byte(0x8B);
duke@435 1324 emit_byte(0xC0 | encode);
duke@435 1325 }
duke@435 1326
duke@435 1327 void Assembler::movq(Register dst, Address src) {
duke@435 1328 InstructionMark im(this);
duke@435 1329 prefixq(src, dst);
duke@435 1330 emit_byte(0x8B);
duke@435 1331 emit_operand(dst, src);
duke@435 1332 }
duke@435 1333
duke@435 1334 void Assembler::mov64(Address dst, int64_t imm32) {
duke@435 1335 assert(is_simm32(imm32), "lost bits");
duke@435 1336 InstructionMark im(this);
duke@435 1337 prefixq(dst);
duke@435 1338 emit_byte(0xC7);
duke@435 1339 emit_operand(rax, dst, 4);
duke@435 1340 emit_long(imm32);
duke@435 1341 }
duke@435 1342
duke@435 1343 void Assembler::movq(Address dst, Register src) {
duke@435 1344 InstructionMark im(this);
duke@435 1345 prefixq(dst, src);
duke@435 1346 emit_byte(0x89);
duke@435 1347 emit_operand(src, dst);
duke@435 1348 }
duke@435 1349
duke@435 1350 void Assembler::movsbl(Register dst, Address src) {
duke@435 1351 InstructionMark im(this);
duke@435 1352 prefix(src, dst);
duke@435 1353 emit_byte(0x0F);
duke@435 1354 emit_byte(0xBE);
duke@435 1355 emit_operand(dst, src);
duke@435 1356 }
duke@435 1357
duke@435 1358 void Assembler::movsbl(Register dst, Register src) {
duke@435 1359 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
duke@435 1360 emit_byte(0x0F);
duke@435 1361 emit_byte(0xBE);
duke@435 1362 emit_byte(0xC0 | encode);
duke@435 1363 }
duke@435 1364
duke@435 1365 void Assembler::movswl(Register dst, Address src) {
duke@435 1366 InstructionMark im(this);
duke@435 1367 prefix(src, dst);
duke@435 1368 emit_byte(0x0F);
duke@435 1369 emit_byte(0xBF);
duke@435 1370 emit_operand(dst, src);
duke@435 1371 }
duke@435 1372
duke@435 1373 void Assembler::movswl(Register dst, Register src) {
duke@435 1374 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1375 emit_byte(0x0F);
duke@435 1376 emit_byte(0xBF);
duke@435 1377 emit_byte(0xC0 | encode);
duke@435 1378 }
duke@435 1379
duke@435 1380 void Assembler::movslq(Register dst, Address src) {
duke@435 1381 InstructionMark im(this);
duke@435 1382 prefixq(src, dst);
duke@435 1383 emit_byte(0x63);
duke@435 1384 emit_operand(dst, src);
duke@435 1385 }
duke@435 1386
duke@435 1387 void Assembler::movslq(Register dst, Register src) {
duke@435 1388 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1389 emit_byte(0x63);
duke@435 1390 emit_byte(0xC0 | encode);
duke@435 1391 }
duke@435 1392
duke@435 1393 void Assembler::movzbl(Register dst, Address src) {
duke@435 1394 InstructionMark im(this);
duke@435 1395 prefix(src, dst);
duke@435 1396 emit_byte(0x0F);
duke@435 1397 emit_byte(0xB6);
duke@435 1398 emit_operand(dst, src);
duke@435 1399 }
duke@435 1400
duke@435 1401 void Assembler::movzbl(Register dst, Register src) {
duke@435 1402 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
duke@435 1403 emit_byte(0x0F);
duke@435 1404 emit_byte(0xB6);
duke@435 1405 emit_byte(0xC0 | encode);
duke@435 1406 }
duke@435 1407
duke@435 1408 void Assembler::movzwl(Register dst, Address src) {
duke@435 1409 InstructionMark im(this);
duke@435 1410 prefix(src, dst);
duke@435 1411 emit_byte(0x0F);
duke@435 1412 emit_byte(0xB7);
duke@435 1413 emit_operand(dst, src);
duke@435 1414 }
duke@435 1415
duke@435 1416 void Assembler::movzwl(Register dst, Register src) {
duke@435 1417 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1418 emit_byte(0x0F);
duke@435 1419 emit_byte(0xB7);
duke@435 1420 emit_byte(0xC0 | encode);
duke@435 1421 }
duke@435 1422
duke@435 1423 void Assembler::movss(XMMRegister dst, XMMRegister src) {
duke@435 1424 emit_byte(0xF3);
duke@435 1425 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1426 emit_byte(0x0F);
duke@435 1427 emit_byte(0x10);
duke@435 1428 emit_byte(0xC0 | encode);
duke@435 1429 }
duke@435 1430
duke@435 1431 void Assembler::movss(XMMRegister dst, Address src) {
duke@435 1432 InstructionMark im(this);
duke@435 1433 emit_byte(0xF3);
duke@435 1434 prefix(src, dst);
duke@435 1435 emit_byte(0x0F);
duke@435 1436 emit_byte(0x10);
duke@435 1437 emit_operand(dst, src);
duke@435 1438 }
duke@435 1439
duke@435 1440 void Assembler::movss(Address dst, XMMRegister src) {
duke@435 1441 InstructionMark im(this);
duke@435 1442 emit_byte(0xF3);
duke@435 1443 prefix(dst, src);
duke@435 1444 emit_byte(0x0F);
duke@435 1445 emit_byte(0x11);
duke@435 1446 emit_operand(src, dst);
duke@435 1447 }
duke@435 1448
duke@435 1449 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
duke@435 1450 emit_byte(0xF2);
duke@435 1451 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1452 emit_byte(0x0F);
duke@435 1453 emit_byte(0x10);
duke@435 1454 emit_byte(0xC0 | encode);
duke@435 1455 }
duke@435 1456
duke@435 1457 void Assembler::movsd(XMMRegister dst, Address src) {
duke@435 1458 InstructionMark im(this);
duke@435 1459 emit_byte(0xF2);
duke@435 1460 prefix(src, dst);
duke@435 1461 emit_byte(0x0F);
duke@435 1462 emit_byte(0x10);
duke@435 1463 emit_operand(dst, src);
duke@435 1464 }
duke@435 1465
duke@435 1466 void Assembler::movsd(Address dst, XMMRegister src) {
duke@435 1467 InstructionMark im(this);
duke@435 1468 emit_byte(0xF2);
duke@435 1469 prefix(dst, src);
duke@435 1470 emit_byte(0x0F);
duke@435 1471 emit_byte(0x11);
duke@435 1472 emit_operand(src, dst);
duke@435 1473 }
duke@435 1474
duke@435 1475 // New cpus require to use movsd and movss to avoid partial register stall
duke@435 1476 // when loading from memory. But for old Opteron use movlpd instead of movsd.
duke@435 1477 // The selection is done in MacroAssembler::movdbl() and movflt().
duke@435 1478 void Assembler::movlpd(XMMRegister dst, Address src) {
duke@435 1479 InstructionMark im(this);
duke@435 1480 emit_byte(0x66);
duke@435 1481 prefix(src, dst);
duke@435 1482 emit_byte(0x0F);
duke@435 1483 emit_byte(0x12);
duke@435 1484 emit_operand(dst, src);
duke@435 1485 }
duke@435 1486
duke@435 1487 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
duke@435 1488 int dstenc = dst->encoding();
duke@435 1489 int srcenc = src->encoding();
duke@435 1490 emit_byte(0x66);
duke@435 1491 if (dstenc < 8) {
duke@435 1492 if (srcenc >= 8) {
duke@435 1493 prefix(REX_B);
duke@435 1494 srcenc -= 8;
duke@435 1495 }
duke@435 1496 } else {
duke@435 1497 if (srcenc < 8) {
duke@435 1498 prefix(REX_R);
duke@435 1499 } else {
duke@435 1500 prefix(REX_RB);
duke@435 1501 srcenc -= 8;
duke@435 1502 }
duke@435 1503 dstenc -= 8;
duke@435 1504 }
duke@435 1505 emit_byte(0x0F);
duke@435 1506 emit_byte(0x28);
duke@435 1507 emit_byte(0xC0 | dstenc << 3 | srcenc);
duke@435 1508 }
duke@435 1509
duke@435 1510 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
duke@435 1511 int dstenc = dst->encoding();
duke@435 1512 int srcenc = src->encoding();
duke@435 1513 if (dstenc < 8) {
duke@435 1514 if (srcenc >= 8) {
duke@435 1515 prefix(REX_B);
duke@435 1516 srcenc -= 8;
duke@435 1517 }
duke@435 1518 } else {
duke@435 1519 if (srcenc < 8) {
duke@435 1520 prefix(REX_R);
duke@435 1521 } else {
duke@435 1522 prefix(REX_RB);
duke@435 1523 srcenc -= 8;
duke@435 1524 }
duke@435 1525 dstenc -= 8;
duke@435 1526 }
duke@435 1527 emit_byte(0x0F);
duke@435 1528 emit_byte(0x28);
duke@435 1529 emit_byte(0xC0 | dstenc << 3 | srcenc);
duke@435 1530 }
duke@435 1531
duke@435 1532 void Assembler::movdl(XMMRegister dst, Register src) {
duke@435 1533 emit_byte(0x66);
duke@435 1534 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1535 emit_byte(0x0F);
duke@435 1536 emit_byte(0x6E);
duke@435 1537 emit_byte(0xC0 | encode);
duke@435 1538 }
duke@435 1539
duke@435 1540 void Assembler::movdl(Register dst, XMMRegister src) {
duke@435 1541 emit_byte(0x66);
duke@435 1542 // swap src/dst to get correct prefix
duke@435 1543 int encode = prefix_and_encode(src->encoding(), dst->encoding());
duke@435 1544 emit_byte(0x0F);
duke@435 1545 emit_byte(0x7E);
duke@435 1546 emit_byte(0xC0 | encode);
duke@435 1547 }
duke@435 1548
duke@435 1549 void Assembler::movdq(XMMRegister dst, Register src) {
duke@435 1550 emit_byte(0x66);
duke@435 1551 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1552 emit_byte(0x0F);
duke@435 1553 emit_byte(0x6E);
duke@435 1554 emit_byte(0xC0 | encode);
duke@435 1555 }
duke@435 1556
duke@435 1557 void Assembler::movdq(Register dst, XMMRegister src) {
duke@435 1558 emit_byte(0x66);
duke@435 1559 // swap src/dst to get correct prefix
duke@435 1560 int encode = prefixq_and_encode(src->encoding(), dst->encoding());
duke@435 1561 emit_byte(0x0F);
duke@435 1562 emit_byte(0x7E);
duke@435 1563 emit_byte(0xC0 | encode);
duke@435 1564 }
duke@435 1565
duke@435 1566 void Assembler::pxor(XMMRegister dst, Address src) {
duke@435 1567 InstructionMark im(this);
duke@435 1568 emit_byte(0x66);
duke@435 1569 prefix(src, dst);
duke@435 1570 emit_byte(0x0F);
duke@435 1571 emit_byte(0xEF);
duke@435 1572 emit_operand(dst, src);
duke@435 1573 }
duke@435 1574
duke@435 1575 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
duke@435 1576 InstructionMark im(this);
duke@435 1577 emit_byte(0x66);
duke@435 1578 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1579 emit_byte(0x0F);
duke@435 1580 emit_byte(0xEF);
duke@435 1581 emit_byte(0xC0 | encode);
duke@435 1582 }
duke@435 1583
duke@435 1584 void Assembler::movdqa(XMMRegister dst, Address src) {
duke@435 1585 InstructionMark im(this);
duke@435 1586 emit_byte(0x66);
duke@435 1587 prefix(src, dst);
duke@435 1588 emit_byte(0x0F);
duke@435 1589 emit_byte(0x6F);
duke@435 1590 emit_operand(dst, src);
duke@435 1591 }
duke@435 1592
duke@435 1593 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
duke@435 1594 emit_byte(0x66);
duke@435 1595 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1596 emit_byte(0x0F);
duke@435 1597 emit_byte(0x6F);
duke@435 1598 emit_byte(0xC0 | encode);
duke@435 1599 }
duke@435 1600
duke@435 1601 void Assembler::movdqa(Address dst, XMMRegister src) {
duke@435 1602 InstructionMark im(this);
duke@435 1603 emit_byte(0x66);
duke@435 1604 prefix(dst, src);
duke@435 1605 emit_byte(0x0F);
duke@435 1606 emit_byte(0x7F);
duke@435 1607 emit_operand(src, dst);
duke@435 1608 }
duke@435 1609
duke@435 1610 void Assembler::movq(XMMRegister dst, Address src) {
duke@435 1611 InstructionMark im(this);
duke@435 1612 emit_byte(0xF3);
duke@435 1613 prefix(src, dst);
duke@435 1614 emit_byte(0x0F);
duke@435 1615 emit_byte(0x7E);
duke@435 1616 emit_operand(dst, src);
duke@435 1617 }
duke@435 1618
duke@435 1619 void Assembler::movq(Address dst, XMMRegister src) {
duke@435 1620 InstructionMark im(this);
duke@435 1621 emit_byte(0x66);
duke@435 1622 prefix(dst, src);
duke@435 1623 emit_byte(0x0F);
duke@435 1624 emit_byte(0xD6);
duke@435 1625 emit_operand(src, dst);
duke@435 1626 }
duke@435 1627
duke@435 1628 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
duke@435 1629 assert(isByte(mode), "invalid value");
duke@435 1630 emit_byte(0x66);
duke@435 1631 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1632 emit_byte(0x0F);
duke@435 1633 emit_byte(0x70);
duke@435 1634 emit_byte(0xC0 | encode);
duke@435 1635 emit_byte(mode & 0xFF);
duke@435 1636 }
duke@435 1637
duke@435 1638 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
duke@435 1639 assert(isByte(mode), "invalid value");
duke@435 1640 InstructionMark im(this);
duke@435 1641 emit_byte(0x66);
duke@435 1642 emit_byte(0x0F);
duke@435 1643 emit_byte(0x70);
duke@435 1644 emit_operand(dst, src);
duke@435 1645 emit_byte(mode & 0xFF);
duke@435 1646 }
duke@435 1647
duke@435 1648 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
duke@435 1649 assert(isByte(mode), "invalid value");
duke@435 1650 emit_byte(0xF2);
duke@435 1651 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1652 emit_byte(0x0F);
duke@435 1653 emit_byte(0x70);
duke@435 1654 emit_byte(0xC0 | encode);
duke@435 1655 emit_byte(mode & 0xFF);
duke@435 1656 }
duke@435 1657
duke@435 1658 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
duke@435 1659 assert(isByte(mode), "invalid value");
duke@435 1660 InstructionMark im(this);
duke@435 1661 emit_byte(0xF2);
duke@435 1662 emit_byte(0x0F);
duke@435 1663 emit_byte(0x70);
duke@435 1664 emit_operand(dst, src);
duke@435 1665 emit_byte(mode & 0xFF);
duke@435 1666 }
duke@435 1667
duke@435 1668 void Assembler::cmovl(Condition cc, Register dst, Register src) {
duke@435 1669 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1670 emit_byte(0x0F);
duke@435 1671 emit_byte(0x40 | cc);
duke@435 1672 emit_byte(0xC0 | encode);
duke@435 1673 }
duke@435 1674
duke@435 1675 void Assembler::cmovl(Condition cc, Register dst, Address src) {
duke@435 1676 InstructionMark im(this);
duke@435 1677 prefix(src, dst);
duke@435 1678 emit_byte(0x0F);
duke@435 1679 emit_byte(0x40 | cc);
duke@435 1680 emit_operand(dst, src);
duke@435 1681 }
duke@435 1682
duke@435 1683 void Assembler::cmovq(Condition cc, Register dst, Register src) {
duke@435 1684 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1685 emit_byte(0x0F);
duke@435 1686 emit_byte(0x40 | cc);
duke@435 1687 emit_byte(0xC0 | encode);
duke@435 1688 }
duke@435 1689
duke@435 1690 void Assembler::cmovq(Condition cc, Register dst, Address src) {
duke@435 1691 InstructionMark im(this);
duke@435 1692 prefixq(src, dst);
duke@435 1693 emit_byte(0x0F);
duke@435 1694 emit_byte(0x40 | cc);
duke@435 1695 emit_operand(dst, src);
duke@435 1696 }
duke@435 1697
duke@435 1698 void Assembler::prefetch_prefix(Address src) {
duke@435 1699 prefix(src);
duke@435 1700 emit_byte(0x0F);
duke@435 1701 }
duke@435 1702
duke@435 1703 void Assembler::prefetcht0(Address src) {
duke@435 1704 InstructionMark im(this);
duke@435 1705 prefetch_prefix(src);
duke@435 1706 emit_byte(0x18);
duke@435 1707 emit_operand(rcx, src); // 1, src
duke@435 1708 }
duke@435 1709
duke@435 1710 void Assembler::prefetcht1(Address src) {
duke@435 1711 InstructionMark im(this);
duke@435 1712 prefetch_prefix(src);
duke@435 1713 emit_byte(0x18);
duke@435 1714 emit_operand(rdx, src); // 2, src
duke@435 1715 }
duke@435 1716
duke@435 1717 void Assembler::prefetcht2(Address src) {
duke@435 1718 InstructionMark im(this);
duke@435 1719 prefetch_prefix(src);
duke@435 1720 emit_byte(0x18);
duke@435 1721 emit_operand(rbx, src); // 3, src
duke@435 1722 }
duke@435 1723
duke@435 1724 void Assembler::prefetchnta(Address src) {
duke@435 1725 InstructionMark im(this);
duke@435 1726 prefetch_prefix(src);
duke@435 1727 emit_byte(0x18);
duke@435 1728 emit_operand(rax, src); // 0, src
duke@435 1729 }
duke@435 1730
duke@435 1731 void Assembler::prefetchw(Address src) {
duke@435 1732 InstructionMark im(this);
duke@435 1733 prefetch_prefix(src);
duke@435 1734 emit_byte(0x0D);
duke@435 1735 emit_operand(rcx, src); // 1, src
duke@435 1736 }
duke@435 1737
duke@435 1738 void Assembler::adcl(Register dst, int imm32) {
duke@435 1739 prefix(dst);
duke@435 1740 emit_arith(0x81, 0xD0, dst, imm32);
duke@435 1741 }
duke@435 1742
duke@435 1743 void Assembler::adcl(Register dst, Address src) {
duke@435 1744 InstructionMark im(this);
duke@435 1745 prefix(src, dst);
duke@435 1746 emit_byte(0x13);
duke@435 1747 emit_operand(dst, src);
duke@435 1748 }
duke@435 1749
duke@435 1750 void Assembler::adcl(Register dst, Register src) {
duke@435 1751 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1752 emit_arith(0x13, 0xC0, dst, src);
duke@435 1753 }
duke@435 1754
duke@435 1755 void Assembler::adcq(Register dst, int imm32) {
duke@435 1756 (void) prefixq_and_encode(dst->encoding());
duke@435 1757 emit_arith(0x81, 0xD0, dst, imm32);
duke@435 1758 }
duke@435 1759
duke@435 1760 void Assembler::adcq(Register dst, Address src) {
duke@435 1761 InstructionMark im(this);
duke@435 1762 prefixq(src, dst);
duke@435 1763 emit_byte(0x13);
duke@435 1764 emit_operand(dst, src);
duke@435 1765 }
duke@435 1766
duke@435 1767 void Assembler::adcq(Register dst, Register src) {
duke@435 1768 (int) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1769 emit_arith(0x13, 0xC0, dst, src);
duke@435 1770 }
duke@435 1771
duke@435 1772 void Assembler::addl(Address dst, int imm32) {
duke@435 1773 InstructionMark im(this);
duke@435 1774 prefix(dst);
duke@435 1775 emit_arith_operand(0x81, rax, dst,imm32);
duke@435 1776 }
duke@435 1777
duke@435 1778 void Assembler::addl(Address dst, Register src) {
duke@435 1779 InstructionMark im(this);
duke@435 1780 prefix(dst, src);
duke@435 1781 emit_byte(0x01);
duke@435 1782 emit_operand(src, dst);
duke@435 1783 }
duke@435 1784
duke@435 1785 void Assembler::addl(Register dst, int imm32) {
duke@435 1786 prefix(dst);
duke@435 1787 emit_arith(0x81, 0xC0, dst, imm32);
duke@435 1788 }
duke@435 1789
duke@435 1790 void Assembler::addl(Register dst, Address src) {
duke@435 1791 InstructionMark im(this);
duke@435 1792 prefix(src, dst);
duke@435 1793 emit_byte(0x03);
duke@435 1794 emit_operand(dst, src);
duke@435 1795 }
duke@435 1796
duke@435 1797 void Assembler::addl(Register dst, Register src) {
duke@435 1798 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1799 emit_arith(0x03, 0xC0, dst, src);
duke@435 1800 }
duke@435 1801
duke@435 1802 void Assembler::addq(Address dst, int imm32) {
duke@435 1803 InstructionMark im(this);
duke@435 1804 prefixq(dst);
duke@435 1805 emit_arith_operand(0x81, rax, dst,imm32);
duke@435 1806 }
duke@435 1807
duke@435 1808 void Assembler::addq(Address dst, Register src) {
duke@435 1809 InstructionMark im(this);
duke@435 1810 prefixq(dst, src);
duke@435 1811 emit_byte(0x01);
duke@435 1812 emit_operand(src, dst);
duke@435 1813 }
duke@435 1814
duke@435 1815 void Assembler::addq(Register dst, int imm32) {
duke@435 1816 (void) prefixq_and_encode(dst->encoding());
duke@435 1817 emit_arith(0x81, 0xC0, dst, imm32);
duke@435 1818 }
duke@435 1819
duke@435 1820 void Assembler::addq(Register dst, Address src) {
duke@435 1821 InstructionMark im(this);
duke@435 1822 prefixq(src, dst);
duke@435 1823 emit_byte(0x03);
duke@435 1824 emit_operand(dst, src);
duke@435 1825 }
duke@435 1826
duke@435 1827 void Assembler::addq(Register dst, Register src) {
duke@435 1828 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1829 emit_arith(0x03, 0xC0, dst, src);
duke@435 1830 }
duke@435 1831
duke@435 1832 void Assembler::andl(Register dst, int imm32) {
duke@435 1833 prefix(dst);
duke@435 1834 emit_arith(0x81, 0xE0, dst, imm32);
duke@435 1835 }
duke@435 1836
duke@435 1837 void Assembler::andl(Register dst, Address src) {
duke@435 1838 InstructionMark im(this);
duke@435 1839 prefix(src, dst);
duke@435 1840 emit_byte(0x23);
duke@435 1841 emit_operand(dst, src);
duke@435 1842 }
duke@435 1843
duke@435 1844 void Assembler::andl(Register dst, Register src) {
duke@435 1845 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1846 emit_arith(0x23, 0xC0, dst, src);
duke@435 1847 }
duke@435 1848
duke@435 1849 void Assembler::andq(Register dst, int imm32) {
duke@435 1850 (void) prefixq_and_encode(dst->encoding());
duke@435 1851 emit_arith(0x81, 0xE0, dst, imm32);
duke@435 1852 }
duke@435 1853
duke@435 1854 void Assembler::andq(Register dst, Address src) {
duke@435 1855 InstructionMark im(this);
duke@435 1856 prefixq(src, dst);
duke@435 1857 emit_byte(0x23);
duke@435 1858 emit_operand(dst, src);
duke@435 1859 }
duke@435 1860
duke@435 1861 void Assembler::andq(Register dst, Register src) {
duke@435 1862 (int) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1863 emit_arith(0x23, 0xC0, dst, src);
duke@435 1864 }
duke@435 1865
duke@435 1866 void Assembler::cmpb(Address dst, int imm8) {
duke@435 1867 InstructionMark im(this);
duke@435 1868 prefix(dst);
duke@435 1869 emit_byte(0x80);
duke@435 1870 emit_operand(rdi, dst, 1);
duke@435 1871 emit_byte(imm8);
duke@435 1872 }
duke@435 1873
duke@435 1874 void Assembler::cmpl(Address dst, int imm32) {
duke@435 1875 InstructionMark im(this);
duke@435 1876 prefix(dst);
duke@435 1877 emit_byte(0x81);
duke@435 1878 emit_operand(rdi, dst, 4);
duke@435 1879 emit_long(imm32);
duke@435 1880 }
duke@435 1881
duke@435 1882 void Assembler::cmpl(Register dst, int imm32) {
duke@435 1883 prefix(dst);
duke@435 1884 emit_arith(0x81, 0xF8, dst, imm32);
duke@435 1885 }
duke@435 1886
duke@435 1887 void Assembler::cmpl(Register dst, Register src) {
duke@435 1888 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1889 emit_arith(0x3B, 0xC0, dst, src);
duke@435 1890 }
duke@435 1891
duke@435 1892 void Assembler::cmpl(Register dst, Address src) {
duke@435 1893 InstructionMark im(this);
duke@435 1894 prefix(src, dst);
duke@435 1895 emit_byte(0x3B);
duke@435 1896 emit_operand(dst, src);
duke@435 1897 }
duke@435 1898
duke@435 1899 void Assembler::cmpq(Address dst, int imm32) {
duke@435 1900 InstructionMark im(this);
duke@435 1901 prefixq(dst);
duke@435 1902 emit_byte(0x81);
duke@435 1903 emit_operand(rdi, dst, 4);
duke@435 1904 emit_long(imm32);
duke@435 1905 }
duke@435 1906
duke@435 1907 void Assembler::cmpq(Register dst, int imm32) {
duke@435 1908 (void) prefixq_and_encode(dst->encoding());
duke@435 1909 emit_arith(0x81, 0xF8, dst, imm32);
duke@435 1910 }
duke@435 1911
duke@435 1912 void Assembler::cmpq(Address dst, Register src) {
duke@435 1913 prefixq(dst, src);
duke@435 1914 emit_byte(0x3B);
duke@435 1915 emit_operand(src, dst);
duke@435 1916 }
duke@435 1917
duke@435 1918 void Assembler::cmpq(Register dst, Register src) {
duke@435 1919 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1920 emit_arith(0x3B, 0xC0, dst, src);
duke@435 1921 }
duke@435 1922
duke@435 1923 void Assembler::cmpq(Register dst, Address src) {
duke@435 1924 InstructionMark im(this);
duke@435 1925 prefixq(src, dst);
duke@435 1926 emit_byte(0x3B);
duke@435 1927 emit_operand(dst, src);
duke@435 1928 }
duke@435 1929
duke@435 1930 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
duke@435 1931 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1932 emit_byte(0x0F);
duke@435 1933 emit_byte(0x2E);
duke@435 1934 emit_byte(0xC0 | encode);
duke@435 1935 }
duke@435 1936
duke@435 1937 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
duke@435 1938 emit_byte(0x66);
duke@435 1939 ucomiss(dst, src);
duke@435 1940 }
duke@435 1941
duke@435 1942 void Assembler::decl(Register dst) {
duke@435 1943 // Don't use it directly. Use MacroAssembler::decrementl() instead.
duke@435 1944 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 1945 int encode = prefix_and_encode(dst->encoding());
duke@435 1946 emit_byte(0xFF);
duke@435 1947 emit_byte(0xC8 | encode);
duke@435 1948 }
duke@435 1949
duke@435 1950 void Assembler::decl(Address dst) {
duke@435 1951 // Don't use it directly. Use MacroAssembler::decrementl() instead.
duke@435 1952 InstructionMark im(this);
duke@435 1953 prefix(dst);
duke@435 1954 emit_byte(0xFF);
duke@435 1955 emit_operand(rcx, dst);
duke@435 1956 }
duke@435 1957
duke@435 1958 void Assembler::decq(Register dst) {
duke@435 1959 // Don't use it directly. Use MacroAssembler::decrementq() instead.
duke@435 1960 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 1961 int encode = prefixq_and_encode(dst->encoding());
duke@435 1962 emit_byte(0xFF);
duke@435 1963 emit_byte(0xC8 | encode);
duke@435 1964 }
duke@435 1965
duke@435 1966 void Assembler::decq(Address dst) {
duke@435 1967 // Don't use it directly. Use MacroAssembler::decrementq() instead.
duke@435 1968 InstructionMark im(this);
duke@435 1969 prefixq(dst);
duke@435 1970 emit_byte(0xFF);
duke@435 1971 emit_operand(rcx, dst);
duke@435 1972 }
duke@435 1973
duke@435 1974 void Assembler::idivl(Register src) {
duke@435 1975 int encode = prefix_and_encode(src->encoding());
duke@435 1976 emit_byte(0xF7);
duke@435 1977 emit_byte(0xF8 | encode);
duke@435 1978 }
duke@435 1979
duke@435 1980 void Assembler::idivq(Register src) {
duke@435 1981 int encode = prefixq_and_encode(src->encoding());
duke@435 1982 emit_byte(0xF7);
duke@435 1983 emit_byte(0xF8 | encode);
duke@435 1984 }
duke@435 1985
duke@435 1986 void Assembler::cdql() {
duke@435 1987 emit_byte(0x99);
duke@435 1988 }
duke@435 1989
duke@435 1990 void Assembler::cdqq() {
duke@435 1991 prefix(REX_W);
duke@435 1992 emit_byte(0x99);
duke@435 1993 }
duke@435 1994
duke@435 1995 void Assembler::imull(Register dst, Register src) {
duke@435 1996 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1997 emit_byte(0x0F);
duke@435 1998 emit_byte(0xAF);
duke@435 1999 emit_byte(0xC0 | encode);
duke@435 2000 }
duke@435 2001
duke@435 2002 void Assembler::imull(Register dst, Register src, int value) {
duke@435 2003 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2004 if (is8bit(value)) {
duke@435 2005 emit_byte(0x6B);
duke@435 2006 emit_byte(0xC0 | encode);
duke@435 2007 emit_byte(value);
duke@435 2008 } else {
duke@435 2009 emit_byte(0x69);
duke@435 2010 emit_byte(0xC0 | encode);
duke@435 2011 emit_long(value);
duke@435 2012 }
duke@435 2013 }
duke@435 2014
duke@435 2015 void Assembler::imulq(Register dst, Register src) {
duke@435 2016 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2017 emit_byte(0x0F);
duke@435 2018 emit_byte(0xAF);
duke@435 2019 emit_byte(0xC0 | encode);
duke@435 2020 }
duke@435 2021
duke@435 2022 void Assembler::imulq(Register dst, Register src, int value) {
duke@435 2023 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2024 if (is8bit(value)) {
duke@435 2025 emit_byte(0x6B);
duke@435 2026 emit_byte(0xC0 | encode);
duke@435 2027 emit_byte(value);
duke@435 2028 } else {
duke@435 2029 emit_byte(0x69);
duke@435 2030 emit_byte(0xC0 | encode);
duke@435 2031 emit_long(value);
duke@435 2032 }
duke@435 2033 }
duke@435 2034
duke@435 2035 void Assembler::incl(Register dst) {
duke@435 2036 // Don't use it directly. Use MacroAssembler::incrementl() instead.
duke@435 2037 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 2038 int encode = prefix_and_encode(dst->encoding());
duke@435 2039 emit_byte(0xFF);
duke@435 2040 emit_byte(0xC0 | encode);
duke@435 2041 }
duke@435 2042
duke@435 2043 void Assembler::incl(Address dst) {
duke@435 2044 // Don't use it directly. Use MacroAssembler::incrementl() instead.
duke@435 2045 InstructionMark im(this);
duke@435 2046 prefix(dst);
duke@435 2047 emit_byte(0xFF);
duke@435 2048 emit_operand(rax, dst);
duke@435 2049 }
duke@435 2050
duke@435 2051 void Assembler::incq(Register dst) {
duke@435 2052 // Don't use it directly. Use MacroAssembler::incrementq() instead.
duke@435 2053 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 2054 int encode = prefixq_and_encode(dst->encoding());
duke@435 2055 emit_byte(0xFF);
duke@435 2056 emit_byte(0xC0 | encode);
duke@435 2057 }
duke@435 2058
duke@435 2059 void Assembler::incq(Address dst) {
duke@435 2060 // Don't use it directly. Use MacroAssembler::incrementq() instead.
duke@435 2061 InstructionMark im(this);
duke@435 2062 prefixq(dst);
duke@435 2063 emit_byte(0xFF);
duke@435 2064 emit_operand(rax, dst);
duke@435 2065 }
duke@435 2066
duke@435 2067 void Assembler::leal(Register dst, Address src) {
duke@435 2068 InstructionMark im(this);
duke@435 2069 emit_byte(0x67); // addr32
duke@435 2070 prefix(src, dst);
duke@435 2071 emit_byte(0x8D);
duke@435 2072 emit_operand(dst, src);
duke@435 2073 }
duke@435 2074
duke@435 2075 void Assembler::leaq(Register dst, Address src) {
duke@435 2076 InstructionMark im(this);
duke@435 2077 prefixq(src, dst);
duke@435 2078 emit_byte(0x8D);
duke@435 2079 emit_operand(dst, src);
duke@435 2080 }
duke@435 2081
duke@435 2082 void Assembler::mull(Address src) {
duke@435 2083 InstructionMark im(this);
duke@435 2084 // was missing
duke@435 2085 prefix(src);
duke@435 2086 emit_byte(0xF7);
duke@435 2087 emit_operand(rsp, src);
duke@435 2088 }
duke@435 2089
duke@435 2090 void Assembler::mull(Register src) {
duke@435 2091 // was missing
duke@435 2092 int encode = prefix_and_encode(src->encoding());
duke@435 2093 emit_byte(0xF7);
duke@435 2094 emit_byte(0xE0 | encode);
duke@435 2095 }
duke@435 2096
duke@435 2097 void Assembler::negl(Register dst) {
duke@435 2098 int encode = prefix_and_encode(dst->encoding());
duke@435 2099 emit_byte(0xF7);
duke@435 2100 emit_byte(0xD8 | encode);
duke@435 2101 }
duke@435 2102
duke@435 2103 void Assembler::negq(Register dst) {
duke@435 2104 int encode = prefixq_and_encode(dst->encoding());
duke@435 2105 emit_byte(0xF7);
duke@435 2106 emit_byte(0xD8 | encode);
duke@435 2107 }
duke@435 2108
duke@435 2109 void Assembler::notl(Register dst) {
duke@435 2110 int encode = prefix_and_encode(dst->encoding());
duke@435 2111 emit_byte(0xF7);
duke@435 2112 emit_byte(0xD0 | encode);
duke@435 2113 }
duke@435 2114
duke@435 2115 void Assembler::notq(Register dst) {
duke@435 2116 int encode = prefixq_and_encode(dst->encoding());
duke@435 2117 emit_byte(0xF7);
duke@435 2118 emit_byte(0xD0 | encode);
duke@435 2119 }
duke@435 2120
duke@435 2121 void Assembler::orl(Address dst, int imm32) {
duke@435 2122 InstructionMark im(this);
duke@435 2123 prefix(dst);
duke@435 2124 emit_byte(0x81);
duke@435 2125 emit_operand(rcx, dst, 4);
duke@435 2126 emit_long(imm32);
duke@435 2127 }
duke@435 2128
duke@435 2129 void Assembler::orl(Register dst, int imm32) {
duke@435 2130 prefix(dst);
duke@435 2131 emit_arith(0x81, 0xC8, dst, imm32);
duke@435 2132 }
duke@435 2133
duke@435 2134 void Assembler::orl(Register dst, Address src) {
duke@435 2135 InstructionMark im(this);
duke@435 2136 prefix(src, dst);
duke@435 2137 emit_byte(0x0B);
duke@435 2138 emit_operand(dst, src);
duke@435 2139 }
duke@435 2140
duke@435 2141 void Assembler::orl(Register dst, Register src) {
duke@435 2142 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2143 emit_arith(0x0B, 0xC0, dst, src);
duke@435 2144 }
duke@435 2145
duke@435 2146 void Assembler::orq(Address dst, int imm32) {
duke@435 2147 InstructionMark im(this);
duke@435 2148 prefixq(dst);
duke@435 2149 emit_byte(0x81);
duke@435 2150 emit_operand(rcx, dst, 4);
duke@435 2151 emit_long(imm32);
duke@435 2152 }
duke@435 2153
duke@435 2154 void Assembler::orq(Register dst, int imm32) {
duke@435 2155 (void) prefixq_and_encode(dst->encoding());
duke@435 2156 emit_arith(0x81, 0xC8, dst, imm32);
duke@435 2157 }
duke@435 2158
duke@435 2159 void Assembler::orq(Register dst, Address src) {
duke@435 2160 InstructionMark im(this);
duke@435 2161 prefixq(src, dst);
duke@435 2162 emit_byte(0x0B);
duke@435 2163 emit_operand(dst, src);
duke@435 2164 }
duke@435 2165
duke@435 2166 void Assembler::orq(Register dst, Register src) {
duke@435 2167 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2168 emit_arith(0x0B, 0xC0, dst, src);
duke@435 2169 }
duke@435 2170
duke@435 2171 void Assembler::rcll(Register dst, int imm8) {
duke@435 2172 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2173 int encode = prefix_and_encode(dst->encoding());
duke@435 2174 if (imm8 == 1) {
duke@435 2175 emit_byte(0xD1);
duke@435 2176 emit_byte(0xD0 | encode);
duke@435 2177 } else {
duke@435 2178 emit_byte(0xC1);
duke@435 2179 emit_byte(0xD0 | encode);
duke@435 2180 emit_byte(imm8);
duke@435 2181 }
duke@435 2182 }
duke@435 2183
duke@435 2184 void Assembler::rclq(Register dst, int imm8) {
duke@435 2185 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2186 int encode = prefixq_and_encode(dst->encoding());
duke@435 2187 if (imm8 == 1) {
duke@435 2188 emit_byte(0xD1);
duke@435 2189 emit_byte(0xD0 | encode);
duke@435 2190 } else {
duke@435 2191 emit_byte(0xC1);
duke@435 2192 emit_byte(0xD0 | encode);
duke@435 2193 emit_byte(imm8);
duke@435 2194 }
duke@435 2195 }
duke@435 2196
duke@435 2197 void Assembler::sarl(Register dst, int imm8) {
duke@435 2198 int encode = prefix_and_encode(dst->encoding());
duke@435 2199 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2200 if (imm8 == 1) {
duke@435 2201 emit_byte(0xD1);
duke@435 2202 emit_byte(0xF8 | encode);
duke@435 2203 } else {
duke@435 2204 emit_byte(0xC1);
duke@435 2205 emit_byte(0xF8 | encode);
duke@435 2206 emit_byte(imm8);
duke@435 2207 }
duke@435 2208 }
duke@435 2209
duke@435 2210 void Assembler::sarl(Register dst) {
duke@435 2211 int encode = prefix_and_encode(dst->encoding());
duke@435 2212 emit_byte(0xD3);
duke@435 2213 emit_byte(0xF8 | encode);
duke@435 2214 }
duke@435 2215
duke@435 2216 void Assembler::sarq(Register dst, int imm8) {
duke@435 2217 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2218 int encode = prefixq_and_encode(dst->encoding());
duke@435 2219 if (imm8 == 1) {
duke@435 2220 emit_byte(0xD1);
duke@435 2221 emit_byte(0xF8 | encode);
duke@435 2222 } else {
duke@435 2223 emit_byte(0xC1);
duke@435 2224 emit_byte(0xF8 | encode);
duke@435 2225 emit_byte(imm8);
duke@435 2226 }
duke@435 2227 }
duke@435 2228
duke@435 2229 void Assembler::sarq(Register dst) {
duke@435 2230 int encode = prefixq_and_encode(dst->encoding());
duke@435 2231 emit_byte(0xD3);
duke@435 2232 emit_byte(0xF8 | encode);
duke@435 2233 }
duke@435 2234
duke@435 2235 void Assembler::sbbl(Address dst, int imm32) {
duke@435 2236 InstructionMark im(this);
duke@435 2237 prefix(dst);
duke@435 2238 emit_arith_operand(0x81, rbx, dst, imm32);
duke@435 2239 }
duke@435 2240
duke@435 2241 void Assembler::sbbl(Register dst, int imm32) {
duke@435 2242 prefix(dst);
duke@435 2243 emit_arith(0x81, 0xD8, dst, imm32);
duke@435 2244 }
duke@435 2245
duke@435 2246 void Assembler::sbbl(Register dst, Address src) {
duke@435 2247 InstructionMark im(this);
duke@435 2248 prefix(src, dst);
duke@435 2249 emit_byte(0x1B);
duke@435 2250 emit_operand(dst, src);
duke@435 2251 }
duke@435 2252
duke@435 2253 void Assembler::sbbl(Register dst, Register src) {
duke@435 2254 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2255 emit_arith(0x1B, 0xC0, dst, src);
duke@435 2256 }
duke@435 2257
duke@435 2258 void Assembler::sbbq(Address dst, int imm32) {
duke@435 2259 InstructionMark im(this);
duke@435 2260 prefixq(dst);
duke@435 2261 emit_arith_operand(0x81, rbx, dst, imm32);
duke@435 2262 }
duke@435 2263
duke@435 2264 void Assembler::sbbq(Register dst, int imm32) {
duke@435 2265 (void) prefixq_and_encode(dst->encoding());
duke@435 2266 emit_arith(0x81, 0xD8, dst, imm32);
duke@435 2267 }
duke@435 2268
duke@435 2269 void Assembler::sbbq(Register dst, Address src) {
duke@435 2270 InstructionMark im(this);
duke@435 2271 prefixq(src, dst);
duke@435 2272 emit_byte(0x1B);
duke@435 2273 emit_operand(dst, src);
duke@435 2274 }
duke@435 2275
duke@435 2276 void Assembler::sbbq(Register dst, Register src) {
duke@435 2277 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2278 emit_arith(0x1B, 0xC0, dst, src);
duke@435 2279 }
duke@435 2280
duke@435 2281 void Assembler::shll(Register dst, int imm8) {
duke@435 2282 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2283 int encode = prefix_and_encode(dst->encoding());
duke@435 2284 if (imm8 == 1 ) {
duke@435 2285 emit_byte(0xD1);
duke@435 2286 emit_byte(0xE0 | encode);
duke@435 2287 } else {
duke@435 2288 emit_byte(0xC1);
duke@435 2289 emit_byte(0xE0 | encode);
duke@435 2290 emit_byte(imm8);
duke@435 2291 }
duke@435 2292 }
duke@435 2293
duke@435 2294 void Assembler::shll(Register dst) {
duke@435 2295 int encode = prefix_and_encode(dst->encoding());
duke@435 2296 emit_byte(0xD3);
duke@435 2297 emit_byte(0xE0 | encode);
duke@435 2298 }
duke@435 2299
duke@435 2300 void Assembler::shlq(Register dst, int imm8) {
duke@435 2301 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2302 int encode = prefixq_and_encode(dst->encoding());
duke@435 2303 if (imm8 == 1) {
duke@435 2304 emit_byte(0xD1);
duke@435 2305 emit_byte(0xE0 | encode);
duke@435 2306 } else {
duke@435 2307 emit_byte(0xC1);
duke@435 2308 emit_byte(0xE0 | encode);
duke@435 2309 emit_byte(imm8);
duke@435 2310 }
duke@435 2311 }
duke@435 2312
duke@435 2313 void Assembler::shlq(Register dst) {
duke@435 2314 int encode = prefixq_and_encode(dst->encoding());
duke@435 2315 emit_byte(0xD3);
duke@435 2316 emit_byte(0xE0 | encode);
duke@435 2317 }
duke@435 2318
duke@435 2319 void Assembler::shrl(Register dst, int imm8) {
duke@435 2320 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2321 int encode = prefix_and_encode(dst->encoding());
duke@435 2322 emit_byte(0xC1);
duke@435 2323 emit_byte(0xE8 | encode);
duke@435 2324 emit_byte(imm8);
duke@435 2325 }
duke@435 2326
duke@435 2327 void Assembler::shrl(Register dst) {
duke@435 2328 int encode = prefix_and_encode(dst->encoding());
duke@435 2329 emit_byte(0xD3);
duke@435 2330 emit_byte(0xE8 | encode);
duke@435 2331 }
duke@435 2332
duke@435 2333 void Assembler::shrq(Register dst, int imm8) {
duke@435 2334 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2335 int encode = prefixq_and_encode(dst->encoding());
duke@435 2336 emit_byte(0xC1);
duke@435 2337 emit_byte(0xE8 | encode);
duke@435 2338 emit_byte(imm8);
duke@435 2339 }
duke@435 2340
duke@435 2341 void Assembler::shrq(Register dst) {
duke@435 2342 int encode = prefixq_and_encode(dst->encoding());
duke@435 2343 emit_byte(0xD3);
duke@435 2344 emit_byte(0xE8 | encode);
duke@435 2345 }
duke@435 2346
duke@435 2347 void Assembler::subl(Address dst, int imm32) {
duke@435 2348 InstructionMark im(this);
duke@435 2349 prefix(dst);
duke@435 2350 if (is8bit(imm32)) {
duke@435 2351 emit_byte(0x83);
duke@435 2352 emit_operand(rbp, dst, 1);
duke@435 2353 emit_byte(imm32 & 0xFF);
duke@435 2354 } else {
duke@435 2355 emit_byte(0x81);
duke@435 2356 emit_operand(rbp, dst, 4);
duke@435 2357 emit_long(imm32);
duke@435 2358 }
duke@435 2359 }
duke@435 2360
duke@435 2361 void Assembler::subl(Register dst, int imm32) {
duke@435 2362 prefix(dst);
duke@435 2363 emit_arith(0x81, 0xE8, dst, imm32);
duke@435 2364 }
duke@435 2365
duke@435 2366 void Assembler::subl(Address dst, Register src) {
duke@435 2367 InstructionMark im(this);
duke@435 2368 prefix(dst, src);
duke@435 2369 emit_byte(0x29);
duke@435 2370 emit_operand(src, dst);
duke@435 2371 }
duke@435 2372
duke@435 2373 void Assembler::subl(Register dst, Address src) {
duke@435 2374 InstructionMark im(this);
duke@435 2375 prefix(src, dst);
duke@435 2376 emit_byte(0x2B);
duke@435 2377 emit_operand(dst, src);
duke@435 2378 }
duke@435 2379
duke@435 2380 void Assembler::subl(Register dst, Register src) {
duke@435 2381 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2382 emit_arith(0x2B, 0xC0, dst, src);
duke@435 2383 }
duke@435 2384
duke@435 2385 void Assembler::subq(Address dst, int imm32) {
duke@435 2386 InstructionMark im(this);
duke@435 2387 prefixq(dst);
duke@435 2388 if (is8bit(imm32)) {
duke@435 2389 emit_byte(0x83);
duke@435 2390 emit_operand(rbp, dst, 1);
duke@435 2391 emit_byte(imm32 & 0xFF);
duke@435 2392 } else {
duke@435 2393 emit_byte(0x81);
duke@435 2394 emit_operand(rbp, dst, 4);
duke@435 2395 emit_long(imm32);
duke@435 2396 }
duke@435 2397 }
duke@435 2398
duke@435 2399 void Assembler::subq(Register dst, int imm32) {
duke@435 2400 (void) prefixq_and_encode(dst->encoding());
duke@435 2401 emit_arith(0x81, 0xE8, dst, imm32);
duke@435 2402 }
duke@435 2403
duke@435 2404 void Assembler::subq(Address dst, Register src) {
duke@435 2405 InstructionMark im(this);
duke@435 2406 prefixq(dst, src);
duke@435 2407 emit_byte(0x29);
duke@435 2408 emit_operand(src, dst);
duke@435 2409 }
duke@435 2410
duke@435 2411 void Assembler::subq(Register dst, Address src) {
duke@435 2412 InstructionMark im(this);
duke@435 2413 prefixq(src, dst);
duke@435 2414 emit_byte(0x2B);
duke@435 2415 emit_operand(dst, src);
duke@435 2416 }
duke@435 2417
duke@435 2418 void Assembler::subq(Register dst, Register src) {
duke@435 2419 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2420 emit_arith(0x2B, 0xC0, dst, src);
duke@435 2421 }
duke@435 2422
duke@435 2423 void Assembler::testb(Register dst, int imm8) {
duke@435 2424 (void) prefix_and_encode(dst->encoding(), true);
duke@435 2425 emit_arith_b(0xF6, 0xC0, dst, imm8);
duke@435 2426 }
duke@435 2427
duke@435 2428 void Assembler::testl(Register dst, int imm32) {
duke@435 2429 // not using emit_arith because test
duke@435 2430 // doesn't support sign-extension of
duke@435 2431 // 8bit operands
duke@435 2432 int encode = dst->encoding();
duke@435 2433 if (encode == 0) {
duke@435 2434 emit_byte(0xA9);
duke@435 2435 } else {
duke@435 2436 encode = prefix_and_encode(encode);
duke@435 2437 emit_byte(0xF7);
duke@435 2438 emit_byte(0xC0 | encode);
duke@435 2439 }
duke@435 2440 emit_long(imm32);
duke@435 2441 }
duke@435 2442
duke@435 2443 void Assembler::testl(Register dst, Register src) {
duke@435 2444 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2445 emit_arith(0x85, 0xC0, dst, src);
duke@435 2446 }
duke@435 2447
duke@435 2448 void Assembler::testq(Register dst, int imm32) {
duke@435 2449 // not using emit_arith because test
duke@435 2450 // doesn't support sign-extension of
duke@435 2451 // 8bit operands
duke@435 2452 int encode = dst->encoding();
duke@435 2453 if (encode == 0) {
duke@435 2454 prefix(REX_W);
duke@435 2455 emit_byte(0xA9);
duke@435 2456 } else {
duke@435 2457 encode = prefixq_and_encode(encode);
duke@435 2458 emit_byte(0xF7);
duke@435 2459 emit_byte(0xC0 | encode);
duke@435 2460 }
duke@435 2461 emit_long(imm32);
duke@435 2462 }
duke@435 2463
duke@435 2464 void Assembler::testq(Register dst, Register src) {
duke@435 2465 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2466 emit_arith(0x85, 0xC0, dst, src);
duke@435 2467 }
duke@435 2468
duke@435 2469 void Assembler::xaddl(Address dst, Register src) {
duke@435 2470 InstructionMark im(this);
duke@435 2471 prefix(dst, src);
duke@435 2472 emit_byte(0x0F);
duke@435 2473 emit_byte(0xC1);
duke@435 2474 emit_operand(src, dst);
duke@435 2475 }
duke@435 2476
duke@435 2477 void Assembler::xaddq(Address dst, Register src) {
duke@435 2478 InstructionMark im(this);
duke@435 2479 prefixq(dst, src);
duke@435 2480 emit_byte(0x0F);
duke@435 2481 emit_byte(0xC1);
duke@435 2482 emit_operand(src, dst);
duke@435 2483 }
duke@435 2484
duke@435 2485 void Assembler::xorl(Register dst, int imm32) {
duke@435 2486 prefix(dst);
duke@435 2487 emit_arith(0x81, 0xF0, dst, imm32);
duke@435 2488 }
duke@435 2489
duke@435 2490 void Assembler::xorl(Register dst, Register src) {
duke@435 2491 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2492 emit_arith(0x33, 0xC0, dst, src);
duke@435 2493 }
duke@435 2494
duke@435 2495 void Assembler::xorl(Register dst, Address src) {
duke@435 2496 InstructionMark im(this);
duke@435 2497 prefix(src, dst);
duke@435 2498 emit_byte(0x33);
duke@435 2499 emit_operand(dst, src);
duke@435 2500 }
duke@435 2501
duke@435 2502 void Assembler::xorq(Register dst, int imm32) {
duke@435 2503 (void) prefixq_and_encode(dst->encoding());
duke@435 2504 emit_arith(0x81, 0xF0, dst, imm32);
duke@435 2505 }
duke@435 2506
duke@435 2507 void Assembler::xorq(Register dst, Register src) {
duke@435 2508 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2509 emit_arith(0x33, 0xC0, dst, src);
duke@435 2510 }
duke@435 2511
duke@435 2512 void Assembler::xorq(Register dst, Address src) {
duke@435 2513 InstructionMark im(this);
duke@435 2514 prefixq(src, dst);
duke@435 2515 emit_byte(0x33);
duke@435 2516 emit_operand(dst, src);
duke@435 2517 }
duke@435 2518
duke@435 2519 void Assembler::bswapl(Register reg) {
duke@435 2520 int encode = prefix_and_encode(reg->encoding());
duke@435 2521 emit_byte(0x0F);
duke@435 2522 emit_byte(0xC8 | encode);
duke@435 2523 }
duke@435 2524
duke@435 2525 void Assembler::bswapq(Register reg) {
duke@435 2526 int encode = prefixq_and_encode(reg->encoding());
duke@435 2527 emit_byte(0x0F);
duke@435 2528 emit_byte(0xC8 | encode);
duke@435 2529 }
duke@435 2530
duke@435 2531 void Assembler::lock() {
duke@435 2532 emit_byte(0xF0);
duke@435 2533 }
duke@435 2534
duke@435 2535 void Assembler::xchgl(Register dst, Address src) {
duke@435 2536 InstructionMark im(this);
duke@435 2537 prefix(src, dst);
duke@435 2538 emit_byte(0x87);
duke@435 2539 emit_operand(dst, src);
duke@435 2540 }
duke@435 2541
duke@435 2542 void Assembler::xchgl(Register dst, Register src) {
duke@435 2543 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2544 emit_byte(0x87);
duke@435 2545 emit_byte(0xc0 | encode);
duke@435 2546 }
duke@435 2547
duke@435 2548 void Assembler::xchgq(Register dst, Address src) {
duke@435 2549 InstructionMark im(this);
duke@435 2550 prefixq(src, dst);
duke@435 2551 emit_byte(0x87);
duke@435 2552 emit_operand(dst, src);
duke@435 2553 }
duke@435 2554
duke@435 2555 void Assembler::xchgq(Register dst, Register src) {
duke@435 2556 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2557 emit_byte(0x87);
duke@435 2558 emit_byte(0xc0 | encode);
duke@435 2559 }
duke@435 2560
duke@435 2561 void Assembler::cmpxchgl(Register reg, Address adr) {
duke@435 2562 InstructionMark im(this);
duke@435 2563 prefix(adr, reg);
duke@435 2564 emit_byte(0x0F);
duke@435 2565 emit_byte(0xB1);
duke@435 2566 emit_operand(reg, adr);
duke@435 2567 }
duke@435 2568
duke@435 2569 void Assembler::cmpxchgq(Register reg, Address adr) {
duke@435 2570 InstructionMark im(this);
duke@435 2571 prefixq(adr, reg);
duke@435 2572 emit_byte(0x0F);
duke@435 2573 emit_byte(0xB1);
duke@435 2574 emit_operand(reg, adr);
duke@435 2575 }
duke@435 2576
duke@435 2577 void Assembler::hlt() {
duke@435 2578 emit_byte(0xF4);
duke@435 2579 }
duke@435 2580
duke@435 2581
duke@435 2582 void Assembler::addr_nop_4() {
duke@435 2583 // 4 bytes: NOP DWORD PTR [EAX+0]
duke@435 2584 emit_byte(0x0F);
duke@435 2585 emit_byte(0x1F);
duke@435 2586 emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
duke@435 2587 emit_byte(0); // 8-bits offset (1 byte)
duke@435 2588 }
duke@435 2589
duke@435 2590 void Assembler::addr_nop_5() {
duke@435 2591 // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
duke@435 2592 emit_byte(0x0F);
duke@435 2593 emit_byte(0x1F);
duke@435 2594 emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
duke@435 2595 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 2596 emit_byte(0); // 8-bits offset (1 byte)
duke@435 2597 }
duke@435 2598
duke@435 2599 void Assembler::addr_nop_7() {
duke@435 2600 // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
duke@435 2601 emit_byte(0x0F);
duke@435 2602 emit_byte(0x1F);
duke@435 2603 emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
duke@435 2604 emit_long(0); // 32-bits offset (4 bytes)
duke@435 2605 }
duke@435 2606
duke@435 2607 void Assembler::addr_nop_8() {
duke@435 2608 // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
duke@435 2609 emit_byte(0x0F);
duke@435 2610 emit_byte(0x1F);
duke@435 2611 emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
duke@435 2612 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 2613 emit_long(0); // 32-bits offset (4 bytes)
duke@435 2614 }
duke@435 2615
duke@435 2616 void Assembler::nop(int i) {
duke@435 2617 assert(i > 0, " ");
duke@435 2618 if (UseAddressNop && VM_Version::is_intel()) {
duke@435 2619 //
duke@435 2620 // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
duke@435 2621 // 1: 0x90
duke@435 2622 // 2: 0x66 0x90
duke@435 2623 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 2624 // 4: 0x0F 0x1F 0x40 0x00
duke@435 2625 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 2626 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2627 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2628 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2629 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2630 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2631 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2632
duke@435 2633 // The rest coding is Intel specific - don't use consecutive address nops
duke@435 2634
duke@435 2635 // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2636 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2637 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2638 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2639
duke@435 2640 while(i >= 15) {
duke@435 2641 // For Intel don't generate consecutive addess nops (mix with regular nops)
duke@435 2642 i -= 15;
duke@435 2643 emit_byte(0x66); // size prefix
duke@435 2644 emit_byte(0x66); // size prefix
duke@435 2645 emit_byte(0x66); // size prefix
duke@435 2646 addr_nop_8();
duke@435 2647 emit_byte(0x66); // size prefix
duke@435 2648 emit_byte(0x66); // size prefix
duke@435 2649 emit_byte(0x66); // size prefix
duke@435 2650 emit_byte(0x90); // nop
duke@435 2651 }
duke@435 2652 switch (i) {
duke@435 2653 case 14:
duke@435 2654 emit_byte(0x66); // size prefix
duke@435 2655 case 13:
duke@435 2656 emit_byte(0x66); // size prefix
duke@435 2657 case 12:
duke@435 2658 addr_nop_8();
duke@435 2659 emit_byte(0x66); // size prefix
duke@435 2660 emit_byte(0x66); // size prefix
duke@435 2661 emit_byte(0x66); // size prefix
duke@435 2662 emit_byte(0x90); // nop
duke@435 2663 break;
duke@435 2664 case 11:
duke@435 2665 emit_byte(0x66); // size prefix
duke@435 2666 case 10:
duke@435 2667 emit_byte(0x66); // size prefix
duke@435 2668 case 9:
duke@435 2669 emit_byte(0x66); // size prefix
duke@435 2670 case 8:
duke@435 2671 addr_nop_8();
duke@435 2672 break;
duke@435 2673 case 7:
duke@435 2674 addr_nop_7();
duke@435 2675 break;
duke@435 2676 case 6:
duke@435 2677 emit_byte(0x66); // size prefix
duke@435 2678 case 5:
duke@435 2679 addr_nop_5();
duke@435 2680 break;
duke@435 2681 case 4:
duke@435 2682 addr_nop_4();
duke@435 2683 break;
duke@435 2684 case 3:
duke@435 2685 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 2686 emit_byte(0x66); // size prefix
duke@435 2687 case 2:
duke@435 2688 emit_byte(0x66); // size prefix
duke@435 2689 case 1:
duke@435 2690 emit_byte(0x90); // nop
duke@435 2691 break;
duke@435 2692 default:
duke@435 2693 assert(i == 0, " ");
duke@435 2694 }
duke@435 2695 return;
duke@435 2696 }
duke@435 2697 if (UseAddressNop && VM_Version::is_amd()) {
duke@435 2698 //
duke@435 2699 // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
duke@435 2700 // 1: 0x90
duke@435 2701 // 2: 0x66 0x90
duke@435 2702 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 2703 // 4: 0x0F 0x1F 0x40 0x00
duke@435 2704 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 2705 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2706 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2707 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2708 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2709 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2710 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2711
duke@435 2712 // The rest coding is AMD specific - use consecutive address nops
duke@435 2713
duke@435 2714 // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2715 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2716 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2717 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2718 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2719 // Size prefixes (0x66) are added for larger sizes
duke@435 2720
duke@435 2721 while(i >= 22) {
duke@435 2722 i -= 11;
duke@435 2723 emit_byte(0x66); // size prefix
duke@435 2724 emit_byte(0x66); // size prefix
duke@435 2725 emit_byte(0x66); // size prefix
duke@435 2726 addr_nop_8();
duke@435 2727 }
duke@435 2728 // Generate first nop for size between 21-12
duke@435 2729 switch (i) {
duke@435 2730 case 21:
duke@435 2731 i -= 1;
duke@435 2732 emit_byte(0x66); // size prefix
duke@435 2733 case 20:
duke@435 2734 case 19:
duke@435 2735 i -= 1;
duke@435 2736 emit_byte(0x66); // size prefix
duke@435 2737 case 18:
duke@435 2738 case 17:
duke@435 2739 i -= 1;
duke@435 2740 emit_byte(0x66); // size prefix
duke@435 2741 case 16:
duke@435 2742 case 15:
duke@435 2743 i -= 8;
duke@435 2744 addr_nop_8();
duke@435 2745 break;
duke@435 2746 case 14:
duke@435 2747 case 13:
duke@435 2748 i -= 7;
duke@435 2749 addr_nop_7();
duke@435 2750 break;
duke@435 2751 case 12:
duke@435 2752 i -= 6;
duke@435 2753 emit_byte(0x66); // size prefix
duke@435 2754 addr_nop_5();
duke@435 2755 break;
duke@435 2756 default:
duke@435 2757 assert(i < 12, " ");
duke@435 2758 }
duke@435 2759
duke@435 2760 // Generate second nop for size between 11-1
duke@435 2761 switch (i) {
duke@435 2762 case 11:
duke@435 2763 emit_byte(0x66); // size prefix
duke@435 2764 case 10:
duke@435 2765 emit_byte(0x66); // size prefix
duke@435 2766 case 9:
duke@435 2767 emit_byte(0x66); // size prefix
duke@435 2768 case 8:
duke@435 2769 addr_nop_8();
duke@435 2770 break;
duke@435 2771 case 7:
duke@435 2772 addr_nop_7();
duke@435 2773 break;
duke@435 2774 case 6:
duke@435 2775 emit_byte(0x66); // size prefix
duke@435 2776 case 5:
duke@435 2777 addr_nop_5();
duke@435 2778 break;
duke@435 2779 case 4:
duke@435 2780 addr_nop_4();
duke@435 2781 break;
duke@435 2782 case 3:
duke@435 2783 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 2784 emit_byte(0x66); // size prefix
duke@435 2785 case 2:
duke@435 2786 emit_byte(0x66); // size prefix
duke@435 2787 case 1:
duke@435 2788 emit_byte(0x90); // nop
duke@435 2789 break;
duke@435 2790 default:
duke@435 2791 assert(i == 0, " ");
duke@435 2792 }
duke@435 2793 return;
duke@435 2794 }
duke@435 2795
duke@435 2796 // Using nops with size prefixes "0x66 0x90".
duke@435 2797 // From AMD Optimization Guide:
duke@435 2798 // 1: 0x90
duke@435 2799 // 2: 0x66 0x90
duke@435 2800 // 3: 0x66 0x66 0x90
duke@435 2801 // 4: 0x66 0x66 0x66 0x90
duke@435 2802 // 5: 0x66 0x66 0x90 0x66 0x90
duke@435 2803 // 6: 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2804 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2805 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
duke@435 2806 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2807 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2808 //
duke@435 2809 while(i > 12) {
duke@435 2810 i -= 4;
duke@435 2811 emit_byte(0x66); // size prefix
duke@435 2812 emit_byte(0x66);
duke@435 2813 emit_byte(0x66);
duke@435 2814 emit_byte(0x90); // nop
duke@435 2815 }
duke@435 2816 // 1 - 12 nops
duke@435 2817 if(i > 8) {
duke@435 2818 if(i > 9) {
duke@435 2819 i -= 1;
duke@435 2820 emit_byte(0x66);
duke@435 2821 }
duke@435 2822 i -= 3;
duke@435 2823 emit_byte(0x66);
duke@435 2824 emit_byte(0x66);
duke@435 2825 emit_byte(0x90);
duke@435 2826 }
duke@435 2827 // 1 - 8 nops
duke@435 2828 if(i > 4) {
duke@435 2829 if(i > 6) {
duke@435 2830 i -= 1;
duke@435 2831 emit_byte(0x66);
duke@435 2832 }
duke@435 2833 i -= 3;
duke@435 2834 emit_byte(0x66);
duke@435 2835 emit_byte(0x66);
duke@435 2836 emit_byte(0x90);
duke@435 2837 }
duke@435 2838 switch (i) {
duke@435 2839 case 4:
duke@435 2840 emit_byte(0x66);
duke@435 2841 case 3:
duke@435 2842 emit_byte(0x66);
duke@435 2843 case 2:
duke@435 2844 emit_byte(0x66);
duke@435 2845 case 1:
duke@435 2846 emit_byte(0x90);
duke@435 2847 break;
duke@435 2848 default:
duke@435 2849 assert(i == 0, " ");
duke@435 2850 }
duke@435 2851 }
duke@435 2852
duke@435 2853 void Assembler::ret(int imm16) {
duke@435 2854 if (imm16 == 0) {
duke@435 2855 emit_byte(0xC3);
duke@435 2856 } else {
duke@435 2857 emit_byte(0xC2);
duke@435 2858 emit_word(imm16);
duke@435 2859 }
duke@435 2860 }
duke@435 2861
duke@435 2862 // copies a single word from [esi] to [edi]
duke@435 2863 void Assembler::smovl() {
duke@435 2864 emit_byte(0xA5);
duke@435 2865 }
duke@435 2866
duke@435 2867 // copies data from [rsi] to [rdi] using rcx words (m32)
duke@435 2868 void Assembler::rep_movl() {
duke@435 2869 // REP
duke@435 2870 emit_byte(0xF3);
duke@435 2871 // MOVSL
duke@435 2872 emit_byte(0xA5);
duke@435 2873 }
duke@435 2874
duke@435 2875 // copies data from [rsi] to [rdi] using rcx double words (m64)
duke@435 2876 void Assembler::rep_movq() {
duke@435 2877 // REP
duke@435 2878 emit_byte(0xF3);
duke@435 2879 // MOVSQ
duke@435 2880 prefix(REX_W);
duke@435 2881 emit_byte(0xA5);
duke@435 2882 }
duke@435 2883
duke@435 2884 // sets rcx double words (m64) with rax value at [rdi]
duke@435 2885 void Assembler::rep_set() {
duke@435 2886 // REP
duke@435 2887 emit_byte(0xF3);
duke@435 2888 // STOSQ
duke@435 2889 prefix(REX_W);
duke@435 2890 emit_byte(0xAB);
duke@435 2891 }
duke@435 2892
duke@435 2893 // scans rcx double words (m64) at [rdi] for occurance of rax
duke@435 2894 void Assembler::repne_scan() {
duke@435 2895 // REPNE/REPNZ
duke@435 2896 emit_byte(0xF2);
duke@435 2897 // SCASQ
duke@435 2898 prefix(REX_W);
duke@435 2899 emit_byte(0xAF);
duke@435 2900 }
duke@435 2901
duke@435 2902 void Assembler::setb(Condition cc, Register dst) {
duke@435 2903 assert(0 <= cc && cc < 16, "illegal cc");
duke@435 2904 int encode = prefix_and_encode(dst->encoding(), true);
duke@435 2905 emit_byte(0x0F);
duke@435 2906 emit_byte(0x90 | cc);
duke@435 2907 emit_byte(0xC0 | encode);
duke@435 2908 }
duke@435 2909
duke@435 2910 void Assembler::clflush(Address adr) {
duke@435 2911 prefix(adr);
duke@435 2912 emit_byte(0x0F);
duke@435 2913 emit_byte(0xAE);
duke@435 2914 emit_operand(rdi, adr);
duke@435 2915 }
duke@435 2916
duke@435 2917 void Assembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 2918 if (L.is_bound()) {
duke@435 2919 const int long_size = 5;
duke@435 2920 int offs = (int)( target(L) - pc() );
duke@435 2921 assert(offs <= 0, "assembler error");
duke@435 2922 InstructionMark im(this);
duke@435 2923 // 1110 1000 #32-bit disp
duke@435 2924 emit_byte(0xE8);
duke@435 2925 emit_data(offs - long_size, rtype, disp32_operand);
duke@435 2926 } else {
duke@435 2927 InstructionMark im(this);
duke@435 2928 // 1110 1000 #32-bit disp
duke@435 2929 L.add_patch_at(code(), locator());
duke@435 2930
duke@435 2931 emit_byte(0xE8);
duke@435 2932 emit_data(int(0), rtype, disp32_operand);
duke@435 2933 }
duke@435 2934 }
duke@435 2935
duke@435 2936 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
duke@435 2937 assert(entry != NULL, "call most probably wrong");
duke@435 2938 InstructionMark im(this);
duke@435 2939 emit_byte(0xE8);
duke@435 2940 intptr_t disp = entry - (_code_pos + sizeof(int32_t));
duke@435 2941 assert(is_simm32(disp), "must be 32bit offset (call2)");
duke@435 2942 // Technically, should use call32_operand, but this format is
duke@435 2943 // implied by the fact that we're emitting a call instruction.
duke@435 2944 emit_data((int) disp, rspec, disp32_operand);
duke@435 2945 }
duke@435 2946
duke@435 2947
duke@435 2948 void Assembler::call(Register dst) {
duke@435 2949 // This was originally using a 32bit register encoding
duke@435 2950 // and surely we want 64bit!
duke@435 2951 // this is a 32bit encoding but in 64bit mode the default
duke@435 2952 // operand size is 64bit so there is no need for the
duke@435 2953 // wide prefix. So prefix only happens if we use the
duke@435 2954 // new registers. Much like push/pop.
duke@435 2955 int encode = prefixq_and_encode(dst->encoding());
duke@435 2956 emit_byte(0xFF);
duke@435 2957 emit_byte(0xD0 | encode);
duke@435 2958 }
duke@435 2959
duke@435 2960 void Assembler::call(Address adr) {
duke@435 2961 InstructionMark im(this);
duke@435 2962 prefix(adr);
duke@435 2963 emit_byte(0xFF);
duke@435 2964 emit_operand(rdx, adr);
duke@435 2965 }
duke@435 2966
duke@435 2967 void Assembler::jmp(Register reg) {
duke@435 2968 int encode = prefix_and_encode(reg->encoding());
duke@435 2969 emit_byte(0xFF);
duke@435 2970 emit_byte(0xE0 | encode);
duke@435 2971 }
duke@435 2972
duke@435 2973 void Assembler::jmp(Address adr) {
duke@435 2974 InstructionMark im(this);
duke@435 2975 prefix(adr);
duke@435 2976 emit_byte(0xFF);
duke@435 2977 emit_operand(rsp, adr);
duke@435 2978 }
duke@435 2979
duke@435 2980 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
duke@435 2981 InstructionMark im(this);
duke@435 2982 emit_byte(0xE9);
duke@435 2983 assert(dest != NULL, "must have a target");
duke@435 2984 intptr_t disp = dest - (_code_pos + sizeof(int32_t));
duke@435 2985 assert(is_simm32(disp), "must be 32bit offset (jmp)");
duke@435 2986 emit_data(disp, rspec.reloc(), call32_operand);
duke@435 2987 }
duke@435 2988
duke@435 2989 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
duke@435 2990 if (L.is_bound()) {
duke@435 2991 address entry = target(L);
duke@435 2992 assert(entry != NULL, "jmp most probably wrong");
duke@435 2993 InstructionMark im(this);
duke@435 2994 const int short_size = 2;
duke@435 2995 const int long_size = 5;
duke@435 2996 intptr_t offs = entry - _code_pos;
duke@435 2997 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 2998 emit_byte(0xEB);
duke@435 2999 emit_byte((offs - short_size) & 0xFF);
duke@435 3000 } else {
duke@435 3001 emit_byte(0xE9);
duke@435 3002 emit_long(offs - long_size);
duke@435 3003 }
duke@435 3004 } else {
duke@435 3005 // By default, forward jumps are always 32-bit displacements, since
duke@435 3006 // we can't yet know where the label will be bound. If you're sure that
duke@435 3007 // the forward jump will not run beyond 256 bytes, use jmpb to
duke@435 3008 // force an 8-bit displacement.
duke@435 3009 InstructionMark im(this);
duke@435 3010 relocate(rtype);
duke@435 3011 L.add_patch_at(code(), locator());
duke@435 3012 emit_byte(0xE9);
duke@435 3013 emit_long(0);
duke@435 3014 }
duke@435 3015 }
duke@435 3016
duke@435 3017 void Assembler::jmpb(Label& L) {
duke@435 3018 if (L.is_bound()) {
duke@435 3019 const int short_size = 2;
duke@435 3020 address entry = target(L);
duke@435 3021 assert(is8bit((entry - _code_pos) + short_size),
duke@435 3022 "Dispacement too large for a short jmp");
duke@435 3023 assert(entry != NULL, "jmp most probably wrong");
duke@435 3024 intptr_t offs = entry - _code_pos;
duke@435 3025 emit_byte(0xEB);
duke@435 3026 emit_byte((offs - short_size) & 0xFF);
duke@435 3027 } else {
duke@435 3028 InstructionMark im(this);
duke@435 3029 L.add_patch_at(code(), locator());
duke@435 3030 emit_byte(0xEB);
duke@435 3031 emit_byte(0);
duke@435 3032 }
duke@435 3033 }
duke@435 3034
duke@435 3035 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
duke@435 3036 InstructionMark im(this);
duke@435 3037 relocate(rtype);
duke@435 3038 assert((0 <= cc) && (cc < 16), "illegal cc");
duke@435 3039 if (L.is_bound()) {
duke@435 3040 address dst = target(L);
duke@435 3041 assert(dst != NULL, "jcc most probably wrong");
duke@435 3042
duke@435 3043 const int short_size = 2;
duke@435 3044 const int long_size = 6;
duke@435 3045 intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
duke@435 3046 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3047 // 0111 tttn #8-bit disp
duke@435 3048 emit_byte(0x70 | cc);
duke@435 3049 emit_byte((offs - short_size) & 0xFF);
duke@435 3050 } else {
duke@435 3051 // 0000 1111 1000 tttn #32-bit disp
duke@435 3052 assert(is_simm32(offs - long_size),
duke@435 3053 "must be 32bit offset (call4)");
duke@435 3054 emit_byte(0x0F);
duke@435 3055 emit_byte(0x80 | cc);
duke@435 3056 emit_long(offs - long_size);
duke@435 3057 }
duke@435 3058 } else {
duke@435 3059 // Note: could eliminate cond. jumps to this jump if condition
duke@435 3060 // is the same however, seems to be rather unlikely case.
duke@435 3061 // Note: use jccb() if label to be bound is very close to get
duke@435 3062 // an 8-bit displacement
duke@435 3063 L.add_patch_at(code(), locator());
duke@435 3064 emit_byte(0x0F);
duke@435 3065 emit_byte(0x80 | cc);
duke@435 3066 emit_long(0);
duke@435 3067 }
duke@435 3068 }
duke@435 3069
duke@435 3070 void Assembler::jccb(Condition cc, Label& L) {
duke@435 3071 if (L.is_bound()) {
duke@435 3072 const int short_size = 2;
duke@435 3073 const int long_size = 6;
duke@435 3074 address entry = target(L);
duke@435 3075 assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
duke@435 3076 "Dispacement too large for a short jmp");
duke@435 3077 intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
duke@435 3078 // 0111 tttn #8-bit disp
duke@435 3079 emit_byte(0x70 | cc);
duke@435 3080 emit_byte((offs - short_size) & 0xFF);
duke@435 3081 } else {
duke@435 3082 InstructionMark im(this);
duke@435 3083 L.add_patch_at(code(), locator());
duke@435 3084 emit_byte(0x70 | cc);
duke@435 3085 emit_byte(0);
duke@435 3086 }
duke@435 3087 }
duke@435 3088
duke@435 3089 // FP instructions
duke@435 3090
duke@435 3091 void Assembler::fxsave(Address dst) {
duke@435 3092 prefixq(dst);
duke@435 3093 emit_byte(0x0F);
duke@435 3094 emit_byte(0xAE);
duke@435 3095 emit_operand(as_Register(0), dst);
duke@435 3096 }
duke@435 3097
duke@435 3098 void Assembler::fxrstor(Address src) {
duke@435 3099 prefixq(src);
duke@435 3100 emit_byte(0x0F);
duke@435 3101 emit_byte(0xAE);
duke@435 3102 emit_operand(as_Register(1), src);
duke@435 3103 }
duke@435 3104
duke@435 3105 void Assembler::ldmxcsr(Address src) {
duke@435 3106 InstructionMark im(this);
duke@435 3107 prefix(src);
duke@435 3108 emit_byte(0x0F);
duke@435 3109 emit_byte(0xAE);
duke@435 3110 emit_operand(as_Register(2), src);
duke@435 3111 }
duke@435 3112
duke@435 3113 void Assembler::stmxcsr(Address dst) {
duke@435 3114 InstructionMark im(this);
duke@435 3115 prefix(dst);
duke@435 3116 emit_byte(0x0F);
duke@435 3117 emit_byte(0xAE);
duke@435 3118 emit_operand(as_Register(3), dst);
duke@435 3119 }
duke@435 3120
duke@435 3121 void Assembler::addss(XMMRegister dst, XMMRegister src) {
duke@435 3122 emit_byte(0xF3);
duke@435 3123 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3124 emit_byte(0x0F);
duke@435 3125 emit_byte(0x58);
duke@435 3126 emit_byte(0xC0 | encode);
duke@435 3127 }
duke@435 3128
duke@435 3129 void Assembler::addss(XMMRegister dst, Address src) {
duke@435 3130 InstructionMark im(this);
duke@435 3131 emit_byte(0xF3);
duke@435 3132 prefix(src, dst);
duke@435 3133 emit_byte(0x0F);
duke@435 3134 emit_byte(0x58);
duke@435 3135 emit_operand(dst, src);
duke@435 3136 }
duke@435 3137
duke@435 3138 void Assembler::subss(XMMRegister dst, XMMRegister src) {
duke@435 3139 emit_byte(0xF3);
duke@435 3140 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3141 emit_byte(0x0F);
duke@435 3142 emit_byte(0x5C);
duke@435 3143 emit_byte(0xC0 | encode);
duke@435 3144 }
duke@435 3145
duke@435 3146 void Assembler::subss(XMMRegister dst, Address src) {
duke@435 3147 InstructionMark im(this);
duke@435 3148 emit_byte(0xF3);
duke@435 3149 prefix(src, dst);
duke@435 3150 emit_byte(0x0F);
duke@435 3151 emit_byte(0x5C);
duke@435 3152 emit_operand(dst, src);
duke@435 3153 }
duke@435 3154
duke@435 3155 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
duke@435 3156 emit_byte(0xF3);
duke@435 3157 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3158 emit_byte(0x0F);
duke@435 3159 emit_byte(0x59);
duke@435 3160 emit_byte(0xC0 | encode);
duke@435 3161 }
duke@435 3162
duke@435 3163 void Assembler::mulss(XMMRegister dst, Address src) {
duke@435 3164 InstructionMark im(this);
duke@435 3165 emit_byte(0xF3);
duke@435 3166 prefix(src, dst);
duke@435 3167 emit_byte(0x0F);
duke@435 3168 emit_byte(0x59);
duke@435 3169 emit_operand(dst, src);
duke@435 3170 }
duke@435 3171
duke@435 3172 void Assembler::divss(XMMRegister dst, XMMRegister src) {
duke@435 3173 emit_byte(0xF3);
duke@435 3174 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3175 emit_byte(0x0F);
duke@435 3176 emit_byte(0x5E);
duke@435 3177 emit_byte(0xC0 | encode);
duke@435 3178 }
duke@435 3179
duke@435 3180 void Assembler::divss(XMMRegister dst, Address src) {
duke@435 3181 InstructionMark im(this);
duke@435 3182 emit_byte(0xF3);
duke@435 3183 prefix(src, dst);
duke@435 3184 emit_byte(0x0F);
duke@435 3185 emit_byte(0x5E);
duke@435 3186 emit_operand(dst, src);
duke@435 3187 }
duke@435 3188
duke@435 3189 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
duke@435 3190 emit_byte(0xF2);
duke@435 3191 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3192 emit_byte(0x0F);
duke@435 3193 emit_byte(0x58);
duke@435 3194 emit_byte(0xC0 | encode);
duke@435 3195 }
duke@435 3196
duke@435 3197 void Assembler::addsd(XMMRegister dst, Address src) {
duke@435 3198 InstructionMark im(this);
duke@435 3199 emit_byte(0xF2);
duke@435 3200 prefix(src, dst);
duke@435 3201 emit_byte(0x0F);
duke@435 3202 emit_byte(0x58);
duke@435 3203 emit_operand(dst, src);
duke@435 3204 }
duke@435 3205
duke@435 3206 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
duke@435 3207 emit_byte(0xF2);
duke@435 3208 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3209 emit_byte(0x0F);
duke@435 3210 emit_byte(0x5C);
duke@435 3211 emit_byte(0xC0 | encode);
duke@435 3212 }
duke@435 3213
duke@435 3214 void Assembler::subsd(XMMRegister dst, Address src) {
duke@435 3215 InstructionMark im(this);
duke@435 3216 emit_byte(0xF2);
duke@435 3217 prefix(src, dst);
duke@435 3218 emit_byte(0x0F);
duke@435 3219 emit_byte(0x5C);
duke@435 3220 emit_operand(dst, src);
duke@435 3221 }
duke@435 3222
duke@435 3223 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
duke@435 3224 emit_byte(0xF2);
duke@435 3225 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3226 emit_byte(0x0F);
duke@435 3227 emit_byte(0x59);
duke@435 3228 emit_byte(0xC0 | encode);
duke@435 3229 }
duke@435 3230
duke@435 3231 void Assembler::mulsd(XMMRegister dst, Address src) {
duke@435 3232 InstructionMark im(this);
duke@435 3233 emit_byte(0xF2);
duke@435 3234 prefix(src, dst);
duke@435 3235 emit_byte(0x0F);
duke@435 3236 emit_byte(0x59);
duke@435 3237 emit_operand(dst, src);
duke@435 3238 }
duke@435 3239
duke@435 3240 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
duke@435 3241 emit_byte(0xF2);
duke@435 3242 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3243 emit_byte(0x0F);
duke@435 3244 emit_byte(0x5E);
duke@435 3245 emit_byte(0xC0 | encode);
duke@435 3246 }
duke@435 3247
duke@435 3248 void Assembler::divsd(XMMRegister dst, Address src) {
duke@435 3249 InstructionMark im(this);
duke@435 3250 emit_byte(0xF2);
duke@435 3251 prefix(src, dst);
duke@435 3252 emit_byte(0x0F);
duke@435 3253 emit_byte(0x5E);
duke@435 3254 emit_operand(dst, src);
duke@435 3255 }
duke@435 3256
duke@435 3257 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
duke@435 3258 emit_byte(0xF2);
duke@435 3259 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3260 emit_byte(0x0F);
duke@435 3261 emit_byte(0x51);
duke@435 3262 emit_byte(0xC0 | encode);
duke@435 3263 }
duke@435 3264
duke@435 3265 void Assembler::sqrtsd(XMMRegister dst, Address src) {
duke@435 3266 InstructionMark im(this);
duke@435 3267 emit_byte(0xF2);
duke@435 3268 prefix(src, dst);
duke@435 3269 emit_byte(0x0F);
duke@435 3270 emit_byte(0x51);
duke@435 3271 emit_operand(dst, src);
duke@435 3272 }
duke@435 3273
duke@435 3274 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
duke@435 3275 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3276 emit_byte(0x0F);
duke@435 3277 emit_byte(0x57);
duke@435 3278 emit_byte(0xC0 | encode);
duke@435 3279 }
duke@435 3280
duke@435 3281 void Assembler::xorps(XMMRegister dst, Address src) {
duke@435 3282 InstructionMark im(this);
duke@435 3283 prefix(src, dst);
duke@435 3284 emit_byte(0x0F);
duke@435 3285 emit_byte(0x57);
duke@435 3286 emit_operand(dst, src);
duke@435 3287 }
duke@435 3288
duke@435 3289 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
duke@435 3290 emit_byte(0x66);
duke@435 3291 xorps(dst, src);
duke@435 3292 }
duke@435 3293
duke@435 3294 void Assembler::xorpd(XMMRegister dst, Address src) {
duke@435 3295 InstructionMark im(this);
duke@435 3296 emit_byte(0x66);
duke@435 3297 prefix(src, dst);
duke@435 3298 emit_byte(0x0F);
duke@435 3299 emit_byte(0x57);
duke@435 3300 emit_operand(dst, src);
duke@435 3301 }
duke@435 3302
duke@435 3303 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
duke@435 3304 emit_byte(0xF3);
duke@435 3305 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3306 emit_byte(0x0F);
duke@435 3307 emit_byte(0x2A);
duke@435 3308 emit_byte(0xC0 | encode);
duke@435 3309 }
duke@435 3310
duke@435 3311 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
duke@435 3312 emit_byte(0xF3);
duke@435 3313 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3314 emit_byte(0x0F);
duke@435 3315 emit_byte(0x2A);
duke@435 3316 emit_byte(0xC0 | encode);
duke@435 3317 }
duke@435 3318
duke@435 3319 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
duke@435 3320 emit_byte(0xF2);
duke@435 3321 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3322 emit_byte(0x0F);
duke@435 3323 emit_byte(0x2A);
duke@435 3324 emit_byte(0xC0 | encode);
duke@435 3325 }
duke@435 3326
duke@435 3327 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
duke@435 3328 emit_byte(0xF2);
duke@435 3329 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3330 emit_byte(0x0F);
duke@435 3331 emit_byte(0x2A);
duke@435 3332 emit_byte(0xC0 | encode);
duke@435 3333 }
duke@435 3334
duke@435 3335 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
duke@435 3336 emit_byte(0xF3);
duke@435 3337 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3338 emit_byte(0x0F);
duke@435 3339 emit_byte(0x2C);
duke@435 3340 emit_byte(0xC0 | encode);
duke@435 3341 }
duke@435 3342
duke@435 3343 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
duke@435 3344 emit_byte(0xF3);
duke@435 3345 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3346 emit_byte(0x0F);
duke@435 3347 emit_byte(0x2C);
duke@435 3348 emit_byte(0xC0 | encode);
duke@435 3349 }
duke@435 3350
duke@435 3351 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
duke@435 3352 emit_byte(0xF2);
duke@435 3353 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3354 emit_byte(0x0F);
duke@435 3355 emit_byte(0x2C);
duke@435 3356 emit_byte(0xC0 | encode);
duke@435 3357 }
duke@435 3358
duke@435 3359 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
duke@435 3360 emit_byte(0xF2);
duke@435 3361 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3362 emit_byte(0x0F);
duke@435 3363 emit_byte(0x2C);
duke@435 3364 emit_byte(0xC0 | encode);
duke@435 3365 }
duke@435 3366
duke@435 3367 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
duke@435 3368 emit_byte(0xF3);
duke@435 3369 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3370 emit_byte(0x0F);
duke@435 3371 emit_byte(0x5A);
duke@435 3372 emit_byte(0xC0 | encode);
duke@435 3373 }
duke@435 3374
duke@435 3375 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
duke@435 3376 emit_byte(0xF2);
duke@435 3377 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3378 emit_byte(0x0F);
duke@435 3379 emit_byte(0x5A);
duke@435 3380 emit_byte(0xC0 | encode);
duke@435 3381 }
duke@435 3382
duke@435 3383 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
duke@435 3384 emit_byte(0x66);
duke@435 3385 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3386 emit_byte(0x0F);
duke@435 3387 emit_byte(0x60);
duke@435 3388 emit_byte(0xC0 | encode);
duke@435 3389 }
duke@435 3390
duke@435 3391 // Implementation of MacroAssembler
duke@435 3392
duke@435 3393 // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement
duke@435 3394 Address MacroAssembler::as_Address(AddressLiteral adr) {
duke@435 3395 assert(!adr.is_lval(), "must be rval");
duke@435 3396 assert(reachable(adr), "must be");
duke@435 3397 return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
duke@435 3398 }
duke@435 3399
duke@435 3400 Address MacroAssembler::as_Address(ArrayAddress adr) {
duke@435 3401 #ifdef _LP64
duke@435 3402 AddressLiteral base = adr.base();
duke@435 3403 lea(rscratch1, base);
duke@435 3404 Address index = adr.index();
duke@435 3405 assert(index._disp == 0, "must not have disp"); // maybe it can?
duke@435 3406 Address array(rscratch1, index._index, index._scale, index._disp);
duke@435 3407 return array;
duke@435 3408 #else
duke@435 3409 return Address::make_array(adr);
duke@435 3410 #endif // _LP64
duke@435 3411
duke@435 3412 }
duke@435 3413
duke@435 3414 void MacroAssembler::fat_nop() {
duke@435 3415 // A 5 byte nop that is safe for patching (see patch_verified_entry)
duke@435 3416 // Recommened sequence from 'Software Optimization Guide for the AMD
duke@435 3417 // Hammer Processor'
duke@435 3418 emit_byte(0x66);
duke@435 3419 emit_byte(0x66);
duke@435 3420 emit_byte(0x90);
duke@435 3421 emit_byte(0x66);
duke@435 3422 emit_byte(0x90);
duke@435 3423 }
duke@435 3424
duke@435 3425 static Assembler::Condition reverse[] = {
duke@435 3426 Assembler::noOverflow /* overflow = 0x0 */ ,
duke@435 3427 Assembler::overflow /* noOverflow = 0x1 */ ,
duke@435 3428 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
duke@435 3429 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
duke@435 3430 Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
duke@435 3431 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
duke@435 3432 Assembler::above /* belowEqual = 0x6 */ ,
duke@435 3433 Assembler::belowEqual /* above = 0x7 */ ,
duke@435 3434 Assembler::positive /* negative = 0x8 */ ,
duke@435 3435 Assembler::negative /* positive = 0x9 */ ,
duke@435 3436 Assembler::noParity /* parity = 0xa */ ,
duke@435 3437 Assembler::parity /* noParity = 0xb */ ,
duke@435 3438 Assembler::greaterEqual /* less = 0xc */ ,
duke@435 3439 Assembler::less /* greaterEqual = 0xd */ ,
duke@435 3440 Assembler::greater /* lessEqual = 0xe */ ,
duke@435 3441 Assembler::lessEqual /* greater = 0xf, */
duke@435 3442
duke@435 3443 };
duke@435 3444
duke@435 3445 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 3446 // to be installed in the Address class
duke@435 3447 void MacroAssembler::jump(ArrayAddress entry) {
duke@435 3448 #ifdef _LP64
duke@435 3449 lea(rscratch1, entry.base());
duke@435 3450 Address dispatch = entry.index();
duke@435 3451 assert(dispatch._base == noreg, "must be");
duke@435 3452 dispatch._base = rscratch1;
duke@435 3453 jmp(dispatch);
duke@435 3454 #else
duke@435 3455 jmp(as_Address(entry));
duke@435 3456 #endif // _LP64
duke@435 3457 }
duke@435 3458
duke@435 3459 void MacroAssembler::jump(AddressLiteral dst) {
duke@435 3460 if (reachable(dst)) {
duke@435 3461 jmp_literal(dst.target(), dst.rspec());
duke@435 3462 } else {
duke@435 3463 lea(rscratch1, dst);
duke@435 3464 jmp(rscratch1);
duke@435 3465 }
duke@435 3466 }
duke@435 3467
duke@435 3468 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
duke@435 3469 if (reachable(dst)) {
duke@435 3470 InstructionMark im(this);
duke@435 3471 relocate(dst.reloc());
duke@435 3472 const int short_size = 2;
duke@435 3473 const int long_size = 6;
duke@435 3474 int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
duke@435 3475 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3476 // 0111 tttn #8-bit disp
duke@435 3477 emit_byte(0x70 | cc);
duke@435 3478 emit_byte((offs - short_size) & 0xFF);
duke@435 3479 } else {
duke@435 3480 // 0000 1111 1000 tttn #32-bit disp
duke@435 3481 emit_byte(0x0F);
duke@435 3482 emit_byte(0x80 | cc);
duke@435 3483 emit_long(offs - long_size);
duke@435 3484 }
duke@435 3485 } else {
duke@435 3486 #ifdef ASSERT
duke@435 3487 warning("reversing conditional branch");
duke@435 3488 #endif /* ASSERT */
duke@435 3489 Label skip;
duke@435 3490 jccb(reverse[cc], skip);
duke@435 3491 lea(rscratch1, dst);
duke@435 3492 Assembler::jmp(rscratch1);
duke@435 3493 bind(skip);
duke@435 3494 }
duke@435 3495 }
duke@435 3496
duke@435 3497 // Wouldn't need if AddressLiteral version had new name
duke@435 3498 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 3499 Assembler::call(L, rtype);
duke@435 3500 }
duke@435 3501
duke@435 3502 // Wouldn't need if AddressLiteral version had new name
duke@435 3503 void MacroAssembler::call(Register entry) {
duke@435 3504 Assembler::call(entry);
duke@435 3505 }
duke@435 3506
duke@435 3507 void MacroAssembler::call(AddressLiteral entry) {
duke@435 3508 if (reachable(entry)) {
duke@435 3509 Assembler::call_literal(entry.target(), entry.rspec());
duke@435 3510 } else {
duke@435 3511 lea(rscratch1, entry);
duke@435 3512 Assembler::call(rscratch1);
duke@435 3513 }
duke@435 3514 }
duke@435 3515
duke@435 3516 void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) {
duke@435 3517 if (reachable(src1)) {
duke@435 3518 cmpb(as_Address(src1), src2);
duke@435 3519 } else {
duke@435 3520 lea(rscratch1, src1);
duke@435 3521 cmpb(Address(rscratch1, 0), src2);
duke@435 3522 }
duke@435 3523 }
duke@435 3524
duke@435 3525 void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) {
duke@435 3526 if (reachable(src1)) {
duke@435 3527 cmpl(as_Address(src1), src2);
duke@435 3528 } else {
duke@435 3529 lea(rscratch1, src1);
duke@435 3530 cmpl(Address(rscratch1, 0), src2);
duke@435 3531 }
duke@435 3532 }
duke@435 3533
duke@435 3534 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
duke@435 3535 if (reachable(src2)) {
duke@435 3536 cmpl(src1, as_Address(src2));
duke@435 3537 } else {
duke@435 3538 lea(rscratch1, src2);
duke@435 3539 cmpl(src1, Address(rscratch1, 0));
duke@435 3540 }
duke@435 3541 }
duke@435 3542
duke@435 3543 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
duke@435 3544 #ifdef _LP64
duke@435 3545 if (src2.is_lval()) {
duke@435 3546 movptr(rscratch1, src2);
duke@435 3547 Assembler::cmpq(src1, rscratch1);
duke@435 3548 } else if (reachable(src2)) {
duke@435 3549 cmpq(src1, as_Address(src2));
duke@435 3550 } else {
duke@435 3551 lea(rscratch1, src2);
duke@435 3552 Assembler::cmpq(src1, Address(rscratch1, 0));
duke@435 3553 }
duke@435 3554 #else
duke@435 3555 if (src2.is_lval()) {
duke@435 3556 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 3557 } else {
duke@435 3558 cmpl(src1, as_Address(src2));
duke@435 3559 }
duke@435 3560 #endif // _LP64
duke@435 3561 }
duke@435 3562
duke@435 3563 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
duke@435 3564 assert(src2.is_lval(), "not a mem-mem compare");
duke@435 3565 #ifdef _LP64
duke@435 3566 // moves src2's literal address
duke@435 3567 movptr(rscratch1, src2);
duke@435 3568 Assembler::cmpq(src1, rscratch1);
duke@435 3569 #else
duke@435 3570 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 3571 #endif // _LP64
duke@435 3572 }
duke@435 3573
duke@435 3574 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
duke@435 3575 assert(!src2.is_lval(), "should use cmpptr");
duke@435 3576
duke@435 3577 if (reachable(src2)) {
duke@435 3578 #ifdef _LP64
duke@435 3579 cmpq(src1, as_Address(src2));
duke@435 3580 #else
duke@435 3581 ShouldNotReachHere();
duke@435 3582 #endif // _LP64
duke@435 3583 } else {
duke@435 3584 lea(rscratch1, src2);
duke@435 3585 Assembler::cmpq(src1, Address(rscratch1, 0));
duke@435 3586 }
duke@435 3587 }
duke@435 3588
duke@435 3589 void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
duke@435 3590 if (reachable(adr)) {
duke@435 3591 #ifdef _LP64
duke@435 3592 cmpxchgq(reg, as_Address(adr));
duke@435 3593 #else
duke@435 3594 cmpxchgl(reg, as_Address(adr));
duke@435 3595 #endif // _LP64
duke@435 3596 } else {
duke@435 3597 lea(rscratch1, adr);
duke@435 3598 cmpxchgq(reg, Address(rscratch1, 0));
duke@435 3599 }
duke@435 3600 }
duke@435 3601
duke@435 3602 void MacroAssembler::incrementl(AddressLiteral dst) {
duke@435 3603 if (reachable(dst)) {
duke@435 3604 incrementl(as_Address(dst));
duke@435 3605 } else {
duke@435 3606 lea(rscratch1, dst);
duke@435 3607 incrementl(Address(rscratch1, 0));
duke@435 3608 }
duke@435 3609 }
duke@435 3610
duke@435 3611 void MacroAssembler::incrementl(ArrayAddress dst) {
duke@435 3612 incrementl(as_Address(dst));
duke@435 3613 }
duke@435 3614
duke@435 3615 void MacroAssembler::lea(Register dst, Address src) {
duke@435 3616 #ifdef _LP64
duke@435 3617 leaq(dst, src);
duke@435 3618 #else
duke@435 3619 leal(dst, src);
duke@435 3620 #endif // _LP64
duke@435 3621 }
duke@435 3622
duke@435 3623 void MacroAssembler::lea(Register dst, AddressLiteral src) {
duke@435 3624 #ifdef _LP64
duke@435 3625 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
duke@435 3626 #else
duke@435 3627 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
duke@435 3628 #endif // _LP64
duke@435 3629 }
duke@435 3630
duke@435 3631 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
duke@435 3632 if (reachable(dst)) {
duke@435 3633 movl(as_Address(dst), src);
duke@435 3634 } else {
duke@435 3635 lea(rscratch1, dst);
duke@435 3636 movl(Address(rscratch1, 0), src);
duke@435 3637 }
duke@435 3638 }
duke@435 3639
duke@435 3640 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
duke@435 3641 if (reachable(src)) {
duke@435 3642 movl(dst, as_Address(src));
duke@435 3643 } else {
duke@435 3644 lea(rscratch1, src);
duke@435 3645 movl(dst, Address(rscratch1, 0));
duke@435 3646 }
duke@435 3647 }
duke@435 3648
duke@435 3649 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
duke@435 3650 if (reachable(src)) {
duke@435 3651 if (UseXmmLoadAndClearUpper) {
duke@435 3652 movsd (dst, as_Address(src));
duke@435 3653 } else {
duke@435 3654 movlpd(dst, as_Address(src));
duke@435 3655 }
duke@435 3656 } else {
duke@435 3657 lea(rscratch1, src);
duke@435 3658 if (UseXmmLoadAndClearUpper) {
duke@435 3659 movsd (dst, Address(rscratch1, 0));
duke@435 3660 } else {
duke@435 3661 movlpd(dst, Address(rscratch1, 0));
duke@435 3662 }
duke@435 3663 }
duke@435 3664 }
duke@435 3665
duke@435 3666 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
duke@435 3667 if (reachable(src)) {
duke@435 3668 movss(dst, as_Address(src));
duke@435 3669 } else {
duke@435 3670 lea(rscratch1, src);
duke@435 3671 movss(dst, Address(rscratch1, 0));
duke@435 3672 }
duke@435 3673 }
duke@435 3674
duke@435 3675 void MacroAssembler::movoop(Register dst, jobject obj) {
duke@435 3676 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3677 }
duke@435 3678
duke@435 3679 void MacroAssembler::movoop(Address dst, jobject obj) {
duke@435 3680 mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3681 movq(dst, rscratch1);
duke@435 3682 }
duke@435 3683
duke@435 3684 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
duke@435 3685 #ifdef _LP64
duke@435 3686 if (src.is_lval()) {
duke@435 3687 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
duke@435 3688 } else {
duke@435 3689 if (reachable(src)) {
duke@435 3690 movq(dst, as_Address(src));
duke@435 3691 } else {
duke@435 3692 lea(rscratch1, src);
duke@435 3693 movq(dst, Address(rscratch1,0));
duke@435 3694 }
duke@435 3695 }
duke@435 3696 #else
duke@435 3697 if (src.is_lval()) {
duke@435 3698 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
duke@435 3699 } else {
duke@435 3700 movl(dst, as_Address(src));
duke@435 3701 }
duke@435 3702 #endif // LP64
duke@435 3703 }
duke@435 3704
duke@435 3705 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
duke@435 3706 #ifdef _LP64
duke@435 3707 movq(as_Address(dst), src);
duke@435 3708 #else
duke@435 3709 movl(as_Address(dst), src);
duke@435 3710 #endif // _LP64
duke@435 3711 }
duke@435 3712
duke@435 3713 void MacroAssembler::pushoop(jobject obj) {
duke@435 3714 #ifdef _LP64
duke@435 3715 movoop(rscratch1, obj);
duke@435 3716 pushq(rscratch1);
duke@435 3717 #else
duke@435 3718 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3719 #endif // _LP64
duke@435 3720 }
duke@435 3721
duke@435 3722 void MacroAssembler::pushptr(AddressLiteral src) {
duke@435 3723 #ifdef _LP64
duke@435 3724 lea(rscratch1, src);
duke@435 3725 if (src.is_lval()) {
duke@435 3726 pushq(rscratch1);
duke@435 3727 } else {
duke@435 3728 pushq(Address(rscratch1, 0));
duke@435 3729 }
duke@435 3730 #else
duke@435 3731 if (src.is_lval()) {
duke@435 3732 push_literal((int32_t)src.target(), src.rspec());
duke@435 3733 else {
duke@435 3734 pushl(as_Address(src));
duke@435 3735 }
duke@435 3736 #endif // _LP64
duke@435 3737 }
duke@435 3738
duke@435 3739 void MacroAssembler::ldmxcsr(AddressLiteral src) {
duke@435 3740 if (reachable(src)) {
duke@435 3741 Assembler::ldmxcsr(as_Address(src));
duke@435 3742 } else {
duke@435 3743 lea(rscratch1, src);
duke@435 3744 Assembler::ldmxcsr(Address(rscratch1, 0));
duke@435 3745 }
duke@435 3746 }
duke@435 3747
duke@435 3748 void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) {
duke@435 3749 if (reachable(src)) {
duke@435 3750 movlpd(dst, as_Address(src));
duke@435 3751 } else {
duke@435 3752 lea(rscratch1, src);
duke@435 3753 movlpd(dst, Address(rscratch1, 0));
duke@435 3754 }
duke@435 3755 }
duke@435 3756
duke@435 3757 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
duke@435 3758 if (reachable(src)) {
duke@435 3759 movss(dst, as_Address(src));
duke@435 3760 } else {
duke@435 3761 lea(rscratch1, src);
duke@435 3762 movss(dst, Address(rscratch1, 0));
duke@435 3763 }
duke@435 3764 }
duke@435 3765 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
duke@435 3766 if (reachable(src)) {
duke@435 3767 xorpd(dst, as_Address(src));
duke@435 3768 } else {
duke@435 3769 lea(rscratch1, src);
duke@435 3770 xorpd(dst, Address(rscratch1, 0));
duke@435 3771 }
duke@435 3772 }
duke@435 3773
duke@435 3774 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
duke@435 3775 if (reachable(src)) {
duke@435 3776 xorps(dst, as_Address(src));
duke@435 3777 } else {
duke@435 3778 lea(rscratch1, src);
duke@435 3779 xorps(dst, Address(rscratch1, 0));
duke@435 3780 }
duke@435 3781 }
duke@435 3782
duke@435 3783 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 3784 if (needs_explicit_null_check(offset)) {
duke@435 3785 // provoke OS NULL exception if reg = NULL by
duke@435 3786 // accessing M[reg] w/o changing any (non-CC) registers
duke@435 3787 cmpq(rax, Address(reg, 0));
duke@435 3788 // Note: should probably use testl(rax, Address(reg, 0));
duke@435 3789 // may be shorter code (however, this version of
duke@435 3790 // testl needs to be implemented first)
duke@435 3791 } else {
duke@435 3792 // nothing to do, (later) access of M[reg + offset]
duke@435 3793 // will provoke OS NULL exception if reg = NULL
duke@435 3794 }
duke@435 3795 }
duke@435 3796
duke@435 3797 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
duke@435 3798 int off = offset();
duke@435 3799 movzbl(dst, src);
duke@435 3800 return off;
duke@435 3801 }
duke@435 3802
duke@435 3803 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
duke@435 3804 int off = offset();
duke@435 3805 movzwl(dst, src);
duke@435 3806 return off;
duke@435 3807 }
duke@435 3808
duke@435 3809 int MacroAssembler::load_signed_byte(Register dst, Address src) {
duke@435 3810 int off = offset();
duke@435 3811 movsbl(dst, src);
duke@435 3812 return off;
duke@435 3813 }
duke@435 3814
duke@435 3815 int MacroAssembler::load_signed_word(Register dst, Address src) {
duke@435 3816 int off = offset();
duke@435 3817 movswl(dst, src);
duke@435 3818 return off;
duke@435 3819 }
duke@435 3820
duke@435 3821 void MacroAssembler::incrementl(Register reg, int value) {
duke@435 3822 if (value == min_jint) { addl(reg, value); return; }
duke@435 3823 if (value < 0) { decrementl(reg, -value); return; }
duke@435 3824 if (value == 0) { ; return; }
duke@435 3825 if (value == 1 && UseIncDec) { incl(reg) ; return; }
duke@435 3826 /* else */ { addl(reg, value) ; return; }
duke@435 3827 }
duke@435 3828
duke@435 3829 void MacroAssembler::decrementl(Register reg, int value) {
duke@435 3830 if (value == min_jint) { subl(reg, value); return; }
duke@435 3831 if (value < 0) { incrementl(reg, -value); return; }
duke@435 3832 if (value == 0) { ; return; }
duke@435 3833 if (value == 1 && UseIncDec) { decl(reg) ; return; }
duke@435 3834 /* else */ { subl(reg, value) ; return; }
duke@435 3835 }
duke@435 3836
duke@435 3837 void MacroAssembler::incrementq(Register reg, int value) {
duke@435 3838 if (value == min_jint) { addq(reg, value); return; }
duke@435 3839 if (value < 0) { decrementq(reg, -value); return; }
duke@435 3840 if (value == 0) { ; return; }
duke@435 3841 if (value == 1 && UseIncDec) { incq(reg) ; return; }
duke@435 3842 /* else */ { addq(reg, value) ; return; }
duke@435 3843 }
duke@435 3844
duke@435 3845 void MacroAssembler::decrementq(Register reg, int value) {
duke@435 3846 if (value == min_jint) { subq(reg, value); return; }
duke@435 3847 if (value < 0) { incrementq(reg, -value); return; }
duke@435 3848 if (value == 0) { ; return; }
duke@435 3849 if (value == 1 && UseIncDec) { decq(reg) ; return; }
duke@435 3850 /* else */ { subq(reg, value) ; return; }
duke@435 3851 }
duke@435 3852
duke@435 3853 void MacroAssembler::incrementl(Address dst, int value) {
duke@435 3854 if (value == min_jint) { addl(dst, value); return; }
duke@435 3855 if (value < 0) { decrementl(dst, -value); return; }
duke@435 3856 if (value == 0) { ; return; }
duke@435 3857 if (value == 1 && UseIncDec) { incl(dst) ; return; }
duke@435 3858 /* else */ { addl(dst, value) ; return; }
duke@435 3859 }
duke@435 3860
duke@435 3861 void MacroAssembler::decrementl(Address dst, int value) {
duke@435 3862 if (value == min_jint) { subl(dst, value); return; }
duke@435 3863 if (value < 0) { incrementl(dst, -value); return; }
duke@435 3864 if (value == 0) { ; return; }
duke@435 3865 if (value == 1 && UseIncDec) { decl(dst) ; return; }
duke@435 3866 /* else */ { subl(dst, value) ; return; }
duke@435 3867 }
duke@435 3868
duke@435 3869 void MacroAssembler::incrementq(Address dst, int value) {
duke@435 3870 if (value == min_jint) { addq(dst, value); return; }
duke@435 3871 if (value < 0) { decrementq(dst, -value); return; }
duke@435 3872 if (value == 0) { ; return; }
duke@435 3873 if (value == 1 && UseIncDec) { incq(dst) ; return; }
duke@435 3874 /* else */ { addq(dst, value) ; return; }
duke@435 3875 }
duke@435 3876
duke@435 3877 void MacroAssembler::decrementq(Address dst, int value) {
duke@435 3878 if (value == min_jint) { subq(dst, value); return; }
duke@435 3879 if (value < 0) { incrementq(dst, -value); return; }
duke@435 3880 if (value == 0) { ; return; }
duke@435 3881 if (value == 1 && UseIncDec) { decq(dst) ; return; }
duke@435 3882 /* else */ { subq(dst, value) ; return; }
duke@435 3883 }
duke@435 3884
duke@435 3885 void MacroAssembler::align(int modulus) {
duke@435 3886 if (offset() % modulus != 0) {
duke@435 3887 nop(modulus - (offset() % modulus));
duke@435 3888 }
duke@435 3889 }
duke@435 3890
duke@435 3891 void MacroAssembler::enter() {
duke@435 3892 pushq(rbp);
duke@435 3893 movq(rbp, rsp);
duke@435 3894 }
duke@435 3895
duke@435 3896 void MacroAssembler::leave() {
duke@435 3897 emit_byte(0xC9); // LEAVE
duke@435 3898 }
duke@435 3899
duke@435 3900 // C++ bool manipulation
duke@435 3901
duke@435 3902 void MacroAssembler::movbool(Register dst, Address src) {
duke@435 3903 if(sizeof(bool) == 1)
duke@435 3904 movb(dst, src);
duke@435 3905 else if(sizeof(bool) == 2)
duke@435 3906 movw(dst, src);
duke@435 3907 else if(sizeof(bool) == 4)
duke@435 3908 movl(dst, src);
duke@435 3909 else {
duke@435 3910 // unsupported
duke@435 3911 ShouldNotReachHere();
duke@435 3912 }
duke@435 3913 }
duke@435 3914
duke@435 3915 void MacroAssembler::movbool(Address dst, bool boolconst) {
duke@435 3916 if(sizeof(bool) == 1)
duke@435 3917 movb(dst, (int) boolconst);
duke@435 3918 else if(sizeof(bool) == 2)
duke@435 3919 movw(dst, (int) boolconst);
duke@435 3920 else if(sizeof(bool) == 4)
duke@435 3921 movl(dst, (int) boolconst);
duke@435 3922 else {
duke@435 3923 // unsupported
duke@435 3924 ShouldNotReachHere();
duke@435 3925 }
duke@435 3926 }
duke@435 3927
duke@435 3928 void MacroAssembler::movbool(Address dst, Register src) {
duke@435 3929 if(sizeof(bool) == 1)
duke@435 3930 movb(dst, src);
duke@435 3931 else if(sizeof(bool) == 2)
duke@435 3932 movw(dst, src);
duke@435 3933 else if(sizeof(bool) == 4)
duke@435 3934 movl(dst, src);
duke@435 3935 else {
duke@435 3936 // unsupported
duke@435 3937 ShouldNotReachHere();
duke@435 3938 }
duke@435 3939 }
duke@435 3940
duke@435 3941 void MacroAssembler::testbool(Register dst) {
duke@435 3942 if(sizeof(bool) == 1)
duke@435 3943 testb(dst, (int) 0xff);
duke@435 3944 else if(sizeof(bool) == 2) {
duke@435 3945 // need testw impl
duke@435 3946 ShouldNotReachHere();
duke@435 3947 } else if(sizeof(bool) == 4)
duke@435 3948 testl(dst, dst);
duke@435 3949 else {
duke@435 3950 // unsupported
duke@435 3951 ShouldNotReachHere();
duke@435 3952 }
duke@435 3953 }
duke@435 3954
duke@435 3955 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
duke@435 3956 Register last_java_fp,
duke@435 3957 address last_java_pc) {
duke@435 3958 // determine last_java_sp register
duke@435 3959 if (!last_java_sp->is_valid()) {
duke@435 3960 last_java_sp = rsp;
duke@435 3961 }
duke@435 3962
duke@435 3963 // last_java_fp is optional
duke@435 3964 if (last_java_fp->is_valid()) {
duke@435 3965 movq(Address(r15_thread, JavaThread::last_Java_fp_offset()),
duke@435 3966 last_java_fp);
duke@435 3967 }
duke@435 3968
duke@435 3969 // last_java_pc is optional
duke@435 3970 if (last_java_pc != NULL) {
duke@435 3971 Address java_pc(r15_thread,
duke@435 3972 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
duke@435 3973 lea(rscratch1, InternalAddress(last_java_pc));
duke@435 3974 movq(java_pc, rscratch1);
duke@435 3975 }
duke@435 3976
duke@435 3977 movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
duke@435 3978 }
duke@435 3979
duke@435 3980 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
duke@435 3981 bool clear_pc) {
duke@435 3982 // we must set sp to zero to clear frame
duke@435 3983 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
duke@435 3984 // must clear fp, so that compiled frames are not confused; it is
duke@435 3985 // possible that we need it only for debugging
duke@435 3986 if (clear_fp) {
duke@435 3987 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
duke@435 3988 }
duke@435 3989
duke@435 3990 if (clear_pc) {
duke@435 3991 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
duke@435 3992 }
duke@435 3993 }
duke@435 3994
duke@435 3995
duke@435 3996 // Implementation of call_VM versions
duke@435 3997
duke@435 3998 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
duke@435 3999 Label L, E;
duke@435 4000
duke@435 4001 #ifdef _WIN64
duke@435 4002 // Windows always allocates space for it's register args
duke@435 4003 assert(num_args <= 4, "only register arguments supported");
duke@435 4004 subq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4005 #endif
duke@435 4006
duke@435 4007 // Align stack if necessary
duke@435 4008 testl(rsp, 15);
duke@435 4009 jcc(Assembler::zero, L);
duke@435 4010
duke@435 4011 subq(rsp, 8);
duke@435 4012 {
duke@435 4013 call(RuntimeAddress(entry_point));
duke@435 4014 }
duke@435 4015 addq(rsp, 8);
duke@435 4016 jmp(E);
duke@435 4017
duke@435 4018 bind(L);
duke@435 4019 {
duke@435 4020 call(RuntimeAddress(entry_point));
duke@435 4021 }
duke@435 4022
duke@435 4023 bind(E);
duke@435 4024
duke@435 4025 #ifdef _WIN64
duke@435 4026 // restore stack pointer
duke@435 4027 addq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4028 #endif
duke@435 4029
duke@435 4030 }
duke@435 4031
duke@435 4032
duke@435 4033 void MacroAssembler::call_VM_base(Register oop_result,
duke@435 4034 Register java_thread,
duke@435 4035 Register last_java_sp,
duke@435 4036 address entry_point,
duke@435 4037 int num_args,
duke@435 4038 bool check_exceptions) {
duke@435 4039 // determine last_java_sp register
duke@435 4040 if (!last_java_sp->is_valid()) {
duke@435 4041 last_java_sp = rsp;
duke@435 4042 }
duke@435 4043
duke@435 4044 // debugging support
duke@435 4045 assert(num_args >= 0, "cannot have negative number of arguments");
duke@435 4046 assert(r15_thread != oop_result,
duke@435 4047 "cannot use the same register for java_thread & oop_result");
duke@435 4048 assert(r15_thread != last_java_sp,
duke@435 4049 "cannot use the same register for java_thread & last_java_sp");
duke@435 4050
duke@435 4051 // set last Java frame before call
duke@435 4052
duke@435 4053 // This sets last_Java_fp which is only needed from interpreted frames
duke@435 4054 // and should really be done only from the interp_masm version before
duke@435 4055 // calling the underlying call_VM. That doesn't happen yet so we set
duke@435 4056 // last_Java_fp here even though some callers don't need it and
duke@435 4057 // also clear it below.
duke@435 4058 set_last_Java_frame(last_java_sp, rbp, NULL);
duke@435 4059
duke@435 4060 {
duke@435 4061 Label L, E;
duke@435 4062
duke@435 4063 // Align stack if necessary
duke@435 4064 #ifdef _WIN64
duke@435 4065 assert(num_args <= 4, "only register arguments supported");
duke@435 4066 // Windows always allocates space for it's register args
duke@435 4067 subq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4068 #endif
duke@435 4069 testl(rsp, 15);
duke@435 4070 jcc(Assembler::zero, L);
duke@435 4071
duke@435 4072 subq(rsp, 8);
duke@435 4073 {
duke@435 4074 call(RuntimeAddress(entry_point));
duke@435 4075 }
duke@435 4076 addq(rsp, 8);
duke@435 4077 jmp(E);
duke@435 4078
duke@435 4079
duke@435 4080 bind(L);
duke@435 4081 {
duke@435 4082 call(RuntimeAddress(entry_point));
duke@435 4083 }
duke@435 4084
duke@435 4085 bind(E);
duke@435 4086
duke@435 4087 #ifdef _WIN64
duke@435 4088 // restore stack pointer
duke@435 4089 addq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4090 #endif
duke@435 4091 }
duke@435 4092
duke@435 4093 #ifdef ASSERT
duke@435 4094 pushq(rax);
duke@435 4095 {
duke@435 4096 Label L;
duke@435 4097 get_thread(rax);
duke@435 4098 cmpq(r15_thread, rax);
duke@435 4099 jcc(Assembler::equal, L);
duke@435 4100 stop("MacroAssembler::call_VM_base: register not callee saved?");
duke@435 4101 bind(L);
duke@435 4102 }
duke@435 4103 popq(rax);
duke@435 4104 #endif
duke@435 4105
duke@435 4106 // reset last Java frame
duke@435 4107 // This really shouldn't have to clear fp set note above at the
duke@435 4108 // call to set_last_Java_frame
duke@435 4109 reset_last_Java_frame(true, false);
duke@435 4110
duke@435 4111 check_and_handle_popframe(noreg);
duke@435 4112 check_and_handle_earlyret(noreg);
duke@435 4113
duke@435 4114 if (check_exceptions) {
duke@435 4115 cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
duke@435 4116 // This used to conditionally jump to forward_exception however it is
duke@435 4117 // possible if we relocate that the branch will not reach. So we must jump
duke@435 4118 // around so we can always reach
duke@435 4119 Label ok;
duke@435 4120 jcc(Assembler::equal, ok);
duke@435 4121 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 4122 bind(ok);
duke@435 4123 }
duke@435 4124
duke@435 4125 // get oop result if there is one and reset the value in the thread
duke@435 4126 if (oop_result->is_valid()) {
duke@435 4127 movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
duke@435 4128 movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
duke@435 4129 verify_oop(oop_result);
duke@435 4130 }
duke@435 4131 }
duke@435 4132
duke@435 4133 void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
duke@435 4134 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
duke@435 4135
duke@435 4136 void MacroAssembler::call_VM_helper(Register oop_result,
duke@435 4137 address entry_point,
duke@435 4138 int num_args,
duke@435 4139 bool check_exceptions) {
duke@435 4140 // Java thread becomes first argument of C function
duke@435 4141 movq(c_rarg0, r15_thread);
duke@435 4142
duke@435 4143 // We've pushed one address, correct last_Java_sp
duke@435 4144 leaq(rax, Address(rsp, wordSize));
duke@435 4145
duke@435 4146 call_VM_base(oop_result, noreg, rax, entry_point, num_args,
duke@435 4147 check_exceptions);
duke@435 4148 }
duke@435 4149
duke@435 4150
duke@435 4151 void MacroAssembler::call_VM(Register oop_result,
duke@435 4152 address entry_point,
duke@435 4153 bool check_exceptions) {
duke@435 4154 Label C, E;
duke@435 4155 Assembler::call(C, relocInfo::none);
duke@435 4156 jmp(E);
duke@435 4157
duke@435 4158 bind(C);
duke@435 4159 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
duke@435 4160 ret(0);
duke@435 4161
duke@435 4162 bind(E);
duke@435 4163 }
duke@435 4164
duke@435 4165
duke@435 4166 void MacroAssembler::call_VM(Register oop_result,
duke@435 4167 address entry_point,
duke@435 4168 Register arg_1,
duke@435 4169 bool check_exceptions) {
duke@435 4170 assert(rax != arg_1, "smashed argument");
duke@435 4171 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4172
duke@435 4173 Label C, E;
duke@435 4174 Assembler::call(C, relocInfo::none);
duke@435 4175 jmp(E);
duke@435 4176
duke@435 4177 bind(C);
duke@435 4178 // c_rarg0 is reserved for thread
duke@435 4179 if (c_rarg1 != arg_1) {
duke@435 4180 movq(c_rarg1, arg_1);
duke@435 4181 }
duke@435 4182 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
duke@435 4183 ret(0);
duke@435 4184
duke@435 4185 bind(E);
duke@435 4186 }
duke@435 4187
duke@435 4188 void MacroAssembler::call_VM(Register oop_result,
duke@435 4189 address entry_point,
duke@435 4190 Register arg_1,
duke@435 4191 Register arg_2,
duke@435 4192 bool check_exceptions) {
duke@435 4193 assert(rax != arg_1, "smashed argument");
duke@435 4194 assert(rax != arg_2, "smashed argument");
duke@435 4195 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4196 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4197 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4198 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4199
duke@435 4200 Label C, E;
duke@435 4201 Assembler::call(C, relocInfo::none);
duke@435 4202 jmp(E);
duke@435 4203
duke@435 4204 bind(C);
duke@435 4205 // c_rarg0 is reserved for thread
duke@435 4206 if (c_rarg1 != arg_1) {
duke@435 4207 movq(c_rarg1, arg_1);
duke@435 4208 }
duke@435 4209 if (c_rarg2 != arg_2) {
duke@435 4210 movq(c_rarg2, arg_2);
duke@435 4211 }
duke@435 4212 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
duke@435 4213 ret(0);
duke@435 4214
duke@435 4215 bind(E);
duke@435 4216 }
duke@435 4217
duke@435 4218
duke@435 4219 void MacroAssembler::call_VM(Register oop_result,
duke@435 4220 address entry_point,
duke@435 4221 Register arg_1,
duke@435 4222 Register arg_2,
duke@435 4223 Register arg_3,
duke@435 4224 bool check_exceptions) {
duke@435 4225 assert(rax != arg_1, "smashed argument");
duke@435 4226 assert(rax != arg_2, "smashed argument");
duke@435 4227 assert(rax != arg_3, "smashed argument");
duke@435 4228 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4229 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4230 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4231 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4232 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4233 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4234 assert(c_rarg2 != arg_3, "smashed argument");
duke@435 4235 assert(c_rarg3 != arg_1, "smashed argument");
duke@435 4236 assert(c_rarg3 != arg_2, "smashed argument");
duke@435 4237
duke@435 4238 Label C, E;
duke@435 4239 Assembler::call(C, relocInfo::none);
duke@435 4240 jmp(E);
duke@435 4241
duke@435 4242 bind(C);
duke@435 4243 // c_rarg0 is reserved for thread
duke@435 4244 if (c_rarg1 != arg_1) {
duke@435 4245 movq(c_rarg1, arg_1);
duke@435 4246 }
duke@435 4247 if (c_rarg2 != arg_2) {
duke@435 4248 movq(c_rarg2, arg_2);
duke@435 4249 }
duke@435 4250 if (c_rarg3 != arg_3) {
duke@435 4251 movq(c_rarg3, arg_3);
duke@435 4252 }
duke@435 4253 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
duke@435 4254 ret(0);
duke@435 4255
duke@435 4256 bind(E);
duke@435 4257 }
duke@435 4258
duke@435 4259 void MacroAssembler::call_VM(Register oop_result,
duke@435 4260 Register last_java_sp,
duke@435 4261 address entry_point,
duke@435 4262 int num_args,
duke@435 4263 bool check_exceptions) {
duke@435 4264 call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args,
duke@435 4265 check_exceptions);
duke@435 4266 }
duke@435 4267
duke@435 4268 void MacroAssembler::call_VM(Register oop_result,
duke@435 4269 Register last_java_sp,
duke@435 4270 address entry_point,
duke@435 4271 Register arg_1,
duke@435 4272 bool check_exceptions) {
duke@435 4273 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4274 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4275 // c_rarg0 is reserved for thread
duke@435 4276 if (c_rarg1 != arg_1) {
duke@435 4277 movq(c_rarg1, arg_1);
duke@435 4278 }
duke@435 4279 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 4280 }
duke@435 4281
duke@435 4282 void MacroAssembler::call_VM(Register oop_result,
duke@435 4283 Register last_java_sp,
duke@435 4284 address entry_point,
duke@435 4285 Register arg_1,
duke@435 4286 Register arg_2,
duke@435 4287 bool check_exceptions) {
duke@435 4288 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4289 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4290 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4291 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4292 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4293 assert(c_rarg2 != last_java_sp, "smashed argument");
duke@435 4294 // c_rarg0 is reserved for thread
duke@435 4295 if (c_rarg1 != arg_1) {
duke@435 4296 movq(c_rarg1, arg_1);
duke@435 4297 }
duke@435 4298 if (c_rarg2 != arg_2) {
duke@435 4299 movq(c_rarg2, arg_2);
duke@435 4300 }
duke@435 4301 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 4302 }
duke@435 4303
duke@435 4304
duke@435 4305 void MacroAssembler::call_VM(Register oop_result,
duke@435 4306 Register last_java_sp,
duke@435 4307 address entry_point,
duke@435 4308 Register arg_1,
duke@435 4309 Register arg_2,
duke@435 4310 Register arg_3,
duke@435 4311 bool check_exceptions) {
duke@435 4312 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4313 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4314 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4315 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4316 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4317 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4318 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4319 assert(c_rarg2 != arg_3, "smashed argument");
duke@435 4320 assert(c_rarg2 != last_java_sp, "smashed argument");
duke@435 4321 assert(c_rarg3 != arg_1, "smashed argument");
duke@435 4322 assert(c_rarg3 != arg_2, "smashed argument");
duke@435 4323 assert(c_rarg3 != last_java_sp, "smashed argument");
duke@435 4324 // c_rarg0 is reserved for thread
duke@435 4325 if (c_rarg1 != arg_1) {
duke@435 4326 movq(c_rarg1, arg_1);
duke@435 4327 }
duke@435 4328 if (c_rarg2 != arg_2) {
duke@435 4329 movq(c_rarg2, arg_2);
duke@435 4330 }
duke@435 4331 if (c_rarg3 != arg_3) {
duke@435 4332 movq(c_rarg2, arg_3);
duke@435 4333 }
duke@435 4334 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 4335 }
duke@435 4336
duke@435 4337 void MacroAssembler::call_VM_leaf(address entry_point, int num_args) {
duke@435 4338 call_VM_leaf_base(entry_point, num_args);
duke@435 4339 }
duke@435 4340
duke@435 4341 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
duke@435 4342 if (c_rarg0 != arg_1) {
duke@435 4343 movq(c_rarg0, arg_1);
duke@435 4344 }
duke@435 4345 call_VM_leaf(entry_point, 1);
duke@435 4346 }
duke@435 4347
duke@435 4348 void MacroAssembler::call_VM_leaf(address entry_point,
duke@435 4349 Register arg_1,
duke@435 4350 Register arg_2) {
duke@435 4351 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4352 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 4353 if (c_rarg0 != arg_1) {
duke@435 4354 movq(c_rarg0, arg_1);
duke@435 4355 }
duke@435 4356 if (c_rarg1 != arg_2) {
duke@435 4357 movq(c_rarg1, arg_2);
duke@435 4358 }
duke@435 4359 call_VM_leaf(entry_point, 2);
duke@435 4360 }
duke@435 4361
duke@435 4362 void MacroAssembler::call_VM_leaf(address entry_point,
duke@435 4363 Register arg_1,
duke@435 4364 Register arg_2,
duke@435 4365 Register arg_3) {
duke@435 4366 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4367 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4368 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 4369 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4370 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4371 assert(c_rarg2 != arg_2, "smashed argument");
duke@435 4372 if (c_rarg0 != arg_1) {
duke@435 4373 movq(c_rarg0, arg_1);
duke@435 4374 }
duke@435 4375 if (c_rarg1 != arg_2) {
duke@435 4376 movq(c_rarg1, arg_2);
duke@435 4377 }
duke@435 4378 if (c_rarg2 != arg_3) {
duke@435 4379 movq(c_rarg2, arg_3);
duke@435 4380 }
duke@435 4381 call_VM_leaf(entry_point, 3);
duke@435 4382 }
duke@435 4383
duke@435 4384
duke@435 4385 // Calls to C land
duke@435 4386 //
duke@435 4387 // When entering C land, the rbp & rsp of the last Java frame have to
duke@435 4388 // be recorded in the (thread-local) JavaThread object. When leaving C
duke@435 4389 // land, the last Java fp has to be reset to 0. This is required to
duke@435 4390 // allow proper stack traversal.
duke@435 4391 void MacroAssembler::store_check(Register obj) {
duke@435 4392 // Does a store check for the oop in register obj. The content of
duke@435 4393 // register obj is destroyed afterwards.
duke@435 4394 store_check_part_1(obj);
duke@435 4395 store_check_part_2(obj);
duke@435 4396 }
duke@435 4397
duke@435 4398 void MacroAssembler::store_check(Register obj, Address dst) {
duke@435 4399 store_check(obj);
duke@435 4400 }
duke@435 4401
duke@435 4402 // split the store check operation so that other instructions can be
duke@435 4403 // scheduled inbetween
duke@435 4404 void MacroAssembler::store_check_part_1(Register obj) {
duke@435 4405 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 4406 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 4407 shrq(obj, CardTableModRefBS::card_shift);
duke@435 4408 }
duke@435 4409
duke@435 4410 void MacroAssembler::store_check_part_2(Register obj) {
duke@435 4411 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 4412 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 4413 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 4414 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 4415 ExternalAddress cardtable((address)ct->byte_map_base);
duke@435 4416 Address index(noreg, obj, Address::times_1);
duke@435 4417 movb(as_Address(ArrayAddress(cardtable, index)), 0);
duke@435 4418 }
duke@435 4419
duke@435 4420 void MacroAssembler::c2bool(Register x) {
duke@435 4421 // implements x == 0 ? 0 : 1
duke@435 4422 // note: must only look at least-significant byte of x
duke@435 4423 // since C-style booleans are stored in one byte
duke@435 4424 // only! (was bug)
duke@435 4425 andl(x, 0xFF);
duke@435 4426 setb(Assembler::notZero, x);
duke@435 4427 }
duke@435 4428
duke@435 4429 int MacroAssembler::corrected_idivl(Register reg) {
duke@435 4430 // Full implementation of Java idiv and irem; checks for special
duke@435 4431 // case as described in JVM spec., p.243 & p.271. The function
duke@435 4432 // returns the (pc) offset of the idivl instruction - may be needed
duke@435 4433 // for implicit exceptions.
duke@435 4434 //
duke@435 4435 // normal case special case
duke@435 4436 //
duke@435 4437 // input : eax: dividend min_int
duke@435 4438 // reg: divisor (may not be eax/edx) -1
duke@435 4439 //
duke@435 4440 // output: eax: quotient (= eax idiv reg) min_int
duke@435 4441 // edx: remainder (= eax irem reg) 0
duke@435 4442 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
duke@435 4443 const int min_int = 0x80000000;
duke@435 4444 Label normal_case, special_case;
duke@435 4445
duke@435 4446 // check for special case
duke@435 4447 cmpl(rax, min_int);
duke@435 4448 jcc(Assembler::notEqual, normal_case);
duke@435 4449 xorl(rdx, rdx); // prepare edx for possible special case (where
duke@435 4450 // remainder = 0)
duke@435 4451 cmpl(reg, -1);
duke@435 4452 jcc(Assembler::equal, special_case);
duke@435 4453
duke@435 4454 // handle normal case
duke@435 4455 bind(normal_case);
duke@435 4456 cdql();
duke@435 4457 int idivl_offset = offset();
duke@435 4458 idivl(reg);
duke@435 4459
duke@435 4460 // normal and special case exit
duke@435 4461 bind(special_case);
duke@435 4462
duke@435 4463 return idivl_offset;
duke@435 4464 }
duke@435 4465
duke@435 4466 int MacroAssembler::corrected_idivq(Register reg) {
duke@435 4467 // Full implementation of Java ldiv and lrem; checks for special
duke@435 4468 // case as described in JVM spec., p.243 & p.271. The function
duke@435 4469 // returns the (pc) offset of the idivl instruction - may be needed
duke@435 4470 // for implicit exceptions.
duke@435 4471 //
duke@435 4472 // normal case special case
duke@435 4473 //
duke@435 4474 // input : rax: dividend min_long
duke@435 4475 // reg: divisor (may not be eax/edx) -1
duke@435 4476 //
duke@435 4477 // output: rax: quotient (= rax idiv reg) min_long
duke@435 4478 // rdx: remainder (= rax irem reg) 0
duke@435 4479 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
duke@435 4480 static const int64_t min_long = 0x8000000000000000;
duke@435 4481 Label normal_case, special_case;
duke@435 4482
duke@435 4483 // check for special case
duke@435 4484 cmp64(rax, ExternalAddress((address) &min_long));
duke@435 4485 jcc(Assembler::notEqual, normal_case);
duke@435 4486 xorl(rdx, rdx); // prepare rdx for possible special case (where
duke@435 4487 // remainder = 0)
duke@435 4488 cmpq(reg, -1);
duke@435 4489 jcc(Assembler::equal, special_case);
duke@435 4490
duke@435 4491 // handle normal case
duke@435 4492 bind(normal_case);
duke@435 4493 cdqq();
duke@435 4494 int idivq_offset = offset();
duke@435 4495 idivq(reg);
duke@435 4496
duke@435 4497 // normal and special case exit
duke@435 4498 bind(special_case);
duke@435 4499
duke@435 4500 return idivq_offset;
duke@435 4501 }
duke@435 4502
duke@435 4503 void MacroAssembler::push_IU_state() {
duke@435 4504 pushfq(); // Push flags first because pushaq kills them
duke@435 4505 subq(rsp, 8); // Make sure rsp stays 16-byte aligned
duke@435 4506 pushaq();
duke@435 4507 }
duke@435 4508
duke@435 4509 void MacroAssembler::pop_IU_state() {
duke@435 4510 popaq();
duke@435 4511 addq(rsp, 8);
duke@435 4512 popfq();
duke@435 4513 }
duke@435 4514
duke@435 4515 void MacroAssembler::push_FPU_state() {
duke@435 4516 subq(rsp, FPUStateSizeInWords * wordSize);
duke@435 4517 fxsave(Address(rsp, 0));
duke@435 4518 }
duke@435 4519
duke@435 4520 void MacroAssembler::pop_FPU_state() {
duke@435 4521 fxrstor(Address(rsp, 0));
duke@435 4522 addq(rsp, FPUStateSizeInWords * wordSize);
duke@435 4523 }
duke@435 4524
duke@435 4525 // Save Integer and Float state
duke@435 4526 // Warning: Stack must be 16 byte aligned
duke@435 4527 void MacroAssembler::push_CPU_state() {
duke@435 4528 push_IU_state();
duke@435 4529 push_FPU_state();
duke@435 4530 }
duke@435 4531
duke@435 4532 void MacroAssembler::pop_CPU_state() {
duke@435 4533 pop_FPU_state();
duke@435 4534 pop_IU_state();
duke@435 4535 }
duke@435 4536
duke@435 4537 void MacroAssembler::sign_extend_short(Register reg) {
duke@435 4538 movswl(reg, reg);
duke@435 4539 }
duke@435 4540
duke@435 4541 void MacroAssembler::sign_extend_byte(Register reg) {
duke@435 4542 movsbl(reg, reg);
duke@435 4543 }
duke@435 4544
duke@435 4545 void MacroAssembler::division_with_shift(Register reg, int shift_value) {
duke@435 4546 assert (shift_value > 0, "illegal shift value");
duke@435 4547 Label _is_positive;
duke@435 4548 testl (reg, reg);
duke@435 4549 jcc (Assembler::positive, _is_positive);
duke@435 4550 int offset = (1 << shift_value) - 1 ;
duke@435 4551
duke@435 4552 if (offset == 1) {
duke@435 4553 incrementl(reg);
duke@435 4554 } else {
duke@435 4555 addl(reg, offset);
duke@435 4556 }
duke@435 4557
duke@435 4558 bind (_is_positive);
duke@435 4559 sarl(reg, shift_value);
duke@435 4560 }
duke@435 4561
duke@435 4562 void MacroAssembler::round_to_l(Register reg, int modulus) {
duke@435 4563 addl(reg, modulus - 1);
duke@435 4564 andl(reg, -modulus);
duke@435 4565 }
duke@435 4566
duke@435 4567 void MacroAssembler::round_to_q(Register reg, int modulus) {
duke@435 4568 addq(reg, modulus - 1);
duke@435 4569 andq(reg, -modulus);
duke@435 4570 }
duke@435 4571
duke@435 4572 void MacroAssembler::verify_oop(Register reg, const char* s) {
duke@435 4573 if (!VerifyOops) {
duke@435 4574 return;
duke@435 4575 }
duke@435 4576
duke@435 4577 // Pass register number to verify_oop_subroutine
duke@435 4578 char* b = new char[strlen(s) + 50];
duke@435 4579 sprintf(b, "verify_oop: %s: %s", reg->name(), s);
duke@435 4580
duke@435 4581 pushq(rax); // save rax, restored by receiver
duke@435 4582
duke@435 4583 // pass args on stack, only touch rax
duke@435 4584 pushq(reg);
duke@435 4585
duke@435 4586 // avoid using pushptr, as it modifies scratch registers
duke@435 4587 // and our contract is not to modify anything
duke@435 4588 ExternalAddress buffer((address)b);
duke@435 4589 movptr(rax, buffer.addr());
duke@435 4590 pushq(rax);
duke@435 4591
duke@435 4592 // call indirectly to solve generation ordering problem
duke@435 4593 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 4594 call(rax); // no alignment requirement
duke@435 4595 // everything popped by receiver
duke@435 4596 }
duke@435 4597
duke@435 4598 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
duke@435 4599 if (!VerifyOops) return;
duke@435 4600 // Pass register number to verify_oop_subroutine
duke@435 4601 char* b = new char[strlen(s) + 50];
duke@435 4602 sprintf(b, "verify_oop_addr: %s", s);
duke@435 4603 pushq(rax); // save rax
duke@435 4604 movq(addr, rax);
duke@435 4605 pushq(rax); // pass register argument
duke@435 4606
duke@435 4607
duke@435 4608 // avoid using pushptr, as it modifies scratch registers
duke@435 4609 // and our contract is not to modify anything
duke@435 4610 ExternalAddress buffer((address)b);
duke@435 4611 movptr(rax, buffer.addr());
duke@435 4612 pushq(rax);
duke@435 4613
duke@435 4614 // call indirectly to solve generation ordering problem
duke@435 4615 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 4616 call(rax); // no alignment requirement
duke@435 4617 // everything popped by receiver
duke@435 4618 }
duke@435 4619
duke@435 4620
duke@435 4621 void MacroAssembler::stop(const char* msg) {
duke@435 4622 address rip = pc();
duke@435 4623 pushaq(); // get regs on stack
duke@435 4624 lea(c_rarg0, ExternalAddress((address) msg));
duke@435 4625 lea(c_rarg1, InternalAddress(rip));
duke@435 4626 movq(c_rarg2, rsp); // pass pointer to regs array
duke@435 4627 andq(rsp, -16); // align stack as required by ABI
duke@435 4628 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
duke@435 4629 hlt();
duke@435 4630 }
duke@435 4631
duke@435 4632 void MacroAssembler::warn(const char* msg) {
duke@435 4633 pushq(r12);
duke@435 4634 movq(r12, rsp);
duke@435 4635 andq(rsp, -16); // align stack as required by push_CPU_state and call
duke@435 4636
duke@435 4637 push_CPU_state(); // keeps alignment at 16 bytes
duke@435 4638 lea(c_rarg0, ExternalAddress((address) msg));
duke@435 4639 call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
duke@435 4640 pop_CPU_state();
duke@435 4641
duke@435 4642 movq(rsp, r12);
duke@435 4643 popq(r12);
duke@435 4644 }
duke@435 4645
duke@435 4646 void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
duke@435 4647 // In order to get locks to work, we need to fake a in_VM state
duke@435 4648 if (ShowMessageBoxOnError ) {
duke@435 4649 JavaThread* thread = JavaThread::current();
duke@435 4650 JavaThreadState saved_state = thread->thread_state();
duke@435 4651 thread->set_thread_state(_thread_in_vm);
duke@435 4652 ttyLocker ttyl;
duke@435 4653 #ifndef PRODUCT
duke@435 4654 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 4655 BytecodeCounter::print();
duke@435 4656 }
duke@435 4657 #endif
duke@435 4658 // To see where a verify_oop failed, get $ebx+40/X for this frame.
duke@435 4659 // XXX correct this offset for amd64
duke@435 4660 // This is the value of eip which points to where verify_oop will return.
duke@435 4661 if (os::message_box(msg, "Execution stopped, print registers?")) {
duke@435 4662 tty->print_cr("rip = 0x%016lx", pc);
duke@435 4663 tty->print_cr("rax = 0x%016lx", regs[15]);
duke@435 4664 tty->print_cr("rbx = 0x%016lx", regs[12]);
duke@435 4665 tty->print_cr("rcx = 0x%016lx", regs[14]);
duke@435 4666 tty->print_cr("rdx = 0x%016lx", regs[13]);
duke@435 4667 tty->print_cr("rdi = 0x%016lx", regs[8]);
duke@435 4668 tty->print_cr("rsi = 0x%016lx", regs[9]);
duke@435 4669 tty->print_cr("rbp = 0x%016lx", regs[10]);
duke@435 4670 tty->print_cr("rsp = 0x%016lx", regs[11]);
duke@435 4671 tty->print_cr("r8 = 0x%016lx", regs[7]);
duke@435 4672 tty->print_cr("r9 = 0x%016lx", regs[6]);
duke@435 4673 tty->print_cr("r10 = 0x%016lx", regs[5]);
duke@435 4674 tty->print_cr("r11 = 0x%016lx", regs[4]);
duke@435 4675 tty->print_cr("r12 = 0x%016lx", regs[3]);
duke@435 4676 tty->print_cr("r13 = 0x%016lx", regs[2]);
duke@435 4677 tty->print_cr("r14 = 0x%016lx", regs[1]);
duke@435 4678 tty->print_cr("r15 = 0x%016lx", regs[0]);
duke@435 4679 BREAKPOINT;
duke@435 4680 }
duke@435 4681 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
duke@435 4682 } else {
duke@435 4683 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
duke@435 4684 msg);
duke@435 4685 }
duke@435 4686 }
duke@435 4687
duke@435 4688 void MacroAssembler::os_breakpoint() {
duke@435 4689 // instead of directly emitting a breakpoint, call os:breakpoint for
duke@435 4690 // better debugability
duke@435 4691 // This shouldn't need alignment, it's an empty function
duke@435 4692 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
duke@435 4693 }
duke@435 4694
duke@435 4695 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 4696 // We use the current thread pointer to calculate a thread specific
duke@435 4697 // offset to write to within the page. This minimizes bus traffic
duke@435 4698 // due to cache line collision.
duke@435 4699 void MacroAssembler::serialize_memory(Register thread,
duke@435 4700 Register tmp) {
duke@435 4701
duke@435 4702 movl(tmp, thread);
duke@435 4703 shrl(tmp, os::get_serialize_page_shift_count());
duke@435 4704 andl(tmp, (os::vm_page_size() - sizeof(int)));
duke@435 4705
duke@435 4706 Address index(noreg, tmp, Address::times_1);
duke@435 4707 ExternalAddress page(os::get_memory_serialize_page());
duke@435 4708
duke@435 4709 movptr(ArrayAddress(page, index), tmp);
duke@435 4710 }
duke@435 4711
duke@435 4712 void MacroAssembler::verify_tlab() {
duke@435 4713 #ifdef ASSERT
duke@435 4714 if (UseTLAB) {
duke@435 4715 Label next, ok;
duke@435 4716 Register t1 = rsi;
duke@435 4717
duke@435 4718 pushq(t1);
duke@435 4719
duke@435 4720 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4721 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
duke@435 4722 jcc(Assembler::aboveEqual, next);
duke@435 4723 stop("assert(top >= start)");
duke@435 4724 should_not_reach_here();
duke@435 4725
duke@435 4726 bind(next);
duke@435 4727 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4728 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4729 jcc(Assembler::aboveEqual, ok);
duke@435 4730 stop("assert(top <= end)");
duke@435 4731 should_not_reach_here();
duke@435 4732
duke@435 4733 bind(ok);
duke@435 4734
duke@435 4735 popq(t1);
duke@435 4736 }
duke@435 4737 #endif
duke@435 4738 }
duke@435 4739
duke@435 4740 // Defines obj, preserves var_size_in_bytes
duke@435 4741 void MacroAssembler::eden_allocate(Register obj,
duke@435 4742 Register var_size_in_bytes,
duke@435 4743 int con_size_in_bytes,
duke@435 4744 Register t1,
duke@435 4745 Label& slow_case) {
duke@435 4746 assert(obj == rax, "obj must be in rax for cmpxchg");
duke@435 4747 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4748 Register end = t1;
duke@435 4749 Label retry;
duke@435 4750 bind(retry);
duke@435 4751 ExternalAddress heap_top((address) Universe::heap()->top_addr());
duke@435 4752 movptr(obj, heap_top);
duke@435 4753 if (var_size_in_bytes == noreg) {
duke@435 4754 leaq(end, Address(obj, con_size_in_bytes));
duke@435 4755 } else {
duke@435 4756 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4757 }
duke@435 4758 // if end < obj then we wrapped around => object too long => slow case
duke@435 4759 cmpq(end, obj);
duke@435 4760 jcc(Assembler::below, slow_case);
duke@435 4761 cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
duke@435 4762
duke@435 4763 jcc(Assembler::above, slow_case);
duke@435 4764 // Compare obj with the top addr, and if still equal, store the new
duke@435 4765 // top addr in end at the address of the top addr pointer. Sets ZF
duke@435 4766 // if was equal, and clears it otherwise. Use lock prefix for
duke@435 4767 // atomicity on MPs.
duke@435 4768 if (os::is_MP()) {
duke@435 4769 lock();
duke@435 4770 }
duke@435 4771 cmpxchgptr(end, heap_top);
duke@435 4772 // if someone beat us on the allocation, try again, otherwise continue
duke@435 4773 jcc(Assembler::notEqual, retry);
duke@435 4774 }
duke@435 4775
duke@435 4776 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
duke@435 4777 void MacroAssembler::tlab_allocate(Register obj,
duke@435 4778 Register var_size_in_bytes,
duke@435 4779 int con_size_in_bytes,
duke@435 4780 Register t1,
duke@435 4781 Register t2,
duke@435 4782 Label& slow_case) {
duke@435 4783 assert_different_registers(obj, t1, t2);
duke@435 4784 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4785 Register end = t2;
duke@435 4786
duke@435 4787 verify_tlab();
duke@435 4788
duke@435 4789 movq(obj, Address(r15_thread, JavaThread::tlab_top_offset()));
duke@435 4790 if (var_size_in_bytes == noreg) {
duke@435 4791 leaq(end, Address(obj, con_size_in_bytes));
duke@435 4792 } else {
duke@435 4793 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4794 }
duke@435 4795 cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset()));
duke@435 4796 jcc(Assembler::above, slow_case);
duke@435 4797
duke@435 4798 // update the tlab top pointer
duke@435 4799 movq(Address(r15_thread, JavaThread::tlab_top_offset()), end);
duke@435 4800
duke@435 4801 // recover var_size_in_bytes if necessary
duke@435 4802 if (var_size_in_bytes == end) {
duke@435 4803 subq(var_size_in_bytes, obj);
duke@435 4804 }
duke@435 4805 verify_tlab();
duke@435 4806 }
duke@435 4807
duke@435 4808 // Preserves rbx and rdx.
duke@435 4809 void MacroAssembler::tlab_refill(Label& retry,
duke@435 4810 Label& try_eden,
duke@435 4811 Label& slow_case) {
duke@435 4812 Register top = rax;
duke@435 4813 Register t1 = rcx;
duke@435 4814 Register t2 = rsi;
duke@435 4815 Register t3 = r10;
duke@435 4816 Register thread_reg = r15_thread;
duke@435 4817 assert_different_registers(top, thread_reg, t1, t2, t3,
duke@435 4818 /* preserve: */ rbx, rdx);
duke@435 4819 Label do_refill, discard_tlab;
duke@435 4820
duke@435 4821 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4822 // No allocation in the shared eden.
duke@435 4823 jmp(slow_case);
duke@435 4824 }
duke@435 4825
duke@435 4826 movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4827 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4828
duke@435 4829 // calculate amount of free space
duke@435 4830 subq(t1, top);
duke@435 4831 shrq(t1, LogHeapWordSize);
duke@435 4832
duke@435 4833 // Retain tlab and allocate object in shared space if
duke@435 4834 // the amount free in the tlab is too large to discard.
duke@435 4835 cmpq(t1, Address(thread_reg, // size_t
duke@435 4836 in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
duke@435 4837 jcc(Assembler::lessEqual, discard_tlab);
duke@435 4838
duke@435 4839 // Retain
duke@435 4840 mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
duke@435 4841 addq(Address(thread_reg, // size_t
duke@435 4842 in_bytes(JavaThread::tlab_refill_waste_limit_offset())),
duke@435 4843 t2);
duke@435 4844 if (TLABStats) {
duke@435 4845 // increment number of slow_allocations
duke@435 4846 addl(Address(thread_reg, // unsigned int
duke@435 4847 in_bytes(JavaThread::tlab_slow_allocations_offset())),
duke@435 4848 1);
duke@435 4849 }
duke@435 4850 jmp(try_eden);
duke@435 4851
duke@435 4852 bind(discard_tlab);
duke@435 4853 if (TLABStats) {
duke@435 4854 // increment number of refills
duke@435 4855 addl(Address(thread_reg, // unsigned int
duke@435 4856 in_bytes(JavaThread::tlab_number_of_refills_offset())),
duke@435 4857 1);
duke@435 4858 // accumulate wastage -- t1 is amount free in tlab
duke@435 4859 addl(Address(thread_reg, // unsigned int
duke@435 4860 in_bytes(JavaThread::tlab_fast_refill_waste_offset())),
duke@435 4861 t1);
duke@435 4862 }
duke@435 4863
duke@435 4864 // if tlab is currently allocated (top or end != null) then
duke@435 4865 // fill [top, end + alignment_reserve) with array object
duke@435 4866 testq(top, top);
duke@435 4867 jcc(Assembler::zero, do_refill);
duke@435 4868
duke@435 4869 // set up the mark word
duke@435 4870 mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2));
duke@435 4871 movq(Address(top, oopDesc::mark_offset_in_bytes()), t3);
duke@435 4872 // set the length to the remaining space
duke@435 4873 subq(t1, typeArrayOopDesc::header_size(T_INT));
duke@435 4874 addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve());
duke@435 4875 shlq(t1, log2_intptr(HeapWordSize / sizeof(jint)));
duke@435 4876 movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
duke@435 4877 // set klass to intArrayKlass
duke@435 4878 movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
duke@435 4879 movq(Address(top, oopDesc::klass_offset_in_bytes()), t1);
duke@435 4880
duke@435 4881 // refill the tlab with an eden allocation
duke@435 4882 bind(do_refill);
duke@435 4883 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4884 shlq(t1, LogHeapWordSize);
duke@435 4885 // add object_size ??
duke@435 4886 eden_allocate(top, t1, 0, t2, slow_case);
duke@435 4887
duke@435 4888 // Check that t1 was preserved in eden_allocate.
duke@435 4889 #ifdef ASSERT
duke@435 4890 if (UseTLAB) {
duke@435 4891 Label ok;
duke@435 4892 Register tsize = rsi;
duke@435 4893 assert_different_registers(tsize, thread_reg, t1);
duke@435 4894 pushq(tsize);
duke@435 4895 movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4896 shlq(tsize, LogHeapWordSize);
duke@435 4897 cmpq(t1, tsize);
duke@435 4898 jcc(Assembler::equal, ok);
duke@435 4899 stop("assert(t1 != tlab size)");
duke@435 4900 should_not_reach_here();
duke@435 4901
duke@435 4902 bind(ok);
duke@435 4903 popq(tsize);
duke@435 4904 }
duke@435 4905 #endif
duke@435 4906 movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
duke@435 4907 movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
duke@435 4908 addq(top, t1);
duke@435 4909 subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
duke@435 4910 movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
duke@435 4911 verify_tlab();
duke@435 4912 jmp(retry);
duke@435 4913 }
duke@435 4914
duke@435 4915
duke@435 4916 int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
duke@435 4917 bool swap_reg_contains_mark,
duke@435 4918 Label& done, Label* slow_case,
duke@435 4919 BiasedLockingCounters* counters) {
duke@435 4920 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 4921 assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
duke@435 4922 assert(tmp_reg != noreg, "tmp_reg must be supplied");
duke@435 4923 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
duke@435 4924 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 4925 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 4926 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes());
duke@435 4927 Address saved_mark_addr(lock_reg, 0);
duke@435 4928
duke@435 4929 if (PrintBiasedLockingStatistics && counters == NULL)
duke@435 4930 counters = BiasedLocking::counters();
duke@435 4931
duke@435 4932 // Biased locking
duke@435 4933 // See whether the lock is currently biased toward our thread and
duke@435 4934 // whether the epoch is still valid
duke@435 4935 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 4936 // pointers to allow age to be placed into low bits
duke@435 4937 // First check to see whether biasing is even enabled for this object
duke@435 4938 Label cas_label;
duke@435 4939 int null_check_offset = -1;
duke@435 4940 if (!swap_reg_contains_mark) {
duke@435 4941 null_check_offset = offset();
duke@435 4942 movq(swap_reg, mark_addr);
duke@435 4943 }
duke@435 4944 movq(tmp_reg, swap_reg);
duke@435 4945 andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 4946 cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
duke@435 4947 jcc(Assembler::notEqual, cas_label);
duke@435 4948 // The bias pattern is present in the object's header. Need to check
duke@435 4949 // whether the bias owner and the epoch are both still current.
duke@435 4950 movq(tmp_reg, klass_addr);
duke@435 4951 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 4952 orq(tmp_reg, r15_thread);
duke@435 4953 xorq(tmp_reg, swap_reg);
duke@435 4954 andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
duke@435 4955 if (counters != NULL) {
duke@435 4956 cond_inc32(Assembler::zero,
duke@435 4957 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
duke@435 4958 }
duke@435 4959 jcc(Assembler::equal, done);
duke@435 4960
duke@435 4961 Label try_revoke_bias;
duke@435 4962 Label try_rebias;
duke@435 4963
duke@435 4964 // At this point we know that the header has the bias pattern and
duke@435 4965 // that we are not the bias owner in the current epoch. We need to
duke@435 4966 // figure out more details about the state of the header in order to
duke@435 4967 // know what operations can be legally performed on the object's
duke@435 4968 // header.
duke@435 4969
duke@435 4970 // If the low three bits in the xor result aren't clear, that means
duke@435 4971 // the prototype header is no longer biased and we have to revoke
duke@435 4972 // the bias on this object.
duke@435 4973 testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 4974 jcc(Assembler::notZero, try_revoke_bias);
duke@435 4975
duke@435 4976 // Biasing is still enabled for this data type. See whether the
duke@435 4977 // epoch of the current bias is still valid, meaning that the epoch
duke@435 4978 // bits of the mark word are equal to the epoch bits of the
duke@435 4979 // prototype header. (Note that the prototype header's epoch bits
duke@435 4980 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 4981 // toward the current thread. Note that we must be absolutely sure
duke@435 4982 // that the current epoch is invalid in order to do this because
duke@435 4983 // otherwise the manipulations it performs on the mark word are
duke@435 4984 // illegal.
duke@435 4985 testq(tmp_reg, markOopDesc::epoch_mask_in_place);
duke@435 4986 jcc(Assembler::notZero, try_rebias);
duke@435 4987
duke@435 4988 // The epoch of the current bias is still valid but we know nothing
duke@435 4989 // about the owner; it might be set or it might be clear. Try to
duke@435 4990 // acquire the bias of the object using an atomic operation. If this
duke@435 4991 // fails we will go in to the runtime to revoke the object's bias.
duke@435 4992 // Note that we first construct the presumed unbiased header so we
duke@435 4993 // don't accidentally blow away another thread's valid bias.
duke@435 4994 andq(swap_reg,
duke@435 4995 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
duke@435 4996 movq(tmp_reg, swap_reg);
duke@435 4997 orq(tmp_reg, r15_thread);
duke@435 4998 if (os::is_MP()) {
duke@435 4999 lock();
duke@435 5000 }
duke@435 5001 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5002 // If the biasing toward our thread failed, this means that
duke@435 5003 // another thread succeeded in biasing it toward itself and we
duke@435 5004 // need to revoke that bias. The revocation will occur in the
duke@435 5005 // interpreter runtime in the slow case.
duke@435 5006 if (counters != NULL) {
duke@435 5007 cond_inc32(Assembler::zero,
duke@435 5008 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
duke@435 5009 }
duke@435 5010 if (slow_case != NULL) {
duke@435 5011 jcc(Assembler::notZero, *slow_case);
duke@435 5012 }
duke@435 5013 jmp(done);
duke@435 5014
duke@435 5015 bind(try_rebias);
duke@435 5016 // At this point we know the epoch has expired, meaning that the
duke@435 5017 // current "bias owner", if any, is actually invalid. Under these
duke@435 5018 // circumstances _only_, we are allowed to use the current header's
duke@435 5019 // value as the comparison value when doing the cas to acquire the
duke@435 5020 // bias in the current epoch. In other words, we allow transfer of
duke@435 5021 // the bias from one thread to another directly in this situation.
duke@435 5022 //
duke@435 5023 // FIXME: due to a lack of registers we currently blow away the age
duke@435 5024 // bits in this situation. Should attempt to preserve them.
duke@435 5025 movq(tmp_reg, klass_addr);
duke@435 5026 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 5027 orq(tmp_reg, r15_thread);
duke@435 5028 if (os::is_MP()) {
duke@435 5029 lock();
duke@435 5030 }
duke@435 5031 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5032 // If the biasing toward our thread failed, then another thread
duke@435 5033 // succeeded in biasing it toward itself and we need to revoke that
duke@435 5034 // bias. The revocation will occur in the runtime in the slow case.
duke@435 5035 if (counters != NULL) {
duke@435 5036 cond_inc32(Assembler::zero,
duke@435 5037 ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
duke@435 5038 }
duke@435 5039 if (slow_case != NULL) {
duke@435 5040 jcc(Assembler::notZero, *slow_case);
duke@435 5041 }
duke@435 5042 jmp(done);
duke@435 5043
duke@435 5044 bind(try_revoke_bias);
duke@435 5045 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 5046 // more, indicating that objects of this data type are not supposed
duke@435 5047 // to be biased any more. We are going to try to reset the mark of
duke@435 5048 // this object to the prototype value and fall through to the
duke@435 5049 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 5050 // that another thread raced us for the privilege of revoking the
duke@435 5051 // bias of this particular object, so it's okay to continue in the
duke@435 5052 // normal locking code.
duke@435 5053 //
duke@435 5054 // FIXME: due to a lack of registers we currently blow away the age
duke@435 5055 // bits in this situation. Should attempt to preserve them.
duke@435 5056 movq(tmp_reg, klass_addr);
duke@435 5057 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 5058 if (os::is_MP()) {
duke@435 5059 lock();
duke@435 5060 }
duke@435 5061 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5062 // Fall through to the normal CAS-based lock, because no matter what
duke@435 5063 // the result of the above CAS, some thread must have succeeded in
duke@435 5064 // removing the bias bit from the object's header.
duke@435 5065 if (counters != NULL) {
duke@435 5066 cond_inc32(Assembler::zero,
duke@435 5067 ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
duke@435 5068 }
duke@435 5069
duke@435 5070 bind(cas_label);
duke@435 5071
duke@435 5072 return null_check_offset;
duke@435 5073 }
duke@435 5074
duke@435 5075
duke@435 5076 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
duke@435 5077 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 5078
duke@435 5079 // Check for biased locking unlock case, which is a no-op
duke@435 5080 // Note: we do not have to check the thread ID for two reasons.
duke@435 5081 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 5082 // a higher level. Second, if the bias was revoked while we held the
duke@435 5083 // lock, the object could not be rebiased toward another thread, so
duke@435 5084 // the bias bit would be clear.
duke@435 5085 movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
duke@435 5086 andq(temp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 5087 cmpq(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 5088 jcc(Assembler::equal, done);
duke@435 5089 }
duke@435 5090
duke@435 5091
duke@435 5092 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 5093 switch (cond) {
duke@435 5094 // Note some conditions are synonyms for others
duke@435 5095 case Assembler::zero: return Assembler::notZero;
duke@435 5096 case Assembler::notZero: return Assembler::zero;
duke@435 5097 case Assembler::less: return Assembler::greaterEqual;
duke@435 5098 case Assembler::lessEqual: return Assembler::greater;
duke@435 5099 case Assembler::greater: return Assembler::lessEqual;
duke@435 5100 case Assembler::greaterEqual: return Assembler::less;
duke@435 5101 case Assembler::below: return Assembler::aboveEqual;
duke@435 5102 case Assembler::belowEqual: return Assembler::above;
duke@435 5103 case Assembler::above: return Assembler::belowEqual;
duke@435 5104 case Assembler::aboveEqual: return Assembler::below;
duke@435 5105 case Assembler::overflow: return Assembler::noOverflow;
duke@435 5106 case Assembler::noOverflow: return Assembler::overflow;
duke@435 5107 case Assembler::negative: return Assembler::positive;
duke@435 5108 case Assembler::positive: return Assembler::negative;
duke@435 5109 case Assembler::parity: return Assembler::noParity;
duke@435 5110 case Assembler::noParity: return Assembler::parity;
duke@435 5111 }
duke@435 5112 ShouldNotReachHere(); return Assembler::overflow;
duke@435 5113 }
duke@435 5114
duke@435 5115
duke@435 5116 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
duke@435 5117 Condition negated_cond = negate_condition(cond);
duke@435 5118 Label L;
duke@435 5119 jcc(negated_cond, L);
duke@435 5120 atomic_incl(counter_addr);
duke@435 5121 bind(L);
duke@435 5122 }
duke@435 5123
duke@435 5124 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
duke@435 5125 pushfq();
duke@435 5126 if (os::is_MP())
duke@435 5127 lock();
duke@435 5128 incrementl(counter_addr);
duke@435 5129 popfq();
duke@435 5130 }
duke@435 5131
duke@435 5132 SkipIfEqual::SkipIfEqual(
duke@435 5133 MacroAssembler* masm, const bool* flag_addr, bool value) {
duke@435 5134 _masm = masm;
duke@435 5135 _masm->cmp8(ExternalAddress((address)flag_addr), value);
duke@435 5136 _masm->jcc(Assembler::equal, _label);
duke@435 5137 }
duke@435 5138
duke@435 5139 SkipIfEqual::~SkipIfEqual() {
duke@435 5140 _masm->bind(_label);
duke@435 5141 }
duke@435 5142
duke@435 5143 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
duke@435 5144 movq(tmp, rsp);
duke@435 5145 // Bang stack for total size given plus shadow page size.
duke@435 5146 // Bang one page at a time because large size can bang beyond yellow and
duke@435 5147 // red zones.
duke@435 5148 Label loop;
duke@435 5149 bind(loop);
duke@435 5150 movl(Address(tmp, (-os::vm_page_size())), size );
duke@435 5151 subq(tmp, os::vm_page_size());
duke@435 5152 subl(size, os::vm_page_size());
duke@435 5153 jcc(Assembler::greater, loop);
duke@435 5154
duke@435 5155 // Bang down shadow pages too.
duke@435 5156 // The -1 because we already subtracted 1 page.
duke@435 5157 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 5158 movq(Address(tmp, (-i*os::vm_page_size())), size );
duke@435 5159 }
duke@435 5160 }

mercurial