src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Wed, 17 Mar 2010 10:22:41 +0100

author
twisti
date
Wed, 17 Mar 2010 10:22:41 +0100
changeset 1736
fc2c71045ada
parent 1732
c466efa608d5
child 1804
0a43776437b6
permissions
-rw-r--r--

6934966: JSR 292 add C1 logic for saved SP over MethodHandle calls
Summary: The logic for x86 C1 to save the SP over MH calls is pretty straight forward but SPARC handles that differently.
Reviewed-by: never, jrose

duke@435 1 /*
twisti@1639 2 * Copyright 2000-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 30 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 31 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 32
duke@435 33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 36 // of 128-bits operands for SSE instructions.
duke@435 37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 38 // Store the value to a 128-bits operand.
duke@435 39 operand[0] = lo;
duke@435 40 operand[1] = hi;
duke@435 41 return operand;
duke@435 42 }
duke@435 43
duke@435 44 // Buffer for 128-bits masks used by SSE instructions.
duke@435 45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 46
duke@435 47 // Static initialization during VM startup.
duke@435 48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 52
duke@435 53
duke@435 54
duke@435 55 NEEDS_CLEANUP // remove this definitions ?
duke@435 56 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 57 const Register SYNC_header = rax; // synchronization header
duke@435 58 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 59
duke@435 60 #define __ _masm->
duke@435 61
duke@435 62
duke@435 63 static void select_different_registers(Register preserve,
duke@435 64 Register extra,
duke@435 65 Register &tmp1,
duke@435 66 Register &tmp2) {
duke@435 67 if (tmp1 == preserve) {
duke@435 68 assert_different_registers(tmp1, tmp2, extra);
duke@435 69 tmp1 = extra;
duke@435 70 } else if (tmp2 == preserve) {
duke@435 71 assert_different_registers(tmp1, tmp2, extra);
duke@435 72 tmp2 = extra;
duke@435 73 }
duke@435 74 assert_different_registers(preserve, tmp1, tmp2);
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78
duke@435 79 static void select_different_registers(Register preserve,
duke@435 80 Register extra,
duke@435 81 Register &tmp1,
duke@435 82 Register &tmp2,
duke@435 83 Register &tmp3) {
duke@435 84 if (tmp1 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 86 tmp1 = extra;
duke@435 87 } else if (tmp2 == preserve) {
duke@435 88 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 89 tmp2 = extra;
duke@435 90 } else if (tmp3 == preserve) {
duke@435 91 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 92 tmp3 = extra;
duke@435 93 }
duke@435 94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98
duke@435 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 100 if (opr->is_constant()) {
duke@435 101 LIR_Const* constant = opr->as_constant_ptr();
duke@435 102 switch (constant->type()) {
duke@435 103 case T_INT: {
duke@435 104 return true;
duke@435 105 }
duke@435 106
duke@435 107 default:
duke@435 108 return false;
duke@435 109 }
duke@435 110 }
duke@435 111 return false;
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 116 return FrameMap::receiver_opr;
duke@435 117 }
duke@435 118
duke@435 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 120 return receiverOpr();
duke@435 121 }
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 124 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 125 }
duke@435 126
duke@435 127 //--------------fpu register translations-----------------------
duke@435 128
duke@435 129
duke@435 130 address LIR_Assembler::float_constant(float f) {
duke@435 131 address const_addr = __ float_constant(f);
duke@435 132 if (const_addr == NULL) {
duke@435 133 bailout("const section overflow");
duke@435 134 return __ code()->consts()->start();
duke@435 135 } else {
duke@435 136 return const_addr;
duke@435 137 }
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::double_constant(double d) {
duke@435 142 address const_addr = __ double_constant(d);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void LIR_Assembler::set_24bit_FPU() {
duke@435 153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 154 }
duke@435 155
duke@435 156 void LIR_Assembler::reset_FPU() {
duke@435 157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 158 }
duke@435 159
duke@435 160 void LIR_Assembler::fpop() {
duke@435 161 __ fpop();
duke@435 162 }
duke@435 163
duke@435 164 void LIR_Assembler::fxch(int i) {
duke@435 165 __ fxch(i);
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::fld(int i) {
duke@435 169 __ fld_s(i);
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::ffree(int i) {
duke@435 173 __ ffree(i);
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::breakpoint() {
duke@435 177 __ int3();
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 181 if (opr->is_single_cpu()) {
duke@435 182 __ push_reg(opr->as_register());
duke@435 183 } else if (opr->is_double_cpu()) {
never@739 184 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 185 __ push_reg(opr->as_register_lo());
duke@435 186 } else if (opr->is_stack()) {
duke@435 187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 188 } else if (opr->is_constant()) {
duke@435 189 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 190 if (const_opr->type() == T_OBJECT) {
duke@435 191 __ push_oop(const_opr->as_jobject());
duke@435 192 } else if (const_opr->type() == T_INT) {
duke@435 193 __ push_jint(const_opr->as_jint());
duke@435 194 } else {
duke@435 195 ShouldNotReachHere();
duke@435 196 }
duke@435 197
duke@435 198 } else {
duke@435 199 ShouldNotReachHere();
duke@435 200 }
duke@435 201 }
duke@435 202
duke@435 203 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 204 if (opr->is_single_cpu()) {
never@739 205 __ pop_reg(opr->as_register());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209 }
duke@435 210
never@739 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 212 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 213 }
never@739 214
duke@435 215 //-------------------------------------------
never@739 216
duke@435 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 218 return as_Address(addr, rscratch1);
never@739 219 }
never@739 220
never@739 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 222 if (addr->base()->is_illegal()) {
duke@435 223 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 224 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 225 if (! __ reachable(laddr)) {
never@739 226 __ movptr(tmp, laddr.addr());
never@739 227 Address res(tmp, 0);
never@739 228 return res;
never@739 229 } else {
never@739 230 return __ as_Address(laddr);
never@739 231 }
duke@435 232 }
duke@435 233
never@739 234 Register base = addr->base()->as_pointer_register();
duke@435 235
duke@435 236 if (addr->index()->is_illegal()) {
duke@435 237 return Address( base, addr->disp());
never@739 238 } else if (addr->index()->is_cpu_register()) {
never@739 239 Register index = addr->index()->as_pointer_register();
duke@435 240 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 241 } else if (addr->index()->is_constant()) {
never@739 242 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 243 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 244
duke@435 245 return Address(base, addr_offset);
duke@435 246 } else {
duke@435 247 Unimplemented();
duke@435 248 return Address();
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252
duke@435 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 254 Address base = as_Address(addr);
duke@435 255 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 256 }
duke@435 257
duke@435 258
duke@435 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 260 return as_Address(addr);
duke@435 261 }
duke@435 262
duke@435 263
duke@435 264 void LIR_Assembler::osr_entry() {
duke@435 265 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 266 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 267 ValueStack* entry_state = osr_entry->state();
duke@435 268 int number_of_locks = entry_state->locks_size();
duke@435 269
duke@435 270 // we jump here if osr happens with the interpreter
duke@435 271 // state set up to continue at the beginning of the
duke@435 272 // loop that triggered osr - in particular, we have
duke@435 273 // the following registers setup:
duke@435 274 //
duke@435 275 // rcx: osr buffer
duke@435 276 //
duke@435 277
duke@435 278 // build frame
duke@435 279 ciMethod* m = compilation()->method();
duke@435 280 __ build_frame(initial_frame_size_in_bytes());
duke@435 281
duke@435 282 // OSR buffer is
duke@435 283 //
duke@435 284 // locals[nlocals-1..0]
duke@435 285 // monitors[0..number_of_locks]
duke@435 286 //
duke@435 287 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 288 // so first slot in the local array is the last local from the interpreter
duke@435 289 // and last slot is local[0] (receiver) from the interpreter
duke@435 290 //
duke@435 291 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 292 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 293 // in the interpreter frame (the method lock if a sync method)
duke@435 294
duke@435 295 // Initialize monitors in the compiled activation.
duke@435 296 // rcx: pointer to osr buffer
duke@435 297 //
duke@435 298 // All other registers are dead at this point and the locals will be
duke@435 299 // copied into place by code emitted in the IR.
duke@435 300
never@739 301 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 302 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 303 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 304 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 305 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 306 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 307 // the oop.
duke@435 308 for (int i = 0; i < number_of_locks; i++) {
roland@1495 309 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 310 #ifdef ASSERT
duke@435 311 // verify the interpreter's monitor has a non-null object
duke@435 312 {
duke@435 313 Label L;
roland@1495 314 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 315 __ jcc(Assembler::notZero, L);
duke@435 316 __ stop("locked object is NULL");
duke@435 317 __ bind(L);
duke@435 318 }
duke@435 319 #endif
roland@1495 320 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 321 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 322 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 323 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 324 }
duke@435 325 }
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 // inline cache check; done before the frame is built.
duke@435 330 int LIR_Assembler::check_icache() {
duke@435 331 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 332 Register ic_klass = IC_Klass;
never@739 333 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
duke@435 334
duke@435 335 if (!VerifyOops) {
duke@435 336 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 337 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 338 __ nop();
duke@435 339 }
duke@435 340 }
duke@435 341 int offset = __ offset();
duke@435 342 __ inline_cache_check(receiver, IC_Klass);
duke@435 343 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
duke@435 344 if (VerifyOops) {
duke@435 345 // force alignment after the cache check.
duke@435 346 // It's been verified to be aligned if !VerifyOops
duke@435 347 __ align(CodeEntryAlignment);
duke@435 348 }
duke@435 349 return offset;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 354 jobject o = NULL;
duke@435 355 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 356 __ movoop(reg, o);
duke@435 357 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 358 }
duke@435 359
duke@435 360
duke@435 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 362 if (exception->is_valid()) {
duke@435 363 // preserve exception
duke@435 364 // note: the monitor_exit runtime call is a leaf routine
duke@435 365 // and cannot block => no GC can happen
duke@435 366 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 367 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 368 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 369 }
duke@435 370
duke@435 371 Register obj_reg = obj_opr->as_register();
duke@435 372 Register lock_reg = lock_opr->as_register();
duke@435 373
duke@435 374 // setup registers (lock_reg must be rax, for lock_object)
duke@435 375 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 376 Register hdr = lock_reg;
duke@435 377 assert(new_hdr == SYNC_header, "wrong register");
duke@435 378 lock_reg = new_hdr;
duke@435 379 // compute pointer to BasicLock
duke@435 380 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 381 __ lea(lock_reg, lock_addr);
duke@435 382 // unlock object
duke@435 383 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 384 // _slow_case_stubs->append(slow_case);
duke@435 385 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 386 _slow_case_stubs->append(slow_case);
duke@435 387 if (UseFastLocking) {
duke@435 388 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 389 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 390 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 391 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 392 } else {
duke@435 393 // always do slow unlocking
duke@435 394 // note: the slow unlocking code could be inlined here, however if we use
duke@435 395 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 396 // simpler and requires less duplicated code - additionally, the
duke@435 397 // slow unlocking code is the same in either case which simplifies
duke@435 398 // debugging
duke@435 399 __ jmp(*slow_case->entry());
duke@435 400 }
duke@435 401 // done
duke@435 402 __ bind(*slow_case->continuation());
duke@435 403
duke@435 404 if (exception->is_valid()) {
duke@435 405 // restore exception
never@739 406 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 // This specifies the rsp decrement needed to build the frame
duke@435 411 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 412 // if rounding, must let FrameMap know!
never@739 413
never@739 414 // The frame_map records size in slots (32bit word)
never@739 415
never@739 416 // subtract two words to account for return address and link
never@739 417 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 418 }
duke@435 419
duke@435 420
twisti@1639 421 int LIR_Assembler::emit_exception_handler() {
duke@435 422 // if the last instruction is a call (typically to do a throw which
duke@435 423 // is coming at the end after block reordering) the return address
duke@435 424 // must still point into the code area in order to avoid assertion
duke@435 425 // failures when searching for the corresponding bci => add a nop
duke@435 426 // (was bug 5/14/1999 - gri)
duke@435 427 __ nop();
duke@435 428
duke@435 429 // generate code for exception handler
duke@435 430 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 431 if (handler_base == NULL) {
duke@435 432 // not enough space left for the handler
duke@435 433 bailout("exception handler overflow");
twisti@1639 434 return -1;
duke@435 435 }
twisti@1639 436
duke@435 437 int offset = code_offset();
duke@435 438
twisti@1730 439 // the exception oop and pc are in rax, and rdx
duke@435 440 // no other registers need to be preserved, so invalidate them
twisti@1730 441 __ invalidate_registers(false, true, true, false, true, true);
duke@435 442
duke@435 443 // check that there is really an exception
duke@435 444 __ verify_not_null_oop(rax);
duke@435 445
twisti@1730 446 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@1730 447 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
twisti@1730 448
twisti@1730 449 __ stop("should not reach here");
twisti@1730 450
duke@435 451 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 452 __ end_a_stub();
twisti@1639 453
twisti@1639 454 return offset;
duke@435 455 }
duke@435 456
twisti@1639 457
twisti@1639 458 int LIR_Assembler::emit_deopt_handler() {
duke@435 459 // if the last instruction is a call (typically to do a throw which
duke@435 460 // is coming at the end after block reordering) the return address
duke@435 461 // must still point into the code area in order to avoid assertion
duke@435 462 // failures when searching for the corresponding bci => add a nop
duke@435 463 // (was bug 5/14/1999 - gri)
duke@435 464 __ nop();
duke@435 465
duke@435 466 // generate code for exception handler
duke@435 467 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 468 if (handler_base == NULL) {
duke@435 469 // not enough space left for the handler
duke@435 470 bailout("deopt handler overflow");
twisti@1639 471 return -1;
duke@435 472 }
twisti@1639 473
duke@435 474 int offset = code_offset();
duke@435 475 InternalAddress here(__ pc());
twisti@1730 476
duke@435 477 __ pushptr(here.addr());
duke@435 478 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 479
duke@435 480 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 481 __ end_a_stub();
duke@435 482
twisti@1639 483 return offset;
duke@435 484 }
duke@435 485
duke@435 486
duke@435 487 // This is the fast version of java.lang.String.compare; it has not
duke@435 488 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 489 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 490 __ movptr (rbx, rcx); // receiver is in rcx
never@739 491 __ movptr (rax, arg1->as_register());
duke@435 492
duke@435 493 // Get addresses of first characters from both Strings
never@739 494 __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
never@739 495 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
never@739 496 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 497
duke@435 498
duke@435 499 // rbx, may be NULL
duke@435 500 add_debug_info_for_null_check_here(info);
never@739 501 __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
never@739 502 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
never@739 503 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 504
duke@435 505 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 506 if (VM_Version::supports_cmov()) {
never@739 507 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 508 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 509 __ mov (rcx, rbx);
never@739 510 __ subptr (rbx, rax); // subtract lengths
never@739 511 __ push (rbx); // result
never@739 512 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 513 } else {
duke@435 514 Label L;
never@739 515 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 516 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 517 __ mov (rax, rbx);
never@739 518 __ subptr (rbx, rcx);
never@739 519 __ push (rbx);
never@739 520 __ jcc (Assembler::lessEqual, L);
never@739 521 __ mov (rax, rcx);
duke@435 522 __ bind (L);
duke@435 523 }
duke@435 524 // is minimum length 0?
duke@435 525 Label noLoop, haveResult;
never@739 526 __ testptr (rax, rax);
duke@435 527 __ jcc (Assembler::zero, noLoop);
duke@435 528
duke@435 529 // compare first characters
jrose@1057 530 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 531 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 532 __ subl(rcx, rbx);
duke@435 533 __ jcc(Assembler::notZero, haveResult);
duke@435 534 // starting loop
duke@435 535 __ decrement(rax); // we already tested index: skip one
duke@435 536 __ jcc(Assembler::zero, noLoop);
duke@435 537
duke@435 538 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 539 // negate the index
duke@435 540
never@739 541 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 542 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 543 __ negptr(rax);
duke@435 544
duke@435 545 // compare the strings in a loop
duke@435 546
duke@435 547 Label loop;
duke@435 548 __ align(wordSize);
duke@435 549 __ bind(loop);
jrose@1057 550 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 551 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 552 __ subl(rcx, rbx);
duke@435 553 __ jcc(Assembler::notZero, haveResult);
duke@435 554 __ increment(rax);
duke@435 555 __ jcc(Assembler::notZero, loop);
duke@435 556
duke@435 557 // strings are equal up to min length
duke@435 558
duke@435 559 __ bind(noLoop);
never@739 560 __ pop(rax);
duke@435 561 return_op(LIR_OprFact::illegalOpr);
duke@435 562
duke@435 563 __ bind(haveResult);
duke@435 564 // leave instruction is going to discard the TOS value
never@739 565 __ mov (rax, rcx); // result of call is in rax,
duke@435 566 }
duke@435 567
duke@435 568
duke@435 569 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 570 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 571 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 572 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 573 }
duke@435 574
duke@435 575 // Pop the stack before the safepoint code
twisti@1730 576 __ remove_frame(initial_frame_size_in_bytes());
duke@435 577
duke@435 578 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 579
duke@435 580 // Note: we do not need to round double result; float result has the right precision
duke@435 581 // the poll sets the condition code, but no data registers
duke@435 582 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 583 relocInfo::poll_return_type);
never@739 584
never@739 585 // NOTE: the requires that the polling page be reachable else the reloc
never@739 586 // goes to the movq that loads the address and not the faulting instruction
never@739 587 // which breaks the signal handler code
never@739 588
duke@435 589 __ test32(rax, polling_page);
duke@435 590
duke@435 591 __ ret(0);
duke@435 592 }
duke@435 593
duke@435 594
duke@435 595 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 596 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 597 relocInfo::poll_type);
duke@435 598
duke@435 599 if (info != NULL) {
duke@435 600 add_debug_info_for_branch(info);
duke@435 601 } else {
duke@435 602 ShouldNotReachHere();
duke@435 603 }
duke@435 604
duke@435 605 int offset = __ offset();
never@739 606
never@739 607 // NOTE: the requires that the polling page be reachable else the reloc
never@739 608 // goes to the movq that loads the address and not the faulting instruction
never@739 609 // which breaks the signal handler code
never@739 610
duke@435 611 __ test32(rax, polling_page);
duke@435 612 return offset;
duke@435 613 }
duke@435 614
duke@435 615
duke@435 616 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 617 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 618 }
duke@435 619
duke@435 620 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 621 __ xchgptr(a, b);
duke@435 622 }
duke@435 623
duke@435 624
duke@435 625 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 626 assert(src->is_constant(), "should not call otherwise");
duke@435 627 assert(dest->is_register(), "should not call otherwise");
duke@435 628 LIR_Const* c = src->as_constant_ptr();
duke@435 629
duke@435 630 switch (c->type()) {
roland@1732 631 case T_INT:
roland@1732 632 case T_ADDRESS: {
duke@435 633 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 634 __ movl(dest->as_register(), c->as_jint());
duke@435 635 break;
duke@435 636 }
duke@435 637
duke@435 638 case T_LONG: {
duke@435 639 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 640 #ifdef _LP64
never@739 641 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 642 #else
never@739 643 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 644 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 645 #endif // _LP64
duke@435 646 break;
duke@435 647 }
duke@435 648
duke@435 649 case T_OBJECT: {
duke@435 650 if (patch_code != lir_patch_none) {
duke@435 651 jobject2reg_with_patching(dest->as_register(), info);
duke@435 652 } else {
duke@435 653 __ movoop(dest->as_register(), c->as_jobject());
duke@435 654 }
duke@435 655 break;
duke@435 656 }
duke@435 657
duke@435 658 case T_FLOAT: {
duke@435 659 if (dest->is_single_xmm()) {
duke@435 660 if (c->is_zero_float()) {
duke@435 661 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 662 } else {
duke@435 663 __ movflt(dest->as_xmm_float_reg(),
duke@435 664 InternalAddress(float_constant(c->as_jfloat())));
duke@435 665 }
duke@435 666 } else {
duke@435 667 assert(dest->is_single_fpu(), "must be");
duke@435 668 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 669 if (c->is_zero_float()) {
duke@435 670 __ fldz();
duke@435 671 } else if (c->is_one_float()) {
duke@435 672 __ fld1();
duke@435 673 } else {
duke@435 674 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 675 }
duke@435 676 }
duke@435 677 break;
duke@435 678 }
duke@435 679
duke@435 680 case T_DOUBLE: {
duke@435 681 if (dest->is_double_xmm()) {
duke@435 682 if (c->is_zero_double()) {
duke@435 683 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 684 } else {
duke@435 685 __ movdbl(dest->as_xmm_double_reg(),
duke@435 686 InternalAddress(double_constant(c->as_jdouble())));
duke@435 687 }
duke@435 688 } else {
duke@435 689 assert(dest->is_double_fpu(), "must be");
duke@435 690 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 691 if (c->is_zero_double()) {
duke@435 692 __ fldz();
duke@435 693 } else if (c->is_one_double()) {
duke@435 694 __ fld1();
duke@435 695 } else {
duke@435 696 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 697 }
duke@435 698 }
duke@435 699 break;
duke@435 700 }
duke@435 701
duke@435 702 default:
duke@435 703 ShouldNotReachHere();
duke@435 704 }
duke@435 705 }
duke@435 706
duke@435 707 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 708 assert(src->is_constant(), "should not call otherwise");
duke@435 709 assert(dest->is_stack(), "should not call otherwise");
duke@435 710 LIR_Const* c = src->as_constant_ptr();
duke@435 711
duke@435 712 switch (c->type()) {
duke@435 713 case T_INT: // fall through
duke@435 714 case T_FLOAT:
roland@1732 715 case T_ADDRESS:
duke@435 716 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 717 break;
duke@435 718
duke@435 719 case T_OBJECT:
duke@435 720 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 721 break;
duke@435 722
duke@435 723 case T_LONG: // fall through
duke@435 724 case T_DOUBLE:
never@739 725 #ifdef _LP64
never@739 726 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 727 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 728 #else
never@739 729 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 730 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 731 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 732 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 733 #endif // _LP64
duke@435 734 break;
duke@435 735
duke@435 736 default:
duke@435 737 ShouldNotReachHere();
duke@435 738 }
duke@435 739 }
duke@435 740
duke@435 741 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 742 assert(src->is_constant(), "should not call otherwise");
duke@435 743 assert(dest->is_address(), "should not call otherwise");
duke@435 744 LIR_Const* c = src->as_constant_ptr();
duke@435 745 LIR_Address* addr = dest->as_address_ptr();
duke@435 746
never@739 747 int null_check_here = code_offset();
duke@435 748 switch (type) {
duke@435 749 case T_INT: // fall through
duke@435 750 case T_FLOAT:
roland@1732 751 case T_ADDRESS:
duke@435 752 __ movl(as_Address(addr), c->as_jint_bits());
duke@435 753 break;
duke@435 754
duke@435 755 case T_OBJECT: // fall through
duke@435 756 case T_ARRAY:
duke@435 757 if (c->as_jobject() == NULL) {
xlu@947 758 __ movptr(as_Address(addr), NULL_WORD);
duke@435 759 } else {
never@739 760 if (is_literal_address(addr)) {
never@739 761 ShouldNotReachHere();
never@739 762 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 763 } else {
roland@1495 764 #ifdef _LP64
roland@1495 765 __ movoop(rscratch1, c->as_jobject());
roland@1495 766 null_check_here = code_offset();
roland@1495 767 __ movptr(as_Address_lo(addr), rscratch1);
roland@1495 768 #else
never@739 769 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 770 #endif
never@739 771 }
duke@435 772 }
duke@435 773 break;
duke@435 774
duke@435 775 case T_LONG: // fall through
duke@435 776 case T_DOUBLE:
never@739 777 #ifdef _LP64
never@739 778 if (is_literal_address(addr)) {
never@739 779 ShouldNotReachHere();
never@739 780 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 781 } else {
never@739 782 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 783 null_check_here = code_offset();
never@739 784 __ movptr(as_Address_lo(addr), r10);
never@739 785 }
never@739 786 #else
never@739 787 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 788 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 789 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 790 #endif // _LP64
duke@435 791 break;
duke@435 792
duke@435 793 case T_BOOLEAN: // fall through
duke@435 794 case T_BYTE:
duke@435 795 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 796 break;
duke@435 797
duke@435 798 case T_CHAR: // fall through
duke@435 799 case T_SHORT:
duke@435 800 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 801 break;
duke@435 802
duke@435 803 default:
duke@435 804 ShouldNotReachHere();
duke@435 805 };
never@739 806
never@739 807 if (info != NULL) {
never@739 808 add_debug_info_for_null_check(null_check_here, info);
never@739 809 }
duke@435 810 }
duke@435 811
duke@435 812
duke@435 813 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 814 assert(src->is_register(), "should not call otherwise");
duke@435 815 assert(dest->is_register(), "should not call otherwise");
duke@435 816
duke@435 817 // move between cpu-registers
duke@435 818 if (dest->is_single_cpu()) {
never@739 819 #ifdef _LP64
never@739 820 if (src->type() == T_LONG) {
never@739 821 // Can do LONG -> OBJECT
never@739 822 move_regs(src->as_register_lo(), dest->as_register());
never@739 823 return;
never@739 824 }
never@739 825 #endif
duke@435 826 assert(src->is_single_cpu(), "must match");
duke@435 827 if (src->type() == T_OBJECT) {
duke@435 828 __ verify_oop(src->as_register());
duke@435 829 }
duke@435 830 move_regs(src->as_register(), dest->as_register());
duke@435 831
duke@435 832 } else if (dest->is_double_cpu()) {
never@739 833 #ifdef _LP64
never@739 834 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 835 // Surprising to me but we can see move of a long to t_object
never@739 836 __ verify_oop(src->as_register());
never@739 837 move_regs(src->as_register(), dest->as_register_lo());
never@739 838 return;
never@739 839 }
never@739 840 #endif
duke@435 841 assert(src->is_double_cpu(), "must match");
duke@435 842 Register f_lo = src->as_register_lo();
duke@435 843 Register f_hi = src->as_register_hi();
duke@435 844 Register t_lo = dest->as_register_lo();
duke@435 845 Register t_hi = dest->as_register_hi();
never@739 846 #ifdef _LP64
never@739 847 assert(f_hi == f_lo, "must be same");
never@739 848 assert(t_hi == t_lo, "must be same");
never@739 849 move_regs(f_lo, t_lo);
never@739 850 #else
duke@435 851 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 852
never@739 853
duke@435 854 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 855 swap_reg(f_lo, f_hi);
duke@435 856 } else if (f_hi == t_lo) {
duke@435 857 assert(f_lo != t_hi, "overwriting register");
duke@435 858 move_regs(f_hi, t_hi);
duke@435 859 move_regs(f_lo, t_lo);
duke@435 860 } else {
duke@435 861 assert(f_hi != t_lo, "overwriting register");
duke@435 862 move_regs(f_lo, t_lo);
duke@435 863 move_regs(f_hi, t_hi);
duke@435 864 }
never@739 865 #endif // LP64
duke@435 866
duke@435 867 // special moves from fpu-register to xmm-register
duke@435 868 // necessary for method results
duke@435 869 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 870 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 871 __ fld_s(Address(rsp, 0));
duke@435 872 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 873 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 874 __ fld_d(Address(rsp, 0));
duke@435 875 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 876 __ fstp_s(Address(rsp, 0));
duke@435 877 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 878 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 879 __ fstp_d(Address(rsp, 0));
duke@435 880 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 881
duke@435 882 // move between xmm-registers
duke@435 883 } else if (dest->is_single_xmm()) {
duke@435 884 assert(src->is_single_xmm(), "must match");
duke@435 885 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 886 } else if (dest->is_double_xmm()) {
duke@435 887 assert(src->is_double_xmm(), "must match");
duke@435 888 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 889
duke@435 890 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 891 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 892 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 893 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 894 } else {
duke@435 895 ShouldNotReachHere();
duke@435 896 }
duke@435 897 }
duke@435 898
duke@435 899 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 900 assert(src->is_register(), "should not call otherwise");
duke@435 901 assert(dest->is_stack(), "should not call otherwise");
duke@435 902
duke@435 903 if (src->is_single_cpu()) {
duke@435 904 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 905 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 906 __ verify_oop(src->as_register());
never@739 907 __ movptr (dst, src->as_register());
never@739 908 } else {
never@739 909 __ movl (dst, src->as_register());
duke@435 910 }
duke@435 911
duke@435 912 } else if (src->is_double_cpu()) {
duke@435 913 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 914 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 915 __ movptr (dstLO, src->as_register_lo());
never@739 916 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 917
duke@435 918 } else if (src->is_single_xmm()) {
duke@435 919 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 920 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 921
duke@435 922 } else if (src->is_double_xmm()) {
duke@435 923 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 924 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 925
duke@435 926 } else if (src->is_single_fpu()) {
duke@435 927 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 928 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 929 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 930 else __ fst_s (dst_addr);
duke@435 931
duke@435 932 } else if (src->is_double_fpu()) {
duke@435 933 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 934 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 935 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 936 else __ fst_d (dst_addr);
duke@435 937
duke@435 938 } else {
duke@435 939 ShouldNotReachHere();
duke@435 940 }
duke@435 941 }
duke@435 942
duke@435 943
duke@435 944 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
duke@435 945 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 946 PatchingStub* patch = NULL;
duke@435 947
duke@435 948 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 949 __ verify_oop(src->as_register());
duke@435 950 }
duke@435 951 if (patch_code != lir_patch_none) {
duke@435 952 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 953 Address toa = as_Address(to_addr);
never@739 954 assert(toa.disp() != 0, "must have");
duke@435 955 }
duke@435 956 if (info != NULL) {
duke@435 957 add_debug_info_for_null_check_here(info);
duke@435 958 }
duke@435 959
duke@435 960 switch (type) {
duke@435 961 case T_FLOAT: {
duke@435 962 if (src->is_single_xmm()) {
duke@435 963 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 964 } else {
duke@435 965 assert(src->is_single_fpu(), "must be");
duke@435 966 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 967 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 968 else __ fst_s (as_Address(to_addr));
duke@435 969 }
duke@435 970 break;
duke@435 971 }
duke@435 972
duke@435 973 case T_DOUBLE: {
duke@435 974 if (src->is_double_xmm()) {
duke@435 975 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 976 } else {
duke@435 977 assert(src->is_double_fpu(), "must be");
duke@435 978 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 979 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 980 else __ fst_d (as_Address(to_addr));
duke@435 981 }
duke@435 982 break;
duke@435 983 }
duke@435 984
duke@435 985 case T_ADDRESS: // fall through
duke@435 986 case T_ARRAY: // fall through
duke@435 987 case T_OBJECT: // fall through
never@739 988 #ifdef _LP64
never@739 989 __ movptr(as_Address(to_addr), src->as_register());
never@739 990 break;
never@739 991 #endif // _LP64
duke@435 992 case T_INT:
duke@435 993 __ movl(as_Address(to_addr), src->as_register());
duke@435 994 break;
duke@435 995
duke@435 996 case T_LONG: {
duke@435 997 Register from_lo = src->as_register_lo();
duke@435 998 Register from_hi = src->as_register_hi();
never@739 999 #ifdef _LP64
never@739 1000 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1001 #else
duke@435 1002 Register base = to_addr->base()->as_register();
duke@435 1003 Register index = noreg;
duke@435 1004 if (to_addr->index()->is_register()) {
duke@435 1005 index = to_addr->index()->as_register();
duke@435 1006 }
duke@435 1007 if (base == from_lo || index == from_lo) {
duke@435 1008 assert(base != from_hi, "can't be");
duke@435 1009 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1010 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1011 if (patch != NULL) {
duke@435 1012 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1013 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1014 patch_code = lir_patch_low;
duke@435 1015 }
duke@435 1016 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1017 } else {
duke@435 1018 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1019 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1020 if (patch != NULL) {
duke@435 1021 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1022 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1023 patch_code = lir_patch_high;
duke@435 1024 }
duke@435 1025 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1026 }
never@739 1027 #endif // _LP64
duke@435 1028 break;
duke@435 1029 }
duke@435 1030
duke@435 1031 case T_BYTE: // fall through
duke@435 1032 case T_BOOLEAN: {
duke@435 1033 Register src_reg = src->as_register();
duke@435 1034 Address dst_addr = as_Address(to_addr);
duke@435 1035 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1036 __ movb(dst_addr, src_reg);
duke@435 1037 break;
duke@435 1038 }
duke@435 1039
duke@435 1040 case T_CHAR: // fall through
duke@435 1041 case T_SHORT:
duke@435 1042 __ movw(as_Address(to_addr), src->as_register());
duke@435 1043 break;
duke@435 1044
duke@435 1045 default:
duke@435 1046 ShouldNotReachHere();
duke@435 1047 }
duke@435 1048
duke@435 1049 if (patch_code != lir_patch_none) {
duke@435 1050 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1051 }
duke@435 1052 }
duke@435 1053
duke@435 1054
duke@435 1055 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1056 assert(src->is_stack(), "should not call otherwise");
duke@435 1057 assert(dest->is_register(), "should not call otherwise");
duke@435 1058
duke@435 1059 if (dest->is_single_cpu()) {
duke@435 1060 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1061 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1062 __ verify_oop(dest->as_register());
never@739 1063 } else {
never@739 1064 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1065 }
duke@435 1066
duke@435 1067 } else if (dest->is_double_cpu()) {
duke@435 1068 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1069 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1070 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1071 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1072
duke@435 1073 } else if (dest->is_single_xmm()) {
duke@435 1074 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1075 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1076
duke@435 1077 } else if (dest->is_double_xmm()) {
duke@435 1078 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1079 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1080
duke@435 1081 } else if (dest->is_single_fpu()) {
duke@435 1082 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1083 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1084 __ fld_s(src_addr);
duke@435 1085
duke@435 1086 } else if (dest->is_double_fpu()) {
duke@435 1087 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1088 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1089 __ fld_d(src_addr);
duke@435 1090
duke@435 1091 } else {
duke@435 1092 ShouldNotReachHere();
duke@435 1093 }
duke@435 1094 }
duke@435 1095
duke@435 1096
duke@435 1097 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1098 if (src->is_single_stack()) {
never@739 1099 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1100 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1101 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1102 } else {
roland@1495 1103 #ifndef _LP64
never@739 1104 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1105 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1106 #else
roland@1495 1107 //no pushl on 64bits
roland@1495 1108 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1109 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1110 #endif
never@739 1111 }
duke@435 1112
duke@435 1113 } else if (src->is_double_stack()) {
never@739 1114 #ifdef _LP64
never@739 1115 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1116 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1117 #else
duke@435 1118 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1119 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1120 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1121 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1122 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1123 #endif // _LP64
duke@435 1124
duke@435 1125 } else {
duke@435 1126 ShouldNotReachHere();
duke@435 1127 }
duke@435 1128 }
duke@435 1129
duke@435 1130
duke@435 1131 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
duke@435 1132 assert(src->is_address(), "should not call otherwise");
duke@435 1133 assert(dest->is_register(), "should not call otherwise");
duke@435 1134
duke@435 1135 LIR_Address* addr = src->as_address_ptr();
duke@435 1136 Address from_addr = as_Address(addr);
duke@435 1137
duke@435 1138 switch (type) {
duke@435 1139 case T_BOOLEAN: // fall through
duke@435 1140 case T_BYTE: // fall through
duke@435 1141 case T_CHAR: // fall through
duke@435 1142 case T_SHORT:
duke@435 1143 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1144 // on pre P6 processors we may get partial register stalls
duke@435 1145 // so blow away the value of to_rinfo before loading a
duke@435 1146 // partial word into it. Do it here so that it precedes
duke@435 1147 // the potential patch point below.
never@739 1148 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1149 }
duke@435 1150 break;
duke@435 1151 }
duke@435 1152
duke@435 1153 PatchingStub* patch = NULL;
duke@435 1154 if (patch_code != lir_patch_none) {
duke@435 1155 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1156 assert(from_addr.disp() != 0, "must have");
duke@435 1157 }
duke@435 1158 if (info != NULL) {
duke@435 1159 add_debug_info_for_null_check_here(info);
duke@435 1160 }
duke@435 1161
duke@435 1162 switch (type) {
duke@435 1163 case T_FLOAT: {
duke@435 1164 if (dest->is_single_xmm()) {
duke@435 1165 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1166 } else {
duke@435 1167 assert(dest->is_single_fpu(), "must be");
duke@435 1168 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1169 __ fld_s(from_addr);
duke@435 1170 }
duke@435 1171 break;
duke@435 1172 }
duke@435 1173
duke@435 1174 case T_DOUBLE: {
duke@435 1175 if (dest->is_double_xmm()) {
duke@435 1176 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1177 } else {
duke@435 1178 assert(dest->is_double_fpu(), "must be");
duke@435 1179 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1180 __ fld_d(from_addr);
duke@435 1181 }
duke@435 1182 break;
duke@435 1183 }
duke@435 1184
duke@435 1185 case T_ADDRESS: // fall through
duke@435 1186 case T_OBJECT: // fall through
duke@435 1187 case T_ARRAY: // fall through
never@739 1188 #ifdef _LP64
never@739 1189 __ movptr(dest->as_register(), from_addr);
never@739 1190 break;
never@739 1191 #endif // _L64
duke@435 1192 case T_INT:
never@739 1193 // %%% could this be a movl? this is safer but longer instruction
never@739 1194 __ movl2ptr(dest->as_register(), from_addr);
duke@435 1195 break;
duke@435 1196
duke@435 1197 case T_LONG: {
duke@435 1198 Register to_lo = dest->as_register_lo();
duke@435 1199 Register to_hi = dest->as_register_hi();
never@739 1200 #ifdef _LP64
never@739 1201 __ movptr(to_lo, as_Address_lo(addr));
never@739 1202 #else
duke@435 1203 Register base = addr->base()->as_register();
duke@435 1204 Register index = noreg;
duke@435 1205 if (addr->index()->is_register()) {
duke@435 1206 index = addr->index()->as_register();
duke@435 1207 }
duke@435 1208 if ((base == to_lo && index == to_hi) ||
duke@435 1209 (base == to_hi && index == to_lo)) {
duke@435 1210 // addresses with 2 registers are only formed as a result of
duke@435 1211 // array access so this code will never have to deal with
duke@435 1212 // patches or null checks.
duke@435 1213 assert(info == NULL && patch == NULL, "must be");
never@739 1214 __ lea(to_hi, as_Address(addr));
duke@435 1215 __ movl(to_lo, Address(to_hi, 0));
duke@435 1216 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1217 } else if (base == to_lo || index == to_lo) {
duke@435 1218 assert(base != to_hi, "can't be");
duke@435 1219 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1220 __ movl(to_hi, as_Address_hi(addr));
duke@435 1221 if (patch != NULL) {
duke@435 1222 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1223 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1224 patch_code = lir_patch_low;
duke@435 1225 }
duke@435 1226 __ movl(to_lo, as_Address_lo(addr));
duke@435 1227 } else {
duke@435 1228 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1229 __ movl(to_lo, as_Address_lo(addr));
duke@435 1230 if (patch != NULL) {
duke@435 1231 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1232 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1233 patch_code = lir_patch_high;
duke@435 1234 }
duke@435 1235 __ movl(to_hi, as_Address_hi(addr));
duke@435 1236 }
never@739 1237 #endif // _LP64
duke@435 1238 break;
duke@435 1239 }
duke@435 1240
duke@435 1241 case T_BOOLEAN: // fall through
duke@435 1242 case T_BYTE: {
duke@435 1243 Register dest_reg = dest->as_register();
duke@435 1244 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1245 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1246 __ movsbl(dest_reg, from_addr);
duke@435 1247 } else {
duke@435 1248 __ movb(dest_reg, from_addr);
duke@435 1249 __ shll(dest_reg, 24);
duke@435 1250 __ sarl(dest_reg, 24);
duke@435 1251 }
never@739 1252 // These are unsigned so the zero extension on 64bit is just what we need
duke@435 1253 break;
duke@435 1254 }
duke@435 1255
duke@435 1256 case T_CHAR: {
duke@435 1257 Register dest_reg = dest->as_register();
duke@435 1258 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1259 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1260 __ movzwl(dest_reg, from_addr);
duke@435 1261 } else {
duke@435 1262 __ movw(dest_reg, from_addr);
duke@435 1263 }
never@739 1264 // This is unsigned so the zero extension on 64bit is just what we need
never@739 1265 // __ movl2ptr(dest_reg, dest_reg);
duke@435 1266 break;
duke@435 1267 }
duke@435 1268
duke@435 1269 case T_SHORT: {
duke@435 1270 Register dest_reg = dest->as_register();
duke@435 1271 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1272 __ movswl(dest_reg, from_addr);
duke@435 1273 } else {
duke@435 1274 __ movw(dest_reg, from_addr);
duke@435 1275 __ shll(dest_reg, 16);
duke@435 1276 __ sarl(dest_reg, 16);
duke@435 1277 }
never@739 1278 // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
never@739 1279 __ movl2ptr(dest_reg, dest_reg);
duke@435 1280 break;
duke@435 1281 }
duke@435 1282
duke@435 1283 default:
duke@435 1284 ShouldNotReachHere();
duke@435 1285 }
duke@435 1286
duke@435 1287 if (patch != NULL) {
duke@435 1288 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1289 }
duke@435 1290
duke@435 1291 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1292 __ verify_oop(dest->as_register());
duke@435 1293 }
duke@435 1294 }
duke@435 1295
duke@435 1296
duke@435 1297 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1298 LIR_Address* addr = src->as_address_ptr();
duke@435 1299 Address from_addr = as_Address(addr);
duke@435 1300
duke@435 1301 if (VM_Version::supports_sse()) {
duke@435 1302 switch (ReadPrefetchInstr) {
duke@435 1303 case 0:
duke@435 1304 __ prefetchnta(from_addr); break;
duke@435 1305 case 1:
duke@435 1306 __ prefetcht0(from_addr); break;
duke@435 1307 case 2:
duke@435 1308 __ prefetcht2(from_addr); break;
duke@435 1309 default:
duke@435 1310 ShouldNotReachHere(); break;
duke@435 1311 }
duke@435 1312 } else if (VM_Version::supports_3dnow()) {
duke@435 1313 __ prefetchr(from_addr);
duke@435 1314 }
duke@435 1315 }
duke@435 1316
duke@435 1317
duke@435 1318 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1319 LIR_Address* addr = src->as_address_ptr();
duke@435 1320 Address from_addr = as_Address(addr);
duke@435 1321
duke@435 1322 if (VM_Version::supports_sse()) {
duke@435 1323 switch (AllocatePrefetchInstr) {
duke@435 1324 case 0:
duke@435 1325 __ prefetchnta(from_addr); break;
duke@435 1326 case 1:
duke@435 1327 __ prefetcht0(from_addr); break;
duke@435 1328 case 2:
duke@435 1329 __ prefetcht2(from_addr); break;
duke@435 1330 case 3:
duke@435 1331 __ prefetchw(from_addr); break;
duke@435 1332 default:
duke@435 1333 ShouldNotReachHere(); break;
duke@435 1334 }
duke@435 1335 } else if (VM_Version::supports_3dnow()) {
duke@435 1336 __ prefetchw(from_addr);
duke@435 1337 }
duke@435 1338 }
duke@435 1339
duke@435 1340
duke@435 1341 NEEDS_CLEANUP; // This could be static?
duke@435 1342 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1343 int elem_size = type2aelembytes(type);
duke@435 1344 switch (elem_size) {
duke@435 1345 case 1: return Address::times_1;
duke@435 1346 case 2: return Address::times_2;
duke@435 1347 case 4: return Address::times_4;
duke@435 1348 case 8: return Address::times_8;
duke@435 1349 }
duke@435 1350 ShouldNotReachHere();
duke@435 1351 return Address::no_scale;
duke@435 1352 }
duke@435 1353
duke@435 1354
duke@435 1355 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1356 switch (op->code()) {
duke@435 1357 case lir_idiv:
duke@435 1358 case lir_irem:
duke@435 1359 arithmetic_idiv(op->code(),
duke@435 1360 op->in_opr1(),
duke@435 1361 op->in_opr2(),
duke@435 1362 op->in_opr3(),
duke@435 1363 op->result_opr(),
duke@435 1364 op->info());
duke@435 1365 break;
duke@435 1366 default: ShouldNotReachHere(); break;
duke@435 1367 }
duke@435 1368 }
duke@435 1369
duke@435 1370 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1371 #ifdef ASSERT
duke@435 1372 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1373 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1374 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1375 #endif
duke@435 1376
duke@435 1377 if (op->cond() == lir_cond_always) {
duke@435 1378 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1379 __ jmp (*(op->label()));
duke@435 1380 } else {
duke@435 1381 Assembler::Condition acond = Assembler::zero;
duke@435 1382 if (op->code() == lir_cond_float_branch) {
duke@435 1383 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1384 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1385 switch(op->cond()) {
duke@435 1386 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1387 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1388 case lir_cond_less: acond = Assembler::below; break;
duke@435 1389 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1390 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1391 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1392 default: ShouldNotReachHere();
duke@435 1393 }
duke@435 1394 } else {
duke@435 1395 switch (op->cond()) {
duke@435 1396 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1397 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1398 case lir_cond_less: acond = Assembler::less; break;
duke@435 1399 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1400 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1401 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1402 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1403 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1404 default: ShouldNotReachHere();
duke@435 1405 }
duke@435 1406 }
duke@435 1407 __ jcc(acond,*(op->label()));
duke@435 1408 }
duke@435 1409 }
duke@435 1410
duke@435 1411 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1412 LIR_Opr src = op->in_opr();
duke@435 1413 LIR_Opr dest = op->result_opr();
duke@435 1414
duke@435 1415 switch (op->bytecode()) {
duke@435 1416 case Bytecodes::_i2l:
never@739 1417 #ifdef _LP64
never@739 1418 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1419 #else
duke@435 1420 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1421 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1422 __ sarl(dest->as_register_hi(), 31);
never@739 1423 #endif // LP64
duke@435 1424 break;
duke@435 1425
duke@435 1426 case Bytecodes::_l2i:
duke@435 1427 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1428 break;
duke@435 1429
duke@435 1430 case Bytecodes::_i2b:
duke@435 1431 move_regs(src->as_register(), dest->as_register());
duke@435 1432 __ sign_extend_byte(dest->as_register());
duke@435 1433 break;
duke@435 1434
duke@435 1435 case Bytecodes::_i2c:
duke@435 1436 move_regs(src->as_register(), dest->as_register());
duke@435 1437 __ andl(dest->as_register(), 0xFFFF);
duke@435 1438 break;
duke@435 1439
duke@435 1440 case Bytecodes::_i2s:
duke@435 1441 move_regs(src->as_register(), dest->as_register());
duke@435 1442 __ sign_extend_short(dest->as_register());
duke@435 1443 break;
duke@435 1444
duke@435 1445
duke@435 1446 case Bytecodes::_f2d:
duke@435 1447 case Bytecodes::_d2f:
duke@435 1448 if (dest->is_single_xmm()) {
duke@435 1449 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1450 } else if (dest->is_double_xmm()) {
duke@435 1451 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1452 } else {
duke@435 1453 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1454 // do nothing (float result is rounded later through spilling)
duke@435 1455 }
duke@435 1456 break;
duke@435 1457
duke@435 1458 case Bytecodes::_i2f:
duke@435 1459 case Bytecodes::_i2d:
duke@435 1460 if (dest->is_single_xmm()) {
never@739 1461 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1462 } else if (dest->is_double_xmm()) {
never@739 1463 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1464 } else {
duke@435 1465 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1466 __ movl(Address(rsp, 0), src->as_register());
duke@435 1467 __ fild_s(Address(rsp, 0));
duke@435 1468 }
duke@435 1469 break;
duke@435 1470
duke@435 1471 case Bytecodes::_f2i:
duke@435 1472 case Bytecodes::_d2i:
duke@435 1473 if (src->is_single_xmm()) {
never@739 1474 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1475 } else if (src->is_double_xmm()) {
never@739 1476 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1477 } else {
duke@435 1478 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1479 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1480 __ fist_s(Address(rsp, 0));
duke@435 1481 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1482 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1483 }
duke@435 1484
duke@435 1485 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1486 assert(op->stub() != NULL, "stub required");
duke@435 1487 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1488 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1489 __ bind(*op->stub()->continuation());
duke@435 1490 break;
duke@435 1491
duke@435 1492 case Bytecodes::_l2f:
duke@435 1493 case Bytecodes::_l2d:
duke@435 1494 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1495 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1496
never@739 1497 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1498 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1499 __ fild_d(Address(rsp, 0));
duke@435 1500 // float result is rounded later through spilling
duke@435 1501 break;
duke@435 1502
duke@435 1503 case Bytecodes::_f2l:
duke@435 1504 case Bytecodes::_d2l:
duke@435 1505 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1506 assert(src->fpu() == 0, "input must be on TOS");
never@739 1507 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1508
duke@435 1509 // instruction sequence too long to inline it here
duke@435 1510 {
duke@435 1511 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1512 }
duke@435 1513 break;
duke@435 1514
duke@435 1515 default: ShouldNotReachHere();
duke@435 1516 }
duke@435 1517 }
duke@435 1518
duke@435 1519 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1520 if (op->init_check()) {
duke@435 1521 __ cmpl(Address(op->klass()->as_register(),
duke@435 1522 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1523 instanceKlass::fully_initialized);
duke@435 1524 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1525 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1526 }
duke@435 1527 __ allocate_object(op->obj()->as_register(),
duke@435 1528 op->tmp1()->as_register(),
duke@435 1529 op->tmp2()->as_register(),
duke@435 1530 op->header_size(),
duke@435 1531 op->object_size(),
duke@435 1532 op->klass()->as_register(),
duke@435 1533 *op->stub()->entry());
duke@435 1534 __ bind(*op->stub()->continuation());
duke@435 1535 }
duke@435 1536
duke@435 1537 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1538 if (UseSlowPath ||
duke@435 1539 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1540 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1541 __ jmp(*op->stub()->entry());
duke@435 1542 } else {
duke@435 1543 Register len = op->len()->as_register();
duke@435 1544 Register tmp1 = op->tmp1()->as_register();
duke@435 1545 Register tmp2 = op->tmp2()->as_register();
duke@435 1546 Register tmp3 = op->tmp3()->as_register();
duke@435 1547 if (len == tmp1) {
duke@435 1548 tmp1 = tmp3;
duke@435 1549 } else if (len == tmp2) {
duke@435 1550 tmp2 = tmp3;
duke@435 1551 } else if (len == tmp3) {
duke@435 1552 // everything is ok
duke@435 1553 } else {
never@739 1554 __ mov(tmp3, len);
duke@435 1555 }
duke@435 1556 __ allocate_array(op->obj()->as_register(),
duke@435 1557 len,
duke@435 1558 tmp1,
duke@435 1559 tmp2,
duke@435 1560 arrayOopDesc::header_size(op->type()),
duke@435 1561 array_element_size(op->type()),
duke@435 1562 op->klass()->as_register(),
duke@435 1563 *op->stub()->entry());
duke@435 1564 }
duke@435 1565 __ bind(*op->stub()->continuation());
duke@435 1566 }
duke@435 1567
duke@435 1568
duke@435 1569
duke@435 1570 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1571 LIR_Code code = op->code();
duke@435 1572 if (code == lir_store_check) {
duke@435 1573 Register value = op->object()->as_register();
duke@435 1574 Register array = op->array()->as_register();
duke@435 1575 Register k_RInfo = op->tmp1()->as_register();
duke@435 1576 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1577 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1578
duke@435 1579 CodeStub* stub = op->stub();
duke@435 1580 Label done;
never@739 1581 __ cmpptr(value, (int32_t)NULL_WORD);
duke@435 1582 __ jcc(Assembler::equal, done);
duke@435 1583 add_debug_info_for_null_check_here(op->info_for_exception());
never@739 1584 __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
never@739 1585 __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
duke@435 1586
duke@435 1587 // get instance klass
never@739 1588 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1589 // perform the fast part of the checking logic
jrose@1079 1590 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1591 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1592 __ push(klass_RInfo);
never@739 1593 __ push(k_RInfo);
duke@435 1594 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1595 __ pop(klass_RInfo);
never@739 1596 __ pop(k_RInfo);
never@739 1597 // result is a boolean
duke@435 1598 __ cmpl(k_RInfo, 0);
duke@435 1599 __ jcc(Assembler::equal, *stub->entry());
duke@435 1600 __ bind(done);
duke@435 1601 } else if (op->code() == lir_checkcast) {
duke@435 1602 // we always need a stub for the failure case.
duke@435 1603 CodeStub* stub = op->stub();
duke@435 1604 Register obj = op->object()->as_register();
duke@435 1605 Register k_RInfo = op->tmp1()->as_register();
duke@435 1606 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1607 Register dst = op->result_opr()->as_register();
duke@435 1608 ciKlass* k = op->klass();
duke@435 1609 Register Rtmp1 = noreg;
duke@435 1610
duke@435 1611 Label done;
duke@435 1612 if (obj == k_RInfo) {
duke@435 1613 k_RInfo = dst;
duke@435 1614 } else if (obj == klass_RInfo) {
duke@435 1615 klass_RInfo = dst;
duke@435 1616 }
duke@435 1617 if (k->is_loaded()) {
duke@435 1618 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
duke@435 1619 } else {
duke@435 1620 Rtmp1 = op->tmp3()->as_register();
duke@435 1621 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
duke@435 1622 }
duke@435 1623
duke@435 1624 assert_different_registers(obj, k_RInfo, klass_RInfo);
duke@435 1625 if (!k->is_loaded()) {
duke@435 1626 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 1627 } else {
never@739 1628 #ifdef _LP64
jrose@1424 1629 __ movoop(k_RInfo, k->constant_encoding());
never@739 1630 #else
duke@435 1631 k_RInfo = noreg;
never@739 1632 #endif // _LP64
duke@435 1633 }
duke@435 1634 assert(obj != k_RInfo, "must be different");
never@739 1635 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1636 if (op->profiled_method() != NULL) {
duke@435 1637 ciMethod* method = op->profiled_method();
duke@435 1638 int bci = op->profiled_bci();
duke@435 1639
duke@435 1640 Label profile_done;
duke@435 1641 __ jcc(Assembler::notEqual, profile_done);
duke@435 1642 // Object is null; update methodDataOop
duke@435 1643 ciMethodData* md = method->method_data();
duke@435 1644 if (md == NULL) {
duke@435 1645 bailout("out of memory building methodDataOop");
duke@435 1646 return;
duke@435 1647 }
duke@435 1648 ciProfileData* data = md->bci_to_data(bci);
duke@435 1649 assert(data != NULL, "need data for checkcast");
duke@435 1650 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 1651 Register mdo = klass_RInfo;
jrose@1424 1652 __ movoop(mdo, md->constant_encoding());
duke@435 1653 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
duke@435 1654 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
duke@435 1655 __ orl(data_addr, header_bits);
duke@435 1656 __ jmp(done);
duke@435 1657 __ bind(profile_done);
duke@435 1658 } else {
duke@435 1659 __ jcc(Assembler::equal, done);
duke@435 1660 }
duke@435 1661 __ verify_oop(obj);
duke@435 1662
duke@435 1663 if (op->fast_check()) {
duke@435 1664 // get object classo
duke@435 1665 // not a safepoint as obj null check happens earlier
duke@435 1666 if (k->is_loaded()) {
never@739 1667 #ifdef _LP64
never@739 1668 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1669 #else
jrose@1424 1670 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
never@739 1671 #endif // _LP64
duke@435 1672 } else {
never@739 1673 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1674
duke@435 1675 }
duke@435 1676 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1677 __ bind(done);
duke@435 1678 } else {
duke@435 1679 // get object class
duke@435 1680 // not a safepoint as obj null check happens earlier
never@739 1681 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1682 if (k->is_loaded()) {
duke@435 1683 // See if we get an immediate positive hit
never@739 1684 #ifdef _LP64
never@739 1685 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
never@739 1686 #else
jrose@1424 1687 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
never@739 1688 #endif // _LP64
duke@435 1689 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
duke@435 1690 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1691 } else {
duke@435 1692 // See if we get an immediate positive hit
duke@435 1693 __ jcc(Assembler::equal, done);
duke@435 1694 // check for self
never@739 1695 #ifdef _LP64
never@739 1696 __ cmpptr(klass_RInfo, k_RInfo);
never@739 1697 #else
jrose@1424 1698 __ cmpoop(klass_RInfo, k->constant_encoding());
never@739 1699 #endif // _LP64
duke@435 1700 __ jcc(Assembler::equal, done);
duke@435 1701
never@739 1702 __ push(klass_RInfo);
never@739 1703 #ifdef _LP64
never@739 1704 __ push(k_RInfo);
never@739 1705 #else
jrose@1424 1706 __ pushoop(k->constant_encoding());
never@739 1707 #endif // _LP64
duke@435 1708 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1709 __ pop(klass_RInfo);
never@739 1710 __ pop(klass_RInfo);
never@739 1711 // result is a boolean
duke@435 1712 __ cmpl(klass_RInfo, 0);
duke@435 1713 __ jcc(Assembler::equal, *stub->entry());
duke@435 1714 }
duke@435 1715 __ bind(done);
duke@435 1716 } else {
jrose@1079 1717 // perform the fast part of the checking logic
jrose@1079 1718 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1719 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1720 __ push(klass_RInfo);
never@739 1721 __ push(k_RInfo);
duke@435 1722 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1723 __ pop(klass_RInfo);
never@739 1724 __ pop(k_RInfo);
never@739 1725 // result is a boolean
duke@435 1726 __ cmpl(k_RInfo, 0);
duke@435 1727 __ jcc(Assembler::equal, *stub->entry());
duke@435 1728 __ bind(done);
duke@435 1729 }
duke@435 1730
duke@435 1731 }
duke@435 1732 if (dst != obj) {
never@739 1733 __ mov(dst, obj);
duke@435 1734 }
duke@435 1735 } else if (code == lir_instanceof) {
duke@435 1736 Register obj = op->object()->as_register();
duke@435 1737 Register k_RInfo = op->tmp1()->as_register();
duke@435 1738 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1739 Register dst = op->result_opr()->as_register();
duke@435 1740 ciKlass* k = op->klass();
duke@435 1741
duke@435 1742 Label done;
duke@435 1743 Label zero;
duke@435 1744 Label one;
duke@435 1745 if (obj == k_RInfo) {
duke@435 1746 k_RInfo = klass_RInfo;
duke@435 1747 klass_RInfo = obj;
duke@435 1748 }
duke@435 1749 // patching may screw with our temporaries on sparc,
duke@435 1750 // so let's do it before loading the class
duke@435 1751 if (!k->is_loaded()) {
duke@435 1752 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
never@739 1753 } else {
jrose@1424 1754 LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
duke@435 1755 }
duke@435 1756 assert(obj != k_RInfo, "must be different");
duke@435 1757
duke@435 1758 __ verify_oop(obj);
duke@435 1759 if (op->fast_check()) {
never@739 1760 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1761 __ jcc(Assembler::equal, zero);
duke@435 1762 // get object class
duke@435 1763 // not a safepoint as obj null check happens earlier
never@739 1764 if (LP64_ONLY(false &&) k->is_loaded()) {
jrose@1424 1765 NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
duke@435 1766 k_RInfo = noreg;
duke@435 1767 } else {
never@739 1768 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1769
duke@435 1770 }
duke@435 1771 __ jcc(Assembler::equal, one);
duke@435 1772 } else {
duke@435 1773 // get object class
duke@435 1774 // not a safepoint as obj null check happens earlier
never@739 1775 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1776 __ jcc(Assembler::equal, zero);
never@739 1777 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1778
never@739 1779 #ifndef _LP64
duke@435 1780 if (k->is_loaded()) {
duke@435 1781 // See if we get an immediate positive hit
jrose@1424 1782 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
duke@435 1783 __ jcc(Assembler::equal, one);
duke@435 1784 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
duke@435 1785 // check for self
jrose@1424 1786 __ cmpoop(klass_RInfo, k->constant_encoding());
duke@435 1787 __ jcc(Assembler::equal, one);
never@739 1788 __ push(klass_RInfo);
jrose@1424 1789 __ pushoop(k->constant_encoding());
duke@435 1790 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1791 __ pop(klass_RInfo);
never@739 1792 __ pop(dst);
duke@435 1793 __ jmp(done);
duke@435 1794 }
jrose@1079 1795 }
jrose@1079 1796 else // next block is unconditional if LP64:
never@739 1797 #endif // LP64
jrose@1079 1798 {
duke@435 1799 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
duke@435 1800
jrose@1079 1801 // perform the fast part of the checking logic
jrose@1079 1802 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
jrose@1079 1803 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1804 __ push(klass_RInfo);
never@739 1805 __ push(k_RInfo);
duke@435 1806 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1807 __ pop(klass_RInfo);
never@739 1808 __ pop(dst);
duke@435 1809 __ jmp(done);
duke@435 1810 }
duke@435 1811 }
duke@435 1812 __ bind(zero);
never@739 1813 __ xorptr(dst, dst);
duke@435 1814 __ jmp(done);
duke@435 1815 __ bind(one);
never@739 1816 __ movptr(dst, 1);
duke@435 1817 __ bind(done);
duke@435 1818 } else {
duke@435 1819 ShouldNotReachHere();
duke@435 1820 }
duke@435 1821
duke@435 1822 }
duke@435 1823
duke@435 1824
duke@435 1825 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1826 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1827 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1828 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1829 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1830 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1831 Register addr = op->addr()->as_register();
duke@435 1832 if (os::is_MP()) {
duke@435 1833 __ lock();
duke@435 1834 }
never@739 1835 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1836
never@739 1837 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1838 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1839 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1840 Register newval = op->new_value()->as_register();
duke@435 1841 Register cmpval = op->cmp_value()->as_register();
duke@435 1842 assert(cmpval == rax, "wrong register");
duke@435 1843 assert(newval != NULL, "new val must be register");
duke@435 1844 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1845 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1846 assert(newval != addr, "new value and addr must be in different registers");
duke@435 1847 if (os::is_MP()) {
duke@435 1848 __ lock();
duke@435 1849 }
never@739 1850 if ( op->code() == lir_cas_obj) {
never@739 1851 __ cmpxchgptr(newval, Address(addr, 0));
never@739 1852 } else if (op->code() == lir_cas_int) {
never@739 1853 __ cmpxchgl(newval, Address(addr, 0));
never@739 1854 } else {
never@739 1855 LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
never@739 1856 }
never@739 1857 #ifdef _LP64
never@739 1858 } else if (op->code() == lir_cas_long) {
never@739 1859 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1860 Register newval = op->new_value()->as_register_lo();
never@739 1861 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1862 assert(cmpval == rax, "wrong register");
never@739 1863 assert(newval != NULL, "new val must be register");
never@739 1864 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1865 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1866 assert(newval != addr, "new value and addr must be in different registers");
never@739 1867 if (os::is_MP()) {
never@739 1868 __ lock();
never@739 1869 }
never@739 1870 __ cmpxchgq(newval, Address(addr, 0));
never@739 1871 #endif // _LP64
duke@435 1872 } else {
duke@435 1873 Unimplemented();
duke@435 1874 }
duke@435 1875 }
duke@435 1876
duke@435 1877
duke@435 1878 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1879 Assembler::Condition acond, ncond;
duke@435 1880 switch (condition) {
duke@435 1881 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1882 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1883 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1884 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1885 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1886 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1887 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1888 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1889 default: ShouldNotReachHere();
duke@435 1890 }
duke@435 1891
duke@435 1892 if (opr1->is_cpu_register()) {
duke@435 1893 reg2reg(opr1, result);
duke@435 1894 } else if (opr1->is_stack()) {
duke@435 1895 stack2reg(opr1, result, result->type());
duke@435 1896 } else if (opr1->is_constant()) {
duke@435 1897 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1898 } else {
duke@435 1899 ShouldNotReachHere();
duke@435 1900 }
duke@435 1901
duke@435 1902 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1903 // optimized version that does not require a branch
duke@435 1904 if (opr2->is_single_cpu()) {
duke@435 1905 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 1906 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 1907 } else if (opr2->is_double_cpu()) {
duke@435 1908 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1909 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 1910 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 1911 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 1912 } else if (opr2->is_single_stack()) {
duke@435 1913 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 1914 } else if (opr2->is_double_stack()) {
never@739 1915 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 1916 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 1917 } else {
duke@435 1918 ShouldNotReachHere();
duke@435 1919 }
duke@435 1920
duke@435 1921 } else {
duke@435 1922 Label skip;
duke@435 1923 __ jcc (acond, skip);
duke@435 1924 if (opr2->is_cpu_register()) {
duke@435 1925 reg2reg(opr2, result);
duke@435 1926 } else if (opr2->is_stack()) {
duke@435 1927 stack2reg(opr2, result, result->type());
duke@435 1928 } else if (opr2->is_constant()) {
duke@435 1929 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1930 } else {
duke@435 1931 ShouldNotReachHere();
duke@435 1932 }
duke@435 1933 __ bind(skip);
duke@435 1934 }
duke@435 1935 }
duke@435 1936
duke@435 1937
duke@435 1938 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1939 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 1940
duke@435 1941 if (left->is_single_cpu()) {
duke@435 1942 assert(left == dest, "left and dest must be equal");
duke@435 1943 Register lreg = left->as_register();
duke@435 1944
duke@435 1945 if (right->is_single_cpu()) {
duke@435 1946 // cpu register - cpu register
duke@435 1947 Register rreg = right->as_register();
duke@435 1948 switch (code) {
duke@435 1949 case lir_add: __ addl (lreg, rreg); break;
duke@435 1950 case lir_sub: __ subl (lreg, rreg); break;
duke@435 1951 case lir_mul: __ imull(lreg, rreg); break;
duke@435 1952 default: ShouldNotReachHere();
duke@435 1953 }
duke@435 1954
duke@435 1955 } else if (right->is_stack()) {
duke@435 1956 // cpu register - stack
duke@435 1957 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 1958 switch (code) {
duke@435 1959 case lir_add: __ addl(lreg, raddr); break;
duke@435 1960 case lir_sub: __ subl(lreg, raddr); break;
duke@435 1961 default: ShouldNotReachHere();
duke@435 1962 }
duke@435 1963
duke@435 1964 } else if (right->is_constant()) {
duke@435 1965 // cpu register - constant
duke@435 1966 jint c = right->as_constant_ptr()->as_jint();
duke@435 1967 switch (code) {
duke@435 1968 case lir_add: {
duke@435 1969 __ increment(lreg, c);
duke@435 1970 break;
duke@435 1971 }
duke@435 1972 case lir_sub: {
duke@435 1973 __ decrement(lreg, c);
duke@435 1974 break;
duke@435 1975 }
duke@435 1976 default: ShouldNotReachHere();
duke@435 1977 }
duke@435 1978
duke@435 1979 } else {
duke@435 1980 ShouldNotReachHere();
duke@435 1981 }
duke@435 1982
duke@435 1983 } else if (left->is_double_cpu()) {
duke@435 1984 assert(left == dest, "left and dest must be equal");
duke@435 1985 Register lreg_lo = left->as_register_lo();
duke@435 1986 Register lreg_hi = left->as_register_hi();
duke@435 1987
duke@435 1988 if (right->is_double_cpu()) {
duke@435 1989 // cpu register - cpu register
duke@435 1990 Register rreg_lo = right->as_register_lo();
duke@435 1991 Register rreg_hi = right->as_register_hi();
never@739 1992 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 1993 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 1994 switch (code) {
duke@435 1995 case lir_add:
never@739 1996 __ addptr(lreg_lo, rreg_lo);
never@739 1997 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 1998 break;
duke@435 1999 case lir_sub:
never@739 2000 __ subptr(lreg_lo, rreg_lo);
never@739 2001 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2002 break;
duke@435 2003 case lir_mul:
never@739 2004 #ifdef _LP64
never@739 2005 __ imulq(lreg_lo, rreg_lo);
never@739 2006 #else
duke@435 2007 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2008 __ imull(lreg_hi, rreg_lo);
duke@435 2009 __ imull(rreg_hi, lreg_lo);
duke@435 2010 __ addl (rreg_hi, lreg_hi);
duke@435 2011 __ mull (rreg_lo);
duke@435 2012 __ addl (lreg_hi, rreg_hi);
never@739 2013 #endif // _LP64
duke@435 2014 break;
duke@435 2015 default:
duke@435 2016 ShouldNotReachHere();
duke@435 2017 }
duke@435 2018
duke@435 2019 } else if (right->is_constant()) {
duke@435 2020 // cpu register - constant
never@739 2021 #ifdef _LP64
never@739 2022 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2023 __ movptr(r10, (intptr_t) c);
never@739 2024 switch (code) {
never@739 2025 case lir_add:
never@739 2026 __ addptr(lreg_lo, r10);
never@739 2027 break;
never@739 2028 case lir_sub:
never@739 2029 __ subptr(lreg_lo, r10);
never@739 2030 break;
never@739 2031 default:
never@739 2032 ShouldNotReachHere();
never@739 2033 }
never@739 2034 #else
duke@435 2035 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2036 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2037 switch (code) {
duke@435 2038 case lir_add:
never@739 2039 __ addptr(lreg_lo, c_lo);
duke@435 2040 __ adcl(lreg_hi, c_hi);
duke@435 2041 break;
duke@435 2042 case lir_sub:
never@739 2043 __ subptr(lreg_lo, c_lo);
duke@435 2044 __ sbbl(lreg_hi, c_hi);
duke@435 2045 break;
duke@435 2046 default:
duke@435 2047 ShouldNotReachHere();
duke@435 2048 }
never@739 2049 #endif // _LP64
duke@435 2050
duke@435 2051 } else {
duke@435 2052 ShouldNotReachHere();
duke@435 2053 }
duke@435 2054
duke@435 2055 } else if (left->is_single_xmm()) {
duke@435 2056 assert(left == dest, "left and dest must be equal");
duke@435 2057 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2058
duke@435 2059 if (right->is_single_xmm()) {
duke@435 2060 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2061 switch (code) {
duke@435 2062 case lir_add: __ addss(lreg, rreg); break;
duke@435 2063 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2064 case lir_mul_strictfp: // fall through
duke@435 2065 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2066 case lir_div_strictfp: // fall through
duke@435 2067 case lir_div: __ divss(lreg, rreg); break;
duke@435 2068 default: ShouldNotReachHere();
duke@435 2069 }
duke@435 2070 } else {
duke@435 2071 Address raddr;
duke@435 2072 if (right->is_single_stack()) {
duke@435 2073 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2074 } else if (right->is_constant()) {
duke@435 2075 // hack for now
duke@435 2076 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2077 } else {
duke@435 2078 ShouldNotReachHere();
duke@435 2079 }
duke@435 2080 switch (code) {
duke@435 2081 case lir_add: __ addss(lreg, raddr); break;
duke@435 2082 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2083 case lir_mul_strictfp: // fall through
duke@435 2084 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2085 case lir_div_strictfp: // fall through
duke@435 2086 case lir_div: __ divss(lreg, raddr); break;
duke@435 2087 default: ShouldNotReachHere();
duke@435 2088 }
duke@435 2089 }
duke@435 2090
duke@435 2091 } else if (left->is_double_xmm()) {
duke@435 2092 assert(left == dest, "left and dest must be equal");
duke@435 2093
duke@435 2094 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2095 if (right->is_double_xmm()) {
duke@435 2096 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2097 switch (code) {
duke@435 2098 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2099 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2100 case lir_mul_strictfp: // fall through
duke@435 2101 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2102 case lir_div_strictfp: // fall through
duke@435 2103 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2104 default: ShouldNotReachHere();
duke@435 2105 }
duke@435 2106 } else {
duke@435 2107 Address raddr;
duke@435 2108 if (right->is_double_stack()) {
duke@435 2109 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2110 } else if (right->is_constant()) {
duke@435 2111 // hack for now
duke@435 2112 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2113 } else {
duke@435 2114 ShouldNotReachHere();
duke@435 2115 }
duke@435 2116 switch (code) {
duke@435 2117 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2118 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2119 case lir_mul_strictfp: // fall through
duke@435 2120 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2121 case lir_div_strictfp: // fall through
duke@435 2122 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2123 default: ShouldNotReachHere();
duke@435 2124 }
duke@435 2125 }
duke@435 2126
duke@435 2127 } else if (left->is_single_fpu()) {
duke@435 2128 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2129
duke@435 2130 if (right->is_single_fpu()) {
duke@435 2131 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2132
duke@435 2133 } else {
duke@435 2134 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2135 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2136
duke@435 2137 Address raddr;
duke@435 2138 if (right->is_single_stack()) {
duke@435 2139 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2140 } else if (right->is_constant()) {
duke@435 2141 address const_addr = float_constant(right->as_jfloat());
duke@435 2142 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2143 // hack for now
duke@435 2144 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2145 } else {
duke@435 2146 ShouldNotReachHere();
duke@435 2147 }
duke@435 2148
duke@435 2149 switch (code) {
duke@435 2150 case lir_add: __ fadd_s(raddr); break;
duke@435 2151 case lir_sub: __ fsub_s(raddr); break;
duke@435 2152 case lir_mul_strictfp: // fall through
duke@435 2153 case lir_mul: __ fmul_s(raddr); break;
duke@435 2154 case lir_div_strictfp: // fall through
duke@435 2155 case lir_div: __ fdiv_s(raddr); break;
duke@435 2156 default: ShouldNotReachHere();
duke@435 2157 }
duke@435 2158 }
duke@435 2159
duke@435 2160 } else if (left->is_double_fpu()) {
duke@435 2161 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2162
duke@435 2163 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2164 // Double values require special handling for strictfp mul/div on x86
duke@435 2165 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2166 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2167 }
duke@435 2168
duke@435 2169 if (right->is_double_fpu()) {
duke@435 2170 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2171
duke@435 2172 } else {
duke@435 2173 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2174 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2175
duke@435 2176 Address raddr;
duke@435 2177 if (right->is_double_stack()) {
duke@435 2178 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2179 } else if (right->is_constant()) {
duke@435 2180 // hack for now
duke@435 2181 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2182 } else {
duke@435 2183 ShouldNotReachHere();
duke@435 2184 }
duke@435 2185
duke@435 2186 switch (code) {
duke@435 2187 case lir_add: __ fadd_d(raddr); break;
duke@435 2188 case lir_sub: __ fsub_d(raddr); break;
duke@435 2189 case lir_mul_strictfp: // fall through
duke@435 2190 case lir_mul: __ fmul_d(raddr); break;
duke@435 2191 case lir_div_strictfp: // fall through
duke@435 2192 case lir_div: __ fdiv_d(raddr); break;
duke@435 2193 default: ShouldNotReachHere();
duke@435 2194 }
duke@435 2195 }
duke@435 2196
duke@435 2197 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2198 // Double values require special handling for strictfp mul/div on x86
duke@435 2199 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2200 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2201 }
duke@435 2202
duke@435 2203 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2204 assert(left == dest, "left and dest must be equal");
duke@435 2205
duke@435 2206 Address laddr;
duke@435 2207 if (left->is_single_stack()) {
duke@435 2208 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2209 } else if (left->is_address()) {
duke@435 2210 laddr = as_Address(left->as_address_ptr());
duke@435 2211 } else {
duke@435 2212 ShouldNotReachHere();
duke@435 2213 }
duke@435 2214
duke@435 2215 if (right->is_single_cpu()) {
duke@435 2216 Register rreg = right->as_register();
duke@435 2217 switch (code) {
duke@435 2218 case lir_add: __ addl(laddr, rreg); break;
duke@435 2219 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2220 default: ShouldNotReachHere();
duke@435 2221 }
duke@435 2222 } else if (right->is_constant()) {
duke@435 2223 jint c = right->as_constant_ptr()->as_jint();
duke@435 2224 switch (code) {
duke@435 2225 case lir_add: {
never@739 2226 __ incrementl(laddr, c);
duke@435 2227 break;
duke@435 2228 }
duke@435 2229 case lir_sub: {
never@739 2230 __ decrementl(laddr, c);
duke@435 2231 break;
duke@435 2232 }
duke@435 2233 default: ShouldNotReachHere();
duke@435 2234 }
duke@435 2235 } else {
duke@435 2236 ShouldNotReachHere();
duke@435 2237 }
duke@435 2238
duke@435 2239 } else {
duke@435 2240 ShouldNotReachHere();
duke@435 2241 }
duke@435 2242 }
duke@435 2243
duke@435 2244 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2245 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2246 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2247 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2248
duke@435 2249 bool left_is_tos = (left_index == 0);
duke@435 2250 bool dest_is_tos = (dest_index == 0);
duke@435 2251 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2252
duke@435 2253 switch (code) {
duke@435 2254 case lir_add:
duke@435 2255 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2256 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2257 else __ fadda(non_tos_index);
duke@435 2258 break;
duke@435 2259
duke@435 2260 case lir_sub:
duke@435 2261 if (left_is_tos) {
duke@435 2262 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2263 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2264 else __ fsubra(non_tos_index);
duke@435 2265 } else {
duke@435 2266 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2267 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2268 else __ fsuba (non_tos_index);
duke@435 2269 }
duke@435 2270 break;
duke@435 2271
duke@435 2272 case lir_mul_strictfp: // fall through
duke@435 2273 case lir_mul:
duke@435 2274 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2275 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2276 else __ fmula(non_tos_index);
duke@435 2277 break;
duke@435 2278
duke@435 2279 case lir_div_strictfp: // fall through
duke@435 2280 case lir_div:
duke@435 2281 if (left_is_tos) {
duke@435 2282 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2283 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2284 else __ fdivra(non_tos_index);
duke@435 2285 } else {
duke@435 2286 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2287 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2288 else __ fdiva (non_tos_index);
duke@435 2289 }
duke@435 2290 break;
duke@435 2291
duke@435 2292 case lir_rem:
duke@435 2293 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2294 __ fremr(noreg);
duke@435 2295 break;
duke@435 2296
duke@435 2297 default:
duke@435 2298 ShouldNotReachHere();
duke@435 2299 }
duke@435 2300 }
duke@435 2301
duke@435 2302
duke@435 2303 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2304 if (value->is_double_xmm()) {
duke@435 2305 switch(code) {
duke@435 2306 case lir_abs :
duke@435 2307 {
duke@435 2308 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2309 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2310 }
duke@435 2311 __ andpd(dest->as_xmm_double_reg(),
duke@435 2312 ExternalAddress((address)double_signmask_pool));
duke@435 2313 }
duke@435 2314 break;
duke@435 2315
duke@435 2316 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2317 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2318 default : ShouldNotReachHere();
duke@435 2319 }
duke@435 2320
duke@435 2321 } else if (value->is_double_fpu()) {
duke@435 2322 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2323 switch(code) {
duke@435 2324 case lir_log : __ flog() ; break;
duke@435 2325 case lir_log10 : __ flog10() ; break;
duke@435 2326 case lir_abs : __ fabs() ; break;
duke@435 2327 case lir_sqrt : __ fsqrt(); break;
duke@435 2328 case lir_sin :
duke@435 2329 // Should consider not saving rbx, if not necessary
duke@435 2330 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2331 break;
duke@435 2332 case lir_cos :
duke@435 2333 // Should consider not saving rbx, if not necessary
duke@435 2334 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2335 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2336 break;
duke@435 2337 case lir_tan :
duke@435 2338 // Should consider not saving rbx, if not necessary
duke@435 2339 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2340 break;
duke@435 2341 default : ShouldNotReachHere();
duke@435 2342 }
duke@435 2343 } else {
duke@435 2344 Unimplemented();
duke@435 2345 }
duke@435 2346 }
duke@435 2347
duke@435 2348 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2349 // assert(left->destroys_register(), "check");
duke@435 2350 if (left->is_single_cpu()) {
duke@435 2351 Register reg = left->as_register();
duke@435 2352 if (right->is_constant()) {
duke@435 2353 int val = right->as_constant_ptr()->as_jint();
duke@435 2354 switch (code) {
duke@435 2355 case lir_logic_and: __ andl (reg, val); break;
duke@435 2356 case lir_logic_or: __ orl (reg, val); break;
duke@435 2357 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2358 default: ShouldNotReachHere();
duke@435 2359 }
duke@435 2360 } else if (right->is_stack()) {
duke@435 2361 // added support for stack operands
duke@435 2362 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2363 switch (code) {
duke@435 2364 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2365 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2366 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2367 default: ShouldNotReachHere();
duke@435 2368 }
duke@435 2369 } else {
duke@435 2370 Register rright = right->as_register();
duke@435 2371 switch (code) {
never@739 2372 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2373 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2374 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2375 default: ShouldNotReachHere();
duke@435 2376 }
duke@435 2377 }
duke@435 2378 move_regs(reg, dst->as_register());
duke@435 2379 } else {
duke@435 2380 Register l_lo = left->as_register_lo();
duke@435 2381 Register l_hi = left->as_register_hi();
duke@435 2382 if (right->is_constant()) {
never@739 2383 #ifdef _LP64
never@739 2384 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2385 switch (code) {
never@739 2386 case lir_logic_and:
never@739 2387 __ andq(l_lo, rscratch1);
never@739 2388 break;
never@739 2389 case lir_logic_or:
never@739 2390 __ orq(l_lo, rscratch1);
never@739 2391 break;
never@739 2392 case lir_logic_xor:
never@739 2393 __ xorq(l_lo, rscratch1);
never@739 2394 break;
never@739 2395 default: ShouldNotReachHere();
never@739 2396 }
never@739 2397 #else
duke@435 2398 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2399 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2400 switch (code) {
duke@435 2401 case lir_logic_and:
duke@435 2402 __ andl(l_lo, r_lo);
duke@435 2403 __ andl(l_hi, r_hi);
duke@435 2404 break;
duke@435 2405 case lir_logic_or:
duke@435 2406 __ orl(l_lo, r_lo);
duke@435 2407 __ orl(l_hi, r_hi);
duke@435 2408 break;
duke@435 2409 case lir_logic_xor:
duke@435 2410 __ xorl(l_lo, r_lo);
duke@435 2411 __ xorl(l_hi, r_hi);
duke@435 2412 break;
duke@435 2413 default: ShouldNotReachHere();
duke@435 2414 }
never@739 2415 #endif // _LP64
duke@435 2416 } else {
duke@435 2417 Register r_lo = right->as_register_lo();
duke@435 2418 Register r_hi = right->as_register_hi();
duke@435 2419 assert(l_lo != r_hi, "overwriting registers");
duke@435 2420 switch (code) {
duke@435 2421 case lir_logic_and:
never@739 2422 __ andptr(l_lo, r_lo);
never@739 2423 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2424 break;
duke@435 2425 case lir_logic_or:
never@739 2426 __ orptr(l_lo, r_lo);
never@739 2427 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2428 break;
duke@435 2429 case lir_logic_xor:
never@739 2430 __ xorptr(l_lo, r_lo);
never@739 2431 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2432 break;
duke@435 2433 default: ShouldNotReachHere();
duke@435 2434 }
duke@435 2435 }
duke@435 2436
duke@435 2437 Register dst_lo = dst->as_register_lo();
duke@435 2438 Register dst_hi = dst->as_register_hi();
duke@435 2439
never@739 2440 #ifdef _LP64
never@739 2441 move_regs(l_lo, dst_lo);
never@739 2442 #else
duke@435 2443 if (dst_lo == l_hi) {
duke@435 2444 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2445 move_regs(l_hi, dst_hi);
duke@435 2446 move_regs(l_lo, dst_lo);
duke@435 2447 } else {
duke@435 2448 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2449 move_regs(l_lo, dst_lo);
duke@435 2450 move_regs(l_hi, dst_hi);
duke@435 2451 }
never@739 2452 #endif // _LP64
duke@435 2453 }
duke@435 2454 }
duke@435 2455
duke@435 2456
duke@435 2457 // we assume that rax, and rdx can be overwritten
duke@435 2458 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2459
duke@435 2460 assert(left->is_single_cpu(), "left must be register");
duke@435 2461 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2462 assert(result->is_single_cpu(), "result must be register");
duke@435 2463
duke@435 2464 // assert(left->destroys_register(), "check");
duke@435 2465 // assert(right->destroys_register(), "check");
duke@435 2466
duke@435 2467 Register lreg = left->as_register();
duke@435 2468 Register dreg = result->as_register();
duke@435 2469
duke@435 2470 if (right->is_constant()) {
duke@435 2471 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2472 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2473 if (code == lir_idiv) {
duke@435 2474 assert(lreg == rax, "must be rax,");
duke@435 2475 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2476 __ cdql(); // sign extend into rdx:rax
duke@435 2477 if (divisor == 2) {
duke@435 2478 __ subl(lreg, rdx);
duke@435 2479 } else {
duke@435 2480 __ andl(rdx, divisor - 1);
duke@435 2481 __ addl(lreg, rdx);
duke@435 2482 }
duke@435 2483 __ sarl(lreg, log2_intptr(divisor));
duke@435 2484 move_regs(lreg, dreg);
duke@435 2485 } else if (code == lir_irem) {
duke@435 2486 Label done;
never@739 2487 __ mov(dreg, lreg);
duke@435 2488 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2489 __ jcc(Assembler::positive, done);
duke@435 2490 __ decrement(dreg);
duke@435 2491 __ orl(dreg, ~(divisor - 1));
duke@435 2492 __ increment(dreg);
duke@435 2493 __ bind(done);
duke@435 2494 } else {
duke@435 2495 ShouldNotReachHere();
duke@435 2496 }
duke@435 2497 } else {
duke@435 2498 Register rreg = right->as_register();
duke@435 2499 assert(lreg == rax, "left register must be rax,");
duke@435 2500 assert(rreg != rdx, "right register must not be rdx");
duke@435 2501 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2502
duke@435 2503 move_regs(lreg, rax);
duke@435 2504
duke@435 2505 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2506 add_debug_info_for_div0(idivl_offset, info);
duke@435 2507 if (code == lir_irem) {
duke@435 2508 move_regs(rdx, dreg); // result is in rdx
duke@435 2509 } else {
duke@435 2510 move_regs(rax, dreg);
duke@435 2511 }
duke@435 2512 }
duke@435 2513 }
duke@435 2514
duke@435 2515
duke@435 2516 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2517 if (opr1->is_single_cpu()) {
duke@435 2518 Register reg1 = opr1->as_register();
duke@435 2519 if (opr2->is_single_cpu()) {
duke@435 2520 // cpu register - cpu register
never@739 2521 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2522 __ cmpptr(reg1, opr2->as_register());
never@739 2523 } else {
never@739 2524 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2525 __ cmpl(reg1, opr2->as_register());
never@739 2526 }
duke@435 2527 } else if (opr2->is_stack()) {
duke@435 2528 // cpu register - stack
never@739 2529 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2530 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2531 } else {
never@739 2532 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2533 }
duke@435 2534 } else if (opr2->is_constant()) {
duke@435 2535 // cpu register - constant
duke@435 2536 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2537 if (c->type() == T_INT) {
duke@435 2538 __ cmpl(reg1, c->as_jint());
never@739 2539 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2540 // In 64bit oops are single register
duke@435 2541 jobject o = c->as_jobject();
duke@435 2542 if (o == NULL) {
never@739 2543 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2544 } else {
never@739 2545 #ifdef _LP64
never@739 2546 __ movoop(rscratch1, o);
never@739 2547 __ cmpptr(reg1, rscratch1);
never@739 2548 #else
duke@435 2549 __ cmpoop(reg1, c->as_jobject());
never@739 2550 #endif // _LP64
duke@435 2551 }
duke@435 2552 } else {
duke@435 2553 ShouldNotReachHere();
duke@435 2554 }
duke@435 2555 // cpu register - address
duke@435 2556 } else if (opr2->is_address()) {
duke@435 2557 if (op->info() != NULL) {
duke@435 2558 add_debug_info_for_null_check_here(op->info());
duke@435 2559 }
duke@435 2560 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2561 } else {
duke@435 2562 ShouldNotReachHere();
duke@435 2563 }
duke@435 2564
duke@435 2565 } else if(opr1->is_double_cpu()) {
duke@435 2566 Register xlo = opr1->as_register_lo();
duke@435 2567 Register xhi = opr1->as_register_hi();
duke@435 2568 if (opr2->is_double_cpu()) {
never@739 2569 #ifdef _LP64
never@739 2570 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2571 #else
duke@435 2572 // cpu register - cpu register
duke@435 2573 Register ylo = opr2->as_register_lo();
duke@435 2574 Register yhi = opr2->as_register_hi();
duke@435 2575 __ subl(xlo, ylo);
duke@435 2576 __ sbbl(xhi, yhi);
duke@435 2577 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2578 __ orl(xhi, xlo);
duke@435 2579 }
never@739 2580 #endif // _LP64
duke@435 2581 } else if (opr2->is_constant()) {
duke@435 2582 // cpu register - constant 0
duke@435 2583 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2584 #ifdef _LP64
never@739 2585 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2586 #else
duke@435 2587 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2588 __ orl(xhi, xlo);
never@739 2589 #endif // _LP64
duke@435 2590 } else {
duke@435 2591 ShouldNotReachHere();
duke@435 2592 }
duke@435 2593
duke@435 2594 } else if (opr1->is_single_xmm()) {
duke@435 2595 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2596 if (opr2->is_single_xmm()) {
duke@435 2597 // xmm register - xmm register
duke@435 2598 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2599 } else if (opr2->is_stack()) {
duke@435 2600 // xmm register - stack
duke@435 2601 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2602 } else if (opr2->is_constant()) {
duke@435 2603 // xmm register - constant
duke@435 2604 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2605 } else if (opr2->is_address()) {
duke@435 2606 // xmm register - address
duke@435 2607 if (op->info() != NULL) {
duke@435 2608 add_debug_info_for_null_check_here(op->info());
duke@435 2609 }
duke@435 2610 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2611 } else {
duke@435 2612 ShouldNotReachHere();
duke@435 2613 }
duke@435 2614
duke@435 2615 } else if (opr1->is_double_xmm()) {
duke@435 2616 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2617 if (opr2->is_double_xmm()) {
duke@435 2618 // xmm register - xmm register
duke@435 2619 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2620 } else if (opr2->is_stack()) {
duke@435 2621 // xmm register - stack
duke@435 2622 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2623 } else if (opr2->is_constant()) {
duke@435 2624 // xmm register - constant
duke@435 2625 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2626 } else if (opr2->is_address()) {
duke@435 2627 // xmm register - address
duke@435 2628 if (op->info() != NULL) {
duke@435 2629 add_debug_info_for_null_check_here(op->info());
duke@435 2630 }
duke@435 2631 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2632 } else {
duke@435 2633 ShouldNotReachHere();
duke@435 2634 }
duke@435 2635
duke@435 2636 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2637 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2638 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2639 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2640
duke@435 2641 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2642 LIR_Const* c = opr2->as_constant_ptr();
never@739 2643 #ifdef _LP64
never@739 2644 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2645 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2646 __ movoop(rscratch1, c->as_jobject());
never@739 2647 }
never@739 2648 #endif // LP64
duke@435 2649 if (op->info() != NULL) {
duke@435 2650 add_debug_info_for_null_check_here(op->info());
duke@435 2651 }
duke@435 2652 // special case: address - constant
duke@435 2653 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2654 if (c->type() == T_INT) {
duke@435 2655 __ cmpl(as_Address(addr), c->as_jint());
never@739 2656 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2657 #ifdef _LP64
never@739 2658 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2659 // better strategy by giving noreg as the temp for as_Address
never@739 2660 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2661 #else
duke@435 2662 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2663 #endif // _LP64
duke@435 2664 } else {
duke@435 2665 ShouldNotReachHere();
duke@435 2666 }
duke@435 2667
duke@435 2668 } else {
duke@435 2669 ShouldNotReachHere();
duke@435 2670 }
duke@435 2671 }
duke@435 2672
duke@435 2673 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2674 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2675 if (left->is_single_xmm()) {
duke@435 2676 assert(right->is_single_xmm(), "must match");
duke@435 2677 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2678 } else if (left->is_double_xmm()) {
duke@435 2679 assert(right->is_double_xmm(), "must match");
duke@435 2680 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2681
duke@435 2682 } else {
duke@435 2683 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2684 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2685
duke@435 2686 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2687 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2688 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2689 }
duke@435 2690 } else {
duke@435 2691 assert(code == lir_cmp_l2i, "check");
never@739 2692 #ifdef _LP64
never@739 2693 Register dest = dst->as_register();
never@739 2694 __ xorptr(dest, dest);
never@739 2695 Label high, done;
never@739 2696 __ cmpptr(left->as_register_lo(), right->as_register_lo());
never@739 2697 __ jcc(Assembler::equal, done);
never@739 2698 __ jcc(Assembler::greater, high);
never@739 2699 __ decrement(dest);
never@739 2700 __ jmp(done);
never@739 2701 __ bind(high);
never@739 2702 __ increment(dest);
never@739 2703
never@739 2704 __ bind(done);
never@739 2705
never@739 2706 #else
duke@435 2707 __ lcmp2int(left->as_register_hi(),
duke@435 2708 left->as_register_lo(),
duke@435 2709 right->as_register_hi(),
duke@435 2710 right->as_register_lo());
duke@435 2711 move_regs(left->as_register_hi(), dst->as_register());
never@739 2712 #endif // _LP64
duke@435 2713 }
duke@435 2714 }
duke@435 2715
duke@435 2716
duke@435 2717 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2718 if (os::is_MP()) {
duke@435 2719 // make sure that the displacement word of the call ends up word aligned
duke@435 2720 int offset = __ offset();
duke@435 2721 switch (code) {
duke@435 2722 case lir_static_call:
duke@435 2723 case lir_optvirtual_call:
twisti@1730 2724 case lir_dynamic_call:
duke@435 2725 offset += NativeCall::displacement_offset;
duke@435 2726 break;
duke@435 2727 case lir_icvirtual_call:
duke@435 2728 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2729 break;
duke@435 2730 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2731 default: ShouldNotReachHere();
duke@435 2732 }
duke@435 2733 while (offset++ % BytesPerWord != 0) {
duke@435 2734 __ nop();
duke@435 2735 }
duke@435 2736 }
duke@435 2737 }
duke@435 2738
duke@435 2739
twisti@1730 2740 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2741 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2742 "must be aligned");
twisti@1730 2743 __ call(AddressLiteral(op->addr(), rtype));
twisti@1730 2744 add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
duke@435 2745 }
duke@435 2746
duke@435 2747
twisti@1730 2748 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2749 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2750 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2751 assert(!os::is_MP() ||
duke@435 2752 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2753 "must be aligned");
twisti@1730 2754 __ call(AddressLiteral(op->addr(), rh));
twisti@1730 2755 add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
duke@435 2756 }
duke@435 2757
duke@435 2758
duke@435 2759 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2760 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2761 ShouldNotReachHere();
duke@435 2762 }
duke@435 2763
twisti@1730 2764
twisti@1736 2765 void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
twisti@1736 2766 __ movptr(FrameMap::method_handle_invoke_SP_save_opr()->as_register(), rsp);
twisti@1730 2767 }
twisti@1730 2768
twisti@1730 2769
twisti@1736 2770 void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
twisti@1736 2771 __ movptr(rsp, FrameMap::method_handle_invoke_SP_save_opr()->as_register());
twisti@1730 2772 }
twisti@1730 2773
twisti@1730 2774
duke@435 2775 void LIR_Assembler::emit_static_call_stub() {
duke@435 2776 address call_pc = __ pc();
duke@435 2777 address stub = __ start_a_stub(call_stub_size);
duke@435 2778 if (stub == NULL) {
duke@435 2779 bailout("static call stub overflow");
duke@435 2780 return;
duke@435 2781 }
duke@435 2782
duke@435 2783 int start = __ offset();
duke@435 2784 if (os::is_MP()) {
duke@435 2785 // make sure that the displacement word of the call ends up word aligned
duke@435 2786 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2787 while (offset++ % BytesPerWord != 0) {
duke@435 2788 __ nop();
duke@435 2789 }
duke@435 2790 }
duke@435 2791 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2792 __ movoop(rbx, (jobject)NULL);
duke@435 2793 // must be set to -1 at code generation time
duke@435 2794 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2795 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2796 __ jump(RuntimeAddress(__ pc()));
duke@435 2797
duke@435 2798 assert(__ offset() - start <= call_stub_size, "stub too big")
duke@435 2799 __ end_a_stub();
duke@435 2800 }
duke@435 2801
duke@435 2802
duke@435 2803 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
duke@435 2804 assert(exceptionOop->as_register() == rax, "must match");
duke@435 2805 assert(unwind || exceptionPC->as_register() == rdx, "must match");
duke@435 2806
duke@435 2807 // exception object is not added to oop map by LinearScan
duke@435 2808 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2809 info->add_register_oop(exceptionOop);
duke@435 2810 Runtime1::StubID unwind_id;
duke@435 2811
duke@435 2812 if (!unwind) {
duke@435 2813 // get current pc information
duke@435 2814 // pc is only needed if the method has an exception handler, the unwind code does not need it.
duke@435 2815 int pc_for_athrow_offset = __ offset();
duke@435 2816 InternalAddress pc_for_athrow(__ pc());
duke@435 2817 __ lea(exceptionPC->as_register(), pc_for_athrow);
duke@435 2818 add_call_info(pc_for_athrow_offset, info); // for exception handler
duke@435 2819
duke@435 2820 __ verify_not_null_oop(rax);
duke@435 2821 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 2822 if (compilation()->has_fpu_code()) {
duke@435 2823 unwind_id = Runtime1::handle_exception_id;
duke@435 2824 } else {
duke@435 2825 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2826 }
twisti@1730 2827 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2828 } else {
twisti@1730 2829 // remove the activation
twisti@1730 2830 __ remove_frame(initial_frame_size_in_bytes());
twisti@1730 2831 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
duke@435 2832 }
duke@435 2833
duke@435 2834 // enough room for two byte trap
duke@435 2835 __ nop();
duke@435 2836 }
duke@435 2837
duke@435 2838
duke@435 2839 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2840
duke@435 2841 // optimized version for linear scan:
duke@435 2842 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2843 // * left and dest must be equal
duke@435 2844 // * tmp must be unused
duke@435 2845 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2846 assert(left == dest, "left and dest must be equal");
duke@435 2847 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2848
duke@435 2849 if (left->is_single_cpu()) {
duke@435 2850 Register value = left->as_register();
duke@435 2851 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2852
duke@435 2853 switch (code) {
duke@435 2854 case lir_shl: __ shll(value); break;
duke@435 2855 case lir_shr: __ sarl(value); break;
duke@435 2856 case lir_ushr: __ shrl(value); break;
duke@435 2857 default: ShouldNotReachHere();
duke@435 2858 }
duke@435 2859 } else if (left->is_double_cpu()) {
duke@435 2860 Register lo = left->as_register_lo();
duke@435 2861 Register hi = left->as_register_hi();
duke@435 2862 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2863 #ifdef _LP64
never@739 2864 switch (code) {
never@739 2865 case lir_shl: __ shlptr(lo); break;
never@739 2866 case lir_shr: __ sarptr(lo); break;
never@739 2867 case lir_ushr: __ shrptr(lo); break;
never@739 2868 default: ShouldNotReachHere();
never@739 2869 }
never@739 2870 #else
duke@435 2871
duke@435 2872 switch (code) {
duke@435 2873 case lir_shl: __ lshl(hi, lo); break;
duke@435 2874 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2875 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2876 default: ShouldNotReachHere();
duke@435 2877 }
never@739 2878 #endif // LP64
duke@435 2879 } else {
duke@435 2880 ShouldNotReachHere();
duke@435 2881 }
duke@435 2882 }
duke@435 2883
duke@435 2884
duke@435 2885 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2886 if (dest->is_single_cpu()) {
duke@435 2887 // first move left into dest so that left is not destroyed by the shift
duke@435 2888 Register value = dest->as_register();
duke@435 2889 count = count & 0x1F; // Java spec
duke@435 2890
duke@435 2891 move_regs(left->as_register(), value);
duke@435 2892 switch (code) {
duke@435 2893 case lir_shl: __ shll(value, count); break;
duke@435 2894 case lir_shr: __ sarl(value, count); break;
duke@435 2895 case lir_ushr: __ shrl(value, count); break;
duke@435 2896 default: ShouldNotReachHere();
duke@435 2897 }
duke@435 2898 } else if (dest->is_double_cpu()) {
never@739 2899 #ifndef _LP64
duke@435 2900 Unimplemented();
never@739 2901 #else
never@739 2902 // first move left into dest so that left is not destroyed by the shift
never@739 2903 Register value = dest->as_register_lo();
never@739 2904 count = count & 0x1F; // Java spec
never@739 2905
never@739 2906 move_regs(left->as_register_lo(), value);
never@739 2907 switch (code) {
never@739 2908 case lir_shl: __ shlptr(value, count); break;
never@739 2909 case lir_shr: __ sarptr(value, count); break;
never@739 2910 case lir_ushr: __ shrptr(value, count); break;
never@739 2911 default: ShouldNotReachHere();
never@739 2912 }
never@739 2913 #endif // _LP64
duke@435 2914 } else {
duke@435 2915 ShouldNotReachHere();
duke@435 2916 }
duke@435 2917 }
duke@435 2918
duke@435 2919
duke@435 2920 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 2921 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2922 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2923 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2924 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 2925 }
duke@435 2926
duke@435 2927
duke@435 2928 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 2929 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2930 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2931 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2932 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 2933 }
duke@435 2934
duke@435 2935
duke@435 2936 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 2937 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2938 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2939 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2940 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 2941 }
duke@435 2942
duke@435 2943
duke@435 2944 // This code replaces a call to arraycopy; no exception may
duke@435 2945 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 2946 // activation frame; we could save some checks if this would not be the case
duke@435 2947 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2948 ciArrayKlass* default_type = op->expected_type();
duke@435 2949 Register src = op->src()->as_register();
duke@435 2950 Register dst = op->dst()->as_register();
duke@435 2951 Register src_pos = op->src_pos()->as_register();
duke@435 2952 Register dst_pos = op->dst_pos()->as_register();
duke@435 2953 Register length = op->length()->as_register();
duke@435 2954 Register tmp = op->tmp()->as_register();
duke@435 2955
duke@435 2956 CodeStub* stub = op->stub();
duke@435 2957 int flags = op->flags();
duke@435 2958 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2959 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2960
duke@435 2961 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 2962 if (default_type == NULL) {
duke@435 2963 Label done;
duke@435 2964 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 2965 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 2966 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 2967 // For the moment until C1 gets the new register allocator I just force all the
duke@435 2968 // args to the right place (except the register args) and then on the back side
duke@435 2969 // reload the register args properly if we go slow path. Yuck
duke@435 2970
duke@435 2971 // These are proper for the calling convention
duke@435 2972
duke@435 2973 store_parameter(length, 2);
duke@435 2974 store_parameter(dst_pos, 1);
duke@435 2975 store_parameter(dst, 0);
duke@435 2976
duke@435 2977 // these are just temporary placements until we need to reload
duke@435 2978 store_parameter(src_pos, 3);
duke@435 2979 store_parameter(src, 4);
never@739 2980 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 2981
never@739 2982 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 2983
duke@435 2984 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 2985 #ifdef _LP64
never@739 2986 // The arguments are in java calling convention so we can trivially shift them to C
never@739 2987 // convention
never@739 2988 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 2989 __ mov(c_rarg0, j_rarg0);
never@739 2990 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 2991 __ mov(c_rarg1, j_rarg1);
never@739 2992 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 2993 __ mov(c_rarg2, j_rarg2);
never@739 2994 assert_different_registers(c_rarg3, j_rarg4);
never@739 2995 __ mov(c_rarg3, j_rarg3);
never@739 2996 #ifdef _WIN64
never@739 2997 // Allocate abi space for args but be sure to keep stack aligned
never@739 2998 __ subptr(rsp, 6*wordSize);
never@739 2999 store_parameter(j_rarg4, 4);
never@739 3000 __ call(RuntimeAddress(entry));
never@739 3001 __ addptr(rsp, 6*wordSize);
never@739 3002 #else
never@739 3003 __ mov(c_rarg4, j_rarg4);
never@739 3004 __ call(RuntimeAddress(entry));
never@739 3005 #endif // _WIN64
never@739 3006 #else
never@739 3007 __ push(length);
never@739 3008 __ push(dst_pos);
never@739 3009 __ push(dst);
never@739 3010 __ push(src_pos);
never@739 3011 __ push(src);
duke@435 3012 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3013
never@739 3014 #endif // _LP64
never@739 3015
duke@435 3016 __ cmpl(rax, 0);
duke@435 3017 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3018
duke@435 3019 // Reload values from the stack so they are where the stub
duke@435 3020 // expects them.
never@739 3021 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3022 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3023 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3024 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3025 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3026 __ jmp(*stub->entry());
duke@435 3027
duke@435 3028 __ bind(*stub->continuation());
duke@435 3029 return;
duke@435 3030 }
duke@435 3031
duke@435 3032 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3033
kvn@464 3034 int elem_size = type2aelembytes(basic_type);
duke@435 3035 int shift_amount;
duke@435 3036 Address::ScaleFactor scale;
duke@435 3037
duke@435 3038 switch (elem_size) {
duke@435 3039 case 1 :
duke@435 3040 shift_amount = 0;
duke@435 3041 scale = Address::times_1;
duke@435 3042 break;
duke@435 3043 case 2 :
duke@435 3044 shift_amount = 1;
duke@435 3045 scale = Address::times_2;
duke@435 3046 break;
duke@435 3047 case 4 :
duke@435 3048 shift_amount = 2;
duke@435 3049 scale = Address::times_4;
duke@435 3050 break;
duke@435 3051 case 8 :
duke@435 3052 shift_amount = 3;
duke@435 3053 scale = Address::times_8;
duke@435 3054 break;
duke@435 3055 default:
duke@435 3056 ShouldNotReachHere();
duke@435 3057 }
duke@435 3058
duke@435 3059 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3060 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3061 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3062 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3063
never@739 3064 // length and pos's are all sign extended at this point on 64bit
never@739 3065
duke@435 3066 // test for NULL
duke@435 3067 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3068 __ testptr(src, src);
duke@435 3069 __ jcc(Assembler::zero, *stub->entry());
duke@435 3070 }
duke@435 3071 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3072 __ testptr(dst, dst);
duke@435 3073 __ jcc(Assembler::zero, *stub->entry());
duke@435 3074 }
duke@435 3075
duke@435 3076 // check if negative
duke@435 3077 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3078 __ testl(src_pos, src_pos);
duke@435 3079 __ jcc(Assembler::less, *stub->entry());
duke@435 3080 }
duke@435 3081 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3082 __ testl(dst_pos, dst_pos);
duke@435 3083 __ jcc(Assembler::less, *stub->entry());
duke@435 3084 }
duke@435 3085 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3086 __ testl(length, length);
duke@435 3087 __ jcc(Assembler::less, *stub->entry());
duke@435 3088 }
duke@435 3089
duke@435 3090 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3091 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3092 __ cmpl(tmp, src_length_addr);
duke@435 3093 __ jcc(Assembler::above, *stub->entry());
duke@435 3094 }
duke@435 3095 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3096 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3097 __ cmpl(tmp, dst_length_addr);
duke@435 3098 __ jcc(Assembler::above, *stub->entry());
duke@435 3099 }
duke@435 3100
duke@435 3101 if (flags & LIR_OpArrayCopy::type_check) {
never@739 3102 __ movptr(tmp, src_klass_addr);
never@739 3103 __ cmpptr(tmp, dst_klass_addr);
duke@435 3104 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3105 }
duke@435 3106
duke@435 3107 #ifdef ASSERT
duke@435 3108 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3109 // Sanity check the known type with the incoming class. For the
duke@435 3110 // primitive case the types must match exactly with src.klass and
duke@435 3111 // dst.klass each exactly matching the default type. For the
duke@435 3112 // object array case, if no type check is needed then either the
duke@435 3113 // dst type is exactly the expected type and the src type is a
duke@435 3114 // subtype which we can't check or src is the same array as dst
duke@435 3115 // but not necessarily exactly of type default_type.
duke@435 3116 Label known_ok, halt;
jrose@1424 3117 __ movoop(tmp, default_type->constant_encoding());
duke@435 3118 if (basic_type != T_OBJECT) {
never@739 3119 __ cmpptr(tmp, dst_klass_addr);
duke@435 3120 __ jcc(Assembler::notEqual, halt);
never@739 3121 __ cmpptr(tmp, src_klass_addr);
duke@435 3122 __ jcc(Assembler::equal, known_ok);
duke@435 3123 } else {
never@739 3124 __ cmpptr(tmp, dst_klass_addr);
duke@435 3125 __ jcc(Assembler::equal, known_ok);
never@739 3126 __ cmpptr(src, dst);
duke@435 3127 __ jcc(Assembler::equal, known_ok);
duke@435 3128 }
duke@435 3129 __ bind(halt);
duke@435 3130 __ stop("incorrect type information in arraycopy");
duke@435 3131 __ bind(known_ok);
duke@435 3132 }
duke@435 3133 #endif
duke@435 3134
never@739 3135 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3136 __ shlptr(length, shift_amount);
never@739 3137 }
never@739 3138
never@739 3139 #ifdef _LP64
never@739 3140 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3141 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3142 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3143 assert_different_registers(c_rarg1, length);
roland@1495 3144 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3145 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3146 __ mov(c_rarg2, length);
never@739 3147
never@739 3148 #else
never@739 3149 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3150 store_parameter(tmp, 0);
never@739 3151 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3152 store_parameter(tmp, 1);
duke@435 3153 store_parameter(length, 2);
never@739 3154 #endif // _LP64
duke@435 3155 if (basic_type == T_OBJECT) {
duke@435 3156 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3157 } else {
duke@435 3158 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3159 }
duke@435 3160
duke@435 3161 __ bind(*stub->continuation());
duke@435 3162 }
duke@435 3163
duke@435 3164
duke@435 3165 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3166 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3167 Register hdr = op->hdr_opr()->as_register();
duke@435 3168 Register lock = op->lock_opr()->as_register();
duke@435 3169 if (!UseFastLocking) {
duke@435 3170 __ jmp(*op->stub()->entry());
duke@435 3171 } else if (op->code() == lir_lock) {
duke@435 3172 Register scratch = noreg;
duke@435 3173 if (UseBiasedLocking) {
duke@435 3174 scratch = op->scratch_opr()->as_register();
duke@435 3175 }
duke@435 3176 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3177 // add debug info for NullPointerException only if one is possible
duke@435 3178 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3179 if (op->info() != NULL) {
duke@435 3180 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3181 }
duke@435 3182 // done
duke@435 3183 } else if (op->code() == lir_unlock) {
duke@435 3184 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3185 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3186 } else {
duke@435 3187 Unimplemented();
duke@435 3188 }
duke@435 3189 __ bind(*op->stub()->continuation());
duke@435 3190 }
duke@435 3191
duke@435 3192
duke@435 3193 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3194 ciMethod* method = op->profiled_method();
duke@435 3195 int bci = op->profiled_bci();
duke@435 3196
duke@435 3197 // Update counter for all call types
duke@435 3198 ciMethodData* md = method->method_data();
duke@435 3199 if (md == NULL) {
duke@435 3200 bailout("out of memory building methodDataOop");
duke@435 3201 return;
duke@435 3202 }
duke@435 3203 ciProfileData* data = md->bci_to_data(bci);
duke@435 3204 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3205 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3206 Register mdo = op->mdo()->as_register();
jrose@1424 3207 __ movoop(mdo, md->constant_encoding());
duke@435 3208 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3209 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3210 // Perform additional virtual call profiling for invokevirtual and
duke@435 3211 // invokeinterface bytecodes
duke@435 3212 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 3213 Tier1ProfileVirtualCalls) {
duke@435 3214 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3215 Register recv = op->recv()->as_register();
duke@435 3216 assert_different_registers(mdo, recv);
duke@435 3217 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3218 ciKlass* known_klass = op->known_holder();
duke@435 3219 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3220 // We know the type that will be seen at this call site; we can
duke@435 3221 // statically update the methodDataOop rather than needing to do
duke@435 3222 // dynamic tests on the receiver type
duke@435 3223
duke@435 3224 // NOTE: we should probably put a lock around this search to
duke@435 3225 // avoid collisions by concurrent compilations
duke@435 3226 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3227 uint i;
duke@435 3228 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3229 ciKlass* receiver = vc_data->receiver(i);
duke@435 3230 if (known_klass->equals(receiver)) {
duke@435 3231 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3232 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3233 return;
duke@435 3234 }
duke@435 3235 }
duke@435 3236
duke@435 3237 // Receiver type not found in profile data; select an empty slot
duke@435 3238
duke@435 3239 // Note that this is less efficient than it should be because it
duke@435 3240 // always does a write to the receiver part of the
duke@435 3241 // VirtualCallData rather than just the first time
duke@435 3242 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3243 ciKlass* receiver = vc_data->receiver(i);
duke@435 3244 if (receiver == NULL) {
duke@435 3245 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3246 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3247 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3248 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3249 return;
duke@435 3250 }
duke@435 3251 }
duke@435 3252 } else {
never@739 3253 __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
duke@435 3254 Label update_done;
duke@435 3255 uint i;
duke@435 3256 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3257 Label next_test;
duke@435 3258 // See if the receiver is receiver[n].
never@739 3259 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
duke@435 3260 __ jcc(Assembler::notEqual, next_test);
duke@435 3261 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3262 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3263 __ jmp(update_done);
duke@435 3264 __ bind(next_test);
duke@435 3265 }
duke@435 3266
duke@435 3267 // Didn't find receiver; find next empty slot and fill it in
duke@435 3268 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3269 Label next_test;
duke@435 3270 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
never@739 3271 __ cmpptr(recv_addr, (int32_t)NULL_WORD);
duke@435 3272 __ jcc(Assembler::notEqual, next_test);
never@739 3273 __ movptr(recv_addr, recv);
duke@435 3274 __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
kvn@1641 3275 __ jmp(update_done);
duke@435 3276 __ bind(next_test);
duke@435 3277 }
kvn@1641 3278 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3279 // Increment total counter to indicate polymorphic case.
kvn@1641 3280 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3281
duke@435 3282 __ bind(update_done);
duke@435 3283 }
kvn@1641 3284 } else {
kvn@1641 3285 // Static call
kvn@1641 3286 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3287 }
duke@435 3288 }
duke@435 3289
duke@435 3290
duke@435 3291 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3292 Unimplemented();
duke@435 3293 }
duke@435 3294
duke@435 3295
duke@435 3296 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3297 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3298 }
duke@435 3299
duke@435 3300
duke@435 3301 void LIR_Assembler::align_backward_branch_target() {
duke@435 3302 __ align(BytesPerWord);
duke@435 3303 }
duke@435 3304
duke@435 3305
duke@435 3306 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3307 if (left->is_single_cpu()) {
duke@435 3308 __ negl(left->as_register());
duke@435 3309 move_regs(left->as_register(), dest->as_register());
duke@435 3310
duke@435 3311 } else if (left->is_double_cpu()) {
duke@435 3312 Register lo = left->as_register_lo();
never@739 3313 #ifdef _LP64
never@739 3314 Register dst = dest->as_register_lo();
never@739 3315 __ movptr(dst, lo);
never@739 3316 __ negptr(dst);
never@739 3317 #else
duke@435 3318 Register hi = left->as_register_hi();
duke@435 3319 __ lneg(hi, lo);
duke@435 3320 if (dest->as_register_lo() == hi) {
duke@435 3321 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3322 move_regs(hi, dest->as_register_hi());
duke@435 3323 move_regs(lo, dest->as_register_lo());
duke@435 3324 } else {
duke@435 3325 move_regs(lo, dest->as_register_lo());
duke@435 3326 move_regs(hi, dest->as_register_hi());
duke@435 3327 }
never@739 3328 #endif // _LP64
duke@435 3329
duke@435 3330 } else if (dest->is_single_xmm()) {
duke@435 3331 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3332 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3333 }
duke@435 3334 __ xorps(dest->as_xmm_float_reg(),
duke@435 3335 ExternalAddress((address)float_signflip_pool));
duke@435 3336
duke@435 3337 } else if (dest->is_double_xmm()) {
duke@435 3338 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3339 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3340 }
duke@435 3341 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3342 ExternalAddress((address)double_signflip_pool));
duke@435 3343
duke@435 3344 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3345 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3346 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3347 __ fchs();
duke@435 3348
duke@435 3349 } else {
duke@435 3350 ShouldNotReachHere();
duke@435 3351 }
duke@435 3352 }
duke@435 3353
duke@435 3354
duke@435 3355 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3356 assert(addr->is_address() && dest->is_register(), "check");
never@739 3357 Register reg;
never@739 3358 reg = dest->as_pointer_register();
never@739 3359 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3360 }
duke@435 3361
duke@435 3362
duke@435 3363
duke@435 3364 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3365 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3366 __ call(RuntimeAddress(dest));
duke@435 3367 if (info != NULL) {
duke@435 3368 add_call_info_here(info);
duke@435 3369 }
duke@435 3370 }
duke@435 3371
duke@435 3372
duke@435 3373 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3374 assert(type == T_LONG, "only for volatile long fields");
duke@435 3375
duke@435 3376 if (info != NULL) {
duke@435 3377 add_debug_info_for_null_check_here(info);
duke@435 3378 }
duke@435 3379
duke@435 3380 if (src->is_double_xmm()) {
duke@435 3381 if (dest->is_double_cpu()) {
never@739 3382 #ifdef _LP64
never@739 3383 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3384 #else
never@739 3385 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3386 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3387 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3388 #endif // _LP64
duke@435 3389 } else if (dest->is_double_stack()) {
duke@435 3390 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3391 } else if (dest->is_address()) {
duke@435 3392 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3393 } else {
duke@435 3394 ShouldNotReachHere();
duke@435 3395 }
duke@435 3396
duke@435 3397 } else if (dest->is_double_xmm()) {
duke@435 3398 if (src->is_double_stack()) {
duke@435 3399 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3400 } else if (src->is_address()) {
duke@435 3401 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3402 } else {
duke@435 3403 ShouldNotReachHere();
duke@435 3404 }
duke@435 3405
duke@435 3406 } else if (src->is_double_fpu()) {
duke@435 3407 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3408 if (dest->is_double_stack()) {
duke@435 3409 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3410 } else if (dest->is_address()) {
duke@435 3411 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3412 } else {
duke@435 3413 ShouldNotReachHere();
duke@435 3414 }
duke@435 3415
duke@435 3416 } else if (dest->is_double_fpu()) {
duke@435 3417 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3418 if (src->is_double_stack()) {
duke@435 3419 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3420 } else if (src->is_address()) {
duke@435 3421 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3422 } else {
duke@435 3423 ShouldNotReachHere();
duke@435 3424 }
duke@435 3425 } else {
duke@435 3426 ShouldNotReachHere();
duke@435 3427 }
duke@435 3428 }
duke@435 3429
duke@435 3430
duke@435 3431 void LIR_Assembler::membar() {
never@739 3432 // QQQ sparc TSO uses this,
never@739 3433 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3434 }
duke@435 3435
duke@435 3436 void LIR_Assembler::membar_acquire() {
duke@435 3437 // No x86 machines currently require load fences
duke@435 3438 // __ load_fence();
duke@435 3439 }
duke@435 3440
duke@435 3441 void LIR_Assembler::membar_release() {
duke@435 3442 // No x86 machines currently require store fences
duke@435 3443 // __ store_fence();
duke@435 3444 }
duke@435 3445
duke@435 3446 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3447 assert(result_reg->is_register(), "check");
never@739 3448 #ifdef _LP64
never@739 3449 // __ get_thread(result_reg->as_register_lo());
never@739 3450 __ mov(result_reg->as_register(), r15_thread);
never@739 3451 #else
duke@435 3452 __ get_thread(result_reg->as_register());
never@739 3453 #endif // _LP64
duke@435 3454 }
duke@435 3455
duke@435 3456
duke@435 3457 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3458 // do nothing for now
duke@435 3459 }
duke@435 3460
duke@435 3461
duke@435 3462 #undef __

mercurial