src/cpu/x86/vm/assembler_x86_64.cpp

Wed, 28 May 2008 21:06:24 -0700

author
coleenp
date
Wed, 28 May 2008 21:06:24 -0700
changeset 602
feeb96a45707
parent 599
c436414a719e
child 614
1f809e010142
child 617
44abbb0d4c18
permissions
-rw-r--r--

6696264: assert("narrow oop can never be zero") for GCBasher & ParNewGC
Summary: decouple set_klass() with zeroing the gap when compressed.
Reviewed-by: kvn, ysr, jrose

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_x86_64.cpp.incl"
    28 // Implementation of AddressLiteral
    30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    31   _is_lval = false;
    32   _target = target;
    33   switch (rtype) {
    34   case relocInfo::oop_type:
    35     // Oops are a special case. Normally they would be their own section
    36     // but in cases like icBuffer they are literals in the code stream that
    37     // we don't have a section for. We use none so that we get a literal address
    38     // which is always patchable.
    39     break;
    40   case relocInfo::external_word_type:
    41     _rspec = external_word_Relocation::spec(target);
    42     break;
    43   case relocInfo::internal_word_type:
    44     _rspec = internal_word_Relocation::spec(target);
    45     break;
    46   case relocInfo::opt_virtual_call_type:
    47     _rspec = opt_virtual_call_Relocation::spec();
    48     break;
    49   case relocInfo::static_call_type:
    50     _rspec = static_call_Relocation::spec();
    51     break;
    52   case relocInfo::runtime_call_type:
    53     _rspec = runtime_call_Relocation::spec();
    54     break;
    55   case relocInfo::none:
    56     break;
    57   default:
    58     ShouldNotReachHere();
    59     break;
    60   }
    61 }
    63 // Implementation of Address
    65 Address Address::make_array(ArrayAddress adr) {
    66 #ifdef _LP64
    67   // Not implementable on 64bit machines
    68   // Should have been handled higher up the call chain.
    69   ShouldNotReachHere();
    70   return Address();
    71 #else
    72   AddressLiteral base = adr.base();
    73   Address index = adr.index();
    74   assert(index._disp == 0, "must not have disp"); // maybe it can?
    75   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
    76   array._rspec = base._rspec;
    77   return array;
    78 #endif // _LP64
    79 }
    81 // exceedingly dangerous constructor
    82 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    83   _base  = noreg;
    84   _index = noreg;
    85   _scale = no_scale;
    86   _disp  = disp;
    87   switch (rtype) {
    88     case relocInfo::external_word_type:
    89       _rspec = external_word_Relocation::spec(loc);
    90       break;
    91     case relocInfo::internal_word_type:
    92       _rspec = internal_word_Relocation::spec(loc);
    93       break;
    94     case relocInfo::runtime_call_type:
    95       // HMM
    96       _rspec = runtime_call_Relocation::spec();
    97       break;
    98     case relocInfo::none:
    99       break;
   100     default:
   101       ShouldNotReachHere();
   102   }
   103 }
   105 // Convert the raw encoding form into the form expected by the constructor for
   106 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   107 // that to noreg for the Address constructor.
   108 Address Address::make_raw(int base, int index, int scale, int disp) {
   109   bool valid_index = index != rsp->encoding();
   110   if (valid_index) {
   111     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   112     return madr;
   113   } else {
   114     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   115     return madr;
   116   }
   117 }
   120 // Implementation of Assembler
   121 int AbstractAssembler::code_fill_byte() {
   122   return (u_char)'\xF4'; // hlt
   123 }
   125 // This should only be used by 64bit instructions that can use rip-relative
   126 // it cannot be used by instructions that want an immediate value.
   128 bool Assembler::reachable(AddressLiteral adr) {
   129   int64_t disp;
   131   // None will force a 64bit literal to the code stream. Likely a placeholder
   132   // for something that will be patched later and we need to certain it will
   133   // always be reachable.
   134   if (adr.reloc() == relocInfo::none) {
   135     return false;
   136   }
   137   if (adr.reloc() == relocInfo::internal_word_type) {
   138     // This should be rip relative and easily reachable.
   139     return true;
   140   }
   141   if (adr.reloc() != relocInfo::external_word_type &&
   142       adr.reloc() != relocInfo::runtime_call_type ) {
   143     return false;
   144   }
   146   // Stress the correction code
   147   if (ForceUnreachable) {
   148     // Must be runtimecall reloc, see if it is in the codecache
   149     // Flipping stuff in the codecache to be unreachable causes issues
   150     // with things like inline caches where the additional instructions
   151     // are not handled.
   152     if (CodeCache::find_blob(adr._target) == NULL) {
   153       return false;
   154     }
   155   }
   156   // For external_word_type/runtime_call_type if it is reachable from where we
   157   // are now (possibly a temp buffer) and where we might end up
   158   // anywhere in the codeCache then we are always reachable.
   159   // This would have to change if we ever save/restore shared code
   160   // to be more pessimistic.
   162   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
   163   if (!is_simm32(disp)) return false;
   164   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
   165   if (!is_simm32(disp)) return false;
   167   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
   169   // Because rip relative is a disp + address_of_next_instruction and we
   170   // don't know the value of address_of_next_instruction we apply a fudge factor
   171   // to make sure we will be ok no matter the size of the instruction we get placed into.
   172   // We don't have to fudge the checks above here because they are already worst case.
   174   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
   175   // + 4 because better safe than sorry.
   176   const int fudge = 12 + 4;
   177   if (disp < 0) {
   178     disp -= fudge;
   179   } else {
   180     disp += fudge;
   181   }
   182   return is_simm32(disp);
   183 }
   186 // make this go away eventually
   187 void Assembler::emit_data(jint data,
   188                           relocInfo::relocType rtype,
   189                           int format) {
   190   if (rtype == relocInfo::none) {
   191     emit_long(data);
   192   } else {
   193     emit_data(data, Relocation::spec_simple(rtype), format);
   194   }
   195 }
   197 void Assembler::emit_data(jint data,
   198                           RelocationHolder const& rspec,
   199                           int format) {
   200   assert(imm64_operand == 0, "default format must be imm64 in this file");
   201   assert(imm64_operand != format, "must not be imm64");
   202   assert(inst_mark() != NULL, "must be inside InstructionMark");
   203   if (rspec.type() !=  relocInfo::none) {
   204     #ifdef ASSERT
   205       check_relocation(rspec, format);
   206     #endif
   207     // Do not use AbstractAssembler::relocate, which is not intended for
   208     // embedded words.  Instead, relocate to the enclosing instruction.
   210     // hack. call32 is too wide for mask so use disp32
   211     if (format == call32_operand)
   212       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   213     else
   214       code_section()->relocate(inst_mark(), rspec, format);
   215   }
   216   emit_long(data);
   217 }
   219 void Assembler::emit_data64(jlong data,
   220                             relocInfo::relocType rtype,
   221                             int format) {
   222   if (rtype == relocInfo::none) {
   223     emit_long64(data);
   224   } else {
   225     emit_data64(data, Relocation::spec_simple(rtype), format);
   226   }
   227 }
   229 void Assembler::emit_data64(jlong data,
   230                             RelocationHolder const& rspec,
   231                             int format) {
   232   assert(imm64_operand == 0, "default format must be imm64 in this file");
   233   assert(imm64_operand == format, "must be imm64");
   234   assert(inst_mark() != NULL, "must be inside InstructionMark");
   235   // Do not use AbstractAssembler::relocate, which is not intended for
   236   // embedded words.  Instead, relocate to the enclosing instruction.
   237   code_section()->relocate(inst_mark(), rspec, format);
   238 #ifdef ASSERT
   239   check_relocation(rspec, format);
   240 #endif
   241   emit_long64(data);
   242 }
   244 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   245   assert(isByte(op1) && isByte(op2), "wrong opcode");
   246   assert(isByte(imm8), "not a byte");
   247   assert((op1 & 0x01) == 0, "should be 8bit operation");
   248   int dstenc = dst->encoding();
   249   if (dstenc >= 8) {
   250     dstenc -= 8;
   251   }
   252   emit_byte(op1);
   253   emit_byte(op2 | dstenc);
   254   emit_byte(imm8);
   255 }
   257 void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
   258   assert(isByte(op1) && isByte(op2), "wrong opcode");
   259   assert((op1 & 0x01) == 1, "should be 32bit operation");
   260   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   261   int dstenc = dst->encoding();
   262   if (dstenc >= 8) {
   263     dstenc -= 8;
   264   }
   265   if (is8bit(imm32)) {
   266     emit_byte(op1 | 0x02); // set sign bit
   267     emit_byte(op2 | dstenc);
   268     emit_byte(imm32 & 0xFF);
   269   } else {
   270     emit_byte(op1);
   271     emit_byte(op2 | dstenc);
   272     emit_long(imm32);
   273   }
   274 }
   276 // immediate-to-memory forms
   277 void Assembler::emit_arith_operand(int op1,
   278                                    Register rm, Address adr,
   279                                    int imm32) {
   280   assert((op1 & 0x01) == 1, "should be 32bit operation");
   281   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   282   if (is8bit(imm32)) {
   283     emit_byte(op1 | 0x02); // set sign bit
   284     emit_operand(rm, adr, 1);
   285     emit_byte(imm32 & 0xFF);
   286   } else {
   287     emit_byte(op1);
   288     emit_operand(rm, adr, 4);
   289     emit_long(imm32);
   290   }
   291 }
   294 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   295   assert(isByte(op1) && isByte(op2), "wrong opcode");
   296   int dstenc = dst->encoding();
   297   int srcenc = src->encoding();
   298   if (dstenc >= 8) {
   299     dstenc -= 8;
   300   }
   301   if (srcenc >= 8) {
   302     srcenc -= 8;
   303   }
   304   emit_byte(op1);
   305   emit_byte(op2 | dstenc << 3 | srcenc);
   306 }
   308 void Assembler::emit_operand(Register reg, Register base, Register index,
   309                              Address::ScaleFactor scale, int disp,
   310                              RelocationHolder const& rspec,
   311                              int rip_relative_correction) {
   312   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   313   int regenc = reg->encoding();
   314   if (regenc >= 8) {
   315     regenc -= 8;
   316   }
   317   if (base->is_valid()) {
   318     if (index->is_valid()) {
   319       assert(scale != Address::no_scale, "inconsistent address");
   320       int indexenc = index->encoding();
   321       if (indexenc >= 8) {
   322         indexenc -= 8;
   323       }
   324       int baseenc = base->encoding();
   325       if (baseenc >= 8) {
   326         baseenc -= 8;
   327       }
   328       // [base + index*scale + disp]
   329       if (disp == 0 && rtype == relocInfo::none  &&
   330           base != rbp && base != r13) {
   331         // [base + index*scale]
   332         // [00 reg 100][ss index base]
   333         assert(index != rsp, "illegal addressing mode");
   334         emit_byte(0x04 | regenc << 3);
   335         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   336       } else if (is8bit(disp) && rtype == relocInfo::none) {
   337         // [base + index*scale + imm8]
   338         // [01 reg 100][ss index base] imm8
   339         assert(index != rsp, "illegal addressing mode");
   340         emit_byte(0x44 | regenc << 3);
   341         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   342         emit_byte(disp & 0xFF);
   343       } else {
   344         // [base + index*scale + disp32]
   345         // [10 reg 100][ss index base] disp32
   346         assert(index != rsp, "illegal addressing mode");
   347         emit_byte(0x84 | regenc << 3);
   348         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   349         emit_data(disp, rspec, disp32_operand);
   350       }
   351     } else if (base == rsp || base == r12) {
   352       // [rsp + disp]
   353       if (disp == 0 && rtype == relocInfo::none) {
   354         // [rsp]
   355         // [00 reg 100][00 100 100]
   356         emit_byte(0x04 | regenc << 3);
   357         emit_byte(0x24);
   358       } else if (is8bit(disp) && rtype == relocInfo::none) {
   359         // [rsp + imm8]
   360         // [01 reg 100][00 100 100] disp8
   361         emit_byte(0x44 | regenc << 3);
   362         emit_byte(0x24);
   363         emit_byte(disp & 0xFF);
   364       } else {
   365         // [rsp + imm32]
   366         // [10 reg 100][00 100 100] disp32
   367         emit_byte(0x84 | regenc << 3);
   368         emit_byte(0x24);
   369         emit_data(disp, rspec, disp32_operand);
   370       }
   371     } else {
   372       // [base + disp]
   373       assert(base != rsp && base != r12, "illegal addressing mode");
   374       int baseenc = base->encoding();
   375       if (baseenc >= 8) {
   376         baseenc -= 8;
   377       }
   378       if (disp == 0 && rtype == relocInfo::none &&
   379           base != rbp && base != r13) {
   380         // [base]
   381         // [00 reg base]
   382         emit_byte(0x00 | regenc << 3 | baseenc);
   383       } else if (is8bit(disp) && rtype == relocInfo::none) {
   384         // [base + disp8]
   385         // [01 reg base] disp8
   386         emit_byte(0x40 | regenc << 3 | baseenc);
   387         emit_byte(disp & 0xFF);
   388       } else {
   389         // [base + disp32]
   390         // [10 reg base] disp32
   391         emit_byte(0x80 | regenc << 3 | baseenc);
   392         emit_data(disp, rspec, disp32_operand);
   393       }
   394     }
   395   } else {
   396     if (index->is_valid()) {
   397       assert(scale != Address::no_scale, "inconsistent address");
   398       int indexenc = index->encoding();
   399       if (indexenc >= 8) {
   400         indexenc -= 8;
   401       }
   402       // [index*scale + disp]
   403       // [00 reg 100][ss index 101] disp32
   404       assert(index != rsp, "illegal addressing mode");
   405       emit_byte(0x04 | regenc << 3);
   406       emit_byte(scale << 6 | indexenc << 3 | 0x05);
   407       emit_data(disp, rspec, disp32_operand);
   408 #ifdef _LP64
   409     } else if (rtype != relocInfo::none ) {
   410       // [disp] RIP-RELATIVE
   411       // [00 000 101] disp32
   413       emit_byte(0x05 | regenc << 3);
   414       // Note that the RIP-rel. correction applies to the generated
   415       // disp field, but _not_ to the target address in the rspec.
   417       // disp was created by converting the target address minus the pc
   418       // at the start of the instruction. That needs more correction here.
   419       // intptr_t disp = target - next_ip;
   420       assert(inst_mark() != NULL, "must be inside InstructionMark");
   421       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   422       int64_t adjusted = (int64_t) disp -  (next_ip - inst_mark());
   423       assert(is_simm32(adjusted),
   424              "must be 32bit offset (RIP relative address)");
   425       emit_data((int) adjusted, rspec, disp32_operand);
   427 #endif // _LP64
   428     } else {
   429       // [disp] ABSOLUTE
   430       // [00 reg 100][00 100 101] disp32
   431       emit_byte(0x04 | regenc << 3);
   432       emit_byte(0x25);
   433       emit_data(disp, rspec, disp32_operand);
   434     }
   435   }
   436 }
   438 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   439                              Address::ScaleFactor scale, int disp,
   440                              RelocationHolder const& rspec,
   441                              int rip_relative_correction) {
   442   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   443   int regenc = reg->encoding();
   444   if (regenc >= 8) {
   445     regenc -= 8;
   446   }
   447   if (base->is_valid()) {
   448     if (index->is_valid()) {
   449       assert(scale != Address::no_scale, "inconsistent address");
   450       int indexenc = index->encoding();
   451       if (indexenc >= 8) {
   452         indexenc -= 8;
   453       }
   454       int baseenc = base->encoding();
   455       if (baseenc >= 8) {
   456         baseenc -= 8;
   457       }
   458       // [base + index*scale + disp]
   459       if (disp == 0 && rtype == relocInfo::none  &&
   460           base != rbp && base != r13) {
   461         // [base + index*scale]
   462         // [00 reg 100][ss index base]
   463         assert(index != rsp, "illegal addressing mode");
   464         emit_byte(0x04 | regenc << 3);
   465         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   466       } else if (is8bit(disp) && rtype == relocInfo::none) {
   467         // [base + index*scale + disp8]
   468         // [01 reg 100][ss index base] disp8
   469         assert(index != rsp, "illegal addressing mode");
   470         emit_byte(0x44 | regenc << 3);
   471         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   472         emit_byte(disp & 0xFF);
   473       } else {
   474         // [base + index*scale + disp32]
   475         // [10 reg 100][ss index base] disp32
   476         assert(index != rsp, "illegal addressing mode");
   477         emit_byte(0x84 | regenc << 3);
   478         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   479         emit_data(disp, rspec, disp32_operand);
   480       }
   481     } else if (base == rsp || base == r12) {
   482       // [rsp + disp]
   483       if (disp == 0 && rtype == relocInfo::none) {
   484         // [rsp]
   485         // [00 reg 100][00 100 100]
   486         emit_byte(0x04 | regenc << 3);
   487         emit_byte(0x24);
   488       } else if (is8bit(disp) && rtype == relocInfo::none) {
   489         // [rsp + imm8]
   490         // [01 reg 100][00 100 100] disp8
   491         emit_byte(0x44 | regenc << 3);
   492         emit_byte(0x24);
   493         emit_byte(disp & 0xFF);
   494       } else {
   495         // [rsp + imm32]
   496         // [10 reg 100][00 100 100] disp32
   497         emit_byte(0x84 | regenc << 3);
   498         emit_byte(0x24);
   499         emit_data(disp, rspec, disp32_operand);
   500       }
   501     } else {
   502       // [base + disp]
   503       assert(base != rsp && base != r12, "illegal addressing mode");
   504       int baseenc = base->encoding();
   505       if (baseenc >= 8) {
   506         baseenc -= 8;
   507       }
   508       if (disp == 0 && rtype == relocInfo::none &&
   509           base != rbp && base != r13) {
   510         // [base]
   511         // [00 reg base]
   512         emit_byte(0x00 | regenc << 3 | baseenc);
   513       } else if (is8bit(disp) && rtype == relocInfo::none) {
   514         // [base + imm8]
   515         // [01 reg base] disp8
   516         emit_byte(0x40 | regenc << 3 | baseenc);
   517         emit_byte(disp & 0xFF);
   518       } else {
   519         // [base + imm32]
   520         // [10 reg base] disp32
   521         emit_byte(0x80 | regenc << 3 | baseenc);
   522         emit_data(disp, rspec, disp32_operand);
   523       }
   524     }
   525   } else {
   526     if (index->is_valid()) {
   527       assert(scale != Address::no_scale, "inconsistent address");
   528       int indexenc = index->encoding();
   529       if (indexenc >= 8) {
   530         indexenc -= 8;
   531       }
   532       // [index*scale + disp]
   533       // [00 reg 100][ss index 101] disp32
   534       assert(index != rsp, "illegal addressing mode");
   535       emit_byte(0x04 | regenc << 3);
   536       emit_byte(scale << 6 | indexenc << 3 | 0x05);
   537       emit_data(disp, rspec, disp32_operand);
   538 #ifdef _LP64
   539     } else if ( rtype != relocInfo::none ) {
   540       // [disp] RIP-RELATIVE
   541       // [00 reg 101] disp32
   542       emit_byte(0x05 | regenc << 3);
   543       // Note that the RIP-rel. correction applies to the generated
   544       // disp field, but _not_ to the target address in the rspec.
   546       // disp was created by converting the target address minus the pc
   547       // at the start of the instruction. That needs more correction here.
   548       // intptr_t disp = target - next_ip;
   550       assert(inst_mark() != NULL, "must be inside InstructionMark");
   551       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   553       int64_t adjusted = (int64_t) disp -  (next_ip - inst_mark());
   554       assert(is_simm32(adjusted),
   555              "must be 32bit offset (RIP relative address)");
   556       emit_data((int) adjusted, rspec, disp32_operand);
   557 #endif // _LP64
   558     } else {
   559       // [disp] ABSOLUTE
   560       // [00 reg 100][00 100 101] disp32
   561       emit_byte(0x04 | regenc << 3);
   562       emit_byte(0x25);
   563       emit_data(disp, rspec, disp32_operand);
   564     }
   565   }
   566 }
   568 // Secret local extension to Assembler::WhichOperand:
   569 #define end_pc_operand (_WhichOperand_limit)
   571 address Assembler::locate_operand(address inst, WhichOperand which) {
   572   // Decode the given instruction, and return the address of
   573   // an embedded 32-bit operand word.
   575   // If "which" is disp32_operand, selects the displacement portion
   576   // of an effective address specifier.
   577   // If "which" is imm64_operand, selects the trailing immediate constant.
   578   // If "which" is call32_operand, selects the displacement of a call or jump.
   579   // Caller is responsible for ensuring that there is such an operand,
   580   // and that it is 32/64 bits wide.
   582   // If "which" is end_pc_operand, find the end of the instruction.
   584   address ip = inst;
   585   bool is_64bit = false;
   587   debug_only(bool has_disp32 = false);
   588   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   590   again_after_prefix:
   591   switch (0xFF & *ip++) {
   593   // These convenience macros generate groups of "case" labels for the switch.
   594 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   595 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   596              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   597 #define REP16(x) REP8((x)+0): \
   598               case REP8((x)+8)
   600   case CS_segment:
   601   case SS_segment:
   602   case DS_segment:
   603   case ES_segment:
   604   case FS_segment:
   605   case GS_segment:
   606     assert(0, "shouldn't have that prefix");
   607     assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed");
   608     goto again_after_prefix;
   610   case 0x67:
   611   case REX:
   612   case REX_B:
   613   case REX_X:
   614   case REX_XB:
   615   case REX_R:
   616   case REX_RB:
   617   case REX_RX:
   618   case REX_RXB:
   619 //     assert(ip == inst + 1, "only one prefix allowed");
   620     goto again_after_prefix;
   622   case REX_W:
   623   case REX_WB:
   624   case REX_WX:
   625   case REX_WXB:
   626   case REX_WR:
   627   case REX_WRB:
   628   case REX_WRX:
   629   case REX_WRXB:
   630     is_64bit = true;
   631 //     assert(ip == inst + 1, "only one prefix allowed");
   632     goto again_after_prefix;
   634   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   635   case 0x88: // movb a, r
   636   case 0x89: // movl a, r
   637   case 0x8A: // movb r, a
   638   case 0x8B: // movl r, a
   639   case 0x8F: // popl a
   640     debug_only(has_disp32 = true;)
   641     break;
   643   case 0x68: // pushq #32
   644     if (which == end_pc_operand) {
   645       return ip + 4;
   646     }
   647     assert(0, "pushq has no disp32 or imm64");
   648     ShouldNotReachHere();
   650   case 0x66: // movw ... (size prefix)
   651     again_after_size_prefix2:
   652     switch (0xFF & *ip++) {
   653     case REX:
   654     case REX_B:
   655     case REX_X:
   656     case REX_XB:
   657     case REX_R:
   658     case REX_RB:
   659     case REX_RX:
   660     case REX_RXB:
   661     case REX_W:
   662     case REX_WB:
   663     case REX_WX:
   664     case REX_WXB:
   665     case REX_WR:
   666     case REX_WRB:
   667     case REX_WRX:
   668     case REX_WRXB:
   669       goto again_after_size_prefix2;
   670     case 0x8B: // movw r, a
   671     case 0x89: // movw a, r
   672       break;
   673     case 0xC7: // movw a, #16
   674       tail_size = 2;  // the imm16
   675       break;
   676     case 0x0F: // several SSE/SSE2 variants
   677       ip--;    // reparse the 0x0F
   678       goto again_after_prefix;
   679     default:
   680       ShouldNotReachHere();
   681     }
   682     break;
   684   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   685     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   686     assert((which == call32_operand || which == imm64_operand) && is_64bit ||
   687            which == narrow_oop_operand && !is_64bit, "");
   688     return ip;
   690   case 0x69: // imul r, a, #32
   691   case 0xC7: // movl a, #32(oop?)
   692     tail_size = 4;
   693     debug_only(has_disp32 = true); // has both kinds of operands!
   694     break;
   696   case 0x0F: // movx..., etc.
   697     switch (0xFF & *ip++) {
   698     case 0x12: // movlps
   699     case 0x28: // movaps
   700     case 0x2E: // ucomiss
   701     case 0x2F: // comiss
   702     case 0x54: // andps
   703     case 0x57: // xorps
   704     case 0x6E: // movd
   705     case 0x7E: // movd
   706     case 0xAE: // ldmxcsr   a
   707       debug_only(has_disp32 = true); // has both kinds of operands!
   708       break;
   709     case 0xAD: // shrd r, a, %cl
   710     case 0xAF: // imul r, a
   711     case 0xBE: // movsbl r, a
   712     case 0xBF: // movswl r, a
   713     case 0xB6: // movzbl r, a
   714     case 0xB7: // movzwl r, a
   715     case REP16(0x40): // cmovl cc, r, a
   716     case 0xB0: // cmpxchgb
   717     case 0xB1: // cmpxchg
   718     case 0xC1: // xaddl
   719     case 0xC7: // cmpxchg8
   720     case REP16(0x90): // setcc a
   721       debug_only(has_disp32 = true);
   722       // fall out of the switch to decode the address
   723       break;
   724     case 0xAC: // shrd r, a, #8
   725       debug_only(has_disp32 = true);
   726       tail_size = 1;  // the imm8
   727       break;
   728     case REP16(0x80): // jcc rdisp32
   729       if (which == end_pc_operand)  return ip + 4;
   730       assert(which == call32_operand, "jcc has no disp32 or imm64");
   731       return ip;
   732     default:
   733       ShouldNotReachHere();
   734     }
   735     break;
   737   case 0x81: // addl a, #32; addl r, #32
   738     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   739     tail_size = 4;
   740     debug_only(has_disp32 = true); // has both kinds of operands!
   741     break;
   743   case 0x83: // addl a, #8; addl r, #8
   744     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   745     debug_only(has_disp32 = true); // has both kinds of operands!
   746     tail_size = 1;
   747     break;
   749   case 0x9B:
   750     switch (0xFF & *ip++) {
   751     case 0xD9: // fnstcw a
   752       debug_only(has_disp32 = true);
   753       break;
   754     default:
   755       ShouldNotReachHere();
   756     }
   757     break;
   759   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   760   case REP4(0x10): // adc...
   761   case REP4(0x20): // and...
   762   case REP4(0x30): // xor...
   763   case REP4(0x08): // or...
   764   case REP4(0x18): // sbb...
   765   case REP4(0x28): // sub...
   766   case 0xF7: // mull a
   767   case 0x87: // xchg r, a
   768     debug_only(has_disp32 = true);
   769     break;
   770   case REP4(0x38): // cmp...
   771   case 0x8D: // lea r, a
   772   case 0x85: // test r, a
   773     debug_only(has_disp32 = true); // has both kinds of operands!
   774     break;
   776   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   777   case 0xC6: // movb a, #8
   778   case 0x80: // cmpb a, #8
   779   case 0x6B: // imul r, a, #8
   780     debug_only(has_disp32 = true); // has both kinds of operands!
   781     tail_size = 1; // the imm8
   782     break;
   784   case 0xE8: // call rdisp32
   785   case 0xE9: // jmp  rdisp32
   786     if (which == end_pc_operand)  return ip + 4;
   787     assert(which == call32_operand, "call has no disp32 or imm32");
   788     return ip;
   790   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   791   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   792   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   793   case 0xDD: // fld_d a; fst_d a; fstp_d a
   794   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   795   case 0xDF: // fild_d a; fistp_d a
   796   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   797   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   798   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   799     debug_only(has_disp32 = true);
   800     break;
   802   case 0xF3:                    // For SSE
   803   case 0xF2:                    // For SSE2
   804     switch (0xFF & *ip++) {
   805     case REX:
   806     case REX_B:
   807     case REX_X:
   808     case REX_XB:
   809     case REX_R:
   810     case REX_RB:
   811     case REX_RX:
   812     case REX_RXB:
   813     case REX_W:
   814     case REX_WB:
   815     case REX_WX:
   816     case REX_WXB:
   817     case REX_WR:
   818     case REX_WRB:
   819     case REX_WRX:
   820     case REX_WRXB:
   821       ip++;
   822     default:
   823       ip++;
   824     }
   825     debug_only(has_disp32 = true); // has both kinds of operands!
   826     break;
   828   default:
   829     ShouldNotReachHere();
   831 #undef REP8
   832 #undef REP16
   833   }
   835   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   836   assert(which != imm64_operand, "instruction is not a movq reg, imm64");
   837   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   839   // parse the output of emit_operand
   840   int op2 = 0xFF & *ip++;
   841   int base = op2 & 0x07;
   842   int op3 = -1;
   843   const int b100 = 4;
   844   const int b101 = 5;
   845   if (base == b100 && (op2 >> 6) != 3) {
   846     op3 = 0xFF & *ip++;
   847     base = op3 & 0x07;   // refetch the base
   848   }
   849   // now ip points at the disp (if any)
   851   switch (op2 >> 6) {
   852   case 0:
   853     // [00 reg  100][ss index base]
   854     // [00 reg  100][00   100  esp]
   855     // [00 reg base]
   856     // [00 reg  100][ss index  101][disp32]
   857     // [00 reg  101]               [disp32]
   859     if (base == b101) {
   860       if (which == disp32_operand)
   861         return ip;              // caller wants the disp32
   862       ip += 4;                  // skip the disp32
   863     }
   864     break;
   866   case 1:
   867     // [01 reg  100][ss index base][disp8]
   868     // [01 reg  100][00   100  esp][disp8]
   869     // [01 reg base]               [disp8]
   870     ip += 1;                    // skip the disp8
   871     break;
   873   case 2:
   874     // [10 reg  100][ss index base][disp32]
   875     // [10 reg  100][00   100  esp][disp32]
   876     // [10 reg base]               [disp32]
   877     if (which == disp32_operand)
   878       return ip;                // caller wants the disp32
   879     ip += 4;                    // skip the disp32
   880     break;
   882   case 3:
   883     // [11 reg base]  (not a memory addressing mode)
   884     break;
   885   }
   887   if (which == end_pc_operand) {
   888     return ip + tail_size;
   889   }
   891   assert(0, "fix locate_operand");
   892   return ip;
   893 }
   895 address Assembler::locate_next_instruction(address inst) {
   896   // Secretly share code with locate_operand:
   897   return locate_operand(inst, end_pc_operand);
   898 }
   900 #ifdef ASSERT
   901 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   902   address inst = inst_mark();
   903   assert(inst != NULL && inst < pc(),
   904          "must point to beginning of instruction");
   905   address opnd;
   907   Relocation* r = rspec.reloc();
   908   if (r->type() == relocInfo::none) {
   909     return;
   910   } else if (r->is_call() || format == call32_operand) {
   911     opnd = locate_operand(inst, call32_operand);
   912   } else if (r->is_data()) {
   913     assert(format == imm64_operand || format == disp32_operand ||
   914            format == narrow_oop_operand, "format ok");
   915     opnd = locate_operand(inst, (WhichOperand) format);
   916   } else {
   917     assert(format == 0, "cannot specify a format");
   918     return;
   919   }
   920   assert(opnd == pc(), "must put operand where relocs can find it");
   921 }
   922 #endif
   924 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
   925   if (reg_enc >= 8) {
   926     prefix(REX_B);
   927     reg_enc -= 8;
   928   } else if (byteinst && reg_enc >= 4) {
   929     prefix(REX);
   930   }
   931   return reg_enc;
   932 }
   934 int Assembler::prefixq_and_encode(int reg_enc) {
   935   if (reg_enc < 8) {
   936     prefix(REX_W);
   937   } else {
   938     prefix(REX_WB);
   939     reg_enc -= 8;
   940   }
   941   return reg_enc;
   942 }
   944 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
   945   if (dst_enc < 8) {
   946     if (src_enc >= 8) {
   947       prefix(REX_B);
   948       src_enc -= 8;
   949     } else if (byteinst && src_enc >= 4) {
   950       prefix(REX);
   951     }
   952   } else {
   953     if (src_enc < 8) {
   954       prefix(REX_R);
   955     } else {
   956       prefix(REX_RB);
   957       src_enc -= 8;
   958     }
   959     dst_enc -= 8;
   960   }
   961   return dst_enc << 3 | src_enc;
   962 }
   964 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
   965   if (dst_enc < 8) {
   966     if (src_enc < 8) {
   967       prefix(REX_W);
   968     } else {
   969       prefix(REX_WB);
   970       src_enc -= 8;
   971     }
   972   } else {
   973     if (src_enc < 8) {
   974       prefix(REX_WR);
   975     } else {
   976       prefix(REX_WRB);
   977       src_enc -= 8;
   978     }
   979     dst_enc -= 8;
   980   }
   981   return dst_enc << 3 | src_enc;
   982 }
   984 void Assembler::prefix(Register reg) {
   985   if (reg->encoding() >= 8) {
   986     prefix(REX_B);
   987   }
   988 }
   990 void Assembler::prefix(Address adr) {
   991   if (adr.base_needs_rex()) {
   992     if (adr.index_needs_rex()) {
   993       prefix(REX_XB);
   994     } else {
   995       prefix(REX_B);
   996     }
   997   } else {
   998     if (adr.index_needs_rex()) {
   999       prefix(REX_X);
  1004 void Assembler::prefixq(Address adr) {
  1005   if (adr.base_needs_rex()) {
  1006     if (adr.index_needs_rex()) {
  1007       prefix(REX_WXB);
  1008     } else {
  1009       prefix(REX_WB);
  1011   } else {
  1012     if (adr.index_needs_rex()) {
  1013       prefix(REX_WX);
  1014     } else {
  1015       prefix(REX_W);
  1021 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  1022   if (reg->encoding() < 8) {
  1023     if (adr.base_needs_rex()) {
  1024       if (adr.index_needs_rex()) {
  1025         prefix(REX_XB);
  1026       } else {
  1027         prefix(REX_B);
  1029     } else {
  1030       if (adr.index_needs_rex()) {
  1031         prefix(REX_X);
  1032       } else if (reg->encoding() >= 4 ) {
  1033         prefix(REX);
  1036   } else {
  1037     if (adr.base_needs_rex()) {
  1038       if (adr.index_needs_rex()) {
  1039         prefix(REX_RXB);
  1040       } else {
  1041         prefix(REX_RB);
  1043     } else {
  1044       if (adr.index_needs_rex()) {
  1045         prefix(REX_RX);
  1046       } else {
  1047         prefix(REX_R);
  1053 void Assembler::prefixq(Address adr, Register src) {
  1054   if (src->encoding() < 8) {
  1055     if (adr.base_needs_rex()) {
  1056       if (adr.index_needs_rex()) {
  1057         prefix(REX_WXB);
  1058       } else {
  1059         prefix(REX_WB);
  1061     } else {
  1062       if (adr.index_needs_rex()) {
  1063         prefix(REX_WX);
  1064       } else {
  1065         prefix(REX_W);
  1068   } else {
  1069     if (adr.base_needs_rex()) {
  1070       if (adr.index_needs_rex()) {
  1071         prefix(REX_WRXB);
  1072       } else {
  1073         prefix(REX_WRB);
  1075     } else {
  1076       if (adr.index_needs_rex()) {
  1077         prefix(REX_WRX);
  1078       } else {
  1079         prefix(REX_WR);
  1085 void Assembler::prefix(Address adr, XMMRegister reg) {
  1086   if (reg->encoding() < 8) {
  1087     if (adr.base_needs_rex()) {
  1088       if (adr.index_needs_rex()) {
  1089         prefix(REX_XB);
  1090       } else {
  1091         prefix(REX_B);
  1093     } else {
  1094       if (adr.index_needs_rex()) {
  1095         prefix(REX_X);
  1098   } else {
  1099     if (adr.base_needs_rex()) {
  1100       if (adr.index_needs_rex()) {
  1101         prefix(REX_RXB);
  1102       } else {
  1103         prefix(REX_RB);
  1105     } else {
  1106       if (adr.index_needs_rex()) {
  1107         prefix(REX_RX);
  1108       } else {
  1109         prefix(REX_R);
  1115 void Assembler::emit_operand(Register reg, Address adr,
  1116                              int rip_relative_correction) {
  1117   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
  1118                adr._rspec,
  1119                rip_relative_correction);
  1122 void Assembler::emit_operand(XMMRegister reg, Address adr,
  1123                              int rip_relative_correction) {
  1124   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
  1125                adr._rspec,
  1126                rip_relative_correction);
  1129 void Assembler::emit_farith(int b1, int b2, int i) {
  1130   assert(isByte(b1) && isByte(b2), "wrong opcode");
  1131   assert(0 <= i &&  i < 8, "illegal stack offset");
  1132   emit_byte(b1);
  1133   emit_byte(b2 + i);
  1136 // pushad is invalid, use this instead.
  1137 // NOTE: Kills flags!!
  1138 void Assembler::pushaq() {
  1139   // we have to store original rsp.  ABI says that 128 bytes
  1140   // below rsp are local scratch.
  1141   movq(Address(rsp, -5 * wordSize), rsp);
  1143   subq(rsp, 16 * wordSize);
  1145   movq(Address(rsp, 15 * wordSize), rax);
  1146   movq(Address(rsp, 14 * wordSize), rcx);
  1147   movq(Address(rsp, 13 * wordSize), rdx);
  1148   movq(Address(rsp, 12 * wordSize), rbx);
  1149   // skip rsp
  1150   movq(Address(rsp, 10 * wordSize), rbp);
  1151   movq(Address(rsp, 9 * wordSize), rsi);
  1152   movq(Address(rsp, 8 * wordSize), rdi);
  1153   movq(Address(rsp, 7 * wordSize), r8);
  1154   movq(Address(rsp, 6 * wordSize), r9);
  1155   movq(Address(rsp, 5 * wordSize), r10);
  1156   movq(Address(rsp, 4 * wordSize), r11);
  1157   movq(Address(rsp, 3 * wordSize), r12);
  1158   movq(Address(rsp, 2 * wordSize), r13);
  1159   movq(Address(rsp, wordSize), r14);
  1160   movq(Address(rsp, 0), r15);
  1163 // popad is invalid, use this instead
  1164 // NOTE: Kills flags!!
  1165 void Assembler::popaq() {
  1166   movq(r15, Address(rsp, 0));
  1167   movq(r14, Address(rsp, wordSize));
  1168   movq(r13, Address(rsp, 2 * wordSize));
  1169   movq(r12, Address(rsp, 3 * wordSize));
  1170   movq(r11, Address(rsp, 4 * wordSize));
  1171   movq(r10, Address(rsp, 5 * wordSize));
  1172   movq(r9,  Address(rsp, 6 * wordSize));
  1173   movq(r8,  Address(rsp, 7 * wordSize));
  1174   movq(rdi, Address(rsp, 8 * wordSize));
  1175   movq(rsi, Address(rsp, 9 * wordSize));
  1176   movq(rbp, Address(rsp, 10 * wordSize));
  1177   // skip rsp
  1178   movq(rbx, Address(rsp, 12 * wordSize));
  1179   movq(rdx, Address(rsp, 13 * wordSize));
  1180   movq(rcx, Address(rsp, 14 * wordSize));
  1181   movq(rax, Address(rsp, 15 * wordSize));
  1183   addq(rsp, 16 * wordSize);
  1186 void Assembler::pushfq() {
  1187   emit_byte(0x9C);
  1190 void Assembler::popfq() {
  1191   emit_byte(0x9D);
  1194 void Assembler::pushq(int imm32) {
  1195   emit_byte(0x68);
  1196   emit_long(imm32);
  1199 void Assembler::pushq(Register src) {
  1200   int encode = prefix_and_encode(src->encoding());
  1202   emit_byte(0x50 | encode);
  1205 void Assembler::pushq(Address src) {
  1206   InstructionMark im(this);
  1207   prefix(src);
  1208   emit_byte(0xFF);
  1209   emit_operand(rsi, src);
  1212 void Assembler::popq(Register dst) {
  1213   int encode = prefix_and_encode(dst->encoding());
  1214   emit_byte(0x58 | encode);
  1217 void Assembler::popq(Address dst) {
  1218   InstructionMark im(this);
  1219   prefix(dst);
  1220   emit_byte(0x8F);
  1221   emit_operand(rax, dst);
  1224 void Assembler::prefix(Prefix p) {
  1225   a_byte(p);
  1228 void Assembler::movb(Register dst, Address src) {
  1229   InstructionMark im(this);
  1230   prefix(src, dst, true);
  1231   emit_byte(0x8A);
  1232   emit_operand(dst, src);
  1235 void Assembler::movb(Address dst, int imm8) {
  1236   InstructionMark im(this);
  1237   prefix(dst);
  1238   emit_byte(0xC6);
  1239   emit_operand(rax, dst, 1);
  1240   emit_byte(imm8);
  1243 void Assembler::movb(Address dst, Register src) {
  1244   InstructionMark im(this);
  1245   prefix(dst, src, true);
  1246   emit_byte(0x88);
  1247   emit_operand(src, dst);
  1250 void Assembler::movw(Address dst, int imm16) {
  1251   InstructionMark im(this);
  1252   emit_byte(0x66); // switch to 16-bit mode
  1253   prefix(dst);
  1254   emit_byte(0xC7);
  1255   emit_operand(rax, dst, 2);
  1256   emit_word(imm16);
  1259 void Assembler::movw(Register dst, Address src) {
  1260   InstructionMark im(this);
  1261   emit_byte(0x66);
  1262   prefix(src, dst);
  1263   emit_byte(0x8B);
  1264   emit_operand(dst, src);
  1267 void Assembler::movw(Address dst, Register src) {
  1268   InstructionMark im(this);
  1269   emit_byte(0x66);
  1270   prefix(dst, src);
  1271   emit_byte(0x89);
  1272   emit_operand(src, dst);
  1275 // Uses zero extension.
  1276 void Assembler::movl(Register dst, int imm32) {
  1277   int encode = prefix_and_encode(dst->encoding());
  1278   emit_byte(0xB8 | encode);
  1279   emit_long(imm32);
  1282 void Assembler::movl(Register dst, Register src) {
  1283   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1284   emit_byte(0x8B);
  1285   emit_byte(0xC0 | encode);
  1288 void Assembler::movl(Register dst, Address src) {
  1289   InstructionMark im(this);
  1290   prefix(src, dst);
  1291   emit_byte(0x8B);
  1292   emit_operand(dst, src);
  1295 void Assembler::movl(Address dst, int imm32) {
  1296   InstructionMark im(this);
  1297   prefix(dst);
  1298   emit_byte(0xC7);
  1299   emit_operand(rax, dst, 4);
  1300   emit_long(imm32);
  1303 void Assembler::movl(Address dst, Register src) {
  1304   InstructionMark im(this);
  1305   prefix(dst, src);
  1306   emit_byte(0x89);
  1307   emit_operand(src, dst);
  1310 void Assembler::mov64(Register dst, intptr_t imm64) {
  1311   InstructionMark im(this);
  1312   int encode = prefixq_and_encode(dst->encoding());
  1313   emit_byte(0xB8 | encode);
  1314   emit_long64(imm64);
  1317 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  1318   InstructionMark im(this);
  1319   int encode = prefixq_and_encode(dst->encoding());
  1320   emit_byte(0xB8 | encode);
  1321   emit_data64(imm64, rspec);
  1324 void Assembler::movq(Register dst, Register src) {
  1325   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1326   emit_byte(0x8B);
  1327   emit_byte(0xC0 | encode);
  1330 void Assembler::movq(Register dst, Address src) {
  1331   InstructionMark im(this);
  1332   prefixq(src, dst);
  1333   emit_byte(0x8B);
  1334   emit_operand(dst, src);
  1337 void Assembler::mov64(Address dst, intptr_t imm32) {
  1338   assert(is_simm32(imm32), "lost bits");
  1339   InstructionMark im(this);
  1340   prefixq(dst);
  1341   emit_byte(0xC7);
  1342   emit_operand(rax, dst, 4);
  1343   emit_long(imm32);
  1346 void Assembler::movq(Address dst, Register src) {
  1347   InstructionMark im(this);
  1348   prefixq(dst, src);
  1349   emit_byte(0x89);
  1350   emit_operand(src, dst);
  1353 void Assembler::movsbl(Register dst, Address src) {
  1354   InstructionMark im(this);
  1355   prefix(src, dst);
  1356   emit_byte(0x0F);
  1357   emit_byte(0xBE);
  1358   emit_operand(dst, src);
  1361 void Assembler::movsbl(Register dst, Register src) {
  1362   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1363   emit_byte(0x0F);
  1364   emit_byte(0xBE);
  1365   emit_byte(0xC0 | encode);
  1368 void Assembler::movswl(Register dst, Address src) {
  1369   InstructionMark im(this);
  1370   prefix(src, dst);
  1371   emit_byte(0x0F);
  1372   emit_byte(0xBF);
  1373   emit_operand(dst, src);
  1376 void Assembler::movswl(Register dst, Register src) {
  1377   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1378   emit_byte(0x0F);
  1379   emit_byte(0xBF);
  1380   emit_byte(0xC0 | encode);
  1383 void Assembler::movslq(Register dst, Address src) {
  1384   InstructionMark im(this);
  1385   prefixq(src, dst);
  1386   emit_byte(0x63);
  1387   emit_operand(dst, src);
  1390 void Assembler::movslq(Register dst, Register src) {
  1391   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1392   emit_byte(0x63);
  1393   emit_byte(0xC0 | encode);
  1396 void Assembler::movzbl(Register dst, Address src) {
  1397   InstructionMark im(this);
  1398   prefix(src, dst);
  1399   emit_byte(0x0F);
  1400   emit_byte(0xB6);
  1401   emit_operand(dst, src);
  1404 void Assembler::movzbl(Register dst, Register src) {
  1405   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1406   emit_byte(0x0F);
  1407   emit_byte(0xB6);
  1408   emit_byte(0xC0 | encode);
  1411 void Assembler::movzwl(Register dst, Address src) {
  1412   InstructionMark im(this);
  1413   prefix(src, dst);
  1414   emit_byte(0x0F);
  1415   emit_byte(0xB7);
  1416   emit_operand(dst, src);
  1419 void Assembler::movzwl(Register dst, Register src) {
  1420   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1421   emit_byte(0x0F);
  1422   emit_byte(0xB7);
  1423   emit_byte(0xC0 | encode);
  1426 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1427   emit_byte(0xF3);
  1428   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1429   emit_byte(0x0F);
  1430   emit_byte(0x10);
  1431   emit_byte(0xC0 | encode);
  1434 void Assembler::movss(XMMRegister dst, Address src) {
  1435   InstructionMark im(this);
  1436   emit_byte(0xF3);
  1437   prefix(src, dst);
  1438   emit_byte(0x0F);
  1439   emit_byte(0x10);
  1440   emit_operand(dst, src);
  1443 void Assembler::movss(Address dst, XMMRegister src) {
  1444   InstructionMark im(this);
  1445   emit_byte(0xF3);
  1446   prefix(dst, src);
  1447   emit_byte(0x0F);
  1448   emit_byte(0x11);
  1449   emit_operand(src, dst);
  1452 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1453   emit_byte(0xF2);
  1454   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1455   emit_byte(0x0F);
  1456   emit_byte(0x10);
  1457   emit_byte(0xC0 | encode);
  1460 void Assembler::movsd(XMMRegister dst, Address src) {
  1461   InstructionMark im(this);
  1462   emit_byte(0xF2);
  1463   prefix(src, dst);
  1464   emit_byte(0x0F);
  1465   emit_byte(0x10);
  1466   emit_operand(dst, src);
  1469 void Assembler::movsd(Address dst, XMMRegister src) {
  1470   InstructionMark im(this);
  1471   emit_byte(0xF2);
  1472   prefix(dst, src);
  1473   emit_byte(0x0F);
  1474   emit_byte(0x11);
  1475   emit_operand(src, dst);
  1478 // New cpus require to use movsd and movss to avoid partial register stall
  1479 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1480 // The selection is done in MacroAssembler::movdbl() and movflt().
  1481 void Assembler::movlpd(XMMRegister dst, Address src) {
  1482   InstructionMark im(this);
  1483   emit_byte(0x66);
  1484   prefix(src, dst);
  1485   emit_byte(0x0F);
  1486   emit_byte(0x12);
  1487   emit_operand(dst, src);
  1490 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1491   int dstenc = dst->encoding();
  1492   int srcenc = src->encoding();
  1493   emit_byte(0x66);
  1494   if (dstenc < 8) {
  1495     if (srcenc >= 8) {
  1496       prefix(REX_B);
  1497       srcenc -= 8;
  1499   } else {
  1500     if (srcenc < 8) {
  1501       prefix(REX_R);
  1502     } else {
  1503       prefix(REX_RB);
  1504       srcenc -= 8;
  1506     dstenc -= 8;
  1508   emit_byte(0x0F);
  1509   emit_byte(0x28);
  1510   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1513 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1514   int dstenc = dst->encoding();
  1515   int srcenc = src->encoding();
  1516   if (dstenc < 8) {
  1517     if (srcenc >= 8) {
  1518       prefix(REX_B);
  1519       srcenc -= 8;
  1521   } else {
  1522     if (srcenc < 8) {
  1523       prefix(REX_R);
  1524     } else {
  1525       prefix(REX_RB);
  1526       srcenc -= 8;
  1528     dstenc -= 8;
  1530   emit_byte(0x0F);
  1531   emit_byte(0x28);
  1532   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1535 void Assembler::movdl(XMMRegister dst, Register src) {
  1536   emit_byte(0x66);
  1537   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1538   emit_byte(0x0F);
  1539   emit_byte(0x6E);
  1540   emit_byte(0xC0 | encode);
  1543 void Assembler::movdl(Register dst, XMMRegister src) {
  1544   emit_byte(0x66);
  1545   // swap src/dst to get correct prefix
  1546   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1547   emit_byte(0x0F);
  1548   emit_byte(0x7E);
  1549   emit_byte(0xC0 | encode);
  1552 void Assembler::movdq(XMMRegister dst, Register src) {
  1553   emit_byte(0x66);
  1554   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1555   emit_byte(0x0F);
  1556   emit_byte(0x6E);
  1557   emit_byte(0xC0 | encode);
  1560 void Assembler::movdq(Register dst, XMMRegister src) {
  1561   emit_byte(0x66);
  1562   // swap src/dst to get correct prefix
  1563   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  1564   emit_byte(0x0F);
  1565   emit_byte(0x7E);
  1566   emit_byte(0xC0 | encode);
  1569 void Assembler::pxor(XMMRegister dst, Address src) {
  1570   InstructionMark im(this);
  1571   emit_byte(0x66);
  1572   prefix(src, dst);
  1573   emit_byte(0x0F);
  1574   emit_byte(0xEF);
  1575   emit_operand(dst, src);
  1578 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  1579   InstructionMark im(this);
  1580   emit_byte(0x66);
  1581   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1582   emit_byte(0x0F);
  1583   emit_byte(0xEF);
  1584   emit_byte(0xC0 | encode);
  1587 void Assembler::movdqa(XMMRegister dst, Address src) {
  1588   InstructionMark im(this);
  1589   emit_byte(0x66);
  1590   prefix(src, dst);
  1591   emit_byte(0x0F);
  1592   emit_byte(0x6F);
  1593   emit_operand(dst, src);
  1596 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1597   emit_byte(0x66);
  1598   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1599   emit_byte(0x0F);
  1600   emit_byte(0x6F);
  1601   emit_byte(0xC0 | encode);
  1604 void Assembler::movdqa(Address dst, XMMRegister src) {
  1605   InstructionMark im(this);
  1606   emit_byte(0x66);
  1607   prefix(dst, src);
  1608   emit_byte(0x0F);
  1609   emit_byte(0x7F);
  1610   emit_operand(src, dst);
  1613 void Assembler::movq(XMMRegister dst, Address src) {
  1614   InstructionMark im(this);
  1615   emit_byte(0xF3);
  1616   prefix(src, dst);
  1617   emit_byte(0x0F);
  1618   emit_byte(0x7E);
  1619   emit_operand(dst, src);
  1622 void Assembler::movq(Address dst, XMMRegister src) {
  1623   InstructionMark im(this);
  1624   emit_byte(0x66);
  1625   prefix(dst, src);
  1626   emit_byte(0x0F);
  1627   emit_byte(0xD6);
  1628   emit_operand(src, dst);
  1631 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  1632   assert(isByte(mode), "invalid value");
  1633   emit_byte(0x66);
  1634   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1635   emit_byte(0x0F);
  1636   emit_byte(0x70);
  1637   emit_byte(0xC0 | encode);
  1638   emit_byte(mode & 0xFF);
  1641 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  1642   assert(isByte(mode), "invalid value");
  1643   InstructionMark im(this);
  1644   emit_byte(0x66);
  1645   emit_byte(0x0F);
  1646   emit_byte(0x70);
  1647   emit_operand(dst, src);
  1648   emit_byte(mode & 0xFF);
  1651 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  1652   assert(isByte(mode), "invalid value");
  1653   emit_byte(0xF2);
  1654   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1655   emit_byte(0x0F);
  1656   emit_byte(0x70);
  1657   emit_byte(0xC0 | encode);
  1658   emit_byte(mode & 0xFF);
  1661 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  1662   assert(isByte(mode), "invalid value");
  1663   InstructionMark im(this);
  1664   emit_byte(0xF2);
  1665   emit_byte(0x0F);
  1666   emit_byte(0x70);
  1667   emit_operand(dst, src);
  1668   emit_byte(mode & 0xFF);
  1671 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1672   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1673   emit_byte(0x0F);
  1674   emit_byte(0x40 | cc);
  1675   emit_byte(0xC0 | encode);
  1678 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1679   InstructionMark im(this);
  1680   prefix(src, dst);
  1681   emit_byte(0x0F);
  1682   emit_byte(0x40 | cc);
  1683   emit_operand(dst, src);
  1686 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  1687   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1688   emit_byte(0x0F);
  1689   emit_byte(0x40 | cc);
  1690   emit_byte(0xC0 | encode);
  1693 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  1694   InstructionMark im(this);
  1695   prefixq(src, dst);
  1696   emit_byte(0x0F);
  1697   emit_byte(0x40 | cc);
  1698   emit_operand(dst, src);
  1701 void Assembler::prefetch_prefix(Address src) {
  1702   prefix(src);
  1703   emit_byte(0x0F);
  1706 void Assembler::prefetcht0(Address src) {
  1707   InstructionMark im(this);
  1708   prefetch_prefix(src);
  1709   emit_byte(0x18);
  1710   emit_operand(rcx, src); // 1, src
  1713 void Assembler::prefetcht1(Address src) {
  1714   InstructionMark im(this);
  1715   prefetch_prefix(src);
  1716   emit_byte(0x18);
  1717   emit_operand(rdx, src); // 2, src
  1720 void Assembler::prefetcht2(Address src) {
  1721   InstructionMark im(this);
  1722   prefetch_prefix(src);
  1723   emit_byte(0x18);
  1724   emit_operand(rbx, src); // 3, src
  1727 void Assembler::prefetchnta(Address src) {
  1728   InstructionMark im(this);
  1729   prefetch_prefix(src);
  1730   emit_byte(0x18);
  1731   emit_operand(rax, src); // 0, src
  1734 void Assembler::prefetchw(Address src) {
  1735   InstructionMark im(this);
  1736   prefetch_prefix(src);
  1737   emit_byte(0x0D);
  1738   emit_operand(rcx, src); // 1, src
  1741 void Assembler::adcl(Register dst, int imm32) {
  1742   prefix(dst);
  1743   emit_arith(0x81, 0xD0, dst, imm32);
  1746 void Assembler::adcl(Register dst, Address src) {
  1747   InstructionMark im(this);
  1748   prefix(src, dst);
  1749   emit_byte(0x13);
  1750   emit_operand(dst, src);
  1753 void Assembler::adcl(Register dst, Register src) {
  1754   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1755   emit_arith(0x13, 0xC0, dst, src);
  1758 void Assembler::adcq(Register dst, int imm32) {
  1759   (void) prefixq_and_encode(dst->encoding());
  1760   emit_arith(0x81, 0xD0, dst, imm32);
  1763 void Assembler::adcq(Register dst, Address src) {
  1764   InstructionMark im(this);
  1765   prefixq(src, dst);
  1766   emit_byte(0x13);
  1767   emit_operand(dst, src);
  1770 void Assembler::adcq(Register dst, Register src) {
  1771   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  1772   emit_arith(0x13, 0xC0, dst, src);
  1775 void Assembler::addl(Address dst, int imm32) {
  1776   InstructionMark im(this);
  1777   prefix(dst);
  1778   emit_arith_operand(0x81, rax, dst,imm32);
  1781 void Assembler::addl(Address dst, Register src) {
  1782   InstructionMark im(this);
  1783   prefix(dst, src);
  1784   emit_byte(0x01);
  1785   emit_operand(src, dst);
  1788 void Assembler::addl(Register dst, int imm32) {
  1789   prefix(dst);
  1790   emit_arith(0x81, 0xC0, dst, imm32);
  1793 void Assembler::addl(Register dst, Address src) {
  1794   InstructionMark im(this);
  1795   prefix(src, dst);
  1796   emit_byte(0x03);
  1797   emit_operand(dst, src);
  1800 void Assembler::addl(Register dst, Register src) {
  1801   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1802   emit_arith(0x03, 0xC0, dst, src);
  1805 void Assembler::addq(Address dst, int imm32) {
  1806   InstructionMark im(this);
  1807   prefixq(dst);
  1808   emit_arith_operand(0x81, rax, dst,imm32);
  1811 void Assembler::addq(Address dst, Register src) {
  1812   InstructionMark im(this);
  1813   prefixq(dst, src);
  1814   emit_byte(0x01);
  1815   emit_operand(src, dst);
  1818 void Assembler::addq(Register dst, int imm32) {
  1819   (void) prefixq_and_encode(dst->encoding());
  1820   emit_arith(0x81, 0xC0, dst, imm32);
  1823 void Assembler::addq(Register dst, Address src) {
  1824   InstructionMark im(this);
  1825   prefixq(src, dst);
  1826   emit_byte(0x03);
  1827   emit_operand(dst, src);
  1830 void Assembler::addq(Register dst, Register src) {
  1831   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  1832   emit_arith(0x03, 0xC0, dst, src);
  1835 void Assembler::andl(Register dst, int imm32) {
  1836   prefix(dst);
  1837   emit_arith(0x81, 0xE0, dst, imm32);
  1840 void Assembler::andl(Register dst, Address src) {
  1841   InstructionMark im(this);
  1842   prefix(src, dst);
  1843   emit_byte(0x23);
  1844   emit_operand(dst, src);
  1847 void Assembler::andl(Register dst, Register src) {
  1848   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1849   emit_arith(0x23, 0xC0, dst, src);
  1852 void Assembler::andq(Register dst, int imm32) {
  1853   (void) prefixq_and_encode(dst->encoding());
  1854   emit_arith(0x81, 0xE0, dst, imm32);
  1857 void Assembler::andq(Register dst, Address src) {
  1858   InstructionMark im(this);
  1859   prefixq(src, dst);
  1860   emit_byte(0x23);
  1861   emit_operand(dst, src);
  1864 void Assembler::andq(Register dst, Register src) {
  1865   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  1866   emit_arith(0x23, 0xC0, dst, src);
  1869 void Assembler::cmpb(Address dst, int imm8) {
  1870   InstructionMark im(this);
  1871   prefix(dst);
  1872   emit_byte(0x80);
  1873   emit_operand(rdi, dst, 1);
  1874   emit_byte(imm8);
  1877 void Assembler::cmpl(Address dst, int imm32) {
  1878   InstructionMark im(this);
  1879   prefix(dst);
  1880   emit_byte(0x81);
  1881   emit_operand(rdi, dst, 4);
  1882   emit_long(imm32);
  1885 void Assembler::cmpl(Register dst, int imm32) {
  1886   prefix(dst);
  1887   emit_arith(0x81, 0xF8, dst, imm32);
  1890 void Assembler::cmpl(Register dst, Register src) {
  1891   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1892   emit_arith(0x3B, 0xC0, dst, src);
  1895 void Assembler::cmpl(Register dst, Address src) {
  1896   InstructionMark im(this);
  1897   prefix(src, dst);
  1898   emit_byte(0x3B);
  1899   emit_operand(dst, src);
  1902 void Assembler::cmpq(Address dst, int imm32) {
  1903   InstructionMark im(this);
  1904   prefixq(dst);
  1905   emit_byte(0x81);
  1906   emit_operand(rdi, dst, 4);
  1907   emit_long(imm32);
  1910 void Assembler::cmpq(Register dst, int imm32) {
  1911   (void) prefixq_and_encode(dst->encoding());
  1912   emit_arith(0x81, 0xF8, dst, imm32);
  1915 void Assembler::cmpq(Address dst, Register src) {
  1916   prefixq(dst, src);
  1917   emit_byte(0x3B);
  1918   emit_operand(src, dst);
  1921 void Assembler::cmpq(Register dst, Register src) {
  1922   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  1923   emit_arith(0x3B, 0xC0, dst, src);
  1926 void Assembler::cmpq(Register dst, Address  src) {
  1927   InstructionMark im(this);
  1928   prefixq(src, dst);
  1929   emit_byte(0x3B);
  1930   emit_operand(dst, src);
  1933 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  1934   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1935   emit_byte(0x0F);
  1936   emit_byte(0x2E);
  1937   emit_byte(0xC0 | encode);
  1940 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  1941   emit_byte(0x66);
  1942   ucomiss(dst, src);
  1945 void Assembler::decl(Register dst) {
  1946   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  1947   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  1948   int encode = prefix_and_encode(dst->encoding());
  1949   emit_byte(0xFF);
  1950   emit_byte(0xC8 | encode);
  1953 void Assembler::decl(Address dst) {
  1954   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  1955   InstructionMark im(this);
  1956   prefix(dst);
  1957   emit_byte(0xFF);
  1958   emit_operand(rcx, dst);
  1961 void Assembler::decq(Register dst) {
  1962   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  1963   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  1964   int encode = prefixq_and_encode(dst->encoding());
  1965   emit_byte(0xFF);
  1966   emit_byte(0xC8 | encode);
  1969 void Assembler::decq(Address dst) {
  1970   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  1971   InstructionMark im(this);
  1972   prefixq(dst);
  1973   emit_byte(0xFF);
  1974   emit_operand(rcx, dst);
  1977 void Assembler::idivl(Register src) {
  1978   int encode = prefix_and_encode(src->encoding());
  1979   emit_byte(0xF7);
  1980   emit_byte(0xF8 | encode);
  1983 void Assembler::idivq(Register src) {
  1984   int encode = prefixq_and_encode(src->encoding());
  1985   emit_byte(0xF7);
  1986   emit_byte(0xF8 | encode);
  1989 void Assembler::cdql() {
  1990   emit_byte(0x99);
  1993 void Assembler::cdqq() {
  1994   prefix(REX_W);
  1995   emit_byte(0x99);
  1998 void Assembler::imull(Register dst, Register src) {
  1999   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2000   emit_byte(0x0F);
  2001   emit_byte(0xAF);
  2002   emit_byte(0xC0 | encode);
  2005 void Assembler::imull(Register dst, Register src, int value) {
  2006   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2007   if (is8bit(value)) {
  2008     emit_byte(0x6B);
  2009     emit_byte(0xC0 | encode);
  2010     emit_byte(value);
  2011   } else {
  2012     emit_byte(0x69);
  2013     emit_byte(0xC0 | encode);
  2014     emit_long(value);
  2018 void Assembler::imulq(Register dst, Register src) {
  2019   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2020   emit_byte(0x0F);
  2021   emit_byte(0xAF);
  2022   emit_byte(0xC0 | encode);
  2025 void Assembler::imulq(Register dst, Register src, int value) {
  2026   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2027   if (is8bit(value)) {
  2028     emit_byte(0x6B);
  2029     emit_byte(0xC0 | encode);
  2030     emit_byte(value);
  2031   } else {
  2032     emit_byte(0x69);
  2033     emit_byte(0xC0 | encode);
  2034     emit_long(value);
  2038 void Assembler::incl(Register dst) {
  2039   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  2040   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  2041   int encode = prefix_and_encode(dst->encoding());
  2042   emit_byte(0xFF);
  2043   emit_byte(0xC0 | encode);
  2046 void Assembler::incl(Address dst) {
  2047   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  2048   InstructionMark im(this);
  2049   prefix(dst);
  2050   emit_byte(0xFF);
  2051   emit_operand(rax, dst);
  2054 void Assembler::incq(Register dst) {
  2055   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  2056   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  2057   int encode = prefixq_and_encode(dst->encoding());
  2058   emit_byte(0xFF);
  2059   emit_byte(0xC0 | encode);
  2062 void Assembler::incq(Address dst) {
  2063   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  2064   InstructionMark im(this);
  2065   prefixq(dst);
  2066   emit_byte(0xFF);
  2067   emit_operand(rax, dst);
  2070 void Assembler::leal(Register dst, Address src) {
  2071   InstructionMark im(this);
  2072   emit_byte(0x67); // addr32
  2073   prefix(src, dst);
  2074   emit_byte(0x8D);
  2075   emit_operand(dst, src);
  2078 void Assembler::leaq(Register dst, Address src) {
  2079   InstructionMark im(this);
  2080   prefixq(src, dst);
  2081   emit_byte(0x8D);
  2082   emit_operand(dst, src);
  2085 void Assembler::mull(Address src) {
  2086   InstructionMark im(this);
  2087   // was missing
  2088   prefix(src);
  2089   emit_byte(0xF7);
  2090   emit_operand(rsp, src);
  2093 void Assembler::mull(Register src) {
  2094   // was missing
  2095   int encode = prefix_and_encode(src->encoding());
  2096   emit_byte(0xF7);
  2097   emit_byte(0xE0 | encode);
  2100 void Assembler::negl(Register dst) {
  2101   int encode = prefix_and_encode(dst->encoding());
  2102   emit_byte(0xF7);
  2103   emit_byte(0xD8 | encode);
  2106 void Assembler::negq(Register dst) {
  2107   int encode = prefixq_and_encode(dst->encoding());
  2108   emit_byte(0xF7);
  2109   emit_byte(0xD8 | encode);
  2112 void Assembler::notl(Register dst) {
  2113   int encode = prefix_and_encode(dst->encoding());
  2114   emit_byte(0xF7);
  2115   emit_byte(0xD0 | encode);
  2118 void Assembler::notq(Register dst) {
  2119   int encode = prefixq_and_encode(dst->encoding());
  2120   emit_byte(0xF7);
  2121   emit_byte(0xD0 | encode);
  2124 void Assembler::orl(Address dst, int imm32) {
  2125   InstructionMark im(this);
  2126   prefix(dst);
  2127   emit_byte(0x81);
  2128   emit_operand(rcx, dst, 4);
  2129   emit_long(imm32);
  2132 void Assembler::orl(Register dst, int imm32) {
  2133   prefix(dst);
  2134   emit_arith(0x81, 0xC8, dst, imm32);
  2137 void Assembler::orl(Register dst, Address src) {
  2138   InstructionMark im(this);
  2139   prefix(src, dst);
  2140   emit_byte(0x0B);
  2141   emit_operand(dst, src);
  2144 void Assembler::orl(Register dst, Register src) {
  2145   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2146   emit_arith(0x0B, 0xC0, dst, src);
  2149 void Assembler::orq(Address dst, int imm32) {
  2150   InstructionMark im(this);
  2151   prefixq(dst);
  2152   emit_byte(0x81);
  2153   emit_operand(rcx, dst, 4);
  2154   emit_long(imm32);
  2157 void Assembler::orq(Register dst, int imm32) {
  2158   (void) prefixq_and_encode(dst->encoding());
  2159   emit_arith(0x81, 0xC8, dst, imm32);
  2162 void Assembler::orq(Register dst, Address src) {
  2163   InstructionMark im(this);
  2164   prefixq(src, dst);
  2165   emit_byte(0x0B);
  2166   emit_operand(dst, src);
  2169 void Assembler::orq(Register dst, Register src) {
  2170   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2171   emit_arith(0x0B, 0xC0, dst, src);
  2174 void Assembler::rcll(Register dst, int imm8) {
  2175   assert(isShiftCount(imm8), "illegal shift count");
  2176   int encode = prefix_and_encode(dst->encoding());
  2177   if (imm8 == 1) {
  2178     emit_byte(0xD1);
  2179     emit_byte(0xD0 | encode);
  2180   } else {
  2181     emit_byte(0xC1);
  2182     emit_byte(0xD0 | encode);
  2183     emit_byte(imm8);
  2187 void Assembler::rclq(Register dst, int imm8) {
  2188   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2189   int encode = prefixq_and_encode(dst->encoding());
  2190   if (imm8 == 1) {
  2191     emit_byte(0xD1);
  2192     emit_byte(0xD0 | encode);
  2193   } else {
  2194     emit_byte(0xC1);
  2195     emit_byte(0xD0 | encode);
  2196     emit_byte(imm8);
  2200 void Assembler::sarl(Register dst, int imm8) {
  2201   int encode = prefix_and_encode(dst->encoding());
  2202   assert(isShiftCount(imm8), "illegal shift count");
  2203   if (imm8 == 1) {
  2204     emit_byte(0xD1);
  2205     emit_byte(0xF8 | encode);
  2206   } else {
  2207     emit_byte(0xC1);
  2208     emit_byte(0xF8 | encode);
  2209     emit_byte(imm8);
  2213 void Assembler::sarl(Register dst) {
  2214   int encode = prefix_and_encode(dst->encoding());
  2215   emit_byte(0xD3);
  2216   emit_byte(0xF8 | encode);
  2219 void Assembler::sarq(Register dst, int imm8) {
  2220   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2221   int encode = prefixq_and_encode(dst->encoding());
  2222   if (imm8 == 1) {
  2223     emit_byte(0xD1);
  2224     emit_byte(0xF8 | encode);
  2225   } else {
  2226     emit_byte(0xC1);
  2227     emit_byte(0xF8 | encode);
  2228     emit_byte(imm8);
  2232 void Assembler::sarq(Register dst) {
  2233   int encode = prefixq_and_encode(dst->encoding());
  2234   emit_byte(0xD3);
  2235   emit_byte(0xF8 | encode);
  2238 void Assembler::sbbl(Address dst, int imm32) {
  2239   InstructionMark im(this);
  2240   prefix(dst);
  2241   emit_arith_operand(0x81, rbx, dst, imm32);
  2244 void Assembler::sbbl(Register dst, int imm32) {
  2245   prefix(dst);
  2246   emit_arith(0x81, 0xD8, dst, imm32);
  2249 void Assembler::sbbl(Register dst, Address src) {
  2250   InstructionMark im(this);
  2251   prefix(src, dst);
  2252   emit_byte(0x1B);
  2253   emit_operand(dst, src);
  2256 void Assembler::sbbl(Register dst, Register src) {
  2257   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2258   emit_arith(0x1B, 0xC0, dst, src);
  2261 void Assembler::sbbq(Address dst, int imm32) {
  2262   InstructionMark im(this);
  2263   prefixq(dst);
  2264   emit_arith_operand(0x81, rbx, dst, imm32);
  2267 void Assembler::sbbq(Register dst, int imm32) {
  2268   (void) prefixq_and_encode(dst->encoding());
  2269   emit_arith(0x81, 0xD8, dst, imm32);
  2272 void Assembler::sbbq(Register dst, Address src) {
  2273   InstructionMark im(this);
  2274   prefixq(src, dst);
  2275   emit_byte(0x1B);
  2276   emit_operand(dst, src);
  2279 void Assembler::sbbq(Register dst, Register src) {
  2280   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2281   emit_arith(0x1B, 0xC0, dst, src);
  2284 void Assembler::shll(Register dst, int imm8) {
  2285   assert(isShiftCount(imm8), "illegal shift count");
  2286   int encode = prefix_and_encode(dst->encoding());
  2287   if (imm8 == 1 ) {
  2288     emit_byte(0xD1);
  2289     emit_byte(0xE0 | encode);
  2290   } else {
  2291     emit_byte(0xC1);
  2292     emit_byte(0xE0 | encode);
  2293     emit_byte(imm8);
  2297 void Assembler::shll(Register dst) {
  2298   int encode = prefix_and_encode(dst->encoding());
  2299   emit_byte(0xD3);
  2300   emit_byte(0xE0 | encode);
  2303 void Assembler::shlq(Register dst, int imm8) {
  2304   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2305   int encode = prefixq_and_encode(dst->encoding());
  2306   if (imm8 == 1) {
  2307     emit_byte(0xD1);
  2308     emit_byte(0xE0 | encode);
  2309   } else {
  2310     emit_byte(0xC1);
  2311     emit_byte(0xE0 | encode);
  2312     emit_byte(imm8);
  2316 void Assembler::shlq(Register dst) {
  2317   int encode = prefixq_and_encode(dst->encoding());
  2318   emit_byte(0xD3);
  2319   emit_byte(0xE0 | encode);
  2322 void Assembler::shrl(Register dst, int imm8) {
  2323   assert(isShiftCount(imm8), "illegal shift count");
  2324   int encode = prefix_and_encode(dst->encoding());
  2325   emit_byte(0xC1);
  2326   emit_byte(0xE8 | encode);
  2327   emit_byte(imm8);
  2330 void Assembler::shrl(Register dst) {
  2331   int encode = prefix_and_encode(dst->encoding());
  2332   emit_byte(0xD3);
  2333   emit_byte(0xE8 | encode);
  2336 void Assembler::shrq(Register dst, int imm8) {
  2337   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2338   int encode = prefixq_and_encode(dst->encoding());
  2339   emit_byte(0xC1);
  2340   emit_byte(0xE8 | encode);
  2341   emit_byte(imm8);
  2344 void Assembler::shrq(Register dst) {
  2345   int encode = prefixq_and_encode(dst->encoding());
  2346   emit_byte(0xD3);
  2347   emit_byte(0xE8 | encode);
  2350 void Assembler::subl(Address dst, int imm32) {
  2351   InstructionMark im(this);
  2352   prefix(dst);
  2353   if (is8bit(imm32)) {
  2354     emit_byte(0x83);
  2355     emit_operand(rbp, dst, 1);
  2356     emit_byte(imm32 & 0xFF);
  2357   } else {
  2358     emit_byte(0x81);
  2359     emit_operand(rbp, dst, 4);
  2360     emit_long(imm32);
  2364 void Assembler::subl(Register dst, int imm32) {
  2365   prefix(dst);
  2366   emit_arith(0x81, 0xE8, dst, imm32);
  2369 void Assembler::subl(Address dst, Register src) {
  2370   InstructionMark im(this);
  2371   prefix(dst, src);
  2372   emit_byte(0x29);
  2373   emit_operand(src, dst);
  2376 void Assembler::subl(Register dst, Address src) {
  2377   InstructionMark im(this);
  2378   prefix(src, dst);
  2379   emit_byte(0x2B);
  2380   emit_operand(dst, src);
  2383 void Assembler::subl(Register dst, Register src) {
  2384   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2385   emit_arith(0x2B, 0xC0, dst, src);
  2388 void Assembler::subq(Address dst, int imm32) {
  2389   InstructionMark im(this);
  2390   prefixq(dst);
  2391   if (is8bit(imm32)) {
  2392     emit_byte(0x83);
  2393     emit_operand(rbp, dst, 1);
  2394     emit_byte(imm32 & 0xFF);
  2395   } else {
  2396     emit_byte(0x81);
  2397     emit_operand(rbp, dst, 4);
  2398     emit_long(imm32);
  2402 void Assembler::subq(Register dst, int imm32) {
  2403   (void) prefixq_and_encode(dst->encoding());
  2404   emit_arith(0x81, 0xE8, dst, imm32);
  2407 void Assembler::subq(Address dst, Register src) {
  2408   InstructionMark im(this);
  2409   prefixq(dst, src);
  2410   emit_byte(0x29);
  2411   emit_operand(src, dst);
  2414 void Assembler::subq(Register dst, Address src) {
  2415   InstructionMark im(this);
  2416   prefixq(src, dst);
  2417   emit_byte(0x2B);
  2418   emit_operand(dst, src);
  2421 void Assembler::subq(Register dst, Register src) {
  2422   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2423   emit_arith(0x2B, 0xC0, dst, src);
  2426 void Assembler::testb(Register dst, int imm8) {
  2427   (void) prefix_and_encode(dst->encoding(), true);
  2428   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2431 void Assembler::testl(Register dst, int imm32) {
  2432   // not using emit_arith because test
  2433   // doesn't support sign-extension of
  2434   // 8bit operands
  2435   int encode = dst->encoding();
  2436   if (encode == 0) {
  2437     emit_byte(0xA9);
  2438   } else {
  2439     encode = prefix_and_encode(encode);
  2440     emit_byte(0xF7);
  2441     emit_byte(0xC0 | encode);
  2443   emit_long(imm32);
  2446 void Assembler::testl(Register dst, Register src) {
  2447   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2448   emit_arith(0x85, 0xC0, dst, src);
  2451 void Assembler::testq(Register dst, int imm32) {
  2452   // not using emit_arith because test
  2453   // doesn't support sign-extension of
  2454   // 8bit operands
  2455   int encode = dst->encoding();
  2456   if (encode == 0) {
  2457     prefix(REX_W);
  2458     emit_byte(0xA9);
  2459   } else {
  2460     encode = prefixq_and_encode(encode);
  2461     emit_byte(0xF7);
  2462     emit_byte(0xC0 | encode);
  2464   emit_long(imm32);
  2467 void Assembler::testq(Register dst, Register src) {
  2468   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2469   emit_arith(0x85, 0xC0, dst, src);
  2472 void Assembler::xaddl(Address dst, Register src) {
  2473   InstructionMark im(this);
  2474   prefix(dst, src);
  2475   emit_byte(0x0F);
  2476   emit_byte(0xC1);
  2477   emit_operand(src, dst);
  2480 void Assembler::xaddq(Address dst, Register src) {
  2481   InstructionMark im(this);
  2482   prefixq(dst, src);
  2483   emit_byte(0x0F);
  2484   emit_byte(0xC1);
  2485   emit_operand(src, dst);
  2488 void Assembler::xorl(Register dst, int imm32) {
  2489   prefix(dst);
  2490   emit_arith(0x81, 0xF0, dst, imm32);
  2493 void Assembler::xorl(Register dst, Register src) {
  2494   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2495   emit_arith(0x33, 0xC0, dst, src);
  2498 void Assembler::xorl(Register dst, Address src) {
  2499   InstructionMark im(this);
  2500   prefix(src, dst);
  2501   emit_byte(0x33);
  2502   emit_operand(dst, src);
  2505 void Assembler::xorq(Register dst, int imm32) {
  2506   (void) prefixq_and_encode(dst->encoding());
  2507   emit_arith(0x81, 0xF0, dst, imm32);
  2510 void Assembler::xorq(Register dst, Register src) {
  2511   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2512   emit_arith(0x33, 0xC0, dst, src);
  2515 void Assembler::xorq(Register dst, Address src) {
  2516   InstructionMark im(this);
  2517   prefixq(src, dst);
  2518   emit_byte(0x33);
  2519   emit_operand(dst, src);
  2522 void Assembler::bswapl(Register reg) {
  2523   int encode = prefix_and_encode(reg->encoding());
  2524   emit_byte(0x0F);
  2525   emit_byte(0xC8 | encode);
  2528 void Assembler::bswapq(Register reg) {
  2529   int encode = prefixq_and_encode(reg->encoding());
  2530   emit_byte(0x0F);
  2531   emit_byte(0xC8 | encode);
  2534 void Assembler::lock() {
  2535   emit_byte(0xF0);
  2538 void Assembler::xchgl(Register dst, Address src) {
  2539   InstructionMark im(this);
  2540   prefix(src, dst);
  2541   emit_byte(0x87);
  2542   emit_operand(dst, src);
  2545 void Assembler::xchgl(Register dst, Register src) {
  2546   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2547   emit_byte(0x87);
  2548   emit_byte(0xc0 | encode);
  2551 void Assembler::xchgq(Register dst, Address src) {
  2552   InstructionMark im(this);
  2553   prefixq(src, dst);
  2554   emit_byte(0x87);
  2555   emit_operand(dst, src);
  2558 void Assembler::xchgq(Register dst, Register src) {
  2559   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2560   emit_byte(0x87);
  2561   emit_byte(0xc0 | encode);
  2564 void Assembler::cmpxchgl(Register reg, Address adr) {
  2565   InstructionMark im(this);
  2566   prefix(adr, reg);
  2567   emit_byte(0x0F);
  2568   emit_byte(0xB1);
  2569   emit_operand(reg, adr);
  2572 void Assembler::cmpxchgq(Register reg, Address adr) {
  2573   InstructionMark im(this);
  2574   prefixq(adr, reg);
  2575   emit_byte(0x0F);
  2576   emit_byte(0xB1);
  2577   emit_operand(reg, adr);
  2580 void Assembler::hlt() {
  2581   emit_byte(0xF4);
  2585 void Assembler::addr_nop_4() {
  2586   // 4 bytes: NOP DWORD PTR [EAX+0]
  2587   emit_byte(0x0F);
  2588   emit_byte(0x1F);
  2589   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
  2590   emit_byte(0);    // 8-bits offset (1 byte)
  2593 void Assembler::addr_nop_5() {
  2594   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
  2595   emit_byte(0x0F);
  2596   emit_byte(0x1F);
  2597   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
  2598   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  2599   emit_byte(0);    // 8-bits offset (1 byte)
  2602 void Assembler::addr_nop_7() {
  2603   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
  2604   emit_byte(0x0F);
  2605   emit_byte(0x1F);
  2606   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
  2607   emit_long(0);    // 32-bits offset (4 bytes)
  2610 void Assembler::addr_nop_8() {
  2611   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
  2612   emit_byte(0x0F);
  2613   emit_byte(0x1F);
  2614   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
  2615   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  2616   emit_long(0);    // 32-bits offset (4 bytes)
  2619 void Assembler::nop(int i) {
  2620   assert(i > 0, " ");
  2621   if (UseAddressNop && VM_Version::is_intel()) {
  2622     //
  2623     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2624     //  1: 0x90
  2625     //  2: 0x66 0x90
  2626     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2627     //  4: 0x0F 0x1F 0x40 0x00
  2628     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2629     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2630     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2631     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2632     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2633     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2634     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2636     // The rest coding is Intel specific - don't use consecutive address nops
  2638     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2639     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2640     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2641     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2643     while(i >= 15) {
  2644       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2645       i -= 15;
  2646       emit_byte(0x66);   // size prefix
  2647       emit_byte(0x66);   // size prefix
  2648       emit_byte(0x66);   // size prefix
  2649       addr_nop_8();
  2650       emit_byte(0x66);   // size prefix
  2651       emit_byte(0x66);   // size prefix
  2652       emit_byte(0x66);   // size prefix
  2653       emit_byte(0x90);   // nop
  2655     switch (i) {
  2656       case 14:
  2657         emit_byte(0x66); // size prefix
  2658       case 13:
  2659         emit_byte(0x66); // size prefix
  2660       case 12:
  2661         addr_nop_8();
  2662         emit_byte(0x66); // size prefix
  2663         emit_byte(0x66); // size prefix
  2664         emit_byte(0x66); // size prefix
  2665         emit_byte(0x90); // nop
  2666         break;
  2667       case 11:
  2668         emit_byte(0x66); // size prefix
  2669       case 10:
  2670         emit_byte(0x66); // size prefix
  2671       case 9:
  2672         emit_byte(0x66); // size prefix
  2673       case 8:
  2674         addr_nop_8();
  2675         break;
  2676       case 7:
  2677         addr_nop_7();
  2678         break;
  2679       case 6:
  2680         emit_byte(0x66); // size prefix
  2681       case 5:
  2682         addr_nop_5();
  2683         break;
  2684       case 4:
  2685         addr_nop_4();
  2686         break;
  2687       case 3:
  2688         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2689         emit_byte(0x66); // size prefix
  2690       case 2:
  2691         emit_byte(0x66); // size prefix
  2692       case 1:
  2693         emit_byte(0x90); // nop
  2694         break;
  2695       default:
  2696         assert(i == 0, " ");
  2698     return;
  2700   if (UseAddressNop && VM_Version::is_amd()) {
  2701     //
  2702     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2703     //  1: 0x90
  2704     //  2: 0x66 0x90
  2705     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2706     //  4: 0x0F 0x1F 0x40 0x00
  2707     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2708     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2709     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2710     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2711     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2712     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2713     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2715     // The rest coding is AMD specific - use consecutive address nops
  2717     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2718     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2719     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2720     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2721     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2722     //     Size prefixes (0x66) are added for larger sizes
  2724     while(i >= 22) {
  2725       i -= 11;
  2726       emit_byte(0x66); // size prefix
  2727       emit_byte(0x66); // size prefix
  2728       emit_byte(0x66); // size prefix
  2729       addr_nop_8();
  2731     // Generate first nop for size between 21-12
  2732     switch (i) {
  2733       case 21:
  2734         i -= 1;
  2735         emit_byte(0x66); // size prefix
  2736       case 20:
  2737       case 19:
  2738         i -= 1;
  2739         emit_byte(0x66); // size prefix
  2740       case 18:
  2741       case 17:
  2742         i -= 1;
  2743         emit_byte(0x66); // size prefix
  2744       case 16:
  2745       case 15:
  2746         i -= 8;
  2747         addr_nop_8();
  2748         break;
  2749       case 14:
  2750       case 13:
  2751         i -= 7;
  2752         addr_nop_7();
  2753         break;
  2754       case 12:
  2755         i -= 6;
  2756         emit_byte(0x66); // size prefix
  2757         addr_nop_5();
  2758         break;
  2759       default:
  2760         assert(i < 12, " ");
  2763     // Generate second nop for size between 11-1
  2764     switch (i) {
  2765       case 11:
  2766         emit_byte(0x66); // size prefix
  2767       case 10:
  2768         emit_byte(0x66); // size prefix
  2769       case 9:
  2770         emit_byte(0x66); // size prefix
  2771       case 8:
  2772         addr_nop_8();
  2773         break;
  2774       case 7:
  2775         addr_nop_7();
  2776         break;
  2777       case 6:
  2778         emit_byte(0x66); // size prefix
  2779       case 5:
  2780         addr_nop_5();
  2781         break;
  2782       case 4:
  2783         addr_nop_4();
  2784         break;
  2785       case 3:
  2786         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2787         emit_byte(0x66); // size prefix
  2788       case 2:
  2789         emit_byte(0x66); // size prefix
  2790       case 1:
  2791         emit_byte(0x90); // nop
  2792         break;
  2793       default:
  2794         assert(i == 0, " ");
  2796     return;
  2799   // Using nops with size prefixes "0x66 0x90".
  2800   // From AMD Optimization Guide:
  2801   //  1: 0x90
  2802   //  2: 0x66 0x90
  2803   //  3: 0x66 0x66 0x90
  2804   //  4: 0x66 0x66 0x66 0x90
  2805   //  5: 0x66 0x66 0x90 0x66 0x90
  2806   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2807   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2808   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2809   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2810   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2811   //
  2812   while(i > 12) {
  2813     i -= 4;
  2814     emit_byte(0x66); // size prefix
  2815     emit_byte(0x66);
  2816     emit_byte(0x66);
  2817     emit_byte(0x90); // nop
  2819   // 1 - 12 nops
  2820   if(i > 8) {
  2821     if(i > 9) {
  2822       i -= 1;
  2823       emit_byte(0x66);
  2825     i -= 3;
  2826     emit_byte(0x66);
  2827     emit_byte(0x66);
  2828     emit_byte(0x90);
  2830   // 1 - 8 nops
  2831   if(i > 4) {
  2832     if(i > 6) {
  2833       i -= 1;
  2834       emit_byte(0x66);
  2836     i -= 3;
  2837     emit_byte(0x66);
  2838     emit_byte(0x66);
  2839     emit_byte(0x90);
  2841   switch (i) {
  2842     case 4:
  2843       emit_byte(0x66);
  2844     case 3:
  2845       emit_byte(0x66);
  2846     case 2:
  2847       emit_byte(0x66);
  2848     case 1:
  2849       emit_byte(0x90);
  2850       break;
  2851     default:
  2852       assert(i == 0, " ");
  2856 void Assembler::ret(int imm16) {
  2857   if (imm16 == 0) {
  2858     emit_byte(0xC3);
  2859   } else {
  2860     emit_byte(0xC2);
  2861     emit_word(imm16);
  2865 // copies a single word from [esi] to [edi]
  2866 void Assembler::smovl() {
  2867   emit_byte(0xA5);
  2870 // copies data from [rsi] to [rdi] using rcx words (m32)
  2871 void Assembler::rep_movl() {
  2872   // REP
  2873   emit_byte(0xF3);
  2874   // MOVSL
  2875   emit_byte(0xA5);
  2878 // copies data from [rsi] to [rdi] using rcx double words (m64)
  2879 void Assembler::rep_movq() {
  2880   // REP
  2881   emit_byte(0xF3);
  2882   // MOVSQ
  2883   prefix(REX_W);
  2884   emit_byte(0xA5);
  2887 // sets rcx double words (m64) with rax value at [rdi]
  2888 void Assembler::rep_set() {
  2889   // REP
  2890   emit_byte(0xF3);
  2891   // STOSQ
  2892   prefix(REX_W);
  2893   emit_byte(0xAB);
  2896 // scans rcx double words (m64) at [rdi] for occurance of rax
  2897 void Assembler::repne_scanq() {
  2898   // REPNE/REPNZ
  2899   emit_byte(0xF2);
  2900   // SCASQ
  2901   prefix(REX_W);
  2902   emit_byte(0xAF);
  2905 void Assembler::repne_scanl() {
  2906   // REPNE/REPNZ
  2907   emit_byte(0xF2);
  2908   // SCASL
  2909   emit_byte(0xAF);
  2913 void Assembler::setb(Condition cc, Register dst) {
  2914   assert(0 <= cc && cc < 16, "illegal cc");
  2915   int encode = prefix_and_encode(dst->encoding(), true);
  2916   emit_byte(0x0F);
  2917   emit_byte(0x90 | cc);
  2918   emit_byte(0xC0 | encode);
  2921 void Assembler::clflush(Address adr) {
  2922   prefix(adr);
  2923   emit_byte(0x0F);
  2924   emit_byte(0xAE);
  2925   emit_operand(rdi, adr);
  2928 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  2929   if (L.is_bound()) {
  2930     const int long_size = 5;
  2931     int offs = (int)( target(L) - pc() );
  2932     assert(offs <= 0, "assembler error");
  2933     InstructionMark im(this);
  2934     // 1110 1000 #32-bit disp
  2935     emit_byte(0xE8);
  2936     emit_data(offs - long_size, rtype, disp32_operand);
  2937   } else {
  2938     InstructionMark im(this);
  2939     // 1110 1000 #32-bit disp
  2940     L.add_patch_at(code(), locator());
  2942     emit_byte(0xE8);
  2943     emit_data(int(0), rtype, disp32_operand);
  2947 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  2948   assert(entry != NULL, "call most probably wrong");
  2949   InstructionMark im(this);
  2950   emit_byte(0xE8);
  2951   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  2952   assert(is_simm32(disp), "must be 32bit offset (call2)");
  2953   // Technically, should use call32_operand, but this format is
  2954   // implied by the fact that we're emitting a call instruction.
  2955   emit_data((int) disp, rspec, disp32_operand);
  2959 void Assembler::call(Register dst) {
  2960   // This was originally using a 32bit register encoding
  2961   // and surely we want 64bit!
  2962   // this is a 32bit encoding but in 64bit mode the default
  2963   // operand size is 64bit so there is no need for the
  2964   // wide prefix. So prefix only happens if we use the
  2965   // new registers. Much like push/pop.
  2966   int encode = prefixq_and_encode(dst->encoding());
  2967   emit_byte(0xFF);
  2968   emit_byte(0xD0 | encode);
  2971 void Assembler::call(Address adr) {
  2972   InstructionMark im(this);
  2973   prefix(adr);
  2974   emit_byte(0xFF);
  2975   emit_operand(rdx, adr);
  2978 void Assembler::jmp(Register reg) {
  2979   int encode = prefix_and_encode(reg->encoding());
  2980   emit_byte(0xFF);
  2981   emit_byte(0xE0 | encode);
  2984 void Assembler::jmp(Address adr) {
  2985   InstructionMark im(this);
  2986   prefix(adr);
  2987   emit_byte(0xFF);
  2988   emit_operand(rsp, adr);
  2991 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  2992   InstructionMark im(this);
  2993   emit_byte(0xE9);
  2994   assert(dest != NULL, "must have a target");
  2995   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  2996   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  2997   emit_data(disp, rspec.reloc(), call32_operand);
  3000 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  3001   if (L.is_bound()) {
  3002     address entry = target(L);
  3003     assert(entry != NULL, "jmp most probably wrong");
  3004     InstructionMark im(this);
  3005     const int short_size = 2;
  3006     const int long_size = 5;
  3007     intptr_t offs = entry - _code_pos;
  3008     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  3009       emit_byte(0xEB);
  3010       emit_byte((offs - short_size) & 0xFF);
  3011     } else {
  3012       emit_byte(0xE9);
  3013       emit_long(offs - long_size);
  3015   } else {
  3016     // By default, forward jumps are always 32-bit displacements, since
  3017     // we can't yet know where the label will be bound.  If you're sure that
  3018     // the forward jump will not run beyond 256 bytes, use jmpb to
  3019     // force an 8-bit displacement.
  3020     InstructionMark im(this);
  3021     relocate(rtype);
  3022     L.add_patch_at(code(), locator());
  3023     emit_byte(0xE9);
  3024     emit_long(0);
  3028 void Assembler::jmpb(Label& L) {
  3029   if (L.is_bound()) {
  3030     const int short_size = 2;
  3031     address entry = target(L);
  3032     assert(is8bit((entry - _code_pos) + short_size),
  3033            "Dispacement too large for a short jmp");
  3034     assert(entry != NULL, "jmp most probably wrong");
  3035     intptr_t offs = entry - _code_pos;
  3036     emit_byte(0xEB);
  3037     emit_byte((offs - short_size) & 0xFF);
  3038   } else {
  3039     InstructionMark im(this);
  3040     L.add_patch_at(code(), locator());
  3041     emit_byte(0xEB);
  3042     emit_byte(0);
  3046 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  3047   InstructionMark im(this);
  3048   relocate(rtype);
  3049   assert((0 <= cc) && (cc < 16), "illegal cc");
  3050   if (L.is_bound()) {
  3051     address dst = target(L);
  3052     assert(dst != NULL, "jcc most probably wrong");
  3054     const int short_size = 2;
  3055     const int long_size = 6;
  3056     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  3057     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  3058       // 0111 tttn #8-bit disp
  3059       emit_byte(0x70 | cc);
  3060       emit_byte((offs - short_size) & 0xFF);
  3061     } else {
  3062       // 0000 1111 1000 tttn #32-bit disp
  3063       assert(is_simm32(offs - long_size),
  3064              "must be 32bit offset (call4)");
  3065       emit_byte(0x0F);
  3066       emit_byte(0x80 | cc);
  3067       emit_long(offs - long_size);
  3069   } else {
  3070     // Note: could eliminate cond. jumps to this jump if condition
  3071     //       is the same however, seems to be rather unlikely case.
  3072     // Note: use jccb() if label to be bound is very close to get
  3073     //       an 8-bit displacement
  3074     L.add_patch_at(code(), locator());
  3075     emit_byte(0x0F);
  3076     emit_byte(0x80 | cc);
  3077     emit_long(0);
  3081 void Assembler::jccb(Condition cc, Label& L) {
  3082   if (L.is_bound()) {
  3083     const int short_size = 2;
  3084     const int long_size = 6;
  3085     address entry = target(L);
  3086     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  3087            "Dispacement too large for a short jmp");
  3088     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  3089     // 0111 tttn #8-bit disp
  3090     emit_byte(0x70 | cc);
  3091     emit_byte((offs - short_size) & 0xFF);
  3092   } else {
  3093     InstructionMark im(this);
  3094     L.add_patch_at(code(), locator());
  3095     emit_byte(0x70 | cc);
  3096     emit_byte(0);
  3100 // FP instructions
  3102 void Assembler::fxsave(Address dst) {
  3103   prefixq(dst);
  3104   emit_byte(0x0F);
  3105   emit_byte(0xAE);
  3106   emit_operand(as_Register(0), dst);
  3109 void Assembler::fxrstor(Address src) {
  3110   prefixq(src);
  3111   emit_byte(0x0F);
  3112   emit_byte(0xAE);
  3113   emit_operand(as_Register(1), src);
  3116 void Assembler::ldmxcsr(Address src) {
  3117   InstructionMark im(this);
  3118   prefix(src);
  3119   emit_byte(0x0F);
  3120   emit_byte(0xAE);
  3121   emit_operand(as_Register(2), src);
  3124 void Assembler::stmxcsr(Address dst) {
  3125   InstructionMark im(this);
  3126   prefix(dst);
  3127   emit_byte(0x0F);
  3128   emit_byte(0xAE);
  3129   emit_operand(as_Register(3), dst);
  3132 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  3133   emit_byte(0xF3);
  3134   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3135   emit_byte(0x0F);
  3136   emit_byte(0x58);
  3137   emit_byte(0xC0 | encode);
  3140 void Assembler::addss(XMMRegister dst, Address src) {
  3141   InstructionMark im(this);
  3142   emit_byte(0xF3);
  3143   prefix(src, dst);
  3144   emit_byte(0x0F);
  3145   emit_byte(0x58);
  3146   emit_operand(dst, src);
  3149 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  3150   emit_byte(0xF3);
  3151   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3152   emit_byte(0x0F);
  3153   emit_byte(0x5C);
  3154   emit_byte(0xC0 | encode);
  3157 void Assembler::subss(XMMRegister dst, Address src) {
  3158   InstructionMark im(this);
  3159   emit_byte(0xF3);
  3160   prefix(src, dst);
  3161   emit_byte(0x0F);
  3162   emit_byte(0x5C);
  3163   emit_operand(dst, src);
  3166 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  3167   emit_byte(0xF3);
  3168   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3169   emit_byte(0x0F);
  3170   emit_byte(0x59);
  3171   emit_byte(0xC0 | encode);
  3174 void Assembler::mulss(XMMRegister dst, Address src) {
  3175   InstructionMark im(this);
  3176   emit_byte(0xF3);
  3177   prefix(src, dst);
  3178   emit_byte(0x0F);
  3179   emit_byte(0x59);
  3180   emit_operand(dst, src);
  3183 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  3184   emit_byte(0xF3);
  3185   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3186   emit_byte(0x0F);
  3187   emit_byte(0x5E);
  3188   emit_byte(0xC0 | encode);
  3191 void Assembler::divss(XMMRegister dst, Address src) {
  3192   InstructionMark im(this);
  3193   emit_byte(0xF3);
  3194   prefix(src, dst);
  3195   emit_byte(0x0F);
  3196   emit_byte(0x5E);
  3197   emit_operand(dst, src);
  3200 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  3201   emit_byte(0xF2);
  3202   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3203   emit_byte(0x0F);
  3204   emit_byte(0x58);
  3205   emit_byte(0xC0 | encode);
  3208 void Assembler::addsd(XMMRegister dst, Address src) {
  3209   InstructionMark im(this);
  3210   emit_byte(0xF2);
  3211   prefix(src, dst);
  3212   emit_byte(0x0F);
  3213   emit_byte(0x58);
  3214   emit_operand(dst, src);
  3217 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  3218   emit_byte(0xF2);
  3219   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3220   emit_byte(0x0F);
  3221   emit_byte(0x5C);
  3222   emit_byte(0xC0 | encode);
  3225 void Assembler::subsd(XMMRegister dst, Address src) {
  3226   InstructionMark im(this);
  3227   emit_byte(0xF2);
  3228   prefix(src, dst);
  3229   emit_byte(0x0F);
  3230   emit_byte(0x5C);
  3231   emit_operand(dst, src);
  3234 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  3235   emit_byte(0xF2);
  3236   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3237   emit_byte(0x0F);
  3238   emit_byte(0x59);
  3239   emit_byte(0xC0 | encode);
  3242 void Assembler::mulsd(XMMRegister dst, Address src) {
  3243   InstructionMark im(this);
  3244   emit_byte(0xF2);
  3245   prefix(src, dst);
  3246   emit_byte(0x0F);
  3247   emit_byte(0x59);
  3248   emit_operand(dst, src);
  3251 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  3252   emit_byte(0xF2);
  3253   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3254   emit_byte(0x0F);
  3255   emit_byte(0x5E);
  3256   emit_byte(0xC0 | encode);
  3259 void Assembler::divsd(XMMRegister dst, Address src) {
  3260   InstructionMark im(this);
  3261   emit_byte(0xF2);
  3262   prefix(src, dst);
  3263   emit_byte(0x0F);
  3264   emit_byte(0x5E);
  3265   emit_operand(dst, src);
  3268 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  3269   emit_byte(0xF2);
  3270   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3271   emit_byte(0x0F);
  3272   emit_byte(0x51);
  3273   emit_byte(0xC0 | encode);
  3276 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  3277   InstructionMark im(this);
  3278   emit_byte(0xF2);
  3279   prefix(src, dst);
  3280   emit_byte(0x0F);
  3281   emit_byte(0x51);
  3282   emit_operand(dst, src);
  3285 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3286   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3287   emit_byte(0x0F);
  3288   emit_byte(0x57);
  3289   emit_byte(0xC0 | encode);
  3292 void Assembler::xorps(XMMRegister dst, Address src) {
  3293   InstructionMark im(this);
  3294   prefix(src, dst);
  3295   emit_byte(0x0F);
  3296   emit_byte(0x57);
  3297   emit_operand(dst, src);
  3300 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3301   emit_byte(0x66);
  3302   xorps(dst, src);
  3305 void Assembler::xorpd(XMMRegister dst, Address src) {
  3306   InstructionMark im(this);
  3307   emit_byte(0x66);
  3308   prefix(src, dst);
  3309   emit_byte(0x0F);
  3310   emit_byte(0x57);
  3311   emit_operand(dst, src);
  3314 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  3315   emit_byte(0xF3);
  3316   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3317   emit_byte(0x0F);
  3318   emit_byte(0x2A);
  3319   emit_byte(0xC0 | encode);
  3322 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3323   emit_byte(0xF3);
  3324   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3325   emit_byte(0x0F);
  3326   emit_byte(0x2A);
  3327   emit_byte(0xC0 | encode);
  3330 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  3331   emit_byte(0xF2);
  3332   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3333   emit_byte(0x0F);
  3334   emit_byte(0x2A);
  3335   emit_byte(0xC0 | encode);
  3338 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3339   emit_byte(0xF2);
  3340   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3341   emit_byte(0x0F);
  3342   emit_byte(0x2A);
  3343   emit_byte(0xC0 | encode);
  3346 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  3347   emit_byte(0xF3);
  3348   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3349   emit_byte(0x0F);
  3350   emit_byte(0x2C);
  3351   emit_byte(0xC0 | encode);
  3354 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3355   emit_byte(0xF3);
  3356   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3357   emit_byte(0x0F);
  3358   emit_byte(0x2C);
  3359   emit_byte(0xC0 | encode);
  3362 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  3363   emit_byte(0xF2);
  3364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3365   emit_byte(0x0F);
  3366   emit_byte(0x2C);
  3367   emit_byte(0xC0 | encode);
  3370 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3371   emit_byte(0xF2);
  3372   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3373   emit_byte(0x0F);
  3374   emit_byte(0x2C);
  3375   emit_byte(0xC0 | encode);
  3378 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  3379   emit_byte(0xF3);
  3380   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3381   emit_byte(0x0F);
  3382   emit_byte(0x5A);
  3383   emit_byte(0xC0 | encode);
  3386 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  3387   emit_byte(0xF3);
  3388   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3389   emit_byte(0x0F);
  3390   emit_byte(0xE6);
  3391   emit_byte(0xC0 | encode);
  3394 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  3395   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3396   emit_byte(0x0F);
  3397   emit_byte(0x5B);
  3398   emit_byte(0xC0 | encode);
  3401 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  3402   emit_byte(0xF2);
  3403   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3404   emit_byte(0x0F);
  3405   emit_byte(0x5A);
  3406   emit_byte(0xC0 | encode);
  3409 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  3410   emit_byte(0x66);
  3411   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3412   emit_byte(0x0F);
  3413   emit_byte(0x60);
  3414   emit_byte(0xC0 | encode);
  3417 // Implementation of MacroAssembler
  3419 // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement
  3420 Address MacroAssembler::as_Address(AddressLiteral adr) {
  3421   assert(!adr.is_lval(), "must be rval");
  3422   assert(reachable(adr), "must be");
  3423   return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  3426 Address MacroAssembler::as_Address(ArrayAddress adr) {
  3427 #ifdef _LP64
  3428   AddressLiteral base = adr.base();
  3429   lea(rscratch1, base);
  3430   Address index = adr.index();
  3431   assert(index._disp == 0, "must not have disp"); // maybe it can?
  3432   Address array(rscratch1, index._index, index._scale, index._disp);
  3433   return array;
  3434 #else
  3435   return Address::make_array(adr);
  3436 #endif // _LP64
  3440 void MacroAssembler::fat_nop() {
  3441   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  3442   // Recommened sequence from 'Software Optimization Guide for the AMD
  3443   // Hammer Processor'
  3444   emit_byte(0x66);
  3445   emit_byte(0x66);
  3446   emit_byte(0x90);
  3447   emit_byte(0x66);
  3448   emit_byte(0x90);
  3451 static Assembler::Condition reverse[] = {
  3452     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  3453     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  3454     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  3455     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  3456     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  3457     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  3458     Assembler::above          /* belowEqual    = 0x6 */ ,
  3459     Assembler::belowEqual     /* above         = 0x7 */ ,
  3460     Assembler::positive       /* negative      = 0x8 */ ,
  3461     Assembler::negative       /* positive      = 0x9 */ ,
  3462     Assembler::noParity       /* parity        = 0xa */ ,
  3463     Assembler::parity         /* noParity      = 0xb */ ,
  3464     Assembler::greaterEqual   /* less          = 0xc */ ,
  3465     Assembler::less           /* greaterEqual  = 0xd */ ,
  3466     Assembler::greater        /* lessEqual     = 0xe */ ,
  3467     Assembler::lessEqual      /* greater       = 0xf, */
  3469 };
  3471 // 32bit can do a case table jump in one instruction but we no longer allow the base
  3472 // to be installed in the Address class
  3473 void MacroAssembler::jump(ArrayAddress entry) {
  3474 #ifdef _LP64
  3475   lea(rscratch1, entry.base());
  3476   Address dispatch = entry.index();
  3477   assert(dispatch._base == noreg, "must be");
  3478   dispatch._base = rscratch1;
  3479   jmp(dispatch);
  3480 #else
  3481   jmp(as_Address(entry));
  3482 #endif // _LP64
  3485 void MacroAssembler::jump(AddressLiteral dst) {
  3486   if (reachable(dst)) {
  3487     jmp_literal(dst.target(), dst.rspec());
  3488   } else {
  3489     lea(rscratch1, dst);
  3490     jmp(rscratch1);
  3494 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  3495   if (reachable(dst)) {
  3496     InstructionMark im(this);
  3497     relocate(dst.reloc());
  3498     const int short_size = 2;
  3499     const int long_size = 6;
  3500     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  3501     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  3502       // 0111 tttn #8-bit disp
  3503       emit_byte(0x70 | cc);
  3504       emit_byte((offs - short_size) & 0xFF);
  3505     } else {
  3506       // 0000 1111 1000 tttn #32-bit disp
  3507       emit_byte(0x0F);
  3508       emit_byte(0x80 | cc);
  3509       emit_long(offs - long_size);
  3511   } else {
  3512 #ifdef ASSERT
  3513     warning("reversing conditional branch");
  3514 #endif /* ASSERT */
  3515     Label skip;
  3516     jccb(reverse[cc], skip);
  3517     lea(rscratch1, dst);
  3518     Assembler::jmp(rscratch1);
  3519     bind(skip);
  3523 // Wouldn't need if AddressLiteral version had new name
  3524 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  3525   Assembler::call(L, rtype);
  3528 // Wouldn't need if AddressLiteral version had new name
  3529 void MacroAssembler::call(Register entry) {
  3530   Assembler::call(entry);
  3533 void MacroAssembler::call(AddressLiteral entry) {
  3534   if (reachable(entry)) {
  3535     Assembler::call_literal(entry.target(), entry.rspec());
  3536   } else {
  3537     lea(rscratch1, entry);
  3538     Assembler::call(rscratch1);
  3542 void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) {
  3543   if (reachable(src1)) {
  3544     cmpb(as_Address(src1), src2);
  3545   } else {
  3546     lea(rscratch1, src1);
  3547     cmpb(Address(rscratch1, 0), src2);
  3551 void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) {
  3552   if (reachable(src1)) {
  3553     cmpl(as_Address(src1), src2);
  3554   } else {
  3555     lea(rscratch1, src1);
  3556     cmpl(Address(rscratch1, 0), src2);
  3560 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  3561   if (reachable(src2)) {
  3562     cmpl(src1, as_Address(src2));
  3563   } else {
  3564     lea(rscratch1, src2);
  3565     cmpl(src1, Address(rscratch1, 0));
  3569 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  3570 #ifdef _LP64
  3571   if (src2.is_lval()) {
  3572     movptr(rscratch1, src2);
  3573     Assembler::cmpq(src1, rscratch1);
  3574   } else if (reachable(src2)) {
  3575     cmpq(src1, as_Address(src2));
  3576   } else {
  3577     lea(rscratch1, src2);
  3578     Assembler::cmpq(src1, Address(rscratch1, 0));
  3580 #else
  3581   if (src2.is_lval()) {
  3582     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  3583   } else {
  3584     cmpl(src1, as_Address(src2));
  3586 #endif // _LP64
  3589 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  3590   assert(src2.is_lval(), "not a mem-mem compare");
  3591 #ifdef _LP64
  3592   // moves src2's literal address
  3593   movptr(rscratch1, src2);
  3594   Assembler::cmpq(src1, rscratch1);
  3595 #else
  3596   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  3597 #endif // _LP64
  3600 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  3601   assert(!src2.is_lval(), "should use cmpptr");
  3603   if (reachable(src2)) {
  3604 #ifdef _LP64
  3605     cmpq(src1, as_Address(src2));
  3606 #else
  3607     ShouldNotReachHere();
  3608 #endif // _LP64
  3609   } else {
  3610     lea(rscratch1, src2);
  3611     Assembler::cmpq(src1, Address(rscratch1, 0));
  3615 void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
  3616   if (reachable(adr)) {
  3617 #ifdef _LP64
  3618     cmpxchgq(reg, as_Address(adr));
  3619 #else
  3620     cmpxchgl(reg, as_Address(adr));
  3621 #endif // _LP64
  3622   } else {
  3623     lea(rscratch1, adr);
  3624     cmpxchgq(reg, Address(rscratch1, 0));
  3628 void MacroAssembler::incrementl(AddressLiteral dst) {
  3629   if (reachable(dst)) {
  3630     incrementl(as_Address(dst));
  3631   } else {
  3632     lea(rscratch1, dst);
  3633     incrementl(Address(rscratch1, 0));
  3637 void MacroAssembler::incrementl(ArrayAddress dst) {
  3638   incrementl(as_Address(dst));
  3641 void MacroAssembler::lea(Register dst, Address src) {
  3642 #ifdef _LP64
  3643   leaq(dst, src);
  3644 #else
  3645   leal(dst, src);
  3646 #endif // _LP64
  3649 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  3650 #ifdef _LP64
  3651     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  3652 #else
  3653     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  3654 #endif // _LP64
  3657 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  3658   if (reachable(dst)) {
  3659     movl(as_Address(dst), src);
  3660   } else {
  3661     lea(rscratch1, dst);
  3662     movl(Address(rscratch1, 0), src);
  3666 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  3667   if (reachable(src)) {
  3668     movl(dst, as_Address(src));
  3669   } else {
  3670     lea(rscratch1, src);
  3671     movl(dst, Address(rscratch1, 0));
  3675 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  3676   if (reachable(src)) {
  3677     if (UseXmmLoadAndClearUpper) {
  3678       movsd (dst, as_Address(src));
  3679     } else {
  3680       movlpd(dst, as_Address(src));
  3682   } else {
  3683     lea(rscratch1, src);
  3684     if (UseXmmLoadAndClearUpper) {
  3685       movsd (dst, Address(rscratch1, 0));
  3686     } else {
  3687       movlpd(dst, Address(rscratch1, 0));
  3692 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  3693   if (reachable(src)) {
  3694     movss(dst, as_Address(src));
  3695   } else {
  3696     lea(rscratch1, src);
  3697     movss(dst, Address(rscratch1, 0));
  3701 void MacroAssembler::movoop(Register dst, jobject obj) {
  3702   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  3705 void MacroAssembler::movoop(Address dst, jobject obj) {
  3706   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  3707   movq(dst, rscratch1);
  3710 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  3711 #ifdef _LP64
  3712   if (src.is_lval()) {
  3713     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  3714   } else {
  3715     if (reachable(src)) {
  3716       movq(dst, as_Address(src));
  3717     } else {
  3718       lea(rscratch1, src);
  3719       movq(dst, Address(rscratch1,0));
  3722 #else
  3723   if (src.is_lval()) {
  3724     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  3725   } else {
  3726     movl(dst, as_Address(src));
  3728 #endif // LP64
  3731 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  3732 #ifdef _LP64
  3733   movq(as_Address(dst), src);
  3734 #else
  3735   movl(as_Address(dst), src);
  3736 #endif // _LP64
  3739 void MacroAssembler::pushoop(jobject obj) {
  3740 #ifdef _LP64
  3741   movoop(rscratch1, obj);
  3742   pushq(rscratch1);
  3743 #else
  3744   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  3745 #endif // _LP64
  3748 void MacroAssembler::pushptr(AddressLiteral src) {
  3749 #ifdef _LP64
  3750   lea(rscratch1, src);
  3751   if (src.is_lval()) {
  3752     pushq(rscratch1);
  3753   } else {
  3754     pushq(Address(rscratch1, 0));
  3756 #else
  3757   if (src.is_lval()) {
  3758     push_literal((int32_t)src.target(), src.rspec());
  3759   else {
  3760     pushl(as_Address(src));
  3762 #endif // _LP64
  3765 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  3766   if (reachable(src)) {
  3767     Assembler::ldmxcsr(as_Address(src));
  3768   } else {
  3769     lea(rscratch1, src);
  3770     Assembler::ldmxcsr(Address(rscratch1, 0));
  3774 void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) {
  3775   if (reachable(src)) {
  3776     movlpd(dst, as_Address(src));
  3777   } else {
  3778     lea(rscratch1, src);
  3779     movlpd(dst, Address(rscratch1, 0));
  3783 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  3784   if (reachable(src)) {
  3785     movss(dst, as_Address(src));
  3786   } else {
  3787     lea(rscratch1, src);
  3788     movss(dst, Address(rscratch1, 0));
  3791 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3792   if (reachable(src)) {
  3793     xorpd(dst, as_Address(src));
  3794   } else {
  3795     lea(rscratch1, src);
  3796     xorpd(dst, Address(rscratch1, 0));
  3800 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3801   if (reachable(src)) {
  3802     xorps(dst, as_Address(src));
  3803   } else {
  3804     lea(rscratch1, src);
  3805     xorps(dst, Address(rscratch1, 0));
  3809 void MacroAssembler::null_check(Register reg, int offset) {
  3810   if (needs_explicit_null_check(offset)) {
  3811     // provoke OS NULL exception if reg = NULL by
  3812     // accessing M[reg] w/o changing any (non-CC) registers
  3813     cmpq(rax, Address(reg, 0));
  3814     // Note: should probably use testl(rax, Address(reg, 0));
  3815     //       may be shorter code (however, this version of
  3816     //       testl needs to be implemented first)
  3817   } else {
  3818     // nothing to do, (later) access of M[reg + offset]
  3819     // will provoke OS NULL exception if reg = NULL
  3823 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  3824   int off = offset();
  3825   movzbl(dst, src);
  3826   return off;
  3829 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
  3830   int off = offset();
  3831   movzwl(dst, src);
  3832   return off;
  3835 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  3836   int off = offset();
  3837   movsbl(dst, src);
  3838   return off;
  3841 int MacroAssembler::load_signed_word(Register dst, Address src) {
  3842   int off = offset();
  3843   movswl(dst, src);
  3844   return off;
  3847 void MacroAssembler::incrementl(Register reg, int value) {
  3848   if (value == min_jint) { addl(reg, value); return; }
  3849   if (value <  0) { decrementl(reg, -value); return; }
  3850   if (value == 0) {                        ; return; }
  3851   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  3852   /* else */      { addl(reg, value)       ; return; }
  3855 void MacroAssembler::decrementl(Register reg, int value) {
  3856   if (value == min_jint) { subl(reg, value); return; }
  3857   if (value <  0) { incrementl(reg, -value); return; }
  3858   if (value == 0) {                        ; return; }
  3859   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  3860   /* else */      { subl(reg, value)       ; return; }
  3863 void MacroAssembler::incrementq(Register reg, int value) {
  3864   if (value == min_jint) { addq(reg, value); return; }
  3865   if (value <  0) { decrementq(reg, -value); return; }
  3866   if (value == 0) {                        ; return; }
  3867   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  3868   /* else */      { addq(reg, value)       ; return; }
  3871 void MacroAssembler::decrementq(Register reg, int value) {
  3872   if (value == min_jint) { subq(reg, value); return; }
  3873   if (value <  0) { incrementq(reg, -value); return; }
  3874   if (value == 0) {                        ; return; }
  3875   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  3876   /* else */      { subq(reg, value)       ; return; }
  3879 void MacroAssembler::incrementl(Address dst, int value) {
  3880   if (value == min_jint) { addl(dst, value); return; }
  3881   if (value <  0) { decrementl(dst, -value); return; }
  3882   if (value == 0) {                        ; return; }
  3883   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  3884   /* else */      { addl(dst, value)       ; return; }
  3887 void MacroAssembler::decrementl(Address dst, int value) {
  3888   if (value == min_jint) { subl(dst, value); return; }
  3889   if (value <  0) { incrementl(dst, -value); return; }
  3890   if (value == 0) {                        ; return; }
  3891   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  3892   /* else */      { subl(dst, value)       ; return; }
  3895 void MacroAssembler::incrementq(Address dst, int value) {
  3896   if (value == min_jint) { addq(dst, value); return; }
  3897   if (value <  0) { decrementq(dst, -value); return; }
  3898   if (value == 0) {                        ; return; }
  3899   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  3900   /* else */      { addq(dst, value)       ; return; }
  3903 void MacroAssembler::decrementq(Address dst, int value) {
  3904   if (value == min_jint) { subq(dst, value); return; }
  3905   if (value <  0) { incrementq(dst, -value); return; }
  3906   if (value == 0) {                        ; return; }
  3907   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  3908   /* else */      { subq(dst, value)       ; return; }
  3911 void MacroAssembler::align(int modulus) {
  3912   if (offset() % modulus != 0) {
  3913     nop(modulus - (offset() % modulus));
  3917 void MacroAssembler::enter() {
  3918   pushq(rbp);
  3919   movq(rbp, rsp);
  3922 void MacroAssembler::leave() {
  3923   emit_byte(0xC9); // LEAVE
  3926 // C++ bool manipulation
  3928 void MacroAssembler::movbool(Register dst, Address src) {
  3929   if(sizeof(bool) == 1)
  3930     movb(dst, src);
  3931   else if(sizeof(bool) == 2)
  3932     movw(dst, src);
  3933   else if(sizeof(bool) == 4)
  3934     movl(dst, src);
  3935   else {
  3936     // unsupported
  3937     ShouldNotReachHere();
  3941 void MacroAssembler::movbool(Address dst, bool boolconst) {
  3942   if(sizeof(bool) == 1)
  3943     movb(dst, (int) boolconst);
  3944   else if(sizeof(bool) == 2)
  3945     movw(dst, (int) boolconst);
  3946   else if(sizeof(bool) == 4)
  3947     movl(dst, (int) boolconst);
  3948   else {
  3949     // unsupported
  3950     ShouldNotReachHere();
  3954 void MacroAssembler::movbool(Address dst, Register src) {
  3955   if(sizeof(bool) == 1)
  3956     movb(dst, src);
  3957   else if(sizeof(bool) == 2)
  3958     movw(dst, src);
  3959   else if(sizeof(bool) == 4)
  3960     movl(dst, src);
  3961   else {
  3962     // unsupported
  3963     ShouldNotReachHere();
  3967 void MacroAssembler::testbool(Register dst) {
  3968   if(sizeof(bool) == 1)
  3969     testb(dst, (int) 0xff);
  3970   else if(sizeof(bool) == 2) {
  3971     // need testw impl
  3972     ShouldNotReachHere();
  3973   } else if(sizeof(bool) == 4)
  3974     testl(dst, dst);
  3975   else {
  3976     // unsupported
  3977     ShouldNotReachHere();
  3981 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  3982                                          Register last_java_fp,
  3983                                          address  last_java_pc) {
  3984   // determine last_java_sp register
  3985   if (!last_java_sp->is_valid()) {
  3986     last_java_sp = rsp;
  3989   // last_java_fp is optional
  3990   if (last_java_fp->is_valid()) {
  3991     movq(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  3992          last_java_fp);
  3995   // last_java_pc is optional
  3996   if (last_java_pc != NULL) {
  3997     Address java_pc(r15_thread,
  3998                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  3999     lea(rscratch1, InternalAddress(last_java_pc));
  4000     movq(java_pc, rscratch1);
  4003   movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  4006 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  4007                                            bool clear_pc) {
  4008   // we must set sp to zero to clear frame
  4009   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  4010   // must clear fp, so that compiled frames are not confused; it is
  4011   // possible that we need it only for debugging
  4012   if (clear_fp) {
  4013     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  4016   if (clear_pc) {
  4017     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  4022 // Implementation of call_VM versions
  4024 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  4025   Label L, E;
  4027 #ifdef _WIN64
  4028   // Windows always allocates space for it's register args
  4029   assert(num_args <= 4, "only register arguments supported");
  4030   subq(rsp,  frame::arg_reg_save_area_bytes);
  4031 #endif
  4033   // Align stack if necessary
  4034   testl(rsp, 15);
  4035   jcc(Assembler::zero, L);
  4037   subq(rsp, 8);
  4039     call(RuntimeAddress(entry_point));
  4041   addq(rsp, 8);
  4042   jmp(E);
  4044   bind(L);
  4046     call(RuntimeAddress(entry_point));
  4049   bind(E);
  4051 #ifdef _WIN64
  4052   // restore stack pointer
  4053   addq(rsp, frame::arg_reg_save_area_bytes);
  4054 #endif
  4059 void MacroAssembler::call_VM_base(Register oop_result,
  4060                                   Register java_thread,
  4061                                   Register last_java_sp,
  4062                                   address entry_point,
  4063                                   int num_args,
  4064                                   bool check_exceptions) {
  4065   // determine last_java_sp register
  4066   if (!last_java_sp->is_valid()) {
  4067     last_java_sp = rsp;
  4070   // debugging support
  4071   assert(num_args >= 0, "cannot have negative number of arguments");
  4072   assert(r15_thread != oop_result,
  4073          "cannot use the same register for java_thread & oop_result");
  4074   assert(r15_thread != last_java_sp,
  4075          "cannot use the same register for java_thread & last_java_sp");
  4077   // set last Java frame before call
  4079   // This sets last_Java_fp which is only needed from interpreted frames
  4080   // and should really be done only from the interp_masm version before
  4081   // calling the underlying call_VM. That doesn't happen yet so we set
  4082   // last_Java_fp here even though some callers don't need it and
  4083   // also clear it below.
  4084   set_last_Java_frame(last_java_sp, rbp, NULL);
  4087     Label L, E;
  4089     // Align stack if necessary
  4090 #ifdef _WIN64
  4091     assert(num_args <= 4, "only register arguments supported");
  4092     // Windows always allocates space for it's register args
  4093     subq(rsp, frame::arg_reg_save_area_bytes);
  4094 #endif
  4095     testl(rsp, 15);
  4096     jcc(Assembler::zero, L);
  4098     subq(rsp, 8);
  4100       call(RuntimeAddress(entry_point));
  4102     addq(rsp, 8);
  4103     jmp(E);
  4106     bind(L);
  4108       call(RuntimeAddress(entry_point));
  4111     bind(E);
  4113 #ifdef _WIN64
  4114     // restore stack pointer
  4115     addq(rsp, frame::arg_reg_save_area_bytes);
  4116 #endif
  4119 #ifdef ASSERT
  4120   pushq(rax);
  4122     Label L;
  4123     get_thread(rax);
  4124     cmpq(r15_thread, rax);
  4125     jcc(Assembler::equal, L);
  4126     stop("MacroAssembler::call_VM_base: register not callee saved?");
  4127     bind(L);
  4129   popq(rax);
  4130 #endif
  4132   // reset last Java frame
  4133   // This really shouldn't have to clear fp set note above at the
  4134   // call to set_last_Java_frame
  4135   reset_last_Java_frame(true, false);
  4137   check_and_handle_popframe(noreg);
  4138   check_and_handle_earlyret(noreg);
  4140   if (check_exceptions) {
  4141     cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
  4142     // This used to conditionally jump to forward_exception however it is
  4143     // possible if we relocate that the branch will not reach. So we must jump
  4144     // around so we can always reach
  4145     Label ok;
  4146     jcc(Assembler::equal, ok);
  4147     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  4148     bind(ok);
  4151   // get oop result if there is one and reset the value in the thread
  4152   if (oop_result->is_valid()) {
  4153     movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
  4154     movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
  4155     verify_oop(oop_result, "broken oop in call_VM_base");
  4159 void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
  4160 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
  4162 void MacroAssembler::call_VM_helper(Register oop_result,
  4163                                     address entry_point,
  4164                                     int num_args,
  4165                                     bool check_exceptions) {
  4166   // Java thread becomes first argument of C function
  4167   movq(c_rarg0, r15_thread);
  4169   // We've pushed one address, correct last_Java_sp
  4170   leaq(rax, Address(rsp, wordSize));
  4172   call_VM_base(oop_result, noreg, rax, entry_point, num_args,
  4173                check_exceptions);
  4177 void MacroAssembler::call_VM(Register oop_result,
  4178                              address entry_point,
  4179                              bool check_exceptions) {
  4180   Label C, E;
  4181   Assembler::call(C, relocInfo::none);
  4182   jmp(E);
  4184   bind(C);
  4185   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  4186   ret(0);
  4188   bind(E);
  4192 void MacroAssembler::call_VM(Register oop_result,
  4193                              address entry_point,
  4194                              Register arg_1,
  4195                              bool check_exceptions) {
  4196   assert(rax != arg_1, "smashed argument");
  4197   assert(c_rarg0 != arg_1, "smashed argument");
  4199   Label C, E;
  4200   Assembler::call(C, relocInfo::none);
  4201   jmp(E);
  4203   bind(C);
  4204   // c_rarg0 is reserved for thread
  4205   if (c_rarg1 != arg_1) {
  4206     movq(c_rarg1, arg_1);
  4208   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  4209   ret(0);
  4211   bind(E);
  4214 void MacroAssembler::call_VM(Register oop_result,
  4215                              address entry_point,
  4216                              Register arg_1,
  4217                              Register arg_2,
  4218                              bool check_exceptions) {
  4219   assert(rax != arg_1, "smashed argument");
  4220   assert(rax != arg_2, "smashed argument");
  4221   assert(c_rarg0 != arg_1, "smashed argument");
  4222   assert(c_rarg0 != arg_2, "smashed argument");
  4223   assert(c_rarg1 != arg_2, "smashed argument");
  4224   assert(c_rarg2 != arg_1, "smashed argument");
  4226   Label C, E;
  4227   Assembler::call(C, relocInfo::none);
  4228   jmp(E);
  4230   bind(C);
  4231   // c_rarg0 is reserved for thread
  4232   if (c_rarg1 != arg_1) {
  4233     movq(c_rarg1, arg_1);
  4235   if (c_rarg2 != arg_2) {
  4236     movq(c_rarg2, arg_2);
  4238   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  4239   ret(0);
  4241   bind(E);
  4245 void MacroAssembler::call_VM(Register oop_result,
  4246                              address entry_point,
  4247                              Register arg_1,
  4248                              Register arg_2,
  4249                              Register arg_3,
  4250                              bool check_exceptions) {
  4251   assert(rax != arg_1, "smashed argument");
  4252   assert(rax != arg_2, "smashed argument");
  4253   assert(rax != arg_3, "smashed argument");
  4254   assert(c_rarg0 != arg_1, "smashed argument");
  4255   assert(c_rarg0 != arg_2, "smashed argument");
  4256   assert(c_rarg0 != arg_3, "smashed argument");
  4257   assert(c_rarg1 != arg_2, "smashed argument");
  4258   assert(c_rarg1 != arg_3, "smashed argument");
  4259   assert(c_rarg2 != arg_1, "smashed argument");
  4260   assert(c_rarg2 != arg_3, "smashed argument");
  4261   assert(c_rarg3 != arg_1, "smashed argument");
  4262   assert(c_rarg3 != arg_2, "smashed argument");
  4264   Label C, E;
  4265   Assembler::call(C, relocInfo::none);
  4266   jmp(E);
  4268   bind(C);
  4269   // c_rarg0 is reserved for thread
  4270   if (c_rarg1 != arg_1) {
  4271     movq(c_rarg1, arg_1);
  4273   if (c_rarg2 != arg_2) {
  4274     movq(c_rarg2, arg_2);
  4276   if (c_rarg3 != arg_3) {
  4277     movq(c_rarg3, arg_3);
  4279   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  4280   ret(0);
  4282   bind(E);
  4285 void MacroAssembler::call_VM(Register oop_result,
  4286                              Register last_java_sp,
  4287                              address entry_point,
  4288                              int num_args,
  4289                              bool check_exceptions) {
  4290   call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args,
  4291                check_exceptions);
  4294 void MacroAssembler::call_VM(Register oop_result,
  4295                              Register last_java_sp,
  4296                              address entry_point,
  4297                              Register arg_1,
  4298                              bool check_exceptions) {
  4299   assert(c_rarg0 != arg_1, "smashed argument");
  4300   assert(c_rarg1 != last_java_sp, "smashed argument");
  4301   // c_rarg0 is reserved for thread
  4302   if (c_rarg1 != arg_1) {
  4303     movq(c_rarg1, arg_1);
  4305   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  4308 void MacroAssembler::call_VM(Register oop_result,
  4309                              Register last_java_sp,
  4310                              address entry_point,
  4311                              Register arg_1,
  4312                              Register arg_2,
  4313                              bool check_exceptions) {
  4314   assert(c_rarg0 != arg_1, "smashed argument");
  4315   assert(c_rarg0 != arg_2, "smashed argument");
  4316   assert(c_rarg1 != arg_2, "smashed argument");
  4317   assert(c_rarg1 != last_java_sp, "smashed argument");
  4318   assert(c_rarg2 != arg_1, "smashed argument");
  4319   assert(c_rarg2 != last_java_sp, "smashed argument");
  4320   // c_rarg0 is reserved for thread
  4321   if (c_rarg1 != arg_1) {
  4322     movq(c_rarg1, arg_1);
  4324   if (c_rarg2 != arg_2) {
  4325     movq(c_rarg2, arg_2);
  4327   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  4331 void MacroAssembler::call_VM(Register oop_result,
  4332                              Register last_java_sp,
  4333                              address entry_point,
  4334                              Register arg_1,
  4335                              Register arg_2,
  4336                              Register arg_3,
  4337                              bool check_exceptions) {
  4338   assert(c_rarg0 != arg_1, "smashed argument");
  4339   assert(c_rarg0 != arg_2, "smashed argument");
  4340   assert(c_rarg0 != arg_3, "smashed argument");
  4341   assert(c_rarg1 != arg_2, "smashed argument");
  4342   assert(c_rarg1 != arg_3, "smashed argument");
  4343   assert(c_rarg1 != last_java_sp, "smashed argument");
  4344   assert(c_rarg2 != arg_1, "smashed argument");
  4345   assert(c_rarg2 != arg_3, "smashed argument");
  4346   assert(c_rarg2 != last_java_sp, "smashed argument");
  4347   assert(c_rarg3 != arg_1, "smashed argument");
  4348   assert(c_rarg3 != arg_2, "smashed argument");
  4349   assert(c_rarg3 != last_java_sp, "smashed argument");
  4350   // c_rarg0 is reserved for thread
  4351   if (c_rarg1 != arg_1) {
  4352     movq(c_rarg1, arg_1);
  4354   if (c_rarg2 != arg_2) {
  4355     movq(c_rarg2, arg_2);
  4357   if (c_rarg3 != arg_3) {
  4358     movq(c_rarg2, arg_3);
  4360   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  4363 void MacroAssembler::call_VM_leaf(address entry_point, int num_args) {
  4364   call_VM_leaf_base(entry_point, num_args);
  4367 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
  4368   if (c_rarg0 != arg_1) {
  4369     movq(c_rarg0, arg_1);
  4371   call_VM_leaf(entry_point, 1);
  4374 void MacroAssembler::call_VM_leaf(address entry_point,
  4375                                   Register arg_1,
  4376                                   Register arg_2) {
  4377   assert(c_rarg0 != arg_2, "smashed argument");
  4378   assert(c_rarg1 != arg_1, "smashed argument");
  4379   if (c_rarg0 != arg_1) {
  4380     movq(c_rarg0, arg_1);
  4382   if (c_rarg1 != arg_2) {
  4383     movq(c_rarg1, arg_2);
  4385   call_VM_leaf(entry_point, 2);
  4388 void MacroAssembler::call_VM_leaf(address entry_point,
  4389                                   Register arg_1,
  4390                                   Register arg_2,
  4391                                   Register arg_3) {
  4392   assert(c_rarg0 != arg_2, "smashed argument");
  4393   assert(c_rarg0 != arg_3, "smashed argument");
  4394   assert(c_rarg1 != arg_1, "smashed argument");
  4395   assert(c_rarg1 != arg_3, "smashed argument");
  4396   assert(c_rarg2 != arg_1, "smashed argument");
  4397   assert(c_rarg2 != arg_2, "smashed argument");
  4398   if (c_rarg0 != arg_1) {
  4399     movq(c_rarg0, arg_1);
  4401   if (c_rarg1 != arg_2) {
  4402     movq(c_rarg1, arg_2);
  4404   if (c_rarg2 != arg_3) {
  4405     movq(c_rarg2, arg_3);
  4407   call_VM_leaf(entry_point, 3);
  4411 // Calls to C land
  4412 //
  4413 // When entering C land, the rbp & rsp of the last Java frame have to
  4414 // be recorded in the (thread-local) JavaThread object. When leaving C
  4415 // land, the last Java fp has to be reset to 0. This is required to
  4416 // allow proper stack traversal.
  4417 void MacroAssembler::store_check(Register obj) {
  4418   // Does a store check for the oop in register obj. The content of
  4419   // register obj is destroyed afterwards.
  4420   store_check_part_1(obj);
  4421   store_check_part_2(obj);
  4424 void MacroAssembler::store_check(Register obj, Address dst) {
  4425   store_check(obj);
  4428 // split the store check operation so that other instructions can be
  4429 // scheduled inbetween
  4430 void MacroAssembler::store_check_part_1(Register obj) {
  4431   BarrierSet* bs = Universe::heap()->barrier_set();
  4432   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4433   shrq(obj, CardTableModRefBS::card_shift);
  4436 void MacroAssembler::store_check_part_2(Register obj) {
  4437   BarrierSet* bs = Universe::heap()->barrier_set();
  4438   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4439   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4440   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4442   // The calculation for byte_map_base is as follows:
  4443   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  4444   // So this essentially converts an address to a displacement and
  4445   // it will never need to be relocated. On 64bit however the value may be too
  4446   // large for a 32bit displacement
  4448   intptr_t disp = (intptr_t) ct->byte_map_base;
  4449   if (is_simm32(disp)) {
  4450     Address cardtable(noreg, obj, Address::times_1, disp);
  4451     movb(cardtable, 0);
  4452   } else {
  4453     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  4454     // displacement and done in a single instruction given favorable mapping and
  4455     // a smarter version of as_Address. Worst case it is two instructions which
  4456     // is no worse off then loading disp into a register and doing as a simple
  4457     // Address() as above.
  4458     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  4459     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  4460     // in some cases we'll get a single instruction version.
  4462     ExternalAddress cardtable((address)disp);
  4463     Address index(noreg, obj, Address::times_1);
  4464     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  4469 void MacroAssembler::c2bool(Register x) {
  4470   // implements x == 0 ? 0 : 1
  4471   // note: must only look at least-significant byte of x
  4472   //       since C-style booleans are stored in one byte
  4473   //       only! (was bug)
  4474   andl(x, 0xFF);
  4475   setb(Assembler::notZero, x);
  4478 int MacroAssembler::corrected_idivl(Register reg) {
  4479   // Full implementation of Java idiv and irem; checks for special
  4480   // case as described in JVM spec., p.243 & p.271.  The function
  4481   // returns the (pc) offset of the idivl instruction - may be needed
  4482   // for implicit exceptions.
  4483   //
  4484   //         normal case                           special case
  4485   //
  4486   // input : eax: dividend                         min_int
  4487   //         reg: divisor   (may not be eax/edx)   -1
  4488   //
  4489   // output: eax: quotient  (= eax idiv reg)       min_int
  4490   //         edx: remainder (= eax irem reg)       0
  4491   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  4492   const int min_int = 0x80000000;
  4493   Label normal_case, special_case;
  4495   // check for special case
  4496   cmpl(rax, min_int);
  4497   jcc(Assembler::notEqual, normal_case);
  4498   xorl(rdx, rdx); // prepare edx for possible special case (where
  4499                   // remainder = 0)
  4500   cmpl(reg, -1);
  4501   jcc(Assembler::equal, special_case);
  4503   // handle normal case
  4504   bind(normal_case);
  4505   cdql();
  4506   int idivl_offset = offset();
  4507   idivl(reg);
  4509   // normal and special case exit
  4510   bind(special_case);
  4512   return idivl_offset;
  4515 int MacroAssembler::corrected_idivq(Register reg) {
  4516   // Full implementation of Java ldiv and lrem; checks for special
  4517   // case as described in JVM spec., p.243 & p.271.  The function
  4518   // returns the (pc) offset of the idivl instruction - may be needed
  4519   // for implicit exceptions.
  4520   //
  4521   //         normal case                           special case
  4522   //
  4523   // input : rax: dividend                         min_long
  4524   //         reg: divisor   (may not be eax/edx)   -1
  4525   //
  4526   // output: rax: quotient  (= rax idiv reg)       min_long
  4527   //         rdx: remainder (= rax irem reg)       0
  4528   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  4529   static const int64_t min_long = 0x8000000000000000;
  4530   Label normal_case, special_case;
  4532   // check for special case
  4533   cmp64(rax, ExternalAddress((address) &min_long));
  4534   jcc(Assembler::notEqual, normal_case);
  4535   xorl(rdx, rdx); // prepare rdx for possible special case (where
  4536                   // remainder = 0)
  4537   cmpq(reg, -1);
  4538   jcc(Assembler::equal, special_case);
  4540   // handle normal case
  4541   bind(normal_case);
  4542   cdqq();
  4543   int idivq_offset = offset();
  4544   idivq(reg);
  4546   // normal and special case exit
  4547   bind(special_case);
  4549   return idivq_offset;
  4552 void MacroAssembler::push_IU_state() {
  4553   pushfq();     // Push flags first because pushaq kills them
  4554   subq(rsp, 8); // Make sure rsp stays 16-byte aligned
  4555   pushaq();
  4558 void MacroAssembler::pop_IU_state() {
  4559   popaq();
  4560   addq(rsp, 8);
  4561   popfq();
  4564 void MacroAssembler::push_FPU_state() {
  4565   subq(rsp, FPUStateSizeInWords * wordSize);
  4566   fxsave(Address(rsp, 0));
  4569 void MacroAssembler::pop_FPU_state() {
  4570   fxrstor(Address(rsp, 0));
  4571   addq(rsp, FPUStateSizeInWords * wordSize);
  4574 // Save Integer and Float state
  4575 // Warning: Stack must be 16 byte aligned
  4576 void MacroAssembler::push_CPU_state() {
  4577   push_IU_state();
  4578   push_FPU_state();
  4581 void MacroAssembler::pop_CPU_state() {
  4582   pop_FPU_state();
  4583   pop_IU_state();
  4586 void MacroAssembler::sign_extend_short(Register reg) {
  4587   movswl(reg, reg);
  4590 void MacroAssembler::sign_extend_byte(Register reg) {
  4591   movsbl(reg, reg);
  4594 void MacroAssembler::division_with_shift(Register reg, int shift_value) {
  4595   assert (shift_value > 0, "illegal shift value");
  4596   Label _is_positive;
  4597   testl (reg, reg);
  4598   jcc (Assembler::positive, _is_positive);
  4599   int offset = (1 << shift_value) - 1 ;
  4601   if (offset == 1) {
  4602     incrementl(reg);
  4603   } else {
  4604     addl(reg, offset);
  4607   bind (_is_positive);
  4608   sarl(reg, shift_value);
  4611 void MacroAssembler::round_to_l(Register reg, int modulus) {
  4612   addl(reg, modulus - 1);
  4613   andl(reg, -modulus);
  4616 void MacroAssembler::round_to_q(Register reg, int modulus) {
  4617   addq(reg, modulus - 1);
  4618   andq(reg, -modulus);
  4621 void MacroAssembler::verify_oop(Register reg, const char* s) {
  4622   if (!VerifyOops) {
  4623     return;
  4626   // Pass register number to verify_oop_subroutine
  4627   char* b = new char[strlen(s) + 50];
  4628   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  4630   pushq(rax); // save rax, restored by receiver
  4632   // pass args on stack, only touch rax
  4633   pushq(reg);
  4634   // avoid using pushptr, as it modifies scratch registers
  4635   // and our contract is not to modify anything
  4636   ExternalAddress buffer((address)b);
  4637   movptr(rax, buffer.addr());
  4638   pushq(rax);
  4640   // call indirectly to solve generation ordering problem
  4641   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4642   call(rax); // no alignment requirement
  4643   // everything popped by receiver
  4646 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  4647   if (!VerifyOops) return;
  4648   // Pass register number to verify_oop_subroutine
  4649   char* b = new char[strlen(s) + 50];
  4650   sprintf(b, "verify_oop_addr: %s", s);
  4651   pushq(rax);                          // save rax
  4652   movq(addr, rax);
  4653   pushq(rax);                          // pass register argument
  4656   // avoid using pushptr, as it modifies scratch registers
  4657   // and our contract is not to modify anything
  4658   ExternalAddress buffer((address)b);
  4659   movptr(rax, buffer.addr());
  4660   pushq(rax);
  4662   // call indirectly to solve generation ordering problem
  4663   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4664   call(rax); // no alignment requirement
  4665   // everything popped by receiver
  4669 void MacroAssembler::stop(const char* msg) {
  4670   address rip = pc();
  4671   pushaq(); // get regs on stack
  4672   lea(c_rarg0, ExternalAddress((address) msg));
  4673   lea(c_rarg1, InternalAddress(rip));
  4674   movq(c_rarg2, rsp); // pass pointer to regs array
  4675   andq(rsp, -16); // align stack as required by ABI
  4676   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
  4677   hlt();
  4680 void MacroAssembler::warn(const char* msg) {
  4681   pushq(r12);
  4682   movq(r12, rsp);
  4683   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  4685   push_CPU_state();   // keeps alignment at 16 bytes
  4686   lea(c_rarg0, ExternalAddress((address) msg));
  4687   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  4688   pop_CPU_state();
  4690   movq(rsp, r12);
  4691   popq(r12);
  4694 #ifndef PRODUCT
  4695 extern "C" void findpc(intptr_t x);
  4696 #endif
  4698 void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
  4699   // In order to get locks to work, we need to fake a in_VM state
  4700   if (ShowMessageBoxOnError ) {
  4701     JavaThread* thread = JavaThread::current();
  4702     JavaThreadState saved_state = thread->thread_state();
  4703     thread->set_thread_state(_thread_in_vm);
  4704 #ifndef PRODUCT
  4705     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  4706       ttyLocker ttyl;
  4707       BytecodeCounter::print();
  4709 #endif
  4710     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  4711     // XXX correct this offset for amd64
  4712     // This is the value of eip which points to where verify_oop will return.
  4713     if (os::message_box(msg, "Execution stopped, print registers?")) {
  4714       ttyLocker ttyl;
  4715       tty->print_cr("rip = 0x%016lx", pc);
  4716 #ifndef PRODUCT
  4717       tty->cr();
  4718       findpc(pc);
  4719       tty->cr();
  4720 #endif
  4721       tty->print_cr("rax = 0x%016lx", regs[15]);
  4722       tty->print_cr("rbx = 0x%016lx", regs[12]);
  4723       tty->print_cr("rcx = 0x%016lx", regs[14]);
  4724       tty->print_cr("rdx = 0x%016lx", regs[13]);
  4725       tty->print_cr("rdi = 0x%016lx", regs[8]);
  4726       tty->print_cr("rsi = 0x%016lx", regs[9]);
  4727       tty->print_cr("rbp = 0x%016lx", regs[10]);
  4728       tty->print_cr("rsp = 0x%016lx", regs[11]);
  4729       tty->print_cr("r8  = 0x%016lx", regs[7]);
  4730       tty->print_cr("r9  = 0x%016lx", regs[6]);
  4731       tty->print_cr("r10 = 0x%016lx", regs[5]);
  4732       tty->print_cr("r11 = 0x%016lx", regs[4]);
  4733       tty->print_cr("r12 = 0x%016lx", regs[3]);
  4734       tty->print_cr("r13 = 0x%016lx", regs[2]);
  4735       tty->print_cr("r14 = 0x%016lx", regs[1]);
  4736       tty->print_cr("r15 = 0x%016lx", regs[0]);
  4737       BREAKPOINT;
  4739     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  4740   } else {
  4741     ttyLocker ttyl;
  4742     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  4743                     msg);
  4747 void MacroAssembler::os_breakpoint() {
  4748   // instead of directly emitting a breakpoint, call os:breakpoint for
  4749   // better debugability
  4750   // This shouldn't need alignment, it's an empty function
  4751   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  4754 // Write serialization page so VM thread can do a pseudo remote membar.
  4755 // We use the current thread pointer to calculate a thread specific
  4756 // offset to write to within the page. This minimizes bus traffic
  4757 // due to cache line collision.
  4758 void MacroAssembler::serialize_memory(Register thread,
  4759                                       Register tmp) {
  4761   movl(tmp, thread);
  4762   shrl(tmp, os::get_serialize_page_shift_count());
  4763   andl(tmp, (os::vm_page_size() - sizeof(int)));
  4765   Address index(noreg, tmp, Address::times_1);
  4766   ExternalAddress page(os::get_memory_serialize_page());
  4768   movptr(ArrayAddress(page, index), tmp);
  4771 void MacroAssembler::verify_tlab() {
  4772 #ifdef ASSERT
  4773   if (UseTLAB) {
  4774     Label next, ok;
  4775     Register t1 = rsi;
  4777     pushq(t1);
  4779     movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  4780     cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
  4781     jcc(Assembler::aboveEqual, next);
  4782     stop("assert(top >= start)");
  4783     should_not_reach_here();
  4785     bind(next);
  4786     movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  4787     cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  4788     jcc(Assembler::aboveEqual, ok);
  4789     stop("assert(top <= end)");
  4790     should_not_reach_here();
  4792     bind(ok);
  4794     popq(t1);
  4796 #endif
  4799 // Defines obj, preserves var_size_in_bytes
  4800 void MacroAssembler::eden_allocate(Register obj,
  4801                                    Register var_size_in_bytes,
  4802                                    int con_size_in_bytes,
  4803                                    Register t1,
  4804                                    Label& slow_case) {
  4805   assert(obj == rax, "obj must be in rax for cmpxchg");
  4806   assert_different_registers(obj, var_size_in_bytes, t1);
  4807   Register end = t1;
  4808   Label retry;
  4809   bind(retry);
  4810   ExternalAddress heap_top((address) Universe::heap()->top_addr());
  4811   movptr(obj, heap_top);
  4812   if (var_size_in_bytes == noreg) {
  4813     leaq(end, Address(obj, con_size_in_bytes));
  4814   } else {
  4815     leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
  4817   // if end < obj then we wrapped around => object too long => slow case
  4818   cmpq(end, obj);
  4819   jcc(Assembler::below, slow_case);
  4820   cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  4822   jcc(Assembler::above, slow_case);
  4823   // Compare obj with the top addr, and if still equal, store the new
  4824   // top addr in end at the address of the top addr pointer. Sets ZF
  4825   // if was equal, and clears it otherwise. Use lock prefix for
  4826   // atomicity on MPs.
  4827   if (os::is_MP()) {
  4828     lock();
  4830   cmpxchgptr(end, heap_top);
  4831   // if someone beat us on the allocation, try again, otherwise continue
  4832   jcc(Assembler::notEqual, retry);
  4835 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  4836 void MacroAssembler::tlab_allocate(Register obj,
  4837                                    Register var_size_in_bytes,
  4838                                    int con_size_in_bytes,
  4839                                    Register t1,
  4840                                    Register t2,
  4841                                    Label& slow_case) {
  4842   assert_different_registers(obj, t1, t2);
  4843   assert_different_registers(obj, var_size_in_bytes, t1);
  4844   Register end = t2;
  4846   verify_tlab();
  4848   movq(obj, Address(r15_thread, JavaThread::tlab_top_offset()));
  4849   if (var_size_in_bytes == noreg) {
  4850     leaq(end, Address(obj, con_size_in_bytes));
  4851   } else {
  4852     leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
  4854   cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset()));
  4855   jcc(Assembler::above, slow_case);
  4857   // update the tlab top pointer
  4858   movq(Address(r15_thread, JavaThread::tlab_top_offset()), end);
  4860   // recover var_size_in_bytes if necessary
  4861   if (var_size_in_bytes == end) {
  4862     subq(var_size_in_bytes, obj);
  4864   verify_tlab();
  4867 // Preserves rbx and rdx.
  4868 void MacroAssembler::tlab_refill(Label& retry,
  4869                                  Label& try_eden,
  4870                                  Label& slow_case) {
  4871   Register top = rax;
  4872   Register t1 = rcx;
  4873   Register t2 = rsi;
  4874   Register t3 = r10;
  4875   Register thread_reg = r15_thread;
  4876   assert_different_registers(top, thread_reg, t1, t2, t3,
  4877                              /* preserve: */ rbx, rdx);
  4878   Label do_refill, discard_tlab;
  4880   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4881     // No allocation in the shared eden.
  4882     jmp(slow_case);
  4885   movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4886   movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4888   // calculate amount of free space
  4889   subq(t1, top);
  4890   shrq(t1, LogHeapWordSize);
  4892   // Retain tlab and allocate object in shared space if
  4893   // the amount free in the tlab is too large to discard.
  4894   cmpq(t1, Address(thread_reg, // size_t
  4895                    in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  4896   jcc(Assembler::lessEqual, discard_tlab);
  4898   // Retain
  4899   mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  4900   addq(Address(thread_reg,  // size_t
  4901                in_bytes(JavaThread::tlab_refill_waste_limit_offset())),
  4902        t2);
  4903   if (TLABStats) {
  4904     // increment number of slow_allocations
  4905     addl(Address(thread_reg, // unsigned int
  4906                  in_bytes(JavaThread::tlab_slow_allocations_offset())),
  4907          1);
  4909   jmp(try_eden);
  4911   bind(discard_tlab);
  4912   if (TLABStats) {
  4913     // increment number of refills
  4914     addl(Address(thread_reg, // unsigned int
  4915                  in_bytes(JavaThread::tlab_number_of_refills_offset())),
  4916          1);
  4917     // accumulate wastage -- t1 is amount free in tlab
  4918     addl(Address(thread_reg, // unsigned int
  4919                  in_bytes(JavaThread::tlab_fast_refill_waste_offset())),
  4920          t1);
  4923   // if tlab is currently allocated (top or end != null) then
  4924   // fill [top, end + alignment_reserve) with array object
  4925   testq(top, top);
  4926   jcc(Assembler::zero, do_refill);
  4928   // set up the mark word
  4929   mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2));
  4930   movq(Address(top, oopDesc::mark_offset_in_bytes()), t3);
  4931   // set the length to the remaining space
  4932   subq(t1, typeArrayOopDesc::header_size(T_INT));
  4933   addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve());
  4934   shlq(t1, log2_intptr(HeapWordSize / sizeof(jint)));
  4935   movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  4936   // set klass to intArrayKlass
  4937   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
  4938   // store klass last.  concurrent gcs assumes klass length is valid if
  4939   // klass field is not null.
  4940   store_klass(top, t1);
  4942   // refill the tlab with an eden allocation
  4943   bind(do_refill);
  4944   movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4945   shlq(t1, LogHeapWordSize);
  4946   // add object_size ??
  4947   eden_allocate(top, t1, 0, t2, slow_case);
  4949   // Check that t1 was preserved in eden_allocate.
  4950 #ifdef ASSERT
  4951   if (UseTLAB) {
  4952     Label ok;
  4953     Register tsize = rsi;
  4954     assert_different_registers(tsize, thread_reg, t1);
  4955     pushq(tsize);
  4956     movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4957     shlq(tsize, LogHeapWordSize);
  4958     cmpq(t1, tsize);
  4959     jcc(Assembler::equal, ok);
  4960     stop("assert(t1 != tlab size)");
  4961     should_not_reach_here();
  4963     bind(ok);
  4964     popq(tsize);
  4966 #endif
  4967   movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  4968   movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  4969   addq(top, t1);
  4970   subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  4971   movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  4972   verify_tlab();
  4973   jmp(retry);
  4977 int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
  4978                                          bool swap_reg_contains_mark,
  4979                                          Label& done, Label* slow_case,
  4980                                          BiasedLockingCounters* counters) {
  4981   assert(UseBiasedLocking, "why call this otherwise?");
  4982   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  4983   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  4984   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4985   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4986   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4987   Address saved_mark_addr(lock_reg, 0);
  4989   if (PrintBiasedLockingStatistics && counters == NULL)
  4990     counters = BiasedLocking::counters();
  4992   // Biased locking
  4993   // See whether the lock is currently biased toward our thread and
  4994   // whether the epoch is still valid
  4995   // Note that the runtime guarantees sufficient alignment of JavaThread
  4996   // pointers to allow age to be placed into low bits
  4997   // First check to see whether biasing is even enabled for this object
  4998   Label cas_label;
  4999   int null_check_offset = -1;
  5000   if (!swap_reg_contains_mark) {
  5001     null_check_offset = offset();
  5002     movq(swap_reg, mark_addr);
  5004   movq(tmp_reg, swap_reg);
  5005   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5006   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5007   jcc(Assembler::notEqual, cas_label);
  5008   // The bias pattern is present in the object's header. Need to check
  5009   // whether the bias owner and the epoch are both still current.
  5010   load_klass(tmp_reg, obj_reg);
  5011   movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  5012   orq(tmp_reg, r15_thread);
  5013   xorq(tmp_reg, swap_reg);
  5014   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5015   if (counters != NULL) {
  5016     cond_inc32(Assembler::zero,
  5017                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5019   jcc(Assembler::equal, done);
  5021   Label try_revoke_bias;
  5022   Label try_rebias;
  5024   // At this point we know that the header has the bias pattern and
  5025   // that we are not the bias owner in the current epoch. We need to
  5026   // figure out more details about the state of the header in order to
  5027   // know what operations can be legally performed on the object's
  5028   // header.
  5030   // If the low three bits in the xor result aren't clear, that means
  5031   // the prototype header is no longer biased and we have to revoke
  5032   // the bias on this object.
  5033   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5034   jcc(Assembler::notZero, try_revoke_bias);
  5036   // Biasing is still enabled for this data type. See whether the
  5037   // epoch of the current bias is still valid, meaning that the epoch
  5038   // bits of the mark word are equal to the epoch bits of the
  5039   // prototype header. (Note that the prototype header's epoch bits
  5040   // only change at a safepoint.) If not, attempt to rebias the object
  5041   // toward the current thread. Note that we must be absolutely sure
  5042   // that the current epoch is invalid in order to do this because
  5043   // otherwise the manipulations it performs on the mark word are
  5044   // illegal.
  5045   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5046   jcc(Assembler::notZero, try_rebias);
  5048   // The epoch of the current bias is still valid but we know nothing
  5049   // about the owner; it might be set or it might be clear. Try to
  5050   // acquire the bias of the object using an atomic operation. If this
  5051   // fails we will go in to the runtime to revoke the object's bias.
  5052   // Note that we first construct the presumed unbiased header so we
  5053   // don't accidentally blow away another thread's valid bias.
  5054   andq(swap_reg,
  5055        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5056   movq(tmp_reg, swap_reg);
  5057   orq(tmp_reg, r15_thread);
  5058   if (os::is_MP()) {
  5059     lock();
  5061   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5062   // If the biasing toward our thread failed, this means that
  5063   // another thread succeeded in biasing it toward itself and we
  5064   // need to revoke that bias. The revocation will occur in the
  5065   // interpreter runtime in the slow case.
  5066   if (counters != NULL) {
  5067     cond_inc32(Assembler::zero,
  5068                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5070   if (slow_case != NULL) {
  5071     jcc(Assembler::notZero, *slow_case);
  5073   jmp(done);
  5075   bind(try_rebias);
  5076   // At this point we know the epoch has expired, meaning that the
  5077   // current "bias owner", if any, is actually invalid. Under these
  5078   // circumstances _only_, we are allowed to use the current header's
  5079   // value as the comparison value when doing the cas to acquire the
  5080   // bias in the current epoch. In other words, we allow transfer of
  5081   // the bias from one thread to another directly in this situation.
  5082   //
  5083   // FIXME: due to a lack of registers we currently blow away the age
  5084   // bits in this situation. Should attempt to preserve them.
  5085   load_klass(tmp_reg, obj_reg);
  5086   movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  5087   orq(tmp_reg, r15_thread);
  5088   if (os::is_MP()) {
  5089     lock();
  5091   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5092   // If the biasing toward our thread failed, then another thread
  5093   // succeeded in biasing it toward itself and we need to revoke that
  5094   // bias. The revocation will occur in the runtime in the slow case.
  5095   if (counters != NULL) {
  5096     cond_inc32(Assembler::zero,
  5097                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5099   if (slow_case != NULL) {
  5100     jcc(Assembler::notZero, *slow_case);
  5102   jmp(done);
  5104   bind(try_revoke_bias);
  5105   // The prototype mark in the klass doesn't have the bias bit set any
  5106   // more, indicating that objects of this data type are not supposed
  5107   // to be biased any more. We are going to try to reset the mark of
  5108   // this object to the prototype value and fall through to the
  5109   // CAS-based locking scheme. Note that if our CAS fails, it means
  5110   // that another thread raced us for the privilege of revoking the
  5111   // bias of this particular object, so it's okay to continue in the
  5112   // normal locking code.
  5113   //
  5114   // FIXME: due to a lack of registers we currently blow away the age
  5115   // bits in this situation. Should attempt to preserve them.
  5116   load_klass(tmp_reg, obj_reg);
  5117   movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  5118   if (os::is_MP()) {
  5119     lock();
  5121   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5122   // Fall through to the normal CAS-based lock, because no matter what
  5123   // the result of the above CAS, some thread must have succeeded in
  5124   // removing the bias bit from the object's header.
  5125   if (counters != NULL) {
  5126     cond_inc32(Assembler::zero,
  5127                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5130   bind(cas_label);
  5132   return null_check_offset;
  5136 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5137   assert(UseBiasedLocking, "why call this otherwise?");
  5139   // Check for biased locking unlock case, which is a no-op
  5140   // Note: we do not have to check the thread ID for two reasons.
  5141   // First, the interpreter checks for IllegalMonitorStateException at
  5142   // a higher level. Second, if the bias was revoked while we held the
  5143   // lock, the object could not be rebiased toward another thread, so
  5144   // the bias bit would be clear.
  5145   movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5146   andq(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5147   cmpq(temp_reg, markOopDesc::biased_lock_pattern);
  5148   jcc(Assembler::equal, done);
  5152 void MacroAssembler::load_klass(Register dst, Register src) {
  5153   if (UseCompressedOops) {
  5154     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5155     decode_heap_oop_not_null(dst);
  5156   } else {
  5157     movq(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5161 void MacroAssembler::store_klass(Register dst, Register src) {
  5162   if (UseCompressedOops) {
  5163     encode_heap_oop_not_null(src);
  5164     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5165   } else {
  5166     movq(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5170 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  5171   if (UseCompressedOops) {
  5172     // Store to klass gap in destination
  5173     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  5177 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  5178   if (UseCompressedOops) {
  5179     movl(dst, src);
  5180     decode_heap_oop(dst);
  5181   } else {
  5182     movq(dst, src);
  5186 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  5187   if (UseCompressedOops) {
  5188     assert(!dst.uses(src), "not enough registers");
  5189     encode_heap_oop(src);
  5190     movl(dst, src);
  5191   } else {
  5192     movq(dst, src);
  5196 // Algorithm must match oop.inline.hpp encode_heap_oop.
  5197 void MacroAssembler::encode_heap_oop(Register r) {
  5198   assert (UseCompressedOops, "should be compressed");
  5199 #ifdef ASSERT
  5200   if (CheckCompressedOops) {
  5201     Label ok;
  5202     pushq(rscratch1); // cmpptr trashes rscratch1
  5203     cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
  5204     jcc(Assembler::equal, ok);
  5205     stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
  5206     bind(ok);
  5207     popq(rscratch1);
  5209 #endif
  5210   verify_oop(r, "broken oop in encode_heap_oop");
  5211   testq(r, r);
  5212   cmovq(Assembler::equal, r, r12_heapbase);
  5213   subq(r, r12_heapbase);
  5214   shrq(r, LogMinObjAlignmentInBytes);
  5217 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  5218   assert (UseCompressedOops, "should be compressed");
  5219 #ifdef ASSERT
  5220   if (CheckCompressedOops) {
  5221     Label ok;
  5222     testq(r, r);
  5223     jcc(Assembler::notEqual, ok);
  5224     stop("null oop passed to encode_heap_oop_not_null");
  5225     bind(ok);
  5227 #endif
  5228   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  5229   subq(r, r12_heapbase);
  5230   shrq(r, LogMinObjAlignmentInBytes);
  5233 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  5234   assert (UseCompressedOops, "should be compressed");
  5235 #ifdef ASSERT
  5236   if (CheckCompressedOops) {
  5237     Label ok;
  5238     testq(src, src);
  5239     jcc(Assembler::notEqual, ok);
  5240     stop("null oop passed to encode_heap_oop_not_null2");
  5241     bind(ok);
  5243 #endif
  5244   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  5245   if (dst != src) {
  5246     movq(dst, src);
  5248   subq(dst, r12_heapbase);
  5249   shrq(dst, LogMinObjAlignmentInBytes);
  5252 void  MacroAssembler::decode_heap_oop(Register r) {
  5253   assert (UseCompressedOops, "should be compressed");
  5254 #ifdef ASSERT
  5255   if (CheckCompressedOops) {
  5256     Label ok;
  5257     pushq(rscratch1);
  5258     cmpptr(r12_heapbase,
  5259            ExternalAddress((address)Universe::heap_base_addr()));
  5260     jcc(Assembler::equal, ok);
  5261     stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
  5262     bind(ok);
  5263     popq(rscratch1);
  5265 #endif
  5267   Label done;
  5268   shlq(r, LogMinObjAlignmentInBytes);
  5269   jccb(Assembler::equal, done);
  5270   addq(r, r12_heapbase);
  5271 #if 0
  5272    // alternate decoding probably a wash.
  5273    testq(r, r);
  5274    jccb(Assembler::equal, done);
  5275    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  5276 #endif
  5277   bind(done);
  5278   verify_oop(r, "broken oop in decode_heap_oop");
  5281 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5282   assert (UseCompressedOops, "should only be used for compressed headers");
  5283   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5284   // vtableStubs also counts instructions in pd_code_size_limit.
  5285   assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
  5286   leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  5289 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5290   assert (UseCompressedOops, "should only be used for compressed headers");
  5291   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5292   // vtableStubs also counts instructions in pd_code_size_limit.
  5293   assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
  5294   leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5297 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  5298   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5299   int oop_index = oop_recorder()->find_index(obj);
  5300   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5302   // movl dst,obj
  5303   InstructionMark im(this);
  5304   int encode = prefix_and_encode(dst->encoding());
  5305   emit_byte(0xB8 | encode);
  5306   emit_data(oop_index, rspec, narrow_oop_operand);
  5310 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  5311   switch (cond) {
  5312     // Note some conditions are synonyms for others
  5313     case Assembler::zero:         return Assembler::notZero;
  5314     case Assembler::notZero:      return Assembler::zero;
  5315     case Assembler::less:         return Assembler::greaterEqual;
  5316     case Assembler::lessEqual:    return Assembler::greater;
  5317     case Assembler::greater:      return Assembler::lessEqual;
  5318     case Assembler::greaterEqual: return Assembler::less;
  5319     case Assembler::below:        return Assembler::aboveEqual;
  5320     case Assembler::belowEqual:   return Assembler::above;
  5321     case Assembler::above:        return Assembler::belowEqual;
  5322     case Assembler::aboveEqual:   return Assembler::below;
  5323     case Assembler::overflow:     return Assembler::noOverflow;
  5324     case Assembler::noOverflow:   return Assembler::overflow;
  5325     case Assembler::negative:     return Assembler::positive;
  5326     case Assembler::positive:     return Assembler::negative;
  5327     case Assembler::parity:       return Assembler::noParity;
  5328     case Assembler::noParity:     return Assembler::parity;
  5330   ShouldNotReachHere(); return Assembler::overflow;
  5334 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  5335   Condition negated_cond = negate_condition(cond);
  5336   Label L;
  5337   jcc(negated_cond, L);
  5338   atomic_incl(counter_addr);
  5339   bind(L);
  5342 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5343   pushfq();
  5344   if (os::is_MP())
  5345     lock();
  5346   incrementl(counter_addr);
  5347   popfq();
  5350 SkipIfEqual::SkipIfEqual(
  5351     MacroAssembler* masm, const bool* flag_addr, bool value) {
  5352   _masm = masm;
  5353   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  5354   _masm->jcc(Assembler::equal, _label);
  5357 SkipIfEqual::~SkipIfEqual() {
  5358   _masm->bind(_label);
  5361 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5362   movq(tmp, rsp);
  5363   // Bang stack for total size given plus shadow page size.
  5364   // Bang one page at a time because large size can bang beyond yellow and
  5365   // red zones.
  5366   Label loop;
  5367   bind(loop);
  5368   movl(Address(tmp, (-os::vm_page_size())), size );
  5369   subq(tmp, os::vm_page_size());
  5370   subl(size, os::vm_page_size());
  5371   jcc(Assembler::greater, loop);
  5373   // Bang down shadow pages too.
  5374   // The -1 because we already subtracted 1 page.
  5375   for (int i = 0; i< StackShadowPages-1; i++) {
  5376     movq(Address(tmp, (-i*os::vm_page_size())), size );
  5380 void MacroAssembler::reinit_heapbase() {
  5381   if (UseCompressedOops) {
  5382     movptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));

mercurial