src/cpu/x86/vm/assembler_x86_64.cpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 511
d6fe2e4959d6
child 553
fb75a7673531
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

duke@435 1 /*
duke@435 2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_assembler_x86_64.cpp.incl"
duke@435 27
duke@435 28 // Implementation of AddressLiteral
duke@435 29
duke@435 30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
duke@435 31 _is_lval = false;
duke@435 32 _target = target;
duke@435 33 switch (rtype) {
duke@435 34 case relocInfo::oop_type:
duke@435 35 // Oops are a special case. Normally they would be their own section
duke@435 36 // but in cases like icBuffer they are literals in the code stream that
duke@435 37 // we don't have a section for. We use none so that we get a literal address
duke@435 38 // which is always patchable.
duke@435 39 break;
duke@435 40 case relocInfo::external_word_type:
duke@435 41 _rspec = external_word_Relocation::spec(target);
duke@435 42 break;
duke@435 43 case relocInfo::internal_word_type:
duke@435 44 _rspec = internal_word_Relocation::spec(target);
duke@435 45 break;
duke@435 46 case relocInfo::opt_virtual_call_type:
duke@435 47 _rspec = opt_virtual_call_Relocation::spec();
duke@435 48 break;
duke@435 49 case relocInfo::static_call_type:
duke@435 50 _rspec = static_call_Relocation::spec();
duke@435 51 break;
duke@435 52 case relocInfo::runtime_call_type:
duke@435 53 _rspec = runtime_call_Relocation::spec();
duke@435 54 break;
duke@435 55 case relocInfo::none:
duke@435 56 break;
duke@435 57 default:
duke@435 58 ShouldNotReachHere();
duke@435 59 break;
duke@435 60 }
duke@435 61 }
duke@435 62
duke@435 63 // Implementation of Address
duke@435 64
duke@435 65 Address Address::make_array(ArrayAddress adr) {
duke@435 66 #ifdef _LP64
duke@435 67 // Not implementable on 64bit machines
duke@435 68 // Should have been handled higher up the call chain.
duke@435 69 ShouldNotReachHere();
duke@435 70 return Address();
duke@435 71 #else
duke@435 72 AddressLiteral base = adr.base();
duke@435 73 Address index = adr.index();
duke@435 74 assert(index._disp == 0, "must not have disp"); // maybe it can?
duke@435 75 Address array(index._base, index._index, index._scale, (intptr_t) base.target());
duke@435 76 array._rspec = base._rspec;
duke@435 77 return array;
duke@435 78 #endif // _LP64
duke@435 79 }
duke@435 80
duke@435 81 // exceedingly dangerous constructor
duke@435 82 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
duke@435 83 _base = noreg;
duke@435 84 _index = noreg;
duke@435 85 _scale = no_scale;
duke@435 86 _disp = disp;
duke@435 87 switch (rtype) {
duke@435 88 case relocInfo::external_word_type:
duke@435 89 _rspec = external_word_Relocation::spec(loc);
duke@435 90 break;
duke@435 91 case relocInfo::internal_word_type:
duke@435 92 _rspec = internal_word_Relocation::spec(loc);
duke@435 93 break;
duke@435 94 case relocInfo::runtime_call_type:
duke@435 95 // HMM
duke@435 96 _rspec = runtime_call_Relocation::spec();
duke@435 97 break;
duke@435 98 case relocInfo::none:
duke@435 99 break;
duke@435 100 default:
duke@435 101 ShouldNotReachHere();
duke@435 102 }
duke@435 103 }
duke@435 104
duke@435 105 // Convert the raw encoding form into the form expected by the constructor for
duke@435 106 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 107 // that to noreg for the Address constructor.
duke@435 108 Address Address::make_raw(int base, int index, int scale, int disp) {
duke@435 109 bool valid_index = index != rsp->encoding();
duke@435 110 if (valid_index) {
duke@435 111 Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
duke@435 112 return madr;
duke@435 113 } else {
duke@435 114 Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
duke@435 115 return madr;
duke@435 116 }
duke@435 117 }
duke@435 118
duke@435 119
duke@435 120 // Implementation of Assembler
duke@435 121 int AbstractAssembler::code_fill_byte() {
duke@435 122 return (u_char)'\xF4'; // hlt
duke@435 123 }
duke@435 124
duke@435 125 // This should only be used by 64bit instructions that can use rip-relative
duke@435 126 // it cannot be used by instructions that want an immediate value.
duke@435 127
duke@435 128 bool Assembler::reachable(AddressLiteral adr) {
duke@435 129 int64_t disp;
coleenp@548 130
duke@435 131 // None will force a 64bit literal to the code stream. Likely a placeholder
duke@435 132 // for something that will be patched later and we need to certain it will
duke@435 133 // always be reachable.
duke@435 134 if (adr.reloc() == relocInfo::none) {
duke@435 135 return false;
duke@435 136 }
duke@435 137 if (adr.reloc() == relocInfo::internal_word_type) {
duke@435 138 // This should be rip relative and easily reachable.
duke@435 139 return true;
duke@435 140 }
duke@435 141 if (adr.reloc() != relocInfo::external_word_type &&
duke@435 142 adr.reloc() != relocInfo::runtime_call_type ) {
duke@435 143 return false;
duke@435 144 }
duke@435 145
duke@435 146 // Stress the correction code
duke@435 147 if (ForceUnreachable) {
duke@435 148 // Must be runtimecall reloc, see if it is in the codecache
duke@435 149 // Flipping stuff in the codecache to be unreachable causes issues
duke@435 150 // with things like inline caches where the additional instructions
duke@435 151 // are not handled.
duke@435 152 if (CodeCache::find_blob(adr._target) == NULL) {
duke@435 153 return false;
duke@435 154 }
duke@435 155 }
duke@435 156 // For external_word_type/runtime_call_type if it is reachable from where we
duke@435 157 // are now (possibly a temp buffer) and where we might end up
duke@435 158 // anywhere in the codeCache then we are always reachable.
duke@435 159 // This would have to change if we ever save/restore shared code
duke@435 160 // to be more pessimistic.
duke@435 161
duke@435 162 disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
duke@435 163 if (!is_simm32(disp)) return false;
duke@435 164 disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
duke@435 165 if (!is_simm32(disp)) return false;
duke@435 166
duke@435 167 disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
duke@435 168
duke@435 169 // Because rip relative is a disp + address_of_next_instruction and we
duke@435 170 // don't know the value of address_of_next_instruction we apply a fudge factor
duke@435 171 // to make sure we will be ok no matter the size of the instruction we get placed into.
duke@435 172 // We don't have to fudge the checks above here because they are already worst case.
duke@435 173
duke@435 174 // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
duke@435 175 // + 4 because better safe than sorry.
duke@435 176 const int fudge = 12 + 4;
duke@435 177 if (disp < 0) {
duke@435 178 disp -= fudge;
duke@435 179 } else {
duke@435 180 disp += fudge;
duke@435 181 }
duke@435 182 return is_simm32(disp);
duke@435 183 }
duke@435 184
duke@435 185
duke@435 186 // make this go away eventually
duke@435 187 void Assembler::emit_data(jint data,
duke@435 188 relocInfo::relocType rtype,
duke@435 189 int format) {
duke@435 190 if (rtype == relocInfo::none) {
duke@435 191 emit_long(data);
duke@435 192 } else {
duke@435 193 emit_data(data, Relocation::spec_simple(rtype), format);
duke@435 194 }
duke@435 195 }
duke@435 196
duke@435 197 void Assembler::emit_data(jint data,
duke@435 198 RelocationHolder const& rspec,
duke@435 199 int format) {
duke@435 200 assert(imm64_operand == 0, "default format must be imm64 in this file");
duke@435 201 assert(imm64_operand != format, "must not be imm64");
duke@435 202 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 203 if (rspec.type() != relocInfo::none) {
duke@435 204 #ifdef ASSERT
duke@435 205 check_relocation(rspec, format);
duke@435 206 #endif
duke@435 207 // Do not use AbstractAssembler::relocate, which is not intended for
duke@435 208 // embedded words. Instead, relocate to the enclosing instruction.
duke@435 209
duke@435 210 // hack. call32 is too wide for mask so use disp32
duke@435 211 if (format == call32_operand)
duke@435 212 code_section()->relocate(inst_mark(), rspec, disp32_operand);
duke@435 213 else
duke@435 214 code_section()->relocate(inst_mark(), rspec, format);
duke@435 215 }
duke@435 216 emit_long(data);
duke@435 217 }
duke@435 218
duke@435 219 void Assembler::emit_data64(jlong data,
duke@435 220 relocInfo::relocType rtype,
duke@435 221 int format) {
duke@435 222 if (rtype == relocInfo::none) {
duke@435 223 emit_long64(data);
duke@435 224 } else {
duke@435 225 emit_data64(data, Relocation::spec_simple(rtype), format);
duke@435 226 }
duke@435 227 }
duke@435 228
duke@435 229 void Assembler::emit_data64(jlong data,
duke@435 230 RelocationHolder const& rspec,
duke@435 231 int format) {
duke@435 232 assert(imm64_operand == 0, "default format must be imm64 in this file");
duke@435 233 assert(imm64_operand == format, "must be imm64");
duke@435 234 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 235 // Do not use AbstractAssembler::relocate, which is not intended for
duke@435 236 // embedded words. Instead, relocate to the enclosing instruction.
duke@435 237 code_section()->relocate(inst_mark(), rspec, format);
duke@435 238 #ifdef ASSERT
duke@435 239 check_relocation(rspec, format);
duke@435 240 #endif
duke@435 241 emit_long64(data);
duke@435 242 }
duke@435 243
duke@435 244 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
duke@435 245 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 246 assert(isByte(imm8), "not a byte");
duke@435 247 assert((op1 & 0x01) == 0, "should be 8bit operation");
duke@435 248 int dstenc = dst->encoding();
duke@435 249 if (dstenc >= 8) {
duke@435 250 dstenc -= 8;
duke@435 251 }
duke@435 252 emit_byte(op1);
duke@435 253 emit_byte(op2 | dstenc);
duke@435 254 emit_byte(imm8);
duke@435 255 }
duke@435 256
duke@435 257 void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
duke@435 258 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 259 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 260 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 261 int dstenc = dst->encoding();
duke@435 262 if (dstenc >= 8) {
duke@435 263 dstenc -= 8;
duke@435 264 }
duke@435 265 if (is8bit(imm32)) {
duke@435 266 emit_byte(op1 | 0x02); // set sign bit
duke@435 267 emit_byte(op2 | dstenc);
duke@435 268 emit_byte(imm32 & 0xFF);
duke@435 269 } else {
duke@435 270 emit_byte(op1);
duke@435 271 emit_byte(op2 | dstenc);
duke@435 272 emit_long(imm32);
duke@435 273 }
duke@435 274 }
duke@435 275
duke@435 276 // immediate-to-memory forms
duke@435 277 void Assembler::emit_arith_operand(int op1,
duke@435 278 Register rm, Address adr,
duke@435 279 int imm32) {
duke@435 280 assert((op1 & 0x01) == 1, "should be 32bit operation");
duke@435 281 assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
duke@435 282 if (is8bit(imm32)) {
duke@435 283 emit_byte(op1 | 0x02); // set sign bit
duke@435 284 emit_operand(rm, adr, 1);
duke@435 285 emit_byte(imm32 & 0xFF);
duke@435 286 } else {
duke@435 287 emit_byte(op1);
duke@435 288 emit_operand(rm, adr, 4);
duke@435 289 emit_long(imm32);
duke@435 290 }
duke@435 291 }
duke@435 292
duke@435 293
duke@435 294 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
duke@435 295 assert(isByte(op1) && isByte(op2), "wrong opcode");
duke@435 296 int dstenc = dst->encoding();
duke@435 297 int srcenc = src->encoding();
duke@435 298 if (dstenc >= 8) {
duke@435 299 dstenc -= 8;
duke@435 300 }
duke@435 301 if (srcenc >= 8) {
duke@435 302 srcenc -= 8;
duke@435 303 }
duke@435 304 emit_byte(op1);
duke@435 305 emit_byte(op2 | dstenc << 3 | srcenc);
duke@435 306 }
duke@435 307
duke@435 308 void Assembler::emit_operand(Register reg, Register base, Register index,
duke@435 309 Address::ScaleFactor scale, int disp,
duke@435 310 RelocationHolder const& rspec,
duke@435 311 int rip_relative_correction) {
duke@435 312 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
duke@435 313 int regenc = reg->encoding();
duke@435 314 if (regenc >= 8) {
duke@435 315 regenc -= 8;
duke@435 316 }
duke@435 317 if (base->is_valid()) {
duke@435 318 if (index->is_valid()) {
duke@435 319 assert(scale != Address::no_scale, "inconsistent address");
duke@435 320 int indexenc = index->encoding();
duke@435 321 if (indexenc >= 8) {
duke@435 322 indexenc -= 8;
duke@435 323 }
duke@435 324 int baseenc = base->encoding();
duke@435 325 if (baseenc >= 8) {
duke@435 326 baseenc -= 8;
duke@435 327 }
duke@435 328 // [base + index*scale + disp]
duke@435 329 if (disp == 0 && rtype == relocInfo::none &&
duke@435 330 base != rbp && base != r13) {
duke@435 331 // [base + index*scale]
duke@435 332 // [00 reg 100][ss index base]
duke@435 333 assert(index != rsp, "illegal addressing mode");
duke@435 334 emit_byte(0x04 | regenc << 3);
duke@435 335 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 336 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 337 // [base + index*scale + imm8]
duke@435 338 // [01 reg 100][ss index base] imm8
duke@435 339 assert(index != rsp, "illegal addressing mode");
duke@435 340 emit_byte(0x44 | regenc << 3);
duke@435 341 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 342 emit_byte(disp & 0xFF);
duke@435 343 } else {
duke@435 344 // [base + index*scale + disp32]
duke@435 345 // [10 reg 100][ss index base] disp32
duke@435 346 assert(index != rsp, "illegal addressing mode");
duke@435 347 emit_byte(0x84 | regenc << 3);
duke@435 348 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 349 emit_data(disp, rspec, disp32_operand);
duke@435 350 }
duke@435 351 } else if (base == rsp || base == r12) {
duke@435 352 // [rsp + disp]
duke@435 353 if (disp == 0 && rtype == relocInfo::none) {
duke@435 354 // [rsp]
duke@435 355 // [00 reg 100][00 100 100]
duke@435 356 emit_byte(0x04 | regenc << 3);
duke@435 357 emit_byte(0x24);
duke@435 358 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 359 // [rsp + imm8]
duke@435 360 // [01 reg 100][00 100 100] disp8
duke@435 361 emit_byte(0x44 | regenc << 3);
duke@435 362 emit_byte(0x24);
duke@435 363 emit_byte(disp & 0xFF);
duke@435 364 } else {
duke@435 365 // [rsp + imm32]
duke@435 366 // [10 reg 100][00 100 100] disp32
duke@435 367 emit_byte(0x84 | regenc << 3);
duke@435 368 emit_byte(0x24);
duke@435 369 emit_data(disp, rspec, disp32_operand);
duke@435 370 }
duke@435 371 } else {
duke@435 372 // [base + disp]
duke@435 373 assert(base != rsp && base != r12, "illegal addressing mode");
duke@435 374 int baseenc = base->encoding();
duke@435 375 if (baseenc >= 8) {
duke@435 376 baseenc -= 8;
duke@435 377 }
duke@435 378 if (disp == 0 && rtype == relocInfo::none &&
duke@435 379 base != rbp && base != r13) {
duke@435 380 // [base]
duke@435 381 // [00 reg base]
duke@435 382 emit_byte(0x00 | regenc << 3 | baseenc);
duke@435 383 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 384 // [base + disp8]
duke@435 385 // [01 reg base] disp8
duke@435 386 emit_byte(0x40 | regenc << 3 | baseenc);
duke@435 387 emit_byte(disp & 0xFF);
duke@435 388 } else {
duke@435 389 // [base + disp32]
duke@435 390 // [10 reg base] disp32
duke@435 391 emit_byte(0x80 | regenc << 3 | baseenc);
duke@435 392 emit_data(disp, rspec, disp32_operand);
duke@435 393 }
duke@435 394 }
duke@435 395 } else {
duke@435 396 if (index->is_valid()) {
duke@435 397 assert(scale != Address::no_scale, "inconsistent address");
duke@435 398 int indexenc = index->encoding();
duke@435 399 if (indexenc >= 8) {
duke@435 400 indexenc -= 8;
duke@435 401 }
duke@435 402 // [index*scale + disp]
duke@435 403 // [00 reg 100][ss index 101] disp32
duke@435 404 assert(index != rsp, "illegal addressing mode");
duke@435 405 emit_byte(0x04 | regenc << 3);
duke@435 406 emit_byte(scale << 6 | indexenc << 3 | 0x05);
duke@435 407 emit_data(disp, rspec, disp32_operand);
duke@435 408 #ifdef _LP64
duke@435 409 } else if (rtype != relocInfo::none ) {
duke@435 410 // [disp] RIP-RELATIVE
duke@435 411 // [00 000 101] disp32
duke@435 412
duke@435 413 emit_byte(0x05 | regenc << 3);
duke@435 414 // Note that the RIP-rel. correction applies to the generated
duke@435 415 // disp field, but _not_ to the target address in the rspec.
duke@435 416
duke@435 417 // disp was created by converting the target address minus the pc
duke@435 418 // at the start of the instruction. That needs more correction here.
duke@435 419 // intptr_t disp = target - next_ip;
duke@435 420 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 421 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
duke@435 422 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
duke@435 423 assert(is_simm32(adjusted),
duke@435 424 "must be 32bit offset (RIP relative address)");
duke@435 425 emit_data((int) adjusted, rspec, disp32_operand);
duke@435 426
duke@435 427 #endif // _LP64
duke@435 428 } else {
duke@435 429 // [disp] ABSOLUTE
duke@435 430 // [00 reg 100][00 100 101] disp32
duke@435 431 emit_byte(0x04 | regenc << 3);
duke@435 432 emit_byte(0x25);
duke@435 433 emit_data(disp, rspec, disp32_operand);
duke@435 434 }
duke@435 435 }
duke@435 436 }
duke@435 437
duke@435 438 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
duke@435 439 Address::ScaleFactor scale, int disp,
duke@435 440 RelocationHolder const& rspec,
duke@435 441 int rip_relative_correction) {
duke@435 442 relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
duke@435 443 int regenc = reg->encoding();
duke@435 444 if (regenc >= 8) {
duke@435 445 regenc -= 8;
duke@435 446 }
duke@435 447 if (base->is_valid()) {
duke@435 448 if (index->is_valid()) {
duke@435 449 assert(scale != Address::no_scale, "inconsistent address");
duke@435 450 int indexenc = index->encoding();
duke@435 451 if (indexenc >= 8) {
duke@435 452 indexenc -= 8;
duke@435 453 }
duke@435 454 int baseenc = base->encoding();
duke@435 455 if (baseenc >= 8) {
duke@435 456 baseenc -= 8;
duke@435 457 }
duke@435 458 // [base + index*scale + disp]
duke@435 459 if (disp == 0 && rtype == relocInfo::none &&
duke@435 460 base != rbp && base != r13) {
duke@435 461 // [base + index*scale]
duke@435 462 // [00 reg 100][ss index base]
duke@435 463 assert(index != rsp, "illegal addressing mode");
duke@435 464 emit_byte(0x04 | regenc << 3);
duke@435 465 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 466 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 467 // [base + index*scale + disp8]
duke@435 468 // [01 reg 100][ss index base] disp8
duke@435 469 assert(index != rsp, "illegal addressing mode");
duke@435 470 emit_byte(0x44 | regenc << 3);
duke@435 471 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 472 emit_byte(disp & 0xFF);
duke@435 473 } else {
duke@435 474 // [base + index*scale + disp32]
duke@435 475 // [10 reg 100][ss index base] disp32
duke@435 476 assert(index != rsp, "illegal addressing mode");
duke@435 477 emit_byte(0x84 | regenc << 3);
duke@435 478 emit_byte(scale << 6 | indexenc << 3 | baseenc);
duke@435 479 emit_data(disp, rspec, disp32_operand);
duke@435 480 }
duke@435 481 } else if (base == rsp || base == r12) {
duke@435 482 // [rsp + disp]
duke@435 483 if (disp == 0 && rtype == relocInfo::none) {
duke@435 484 // [rsp]
duke@435 485 // [00 reg 100][00 100 100]
duke@435 486 emit_byte(0x04 | regenc << 3);
duke@435 487 emit_byte(0x24);
duke@435 488 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 489 // [rsp + imm8]
duke@435 490 // [01 reg 100][00 100 100] disp8
duke@435 491 emit_byte(0x44 | regenc << 3);
duke@435 492 emit_byte(0x24);
duke@435 493 emit_byte(disp & 0xFF);
duke@435 494 } else {
duke@435 495 // [rsp + imm32]
duke@435 496 // [10 reg 100][00 100 100] disp32
duke@435 497 emit_byte(0x84 | regenc << 3);
duke@435 498 emit_byte(0x24);
duke@435 499 emit_data(disp, rspec, disp32_operand);
duke@435 500 }
duke@435 501 } else {
duke@435 502 // [base + disp]
duke@435 503 assert(base != rsp && base != r12, "illegal addressing mode");
duke@435 504 int baseenc = base->encoding();
duke@435 505 if (baseenc >= 8) {
duke@435 506 baseenc -= 8;
duke@435 507 }
duke@435 508 if (disp == 0 && rtype == relocInfo::none &&
duke@435 509 base != rbp && base != r13) {
duke@435 510 // [base]
duke@435 511 // [00 reg base]
duke@435 512 emit_byte(0x00 | regenc << 3 | baseenc);
duke@435 513 } else if (is8bit(disp) && rtype == relocInfo::none) {
duke@435 514 // [base + imm8]
duke@435 515 // [01 reg base] disp8
duke@435 516 emit_byte(0x40 | regenc << 3 | baseenc);
duke@435 517 emit_byte(disp & 0xFF);
duke@435 518 } else {
duke@435 519 // [base + imm32]
duke@435 520 // [10 reg base] disp32
duke@435 521 emit_byte(0x80 | regenc << 3 | baseenc);
duke@435 522 emit_data(disp, rspec, disp32_operand);
duke@435 523 }
duke@435 524 }
duke@435 525 } else {
duke@435 526 if (index->is_valid()) {
duke@435 527 assert(scale != Address::no_scale, "inconsistent address");
duke@435 528 int indexenc = index->encoding();
duke@435 529 if (indexenc >= 8) {
duke@435 530 indexenc -= 8;
duke@435 531 }
duke@435 532 // [index*scale + disp]
duke@435 533 // [00 reg 100][ss index 101] disp32
duke@435 534 assert(index != rsp, "illegal addressing mode");
duke@435 535 emit_byte(0x04 | regenc << 3);
duke@435 536 emit_byte(scale << 6 | indexenc << 3 | 0x05);
duke@435 537 emit_data(disp, rspec, disp32_operand);
duke@435 538 #ifdef _LP64
duke@435 539 } else if ( rtype != relocInfo::none ) {
duke@435 540 // [disp] RIP-RELATIVE
duke@435 541 // [00 reg 101] disp32
duke@435 542 emit_byte(0x05 | regenc << 3);
duke@435 543 // Note that the RIP-rel. correction applies to the generated
duke@435 544 // disp field, but _not_ to the target address in the rspec.
duke@435 545
duke@435 546 // disp was created by converting the target address minus the pc
duke@435 547 // at the start of the instruction. That needs more correction here.
duke@435 548 // intptr_t disp = target - next_ip;
duke@435 549
duke@435 550 assert(inst_mark() != NULL, "must be inside InstructionMark");
duke@435 551 address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
duke@435 552
duke@435 553 int64_t adjusted = (int64_t) disp - (next_ip - inst_mark());
duke@435 554 assert(is_simm32(adjusted),
duke@435 555 "must be 32bit offset (RIP relative address)");
duke@435 556 emit_data((int) adjusted, rspec, disp32_operand);
duke@435 557 #endif // _LP64
duke@435 558 } else {
duke@435 559 // [disp] ABSOLUTE
duke@435 560 // [00 reg 100][00 100 101] disp32
duke@435 561 emit_byte(0x04 | regenc << 3);
duke@435 562 emit_byte(0x25);
duke@435 563 emit_data(disp, rspec, disp32_operand);
duke@435 564 }
duke@435 565 }
duke@435 566 }
duke@435 567
duke@435 568 // Secret local extension to Assembler::WhichOperand:
duke@435 569 #define end_pc_operand (_WhichOperand_limit)
duke@435 570
duke@435 571 address Assembler::locate_operand(address inst, WhichOperand which) {
duke@435 572 // Decode the given instruction, and return the address of
duke@435 573 // an embedded 32-bit operand word.
duke@435 574
duke@435 575 // If "which" is disp32_operand, selects the displacement portion
duke@435 576 // of an effective address specifier.
duke@435 577 // If "which" is imm64_operand, selects the trailing immediate constant.
duke@435 578 // If "which" is call32_operand, selects the displacement of a call or jump.
duke@435 579 // Caller is responsible for ensuring that there is such an operand,
duke@435 580 // and that it is 32/64 bits wide.
duke@435 581
duke@435 582 // If "which" is end_pc_operand, find the end of the instruction.
duke@435 583
duke@435 584 address ip = inst;
duke@435 585 bool is_64bit = false;
duke@435 586
duke@435 587 debug_only(bool has_disp32 = false);
duke@435 588 int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
duke@435 589
duke@435 590 again_after_prefix:
duke@435 591 switch (0xFF & *ip++) {
duke@435 592
duke@435 593 // These convenience macros generate groups of "case" labels for the switch.
duke@435 594 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
duke@435 595 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
duke@435 596 case (x)+4: case (x)+5: case (x)+6: case (x)+7
duke@435 597 #define REP16(x) REP8((x)+0): \
duke@435 598 case REP8((x)+8)
duke@435 599
duke@435 600 case CS_segment:
duke@435 601 case SS_segment:
duke@435 602 case DS_segment:
duke@435 603 case ES_segment:
duke@435 604 case FS_segment:
duke@435 605 case GS_segment:
duke@435 606 assert(0, "shouldn't have that prefix");
duke@435 607 assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed");
duke@435 608 goto again_after_prefix;
duke@435 609
duke@435 610 case 0x67:
duke@435 611 case REX:
duke@435 612 case REX_B:
duke@435 613 case REX_X:
duke@435 614 case REX_XB:
duke@435 615 case REX_R:
duke@435 616 case REX_RB:
duke@435 617 case REX_RX:
duke@435 618 case REX_RXB:
duke@435 619 // assert(ip == inst + 1, "only one prefix allowed");
duke@435 620 goto again_after_prefix;
duke@435 621
duke@435 622 case REX_W:
duke@435 623 case REX_WB:
duke@435 624 case REX_WX:
duke@435 625 case REX_WXB:
duke@435 626 case REX_WR:
duke@435 627 case REX_WRB:
duke@435 628 case REX_WRX:
duke@435 629 case REX_WRXB:
duke@435 630 is_64bit = true;
duke@435 631 // assert(ip == inst + 1, "only one prefix allowed");
duke@435 632 goto again_after_prefix;
duke@435 633
duke@435 634 case 0xFF: // pushq a; decl a; incl a; call a; jmp a
duke@435 635 case 0x88: // movb a, r
duke@435 636 case 0x89: // movl a, r
duke@435 637 case 0x8A: // movb r, a
duke@435 638 case 0x8B: // movl r, a
duke@435 639 case 0x8F: // popl a
coleenp@548 640 debug_only(has_disp32 = true;)
duke@435 641 break;
duke@435 642
duke@435 643 case 0x68: // pushq #32
duke@435 644 if (which == end_pc_operand) {
duke@435 645 return ip + 4;
duke@435 646 }
duke@435 647 assert(0, "pushq has no disp32 or imm64");
duke@435 648 ShouldNotReachHere();
duke@435 649
duke@435 650 case 0x66: // movw ... (size prefix)
duke@435 651 again_after_size_prefix2:
duke@435 652 switch (0xFF & *ip++) {
duke@435 653 case REX:
duke@435 654 case REX_B:
duke@435 655 case REX_X:
duke@435 656 case REX_XB:
duke@435 657 case REX_R:
duke@435 658 case REX_RB:
duke@435 659 case REX_RX:
duke@435 660 case REX_RXB:
duke@435 661 case REX_W:
duke@435 662 case REX_WB:
duke@435 663 case REX_WX:
duke@435 664 case REX_WXB:
duke@435 665 case REX_WR:
duke@435 666 case REX_WRB:
duke@435 667 case REX_WRX:
duke@435 668 case REX_WRXB:
duke@435 669 goto again_after_size_prefix2;
duke@435 670 case 0x8B: // movw r, a
duke@435 671 case 0x89: // movw a, r
duke@435 672 break;
duke@435 673 case 0xC7: // movw a, #16
duke@435 674 tail_size = 2; // the imm16
duke@435 675 break;
duke@435 676 case 0x0F: // several SSE/SSE2 variants
duke@435 677 ip--; // reparse the 0x0F
duke@435 678 goto again_after_prefix;
duke@435 679 default:
duke@435 680 ShouldNotReachHere();
duke@435 681 }
duke@435 682 break;
duke@435 683
duke@435 684 case REP8(0xB8): // movl/q r, #32/#64(oop?)
duke@435 685 if (which == end_pc_operand) return ip + (is_64bit ? 8 : 4);
duke@435 686 assert((which == call32_operand || which == imm64_operand) && is_64bit, "");
duke@435 687 return ip;
duke@435 688
duke@435 689 case 0x69: // imul r, a, #32
duke@435 690 case 0xC7: // movl a, #32(oop?)
duke@435 691 tail_size = 4;
duke@435 692 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 693 break;
duke@435 694
duke@435 695 case 0x0F: // movx..., etc.
duke@435 696 switch (0xFF & *ip++) {
duke@435 697 case 0x12: // movlps
duke@435 698 case 0x28: // movaps
duke@435 699 case 0x2E: // ucomiss
duke@435 700 case 0x2F: // comiss
duke@435 701 case 0x54: // andps
duke@435 702 case 0x57: // xorps
duke@435 703 case 0x6E: // movd
duke@435 704 case 0x7E: // movd
duke@435 705 case 0xAE: // ldmxcsr a
duke@435 706 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 707 break;
duke@435 708 case 0xAD: // shrd r, a, %cl
duke@435 709 case 0xAF: // imul r, a
duke@435 710 case 0xBE: // movsbl r, a
duke@435 711 case 0xBF: // movswl r, a
duke@435 712 case 0xB6: // movzbl r, a
duke@435 713 case 0xB7: // movzwl r, a
duke@435 714 case REP16(0x40): // cmovl cc, r, a
duke@435 715 case 0xB0: // cmpxchgb
duke@435 716 case 0xB1: // cmpxchg
duke@435 717 case 0xC1: // xaddl
duke@435 718 case 0xC7: // cmpxchg8
duke@435 719 case REP16(0x90): // setcc a
duke@435 720 debug_only(has_disp32 = true);
duke@435 721 // fall out of the switch to decode the address
duke@435 722 break;
duke@435 723 case 0xAC: // shrd r, a, #8
duke@435 724 debug_only(has_disp32 = true);
duke@435 725 tail_size = 1; // the imm8
duke@435 726 break;
duke@435 727 case REP16(0x80): // jcc rdisp32
duke@435 728 if (which == end_pc_operand) return ip + 4;
duke@435 729 assert(which == call32_operand, "jcc has no disp32 or imm64");
duke@435 730 return ip;
duke@435 731 default:
duke@435 732 ShouldNotReachHere();
duke@435 733 }
duke@435 734 break;
duke@435 735
duke@435 736 case 0x81: // addl a, #32; addl r, #32
duke@435 737 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 738 tail_size = 4;
duke@435 739 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 740 break;
duke@435 741
duke@435 742 case 0x83: // addl a, #8; addl r, #8
duke@435 743 // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
duke@435 744 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 745 tail_size = 1;
duke@435 746 break;
duke@435 747
duke@435 748 case 0x9B:
duke@435 749 switch (0xFF & *ip++) {
duke@435 750 case 0xD9: // fnstcw a
duke@435 751 debug_only(has_disp32 = true);
duke@435 752 break;
duke@435 753 default:
duke@435 754 ShouldNotReachHere();
duke@435 755 }
duke@435 756 break;
duke@435 757
duke@435 758 case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
duke@435 759 case REP4(0x10): // adc...
duke@435 760 case REP4(0x20): // and...
duke@435 761 case REP4(0x30): // xor...
duke@435 762 case REP4(0x08): // or...
duke@435 763 case REP4(0x18): // sbb...
duke@435 764 case REP4(0x28): // sub...
duke@435 765 case 0xF7: // mull a
duke@435 766 case 0x87: // xchg r, a
duke@435 767 debug_only(has_disp32 = true);
duke@435 768 break;
duke@435 769 case REP4(0x38): // cmp...
duke@435 770 case 0x8D: // lea r, a
duke@435 771 case 0x85: // test r, a
duke@435 772 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 773 break;
duke@435 774
duke@435 775 case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
duke@435 776 case 0xC6: // movb a, #8
duke@435 777 case 0x80: // cmpb a, #8
duke@435 778 case 0x6B: // imul r, a, #8
duke@435 779 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 780 tail_size = 1; // the imm8
duke@435 781 break;
duke@435 782
duke@435 783 case 0xE8: // call rdisp32
duke@435 784 case 0xE9: // jmp rdisp32
duke@435 785 if (which == end_pc_operand) return ip + 4;
duke@435 786 assert(which == call32_operand, "call has no disp32 or imm32");
duke@435 787 return ip;
duke@435 788
duke@435 789 case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
duke@435 790 case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
duke@435 791 case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
duke@435 792 case 0xDD: // fld_d a; fst_d a; fstp_d a
duke@435 793 case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
duke@435 794 case 0xDF: // fild_d a; fistp_d a
duke@435 795 case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
duke@435 796 case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
duke@435 797 case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
duke@435 798 debug_only(has_disp32 = true);
duke@435 799 break;
duke@435 800
duke@435 801 case 0xF3: // For SSE
duke@435 802 case 0xF2: // For SSE2
duke@435 803 switch (0xFF & *ip++) {
duke@435 804 case REX:
duke@435 805 case REX_B:
duke@435 806 case REX_X:
duke@435 807 case REX_XB:
duke@435 808 case REX_R:
duke@435 809 case REX_RB:
duke@435 810 case REX_RX:
duke@435 811 case REX_RXB:
duke@435 812 case REX_W:
duke@435 813 case REX_WB:
duke@435 814 case REX_WX:
duke@435 815 case REX_WXB:
duke@435 816 case REX_WR:
duke@435 817 case REX_WRB:
duke@435 818 case REX_WRX:
duke@435 819 case REX_WRXB:
duke@435 820 ip++;
duke@435 821 default:
duke@435 822 ip++;
duke@435 823 }
duke@435 824 debug_only(has_disp32 = true); // has both kinds of operands!
duke@435 825 break;
duke@435 826
duke@435 827 default:
duke@435 828 ShouldNotReachHere();
duke@435 829
duke@435 830 #undef REP8
duke@435 831 #undef REP16
duke@435 832 }
duke@435 833
duke@435 834 assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
duke@435 835 assert(which != imm64_operand, "instruction is not a movq reg, imm64");
duke@435 836 assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
duke@435 837
duke@435 838 // parse the output of emit_operand
duke@435 839 int op2 = 0xFF & *ip++;
duke@435 840 int base = op2 & 0x07;
duke@435 841 int op3 = -1;
duke@435 842 const int b100 = 4;
duke@435 843 const int b101 = 5;
duke@435 844 if (base == b100 && (op2 >> 6) != 3) {
duke@435 845 op3 = 0xFF & *ip++;
duke@435 846 base = op3 & 0x07; // refetch the base
duke@435 847 }
duke@435 848 // now ip points at the disp (if any)
duke@435 849
duke@435 850 switch (op2 >> 6) {
duke@435 851 case 0:
duke@435 852 // [00 reg 100][ss index base]
duke@435 853 // [00 reg 100][00 100 esp]
duke@435 854 // [00 reg base]
duke@435 855 // [00 reg 100][ss index 101][disp32]
duke@435 856 // [00 reg 101] [disp32]
duke@435 857
duke@435 858 if (base == b101) {
duke@435 859 if (which == disp32_operand)
duke@435 860 return ip; // caller wants the disp32
duke@435 861 ip += 4; // skip the disp32
duke@435 862 }
duke@435 863 break;
duke@435 864
duke@435 865 case 1:
duke@435 866 // [01 reg 100][ss index base][disp8]
duke@435 867 // [01 reg 100][00 100 esp][disp8]
duke@435 868 // [01 reg base] [disp8]
duke@435 869 ip += 1; // skip the disp8
duke@435 870 break;
duke@435 871
duke@435 872 case 2:
duke@435 873 // [10 reg 100][ss index base][disp32]
duke@435 874 // [10 reg 100][00 100 esp][disp32]
duke@435 875 // [10 reg base] [disp32]
duke@435 876 if (which == disp32_operand)
duke@435 877 return ip; // caller wants the disp32
duke@435 878 ip += 4; // skip the disp32
duke@435 879 break;
duke@435 880
duke@435 881 case 3:
duke@435 882 // [11 reg base] (not a memory addressing mode)
duke@435 883 break;
duke@435 884 }
duke@435 885
duke@435 886 if (which == end_pc_operand) {
duke@435 887 return ip + tail_size;
duke@435 888 }
duke@435 889
duke@435 890 assert(0, "fix locate_operand");
duke@435 891 return ip;
duke@435 892 }
duke@435 893
duke@435 894 address Assembler::locate_next_instruction(address inst) {
duke@435 895 // Secretly share code with locate_operand:
duke@435 896 return locate_operand(inst, end_pc_operand);
duke@435 897 }
duke@435 898
duke@435 899 #ifdef ASSERT
duke@435 900 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
duke@435 901 address inst = inst_mark();
duke@435 902 assert(inst != NULL && inst < pc(),
duke@435 903 "must point to beginning of instruction");
duke@435 904 address opnd;
duke@435 905
duke@435 906 Relocation* r = rspec.reloc();
duke@435 907 if (r->type() == relocInfo::none) {
duke@435 908 return;
duke@435 909 } else if (r->is_call() || format == call32_operand) {
duke@435 910 opnd = locate_operand(inst, call32_operand);
duke@435 911 } else if (r->is_data()) {
duke@435 912 assert(format == imm64_operand || format == disp32_operand, "format ok");
duke@435 913 opnd = locate_operand(inst, (WhichOperand) format);
duke@435 914 } else {
duke@435 915 assert(format == 0, "cannot specify a format");
duke@435 916 return;
duke@435 917 }
duke@435 918 assert(opnd == pc(), "must put operand where relocs can find it");
duke@435 919 }
duke@435 920 #endif
duke@435 921
duke@435 922 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
duke@435 923 if (reg_enc >= 8) {
duke@435 924 prefix(REX_B);
duke@435 925 reg_enc -= 8;
duke@435 926 } else if (byteinst && reg_enc >= 4) {
duke@435 927 prefix(REX);
duke@435 928 }
duke@435 929 return reg_enc;
duke@435 930 }
duke@435 931
duke@435 932 int Assembler::prefixq_and_encode(int reg_enc) {
duke@435 933 if (reg_enc < 8) {
duke@435 934 prefix(REX_W);
duke@435 935 } else {
duke@435 936 prefix(REX_WB);
duke@435 937 reg_enc -= 8;
duke@435 938 }
duke@435 939 return reg_enc;
duke@435 940 }
duke@435 941
duke@435 942 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
duke@435 943 if (dst_enc < 8) {
duke@435 944 if (src_enc >= 8) {
duke@435 945 prefix(REX_B);
duke@435 946 src_enc -= 8;
duke@435 947 } else if (byteinst && src_enc >= 4) {
duke@435 948 prefix(REX);
duke@435 949 }
duke@435 950 } else {
duke@435 951 if (src_enc < 8) {
duke@435 952 prefix(REX_R);
duke@435 953 } else {
duke@435 954 prefix(REX_RB);
duke@435 955 src_enc -= 8;
duke@435 956 }
duke@435 957 dst_enc -= 8;
duke@435 958 }
duke@435 959 return dst_enc << 3 | src_enc;
duke@435 960 }
duke@435 961
duke@435 962 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
duke@435 963 if (dst_enc < 8) {
duke@435 964 if (src_enc < 8) {
duke@435 965 prefix(REX_W);
duke@435 966 } else {
duke@435 967 prefix(REX_WB);
duke@435 968 src_enc -= 8;
duke@435 969 }
duke@435 970 } else {
duke@435 971 if (src_enc < 8) {
duke@435 972 prefix(REX_WR);
duke@435 973 } else {
duke@435 974 prefix(REX_WRB);
duke@435 975 src_enc -= 8;
duke@435 976 }
duke@435 977 dst_enc -= 8;
duke@435 978 }
duke@435 979 return dst_enc << 3 | src_enc;
duke@435 980 }
duke@435 981
duke@435 982 void Assembler::prefix(Register reg) {
duke@435 983 if (reg->encoding() >= 8) {
duke@435 984 prefix(REX_B);
duke@435 985 }
duke@435 986 }
duke@435 987
duke@435 988 void Assembler::prefix(Address adr) {
duke@435 989 if (adr.base_needs_rex()) {
duke@435 990 if (adr.index_needs_rex()) {
duke@435 991 prefix(REX_XB);
duke@435 992 } else {
duke@435 993 prefix(REX_B);
duke@435 994 }
duke@435 995 } else {
duke@435 996 if (adr.index_needs_rex()) {
duke@435 997 prefix(REX_X);
duke@435 998 }
duke@435 999 }
duke@435 1000 }
duke@435 1001
duke@435 1002 void Assembler::prefixq(Address adr) {
duke@435 1003 if (adr.base_needs_rex()) {
duke@435 1004 if (adr.index_needs_rex()) {
duke@435 1005 prefix(REX_WXB);
duke@435 1006 } else {
duke@435 1007 prefix(REX_WB);
duke@435 1008 }
duke@435 1009 } else {
duke@435 1010 if (adr.index_needs_rex()) {
duke@435 1011 prefix(REX_WX);
duke@435 1012 } else {
duke@435 1013 prefix(REX_W);
duke@435 1014 }
duke@435 1015 }
duke@435 1016 }
duke@435 1017
duke@435 1018
duke@435 1019 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
duke@435 1020 if (reg->encoding() < 8) {
duke@435 1021 if (adr.base_needs_rex()) {
duke@435 1022 if (adr.index_needs_rex()) {
duke@435 1023 prefix(REX_XB);
duke@435 1024 } else {
duke@435 1025 prefix(REX_B);
duke@435 1026 }
duke@435 1027 } else {
duke@435 1028 if (adr.index_needs_rex()) {
duke@435 1029 prefix(REX_X);
duke@435 1030 } else if (reg->encoding() >= 4 ) {
duke@435 1031 prefix(REX);
duke@435 1032 }
duke@435 1033 }
duke@435 1034 } else {
duke@435 1035 if (adr.base_needs_rex()) {
duke@435 1036 if (adr.index_needs_rex()) {
duke@435 1037 prefix(REX_RXB);
duke@435 1038 } else {
duke@435 1039 prefix(REX_RB);
duke@435 1040 }
duke@435 1041 } else {
duke@435 1042 if (adr.index_needs_rex()) {
duke@435 1043 prefix(REX_RX);
duke@435 1044 } else {
duke@435 1045 prefix(REX_R);
duke@435 1046 }
duke@435 1047 }
duke@435 1048 }
duke@435 1049 }
duke@435 1050
duke@435 1051 void Assembler::prefixq(Address adr, Register src) {
duke@435 1052 if (src->encoding() < 8) {
duke@435 1053 if (adr.base_needs_rex()) {
duke@435 1054 if (adr.index_needs_rex()) {
duke@435 1055 prefix(REX_WXB);
duke@435 1056 } else {
duke@435 1057 prefix(REX_WB);
duke@435 1058 }
duke@435 1059 } else {
duke@435 1060 if (adr.index_needs_rex()) {
duke@435 1061 prefix(REX_WX);
duke@435 1062 } else {
duke@435 1063 prefix(REX_W);
duke@435 1064 }
duke@435 1065 }
duke@435 1066 } else {
duke@435 1067 if (adr.base_needs_rex()) {
duke@435 1068 if (adr.index_needs_rex()) {
duke@435 1069 prefix(REX_WRXB);
duke@435 1070 } else {
duke@435 1071 prefix(REX_WRB);
duke@435 1072 }
duke@435 1073 } else {
duke@435 1074 if (adr.index_needs_rex()) {
duke@435 1075 prefix(REX_WRX);
duke@435 1076 } else {
duke@435 1077 prefix(REX_WR);
duke@435 1078 }
duke@435 1079 }
duke@435 1080 }
duke@435 1081 }
duke@435 1082
duke@435 1083 void Assembler::prefix(Address adr, XMMRegister reg) {
duke@435 1084 if (reg->encoding() < 8) {
duke@435 1085 if (adr.base_needs_rex()) {
duke@435 1086 if (adr.index_needs_rex()) {
duke@435 1087 prefix(REX_XB);
duke@435 1088 } else {
duke@435 1089 prefix(REX_B);
duke@435 1090 }
duke@435 1091 } else {
duke@435 1092 if (adr.index_needs_rex()) {
duke@435 1093 prefix(REX_X);
duke@435 1094 }
duke@435 1095 }
duke@435 1096 } else {
duke@435 1097 if (adr.base_needs_rex()) {
duke@435 1098 if (adr.index_needs_rex()) {
duke@435 1099 prefix(REX_RXB);
duke@435 1100 } else {
duke@435 1101 prefix(REX_RB);
duke@435 1102 }
duke@435 1103 } else {
duke@435 1104 if (adr.index_needs_rex()) {
duke@435 1105 prefix(REX_RX);
duke@435 1106 } else {
duke@435 1107 prefix(REX_R);
duke@435 1108 }
duke@435 1109 }
duke@435 1110 }
duke@435 1111 }
duke@435 1112
duke@435 1113 void Assembler::emit_operand(Register reg, Address adr,
duke@435 1114 int rip_relative_correction) {
duke@435 1115 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
duke@435 1116 adr._rspec,
duke@435 1117 rip_relative_correction);
duke@435 1118 }
duke@435 1119
duke@435 1120 void Assembler::emit_operand(XMMRegister reg, Address adr,
duke@435 1121 int rip_relative_correction) {
duke@435 1122 emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
duke@435 1123 adr._rspec,
duke@435 1124 rip_relative_correction);
duke@435 1125 }
duke@435 1126
duke@435 1127 void Assembler::emit_farith(int b1, int b2, int i) {
duke@435 1128 assert(isByte(b1) && isByte(b2), "wrong opcode");
duke@435 1129 assert(0 <= i && i < 8, "illegal stack offset");
duke@435 1130 emit_byte(b1);
duke@435 1131 emit_byte(b2 + i);
duke@435 1132 }
duke@435 1133
duke@435 1134 // pushad is invalid, use this instead.
duke@435 1135 // NOTE: Kills flags!!
duke@435 1136 void Assembler::pushaq() {
duke@435 1137 // we have to store original rsp. ABI says that 128 bytes
duke@435 1138 // below rsp are local scratch.
duke@435 1139 movq(Address(rsp, -5 * wordSize), rsp);
duke@435 1140
duke@435 1141 subq(rsp, 16 * wordSize);
duke@435 1142
duke@435 1143 movq(Address(rsp, 15 * wordSize), rax);
duke@435 1144 movq(Address(rsp, 14 * wordSize), rcx);
duke@435 1145 movq(Address(rsp, 13 * wordSize), rdx);
duke@435 1146 movq(Address(rsp, 12 * wordSize), rbx);
duke@435 1147 // skip rsp
duke@435 1148 movq(Address(rsp, 10 * wordSize), rbp);
duke@435 1149 movq(Address(rsp, 9 * wordSize), rsi);
duke@435 1150 movq(Address(rsp, 8 * wordSize), rdi);
duke@435 1151 movq(Address(rsp, 7 * wordSize), r8);
duke@435 1152 movq(Address(rsp, 6 * wordSize), r9);
duke@435 1153 movq(Address(rsp, 5 * wordSize), r10);
duke@435 1154 movq(Address(rsp, 4 * wordSize), r11);
duke@435 1155 movq(Address(rsp, 3 * wordSize), r12);
duke@435 1156 movq(Address(rsp, 2 * wordSize), r13);
duke@435 1157 movq(Address(rsp, wordSize), r14);
duke@435 1158 movq(Address(rsp, 0), r15);
duke@435 1159 }
duke@435 1160
duke@435 1161 // popad is invalid, use this instead
duke@435 1162 // NOTE: Kills flags!!
duke@435 1163 void Assembler::popaq() {
duke@435 1164 movq(r15, Address(rsp, 0));
duke@435 1165 movq(r14, Address(rsp, wordSize));
duke@435 1166 movq(r13, Address(rsp, 2 * wordSize));
duke@435 1167 movq(r12, Address(rsp, 3 * wordSize));
duke@435 1168 movq(r11, Address(rsp, 4 * wordSize));
duke@435 1169 movq(r10, Address(rsp, 5 * wordSize));
duke@435 1170 movq(r9, Address(rsp, 6 * wordSize));
duke@435 1171 movq(r8, Address(rsp, 7 * wordSize));
duke@435 1172 movq(rdi, Address(rsp, 8 * wordSize));
duke@435 1173 movq(rsi, Address(rsp, 9 * wordSize));
duke@435 1174 movq(rbp, Address(rsp, 10 * wordSize));
duke@435 1175 // skip rsp
duke@435 1176 movq(rbx, Address(rsp, 12 * wordSize));
duke@435 1177 movq(rdx, Address(rsp, 13 * wordSize));
duke@435 1178 movq(rcx, Address(rsp, 14 * wordSize));
duke@435 1179 movq(rax, Address(rsp, 15 * wordSize));
duke@435 1180
duke@435 1181 addq(rsp, 16 * wordSize);
duke@435 1182 }
duke@435 1183
duke@435 1184 void Assembler::pushfq() {
duke@435 1185 emit_byte(0x9C);
duke@435 1186 }
duke@435 1187
duke@435 1188 void Assembler::popfq() {
duke@435 1189 emit_byte(0x9D);
duke@435 1190 }
duke@435 1191
duke@435 1192 void Assembler::pushq(int imm32) {
duke@435 1193 emit_byte(0x68);
duke@435 1194 emit_long(imm32);
duke@435 1195 }
duke@435 1196
duke@435 1197 void Assembler::pushq(Register src) {
duke@435 1198 int encode = prefix_and_encode(src->encoding());
duke@435 1199
duke@435 1200 emit_byte(0x50 | encode);
duke@435 1201 }
duke@435 1202
duke@435 1203 void Assembler::pushq(Address src) {
duke@435 1204 InstructionMark im(this);
duke@435 1205 prefix(src);
duke@435 1206 emit_byte(0xFF);
duke@435 1207 emit_operand(rsi, src);
duke@435 1208 }
duke@435 1209
duke@435 1210 void Assembler::popq(Register dst) {
duke@435 1211 int encode = prefix_and_encode(dst->encoding());
duke@435 1212 emit_byte(0x58 | encode);
duke@435 1213 }
duke@435 1214
duke@435 1215 void Assembler::popq(Address dst) {
duke@435 1216 InstructionMark im(this);
duke@435 1217 prefix(dst);
duke@435 1218 emit_byte(0x8F);
duke@435 1219 emit_operand(rax, dst);
duke@435 1220 }
duke@435 1221
duke@435 1222 void Assembler::prefix(Prefix p) {
duke@435 1223 a_byte(p);
duke@435 1224 }
duke@435 1225
duke@435 1226 void Assembler::movb(Register dst, Address src) {
duke@435 1227 InstructionMark im(this);
duke@435 1228 prefix(src, dst, true);
duke@435 1229 emit_byte(0x8A);
duke@435 1230 emit_operand(dst, src);
duke@435 1231 }
duke@435 1232
duke@435 1233 void Assembler::movb(Address dst, int imm8) {
duke@435 1234 InstructionMark im(this);
duke@435 1235 prefix(dst);
duke@435 1236 emit_byte(0xC6);
duke@435 1237 emit_operand(rax, dst, 1);
duke@435 1238 emit_byte(imm8);
duke@435 1239 }
duke@435 1240
duke@435 1241 void Assembler::movb(Address dst, Register src) {
duke@435 1242 InstructionMark im(this);
duke@435 1243 prefix(dst, src, true);
duke@435 1244 emit_byte(0x88);
duke@435 1245 emit_operand(src, dst);
duke@435 1246 }
duke@435 1247
duke@435 1248 void Assembler::movw(Address dst, int imm16) {
duke@435 1249 InstructionMark im(this);
duke@435 1250 emit_byte(0x66); // switch to 16-bit mode
duke@435 1251 prefix(dst);
duke@435 1252 emit_byte(0xC7);
duke@435 1253 emit_operand(rax, dst, 2);
duke@435 1254 emit_word(imm16);
duke@435 1255 }
duke@435 1256
duke@435 1257 void Assembler::movw(Register dst, Address src) {
duke@435 1258 InstructionMark im(this);
duke@435 1259 emit_byte(0x66);
duke@435 1260 prefix(src, dst);
duke@435 1261 emit_byte(0x8B);
duke@435 1262 emit_operand(dst, src);
duke@435 1263 }
duke@435 1264
duke@435 1265 void Assembler::movw(Address dst, Register src) {
duke@435 1266 InstructionMark im(this);
duke@435 1267 emit_byte(0x66);
duke@435 1268 prefix(dst, src);
duke@435 1269 emit_byte(0x89);
duke@435 1270 emit_operand(src, dst);
duke@435 1271 }
duke@435 1272
duke@435 1273 // Uses zero extension.
duke@435 1274 void Assembler::movl(Register dst, int imm32) {
duke@435 1275 int encode = prefix_and_encode(dst->encoding());
duke@435 1276 emit_byte(0xB8 | encode);
duke@435 1277 emit_long(imm32);
duke@435 1278 }
duke@435 1279
duke@435 1280 void Assembler::movl(Register dst, Register src) {
duke@435 1281 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1282 emit_byte(0x8B);
duke@435 1283 emit_byte(0xC0 | encode);
duke@435 1284 }
duke@435 1285
duke@435 1286 void Assembler::movl(Register dst, Address src) {
duke@435 1287 InstructionMark im(this);
duke@435 1288 prefix(src, dst);
duke@435 1289 emit_byte(0x8B);
duke@435 1290 emit_operand(dst, src);
duke@435 1291 }
duke@435 1292
duke@435 1293 void Assembler::movl(Address dst, int imm32) {
duke@435 1294 InstructionMark im(this);
duke@435 1295 prefix(dst);
duke@435 1296 emit_byte(0xC7);
duke@435 1297 emit_operand(rax, dst, 4);
duke@435 1298 emit_long(imm32);
duke@435 1299 }
duke@435 1300
duke@435 1301 void Assembler::movl(Address dst, Register src) {
duke@435 1302 InstructionMark im(this);
duke@435 1303 prefix(dst, src);
duke@435 1304 emit_byte(0x89);
duke@435 1305 emit_operand(src, dst);
duke@435 1306 }
duke@435 1307
dcubed@485 1308 void Assembler::mov64(Register dst, intptr_t imm64) {
duke@435 1309 InstructionMark im(this);
duke@435 1310 int encode = prefixq_and_encode(dst->encoding());
duke@435 1311 emit_byte(0xB8 | encode);
duke@435 1312 emit_long64(imm64);
duke@435 1313 }
duke@435 1314
duke@435 1315 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
duke@435 1316 InstructionMark im(this);
duke@435 1317 int encode = prefixq_and_encode(dst->encoding());
duke@435 1318 emit_byte(0xB8 | encode);
duke@435 1319 emit_data64(imm64, rspec);
duke@435 1320 }
duke@435 1321
duke@435 1322 void Assembler::movq(Register dst, Register src) {
duke@435 1323 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1324 emit_byte(0x8B);
duke@435 1325 emit_byte(0xC0 | encode);
duke@435 1326 }
duke@435 1327
duke@435 1328 void Assembler::movq(Register dst, Address src) {
duke@435 1329 InstructionMark im(this);
duke@435 1330 prefixq(src, dst);
duke@435 1331 emit_byte(0x8B);
duke@435 1332 emit_operand(dst, src);
duke@435 1333 }
duke@435 1334
dcubed@485 1335 void Assembler::mov64(Address dst, intptr_t imm32) {
duke@435 1336 assert(is_simm32(imm32), "lost bits");
duke@435 1337 InstructionMark im(this);
duke@435 1338 prefixq(dst);
duke@435 1339 emit_byte(0xC7);
duke@435 1340 emit_operand(rax, dst, 4);
duke@435 1341 emit_long(imm32);
duke@435 1342 }
duke@435 1343
duke@435 1344 void Assembler::movq(Address dst, Register src) {
duke@435 1345 InstructionMark im(this);
duke@435 1346 prefixq(dst, src);
duke@435 1347 emit_byte(0x89);
duke@435 1348 emit_operand(src, dst);
duke@435 1349 }
duke@435 1350
duke@435 1351 void Assembler::movsbl(Register dst, Address src) {
duke@435 1352 InstructionMark im(this);
duke@435 1353 prefix(src, dst);
duke@435 1354 emit_byte(0x0F);
duke@435 1355 emit_byte(0xBE);
duke@435 1356 emit_operand(dst, src);
duke@435 1357 }
duke@435 1358
duke@435 1359 void Assembler::movsbl(Register dst, Register src) {
duke@435 1360 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
duke@435 1361 emit_byte(0x0F);
duke@435 1362 emit_byte(0xBE);
duke@435 1363 emit_byte(0xC0 | encode);
duke@435 1364 }
duke@435 1365
duke@435 1366 void Assembler::movswl(Register dst, Address src) {
duke@435 1367 InstructionMark im(this);
duke@435 1368 prefix(src, dst);
duke@435 1369 emit_byte(0x0F);
duke@435 1370 emit_byte(0xBF);
duke@435 1371 emit_operand(dst, src);
duke@435 1372 }
duke@435 1373
duke@435 1374 void Assembler::movswl(Register dst, Register src) {
duke@435 1375 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1376 emit_byte(0x0F);
duke@435 1377 emit_byte(0xBF);
duke@435 1378 emit_byte(0xC0 | encode);
duke@435 1379 }
duke@435 1380
duke@435 1381 void Assembler::movslq(Register dst, Address src) {
duke@435 1382 InstructionMark im(this);
duke@435 1383 prefixq(src, dst);
duke@435 1384 emit_byte(0x63);
duke@435 1385 emit_operand(dst, src);
duke@435 1386 }
duke@435 1387
duke@435 1388 void Assembler::movslq(Register dst, Register src) {
duke@435 1389 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1390 emit_byte(0x63);
duke@435 1391 emit_byte(0xC0 | encode);
duke@435 1392 }
duke@435 1393
duke@435 1394 void Assembler::movzbl(Register dst, Address src) {
duke@435 1395 InstructionMark im(this);
duke@435 1396 prefix(src, dst);
duke@435 1397 emit_byte(0x0F);
duke@435 1398 emit_byte(0xB6);
duke@435 1399 emit_operand(dst, src);
duke@435 1400 }
duke@435 1401
duke@435 1402 void Assembler::movzbl(Register dst, Register src) {
duke@435 1403 int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
duke@435 1404 emit_byte(0x0F);
duke@435 1405 emit_byte(0xB6);
duke@435 1406 emit_byte(0xC0 | encode);
duke@435 1407 }
duke@435 1408
duke@435 1409 void Assembler::movzwl(Register dst, Address src) {
duke@435 1410 InstructionMark im(this);
duke@435 1411 prefix(src, dst);
duke@435 1412 emit_byte(0x0F);
duke@435 1413 emit_byte(0xB7);
duke@435 1414 emit_operand(dst, src);
duke@435 1415 }
duke@435 1416
duke@435 1417 void Assembler::movzwl(Register dst, Register src) {
duke@435 1418 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1419 emit_byte(0x0F);
duke@435 1420 emit_byte(0xB7);
duke@435 1421 emit_byte(0xC0 | encode);
duke@435 1422 }
duke@435 1423
duke@435 1424 void Assembler::movss(XMMRegister dst, XMMRegister src) {
duke@435 1425 emit_byte(0xF3);
duke@435 1426 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1427 emit_byte(0x0F);
duke@435 1428 emit_byte(0x10);
duke@435 1429 emit_byte(0xC0 | encode);
duke@435 1430 }
duke@435 1431
duke@435 1432 void Assembler::movss(XMMRegister dst, Address src) {
duke@435 1433 InstructionMark im(this);
duke@435 1434 emit_byte(0xF3);
duke@435 1435 prefix(src, dst);
duke@435 1436 emit_byte(0x0F);
duke@435 1437 emit_byte(0x10);
duke@435 1438 emit_operand(dst, src);
duke@435 1439 }
duke@435 1440
duke@435 1441 void Assembler::movss(Address dst, XMMRegister src) {
duke@435 1442 InstructionMark im(this);
duke@435 1443 emit_byte(0xF3);
duke@435 1444 prefix(dst, src);
duke@435 1445 emit_byte(0x0F);
duke@435 1446 emit_byte(0x11);
duke@435 1447 emit_operand(src, dst);
duke@435 1448 }
duke@435 1449
duke@435 1450 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
duke@435 1451 emit_byte(0xF2);
duke@435 1452 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1453 emit_byte(0x0F);
duke@435 1454 emit_byte(0x10);
duke@435 1455 emit_byte(0xC0 | encode);
duke@435 1456 }
duke@435 1457
duke@435 1458 void Assembler::movsd(XMMRegister dst, Address src) {
duke@435 1459 InstructionMark im(this);
duke@435 1460 emit_byte(0xF2);
duke@435 1461 prefix(src, dst);
duke@435 1462 emit_byte(0x0F);
duke@435 1463 emit_byte(0x10);
duke@435 1464 emit_operand(dst, src);
duke@435 1465 }
duke@435 1466
duke@435 1467 void Assembler::movsd(Address dst, XMMRegister src) {
duke@435 1468 InstructionMark im(this);
duke@435 1469 emit_byte(0xF2);
duke@435 1470 prefix(dst, src);
duke@435 1471 emit_byte(0x0F);
duke@435 1472 emit_byte(0x11);
duke@435 1473 emit_operand(src, dst);
duke@435 1474 }
duke@435 1475
duke@435 1476 // New cpus require to use movsd and movss to avoid partial register stall
duke@435 1477 // when loading from memory. But for old Opteron use movlpd instead of movsd.
duke@435 1478 // The selection is done in MacroAssembler::movdbl() and movflt().
duke@435 1479 void Assembler::movlpd(XMMRegister dst, Address src) {
duke@435 1480 InstructionMark im(this);
duke@435 1481 emit_byte(0x66);
duke@435 1482 prefix(src, dst);
duke@435 1483 emit_byte(0x0F);
duke@435 1484 emit_byte(0x12);
duke@435 1485 emit_operand(dst, src);
duke@435 1486 }
duke@435 1487
duke@435 1488 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
duke@435 1489 int dstenc = dst->encoding();
duke@435 1490 int srcenc = src->encoding();
duke@435 1491 emit_byte(0x66);
duke@435 1492 if (dstenc < 8) {
duke@435 1493 if (srcenc >= 8) {
duke@435 1494 prefix(REX_B);
duke@435 1495 srcenc -= 8;
duke@435 1496 }
duke@435 1497 } else {
duke@435 1498 if (srcenc < 8) {
duke@435 1499 prefix(REX_R);
duke@435 1500 } else {
duke@435 1501 prefix(REX_RB);
duke@435 1502 srcenc -= 8;
duke@435 1503 }
duke@435 1504 dstenc -= 8;
duke@435 1505 }
duke@435 1506 emit_byte(0x0F);
duke@435 1507 emit_byte(0x28);
duke@435 1508 emit_byte(0xC0 | dstenc << 3 | srcenc);
duke@435 1509 }
duke@435 1510
duke@435 1511 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
duke@435 1512 int dstenc = dst->encoding();
duke@435 1513 int srcenc = src->encoding();
duke@435 1514 if (dstenc < 8) {
duke@435 1515 if (srcenc >= 8) {
duke@435 1516 prefix(REX_B);
duke@435 1517 srcenc -= 8;
duke@435 1518 }
duke@435 1519 } else {
duke@435 1520 if (srcenc < 8) {
duke@435 1521 prefix(REX_R);
duke@435 1522 } else {
duke@435 1523 prefix(REX_RB);
duke@435 1524 srcenc -= 8;
duke@435 1525 }
duke@435 1526 dstenc -= 8;
duke@435 1527 }
duke@435 1528 emit_byte(0x0F);
duke@435 1529 emit_byte(0x28);
duke@435 1530 emit_byte(0xC0 | dstenc << 3 | srcenc);
duke@435 1531 }
duke@435 1532
duke@435 1533 void Assembler::movdl(XMMRegister dst, Register src) {
duke@435 1534 emit_byte(0x66);
duke@435 1535 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1536 emit_byte(0x0F);
duke@435 1537 emit_byte(0x6E);
duke@435 1538 emit_byte(0xC0 | encode);
duke@435 1539 }
duke@435 1540
duke@435 1541 void Assembler::movdl(Register dst, XMMRegister src) {
duke@435 1542 emit_byte(0x66);
duke@435 1543 // swap src/dst to get correct prefix
duke@435 1544 int encode = prefix_and_encode(src->encoding(), dst->encoding());
duke@435 1545 emit_byte(0x0F);
duke@435 1546 emit_byte(0x7E);
duke@435 1547 emit_byte(0xC0 | encode);
duke@435 1548 }
duke@435 1549
duke@435 1550 void Assembler::movdq(XMMRegister dst, Register src) {
duke@435 1551 emit_byte(0x66);
duke@435 1552 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1553 emit_byte(0x0F);
duke@435 1554 emit_byte(0x6E);
duke@435 1555 emit_byte(0xC0 | encode);
duke@435 1556 }
duke@435 1557
duke@435 1558 void Assembler::movdq(Register dst, XMMRegister src) {
duke@435 1559 emit_byte(0x66);
duke@435 1560 // swap src/dst to get correct prefix
duke@435 1561 int encode = prefixq_and_encode(src->encoding(), dst->encoding());
duke@435 1562 emit_byte(0x0F);
duke@435 1563 emit_byte(0x7E);
duke@435 1564 emit_byte(0xC0 | encode);
duke@435 1565 }
duke@435 1566
duke@435 1567 void Assembler::pxor(XMMRegister dst, Address src) {
duke@435 1568 InstructionMark im(this);
duke@435 1569 emit_byte(0x66);
duke@435 1570 prefix(src, dst);
duke@435 1571 emit_byte(0x0F);
duke@435 1572 emit_byte(0xEF);
duke@435 1573 emit_operand(dst, src);
duke@435 1574 }
duke@435 1575
duke@435 1576 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
duke@435 1577 InstructionMark im(this);
duke@435 1578 emit_byte(0x66);
duke@435 1579 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1580 emit_byte(0x0F);
duke@435 1581 emit_byte(0xEF);
duke@435 1582 emit_byte(0xC0 | encode);
duke@435 1583 }
duke@435 1584
duke@435 1585 void Assembler::movdqa(XMMRegister dst, Address src) {
duke@435 1586 InstructionMark im(this);
duke@435 1587 emit_byte(0x66);
duke@435 1588 prefix(src, dst);
duke@435 1589 emit_byte(0x0F);
duke@435 1590 emit_byte(0x6F);
duke@435 1591 emit_operand(dst, src);
duke@435 1592 }
duke@435 1593
duke@435 1594 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
duke@435 1595 emit_byte(0x66);
duke@435 1596 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1597 emit_byte(0x0F);
duke@435 1598 emit_byte(0x6F);
duke@435 1599 emit_byte(0xC0 | encode);
duke@435 1600 }
duke@435 1601
duke@435 1602 void Assembler::movdqa(Address dst, XMMRegister src) {
duke@435 1603 InstructionMark im(this);
duke@435 1604 emit_byte(0x66);
duke@435 1605 prefix(dst, src);
duke@435 1606 emit_byte(0x0F);
duke@435 1607 emit_byte(0x7F);
duke@435 1608 emit_operand(src, dst);
duke@435 1609 }
duke@435 1610
duke@435 1611 void Assembler::movq(XMMRegister dst, Address src) {
duke@435 1612 InstructionMark im(this);
duke@435 1613 emit_byte(0xF3);
duke@435 1614 prefix(src, dst);
duke@435 1615 emit_byte(0x0F);
duke@435 1616 emit_byte(0x7E);
duke@435 1617 emit_operand(dst, src);
duke@435 1618 }
duke@435 1619
duke@435 1620 void Assembler::movq(Address dst, XMMRegister src) {
duke@435 1621 InstructionMark im(this);
duke@435 1622 emit_byte(0x66);
duke@435 1623 prefix(dst, src);
duke@435 1624 emit_byte(0x0F);
duke@435 1625 emit_byte(0xD6);
duke@435 1626 emit_operand(src, dst);
duke@435 1627 }
duke@435 1628
duke@435 1629 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
duke@435 1630 assert(isByte(mode), "invalid value");
duke@435 1631 emit_byte(0x66);
duke@435 1632 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1633 emit_byte(0x0F);
duke@435 1634 emit_byte(0x70);
duke@435 1635 emit_byte(0xC0 | encode);
duke@435 1636 emit_byte(mode & 0xFF);
duke@435 1637 }
duke@435 1638
duke@435 1639 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
duke@435 1640 assert(isByte(mode), "invalid value");
duke@435 1641 InstructionMark im(this);
duke@435 1642 emit_byte(0x66);
duke@435 1643 emit_byte(0x0F);
duke@435 1644 emit_byte(0x70);
duke@435 1645 emit_operand(dst, src);
duke@435 1646 emit_byte(mode & 0xFF);
duke@435 1647 }
duke@435 1648
duke@435 1649 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
duke@435 1650 assert(isByte(mode), "invalid value");
duke@435 1651 emit_byte(0xF2);
duke@435 1652 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1653 emit_byte(0x0F);
duke@435 1654 emit_byte(0x70);
duke@435 1655 emit_byte(0xC0 | encode);
duke@435 1656 emit_byte(mode & 0xFF);
duke@435 1657 }
duke@435 1658
duke@435 1659 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
duke@435 1660 assert(isByte(mode), "invalid value");
duke@435 1661 InstructionMark im(this);
duke@435 1662 emit_byte(0xF2);
duke@435 1663 emit_byte(0x0F);
duke@435 1664 emit_byte(0x70);
duke@435 1665 emit_operand(dst, src);
duke@435 1666 emit_byte(mode & 0xFF);
duke@435 1667 }
duke@435 1668
duke@435 1669 void Assembler::cmovl(Condition cc, Register dst, Register src) {
duke@435 1670 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1671 emit_byte(0x0F);
duke@435 1672 emit_byte(0x40 | cc);
duke@435 1673 emit_byte(0xC0 | encode);
duke@435 1674 }
duke@435 1675
duke@435 1676 void Assembler::cmovl(Condition cc, Register dst, Address src) {
duke@435 1677 InstructionMark im(this);
duke@435 1678 prefix(src, dst);
duke@435 1679 emit_byte(0x0F);
duke@435 1680 emit_byte(0x40 | cc);
duke@435 1681 emit_operand(dst, src);
duke@435 1682 }
duke@435 1683
duke@435 1684 void Assembler::cmovq(Condition cc, Register dst, Register src) {
duke@435 1685 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1686 emit_byte(0x0F);
duke@435 1687 emit_byte(0x40 | cc);
duke@435 1688 emit_byte(0xC0 | encode);
duke@435 1689 }
duke@435 1690
duke@435 1691 void Assembler::cmovq(Condition cc, Register dst, Address src) {
duke@435 1692 InstructionMark im(this);
duke@435 1693 prefixq(src, dst);
duke@435 1694 emit_byte(0x0F);
duke@435 1695 emit_byte(0x40 | cc);
duke@435 1696 emit_operand(dst, src);
duke@435 1697 }
duke@435 1698
duke@435 1699 void Assembler::prefetch_prefix(Address src) {
duke@435 1700 prefix(src);
duke@435 1701 emit_byte(0x0F);
duke@435 1702 }
duke@435 1703
duke@435 1704 void Assembler::prefetcht0(Address src) {
duke@435 1705 InstructionMark im(this);
duke@435 1706 prefetch_prefix(src);
duke@435 1707 emit_byte(0x18);
duke@435 1708 emit_operand(rcx, src); // 1, src
duke@435 1709 }
duke@435 1710
duke@435 1711 void Assembler::prefetcht1(Address src) {
duke@435 1712 InstructionMark im(this);
duke@435 1713 prefetch_prefix(src);
duke@435 1714 emit_byte(0x18);
duke@435 1715 emit_operand(rdx, src); // 2, src
duke@435 1716 }
duke@435 1717
duke@435 1718 void Assembler::prefetcht2(Address src) {
duke@435 1719 InstructionMark im(this);
duke@435 1720 prefetch_prefix(src);
duke@435 1721 emit_byte(0x18);
duke@435 1722 emit_operand(rbx, src); // 3, src
duke@435 1723 }
duke@435 1724
duke@435 1725 void Assembler::prefetchnta(Address src) {
duke@435 1726 InstructionMark im(this);
duke@435 1727 prefetch_prefix(src);
duke@435 1728 emit_byte(0x18);
duke@435 1729 emit_operand(rax, src); // 0, src
duke@435 1730 }
duke@435 1731
duke@435 1732 void Assembler::prefetchw(Address src) {
duke@435 1733 InstructionMark im(this);
duke@435 1734 prefetch_prefix(src);
duke@435 1735 emit_byte(0x0D);
duke@435 1736 emit_operand(rcx, src); // 1, src
duke@435 1737 }
duke@435 1738
duke@435 1739 void Assembler::adcl(Register dst, int imm32) {
duke@435 1740 prefix(dst);
duke@435 1741 emit_arith(0x81, 0xD0, dst, imm32);
duke@435 1742 }
duke@435 1743
duke@435 1744 void Assembler::adcl(Register dst, Address src) {
duke@435 1745 InstructionMark im(this);
duke@435 1746 prefix(src, dst);
duke@435 1747 emit_byte(0x13);
duke@435 1748 emit_operand(dst, src);
duke@435 1749 }
duke@435 1750
duke@435 1751 void Assembler::adcl(Register dst, Register src) {
duke@435 1752 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1753 emit_arith(0x13, 0xC0, dst, src);
duke@435 1754 }
duke@435 1755
duke@435 1756 void Assembler::adcq(Register dst, int imm32) {
duke@435 1757 (void) prefixq_and_encode(dst->encoding());
duke@435 1758 emit_arith(0x81, 0xD0, dst, imm32);
duke@435 1759 }
duke@435 1760
duke@435 1761 void Assembler::adcq(Register dst, Address src) {
duke@435 1762 InstructionMark im(this);
duke@435 1763 prefixq(src, dst);
duke@435 1764 emit_byte(0x13);
duke@435 1765 emit_operand(dst, src);
duke@435 1766 }
duke@435 1767
duke@435 1768 void Assembler::adcq(Register dst, Register src) {
duke@435 1769 (int) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1770 emit_arith(0x13, 0xC0, dst, src);
duke@435 1771 }
duke@435 1772
duke@435 1773 void Assembler::addl(Address dst, int imm32) {
duke@435 1774 InstructionMark im(this);
duke@435 1775 prefix(dst);
duke@435 1776 emit_arith_operand(0x81, rax, dst,imm32);
duke@435 1777 }
duke@435 1778
duke@435 1779 void Assembler::addl(Address dst, Register src) {
duke@435 1780 InstructionMark im(this);
duke@435 1781 prefix(dst, src);
duke@435 1782 emit_byte(0x01);
duke@435 1783 emit_operand(src, dst);
duke@435 1784 }
duke@435 1785
duke@435 1786 void Assembler::addl(Register dst, int imm32) {
duke@435 1787 prefix(dst);
duke@435 1788 emit_arith(0x81, 0xC0, dst, imm32);
duke@435 1789 }
duke@435 1790
duke@435 1791 void Assembler::addl(Register dst, Address src) {
duke@435 1792 InstructionMark im(this);
duke@435 1793 prefix(src, dst);
duke@435 1794 emit_byte(0x03);
duke@435 1795 emit_operand(dst, src);
duke@435 1796 }
duke@435 1797
duke@435 1798 void Assembler::addl(Register dst, Register src) {
duke@435 1799 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1800 emit_arith(0x03, 0xC0, dst, src);
duke@435 1801 }
duke@435 1802
duke@435 1803 void Assembler::addq(Address dst, int imm32) {
duke@435 1804 InstructionMark im(this);
duke@435 1805 prefixq(dst);
duke@435 1806 emit_arith_operand(0x81, rax, dst,imm32);
duke@435 1807 }
duke@435 1808
duke@435 1809 void Assembler::addq(Address dst, Register src) {
duke@435 1810 InstructionMark im(this);
duke@435 1811 prefixq(dst, src);
duke@435 1812 emit_byte(0x01);
duke@435 1813 emit_operand(src, dst);
duke@435 1814 }
duke@435 1815
duke@435 1816 void Assembler::addq(Register dst, int imm32) {
duke@435 1817 (void) prefixq_and_encode(dst->encoding());
duke@435 1818 emit_arith(0x81, 0xC0, dst, imm32);
duke@435 1819 }
duke@435 1820
duke@435 1821 void Assembler::addq(Register dst, Address src) {
duke@435 1822 InstructionMark im(this);
duke@435 1823 prefixq(src, dst);
duke@435 1824 emit_byte(0x03);
duke@435 1825 emit_operand(dst, src);
duke@435 1826 }
duke@435 1827
duke@435 1828 void Assembler::addq(Register dst, Register src) {
duke@435 1829 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1830 emit_arith(0x03, 0xC0, dst, src);
duke@435 1831 }
duke@435 1832
duke@435 1833 void Assembler::andl(Register dst, int imm32) {
duke@435 1834 prefix(dst);
duke@435 1835 emit_arith(0x81, 0xE0, dst, imm32);
duke@435 1836 }
duke@435 1837
duke@435 1838 void Assembler::andl(Register dst, Address src) {
duke@435 1839 InstructionMark im(this);
duke@435 1840 prefix(src, dst);
duke@435 1841 emit_byte(0x23);
duke@435 1842 emit_operand(dst, src);
duke@435 1843 }
duke@435 1844
duke@435 1845 void Assembler::andl(Register dst, Register src) {
duke@435 1846 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1847 emit_arith(0x23, 0xC0, dst, src);
duke@435 1848 }
duke@435 1849
duke@435 1850 void Assembler::andq(Register dst, int imm32) {
duke@435 1851 (void) prefixq_and_encode(dst->encoding());
duke@435 1852 emit_arith(0x81, 0xE0, dst, imm32);
duke@435 1853 }
duke@435 1854
duke@435 1855 void Assembler::andq(Register dst, Address src) {
duke@435 1856 InstructionMark im(this);
duke@435 1857 prefixq(src, dst);
duke@435 1858 emit_byte(0x23);
duke@435 1859 emit_operand(dst, src);
duke@435 1860 }
duke@435 1861
duke@435 1862 void Assembler::andq(Register dst, Register src) {
duke@435 1863 (int) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1864 emit_arith(0x23, 0xC0, dst, src);
duke@435 1865 }
duke@435 1866
duke@435 1867 void Assembler::cmpb(Address dst, int imm8) {
duke@435 1868 InstructionMark im(this);
duke@435 1869 prefix(dst);
duke@435 1870 emit_byte(0x80);
duke@435 1871 emit_operand(rdi, dst, 1);
duke@435 1872 emit_byte(imm8);
duke@435 1873 }
duke@435 1874
duke@435 1875 void Assembler::cmpl(Address dst, int imm32) {
duke@435 1876 InstructionMark im(this);
duke@435 1877 prefix(dst);
duke@435 1878 emit_byte(0x81);
duke@435 1879 emit_operand(rdi, dst, 4);
duke@435 1880 emit_long(imm32);
duke@435 1881 }
duke@435 1882
duke@435 1883 void Assembler::cmpl(Register dst, int imm32) {
duke@435 1884 prefix(dst);
duke@435 1885 emit_arith(0x81, 0xF8, dst, imm32);
duke@435 1886 }
duke@435 1887
duke@435 1888 void Assembler::cmpl(Register dst, Register src) {
duke@435 1889 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1890 emit_arith(0x3B, 0xC0, dst, src);
duke@435 1891 }
duke@435 1892
duke@435 1893 void Assembler::cmpl(Register dst, Address src) {
duke@435 1894 InstructionMark im(this);
duke@435 1895 prefix(src, dst);
duke@435 1896 emit_byte(0x3B);
duke@435 1897 emit_operand(dst, src);
duke@435 1898 }
duke@435 1899
duke@435 1900 void Assembler::cmpq(Address dst, int imm32) {
duke@435 1901 InstructionMark im(this);
duke@435 1902 prefixq(dst);
duke@435 1903 emit_byte(0x81);
duke@435 1904 emit_operand(rdi, dst, 4);
duke@435 1905 emit_long(imm32);
duke@435 1906 }
duke@435 1907
duke@435 1908 void Assembler::cmpq(Register dst, int imm32) {
duke@435 1909 (void) prefixq_and_encode(dst->encoding());
duke@435 1910 emit_arith(0x81, 0xF8, dst, imm32);
duke@435 1911 }
duke@435 1912
duke@435 1913 void Assembler::cmpq(Address dst, Register src) {
duke@435 1914 prefixq(dst, src);
duke@435 1915 emit_byte(0x3B);
duke@435 1916 emit_operand(src, dst);
duke@435 1917 }
duke@435 1918
duke@435 1919 void Assembler::cmpq(Register dst, Register src) {
duke@435 1920 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 1921 emit_arith(0x3B, 0xC0, dst, src);
duke@435 1922 }
duke@435 1923
duke@435 1924 void Assembler::cmpq(Register dst, Address src) {
duke@435 1925 InstructionMark im(this);
duke@435 1926 prefixq(src, dst);
duke@435 1927 emit_byte(0x3B);
duke@435 1928 emit_operand(dst, src);
duke@435 1929 }
duke@435 1930
duke@435 1931 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
duke@435 1932 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1933 emit_byte(0x0F);
duke@435 1934 emit_byte(0x2E);
duke@435 1935 emit_byte(0xC0 | encode);
duke@435 1936 }
duke@435 1937
duke@435 1938 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
duke@435 1939 emit_byte(0x66);
duke@435 1940 ucomiss(dst, src);
duke@435 1941 }
duke@435 1942
duke@435 1943 void Assembler::decl(Register dst) {
duke@435 1944 // Don't use it directly. Use MacroAssembler::decrementl() instead.
duke@435 1945 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 1946 int encode = prefix_and_encode(dst->encoding());
duke@435 1947 emit_byte(0xFF);
duke@435 1948 emit_byte(0xC8 | encode);
duke@435 1949 }
duke@435 1950
duke@435 1951 void Assembler::decl(Address dst) {
duke@435 1952 // Don't use it directly. Use MacroAssembler::decrementl() instead.
duke@435 1953 InstructionMark im(this);
duke@435 1954 prefix(dst);
duke@435 1955 emit_byte(0xFF);
duke@435 1956 emit_operand(rcx, dst);
duke@435 1957 }
duke@435 1958
duke@435 1959 void Assembler::decq(Register dst) {
duke@435 1960 // Don't use it directly. Use MacroAssembler::decrementq() instead.
duke@435 1961 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 1962 int encode = prefixq_and_encode(dst->encoding());
duke@435 1963 emit_byte(0xFF);
duke@435 1964 emit_byte(0xC8 | encode);
duke@435 1965 }
duke@435 1966
duke@435 1967 void Assembler::decq(Address dst) {
duke@435 1968 // Don't use it directly. Use MacroAssembler::decrementq() instead.
duke@435 1969 InstructionMark im(this);
duke@435 1970 prefixq(dst);
duke@435 1971 emit_byte(0xFF);
duke@435 1972 emit_operand(rcx, dst);
duke@435 1973 }
duke@435 1974
duke@435 1975 void Assembler::idivl(Register src) {
duke@435 1976 int encode = prefix_and_encode(src->encoding());
duke@435 1977 emit_byte(0xF7);
duke@435 1978 emit_byte(0xF8 | encode);
duke@435 1979 }
duke@435 1980
duke@435 1981 void Assembler::idivq(Register src) {
duke@435 1982 int encode = prefixq_and_encode(src->encoding());
duke@435 1983 emit_byte(0xF7);
duke@435 1984 emit_byte(0xF8 | encode);
duke@435 1985 }
duke@435 1986
duke@435 1987 void Assembler::cdql() {
duke@435 1988 emit_byte(0x99);
duke@435 1989 }
duke@435 1990
duke@435 1991 void Assembler::cdqq() {
duke@435 1992 prefix(REX_W);
duke@435 1993 emit_byte(0x99);
duke@435 1994 }
duke@435 1995
duke@435 1996 void Assembler::imull(Register dst, Register src) {
duke@435 1997 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 1998 emit_byte(0x0F);
duke@435 1999 emit_byte(0xAF);
duke@435 2000 emit_byte(0xC0 | encode);
duke@435 2001 }
duke@435 2002
duke@435 2003 void Assembler::imull(Register dst, Register src, int value) {
duke@435 2004 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2005 if (is8bit(value)) {
duke@435 2006 emit_byte(0x6B);
duke@435 2007 emit_byte(0xC0 | encode);
duke@435 2008 emit_byte(value);
duke@435 2009 } else {
duke@435 2010 emit_byte(0x69);
duke@435 2011 emit_byte(0xC0 | encode);
duke@435 2012 emit_long(value);
duke@435 2013 }
duke@435 2014 }
duke@435 2015
duke@435 2016 void Assembler::imulq(Register dst, Register src) {
duke@435 2017 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2018 emit_byte(0x0F);
duke@435 2019 emit_byte(0xAF);
duke@435 2020 emit_byte(0xC0 | encode);
duke@435 2021 }
duke@435 2022
duke@435 2023 void Assembler::imulq(Register dst, Register src, int value) {
duke@435 2024 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2025 if (is8bit(value)) {
duke@435 2026 emit_byte(0x6B);
duke@435 2027 emit_byte(0xC0 | encode);
duke@435 2028 emit_byte(value);
duke@435 2029 } else {
duke@435 2030 emit_byte(0x69);
duke@435 2031 emit_byte(0xC0 | encode);
duke@435 2032 emit_long(value);
duke@435 2033 }
duke@435 2034 }
duke@435 2035
duke@435 2036 void Assembler::incl(Register dst) {
duke@435 2037 // Don't use it directly. Use MacroAssembler::incrementl() instead.
duke@435 2038 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 2039 int encode = prefix_and_encode(dst->encoding());
duke@435 2040 emit_byte(0xFF);
duke@435 2041 emit_byte(0xC0 | encode);
duke@435 2042 }
duke@435 2043
duke@435 2044 void Assembler::incl(Address dst) {
duke@435 2045 // Don't use it directly. Use MacroAssembler::incrementl() instead.
duke@435 2046 InstructionMark im(this);
duke@435 2047 prefix(dst);
duke@435 2048 emit_byte(0xFF);
duke@435 2049 emit_operand(rax, dst);
duke@435 2050 }
duke@435 2051
duke@435 2052 void Assembler::incq(Register dst) {
duke@435 2053 // Don't use it directly. Use MacroAssembler::incrementq() instead.
duke@435 2054 // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
duke@435 2055 int encode = prefixq_and_encode(dst->encoding());
duke@435 2056 emit_byte(0xFF);
duke@435 2057 emit_byte(0xC0 | encode);
duke@435 2058 }
duke@435 2059
duke@435 2060 void Assembler::incq(Address dst) {
duke@435 2061 // Don't use it directly. Use MacroAssembler::incrementq() instead.
duke@435 2062 InstructionMark im(this);
duke@435 2063 prefixq(dst);
duke@435 2064 emit_byte(0xFF);
duke@435 2065 emit_operand(rax, dst);
duke@435 2066 }
duke@435 2067
duke@435 2068 void Assembler::leal(Register dst, Address src) {
duke@435 2069 InstructionMark im(this);
duke@435 2070 emit_byte(0x67); // addr32
duke@435 2071 prefix(src, dst);
duke@435 2072 emit_byte(0x8D);
duke@435 2073 emit_operand(dst, src);
duke@435 2074 }
duke@435 2075
duke@435 2076 void Assembler::leaq(Register dst, Address src) {
duke@435 2077 InstructionMark im(this);
duke@435 2078 prefixq(src, dst);
duke@435 2079 emit_byte(0x8D);
duke@435 2080 emit_operand(dst, src);
duke@435 2081 }
duke@435 2082
duke@435 2083 void Assembler::mull(Address src) {
duke@435 2084 InstructionMark im(this);
duke@435 2085 // was missing
duke@435 2086 prefix(src);
duke@435 2087 emit_byte(0xF7);
duke@435 2088 emit_operand(rsp, src);
duke@435 2089 }
duke@435 2090
duke@435 2091 void Assembler::mull(Register src) {
duke@435 2092 // was missing
duke@435 2093 int encode = prefix_and_encode(src->encoding());
duke@435 2094 emit_byte(0xF7);
duke@435 2095 emit_byte(0xE0 | encode);
duke@435 2096 }
duke@435 2097
duke@435 2098 void Assembler::negl(Register dst) {
duke@435 2099 int encode = prefix_and_encode(dst->encoding());
duke@435 2100 emit_byte(0xF7);
duke@435 2101 emit_byte(0xD8 | encode);
duke@435 2102 }
duke@435 2103
duke@435 2104 void Assembler::negq(Register dst) {
duke@435 2105 int encode = prefixq_and_encode(dst->encoding());
duke@435 2106 emit_byte(0xF7);
duke@435 2107 emit_byte(0xD8 | encode);
duke@435 2108 }
duke@435 2109
duke@435 2110 void Assembler::notl(Register dst) {
duke@435 2111 int encode = prefix_and_encode(dst->encoding());
duke@435 2112 emit_byte(0xF7);
duke@435 2113 emit_byte(0xD0 | encode);
duke@435 2114 }
duke@435 2115
duke@435 2116 void Assembler::notq(Register dst) {
duke@435 2117 int encode = prefixq_and_encode(dst->encoding());
duke@435 2118 emit_byte(0xF7);
duke@435 2119 emit_byte(0xD0 | encode);
duke@435 2120 }
duke@435 2121
duke@435 2122 void Assembler::orl(Address dst, int imm32) {
duke@435 2123 InstructionMark im(this);
duke@435 2124 prefix(dst);
duke@435 2125 emit_byte(0x81);
duke@435 2126 emit_operand(rcx, dst, 4);
duke@435 2127 emit_long(imm32);
duke@435 2128 }
duke@435 2129
duke@435 2130 void Assembler::orl(Register dst, int imm32) {
duke@435 2131 prefix(dst);
duke@435 2132 emit_arith(0x81, 0xC8, dst, imm32);
duke@435 2133 }
duke@435 2134
duke@435 2135 void Assembler::orl(Register dst, Address src) {
duke@435 2136 InstructionMark im(this);
duke@435 2137 prefix(src, dst);
duke@435 2138 emit_byte(0x0B);
duke@435 2139 emit_operand(dst, src);
duke@435 2140 }
duke@435 2141
duke@435 2142 void Assembler::orl(Register dst, Register src) {
duke@435 2143 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2144 emit_arith(0x0B, 0xC0, dst, src);
duke@435 2145 }
duke@435 2146
duke@435 2147 void Assembler::orq(Address dst, int imm32) {
duke@435 2148 InstructionMark im(this);
duke@435 2149 prefixq(dst);
duke@435 2150 emit_byte(0x81);
duke@435 2151 emit_operand(rcx, dst, 4);
duke@435 2152 emit_long(imm32);
duke@435 2153 }
duke@435 2154
duke@435 2155 void Assembler::orq(Register dst, int imm32) {
duke@435 2156 (void) prefixq_and_encode(dst->encoding());
duke@435 2157 emit_arith(0x81, 0xC8, dst, imm32);
duke@435 2158 }
duke@435 2159
duke@435 2160 void Assembler::orq(Register dst, Address src) {
duke@435 2161 InstructionMark im(this);
duke@435 2162 prefixq(src, dst);
duke@435 2163 emit_byte(0x0B);
duke@435 2164 emit_operand(dst, src);
duke@435 2165 }
duke@435 2166
duke@435 2167 void Assembler::orq(Register dst, Register src) {
duke@435 2168 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2169 emit_arith(0x0B, 0xC0, dst, src);
duke@435 2170 }
duke@435 2171
duke@435 2172 void Assembler::rcll(Register dst, int imm8) {
duke@435 2173 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2174 int encode = prefix_and_encode(dst->encoding());
duke@435 2175 if (imm8 == 1) {
duke@435 2176 emit_byte(0xD1);
duke@435 2177 emit_byte(0xD0 | encode);
duke@435 2178 } else {
duke@435 2179 emit_byte(0xC1);
duke@435 2180 emit_byte(0xD0 | encode);
duke@435 2181 emit_byte(imm8);
duke@435 2182 }
duke@435 2183 }
duke@435 2184
duke@435 2185 void Assembler::rclq(Register dst, int imm8) {
duke@435 2186 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2187 int encode = prefixq_and_encode(dst->encoding());
duke@435 2188 if (imm8 == 1) {
duke@435 2189 emit_byte(0xD1);
duke@435 2190 emit_byte(0xD0 | encode);
duke@435 2191 } else {
duke@435 2192 emit_byte(0xC1);
duke@435 2193 emit_byte(0xD0 | encode);
duke@435 2194 emit_byte(imm8);
duke@435 2195 }
duke@435 2196 }
duke@435 2197
duke@435 2198 void Assembler::sarl(Register dst, int imm8) {
duke@435 2199 int encode = prefix_and_encode(dst->encoding());
duke@435 2200 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2201 if (imm8 == 1) {
duke@435 2202 emit_byte(0xD1);
duke@435 2203 emit_byte(0xF8 | encode);
duke@435 2204 } else {
duke@435 2205 emit_byte(0xC1);
duke@435 2206 emit_byte(0xF8 | encode);
duke@435 2207 emit_byte(imm8);
duke@435 2208 }
duke@435 2209 }
duke@435 2210
duke@435 2211 void Assembler::sarl(Register dst) {
duke@435 2212 int encode = prefix_and_encode(dst->encoding());
duke@435 2213 emit_byte(0xD3);
duke@435 2214 emit_byte(0xF8 | encode);
duke@435 2215 }
duke@435 2216
duke@435 2217 void Assembler::sarq(Register dst, int imm8) {
duke@435 2218 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2219 int encode = prefixq_and_encode(dst->encoding());
duke@435 2220 if (imm8 == 1) {
duke@435 2221 emit_byte(0xD1);
duke@435 2222 emit_byte(0xF8 | encode);
duke@435 2223 } else {
duke@435 2224 emit_byte(0xC1);
duke@435 2225 emit_byte(0xF8 | encode);
duke@435 2226 emit_byte(imm8);
duke@435 2227 }
duke@435 2228 }
duke@435 2229
duke@435 2230 void Assembler::sarq(Register dst) {
duke@435 2231 int encode = prefixq_and_encode(dst->encoding());
duke@435 2232 emit_byte(0xD3);
duke@435 2233 emit_byte(0xF8 | encode);
duke@435 2234 }
duke@435 2235
duke@435 2236 void Assembler::sbbl(Address dst, int imm32) {
duke@435 2237 InstructionMark im(this);
duke@435 2238 prefix(dst);
duke@435 2239 emit_arith_operand(0x81, rbx, dst, imm32);
duke@435 2240 }
duke@435 2241
duke@435 2242 void Assembler::sbbl(Register dst, int imm32) {
duke@435 2243 prefix(dst);
duke@435 2244 emit_arith(0x81, 0xD8, dst, imm32);
duke@435 2245 }
duke@435 2246
duke@435 2247 void Assembler::sbbl(Register dst, Address src) {
duke@435 2248 InstructionMark im(this);
duke@435 2249 prefix(src, dst);
duke@435 2250 emit_byte(0x1B);
duke@435 2251 emit_operand(dst, src);
duke@435 2252 }
duke@435 2253
duke@435 2254 void Assembler::sbbl(Register dst, Register src) {
duke@435 2255 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2256 emit_arith(0x1B, 0xC0, dst, src);
duke@435 2257 }
duke@435 2258
duke@435 2259 void Assembler::sbbq(Address dst, int imm32) {
duke@435 2260 InstructionMark im(this);
duke@435 2261 prefixq(dst);
duke@435 2262 emit_arith_operand(0x81, rbx, dst, imm32);
duke@435 2263 }
duke@435 2264
duke@435 2265 void Assembler::sbbq(Register dst, int imm32) {
duke@435 2266 (void) prefixq_and_encode(dst->encoding());
duke@435 2267 emit_arith(0x81, 0xD8, dst, imm32);
duke@435 2268 }
duke@435 2269
duke@435 2270 void Assembler::sbbq(Register dst, Address src) {
duke@435 2271 InstructionMark im(this);
duke@435 2272 prefixq(src, dst);
duke@435 2273 emit_byte(0x1B);
duke@435 2274 emit_operand(dst, src);
duke@435 2275 }
duke@435 2276
duke@435 2277 void Assembler::sbbq(Register dst, Register src) {
duke@435 2278 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2279 emit_arith(0x1B, 0xC0, dst, src);
duke@435 2280 }
duke@435 2281
duke@435 2282 void Assembler::shll(Register dst, int imm8) {
duke@435 2283 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2284 int encode = prefix_and_encode(dst->encoding());
duke@435 2285 if (imm8 == 1 ) {
duke@435 2286 emit_byte(0xD1);
duke@435 2287 emit_byte(0xE0 | encode);
duke@435 2288 } else {
duke@435 2289 emit_byte(0xC1);
duke@435 2290 emit_byte(0xE0 | encode);
duke@435 2291 emit_byte(imm8);
duke@435 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 void Assembler::shll(Register dst) {
duke@435 2296 int encode = prefix_and_encode(dst->encoding());
duke@435 2297 emit_byte(0xD3);
duke@435 2298 emit_byte(0xE0 | encode);
duke@435 2299 }
duke@435 2300
duke@435 2301 void Assembler::shlq(Register dst, int imm8) {
duke@435 2302 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2303 int encode = prefixq_and_encode(dst->encoding());
duke@435 2304 if (imm8 == 1) {
duke@435 2305 emit_byte(0xD1);
duke@435 2306 emit_byte(0xE0 | encode);
duke@435 2307 } else {
duke@435 2308 emit_byte(0xC1);
duke@435 2309 emit_byte(0xE0 | encode);
duke@435 2310 emit_byte(imm8);
duke@435 2311 }
duke@435 2312 }
duke@435 2313
duke@435 2314 void Assembler::shlq(Register dst) {
duke@435 2315 int encode = prefixq_and_encode(dst->encoding());
duke@435 2316 emit_byte(0xD3);
duke@435 2317 emit_byte(0xE0 | encode);
duke@435 2318 }
duke@435 2319
duke@435 2320 void Assembler::shrl(Register dst, int imm8) {
duke@435 2321 assert(isShiftCount(imm8), "illegal shift count");
duke@435 2322 int encode = prefix_and_encode(dst->encoding());
duke@435 2323 emit_byte(0xC1);
duke@435 2324 emit_byte(0xE8 | encode);
duke@435 2325 emit_byte(imm8);
duke@435 2326 }
duke@435 2327
duke@435 2328 void Assembler::shrl(Register dst) {
duke@435 2329 int encode = prefix_and_encode(dst->encoding());
duke@435 2330 emit_byte(0xD3);
duke@435 2331 emit_byte(0xE8 | encode);
duke@435 2332 }
duke@435 2333
duke@435 2334 void Assembler::shrq(Register dst, int imm8) {
duke@435 2335 assert(isShiftCount(imm8 >> 1), "illegal shift count");
duke@435 2336 int encode = prefixq_and_encode(dst->encoding());
duke@435 2337 emit_byte(0xC1);
duke@435 2338 emit_byte(0xE8 | encode);
duke@435 2339 emit_byte(imm8);
duke@435 2340 }
duke@435 2341
duke@435 2342 void Assembler::shrq(Register dst) {
duke@435 2343 int encode = prefixq_and_encode(dst->encoding());
duke@435 2344 emit_byte(0xD3);
duke@435 2345 emit_byte(0xE8 | encode);
duke@435 2346 }
duke@435 2347
duke@435 2348 void Assembler::subl(Address dst, int imm32) {
duke@435 2349 InstructionMark im(this);
duke@435 2350 prefix(dst);
duke@435 2351 if (is8bit(imm32)) {
duke@435 2352 emit_byte(0x83);
duke@435 2353 emit_operand(rbp, dst, 1);
duke@435 2354 emit_byte(imm32 & 0xFF);
duke@435 2355 } else {
duke@435 2356 emit_byte(0x81);
duke@435 2357 emit_operand(rbp, dst, 4);
duke@435 2358 emit_long(imm32);
duke@435 2359 }
duke@435 2360 }
duke@435 2361
duke@435 2362 void Assembler::subl(Register dst, int imm32) {
duke@435 2363 prefix(dst);
duke@435 2364 emit_arith(0x81, 0xE8, dst, imm32);
duke@435 2365 }
duke@435 2366
duke@435 2367 void Assembler::subl(Address dst, Register src) {
duke@435 2368 InstructionMark im(this);
duke@435 2369 prefix(dst, src);
duke@435 2370 emit_byte(0x29);
duke@435 2371 emit_operand(src, dst);
duke@435 2372 }
duke@435 2373
duke@435 2374 void Assembler::subl(Register dst, Address src) {
duke@435 2375 InstructionMark im(this);
duke@435 2376 prefix(src, dst);
duke@435 2377 emit_byte(0x2B);
duke@435 2378 emit_operand(dst, src);
duke@435 2379 }
duke@435 2380
duke@435 2381 void Assembler::subl(Register dst, Register src) {
duke@435 2382 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2383 emit_arith(0x2B, 0xC0, dst, src);
duke@435 2384 }
duke@435 2385
duke@435 2386 void Assembler::subq(Address dst, int imm32) {
duke@435 2387 InstructionMark im(this);
duke@435 2388 prefixq(dst);
duke@435 2389 if (is8bit(imm32)) {
duke@435 2390 emit_byte(0x83);
duke@435 2391 emit_operand(rbp, dst, 1);
duke@435 2392 emit_byte(imm32 & 0xFF);
duke@435 2393 } else {
duke@435 2394 emit_byte(0x81);
duke@435 2395 emit_operand(rbp, dst, 4);
duke@435 2396 emit_long(imm32);
duke@435 2397 }
duke@435 2398 }
duke@435 2399
duke@435 2400 void Assembler::subq(Register dst, int imm32) {
duke@435 2401 (void) prefixq_and_encode(dst->encoding());
duke@435 2402 emit_arith(0x81, 0xE8, dst, imm32);
duke@435 2403 }
duke@435 2404
duke@435 2405 void Assembler::subq(Address dst, Register src) {
duke@435 2406 InstructionMark im(this);
duke@435 2407 prefixq(dst, src);
duke@435 2408 emit_byte(0x29);
duke@435 2409 emit_operand(src, dst);
duke@435 2410 }
duke@435 2411
duke@435 2412 void Assembler::subq(Register dst, Address src) {
duke@435 2413 InstructionMark im(this);
duke@435 2414 prefixq(src, dst);
duke@435 2415 emit_byte(0x2B);
duke@435 2416 emit_operand(dst, src);
duke@435 2417 }
duke@435 2418
duke@435 2419 void Assembler::subq(Register dst, Register src) {
duke@435 2420 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2421 emit_arith(0x2B, 0xC0, dst, src);
duke@435 2422 }
duke@435 2423
duke@435 2424 void Assembler::testb(Register dst, int imm8) {
duke@435 2425 (void) prefix_and_encode(dst->encoding(), true);
duke@435 2426 emit_arith_b(0xF6, 0xC0, dst, imm8);
duke@435 2427 }
duke@435 2428
duke@435 2429 void Assembler::testl(Register dst, int imm32) {
duke@435 2430 // not using emit_arith because test
duke@435 2431 // doesn't support sign-extension of
duke@435 2432 // 8bit operands
duke@435 2433 int encode = dst->encoding();
duke@435 2434 if (encode == 0) {
duke@435 2435 emit_byte(0xA9);
duke@435 2436 } else {
duke@435 2437 encode = prefix_and_encode(encode);
duke@435 2438 emit_byte(0xF7);
duke@435 2439 emit_byte(0xC0 | encode);
duke@435 2440 }
duke@435 2441 emit_long(imm32);
duke@435 2442 }
duke@435 2443
duke@435 2444 void Assembler::testl(Register dst, Register src) {
duke@435 2445 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2446 emit_arith(0x85, 0xC0, dst, src);
duke@435 2447 }
duke@435 2448
duke@435 2449 void Assembler::testq(Register dst, int imm32) {
duke@435 2450 // not using emit_arith because test
duke@435 2451 // doesn't support sign-extension of
duke@435 2452 // 8bit operands
duke@435 2453 int encode = dst->encoding();
duke@435 2454 if (encode == 0) {
duke@435 2455 prefix(REX_W);
duke@435 2456 emit_byte(0xA9);
duke@435 2457 } else {
duke@435 2458 encode = prefixq_and_encode(encode);
duke@435 2459 emit_byte(0xF7);
duke@435 2460 emit_byte(0xC0 | encode);
duke@435 2461 }
duke@435 2462 emit_long(imm32);
duke@435 2463 }
duke@435 2464
duke@435 2465 void Assembler::testq(Register dst, Register src) {
duke@435 2466 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2467 emit_arith(0x85, 0xC0, dst, src);
duke@435 2468 }
duke@435 2469
duke@435 2470 void Assembler::xaddl(Address dst, Register src) {
duke@435 2471 InstructionMark im(this);
duke@435 2472 prefix(dst, src);
duke@435 2473 emit_byte(0x0F);
duke@435 2474 emit_byte(0xC1);
duke@435 2475 emit_operand(src, dst);
duke@435 2476 }
duke@435 2477
duke@435 2478 void Assembler::xaddq(Address dst, Register src) {
duke@435 2479 InstructionMark im(this);
duke@435 2480 prefixq(dst, src);
duke@435 2481 emit_byte(0x0F);
duke@435 2482 emit_byte(0xC1);
duke@435 2483 emit_operand(src, dst);
duke@435 2484 }
duke@435 2485
duke@435 2486 void Assembler::xorl(Register dst, int imm32) {
duke@435 2487 prefix(dst);
duke@435 2488 emit_arith(0x81, 0xF0, dst, imm32);
duke@435 2489 }
duke@435 2490
duke@435 2491 void Assembler::xorl(Register dst, Register src) {
duke@435 2492 (void) prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2493 emit_arith(0x33, 0xC0, dst, src);
duke@435 2494 }
duke@435 2495
duke@435 2496 void Assembler::xorl(Register dst, Address src) {
duke@435 2497 InstructionMark im(this);
duke@435 2498 prefix(src, dst);
duke@435 2499 emit_byte(0x33);
duke@435 2500 emit_operand(dst, src);
duke@435 2501 }
duke@435 2502
duke@435 2503 void Assembler::xorq(Register dst, int imm32) {
duke@435 2504 (void) prefixq_and_encode(dst->encoding());
duke@435 2505 emit_arith(0x81, 0xF0, dst, imm32);
duke@435 2506 }
duke@435 2507
duke@435 2508 void Assembler::xorq(Register dst, Register src) {
duke@435 2509 (void) prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2510 emit_arith(0x33, 0xC0, dst, src);
duke@435 2511 }
duke@435 2512
duke@435 2513 void Assembler::xorq(Register dst, Address src) {
duke@435 2514 InstructionMark im(this);
duke@435 2515 prefixq(src, dst);
duke@435 2516 emit_byte(0x33);
duke@435 2517 emit_operand(dst, src);
duke@435 2518 }
duke@435 2519
duke@435 2520 void Assembler::bswapl(Register reg) {
duke@435 2521 int encode = prefix_and_encode(reg->encoding());
duke@435 2522 emit_byte(0x0F);
duke@435 2523 emit_byte(0xC8 | encode);
duke@435 2524 }
duke@435 2525
duke@435 2526 void Assembler::bswapq(Register reg) {
duke@435 2527 int encode = prefixq_and_encode(reg->encoding());
duke@435 2528 emit_byte(0x0F);
duke@435 2529 emit_byte(0xC8 | encode);
duke@435 2530 }
duke@435 2531
duke@435 2532 void Assembler::lock() {
duke@435 2533 emit_byte(0xF0);
duke@435 2534 }
duke@435 2535
duke@435 2536 void Assembler::xchgl(Register dst, Address src) {
duke@435 2537 InstructionMark im(this);
duke@435 2538 prefix(src, dst);
duke@435 2539 emit_byte(0x87);
duke@435 2540 emit_operand(dst, src);
duke@435 2541 }
duke@435 2542
duke@435 2543 void Assembler::xchgl(Register dst, Register src) {
duke@435 2544 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 2545 emit_byte(0x87);
duke@435 2546 emit_byte(0xc0 | encode);
duke@435 2547 }
duke@435 2548
duke@435 2549 void Assembler::xchgq(Register dst, Address src) {
duke@435 2550 InstructionMark im(this);
duke@435 2551 prefixq(src, dst);
duke@435 2552 emit_byte(0x87);
duke@435 2553 emit_operand(dst, src);
duke@435 2554 }
duke@435 2555
duke@435 2556 void Assembler::xchgq(Register dst, Register src) {
duke@435 2557 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 2558 emit_byte(0x87);
duke@435 2559 emit_byte(0xc0 | encode);
duke@435 2560 }
duke@435 2561
duke@435 2562 void Assembler::cmpxchgl(Register reg, Address adr) {
duke@435 2563 InstructionMark im(this);
duke@435 2564 prefix(adr, reg);
duke@435 2565 emit_byte(0x0F);
duke@435 2566 emit_byte(0xB1);
duke@435 2567 emit_operand(reg, adr);
duke@435 2568 }
duke@435 2569
duke@435 2570 void Assembler::cmpxchgq(Register reg, Address adr) {
duke@435 2571 InstructionMark im(this);
duke@435 2572 prefixq(adr, reg);
duke@435 2573 emit_byte(0x0F);
duke@435 2574 emit_byte(0xB1);
duke@435 2575 emit_operand(reg, adr);
duke@435 2576 }
duke@435 2577
duke@435 2578 void Assembler::hlt() {
duke@435 2579 emit_byte(0xF4);
duke@435 2580 }
duke@435 2581
duke@435 2582
duke@435 2583 void Assembler::addr_nop_4() {
duke@435 2584 // 4 bytes: NOP DWORD PTR [EAX+0]
duke@435 2585 emit_byte(0x0F);
duke@435 2586 emit_byte(0x1F);
duke@435 2587 emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
duke@435 2588 emit_byte(0); // 8-bits offset (1 byte)
duke@435 2589 }
duke@435 2590
duke@435 2591 void Assembler::addr_nop_5() {
duke@435 2592 // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
duke@435 2593 emit_byte(0x0F);
duke@435 2594 emit_byte(0x1F);
duke@435 2595 emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
duke@435 2596 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 2597 emit_byte(0); // 8-bits offset (1 byte)
duke@435 2598 }
duke@435 2599
duke@435 2600 void Assembler::addr_nop_7() {
duke@435 2601 // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
duke@435 2602 emit_byte(0x0F);
duke@435 2603 emit_byte(0x1F);
duke@435 2604 emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
duke@435 2605 emit_long(0); // 32-bits offset (4 bytes)
duke@435 2606 }
duke@435 2607
duke@435 2608 void Assembler::addr_nop_8() {
duke@435 2609 // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
duke@435 2610 emit_byte(0x0F);
duke@435 2611 emit_byte(0x1F);
duke@435 2612 emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
duke@435 2613 emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
duke@435 2614 emit_long(0); // 32-bits offset (4 bytes)
duke@435 2615 }
duke@435 2616
duke@435 2617 void Assembler::nop(int i) {
duke@435 2618 assert(i > 0, " ");
duke@435 2619 if (UseAddressNop && VM_Version::is_intel()) {
duke@435 2620 //
duke@435 2621 // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
duke@435 2622 // 1: 0x90
duke@435 2623 // 2: 0x66 0x90
duke@435 2624 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 2625 // 4: 0x0F 0x1F 0x40 0x00
duke@435 2626 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 2627 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2628 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2629 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2630 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2631 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2632 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2633
duke@435 2634 // The rest coding is Intel specific - don't use consecutive address nops
duke@435 2635
duke@435 2636 // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2637 // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2638 // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2639 // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
duke@435 2640
duke@435 2641 while(i >= 15) {
duke@435 2642 // For Intel don't generate consecutive addess nops (mix with regular nops)
duke@435 2643 i -= 15;
duke@435 2644 emit_byte(0x66); // size prefix
duke@435 2645 emit_byte(0x66); // size prefix
duke@435 2646 emit_byte(0x66); // size prefix
duke@435 2647 addr_nop_8();
duke@435 2648 emit_byte(0x66); // size prefix
duke@435 2649 emit_byte(0x66); // size prefix
duke@435 2650 emit_byte(0x66); // size prefix
duke@435 2651 emit_byte(0x90); // nop
duke@435 2652 }
duke@435 2653 switch (i) {
duke@435 2654 case 14:
duke@435 2655 emit_byte(0x66); // size prefix
duke@435 2656 case 13:
duke@435 2657 emit_byte(0x66); // size prefix
duke@435 2658 case 12:
duke@435 2659 addr_nop_8();
duke@435 2660 emit_byte(0x66); // size prefix
duke@435 2661 emit_byte(0x66); // size prefix
duke@435 2662 emit_byte(0x66); // size prefix
duke@435 2663 emit_byte(0x90); // nop
duke@435 2664 break;
duke@435 2665 case 11:
duke@435 2666 emit_byte(0x66); // size prefix
duke@435 2667 case 10:
duke@435 2668 emit_byte(0x66); // size prefix
duke@435 2669 case 9:
duke@435 2670 emit_byte(0x66); // size prefix
duke@435 2671 case 8:
duke@435 2672 addr_nop_8();
duke@435 2673 break;
duke@435 2674 case 7:
duke@435 2675 addr_nop_7();
duke@435 2676 break;
duke@435 2677 case 6:
duke@435 2678 emit_byte(0x66); // size prefix
duke@435 2679 case 5:
duke@435 2680 addr_nop_5();
duke@435 2681 break;
duke@435 2682 case 4:
duke@435 2683 addr_nop_4();
duke@435 2684 break;
duke@435 2685 case 3:
duke@435 2686 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 2687 emit_byte(0x66); // size prefix
duke@435 2688 case 2:
duke@435 2689 emit_byte(0x66); // size prefix
duke@435 2690 case 1:
duke@435 2691 emit_byte(0x90); // nop
duke@435 2692 break;
duke@435 2693 default:
duke@435 2694 assert(i == 0, " ");
duke@435 2695 }
duke@435 2696 return;
duke@435 2697 }
duke@435 2698 if (UseAddressNop && VM_Version::is_amd()) {
duke@435 2699 //
duke@435 2700 // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
duke@435 2701 // 1: 0x90
duke@435 2702 // 2: 0x66 0x90
duke@435 2703 // 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
duke@435 2704 // 4: 0x0F 0x1F 0x40 0x00
duke@435 2705 // 5: 0x0F 0x1F 0x44 0x00 0x00
duke@435 2706 // 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2707 // 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2708 // 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2709 // 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2710 // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2711 // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2712
duke@435 2713 // The rest coding is AMD specific - use consecutive address nops
duke@435 2714
duke@435 2715 // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2716 // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
duke@435 2717 // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2718 // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
duke@435 2719 // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
duke@435 2720 // Size prefixes (0x66) are added for larger sizes
duke@435 2721
duke@435 2722 while(i >= 22) {
duke@435 2723 i -= 11;
duke@435 2724 emit_byte(0x66); // size prefix
duke@435 2725 emit_byte(0x66); // size prefix
duke@435 2726 emit_byte(0x66); // size prefix
duke@435 2727 addr_nop_8();
duke@435 2728 }
duke@435 2729 // Generate first nop for size between 21-12
duke@435 2730 switch (i) {
duke@435 2731 case 21:
duke@435 2732 i -= 1;
duke@435 2733 emit_byte(0x66); // size prefix
duke@435 2734 case 20:
duke@435 2735 case 19:
duke@435 2736 i -= 1;
duke@435 2737 emit_byte(0x66); // size prefix
duke@435 2738 case 18:
duke@435 2739 case 17:
duke@435 2740 i -= 1;
duke@435 2741 emit_byte(0x66); // size prefix
duke@435 2742 case 16:
duke@435 2743 case 15:
duke@435 2744 i -= 8;
duke@435 2745 addr_nop_8();
duke@435 2746 break;
duke@435 2747 case 14:
duke@435 2748 case 13:
duke@435 2749 i -= 7;
duke@435 2750 addr_nop_7();
duke@435 2751 break;
duke@435 2752 case 12:
duke@435 2753 i -= 6;
duke@435 2754 emit_byte(0x66); // size prefix
duke@435 2755 addr_nop_5();
duke@435 2756 break;
duke@435 2757 default:
duke@435 2758 assert(i < 12, " ");
duke@435 2759 }
duke@435 2760
duke@435 2761 // Generate second nop for size between 11-1
duke@435 2762 switch (i) {
duke@435 2763 case 11:
duke@435 2764 emit_byte(0x66); // size prefix
duke@435 2765 case 10:
duke@435 2766 emit_byte(0x66); // size prefix
duke@435 2767 case 9:
duke@435 2768 emit_byte(0x66); // size prefix
duke@435 2769 case 8:
duke@435 2770 addr_nop_8();
duke@435 2771 break;
duke@435 2772 case 7:
duke@435 2773 addr_nop_7();
duke@435 2774 break;
duke@435 2775 case 6:
duke@435 2776 emit_byte(0x66); // size prefix
duke@435 2777 case 5:
duke@435 2778 addr_nop_5();
duke@435 2779 break;
duke@435 2780 case 4:
duke@435 2781 addr_nop_4();
duke@435 2782 break;
duke@435 2783 case 3:
duke@435 2784 // Don't use "0x0F 0x1F 0x00" - need patching safe padding
duke@435 2785 emit_byte(0x66); // size prefix
duke@435 2786 case 2:
duke@435 2787 emit_byte(0x66); // size prefix
duke@435 2788 case 1:
duke@435 2789 emit_byte(0x90); // nop
duke@435 2790 break;
duke@435 2791 default:
duke@435 2792 assert(i == 0, " ");
duke@435 2793 }
duke@435 2794 return;
duke@435 2795 }
duke@435 2796
duke@435 2797 // Using nops with size prefixes "0x66 0x90".
duke@435 2798 // From AMD Optimization Guide:
duke@435 2799 // 1: 0x90
duke@435 2800 // 2: 0x66 0x90
duke@435 2801 // 3: 0x66 0x66 0x90
duke@435 2802 // 4: 0x66 0x66 0x66 0x90
duke@435 2803 // 5: 0x66 0x66 0x90 0x66 0x90
duke@435 2804 // 6: 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2805 // 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2806 // 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
duke@435 2807 // 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2808 // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
duke@435 2809 //
duke@435 2810 while(i > 12) {
duke@435 2811 i -= 4;
duke@435 2812 emit_byte(0x66); // size prefix
duke@435 2813 emit_byte(0x66);
duke@435 2814 emit_byte(0x66);
duke@435 2815 emit_byte(0x90); // nop
duke@435 2816 }
duke@435 2817 // 1 - 12 nops
duke@435 2818 if(i > 8) {
duke@435 2819 if(i > 9) {
duke@435 2820 i -= 1;
duke@435 2821 emit_byte(0x66);
duke@435 2822 }
duke@435 2823 i -= 3;
duke@435 2824 emit_byte(0x66);
duke@435 2825 emit_byte(0x66);
duke@435 2826 emit_byte(0x90);
duke@435 2827 }
duke@435 2828 // 1 - 8 nops
duke@435 2829 if(i > 4) {
duke@435 2830 if(i > 6) {
duke@435 2831 i -= 1;
duke@435 2832 emit_byte(0x66);
duke@435 2833 }
duke@435 2834 i -= 3;
duke@435 2835 emit_byte(0x66);
duke@435 2836 emit_byte(0x66);
duke@435 2837 emit_byte(0x90);
duke@435 2838 }
duke@435 2839 switch (i) {
duke@435 2840 case 4:
duke@435 2841 emit_byte(0x66);
duke@435 2842 case 3:
duke@435 2843 emit_byte(0x66);
duke@435 2844 case 2:
duke@435 2845 emit_byte(0x66);
duke@435 2846 case 1:
duke@435 2847 emit_byte(0x90);
duke@435 2848 break;
duke@435 2849 default:
duke@435 2850 assert(i == 0, " ");
duke@435 2851 }
duke@435 2852 }
duke@435 2853
duke@435 2854 void Assembler::ret(int imm16) {
duke@435 2855 if (imm16 == 0) {
duke@435 2856 emit_byte(0xC3);
duke@435 2857 } else {
duke@435 2858 emit_byte(0xC2);
duke@435 2859 emit_word(imm16);
duke@435 2860 }
duke@435 2861 }
duke@435 2862
duke@435 2863 // copies a single word from [esi] to [edi]
duke@435 2864 void Assembler::smovl() {
duke@435 2865 emit_byte(0xA5);
duke@435 2866 }
duke@435 2867
duke@435 2868 // copies data from [rsi] to [rdi] using rcx words (m32)
duke@435 2869 void Assembler::rep_movl() {
duke@435 2870 // REP
duke@435 2871 emit_byte(0xF3);
duke@435 2872 // MOVSL
duke@435 2873 emit_byte(0xA5);
duke@435 2874 }
duke@435 2875
duke@435 2876 // copies data from [rsi] to [rdi] using rcx double words (m64)
duke@435 2877 void Assembler::rep_movq() {
duke@435 2878 // REP
duke@435 2879 emit_byte(0xF3);
duke@435 2880 // MOVSQ
duke@435 2881 prefix(REX_W);
duke@435 2882 emit_byte(0xA5);
duke@435 2883 }
duke@435 2884
duke@435 2885 // sets rcx double words (m64) with rax value at [rdi]
duke@435 2886 void Assembler::rep_set() {
duke@435 2887 // REP
duke@435 2888 emit_byte(0xF3);
duke@435 2889 // STOSQ
duke@435 2890 prefix(REX_W);
duke@435 2891 emit_byte(0xAB);
duke@435 2892 }
duke@435 2893
duke@435 2894 // scans rcx double words (m64) at [rdi] for occurance of rax
coleenp@548 2895 void Assembler::repne_scanq() {
duke@435 2896 // REPNE/REPNZ
duke@435 2897 emit_byte(0xF2);
duke@435 2898 // SCASQ
duke@435 2899 prefix(REX_W);
duke@435 2900 emit_byte(0xAF);
duke@435 2901 }
duke@435 2902
coleenp@548 2903 void Assembler::repne_scanl() {
coleenp@548 2904 // REPNE/REPNZ
coleenp@548 2905 emit_byte(0xF2);
coleenp@548 2906 // SCASL
coleenp@548 2907 emit_byte(0xAF);
coleenp@548 2908 }
coleenp@548 2909
coleenp@548 2910
duke@435 2911 void Assembler::setb(Condition cc, Register dst) {
duke@435 2912 assert(0 <= cc && cc < 16, "illegal cc");
duke@435 2913 int encode = prefix_and_encode(dst->encoding(), true);
duke@435 2914 emit_byte(0x0F);
duke@435 2915 emit_byte(0x90 | cc);
duke@435 2916 emit_byte(0xC0 | encode);
duke@435 2917 }
duke@435 2918
duke@435 2919 void Assembler::clflush(Address adr) {
duke@435 2920 prefix(adr);
duke@435 2921 emit_byte(0x0F);
duke@435 2922 emit_byte(0xAE);
duke@435 2923 emit_operand(rdi, adr);
duke@435 2924 }
duke@435 2925
duke@435 2926 void Assembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 2927 if (L.is_bound()) {
duke@435 2928 const int long_size = 5;
duke@435 2929 int offs = (int)( target(L) - pc() );
duke@435 2930 assert(offs <= 0, "assembler error");
duke@435 2931 InstructionMark im(this);
duke@435 2932 // 1110 1000 #32-bit disp
duke@435 2933 emit_byte(0xE8);
duke@435 2934 emit_data(offs - long_size, rtype, disp32_operand);
duke@435 2935 } else {
duke@435 2936 InstructionMark im(this);
duke@435 2937 // 1110 1000 #32-bit disp
duke@435 2938 L.add_patch_at(code(), locator());
duke@435 2939
duke@435 2940 emit_byte(0xE8);
duke@435 2941 emit_data(int(0), rtype, disp32_operand);
duke@435 2942 }
duke@435 2943 }
duke@435 2944
duke@435 2945 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
duke@435 2946 assert(entry != NULL, "call most probably wrong");
duke@435 2947 InstructionMark im(this);
duke@435 2948 emit_byte(0xE8);
duke@435 2949 intptr_t disp = entry - (_code_pos + sizeof(int32_t));
duke@435 2950 assert(is_simm32(disp), "must be 32bit offset (call2)");
duke@435 2951 // Technically, should use call32_operand, but this format is
duke@435 2952 // implied by the fact that we're emitting a call instruction.
duke@435 2953 emit_data((int) disp, rspec, disp32_operand);
duke@435 2954 }
duke@435 2955
duke@435 2956
duke@435 2957 void Assembler::call(Register dst) {
duke@435 2958 // This was originally using a 32bit register encoding
duke@435 2959 // and surely we want 64bit!
duke@435 2960 // this is a 32bit encoding but in 64bit mode the default
duke@435 2961 // operand size is 64bit so there is no need for the
duke@435 2962 // wide prefix. So prefix only happens if we use the
duke@435 2963 // new registers. Much like push/pop.
duke@435 2964 int encode = prefixq_and_encode(dst->encoding());
duke@435 2965 emit_byte(0xFF);
duke@435 2966 emit_byte(0xD0 | encode);
duke@435 2967 }
duke@435 2968
duke@435 2969 void Assembler::call(Address adr) {
duke@435 2970 InstructionMark im(this);
duke@435 2971 prefix(adr);
duke@435 2972 emit_byte(0xFF);
duke@435 2973 emit_operand(rdx, adr);
duke@435 2974 }
duke@435 2975
duke@435 2976 void Assembler::jmp(Register reg) {
duke@435 2977 int encode = prefix_and_encode(reg->encoding());
duke@435 2978 emit_byte(0xFF);
duke@435 2979 emit_byte(0xE0 | encode);
duke@435 2980 }
duke@435 2981
duke@435 2982 void Assembler::jmp(Address adr) {
duke@435 2983 InstructionMark im(this);
duke@435 2984 prefix(adr);
duke@435 2985 emit_byte(0xFF);
duke@435 2986 emit_operand(rsp, adr);
duke@435 2987 }
duke@435 2988
duke@435 2989 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
duke@435 2990 InstructionMark im(this);
duke@435 2991 emit_byte(0xE9);
duke@435 2992 assert(dest != NULL, "must have a target");
duke@435 2993 intptr_t disp = dest - (_code_pos + sizeof(int32_t));
duke@435 2994 assert(is_simm32(disp), "must be 32bit offset (jmp)");
duke@435 2995 emit_data(disp, rspec.reloc(), call32_operand);
duke@435 2996 }
duke@435 2997
duke@435 2998 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
duke@435 2999 if (L.is_bound()) {
duke@435 3000 address entry = target(L);
duke@435 3001 assert(entry != NULL, "jmp most probably wrong");
duke@435 3002 InstructionMark im(this);
duke@435 3003 const int short_size = 2;
duke@435 3004 const int long_size = 5;
duke@435 3005 intptr_t offs = entry - _code_pos;
duke@435 3006 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3007 emit_byte(0xEB);
duke@435 3008 emit_byte((offs - short_size) & 0xFF);
duke@435 3009 } else {
duke@435 3010 emit_byte(0xE9);
duke@435 3011 emit_long(offs - long_size);
duke@435 3012 }
duke@435 3013 } else {
duke@435 3014 // By default, forward jumps are always 32-bit displacements, since
duke@435 3015 // we can't yet know where the label will be bound. If you're sure that
duke@435 3016 // the forward jump will not run beyond 256 bytes, use jmpb to
duke@435 3017 // force an 8-bit displacement.
duke@435 3018 InstructionMark im(this);
duke@435 3019 relocate(rtype);
duke@435 3020 L.add_patch_at(code(), locator());
duke@435 3021 emit_byte(0xE9);
duke@435 3022 emit_long(0);
duke@435 3023 }
duke@435 3024 }
duke@435 3025
duke@435 3026 void Assembler::jmpb(Label& L) {
duke@435 3027 if (L.is_bound()) {
duke@435 3028 const int short_size = 2;
duke@435 3029 address entry = target(L);
duke@435 3030 assert(is8bit((entry - _code_pos) + short_size),
duke@435 3031 "Dispacement too large for a short jmp");
duke@435 3032 assert(entry != NULL, "jmp most probably wrong");
duke@435 3033 intptr_t offs = entry - _code_pos;
duke@435 3034 emit_byte(0xEB);
duke@435 3035 emit_byte((offs - short_size) & 0xFF);
duke@435 3036 } else {
duke@435 3037 InstructionMark im(this);
duke@435 3038 L.add_patch_at(code(), locator());
duke@435 3039 emit_byte(0xEB);
duke@435 3040 emit_byte(0);
duke@435 3041 }
duke@435 3042 }
duke@435 3043
duke@435 3044 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
duke@435 3045 InstructionMark im(this);
duke@435 3046 relocate(rtype);
duke@435 3047 assert((0 <= cc) && (cc < 16), "illegal cc");
duke@435 3048 if (L.is_bound()) {
duke@435 3049 address dst = target(L);
duke@435 3050 assert(dst != NULL, "jcc most probably wrong");
duke@435 3051
duke@435 3052 const int short_size = 2;
duke@435 3053 const int long_size = 6;
duke@435 3054 intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
duke@435 3055 if (rtype == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3056 // 0111 tttn #8-bit disp
duke@435 3057 emit_byte(0x70 | cc);
duke@435 3058 emit_byte((offs - short_size) & 0xFF);
duke@435 3059 } else {
duke@435 3060 // 0000 1111 1000 tttn #32-bit disp
duke@435 3061 assert(is_simm32(offs - long_size),
duke@435 3062 "must be 32bit offset (call4)");
duke@435 3063 emit_byte(0x0F);
duke@435 3064 emit_byte(0x80 | cc);
duke@435 3065 emit_long(offs - long_size);
duke@435 3066 }
duke@435 3067 } else {
duke@435 3068 // Note: could eliminate cond. jumps to this jump if condition
duke@435 3069 // is the same however, seems to be rather unlikely case.
duke@435 3070 // Note: use jccb() if label to be bound is very close to get
duke@435 3071 // an 8-bit displacement
duke@435 3072 L.add_patch_at(code(), locator());
duke@435 3073 emit_byte(0x0F);
duke@435 3074 emit_byte(0x80 | cc);
duke@435 3075 emit_long(0);
duke@435 3076 }
duke@435 3077 }
duke@435 3078
duke@435 3079 void Assembler::jccb(Condition cc, Label& L) {
duke@435 3080 if (L.is_bound()) {
duke@435 3081 const int short_size = 2;
duke@435 3082 const int long_size = 6;
duke@435 3083 address entry = target(L);
duke@435 3084 assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
duke@435 3085 "Dispacement too large for a short jmp");
duke@435 3086 intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
duke@435 3087 // 0111 tttn #8-bit disp
duke@435 3088 emit_byte(0x70 | cc);
duke@435 3089 emit_byte((offs - short_size) & 0xFF);
duke@435 3090 } else {
duke@435 3091 InstructionMark im(this);
duke@435 3092 L.add_patch_at(code(), locator());
duke@435 3093 emit_byte(0x70 | cc);
duke@435 3094 emit_byte(0);
duke@435 3095 }
duke@435 3096 }
duke@435 3097
duke@435 3098 // FP instructions
duke@435 3099
duke@435 3100 void Assembler::fxsave(Address dst) {
duke@435 3101 prefixq(dst);
duke@435 3102 emit_byte(0x0F);
duke@435 3103 emit_byte(0xAE);
duke@435 3104 emit_operand(as_Register(0), dst);
duke@435 3105 }
duke@435 3106
duke@435 3107 void Assembler::fxrstor(Address src) {
duke@435 3108 prefixq(src);
duke@435 3109 emit_byte(0x0F);
duke@435 3110 emit_byte(0xAE);
duke@435 3111 emit_operand(as_Register(1), src);
duke@435 3112 }
duke@435 3113
duke@435 3114 void Assembler::ldmxcsr(Address src) {
duke@435 3115 InstructionMark im(this);
duke@435 3116 prefix(src);
duke@435 3117 emit_byte(0x0F);
duke@435 3118 emit_byte(0xAE);
duke@435 3119 emit_operand(as_Register(2), src);
duke@435 3120 }
duke@435 3121
duke@435 3122 void Assembler::stmxcsr(Address dst) {
duke@435 3123 InstructionMark im(this);
duke@435 3124 prefix(dst);
duke@435 3125 emit_byte(0x0F);
duke@435 3126 emit_byte(0xAE);
duke@435 3127 emit_operand(as_Register(3), dst);
duke@435 3128 }
duke@435 3129
duke@435 3130 void Assembler::addss(XMMRegister dst, XMMRegister src) {
duke@435 3131 emit_byte(0xF3);
duke@435 3132 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3133 emit_byte(0x0F);
duke@435 3134 emit_byte(0x58);
duke@435 3135 emit_byte(0xC0 | encode);
duke@435 3136 }
duke@435 3137
duke@435 3138 void Assembler::addss(XMMRegister dst, Address src) {
duke@435 3139 InstructionMark im(this);
duke@435 3140 emit_byte(0xF3);
duke@435 3141 prefix(src, dst);
duke@435 3142 emit_byte(0x0F);
duke@435 3143 emit_byte(0x58);
duke@435 3144 emit_operand(dst, src);
duke@435 3145 }
duke@435 3146
duke@435 3147 void Assembler::subss(XMMRegister dst, XMMRegister src) {
duke@435 3148 emit_byte(0xF3);
duke@435 3149 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3150 emit_byte(0x0F);
duke@435 3151 emit_byte(0x5C);
duke@435 3152 emit_byte(0xC0 | encode);
duke@435 3153 }
duke@435 3154
duke@435 3155 void Assembler::subss(XMMRegister dst, Address src) {
duke@435 3156 InstructionMark im(this);
duke@435 3157 emit_byte(0xF3);
duke@435 3158 prefix(src, dst);
duke@435 3159 emit_byte(0x0F);
duke@435 3160 emit_byte(0x5C);
duke@435 3161 emit_operand(dst, src);
duke@435 3162 }
duke@435 3163
duke@435 3164 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
duke@435 3165 emit_byte(0xF3);
duke@435 3166 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3167 emit_byte(0x0F);
duke@435 3168 emit_byte(0x59);
duke@435 3169 emit_byte(0xC0 | encode);
duke@435 3170 }
duke@435 3171
duke@435 3172 void Assembler::mulss(XMMRegister dst, Address src) {
duke@435 3173 InstructionMark im(this);
duke@435 3174 emit_byte(0xF3);
duke@435 3175 prefix(src, dst);
duke@435 3176 emit_byte(0x0F);
duke@435 3177 emit_byte(0x59);
duke@435 3178 emit_operand(dst, src);
duke@435 3179 }
duke@435 3180
duke@435 3181 void Assembler::divss(XMMRegister dst, XMMRegister src) {
duke@435 3182 emit_byte(0xF3);
duke@435 3183 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3184 emit_byte(0x0F);
duke@435 3185 emit_byte(0x5E);
duke@435 3186 emit_byte(0xC0 | encode);
duke@435 3187 }
duke@435 3188
duke@435 3189 void Assembler::divss(XMMRegister dst, Address src) {
duke@435 3190 InstructionMark im(this);
duke@435 3191 emit_byte(0xF3);
duke@435 3192 prefix(src, dst);
duke@435 3193 emit_byte(0x0F);
duke@435 3194 emit_byte(0x5E);
duke@435 3195 emit_operand(dst, src);
duke@435 3196 }
duke@435 3197
duke@435 3198 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
duke@435 3199 emit_byte(0xF2);
duke@435 3200 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3201 emit_byte(0x0F);
duke@435 3202 emit_byte(0x58);
duke@435 3203 emit_byte(0xC0 | encode);
duke@435 3204 }
duke@435 3205
duke@435 3206 void Assembler::addsd(XMMRegister dst, Address src) {
duke@435 3207 InstructionMark im(this);
duke@435 3208 emit_byte(0xF2);
duke@435 3209 prefix(src, dst);
duke@435 3210 emit_byte(0x0F);
duke@435 3211 emit_byte(0x58);
duke@435 3212 emit_operand(dst, src);
duke@435 3213 }
duke@435 3214
duke@435 3215 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
duke@435 3216 emit_byte(0xF2);
duke@435 3217 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3218 emit_byte(0x0F);
duke@435 3219 emit_byte(0x5C);
duke@435 3220 emit_byte(0xC0 | encode);
duke@435 3221 }
duke@435 3222
duke@435 3223 void Assembler::subsd(XMMRegister dst, Address src) {
duke@435 3224 InstructionMark im(this);
duke@435 3225 emit_byte(0xF2);
duke@435 3226 prefix(src, dst);
duke@435 3227 emit_byte(0x0F);
duke@435 3228 emit_byte(0x5C);
duke@435 3229 emit_operand(dst, src);
duke@435 3230 }
duke@435 3231
duke@435 3232 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
duke@435 3233 emit_byte(0xF2);
duke@435 3234 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3235 emit_byte(0x0F);
duke@435 3236 emit_byte(0x59);
duke@435 3237 emit_byte(0xC0 | encode);
duke@435 3238 }
duke@435 3239
duke@435 3240 void Assembler::mulsd(XMMRegister dst, Address src) {
duke@435 3241 InstructionMark im(this);
duke@435 3242 emit_byte(0xF2);
duke@435 3243 prefix(src, dst);
duke@435 3244 emit_byte(0x0F);
duke@435 3245 emit_byte(0x59);
duke@435 3246 emit_operand(dst, src);
duke@435 3247 }
duke@435 3248
duke@435 3249 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
duke@435 3250 emit_byte(0xF2);
duke@435 3251 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3252 emit_byte(0x0F);
duke@435 3253 emit_byte(0x5E);
duke@435 3254 emit_byte(0xC0 | encode);
duke@435 3255 }
duke@435 3256
duke@435 3257 void Assembler::divsd(XMMRegister dst, Address src) {
duke@435 3258 InstructionMark im(this);
duke@435 3259 emit_byte(0xF2);
duke@435 3260 prefix(src, dst);
duke@435 3261 emit_byte(0x0F);
duke@435 3262 emit_byte(0x5E);
duke@435 3263 emit_operand(dst, src);
duke@435 3264 }
duke@435 3265
duke@435 3266 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
duke@435 3267 emit_byte(0xF2);
duke@435 3268 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3269 emit_byte(0x0F);
duke@435 3270 emit_byte(0x51);
duke@435 3271 emit_byte(0xC0 | encode);
duke@435 3272 }
duke@435 3273
duke@435 3274 void Assembler::sqrtsd(XMMRegister dst, Address src) {
duke@435 3275 InstructionMark im(this);
duke@435 3276 emit_byte(0xF2);
duke@435 3277 prefix(src, dst);
duke@435 3278 emit_byte(0x0F);
duke@435 3279 emit_byte(0x51);
duke@435 3280 emit_operand(dst, src);
duke@435 3281 }
duke@435 3282
duke@435 3283 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
duke@435 3284 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3285 emit_byte(0x0F);
duke@435 3286 emit_byte(0x57);
duke@435 3287 emit_byte(0xC0 | encode);
duke@435 3288 }
duke@435 3289
duke@435 3290 void Assembler::xorps(XMMRegister dst, Address src) {
duke@435 3291 InstructionMark im(this);
duke@435 3292 prefix(src, dst);
duke@435 3293 emit_byte(0x0F);
duke@435 3294 emit_byte(0x57);
duke@435 3295 emit_operand(dst, src);
duke@435 3296 }
duke@435 3297
duke@435 3298 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
duke@435 3299 emit_byte(0x66);
duke@435 3300 xorps(dst, src);
duke@435 3301 }
duke@435 3302
duke@435 3303 void Assembler::xorpd(XMMRegister dst, Address src) {
duke@435 3304 InstructionMark im(this);
duke@435 3305 emit_byte(0x66);
duke@435 3306 prefix(src, dst);
duke@435 3307 emit_byte(0x0F);
duke@435 3308 emit_byte(0x57);
duke@435 3309 emit_operand(dst, src);
duke@435 3310 }
duke@435 3311
duke@435 3312 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
duke@435 3313 emit_byte(0xF3);
duke@435 3314 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3315 emit_byte(0x0F);
duke@435 3316 emit_byte(0x2A);
duke@435 3317 emit_byte(0xC0 | encode);
duke@435 3318 }
duke@435 3319
duke@435 3320 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
duke@435 3321 emit_byte(0xF3);
duke@435 3322 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3323 emit_byte(0x0F);
duke@435 3324 emit_byte(0x2A);
duke@435 3325 emit_byte(0xC0 | encode);
duke@435 3326 }
duke@435 3327
duke@435 3328 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
duke@435 3329 emit_byte(0xF2);
duke@435 3330 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3331 emit_byte(0x0F);
duke@435 3332 emit_byte(0x2A);
duke@435 3333 emit_byte(0xC0 | encode);
duke@435 3334 }
duke@435 3335
duke@435 3336 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
duke@435 3337 emit_byte(0xF2);
duke@435 3338 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3339 emit_byte(0x0F);
duke@435 3340 emit_byte(0x2A);
duke@435 3341 emit_byte(0xC0 | encode);
duke@435 3342 }
duke@435 3343
duke@435 3344 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
duke@435 3345 emit_byte(0xF3);
duke@435 3346 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3347 emit_byte(0x0F);
duke@435 3348 emit_byte(0x2C);
duke@435 3349 emit_byte(0xC0 | encode);
duke@435 3350 }
duke@435 3351
duke@435 3352 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
duke@435 3353 emit_byte(0xF3);
duke@435 3354 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3355 emit_byte(0x0F);
duke@435 3356 emit_byte(0x2C);
duke@435 3357 emit_byte(0xC0 | encode);
duke@435 3358 }
duke@435 3359
duke@435 3360 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
duke@435 3361 emit_byte(0xF2);
duke@435 3362 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3363 emit_byte(0x0F);
duke@435 3364 emit_byte(0x2C);
duke@435 3365 emit_byte(0xC0 | encode);
duke@435 3366 }
duke@435 3367
duke@435 3368 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
duke@435 3369 emit_byte(0xF2);
duke@435 3370 int encode = prefixq_and_encode(dst->encoding(), src->encoding());
duke@435 3371 emit_byte(0x0F);
duke@435 3372 emit_byte(0x2C);
duke@435 3373 emit_byte(0xC0 | encode);
duke@435 3374 }
duke@435 3375
duke@435 3376 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
duke@435 3377 emit_byte(0xF3);
duke@435 3378 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3379 emit_byte(0x0F);
duke@435 3380 emit_byte(0x5A);
duke@435 3381 emit_byte(0xC0 | encode);
duke@435 3382 }
duke@435 3383
kvn@506 3384 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
kvn@506 3385 emit_byte(0xF3);
kvn@506 3386 int encode = prefix_and_encode(dst->encoding(), src->encoding());
kvn@506 3387 emit_byte(0x0F);
kvn@506 3388 emit_byte(0xE6);
kvn@506 3389 emit_byte(0xC0 | encode);
kvn@506 3390 }
kvn@506 3391
kvn@506 3392 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
kvn@506 3393 int encode = prefix_and_encode(dst->encoding(), src->encoding());
kvn@506 3394 emit_byte(0x0F);
kvn@506 3395 emit_byte(0x5B);
kvn@506 3396 emit_byte(0xC0 | encode);
kvn@506 3397 }
kvn@506 3398
duke@435 3399 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
duke@435 3400 emit_byte(0xF2);
duke@435 3401 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3402 emit_byte(0x0F);
duke@435 3403 emit_byte(0x5A);
duke@435 3404 emit_byte(0xC0 | encode);
duke@435 3405 }
duke@435 3406
duke@435 3407 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
duke@435 3408 emit_byte(0x66);
duke@435 3409 int encode = prefix_and_encode(dst->encoding(), src->encoding());
duke@435 3410 emit_byte(0x0F);
duke@435 3411 emit_byte(0x60);
duke@435 3412 emit_byte(0xC0 | encode);
duke@435 3413 }
duke@435 3414
duke@435 3415 // Implementation of MacroAssembler
duke@435 3416
duke@435 3417 // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement
duke@435 3418 Address MacroAssembler::as_Address(AddressLiteral adr) {
duke@435 3419 assert(!adr.is_lval(), "must be rval");
duke@435 3420 assert(reachable(adr), "must be");
duke@435 3421 return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
duke@435 3422 }
duke@435 3423
duke@435 3424 Address MacroAssembler::as_Address(ArrayAddress adr) {
duke@435 3425 #ifdef _LP64
duke@435 3426 AddressLiteral base = adr.base();
duke@435 3427 lea(rscratch1, base);
duke@435 3428 Address index = adr.index();
duke@435 3429 assert(index._disp == 0, "must not have disp"); // maybe it can?
duke@435 3430 Address array(rscratch1, index._index, index._scale, index._disp);
duke@435 3431 return array;
duke@435 3432 #else
duke@435 3433 return Address::make_array(adr);
duke@435 3434 #endif // _LP64
duke@435 3435
duke@435 3436 }
duke@435 3437
duke@435 3438 void MacroAssembler::fat_nop() {
duke@435 3439 // A 5 byte nop that is safe for patching (see patch_verified_entry)
duke@435 3440 // Recommened sequence from 'Software Optimization Guide for the AMD
duke@435 3441 // Hammer Processor'
duke@435 3442 emit_byte(0x66);
duke@435 3443 emit_byte(0x66);
duke@435 3444 emit_byte(0x90);
duke@435 3445 emit_byte(0x66);
duke@435 3446 emit_byte(0x90);
duke@435 3447 }
duke@435 3448
duke@435 3449 static Assembler::Condition reverse[] = {
duke@435 3450 Assembler::noOverflow /* overflow = 0x0 */ ,
duke@435 3451 Assembler::overflow /* noOverflow = 0x1 */ ,
duke@435 3452 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ ,
duke@435 3453 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ ,
duke@435 3454 Assembler::notZero /* zero = 0x4, equal = 0x4 */ ,
duke@435 3455 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ ,
duke@435 3456 Assembler::above /* belowEqual = 0x6 */ ,
duke@435 3457 Assembler::belowEqual /* above = 0x7 */ ,
duke@435 3458 Assembler::positive /* negative = 0x8 */ ,
duke@435 3459 Assembler::negative /* positive = 0x9 */ ,
duke@435 3460 Assembler::noParity /* parity = 0xa */ ,
duke@435 3461 Assembler::parity /* noParity = 0xb */ ,
duke@435 3462 Assembler::greaterEqual /* less = 0xc */ ,
duke@435 3463 Assembler::less /* greaterEqual = 0xd */ ,
duke@435 3464 Assembler::greater /* lessEqual = 0xe */ ,
duke@435 3465 Assembler::lessEqual /* greater = 0xf, */
duke@435 3466
duke@435 3467 };
duke@435 3468
duke@435 3469 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 3470 // to be installed in the Address class
duke@435 3471 void MacroAssembler::jump(ArrayAddress entry) {
duke@435 3472 #ifdef _LP64
duke@435 3473 lea(rscratch1, entry.base());
duke@435 3474 Address dispatch = entry.index();
duke@435 3475 assert(dispatch._base == noreg, "must be");
duke@435 3476 dispatch._base = rscratch1;
duke@435 3477 jmp(dispatch);
duke@435 3478 #else
duke@435 3479 jmp(as_Address(entry));
duke@435 3480 #endif // _LP64
duke@435 3481 }
duke@435 3482
duke@435 3483 void MacroAssembler::jump(AddressLiteral dst) {
duke@435 3484 if (reachable(dst)) {
duke@435 3485 jmp_literal(dst.target(), dst.rspec());
duke@435 3486 } else {
duke@435 3487 lea(rscratch1, dst);
duke@435 3488 jmp(rscratch1);
duke@435 3489 }
duke@435 3490 }
duke@435 3491
duke@435 3492 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
duke@435 3493 if (reachable(dst)) {
duke@435 3494 InstructionMark im(this);
duke@435 3495 relocate(dst.reloc());
duke@435 3496 const int short_size = 2;
duke@435 3497 const int long_size = 6;
duke@435 3498 int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
duke@435 3499 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
duke@435 3500 // 0111 tttn #8-bit disp
duke@435 3501 emit_byte(0x70 | cc);
duke@435 3502 emit_byte((offs - short_size) & 0xFF);
duke@435 3503 } else {
duke@435 3504 // 0000 1111 1000 tttn #32-bit disp
duke@435 3505 emit_byte(0x0F);
duke@435 3506 emit_byte(0x80 | cc);
duke@435 3507 emit_long(offs - long_size);
duke@435 3508 }
duke@435 3509 } else {
duke@435 3510 #ifdef ASSERT
duke@435 3511 warning("reversing conditional branch");
duke@435 3512 #endif /* ASSERT */
duke@435 3513 Label skip;
duke@435 3514 jccb(reverse[cc], skip);
duke@435 3515 lea(rscratch1, dst);
duke@435 3516 Assembler::jmp(rscratch1);
duke@435 3517 bind(skip);
duke@435 3518 }
duke@435 3519 }
duke@435 3520
duke@435 3521 // Wouldn't need if AddressLiteral version had new name
duke@435 3522 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
duke@435 3523 Assembler::call(L, rtype);
duke@435 3524 }
duke@435 3525
duke@435 3526 // Wouldn't need if AddressLiteral version had new name
duke@435 3527 void MacroAssembler::call(Register entry) {
duke@435 3528 Assembler::call(entry);
duke@435 3529 }
duke@435 3530
duke@435 3531 void MacroAssembler::call(AddressLiteral entry) {
duke@435 3532 if (reachable(entry)) {
duke@435 3533 Assembler::call_literal(entry.target(), entry.rspec());
duke@435 3534 } else {
duke@435 3535 lea(rscratch1, entry);
duke@435 3536 Assembler::call(rscratch1);
duke@435 3537 }
duke@435 3538 }
duke@435 3539
duke@435 3540 void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) {
duke@435 3541 if (reachable(src1)) {
duke@435 3542 cmpb(as_Address(src1), src2);
duke@435 3543 } else {
duke@435 3544 lea(rscratch1, src1);
duke@435 3545 cmpb(Address(rscratch1, 0), src2);
duke@435 3546 }
duke@435 3547 }
duke@435 3548
duke@435 3549 void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) {
duke@435 3550 if (reachable(src1)) {
duke@435 3551 cmpl(as_Address(src1), src2);
duke@435 3552 } else {
duke@435 3553 lea(rscratch1, src1);
duke@435 3554 cmpl(Address(rscratch1, 0), src2);
duke@435 3555 }
duke@435 3556 }
duke@435 3557
duke@435 3558 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
duke@435 3559 if (reachable(src2)) {
duke@435 3560 cmpl(src1, as_Address(src2));
duke@435 3561 } else {
duke@435 3562 lea(rscratch1, src2);
duke@435 3563 cmpl(src1, Address(rscratch1, 0));
duke@435 3564 }
duke@435 3565 }
duke@435 3566
duke@435 3567 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
duke@435 3568 #ifdef _LP64
duke@435 3569 if (src2.is_lval()) {
duke@435 3570 movptr(rscratch1, src2);
duke@435 3571 Assembler::cmpq(src1, rscratch1);
duke@435 3572 } else if (reachable(src2)) {
duke@435 3573 cmpq(src1, as_Address(src2));
duke@435 3574 } else {
duke@435 3575 lea(rscratch1, src2);
duke@435 3576 Assembler::cmpq(src1, Address(rscratch1, 0));
duke@435 3577 }
duke@435 3578 #else
duke@435 3579 if (src2.is_lval()) {
duke@435 3580 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 3581 } else {
duke@435 3582 cmpl(src1, as_Address(src2));
duke@435 3583 }
duke@435 3584 #endif // _LP64
duke@435 3585 }
duke@435 3586
duke@435 3587 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
duke@435 3588 assert(src2.is_lval(), "not a mem-mem compare");
duke@435 3589 #ifdef _LP64
duke@435 3590 // moves src2's literal address
duke@435 3591 movptr(rscratch1, src2);
duke@435 3592 Assembler::cmpq(src1, rscratch1);
duke@435 3593 #else
duke@435 3594 cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
duke@435 3595 #endif // _LP64
duke@435 3596 }
duke@435 3597
duke@435 3598 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
duke@435 3599 assert(!src2.is_lval(), "should use cmpptr");
duke@435 3600
duke@435 3601 if (reachable(src2)) {
duke@435 3602 #ifdef _LP64
duke@435 3603 cmpq(src1, as_Address(src2));
duke@435 3604 #else
duke@435 3605 ShouldNotReachHere();
duke@435 3606 #endif // _LP64
duke@435 3607 } else {
duke@435 3608 lea(rscratch1, src2);
duke@435 3609 Assembler::cmpq(src1, Address(rscratch1, 0));
duke@435 3610 }
duke@435 3611 }
duke@435 3612
duke@435 3613 void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
duke@435 3614 if (reachable(adr)) {
duke@435 3615 #ifdef _LP64
duke@435 3616 cmpxchgq(reg, as_Address(adr));
duke@435 3617 #else
duke@435 3618 cmpxchgl(reg, as_Address(adr));
duke@435 3619 #endif // _LP64
duke@435 3620 } else {
duke@435 3621 lea(rscratch1, adr);
duke@435 3622 cmpxchgq(reg, Address(rscratch1, 0));
duke@435 3623 }
duke@435 3624 }
duke@435 3625
duke@435 3626 void MacroAssembler::incrementl(AddressLiteral dst) {
duke@435 3627 if (reachable(dst)) {
duke@435 3628 incrementl(as_Address(dst));
duke@435 3629 } else {
duke@435 3630 lea(rscratch1, dst);
duke@435 3631 incrementl(Address(rscratch1, 0));
duke@435 3632 }
duke@435 3633 }
duke@435 3634
duke@435 3635 void MacroAssembler::incrementl(ArrayAddress dst) {
duke@435 3636 incrementl(as_Address(dst));
duke@435 3637 }
duke@435 3638
duke@435 3639 void MacroAssembler::lea(Register dst, Address src) {
duke@435 3640 #ifdef _LP64
duke@435 3641 leaq(dst, src);
duke@435 3642 #else
duke@435 3643 leal(dst, src);
duke@435 3644 #endif // _LP64
duke@435 3645 }
duke@435 3646
duke@435 3647 void MacroAssembler::lea(Register dst, AddressLiteral src) {
duke@435 3648 #ifdef _LP64
duke@435 3649 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
duke@435 3650 #else
duke@435 3651 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
duke@435 3652 #endif // _LP64
duke@435 3653 }
duke@435 3654
duke@435 3655 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
duke@435 3656 if (reachable(dst)) {
duke@435 3657 movl(as_Address(dst), src);
duke@435 3658 } else {
duke@435 3659 lea(rscratch1, dst);
duke@435 3660 movl(Address(rscratch1, 0), src);
duke@435 3661 }
duke@435 3662 }
duke@435 3663
duke@435 3664 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
duke@435 3665 if (reachable(src)) {
duke@435 3666 movl(dst, as_Address(src));
duke@435 3667 } else {
duke@435 3668 lea(rscratch1, src);
duke@435 3669 movl(dst, Address(rscratch1, 0));
duke@435 3670 }
duke@435 3671 }
duke@435 3672
duke@435 3673 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
duke@435 3674 if (reachable(src)) {
duke@435 3675 if (UseXmmLoadAndClearUpper) {
duke@435 3676 movsd (dst, as_Address(src));
duke@435 3677 } else {
duke@435 3678 movlpd(dst, as_Address(src));
duke@435 3679 }
duke@435 3680 } else {
duke@435 3681 lea(rscratch1, src);
duke@435 3682 if (UseXmmLoadAndClearUpper) {
duke@435 3683 movsd (dst, Address(rscratch1, 0));
duke@435 3684 } else {
duke@435 3685 movlpd(dst, Address(rscratch1, 0));
duke@435 3686 }
duke@435 3687 }
duke@435 3688 }
duke@435 3689
duke@435 3690 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
duke@435 3691 if (reachable(src)) {
duke@435 3692 movss(dst, as_Address(src));
duke@435 3693 } else {
duke@435 3694 lea(rscratch1, src);
duke@435 3695 movss(dst, Address(rscratch1, 0));
duke@435 3696 }
duke@435 3697 }
duke@435 3698
duke@435 3699 void MacroAssembler::movoop(Register dst, jobject obj) {
duke@435 3700 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3701 }
duke@435 3702
duke@435 3703 void MacroAssembler::movoop(Address dst, jobject obj) {
duke@435 3704 mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3705 movq(dst, rscratch1);
duke@435 3706 }
duke@435 3707
duke@435 3708 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
duke@435 3709 #ifdef _LP64
duke@435 3710 if (src.is_lval()) {
duke@435 3711 mov_literal64(dst, (intptr_t)src.target(), src.rspec());
duke@435 3712 } else {
duke@435 3713 if (reachable(src)) {
duke@435 3714 movq(dst, as_Address(src));
duke@435 3715 } else {
duke@435 3716 lea(rscratch1, src);
duke@435 3717 movq(dst, Address(rscratch1,0));
duke@435 3718 }
duke@435 3719 }
duke@435 3720 #else
duke@435 3721 if (src.is_lval()) {
duke@435 3722 mov_literal32(dst, (intptr_t)src.target(), src.rspec());
duke@435 3723 } else {
duke@435 3724 movl(dst, as_Address(src));
duke@435 3725 }
duke@435 3726 #endif // LP64
duke@435 3727 }
duke@435 3728
duke@435 3729 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
duke@435 3730 #ifdef _LP64
duke@435 3731 movq(as_Address(dst), src);
duke@435 3732 #else
duke@435 3733 movl(as_Address(dst), src);
duke@435 3734 #endif // _LP64
duke@435 3735 }
duke@435 3736
duke@435 3737 void MacroAssembler::pushoop(jobject obj) {
duke@435 3738 #ifdef _LP64
duke@435 3739 movoop(rscratch1, obj);
duke@435 3740 pushq(rscratch1);
duke@435 3741 #else
duke@435 3742 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
duke@435 3743 #endif // _LP64
duke@435 3744 }
duke@435 3745
duke@435 3746 void MacroAssembler::pushptr(AddressLiteral src) {
duke@435 3747 #ifdef _LP64
duke@435 3748 lea(rscratch1, src);
duke@435 3749 if (src.is_lval()) {
duke@435 3750 pushq(rscratch1);
duke@435 3751 } else {
duke@435 3752 pushq(Address(rscratch1, 0));
duke@435 3753 }
duke@435 3754 #else
duke@435 3755 if (src.is_lval()) {
duke@435 3756 push_literal((int32_t)src.target(), src.rspec());
duke@435 3757 else {
duke@435 3758 pushl(as_Address(src));
duke@435 3759 }
duke@435 3760 #endif // _LP64
duke@435 3761 }
duke@435 3762
duke@435 3763 void MacroAssembler::ldmxcsr(AddressLiteral src) {
duke@435 3764 if (reachable(src)) {
duke@435 3765 Assembler::ldmxcsr(as_Address(src));
duke@435 3766 } else {
duke@435 3767 lea(rscratch1, src);
duke@435 3768 Assembler::ldmxcsr(Address(rscratch1, 0));
duke@435 3769 }
duke@435 3770 }
duke@435 3771
duke@435 3772 void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) {
duke@435 3773 if (reachable(src)) {
duke@435 3774 movlpd(dst, as_Address(src));
duke@435 3775 } else {
duke@435 3776 lea(rscratch1, src);
duke@435 3777 movlpd(dst, Address(rscratch1, 0));
duke@435 3778 }
duke@435 3779 }
duke@435 3780
duke@435 3781 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
duke@435 3782 if (reachable(src)) {
duke@435 3783 movss(dst, as_Address(src));
duke@435 3784 } else {
duke@435 3785 lea(rscratch1, src);
duke@435 3786 movss(dst, Address(rscratch1, 0));
duke@435 3787 }
duke@435 3788 }
duke@435 3789 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
duke@435 3790 if (reachable(src)) {
duke@435 3791 xorpd(dst, as_Address(src));
duke@435 3792 } else {
duke@435 3793 lea(rscratch1, src);
duke@435 3794 xorpd(dst, Address(rscratch1, 0));
duke@435 3795 }
duke@435 3796 }
duke@435 3797
duke@435 3798 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
duke@435 3799 if (reachable(src)) {
duke@435 3800 xorps(dst, as_Address(src));
duke@435 3801 } else {
duke@435 3802 lea(rscratch1, src);
duke@435 3803 xorps(dst, Address(rscratch1, 0));
duke@435 3804 }
duke@435 3805 }
duke@435 3806
duke@435 3807 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 3808 if (needs_explicit_null_check(offset)) {
duke@435 3809 // provoke OS NULL exception if reg = NULL by
duke@435 3810 // accessing M[reg] w/o changing any (non-CC) registers
duke@435 3811 cmpq(rax, Address(reg, 0));
duke@435 3812 // Note: should probably use testl(rax, Address(reg, 0));
duke@435 3813 // may be shorter code (however, this version of
duke@435 3814 // testl needs to be implemented first)
duke@435 3815 } else {
duke@435 3816 // nothing to do, (later) access of M[reg + offset]
duke@435 3817 // will provoke OS NULL exception if reg = NULL
duke@435 3818 }
duke@435 3819 }
duke@435 3820
duke@435 3821 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
duke@435 3822 int off = offset();
duke@435 3823 movzbl(dst, src);
duke@435 3824 return off;
duke@435 3825 }
duke@435 3826
duke@435 3827 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
duke@435 3828 int off = offset();
duke@435 3829 movzwl(dst, src);
duke@435 3830 return off;
duke@435 3831 }
duke@435 3832
duke@435 3833 int MacroAssembler::load_signed_byte(Register dst, Address src) {
duke@435 3834 int off = offset();
duke@435 3835 movsbl(dst, src);
duke@435 3836 return off;
duke@435 3837 }
duke@435 3838
duke@435 3839 int MacroAssembler::load_signed_word(Register dst, Address src) {
duke@435 3840 int off = offset();
duke@435 3841 movswl(dst, src);
duke@435 3842 return off;
duke@435 3843 }
duke@435 3844
duke@435 3845 void MacroAssembler::incrementl(Register reg, int value) {
duke@435 3846 if (value == min_jint) { addl(reg, value); return; }
duke@435 3847 if (value < 0) { decrementl(reg, -value); return; }
duke@435 3848 if (value == 0) { ; return; }
duke@435 3849 if (value == 1 && UseIncDec) { incl(reg) ; return; }
duke@435 3850 /* else */ { addl(reg, value) ; return; }
duke@435 3851 }
duke@435 3852
duke@435 3853 void MacroAssembler::decrementl(Register reg, int value) {
duke@435 3854 if (value == min_jint) { subl(reg, value); return; }
duke@435 3855 if (value < 0) { incrementl(reg, -value); return; }
duke@435 3856 if (value == 0) { ; return; }
duke@435 3857 if (value == 1 && UseIncDec) { decl(reg) ; return; }
duke@435 3858 /* else */ { subl(reg, value) ; return; }
duke@435 3859 }
duke@435 3860
duke@435 3861 void MacroAssembler::incrementq(Register reg, int value) {
duke@435 3862 if (value == min_jint) { addq(reg, value); return; }
duke@435 3863 if (value < 0) { decrementq(reg, -value); return; }
duke@435 3864 if (value == 0) { ; return; }
duke@435 3865 if (value == 1 && UseIncDec) { incq(reg) ; return; }
duke@435 3866 /* else */ { addq(reg, value) ; return; }
duke@435 3867 }
duke@435 3868
duke@435 3869 void MacroAssembler::decrementq(Register reg, int value) {
duke@435 3870 if (value == min_jint) { subq(reg, value); return; }
duke@435 3871 if (value < 0) { incrementq(reg, -value); return; }
duke@435 3872 if (value == 0) { ; return; }
duke@435 3873 if (value == 1 && UseIncDec) { decq(reg) ; return; }
duke@435 3874 /* else */ { subq(reg, value) ; return; }
duke@435 3875 }
duke@435 3876
duke@435 3877 void MacroAssembler::incrementl(Address dst, int value) {
duke@435 3878 if (value == min_jint) { addl(dst, value); return; }
duke@435 3879 if (value < 0) { decrementl(dst, -value); return; }
duke@435 3880 if (value == 0) { ; return; }
duke@435 3881 if (value == 1 && UseIncDec) { incl(dst) ; return; }
duke@435 3882 /* else */ { addl(dst, value) ; return; }
duke@435 3883 }
duke@435 3884
duke@435 3885 void MacroAssembler::decrementl(Address dst, int value) {
duke@435 3886 if (value == min_jint) { subl(dst, value); return; }
duke@435 3887 if (value < 0) { incrementl(dst, -value); return; }
duke@435 3888 if (value == 0) { ; return; }
duke@435 3889 if (value == 1 && UseIncDec) { decl(dst) ; return; }
duke@435 3890 /* else */ { subl(dst, value) ; return; }
duke@435 3891 }
duke@435 3892
duke@435 3893 void MacroAssembler::incrementq(Address dst, int value) {
duke@435 3894 if (value == min_jint) { addq(dst, value); return; }
duke@435 3895 if (value < 0) { decrementq(dst, -value); return; }
duke@435 3896 if (value == 0) { ; return; }
duke@435 3897 if (value == 1 && UseIncDec) { incq(dst) ; return; }
duke@435 3898 /* else */ { addq(dst, value) ; return; }
duke@435 3899 }
duke@435 3900
duke@435 3901 void MacroAssembler::decrementq(Address dst, int value) {
duke@435 3902 if (value == min_jint) { subq(dst, value); return; }
duke@435 3903 if (value < 0) { incrementq(dst, -value); return; }
duke@435 3904 if (value == 0) { ; return; }
duke@435 3905 if (value == 1 && UseIncDec) { decq(dst) ; return; }
duke@435 3906 /* else */ { subq(dst, value) ; return; }
duke@435 3907 }
duke@435 3908
duke@435 3909 void MacroAssembler::align(int modulus) {
duke@435 3910 if (offset() % modulus != 0) {
duke@435 3911 nop(modulus - (offset() % modulus));
duke@435 3912 }
duke@435 3913 }
duke@435 3914
duke@435 3915 void MacroAssembler::enter() {
duke@435 3916 pushq(rbp);
duke@435 3917 movq(rbp, rsp);
duke@435 3918 }
duke@435 3919
duke@435 3920 void MacroAssembler::leave() {
duke@435 3921 emit_byte(0xC9); // LEAVE
duke@435 3922 }
duke@435 3923
duke@435 3924 // C++ bool manipulation
duke@435 3925
duke@435 3926 void MacroAssembler::movbool(Register dst, Address src) {
duke@435 3927 if(sizeof(bool) == 1)
duke@435 3928 movb(dst, src);
duke@435 3929 else if(sizeof(bool) == 2)
duke@435 3930 movw(dst, src);
duke@435 3931 else if(sizeof(bool) == 4)
duke@435 3932 movl(dst, src);
duke@435 3933 else {
duke@435 3934 // unsupported
duke@435 3935 ShouldNotReachHere();
duke@435 3936 }
duke@435 3937 }
duke@435 3938
duke@435 3939 void MacroAssembler::movbool(Address dst, bool boolconst) {
duke@435 3940 if(sizeof(bool) == 1)
duke@435 3941 movb(dst, (int) boolconst);
duke@435 3942 else if(sizeof(bool) == 2)
duke@435 3943 movw(dst, (int) boolconst);
duke@435 3944 else if(sizeof(bool) == 4)
duke@435 3945 movl(dst, (int) boolconst);
duke@435 3946 else {
duke@435 3947 // unsupported
duke@435 3948 ShouldNotReachHere();
duke@435 3949 }
duke@435 3950 }
duke@435 3951
duke@435 3952 void MacroAssembler::movbool(Address dst, Register src) {
duke@435 3953 if(sizeof(bool) == 1)
duke@435 3954 movb(dst, src);
duke@435 3955 else if(sizeof(bool) == 2)
duke@435 3956 movw(dst, src);
duke@435 3957 else if(sizeof(bool) == 4)
duke@435 3958 movl(dst, src);
duke@435 3959 else {
duke@435 3960 // unsupported
duke@435 3961 ShouldNotReachHere();
duke@435 3962 }
duke@435 3963 }
duke@435 3964
duke@435 3965 void MacroAssembler::testbool(Register dst) {
duke@435 3966 if(sizeof(bool) == 1)
duke@435 3967 testb(dst, (int) 0xff);
duke@435 3968 else if(sizeof(bool) == 2) {
duke@435 3969 // need testw impl
duke@435 3970 ShouldNotReachHere();
duke@435 3971 } else if(sizeof(bool) == 4)
duke@435 3972 testl(dst, dst);
duke@435 3973 else {
duke@435 3974 // unsupported
duke@435 3975 ShouldNotReachHere();
duke@435 3976 }
duke@435 3977 }
duke@435 3978
duke@435 3979 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
duke@435 3980 Register last_java_fp,
duke@435 3981 address last_java_pc) {
duke@435 3982 // determine last_java_sp register
duke@435 3983 if (!last_java_sp->is_valid()) {
duke@435 3984 last_java_sp = rsp;
duke@435 3985 }
duke@435 3986
duke@435 3987 // last_java_fp is optional
duke@435 3988 if (last_java_fp->is_valid()) {
duke@435 3989 movq(Address(r15_thread, JavaThread::last_Java_fp_offset()),
duke@435 3990 last_java_fp);
duke@435 3991 }
duke@435 3992
duke@435 3993 // last_java_pc is optional
duke@435 3994 if (last_java_pc != NULL) {
duke@435 3995 Address java_pc(r15_thread,
duke@435 3996 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
duke@435 3997 lea(rscratch1, InternalAddress(last_java_pc));
duke@435 3998 movq(java_pc, rscratch1);
duke@435 3999 }
duke@435 4000
duke@435 4001 movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
duke@435 4002 }
duke@435 4003
duke@435 4004 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
duke@435 4005 bool clear_pc) {
duke@435 4006 // we must set sp to zero to clear frame
duke@435 4007 movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
duke@435 4008 // must clear fp, so that compiled frames are not confused; it is
duke@435 4009 // possible that we need it only for debugging
duke@435 4010 if (clear_fp) {
duke@435 4011 movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
duke@435 4012 }
duke@435 4013
duke@435 4014 if (clear_pc) {
duke@435 4015 movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
duke@435 4016 }
duke@435 4017 }
duke@435 4018
duke@435 4019
duke@435 4020 // Implementation of call_VM versions
duke@435 4021
duke@435 4022 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
duke@435 4023 Label L, E;
duke@435 4024
duke@435 4025 #ifdef _WIN64
duke@435 4026 // Windows always allocates space for it's register args
duke@435 4027 assert(num_args <= 4, "only register arguments supported");
duke@435 4028 subq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4029 #endif
duke@435 4030
duke@435 4031 // Align stack if necessary
duke@435 4032 testl(rsp, 15);
duke@435 4033 jcc(Assembler::zero, L);
duke@435 4034
duke@435 4035 subq(rsp, 8);
duke@435 4036 {
duke@435 4037 call(RuntimeAddress(entry_point));
duke@435 4038 }
duke@435 4039 addq(rsp, 8);
duke@435 4040 jmp(E);
duke@435 4041
duke@435 4042 bind(L);
duke@435 4043 {
duke@435 4044 call(RuntimeAddress(entry_point));
duke@435 4045 }
duke@435 4046
duke@435 4047 bind(E);
duke@435 4048
duke@435 4049 #ifdef _WIN64
duke@435 4050 // restore stack pointer
duke@435 4051 addq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4052 #endif
duke@435 4053
duke@435 4054 }
duke@435 4055
duke@435 4056
duke@435 4057 void MacroAssembler::call_VM_base(Register oop_result,
duke@435 4058 Register java_thread,
duke@435 4059 Register last_java_sp,
duke@435 4060 address entry_point,
duke@435 4061 int num_args,
duke@435 4062 bool check_exceptions) {
duke@435 4063 // determine last_java_sp register
duke@435 4064 if (!last_java_sp->is_valid()) {
duke@435 4065 last_java_sp = rsp;
duke@435 4066 }
duke@435 4067
duke@435 4068 // debugging support
duke@435 4069 assert(num_args >= 0, "cannot have negative number of arguments");
duke@435 4070 assert(r15_thread != oop_result,
duke@435 4071 "cannot use the same register for java_thread & oop_result");
duke@435 4072 assert(r15_thread != last_java_sp,
duke@435 4073 "cannot use the same register for java_thread & last_java_sp");
duke@435 4074
duke@435 4075 // set last Java frame before call
duke@435 4076
duke@435 4077 // This sets last_Java_fp which is only needed from interpreted frames
duke@435 4078 // and should really be done only from the interp_masm version before
duke@435 4079 // calling the underlying call_VM. That doesn't happen yet so we set
duke@435 4080 // last_Java_fp here even though some callers don't need it and
duke@435 4081 // also clear it below.
duke@435 4082 set_last_Java_frame(last_java_sp, rbp, NULL);
duke@435 4083
duke@435 4084 {
duke@435 4085 Label L, E;
duke@435 4086
duke@435 4087 // Align stack if necessary
duke@435 4088 #ifdef _WIN64
duke@435 4089 assert(num_args <= 4, "only register arguments supported");
duke@435 4090 // Windows always allocates space for it's register args
duke@435 4091 subq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4092 #endif
duke@435 4093 testl(rsp, 15);
duke@435 4094 jcc(Assembler::zero, L);
duke@435 4095
duke@435 4096 subq(rsp, 8);
duke@435 4097 {
duke@435 4098 call(RuntimeAddress(entry_point));
duke@435 4099 }
duke@435 4100 addq(rsp, 8);
duke@435 4101 jmp(E);
duke@435 4102
duke@435 4103
duke@435 4104 bind(L);
duke@435 4105 {
duke@435 4106 call(RuntimeAddress(entry_point));
duke@435 4107 }
duke@435 4108
duke@435 4109 bind(E);
duke@435 4110
duke@435 4111 #ifdef _WIN64
duke@435 4112 // restore stack pointer
duke@435 4113 addq(rsp, frame::arg_reg_save_area_bytes);
duke@435 4114 #endif
duke@435 4115 }
duke@435 4116
duke@435 4117 #ifdef ASSERT
duke@435 4118 pushq(rax);
duke@435 4119 {
duke@435 4120 Label L;
duke@435 4121 get_thread(rax);
duke@435 4122 cmpq(r15_thread, rax);
duke@435 4123 jcc(Assembler::equal, L);
duke@435 4124 stop("MacroAssembler::call_VM_base: register not callee saved?");
duke@435 4125 bind(L);
duke@435 4126 }
duke@435 4127 popq(rax);
duke@435 4128 #endif
duke@435 4129
duke@435 4130 // reset last Java frame
duke@435 4131 // This really shouldn't have to clear fp set note above at the
duke@435 4132 // call to set_last_Java_frame
duke@435 4133 reset_last_Java_frame(true, false);
duke@435 4134
duke@435 4135 check_and_handle_popframe(noreg);
duke@435 4136 check_and_handle_earlyret(noreg);
duke@435 4137
duke@435 4138 if (check_exceptions) {
duke@435 4139 cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
duke@435 4140 // This used to conditionally jump to forward_exception however it is
duke@435 4141 // possible if we relocate that the branch will not reach. So we must jump
duke@435 4142 // around so we can always reach
duke@435 4143 Label ok;
duke@435 4144 jcc(Assembler::equal, ok);
duke@435 4145 jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 4146 bind(ok);
duke@435 4147 }
duke@435 4148
duke@435 4149 // get oop result if there is one and reset the value in the thread
duke@435 4150 if (oop_result->is_valid()) {
duke@435 4151 movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
duke@435 4152 movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
duke@435 4153 verify_oop(oop_result);
duke@435 4154 }
duke@435 4155 }
duke@435 4156
duke@435 4157 void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
duke@435 4158 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
duke@435 4159
duke@435 4160 void MacroAssembler::call_VM_helper(Register oop_result,
duke@435 4161 address entry_point,
duke@435 4162 int num_args,
duke@435 4163 bool check_exceptions) {
duke@435 4164 // Java thread becomes first argument of C function
duke@435 4165 movq(c_rarg0, r15_thread);
duke@435 4166
duke@435 4167 // We've pushed one address, correct last_Java_sp
duke@435 4168 leaq(rax, Address(rsp, wordSize));
duke@435 4169
duke@435 4170 call_VM_base(oop_result, noreg, rax, entry_point, num_args,
duke@435 4171 check_exceptions);
duke@435 4172 }
duke@435 4173
duke@435 4174
duke@435 4175 void MacroAssembler::call_VM(Register oop_result,
duke@435 4176 address entry_point,
duke@435 4177 bool check_exceptions) {
duke@435 4178 Label C, E;
duke@435 4179 Assembler::call(C, relocInfo::none);
duke@435 4180 jmp(E);
duke@435 4181
duke@435 4182 bind(C);
duke@435 4183 call_VM_helper(oop_result, entry_point, 0, check_exceptions);
duke@435 4184 ret(0);
duke@435 4185
duke@435 4186 bind(E);
duke@435 4187 }
duke@435 4188
duke@435 4189
duke@435 4190 void MacroAssembler::call_VM(Register oop_result,
duke@435 4191 address entry_point,
duke@435 4192 Register arg_1,
duke@435 4193 bool check_exceptions) {
duke@435 4194 assert(rax != arg_1, "smashed argument");
duke@435 4195 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4196
duke@435 4197 Label C, E;
duke@435 4198 Assembler::call(C, relocInfo::none);
duke@435 4199 jmp(E);
duke@435 4200
duke@435 4201 bind(C);
duke@435 4202 // c_rarg0 is reserved for thread
duke@435 4203 if (c_rarg1 != arg_1) {
duke@435 4204 movq(c_rarg1, arg_1);
duke@435 4205 }
duke@435 4206 call_VM_helper(oop_result, entry_point, 1, check_exceptions);
duke@435 4207 ret(0);
duke@435 4208
duke@435 4209 bind(E);
duke@435 4210 }
duke@435 4211
duke@435 4212 void MacroAssembler::call_VM(Register oop_result,
duke@435 4213 address entry_point,
duke@435 4214 Register arg_1,
duke@435 4215 Register arg_2,
duke@435 4216 bool check_exceptions) {
duke@435 4217 assert(rax != arg_1, "smashed argument");
duke@435 4218 assert(rax != arg_2, "smashed argument");
duke@435 4219 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4220 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4221 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4222 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4223
duke@435 4224 Label C, E;
duke@435 4225 Assembler::call(C, relocInfo::none);
duke@435 4226 jmp(E);
duke@435 4227
duke@435 4228 bind(C);
duke@435 4229 // c_rarg0 is reserved for thread
duke@435 4230 if (c_rarg1 != arg_1) {
duke@435 4231 movq(c_rarg1, arg_1);
duke@435 4232 }
duke@435 4233 if (c_rarg2 != arg_2) {
duke@435 4234 movq(c_rarg2, arg_2);
duke@435 4235 }
duke@435 4236 call_VM_helper(oop_result, entry_point, 2, check_exceptions);
duke@435 4237 ret(0);
duke@435 4238
duke@435 4239 bind(E);
duke@435 4240 }
duke@435 4241
duke@435 4242
duke@435 4243 void MacroAssembler::call_VM(Register oop_result,
duke@435 4244 address entry_point,
duke@435 4245 Register arg_1,
duke@435 4246 Register arg_2,
duke@435 4247 Register arg_3,
duke@435 4248 bool check_exceptions) {
duke@435 4249 assert(rax != arg_1, "smashed argument");
duke@435 4250 assert(rax != arg_2, "smashed argument");
duke@435 4251 assert(rax != arg_3, "smashed argument");
duke@435 4252 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4253 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4254 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4255 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4256 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4257 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4258 assert(c_rarg2 != arg_3, "smashed argument");
duke@435 4259 assert(c_rarg3 != arg_1, "smashed argument");
duke@435 4260 assert(c_rarg3 != arg_2, "smashed argument");
duke@435 4261
duke@435 4262 Label C, E;
duke@435 4263 Assembler::call(C, relocInfo::none);
duke@435 4264 jmp(E);
duke@435 4265
duke@435 4266 bind(C);
duke@435 4267 // c_rarg0 is reserved for thread
duke@435 4268 if (c_rarg1 != arg_1) {
duke@435 4269 movq(c_rarg1, arg_1);
duke@435 4270 }
duke@435 4271 if (c_rarg2 != arg_2) {
duke@435 4272 movq(c_rarg2, arg_2);
duke@435 4273 }
duke@435 4274 if (c_rarg3 != arg_3) {
duke@435 4275 movq(c_rarg3, arg_3);
duke@435 4276 }
duke@435 4277 call_VM_helper(oop_result, entry_point, 3, check_exceptions);
duke@435 4278 ret(0);
duke@435 4279
duke@435 4280 bind(E);
duke@435 4281 }
duke@435 4282
duke@435 4283 void MacroAssembler::call_VM(Register oop_result,
duke@435 4284 Register last_java_sp,
duke@435 4285 address entry_point,
duke@435 4286 int num_args,
duke@435 4287 bool check_exceptions) {
duke@435 4288 call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args,
duke@435 4289 check_exceptions);
duke@435 4290 }
duke@435 4291
duke@435 4292 void MacroAssembler::call_VM(Register oop_result,
duke@435 4293 Register last_java_sp,
duke@435 4294 address entry_point,
duke@435 4295 Register arg_1,
duke@435 4296 bool check_exceptions) {
duke@435 4297 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4298 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4299 // c_rarg0 is reserved for thread
duke@435 4300 if (c_rarg1 != arg_1) {
duke@435 4301 movq(c_rarg1, arg_1);
duke@435 4302 }
duke@435 4303 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 4304 }
duke@435 4305
duke@435 4306 void MacroAssembler::call_VM(Register oop_result,
duke@435 4307 Register last_java_sp,
duke@435 4308 address entry_point,
duke@435 4309 Register arg_1,
duke@435 4310 Register arg_2,
duke@435 4311 bool check_exceptions) {
duke@435 4312 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4313 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4314 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4315 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4316 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4317 assert(c_rarg2 != last_java_sp, "smashed argument");
duke@435 4318 // c_rarg0 is reserved for thread
duke@435 4319 if (c_rarg1 != arg_1) {
duke@435 4320 movq(c_rarg1, arg_1);
duke@435 4321 }
duke@435 4322 if (c_rarg2 != arg_2) {
duke@435 4323 movq(c_rarg2, arg_2);
duke@435 4324 }
duke@435 4325 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 4326 }
duke@435 4327
duke@435 4328
duke@435 4329 void MacroAssembler::call_VM(Register oop_result,
duke@435 4330 Register last_java_sp,
duke@435 4331 address entry_point,
duke@435 4332 Register arg_1,
duke@435 4333 Register arg_2,
duke@435 4334 Register arg_3,
duke@435 4335 bool check_exceptions) {
duke@435 4336 assert(c_rarg0 != arg_1, "smashed argument");
duke@435 4337 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4338 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4339 assert(c_rarg1 != arg_2, "smashed argument");
duke@435 4340 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4341 assert(c_rarg1 != last_java_sp, "smashed argument");
duke@435 4342 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4343 assert(c_rarg2 != arg_3, "smashed argument");
duke@435 4344 assert(c_rarg2 != last_java_sp, "smashed argument");
duke@435 4345 assert(c_rarg3 != arg_1, "smashed argument");
duke@435 4346 assert(c_rarg3 != arg_2, "smashed argument");
duke@435 4347 assert(c_rarg3 != last_java_sp, "smashed argument");
duke@435 4348 // c_rarg0 is reserved for thread
duke@435 4349 if (c_rarg1 != arg_1) {
duke@435 4350 movq(c_rarg1, arg_1);
duke@435 4351 }
duke@435 4352 if (c_rarg2 != arg_2) {
duke@435 4353 movq(c_rarg2, arg_2);
duke@435 4354 }
duke@435 4355 if (c_rarg3 != arg_3) {
duke@435 4356 movq(c_rarg2, arg_3);
duke@435 4357 }
duke@435 4358 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 4359 }
duke@435 4360
duke@435 4361 void MacroAssembler::call_VM_leaf(address entry_point, int num_args) {
duke@435 4362 call_VM_leaf_base(entry_point, num_args);
duke@435 4363 }
duke@435 4364
duke@435 4365 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
duke@435 4366 if (c_rarg0 != arg_1) {
duke@435 4367 movq(c_rarg0, arg_1);
duke@435 4368 }
duke@435 4369 call_VM_leaf(entry_point, 1);
duke@435 4370 }
duke@435 4371
duke@435 4372 void MacroAssembler::call_VM_leaf(address entry_point,
duke@435 4373 Register arg_1,
duke@435 4374 Register arg_2) {
duke@435 4375 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4376 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 4377 if (c_rarg0 != arg_1) {
duke@435 4378 movq(c_rarg0, arg_1);
duke@435 4379 }
duke@435 4380 if (c_rarg1 != arg_2) {
duke@435 4381 movq(c_rarg1, arg_2);
duke@435 4382 }
duke@435 4383 call_VM_leaf(entry_point, 2);
duke@435 4384 }
duke@435 4385
duke@435 4386 void MacroAssembler::call_VM_leaf(address entry_point,
duke@435 4387 Register arg_1,
duke@435 4388 Register arg_2,
duke@435 4389 Register arg_3) {
duke@435 4390 assert(c_rarg0 != arg_2, "smashed argument");
duke@435 4391 assert(c_rarg0 != arg_3, "smashed argument");
duke@435 4392 assert(c_rarg1 != arg_1, "smashed argument");
duke@435 4393 assert(c_rarg1 != arg_3, "smashed argument");
duke@435 4394 assert(c_rarg2 != arg_1, "smashed argument");
duke@435 4395 assert(c_rarg2 != arg_2, "smashed argument");
duke@435 4396 if (c_rarg0 != arg_1) {
duke@435 4397 movq(c_rarg0, arg_1);
duke@435 4398 }
duke@435 4399 if (c_rarg1 != arg_2) {
duke@435 4400 movq(c_rarg1, arg_2);
duke@435 4401 }
duke@435 4402 if (c_rarg2 != arg_3) {
duke@435 4403 movq(c_rarg2, arg_3);
duke@435 4404 }
duke@435 4405 call_VM_leaf(entry_point, 3);
duke@435 4406 }
duke@435 4407
duke@435 4408
duke@435 4409 // Calls to C land
duke@435 4410 //
duke@435 4411 // When entering C land, the rbp & rsp of the last Java frame have to
duke@435 4412 // be recorded in the (thread-local) JavaThread object. When leaving C
duke@435 4413 // land, the last Java fp has to be reset to 0. This is required to
duke@435 4414 // allow proper stack traversal.
duke@435 4415 void MacroAssembler::store_check(Register obj) {
duke@435 4416 // Does a store check for the oop in register obj. The content of
duke@435 4417 // register obj is destroyed afterwards.
duke@435 4418 store_check_part_1(obj);
duke@435 4419 store_check_part_2(obj);
duke@435 4420 }
duke@435 4421
duke@435 4422 void MacroAssembler::store_check(Register obj, Address dst) {
duke@435 4423 store_check(obj);
duke@435 4424 }
duke@435 4425
duke@435 4426 // split the store check operation so that other instructions can be
duke@435 4427 // scheduled inbetween
duke@435 4428 void MacroAssembler::store_check_part_1(Register obj) {
duke@435 4429 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 4430 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 4431 shrq(obj, CardTableModRefBS::card_shift);
duke@435 4432 }
duke@435 4433
duke@435 4434 void MacroAssembler::store_check_part_2(Register obj) {
duke@435 4435 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 4436 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 4437 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 4438 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 4439 ExternalAddress cardtable((address)ct->byte_map_base);
duke@435 4440 Address index(noreg, obj, Address::times_1);
duke@435 4441 movb(as_Address(ArrayAddress(cardtable, index)), 0);
duke@435 4442 }
duke@435 4443
duke@435 4444 void MacroAssembler::c2bool(Register x) {
duke@435 4445 // implements x == 0 ? 0 : 1
duke@435 4446 // note: must only look at least-significant byte of x
duke@435 4447 // since C-style booleans are stored in one byte
duke@435 4448 // only! (was bug)
duke@435 4449 andl(x, 0xFF);
duke@435 4450 setb(Assembler::notZero, x);
duke@435 4451 }
duke@435 4452
duke@435 4453 int MacroAssembler::corrected_idivl(Register reg) {
duke@435 4454 // Full implementation of Java idiv and irem; checks for special
duke@435 4455 // case as described in JVM spec., p.243 & p.271. The function
duke@435 4456 // returns the (pc) offset of the idivl instruction - may be needed
duke@435 4457 // for implicit exceptions.
duke@435 4458 //
duke@435 4459 // normal case special case
duke@435 4460 //
duke@435 4461 // input : eax: dividend min_int
duke@435 4462 // reg: divisor (may not be eax/edx) -1
duke@435 4463 //
duke@435 4464 // output: eax: quotient (= eax idiv reg) min_int
duke@435 4465 // edx: remainder (= eax irem reg) 0
duke@435 4466 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
duke@435 4467 const int min_int = 0x80000000;
duke@435 4468 Label normal_case, special_case;
duke@435 4469
duke@435 4470 // check for special case
duke@435 4471 cmpl(rax, min_int);
duke@435 4472 jcc(Assembler::notEqual, normal_case);
duke@435 4473 xorl(rdx, rdx); // prepare edx for possible special case (where
duke@435 4474 // remainder = 0)
duke@435 4475 cmpl(reg, -1);
duke@435 4476 jcc(Assembler::equal, special_case);
duke@435 4477
duke@435 4478 // handle normal case
duke@435 4479 bind(normal_case);
duke@435 4480 cdql();
duke@435 4481 int idivl_offset = offset();
duke@435 4482 idivl(reg);
duke@435 4483
duke@435 4484 // normal and special case exit
duke@435 4485 bind(special_case);
duke@435 4486
duke@435 4487 return idivl_offset;
duke@435 4488 }
duke@435 4489
duke@435 4490 int MacroAssembler::corrected_idivq(Register reg) {
duke@435 4491 // Full implementation of Java ldiv and lrem; checks for special
duke@435 4492 // case as described in JVM spec., p.243 & p.271. The function
duke@435 4493 // returns the (pc) offset of the idivl instruction - may be needed
duke@435 4494 // for implicit exceptions.
duke@435 4495 //
duke@435 4496 // normal case special case
duke@435 4497 //
duke@435 4498 // input : rax: dividend min_long
duke@435 4499 // reg: divisor (may not be eax/edx) -1
duke@435 4500 //
duke@435 4501 // output: rax: quotient (= rax idiv reg) min_long
duke@435 4502 // rdx: remainder (= rax irem reg) 0
duke@435 4503 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
duke@435 4504 static const int64_t min_long = 0x8000000000000000;
duke@435 4505 Label normal_case, special_case;
duke@435 4506
duke@435 4507 // check for special case
duke@435 4508 cmp64(rax, ExternalAddress((address) &min_long));
duke@435 4509 jcc(Assembler::notEqual, normal_case);
duke@435 4510 xorl(rdx, rdx); // prepare rdx for possible special case (where
duke@435 4511 // remainder = 0)
duke@435 4512 cmpq(reg, -1);
duke@435 4513 jcc(Assembler::equal, special_case);
duke@435 4514
duke@435 4515 // handle normal case
duke@435 4516 bind(normal_case);
duke@435 4517 cdqq();
duke@435 4518 int idivq_offset = offset();
duke@435 4519 idivq(reg);
duke@435 4520
duke@435 4521 // normal and special case exit
duke@435 4522 bind(special_case);
duke@435 4523
duke@435 4524 return idivq_offset;
duke@435 4525 }
duke@435 4526
duke@435 4527 void MacroAssembler::push_IU_state() {
duke@435 4528 pushfq(); // Push flags first because pushaq kills them
duke@435 4529 subq(rsp, 8); // Make sure rsp stays 16-byte aligned
duke@435 4530 pushaq();
duke@435 4531 }
duke@435 4532
duke@435 4533 void MacroAssembler::pop_IU_state() {
duke@435 4534 popaq();
duke@435 4535 addq(rsp, 8);
duke@435 4536 popfq();
duke@435 4537 }
duke@435 4538
duke@435 4539 void MacroAssembler::push_FPU_state() {
duke@435 4540 subq(rsp, FPUStateSizeInWords * wordSize);
duke@435 4541 fxsave(Address(rsp, 0));
duke@435 4542 }
duke@435 4543
duke@435 4544 void MacroAssembler::pop_FPU_state() {
duke@435 4545 fxrstor(Address(rsp, 0));
duke@435 4546 addq(rsp, FPUStateSizeInWords * wordSize);
duke@435 4547 }
duke@435 4548
duke@435 4549 // Save Integer and Float state
duke@435 4550 // Warning: Stack must be 16 byte aligned
duke@435 4551 void MacroAssembler::push_CPU_state() {
duke@435 4552 push_IU_state();
duke@435 4553 push_FPU_state();
duke@435 4554 }
duke@435 4555
duke@435 4556 void MacroAssembler::pop_CPU_state() {
duke@435 4557 pop_FPU_state();
duke@435 4558 pop_IU_state();
duke@435 4559 }
duke@435 4560
duke@435 4561 void MacroAssembler::sign_extend_short(Register reg) {
duke@435 4562 movswl(reg, reg);
duke@435 4563 }
duke@435 4564
duke@435 4565 void MacroAssembler::sign_extend_byte(Register reg) {
duke@435 4566 movsbl(reg, reg);
duke@435 4567 }
duke@435 4568
duke@435 4569 void MacroAssembler::division_with_shift(Register reg, int shift_value) {
duke@435 4570 assert (shift_value > 0, "illegal shift value");
duke@435 4571 Label _is_positive;
duke@435 4572 testl (reg, reg);
duke@435 4573 jcc (Assembler::positive, _is_positive);
duke@435 4574 int offset = (1 << shift_value) - 1 ;
duke@435 4575
duke@435 4576 if (offset == 1) {
duke@435 4577 incrementl(reg);
duke@435 4578 } else {
duke@435 4579 addl(reg, offset);
duke@435 4580 }
duke@435 4581
duke@435 4582 bind (_is_positive);
duke@435 4583 sarl(reg, shift_value);
duke@435 4584 }
duke@435 4585
duke@435 4586 void MacroAssembler::round_to_l(Register reg, int modulus) {
duke@435 4587 addl(reg, modulus - 1);
duke@435 4588 andl(reg, -modulus);
duke@435 4589 }
duke@435 4590
duke@435 4591 void MacroAssembler::round_to_q(Register reg, int modulus) {
duke@435 4592 addq(reg, modulus - 1);
duke@435 4593 andq(reg, -modulus);
duke@435 4594 }
duke@435 4595
duke@435 4596 void MacroAssembler::verify_oop(Register reg, const char* s) {
duke@435 4597 if (!VerifyOops) {
duke@435 4598 return;
duke@435 4599 }
duke@435 4600
duke@435 4601 // Pass register number to verify_oop_subroutine
duke@435 4602 char* b = new char[strlen(s) + 50];
duke@435 4603 sprintf(b, "verify_oop: %s: %s", reg->name(), s);
duke@435 4604
duke@435 4605 pushq(rax); // save rax, restored by receiver
duke@435 4606
duke@435 4607 // pass args on stack, only touch rax
duke@435 4608 pushq(reg);
duke@435 4609 // avoid using pushptr, as it modifies scratch registers
duke@435 4610 // and our contract is not to modify anything
duke@435 4611 ExternalAddress buffer((address)b);
duke@435 4612 movptr(rax, buffer.addr());
duke@435 4613 pushq(rax);
duke@435 4614
duke@435 4615 // call indirectly to solve generation ordering problem
duke@435 4616 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 4617 call(rax); // no alignment requirement
duke@435 4618 // everything popped by receiver
duke@435 4619 }
duke@435 4620
duke@435 4621 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
duke@435 4622 if (!VerifyOops) return;
duke@435 4623 // Pass register number to verify_oop_subroutine
duke@435 4624 char* b = new char[strlen(s) + 50];
duke@435 4625 sprintf(b, "verify_oop_addr: %s", s);
duke@435 4626 pushq(rax); // save rax
duke@435 4627 movq(addr, rax);
duke@435 4628 pushq(rax); // pass register argument
duke@435 4629
duke@435 4630
duke@435 4631 // avoid using pushptr, as it modifies scratch registers
duke@435 4632 // and our contract is not to modify anything
duke@435 4633 ExternalAddress buffer((address)b);
duke@435 4634 movptr(rax, buffer.addr());
duke@435 4635 pushq(rax);
duke@435 4636
duke@435 4637 // call indirectly to solve generation ordering problem
duke@435 4638 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
duke@435 4639 call(rax); // no alignment requirement
duke@435 4640 // everything popped by receiver
duke@435 4641 }
duke@435 4642
duke@435 4643
duke@435 4644 void MacroAssembler::stop(const char* msg) {
duke@435 4645 address rip = pc();
duke@435 4646 pushaq(); // get regs on stack
duke@435 4647 lea(c_rarg0, ExternalAddress((address) msg));
duke@435 4648 lea(c_rarg1, InternalAddress(rip));
duke@435 4649 movq(c_rarg2, rsp); // pass pointer to regs array
duke@435 4650 andq(rsp, -16); // align stack as required by ABI
duke@435 4651 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
duke@435 4652 hlt();
duke@435 4653 }
duke@435 4654
duke@435 4655 void MacroAssembler::warn(const char* msg) {
duke@435 4656 pushq(r12);
duke@435 4657 movq(r12, rsp);
duke@435 4658 andq(rsp, -16); // align stack as required by push_CPU_state and call
duke@435 4659
duke@435 4660 push_CPU_state(); // keeps alignment at 16 bytes
duke@435 4661 lea(c_rarg0, ExternalAddress((address) msg));
duke@435 4662 call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
duke@435 4663 pop_CPU_state();
duke@435 4664
duke@435 4665 movq(rsp, r12);
duke@435 4666 popq(r12);
duke@435 4667 }
duke@435 4668
duke@435 4669 void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
duke@435 4670 // In order to get locks to work, we need to fake a in_VM state
duke@435 4671 if (ShowMessageBoxOnError ) {
duke@435 4672 JavaThread* thread = JavaThread::current();
duke@435 4673 JavaThreadState saved_state = thread->thread_state();
duke@435 4674 thread->set_thread_state(_thread_in_vm);
duke@435 4675 #ifndef PRODUCT
duke@435 4676 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
coleenp@548 4677 ttyLocker ttyl;
duke@435 4678 BytecodeCounter::print();
duke@435 4679 }
duke@435 4680 #endif
duke@435 4681 // To see where a verify_oop failed, get $ebx+40/X for this frame.
duke@435 4682 // XXX correct this offset for amd64
duke@435 4683 // This is the value of eip which points to where verify_oop will return.
duke@435 4684 if (os::message_box(msg, "Execution stopped, print registers?")) {
coleenp@548 4685 ttyLocker ttyl;
duke@435 4686 tty->print_cr("rip = 0x%016lx", pc);
duke@435 4687 tty->print_cr("rax = 0x%016lx", regs[15]);
duke@435 4688 tty->print_cr("rbx = 0x%016lx", regs[12]);
duke@435 4689 tty->print_cr("rcx = 0x%016lx", regs[14]);
duke@435 4690 tty->print_cr("rdx = 0x%016lx", regs[13]);
duke@435 4691 tty->print_cr("rdi = 0x%016lx", regs[8]);
duke@435 4692 tty->print_cr("rsi = 0x%016lx", regs[9]);
duke@435 4693 tty->print_cr("rbp = 0x%016lx", regs[10]);
duke@435 4694 tty->print_cr("rsp = 0x%016lx", regs[11]);
duke@435 4695 tty->print_cr("r8 = 0x%016lx", regs[7]);
duke@435 4696 tty->print_cr("r9 = 0x%016lx", regs[6]);
duke@435 4697 tty->print_cr("r10 = 0x%016lx", regs[5]);
duke@435 4698 tty->print_cr("r11 = 0x%016lx", regs[4]);
duke@435 4699 tty->print_cr("r12 = 0x%016lx", regs[3]);
duke@435 4700 tty->print_cr("r13 = 0x%016lx", regs[2]);
duke@435 4701 tty->print_cr("r14 = 0x%016lx", regs[1]);
duke@435 4702 tty->print_cr("r15 = 0x%016lx", regs[0]);
duke@435 4703 BREAKPOINT;
duke@435 4704 }
duke@435 4705 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
duke@435 4706 } else {
coleenp@548 4707 ttyLocker ttyl;
duke@435 4708 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
duke@435 4709 msg);
duke@435 4710 }
duke@435 4711 }
duke@435 4712
duke@435 4713 void MacroAssembler::os_breakpoint() {
duke@435 4714 // instead of directly emitting a breakpoint, call os:breakpoint for
duke@435 4715 // better debugability
duke@435 4716 // This shouldn't need alignment, it's an empty function
duke@435 4717 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
duke@435 4718 }
duke@435 4719
duke@435 4720 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 4721 // We use the current thread pointer to calculate a thread specific
duke@435 4722 // offset to write to within the page. This minimizes bus traffic
duke@435 4723 // due to cache line collision.
duke@435 4724 void MacroAssembler::serialize_memory(Register thread,
duke@435 4725 Register tmp) {
duke@435 4726
duke@435 4727 movl(tmp, thread);
duke@435 4728 shrl(tmp, os::get_serialize_page_shift_count());
duke@435 4729 andl(tmp, (os::vm_page_size() - sizeof(int)));
duke@435 4730
duke@435 4731 Address index(noreg, tmp, Address::times_1);
duke@435 4732 ExternalAddress page(os::get_memory_serialize_page());
duke@435 4733
duke@435 4734 movptr(ArrayAddress(page, index), tmp);
duke@435 4735 }
duke@435 4736
duke@435 4737 void MacroAssembler::verify_tlab() {
duke@435 4738 #ifdef ASSERT
duke@435 4739 if (UseTLAB) {
duke@435 4740 Label next, ok;
duke@435 4741 Register t1 = rsi;
duke@435 4742
duke@435 4743 pushq(t1);
duke@435 4744
duke@435 4745 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4746 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
duke@435 4747 jcc(Assembler::aboveEqual, next);
duke@435 4748 stop("assert(top >= start)");
duke@435 4749 should_not_reach_here();
duke@435 4750
duke@435 4751 bind(next);
duke@435 4752 movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4753 cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4754 jcc(Assembler::aboveEqual, ok);
duke@435 4755 stop("assert(top <= end)");
duke@435 4756 should_not_reach_here();
duke@435 4757
duke@435 4758 bind(ok);
duke@435 4759
duke@435 4760 popq(t1);
duke@435 4761 }
duke@435 4762 #endif
duke@435 4763 }
duke@435 4764
duke@435 4765 // Defines obj, preserves var_size_in_bytes
duke@435 4766 void MacroAssembler::eden_allocate(Register obj,
duke@435 4767 Register var_size_in_bytes,
duke@435 4768 int con_size_in_bytes,
duke@435 4769 Register t1,
duke@435 4770 Label& slow_case) {
duke@435 4771 assert(obj == rax, "obj must be in rax for cmpxchg");
duke@435 4772 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4773 Register end = t1;
duke@435 4774 Label retry;
duke@435 4775 bind(retry);
duke@435 4776 ExternalAddress heap_top((address) Universe::heap()->top_addr());
duke@435 4777 movptr(obj, heap_top);
duke@435 4778 if (var_size_in_bytes == noreg) {
duke@435 4779 leaq(end, Address(obj, con_size_in_bytes));
duke@435 4780 } else {
duke@435 4781 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4782 }
duke@435 4783 // if end < obj then we wrapped around => object too long => slow case
duke@435 4784 cmpq(end, obj);
duke@435 4785 jcc(Assembler::below, slow_case);
duke@435 4786 cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
duke@435 4787
duke@435 4788 jcc(Assembler::above, slow_case);
duke@435 4789 // Compare obj with the top addr, and if still equal, store the new
duke@435 4790 // top addr in end at the address of the top addr pointer. Sets ZF
duke@435 4791 // if was equal, and clears it otherwise. Use lock prefix for
duke@435 4792 // atomicity on MPs.
duke@435 4793 if (os::is_MP()) {
duke@435 4794 lock();
duke@435 4795 }
duke@435 4796 cmpxchgptr(end, heap_top);
duke@435 4797 // if someone beat us on the allocation, try again, otherwise continue
duke@435 4798 jcc(Assembler::notEqual, retry);
duke@435 4799 }
duke@435 4800
duke@435 4801 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
duke@435 4802 void MacroAssembler::tlab_allocate(Register obj,
duke@435 4803 Register var_size_in_bytes,
duke@435 4804 int con_size_in_bytes,
duke@435 4805 Register t1,
duke@435 4806 Register t2,
duke@435 4807 Label& slow_case) {
duke@435 4808 assert_different_registers(obj, t1, t2);
duke@435 4809 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4810 Register end = t2;
duke@435 4811
duke@435 4812 verify_tlab();
duke@435 4813
duke@435 4814 movq(obj, Address(r15_thread, JavaThread::tlab_top_offset()));
duke@435 4815 if (var_size_in_bytes == noreg) {
duke@435 4816 leaq(end, Address(obj, con_size_in_bytes));
duke@435 4817 } else {
duke@435 4818 leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
duke@435 4819 }
duke@435 4820 cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset()));
duke@435 4821 jcc(Assembler::above, slow_case);
duke@435 4822
duke@435 4823 // update the tlab top pointer
duke@435 4824 movq(Address(r15_thread, JavaThread::tlab_top_offset()), end);
duke@435 4825
duke@435 4826 // recover var_size_in_bytes if necessary
duke@435 4827 if (var_size_in_bytes == end) {
duke@435 4828 subq(var_size_in_bytes, obj);
duke@435 4829 }
duke@435 4830 verify_tlab();
duke@435 4831 }
duke@435 4832
duke@435 4833 // Preserves rbx and rdx.
duke@435 4834 void MacroAssembler::tlab_refill(Label& retry,
duke@435 4835 Label& try_eden,
duke@435 4836 Label& slow_case) {
duke@435 4837 Register top = rax;
duke@435 4838 Register t1 = rcx;
duke@435 4839 Register t2 = rsi;
duke@435 4840 Register t3 = r10;
duke@435 4841 Register thread_reg = r15_thread;
duke@435 4842 assert_different_registers(top, thread_reg, t1, t2, t3,
duke@435 4843 /* preserve: */ rbx, rdx);
duke@435 4844 Label do_refill, discard_tlab;
duke@435 4845
duke@435 4846 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4847 // No allocation in the shared eden.
duke@435 4848 jmp(slow_case);
duke@435 4849 }
duke@435 4850
duke@435 4851 movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
duke@435 4852 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
duke@435 4853
duke@435 4854 // calculate amount of free space
duke@435 4855 subq(t1, top);
duke@435 4856 shrq(t1, LogHeapWordSize);
duke@435 4857
duke@435 4858 // Retain tlab and allocate object in shared space if
duke@435 4859 // the amount free in the tlab is too large to discard.
duke@435 4860 cmpq(t1, Address(thread_reg, // size_t
duke@435 4861 in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
duke@435 4862 jcc(Assembler::lessEqual, discard_tlab);
duke@435 4863
duke@435 4864 // Retain
duke@435 4865 mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
duke@435 4866 addq(Address(thread_reg, // size_t
duke@435 4867 in_bytes(JavaThread::tlab_refill_waste_limit_offset())),
duke@435 4868 t2);
duke@435 4869 if (TLABStats) {
duke@435 4870 // increment number of slow_allocations
duke@435 4871 addl(Address(thread_reg, // unsigned int
duke@435 4872 in_bytes(JavaThread::tlab_slow_allocations_offset())),
duke@435 4873 1);
duke@435 4874 }
duke@435 4875 jmp(try_eden);
duke@435 4876
duke@435 4877 bind(discard_tlab);
duke@435 4878 if (TLABStats) {
duke@435 4879 // increment number of refills
duke@435 4880 addl(Address(thread_reg, // unsigned int
duke@435 4881 in_bytes(JavaThread::tlab_number_of_refills_offset())),
duke@435 4882 1);
duke@435 4883 // accumulate wastage -- t1 is amount free in tlab
duke@435 4884 addl(Address(thread_reg, // unsigned int
duke@435 4885 in_bytes(JavaThread::tlab_fast_refill_waste_offset())),
duke@435 4886 t1);
duke@435 4887 }
duke@435 4888
duke@435 4889 // if tlab is currently allocated (top or end != null) then
duke@435 4890 // fill [top, end + alignment_reserve) with array object
duke@435 4891 testq(top, top);
duke@435 4892 jcc(Assembler::zero, do_refill);
duke@435 4893
duke@435 4894 // set up the mark word
duke@435 4895 mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2));
duke@435 4896 movq(Address(top, oopDesc::mark_offset_in_bytes()), t3);
duke@435 4897 // set the length to the remaining space
duke@435 4898 subq(t1, typeArrayOopDesc::header_size(T_INT));
duke@435 4899 addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve());
duke@435 4900 shlq(t1, log2_intptr(HeapWordSize / sizeof(jint)));
duke@435 4901 movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
duke@435 4902 // set klass to intArrayKlass
duke@435 4903 movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
coleenp@548 4904 store_klass(top, t1);
duke@435 4905
duke@435 4906 // refill the tlab with an eden allocation
duke@435 4907 bind(do_refill);
duke@435 4908 movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4909 shlq(t1, LogHeapWordSize);
duke@435 4910 // add object_size ??
duke@435 4911 eden_allocate(top, t1, 0, t2, slow_case);
duke@435 4912
duke@435 4913 // Check that t1 was preserved in eden_allocate.
duke@435 4914 #ifdef ASSERT
duke@435 4915 if (UseTLAB) {
duke@435 4916 Label ok;
duke@435 4917 Register tsize = rsi;
duke@435 4918 assert_different_registers(tsize, thread_reg, t1);
duke@435 4919 pushq(tsize);
duke@435 4920 movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
duke@435 4921 shlq(tsize, LogHeapWordSize);
duke@435 4922 cmpq(t1, tsize);
duke@435 4923 jcc(Assembler::equal, ok);
duke@435 4924 stop("assert(t1 != tlab size)");
duke@435 4925 should_not_reach_here();
duke@435 4926
duke@435 4927 bind(ok);
duke@435 4928 popq(tsize);
duke@435 4929 }
duke@435 4930 #endif
duke@435 4931 movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
duke@435 4932 movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
duke@435 4933 addq(top, t1);
duke@435 4934 subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
duke@435 4935 movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
duke@435 4936 verify_tlab();
duke@435 4937 jmp(retry);
duke@435 4938 }
duke@435 4939
duke@435 4940
duke@435 4941 int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
duke@435 4942 bool swap_reg_contains_mark,
duke@435 4943 Label& done, Label* slow_case,
duke@435 4944 BiasedLockingCounters* counters) {
duke@435 4945 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 4946 assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
duke@435 4947 assert(tmp_reg != noreg, "tmp_reg must be supplied");
duke@435 4948 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
duke@435 4949 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 4950 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 4951 Address saved_mark_addr(lock_reg, 0);
duke@435 4952
duke@435 4953 if (PrintBiasedLockingStatistics && counters == NULL)
duke@435 4954 counters = BiasedLocking::counters();
duke@435 4955
duke@435 4956 // Biased locking
duke@435 4957 // See whether the lock is currently biased toward our thread and
duke@435 4958 // whether the epoch is still valid
duke@435 4959 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 4960 // pointers to allow age to be placed into low bits
duke@435 4961 // First check to see whether biasing is even enabled for this object
duke@435 4962 Label cas_label;
duke@435 4963 int null_check_offset = -1;
duke@435 4964 if (!swap_reg_contains_mark) {
duke@435 4965 null_check_offset = offset();
duke@435 4966 movq(swap_reg, mark_addr);
duke@435 4967 }
duke@435 4968 movq(tmp_reg, swap_reg);
duke@435 4969 andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 4970 cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
duke@435 4971 jcc(Assembler::notEqual, cas_label);
duke@435 4972 // The bias pattern is present in the object's header. Need to check
duke@435 4973 // whether the bias owner and the epoch are both still current.
coleenp@548 4974 load_klass(tmp_reg, obj_reg);
duke@435 4975 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 4976 orq(tmp_reg, r15_thread);
duke@435 4977 xorq(tmp_reg, swap_reg);
duke@435 4978 andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
duke@435 4979 if (counters != NULL) {
duke@435 4980 cond_inc32(Assembler::zero,
duke@435 4981 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
duke@435 4982 }
duke@435 4983 jcc(Assembler::equal, done);
duke@435 4984
duke@435 4985 Label try_revoke_bias;
duke@435 4986 Label try_rebias;
duke@435 4987
duke@435 4988 // At this point we know that the header has the bias pattern and
duke@435 4989 // that we are not the bias owner in the current epoch. We need to
duke@435 4990 // figure out more details about the state of the header in order to
duke@435 4991 // know what operations can be legally performed on the object's
duke@435 4992 // header.
duke@435 4993
duke@435 4994 // If the low three bits in the xor result aren't clear, that means
duke@435 4995 // the prototype header is no longer biased and we have to revoke
duke@435 4996 // the bias on this object.
duke@435 4997 testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 4998 jcc(Assembler::notZero, try_revoke_bias);
duke@435 4999
duke@435 5000 // Biasing is still enabled for this data type. See whether the
duke@435 5001 // epoch of the current bias is still valid, meaning that the epoch
duke@435 5002 // bits of the mark word are equal to the epoch bits of the
duke@435 5003 // prototype header. (Note that the prototype header's epoch bits
duke@435 5004 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 5005 // toward the current thread. Note that we must be absolutely sure
duke@435 5006 // that the current epoch is invalid in order to do this because
duke@435 5007 // otherwise the manipulations it performs on the mark word are
duke@435 5008 // illegal.
duke@435 5009 testq(tmp_reg, markOopDesc::epoch_mask_in_place);
duke@435 5010 jcc(Assembler::notZero, try_rebias);
duke@435 5011
duke@435 5012 // The epoch of the current bias is still valid but we know nothing
duke@435 5013 // about the owner; it might be set or it might be clear. Try to
duke@435 5014 // acquire the bias of the object using an atomic operation. If this
duke@435 5015 // fails we will go in to the runtime to revoke the object's bias.
duke@435 5016 // Note that we first construct the presumed unbiased header so we
duke@435 5017 // don't accidentally blow away another thread's valid bias.
duke@435 5018 andq(swap_reg,
duke@435 5019 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
duke@435 5020 movq(tmp_reg, swap_reg);
duke@435 5021 orq(tmp_reg, r15_thread);
duke@435 5022 if (os::is_MP()) {
duke@435 5023 lock();
duke@435 5024 }
duke@435 5025 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5026 // If the biasing toward our thread failed, this means that
duke@435 5027 // another thread succeeded in biasing it toward itself and we
duke@435 5028 // need to revoke that bias. The revocation will occur in the
duke@435 5029 // interpreter runtime in the slow case.
duke@435 5030 if (counters != NULL) {
duke@435 5031 cond_inc32(Assembler::zero,
duke@435 5032 ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
duke@435 5033 }
duke@435 5034 if (slow_case != NULL) {
duke@435 5035 jcc(Assembler::notZero, *slow_case);
duke@435 5036 }
duke@435 5037 jmp(done);
duke@435 5038
duke@435 5039 bind(try_rebias);
duke@435 5040 // At this point we know the epoch has expired, meaning that the
duke@435 5041 // current "bias owner", if any, is actually invalid. Under these
duke@435 5042 // circumstances _only_, we are allowed to use the current header's
duke@435 5043 // value as the comparison value when doing the cas to acquire the
duke@435 5044 // bias in the current epoch. In other words, we allow transfer of
duke@435 5045 // the bias from one thread to another directly in this situation.
duke@435 5046 //
duke@435 5047 // FIXME: due to a lack of registers we currently blow away the age
duke@435 5048 // bits in this situation. Should attempt to preserve them.
coleenp@548 5049 load_klass(tmp_reg, obj_reg);
duke@435 5050 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 5051 orq(tmp_reg, r15_thread);
duke@435 5052 if (os::is_MP()) {
duke@435 5053 lock();
duke@435 5054 }
duke@435 5055 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5056 // If the biasing toward our thread failed, then another thread
duke@435 5057 // succeeded in biasing it toward itself and we need to revoke that
duke@435 5058 // bias. The revocation will occur in the runtime in the slow case.
duke@435 5059 if (counters != NULL) {
duke@435 5060 cond_inc32(Assembler::zero,
duke@435 5061 ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
duke@435 5062 }
duke@435 5063 if (slow_case != NULL) {
duke@435 5064 jcc(Assembler::notZero, *slow_case);
duke@435 5065 }
duke@435 5066 jmp(done);
duke@435 5067
duke@435 5068 bind(try_revoke_bias);
duke@435 5069 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 5070 // more, indicating that objects of this data type are not supposed
duke@435 5071 // to be biased any more. We are going to try to reset the mark of
duke@435 5072 // this object to the prototype value and fall through to the
duke@435 5073 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 5074 // that another thread raced us for the privilege of revoking the
duke@435 5075 // bias of this particular object, so it's okay to continue in the
duke@435 5076 // normal locking code.
duke@435 5077 //
duke@435 5078 // FIXME: due to a lack of registers we currently blow away the age
duke@435 5079 // bits in this situation. Should attempt to preserve them.
coleenp@548 5080 load_klass(tmp_reg, obj_reg);
duke@435 5081 movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
duke@435 5082 if (os::is_MP()) {
duke@435 5083 lock();
duke@435 5084 }
duke@435 5085 cmpxchgq(tmp_reg, Address(obj_reg, 0));
duke@435 5086 // Fall through to the normal CAS-based lock, because no matter what
duke@435 5087 // the result of the above CAS, some thread must have succeeded in
duke@435 5088 // removing the bias bit from the object's header.
duke@435 5089 if (counters != NULL) {
duke@435 5090 cond_inc32(Assembler::zero,
duke@435 5091 ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
duke@435 5092 }
duke@435 5093
duke@435 5094 bind(cas_label);
duke@435 5095
duke@435 5096 return null_check_offset;
duke@435 5097 }
duke@435 5098
duke@435 5099
duke@435 5100 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
duke@435 5101 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 5102
duke@435 5103 // Check for biased locking unlock case, which is a no-op
duke@435 5104 // Note: we do not have to check the thread ID for two reasons.
duke@435 5105 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 5106 // a higher level. Second, if the bias was revoked while we held the
duke@435 5107 // lock, the object could not be rebiased toward another thread, so
duke@435 5108 // the bias bit would be clear.
duke@435 5109 movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
duke@435 5110 andq(temp_reg, markOopDesc::biased_lock_mask_in_place);
duke@435 5111 cmpq(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 5112 jcc(Assembler::equal, done);
duke@435 5113 }
duke@435 5114
duke@435 5115
coleenp@548 5116 void MacroAssembler::load_klass(Register dst, Register src) {
coleenp@548 5117 if (UseCompressedOops) {
coleenp@548 5118 movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
coleenp@548 5119 decode_heap_oop_not_null(dst);
coleenp@548 5120 } else {
coleenp@548 5121 movq(dst, Address(src, oopDesc::klass_offset_in_bytes()));
coleenp@548 5122 }
coleenp@548 5123 }
coleenp@548 5124
coleenp@548 5125 void MacroAssembler::store_klass(Register dst, Register src) {
coleenp@548 5126 if (UseCompressedOops) {
coleenp@548 5127 encode_heap_oop_not_null(src);
coleenp@548 5128 // zero the entire klass field first as the gap needs to be zeroed too.
coleenp@548 5129 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), NULL_WORD);
coleenp@548 5130 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
coleenp@548 5131 } else {
coleenp@548 5132 movq(Address(dst, oopDesc::klass_offset_in_bytes()), src);
coleenp@548 5133 }
coleenp@548 5134 }
coleenp@548 5135
coleenp@548 5136 void MacroAssembler::load_heap_oop(Register dst, Address src) {
coleenp@548 5137 if (UseCompressedOops) {
coleenp@548 5138 movl(dst, src);
coleenp@548 5139 decode_heap_oop(dst);
coleenp@548 5140 } else {
coleenp@548 5141 movq(dst, src);
coleenp@548 5142 }
coleenp@548 5143 }
coleenp@548 5144
coleenp@548 5145 void MacroAssembler::store_heap_oop(Address dst, Register src) {
coleenp@548 5146 if (UseCompressedOops) {
coleenp@548 5147 assert(!dst.uses(src), "not enough registers");
coleenp@548 5148 encode_heap_oop(src);
coleenp@548 5149 movl(dst, src);
coleenp@548 5150 } else {
coleenp@548 5151 movq(dst, src);
coleenp@548 5152 }
coleenp@548 5153 }
coleenp@548 5154
coleenp@548 5155 // Algorithm must match oop.inline.hpp encode_heap_oop.
coleenp@548 5156 void MacroAssembler::encode_heap_oop(Register r) {
coleenp@548 5157 assert (UseCompressedOops, "should be compressed");
coleenp@548 5158 #ifdef ASSERT
coleenp@548 5159 Label ok;
coleenp@548 5160 pushq(rscratch1); // cmpptr trashes rscratch1
coleenp@548 5161 cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
coleenp@548 5162 jcc(Assembler::equal, ok);
coleenp@548 5163 stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
coleenp@548 5164 bind(ok);
coleenp@548 5165 popq(rscratch1);
coleenp@548 5166 #endif
coleenp@548 5167 verify_oop(r);
coleenp@548 5168 testq(r, r);
coleenp@548 5169 cmovq(Assembler::equal, r, r12_heapbase);
coleenp@548 5170 subq(r, r12_heapbase);
coleenp@548 5171 shrq(r, LogMinObjAlignmentInBytes);
coleenp@548 5172 }
coleenp@548 5173
coleenp@548 5174 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 5175 assert (UseCompressedOops, "should be compressed");
coleenp@548 5176 #ifdef ASSERT
coleenp@548 5177 Label ok;
coleenp@548 5178 testq(r, r);
coleenp@548 5179 jcc(Assembler::notEqual, ok);
coleenp@548 5180 stop("null oop passed to encode_heap_oop_not_null");
coleenp@548 5181 bind(ok);
coleenp@548 5182 #endif
coleenp@548 5183 verify_oop(r);
coleenp@548 5184 subq(r, r12_heapbase);
coleenp@548 5185 shrq(r, LogMinObjAlignmentInBytes);
coleenp@548 5186 }
coleenp@548 5187
coleenp@548 5188 void MacroAssembler::decode_heap_oop(Register r) {
coleenp@548 5189 assert (UseCompressedOops, "should be compressed");
coleenp@548 5190 #ifdef ASSERT
coleenp@548 5191 Label ok;
coleenp@548 5192 pushq(rscratch1);
coleenp@548 5193 cmpptr(r12_heapbase,
coleenp@548 5194 ExternalAddress((address)Universe::heap_base_addr()));
coleenp@548 5195 jcc(Assembler::equal, ok);
coleenp@548 5196 stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
coleenp@548 5197 bind(ok);
coleenp@548 5198 popq(rscratch1);
coleenp@548 5199 #endif
coleenp@548 5200
coleenp@548 5201 Label done;
coleenp@548 5202 shlq(r, LogMinObjAlignmentInBytes);
coleenp@548 5203 jccb(Assembler::equal, done);
coleenp@548 5204 addq(r, r12_heapbase);
coleenp@548 5205 #if 0
coleenp@548 5206 // alternate decoding probably a wash.
coleenp@548 5207 testq(r, r);
coleenp@548 5208 jccb(Assembler::equal, done);
coleenp@548 5209 leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
coleenp@548 5210 #endif
coleenp@548 5211 bind(done);
coleenp@548 5212 verify_oop(r);
coleenp@548 5213 }
coleenp@548 5214
coleenp@548 5215 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 5216 assert (UseCompressedOops, "should only be used for compressed headers");
coleenp@548 5217 // Cannot assert, unverified entry point counts instructions (see .ad file)
coleenp@548 5218 // vtableStubs also counts instructions in pd_code_size_limit.
coleenp@548 5219 assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
coleenp@548 5220 leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
coleenp@548 5221 }
coleenp@548 5222
duke@435 5223 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 5224 switch (cond) {
duke@435 5225 // Note some conditions are synonyms for others
duke@435 5226 case Assembler::zero: return Assembler::notZero;
duke@435 5227 case Assembler::notZero: return Assembler::zero;
duke@435 5228 case Assembler::less: return Assembler::greaterEqual;
duke@435 5229 case Assembler::lessEqual: return Assembler::greater;
duke@435 5230 case Assembler::greater: return Assembler::lessEqual;
duke@435 5231 case Assembler::greaterEqual: return Assembler::less;
duke@435 5232 case Assembler::below: return Assembler::aboveEqual;
duke@435 5233 case Assembler::belowEqual: return Assembler::above;
duke@435 5234 case Assembler::above: return Assembler::belowEqual;
duke@435 5235 case Assembler::aboveEqual: return Assembler::below;
duke@435 5236 case Assembler::overflow: return Assembler::noOverflow;
duke@435 5237 case Assembler::noOverflow: return Assembler::overflow;
duke@435 5238 case Assembler::negative: return Assembler::positive;
duke@435 5239 case Assembler::positive: return Assembler::negative;
duke@435 5240 case Assembler::parity: return Assembler::noParity;
duke@435 5241 case Assembler::noParity: return Assembler::parity;
duke@435 5242 }
duke@435 5243 ShouldNotReachHere(); return Assembler::overflow;
duke@435 5244 }
duke@435 5245
duke@435 5246
duke@435 5247 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
duke@435 5248 Condition negated_cond = negate_condition(cond);
duke@435 5249 Label L;
duke@435 5250 jcc(negated_cond, L);
duke@435 5251 atomic_incl(counter_addr);
duke@435 5252 bind(L);
duke@435 5253 }
duke@435 5254
duke@435 5255 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
duke@435 5256 pushfq();
duke@435 5257 if (os::is_MP())
duke@435 5258 lock();
duke@435 5259 incrementl(counter_addr);
duke@435 5260 popfq();
duke@435 5261 }
duke@435 5262
duke@435 5263 SkipIfEqual::SkipIfEqual(
duke@435 5264 MacroAssembler* masm, const bool* flag_addr, bool value) {
duke@435 5265 _masm = masm;
duke@435 5266 _masm->cmp8(ExternalAddress((address)flag_addr), value);
duke@435 5267 _masm->jcc(Assembler::equal, _label);
duke@435 5268 }
duke@435 5269
duke@435 5270 SkipIfEqual::~SkipIfEqual() {
duke@435 5271 _masm->bind(_label);
duke@435 5272 }
duke@435 5273
duke@435 5274 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
duke@435 5275 movq(tmp, rsp);
duke@435 5276 // Bang stack for total size given plus shadow page size.
duke@435 5277 // Bang one page at a time because large size can bang beyond yellow and
duke@435 5278 // red zones.
duke@435 5279 Label loop;
duke@435 5280 bind(loop);
duke@435 5281 movl(Address(tmp, (-os::vm_page_size())), size );
duke@435 5282 subq(tmp, os::vm_page_size());
duke@435 5283 subl(size, os::vm_page_size());
duke@435 5284 jcc(Assembler::greater, loop);
duke@435 5285
duke@435 5286 // Bang down shadow pages too.
duke@435 5287 // The -1 because we already subtracted 1 page.
duke@435 5288 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 5289 movq(Address(tmp, (-i*os::vm_page_size())), size );
duke@435 5290 }
duke@435 5291 }
coleenp@548 5292
coleenp@548 5293 void MacroAssembler::reinit_heapbase() {
coleenp@548 5294 if (UseCompressedOops) {
coleenp@548 5295 movptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
coleenp@548 5296 }
coleenp@548 5297 }

mercurial