src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Wed, 17 Mar 2010 10:22:41 +0100

author
twisti
date
Wed, 17 Mar 2010 10:22:41 +0100
changeset 1736
fc2c71045ada
parent 1732
c466efa608d5
child 1804
0a43776437b6
permissions
-rw-r--r--

6934966: JSR 292 add C1 logic for saved SP over MethodHandle calls
Summary: The logic for x86 C1 to save the SP over MH calls is pretty straight forward but SPARC handles that differently.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
    29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    31 // fast versions of NegF/NegD and AbsF/AbsD.
    33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    36   // of 128-bits operands for SSE instructions.
    37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    38   // Store the value to a 128-bits operand.
    39   operand[0] = lo;
    40   operand[1] = hi;
    41   return operand;
    42 }
    44 // Buffer for 128-bits masks used by SSE instructions.
    45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    47 // Static initialization during VM startup.
    48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    55 NEEDS_CLEANUP // remove this definitions ?
    56 const Register IC_Klass    = rax;   // where the IC klass is cached
    57 const Register SYNC_header = rax;   // synchronization header
    58 const Register SHIFT_count = rcx;   // where count for shift operations must be
    60 #define __ _masm->
    63 static void select_different_registers(Register preserve,
    64                                        Register extra,
    65                                        Register &tmp1,
    66                                        Register &tmp2) {
    67   if (tmp1 == preserve) {
    68     assert_different_registers(tmp1, tmp2, extra);
    69     tmp1 = extra;
    70   } else if (tmp2 == preserve) {
    71     assert_different_registers(tmp1, tmp2, extra);
    72     tmp2 = extra;
    73   }
    74   assert_different_registers(preserve, tmp1, tmp2);
    75 }
    79 static void select_different_registers(Register preserve,
    80                                        Register extra,
    81                                        Register &tmp1,
    82                                        Register &tmp2,
    83                                        Register &tmp3) {
    84   if (tmp1 == preserve) {
    85     assert_different_registers(tmp1, tmp2, tmp3, extra);
    86     tmp1 = extra;
    87   } else if (tmp2 == preserve) {
    88     assert_different_registers(tmp1, tmp2, tmp3, extra);
    89     tmp2 = extra;
    90   } else if (tmp3 == preserve) {
    91     assert_different_registers(tmp1, tmp2, tmp3, extra);
    92     tmp3 = extra;
    93   }
    94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
    95 }
    99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   100   if (opr->is_constant()) {
   101     LIR_Const* constant = opr->as_constant_ptr();
   102     switch (constant->type()) {
   103       case T_INT: {
   104         return true;
   105       }
   107       default:
   108         return false;
   109     }
   110   }
   111   return false;
   112 }
   115 LIR_Opr LIR_Assembler::receiverOpr() {
   116   return FrameMap::receiver_opr;
   117 }
   119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   120   return receiverOpr();
   121 }
   123 LIR_Opr LIR_Assembler::osrBufferPointer() {
   124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   125 }
   127 //--------------fpu register translations-----------------------
   130 address LIR_Assembler::float_constant(float f) {
   131   address const_addr = __ float_constant(f);
   132   if (const_addr == NULL) {
   133     bailout("const section overflow");
   134     return __ code()->consts()->start();
   135   } else {
   136     return const_addr;
   137   }
   138 }
   141 address LIR_Assembler::double_constant(double d) {
   142   address const_addr = __ double_constant(d);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 void LIR_Assembler::set_24bit_FPU() {
   153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   154 }
   156 void LIR_Assembler::reset_FPU() {
   157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   158 }
   160 void LIR_Assembler::fpop() {
   161   __ fpop();
   162 }
   164 void LIR_Assembler::fxch(int i) {
   165   __ fxch(i);
   166 }
   168 void LIR_Assembler::fld(int i) {
   169   __ fld_s(i);
   170 }
   172 void LIR_Assembler::ffree(int i) {
   173   __ ffree(i);
   174 }
   176 void LIR_Assembler::breakpoint() {
   177   __ int3();
   178 }
   180 void LIR_Assembler::push(LIR_Opr opr) {
   181   if (opr->is_single_cpu()) {
   182     __ push_reg(opr->as_register());
   183   } else if (opr->is_double_cpu()) {
   184     NOT_LP64(__ push_reg(opr->as_register_hi()));
   185     __ push_reg(opr->as_register_lo());
   186   } else if (opr->is_stack()) {
   187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   188   } else if (opr->is_constant()) {
   189     LIR_Const* const_opr = opr->as_constant_ptr();
   190     if (const_opr->type() == T_OBJECT) {
   191       __ push_oop(const_opr->as_jobject());
   192     } else if (const_opr->type() == T_INT) {
   193       __ push_jint(const_opr->as_jint());
   194     } else {
   195       ShouldNotReachHere();
   196     }
   198   } else {
   199     ShouldNotReachHere();
   200   }
   201 }
   203 void LIR_Assembler::pop(LIR_Opr opr) {
   204   if (opr->is_single_cpu()) {
   205     __ pop_reg(opr->as_register());
   206   } else {
   207     ShouldNotReachHere();
   208   }
   209 }
   211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   212   return addr->base()->is_illegal() && addr->index()->is_illegal();
   213 }
   215 //-------------------------------------------
   217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   218   return as_Address(addr, rscratch1);
   219 }
   221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   222   if (addr->base()->is_illegal()) {
   223     assert(addr->index()->is_illegal(), "must be illegal too");
   224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   225     if (! __ reachable(laddr)) {
   226       __ movptr(tmp, laddr.addr());
   227       Address res(tmp, 0);
   228       return res;
   229     } else {
   230       return __ as_Address(laddr);
   231     }
   232   }
   234   Register base = addr->base()->as_pointer_register();
   236   if (addr->index()->is_illegal()) {
   237     return Address( base, addr->disp());
   238   } else if (addr->index()->is_cpu_register()) {
   239     Register index = addr->index()->as_pointer_register();
   240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   241   } else if (addr->index()->is_constant()) {
   242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   243     assert(Assembler::is_simm32(addr_offset), "must be");
   245     return Address(base, addr_offset);
   246   } else {
   247     Unimplemented();
   248     return Address();
   249   }
   250 }
   253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   254   Address base = as_Address(addr);
   255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   256 }
   259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   260   return as_Address(addr);
   261 }
   264 void LIR_Assembler::osr_entry() {
   265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   267   ValueStack* entry_state = osr_entry->state();
   268   int number_of_locks = entry_state->locks_size();
   270   // we jump here if osr happens with the interpreter
   271   // state set up to continue at the beginning of the
   272   // loop that triggered osr - in particular, we have
   273   // the following registers setup:
   274   //
   275   // rcx: osr buffer
   276   //
   278   // build frame
   279   ciMethod* m = compilation()->method();
   280   __ build_frame(initial_frame_size_in_bytes());
   282   // OSR buffer is
   283   //
   284   // locals[nlocals-1..0]
   285   // monitors[0..number_of_locks]
   286   //
   287   // locals is a direct copy of the interpreter frame so in the osr buffer
   288   // so first slot in the local array is the last local from the interpreter
   289   // and last slot is local[0] (receiver) from the interpreter
   290   //
   291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   293   // in the interpreter frame (the method lock if a sync method)
   295   // Initialize monitors in the compiled activation.
   296   //   rcx: pointer to osr buffer
   297   //
   298   // All other registers are dead at this point and the locals will be
   299   // copied into place by code emitted in the IR.
   301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   303     int monitor_offset = BytesPerWord * method()->max_locals() +
   304       (2 * BytesPerWord) * (number_of_locks - 1);
   305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   306     // the OSR buffer using 2 word entries: first the lock and then
   307     // the oop.
   308     for (int i = 0; i < number_of_locks; i++) {
   309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   310 #ifdef ASSERT
   311       // verify the interpreter's monitor has a non-null object
   312       {
   313         Label L;
   314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   315         __ jcc(Assembler::notZero, L);
   316         __ stop("locked object is NULL");
   317         __ bind(L);
   318       }
   319 #endif
   320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   324     }
   325   }
   326 }
   329 // inline cache check; done before the frame is built.
   330 int LIR_Assembler::check_icache() {
   331   Register receiver = FrameMap::receiver_opr->as_register();
   332   Register ic_klass = IC_Klass;
   333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   335   if (!VerifyOops) {
   336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   338       __ nop();
   339     }
   340   }
   341   int offset = __ offset();
   342   __ inline_cache_check(receiver, IC_Klass);
   343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
   344   if (VerifyOops) {
   345     // force alignment after the cache check.
   346     // It's been verified to be aligned if !VerifyOops
   347     __ align(CodeEntryAlignment);
   348   }
   349   return offset;
   350 }
   353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   354   jobject o = NULL;
   355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   356   __ movoop(reg, o);
   357   patching_epilog(patch, lir_patch_normal, reg, info);
   358 }
   361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   362   if (exception->is_valid()) {
   363     // preserve exception
   364     // note: the monitor_exit runtime call is a leaf routine
   365     //       and cannot block => no GC can happen
   366     // The slow case (MonitorAccessStub) uses the first two stack slots
   367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   368     __ movptr (Address(rsp, 2*wordSize), exception);
   369   }
   371   Register obj_reg  = obj_opr->as_register();
   372   Register lock_reg = lock_opr->as_register();
   374   // setup registers (lock_reg must be rax, for lock_object)
   375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   376   Register hdr = lock_reg;
   377   assert(new_hdr == SYNC_header, "wrong register");
   378   lock_reg = new_hdr;
   379   // compute pointer to BasicLock
   380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   381   __ lea(lock_reg, lock_addr);
   382   // unlock object
   383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   384   // _slow_case_stubs->append(slow_case);
   385   // temporary fix: must be created after exceptionhandler, therefore as call stub
   386   _slow_case_stubs->append(slow_case);
   387   if (UseFastLocking) {
   388     // try inlined fast unlocking first, revert to slow locking if it fails
   389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   392   } else {
   393     // always do slow unlocking
   394     // note: the slow unlocking code could be inlined here, however if we use
   395     //       slow unlocking, speed doesn't matter anyway and this solution is
   396     //       simpler and requires less duplicated code - additionally, the
   397     //       slow unlocking code is the same in either case which simplifies
   398     //       debugging
   399     __ jmp(*slow_case->entry());
   400   }
   401   // done
   402   __ bind(*slow_case->continuation());
   404   if (exception->is_valid()) {
   405     // restore exception
   406     __ movptr (exception, Address(rsp, 2 * wordSize));
   407   }
   408 }
   410 // This specifies the rsp decrement needed to build the frame
   411 int LIR_Assembler::initial_frame_size_in_bytes() {
   412   // if rounding, must let FrameMap know!
   414   // The frame_map records size in slots (32bit word)
   416   // subtract two words to account for return address and link
   417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   418 }
   421 int LIR_Assembler::emit_exception_handler() {
   422   // if the last instruction is a call (typically to do a throw which
   423   // is coming at the end after block reordering) the return address
   424   // must still point into the code area in order to avoid assertion
   425   // failures when searching for the corresponding bci => add a nop
   426   // (was bug 5/14/1999 - gri)
   427   __ nop();
   429   // generate code for exception handler
   430   address handler_base = __ start_a_stub(exception_handler_size);
   431   if (handler_base == NULL) {
   432     // not enough space left for the handler
   433     bailout("exception handler overflow");
   434     return -1;
   435   }
   437   int offset = code_offset();
   439   // the exception oop and pc are in rax, and rdx
   440   // no other registers need to be preserved, so invalidate them
   441   __ invalidate_registers(false, true, true, false, true, true);
   443   // check that there is really an exception
   444   __ verify_not_null_oop(rax);
   446   // search an exception handler (rax: exception oop, rdx: throwing pc)
   447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   449   __ stop("should not reach here");
   451   assert(code_offset() - offset <= exception_handler_size, "overflow");
   452   __ end_a_stub();
   454   return offset;
   455 }
   458 int LIR_Assembler::emit_deopt_handler() {
   459   // if the last instruction is a call (typically to do a throw which
   460   // is coming at the end after block reordering) the return address
   461   // must still point into the code area in order to avoid assertion
   462   // failures when searching for the corresponding bci => add a nop
   463   // (was bug 5/14/1999 - gri)
   464   __ nop();
   466   // generate code for exception handler
   467   address handler_base = __ start_a_stub(deopt_handler_size);
   468   if (handler_base == NULL) {
   469     // not enough space left for the handler
   470     bailout("deopt handler overflow");
   471     return -1;
   472   }
   474   int offset = code_offset();
   475   InternalAddress here(__ pc());
   477   __ pushptr(here.addr());
   478   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   480   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   481   __ end_a_stub();
   483   return offset;
   484 }
   487 // This is the fast version of java.lang.String.compare; it has not
   488 // OSR-entry and therefore, we generate a slow version for OSR's
   489 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   490   __ movptr (rbx, rcx); // receiver is in rcx
   491   __ movptr (rax, arg1->as_register());
   493   // Get addresses of first characters from both Strings
   494   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   495   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   496   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   499   // rbx, may be NULL
   500   add_debug_info_for_null_check_here(info);
   501   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   502   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   503   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   505   // compute minimum length (in rax) and difference of lengths (on top of stack)
   506   if (VM_Version::supports_cmov()) {
   507     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   508     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   509     __ mov      (rcx, rbx);
   510     __ subptr   (rbx, rax); // subtract lengths
   511     __ push     (rbx);      // result
   512     __ cmov     (Assembler::lessEqual, rax, rcx);
   513   } else {
   514     Label L;
   515     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   516     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   517     __ mov      (rax, rbx);
   518     __ subptr   (rbx, rcx);
   519     __ push     (rbx);
   520     __ jcc      (Assembler::lessEqual, L);
   521     __ mov      (rax, rcx);
   522     __ bind (L);
   523   }
   524   // is minimum length 0?
   525   Label noLoop, haveResult;
   526   __ testptr (rax, rax);
   527   __ jcc (Assembler::zero, noLoop);
   529   // compare first characters
   530   __ load_unsigned_short(rcx, Address(rdi, 0));
   531   __ load_unsigned_short(rbx, Address(rsi, 0));
   532   __ subl(rcx, rbx);
   533   __ jcc(Assembler::notZero, haveResult);
   534   // starting loop
   535   __ decrement(rax); // we already tested index: skip one
   536   __ jcc(Assembler::zero, noLoop);
   538   // set rsi.edi to the end of the arrays (arrays have same length)
   539   // negate the index
   541   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   542   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   543   __ negptr(rax);
   545   // compare the strings in a loop
   547   Label loop;
   548   __ align(wordSize);
   549   __ bind(loop);
   550   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   551   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   552   __ subl(rcx, rbx);
   553   __ jcc(Assembler::notZero, haveResult);
   554   __ increment(rax);
   555   __ jcc(Assembler::notZero, loop);
   557   // strings are equal up to min length
   559   __ bind(noLoop);
   560   __ pop(rax);
   561   return_op(LIR_OprFact::illegalOpr);
   563   __ bind(haveResult);
   564   // leave instruction is going to discard the TOS value
   565   __ mov (rax, rcx); // result of call is in rax,
   566 }
   569 void LIR_Assembler::return_op(LIR_Opr result) {
   570   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   571   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   572     assert(result->fpu() == 0, "result must already be on TOS");
   573   }
   575   // Pop the stack before the safepoint code
   576   __ remove_frame(initial_frame_size_in_bytes());
   578   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   580   // Note: we do not need to round double result; float result has the right precision
   581   // the poll sets the condition code, but no data registers
   582   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   583                               relocInfo::poll_return_type);
   585   // NOTE: the requires that the polling page be reachable else the reloc
   586   // goes to the movq that loads the address and not the faulting instruction
   587   // which breaks the signal handler code
   589   __ test32(rax, polling_page);
   591   __ ret(0);
   592 }
   595 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   596   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   597                               relocInfo::poll_type);
   599   if (info != NULL) {
   600     add_debug_info_for_branch(info);
   601   } else {
   602     ShouldNotReachHere();
   603   }
   605   int offset = __ offset();
   607   // NOTE: the requires that the polling page be reachable else the reloc
   608   // goes to the movq that loads the address and not the faulting instruction
   609   // which breaks the signal handler code
   611   __ test32(rax, polling_page);
   612   return offset;
   613 }
   616 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   617   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   618 }
   620 void LIR_Assembler::swap_reg(Register a, Register b) {
   621   __ xchgptr(a, b);
   622 }
   625 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   626   assert(src->is_constant(), "should not call otherwise");
   627   assert(dest->is_register(), "should not call otherwise");
   628   LIR_Const* c = src->as_constant_ptr();
   630   switch (c->type()) {
   631     case T_INT:
   632     case T_ADDRESS: {
   633       assert(patch_code == lir_patch_none, "no patching handled here");
   634       __ movl(dest->as_register(), c->as_jint());
   635       break;
   636     }
   638     case T_LONG: {
   639       assert(patch_code == lir_patch_none, "no patching handled here");
   640 #ifdef _LP64
   641       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   642 #else
   643       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   644       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   645 #endif // _LP64
   646       break;
   647     }
   649     case T_OBJECT: {
   650       if (patch_code != lir_patch_none) {
   651         jobject2reg_with_patching(dest->as_register(), info);
   652       } else {
   653         __ movoop(dest->as_register(), c->as_jobject());
   654       }
   655       break;
   656     }
   658     case T_FLOAT: {
   659       if (dest->is_single_xmm()) {
   660         if (c->is_zero_float()) {
   661           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   662         } else {
   663           __ movflt(dest->as_xmm_float_reg(),
   664                    InternalAddress(float_constant(c->as_jfloat())));
   665         }
   666       } else {
   667         assert(dest->is_single_fpu(), "must be");
   668         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   669         if (c->is_zero_float()) {
   670           __ fldz();
   671         } else if (c->is_one_float()) {
   672           __ fld1();
   673         } else {
   674           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   675         }
   676       }
   677       break;
   678     }
   680     case T_DOUBLE: {
   681       if (dest->is_double_xmm()) {
   682         if (c->is_zero_double()) {
   683           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   684         } else {
   685           __ movdbl(dest->as_xmm_double_reg(),
   686                     InternalAddress(double_constant(c->as_jdouble())));
   687         }
   688       } else {
   689         assert(dest->is_double_fpu(), "must be");
   690         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   691         if (c->is_zero_double()) {
   692           __ fldz();
   693         } else if (c->is_one_double()) {
   694           __ fld1();
   695         } else {
   696           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   697         }
   698       }
   699       break;
   700     }
   702     default:
   703       ShouldNotReachHere();
   704   }
   705 }
   707 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   708   assert(src->is_constant(), "should not call otherwise");
   709   assert(dest->is_stack(), "should not call otherwise");
   710   LIR_Const* c = src->as_constant_ptr();
   712   switch (c->type()) {
   713     case T_INT:  // fall through
   714     case T_FLOAT:
   715     case T_ADDRESS:
   716       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   717       break;
   719     case T_OBJECT:
   720       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   721       break;
   723     case T_LONG:  // fall through
   724     case T_DOUBLE:
   725 #ifdef _LP64
   726       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   727                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   728 #else
   729       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   730                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   731       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   732                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   733 #endif // _LP64
   734       break;
   736     default:
   737       ShouldNotReachHere();
   738   }
   739 }
   741 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
   742   assert(src->is_constant(), "should not call otherwise");
   743   assert(dest->is_address(), "should not call otherwise");
   744   LIR_Const* c = src->as_constant_ptr();
   745   LIR_Address* addr = dest->as_address_ptr();
   747   int null_check_here = code_offset();
   748   switch (type) {
   749     case T_INT:    // fall through
   750     case T_FLOAT:
   751     case T_ADDRESS:
   752       __ movl(as_Address(addr), c->as_jint_bits());
   753       break;
   755     case T_OBJECT:  // fall through
   756     case T_ARRAY:
   757       if (c->as_jobject() == NULL) {
   758         __ movptr(as_Address(addr), NULL_WORD);
   759       } else {
   760         if (is_literal_address(addr)) {
   761           ShouldNotReachHere();
   762           __ movoop(as_Address(addr, noreg), c->as_jobject());
   763         } else {
   764 #ifdef _LP64
   765           __ movoop(rscratch1, c->as_jobject());
   766           null_check_here = code_offset();
   767           __ movptr(as_Address_lo(addr), rscratch1);
   768 #else
   769           __ movoop(as_Address(addr), c->as_jobject());
   770 #endif
   771         }
   772       }
   773       break;
   775     case T_LONG:    // fall through
   776     case T_DOUBLE:
   777 #ifdef _LP64
   778       if (is_literal_address(addr)) {
   779         ShouldNotReachHere();
   780         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   781       } else {
   782         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   783         null_check_here = code_offset();
   784         __ movptr(as_Address_lo(addr), r10);
   785       }
   786 #else
   787       // Always reachable in 32bit so this doesn't produce useless move literal
   788       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   789       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   790 #endif // _LP64
   791       break;
   793     case T_BOOLEAN: // fall through
   794     case T_BYTE:
   795       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   796       break;
   798     case T_CHAR:    // fall through
   799     case T_SHORT:
   800       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   801       break;
   803     default:
   804       ShouldNotReachHere();
   805   };
   807   if (info != NULL) {
   808     add_debug_info_for_null_check(null_check_here, info);
   809   }
   810 }
   813 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   814   assert(src->is_register(), "should not call otherwise");
   815   assert(dest->is_register(), "should not call otherwise");
   817   // move between cpu-registers
   818   if (dest->is_single_cpu()) {
   819 #ifdef _LP64
   820     if (src->type() == T_LONG) {
   821       // Can do LONG -> OBJECT
   822       move_regs(src->as_register_lo(), dest->as_register());
   823       return;
   824     }
   825 #endif
   826     assert(src->is_single_cpu(), "must match");
   827     if (src->type() == T_OBJECT) {
   828       __ verify_oop(src->as_register());
   829     }
   830     move_regs(src->as_register(), dest->as_register());
   832   } else if (dest->is_double_cpu()) {
   833 #ifdef _LP64
   834     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   835       // Surprising to me but we can see move of a long to t_object
   836       __ verify_oop(src->as_register());
   837       move_regs(src->as_register(), dest->as_register_lo());
   838       return;
   839     }
   840 #endif
   841     assert(src->is_double_cpu(), "must match");
   842     Register f_lo = src->as_register_lo();
   843     Register f_hi = src->as_register_hi();
   844     Register t_lo = dest->as_register_lo();
   845     Register t_hi = dest->as_register_hi();
   846 #ifdef _LP64
   847     assert(f_hi == f_lo, "must be same");
   848     assert(t_hi == t_lo, "must be same");
   849     move_regs(f_lo, t_lo);
   850 #else
   851     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   854     if (f_lo == t_hi && f_hi == t_lo) {
   855       swap_reg(f_lo, f_hi);
   856     } else if (f_hi == t_lo) {
   857       assert(f_lo != t_hi, "overwriting register");
   858       move_regs(f_hi, t_hi);
   859       move_regs(f_lo, t_lo);
   860     } else {
   861       assert(f_hi != t_lo, "overwriting register");
   862       move_regs(f_lo, t_lo);
   863       move_regs(f_hi, t_hi);
   864     }
   865 #endif // LP64
   867     // special moves from fpu-register to xmm-register
   868     // necessary for method results
   869   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   870     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   871     __ fld_s(Address(rsp, 0));
   872   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   873     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   874     __ fld_d(Address(rsp, 0));
   875   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   876     __ fstp_s(Address(rsp, 0));
   877     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   878   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   879     __ fstp_d(Address(rsp, 0));
   880     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   882     // move between xmm-registers
   883   } else if (dest->is_single_xmm()) {
   884     assert(src->is_single_xmm(), "must match");
   885     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   886   } else if (dest->is_double_xmm()) {
   887     assert(src->is_double_xmm(), "must match");
   888     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   890     // move between fpu-registers (no instruction necessary because of fpu-stack)
   891   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   892     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   893     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   894   } else {
   895     ShouldNotReachHere();
   896   }
   897 }
   899 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   900   assert(src->is_register(), "should not call otherwise");
   901   assert(dest->is_stack(), "should not call otherwise");
   903   if (src->is_single_cpu()) {
   904     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   905     if (type == T_OBJECT || type == T_ARRAY) {
   906       __ verify_oop(src->as_register());
   907       __ movptr (dst, src->as_register());
   908     } else {
   909       __ movl (dst, src->as_register());
   910     }
   912   } else if (src->is_double_cpu()) {
   913     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   914     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   915     __ movptr (dstLO, src->as_register_lo());
   916     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   918   } else if (src->is_single_xmm()) {
   919     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   920     __ movflt(dst_addr, src->as_xmm_float_reg());
   922   } else if (src->is_double_xmm()) {
   923     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   924     __ movdbl(dst_addr, src->as_xmm_double_reg());
   926   } else if (src->is_single_fpu()) {
   927     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   928     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   929     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   930     else                   __ fst_s  (dst_addr);
   932   } else if (src->is_double_fpu()) {
   933     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   934     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   935     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   936     else                   __ fst_d  (dst_addr);
   938   } else {
   939     ShouldNotReachHere();
   940   }
   941 }
   944 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
   945   LIR_Address* to_addr = dest->as_address_ptr();
   946   PatchingStub* patch = NULL;
   948   if (type == T_ARRAY || type == T_OBJECT) {
   949     __ verify_oop(src->as_register());
   950   }
   951   if (patch_code != lir_patch_none) {
   952     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
   953     Address toa = as_Address(to_addr);
   954     assert(toa.disp() != 0, "must have");
   955   }
   956   if (info != NULL) {
   957     add_debug_info_for_null_check_here(info);
   958   }
   960   switch (type) {
   961     case T_FLOAT: {
   962       if (src->is_single_xmm()) {
   963         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
   964       } else {
   965         assert(src->is_single_fpu(), "must be");
   966         assert(src->fpu_regnr() == 0, "argument must be on TOS");
   967         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
   968         else                    __ fst_s (as_Address(to_addr));
   969       }
   970       break;
   971     }
   973     case T_DOUBLE: {
   974       if (src->is_double_xmm()) {
   975         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
   976       } else {
   977         assert(src->is_double_fpu(), "must be");
   978         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   979         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
   980         else                    __ fst_d (as_Address(to_addr));
   981       }
   982       break;
   983     }
   985     case T_ADDRESS: // fall through
   986     case T_ARRAY:   // fall through
   987     case T_OBJECT:  // fall through
   988 #ifdef _LP64
   989       __ movptr(as_Address(to_addr), src->as_register());
   990       break;
   991 #endif // _LP64
   992     case T_INT:
   993       __ movl(as_Address(to_addr), src->as_register());
   994       break;
   996     case T_LONG: {
   997       Register from_lo = src->as_register_lo();
   998       Register from_hi = src->as_register_hi();
   999 #ifdef _LP64
  1000       __ movptr(as_Address_lo(to_addr), from_lo);
  1001 #else
  1002       Register base = to_addr->base()->as_register();
  1003       Register index = noreg;
  1004       if (to_addr->index()->is_register()) {
  1005         index = to_addr->index()->as_register();
  1007       if (base == from_lo || index == from_lo) {
  1008         assert(base != from_hi, "can't be");
  1009         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1010         __ movl(as_Address_hi(to_addr), from_hi);
  1011         if (patch != NULL) {
  1012           patching_epilog(patch, lir_patch_high, base, info);
  1013           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1014           patch_code = lir_patch_low;
  1016         __ movl(as_Address_lo(to_addr), from_lo);
  1017       } else {
  1018         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1019         __ movl(as_Address_lo(to_addr), from_lo);
  1020         if (patch != NULL) {
  1021           patching_epilog(patch, lir_patch_low, base, info);
  1022           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1023           patch_code = lir_patch_high;
  1025         __ movl(as_Address_hi(to_addr), from_hi);
  1027 #endif // _LP64
  1028       break;
  1031     case T_BYTE:    // fall through
  1032     case T_BOOLEAN: {
  1033       Register src_reg = src->as_register();
  1034       Address dst_addr = as_Address(to_addr);
  1035       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1036       __ movb(dst_addr, src_reg);
  1037       break;
  1040     case T_CHAR:    // fall through
  1041     case T_SHORT:
  1042       __ movw(as_Address(to_addr), src->as_register());
  1043       break;
  1045     default:
  1046       ShouldNotReachHere();
  1049   if (patch_code != lir_patch_none) {
  1050     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1055 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1056   assert(src->is_stack(), "should not call otherwise");
  1057   assert(dest->is_register(), "should not call otherwise");
  1059   if (dest->is_single_cpu()) {
  1060     if (type == T_ARRAY || type == T_OBJECT) {
  1061       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1062       __ verify_oop(dest->as_register());
  1063     } else {
  1064       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1067   } else if (dest->is_double_cpu()) {
  1068     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1069     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1070     __ movptr(dest->as_register_lo(), src_addr_LO);
  1071     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1073   } else if (dest->is_single_xmm()) {
  1074     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1075     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1077   } else if (dest->is_double_xmm()) {
  1078     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1079     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1081   } else if (dest->is_single_fpu()) {
  1082     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1083     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1084     __ fld_s(src_addr);
  1086   } else if (dest->is_double_fpu()) {
  1087     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1088     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1089     __ fld_d(src_addr);
  1091   } else {
  1092     ShouldNotReachHere();
  1097 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1098   if (src->is_single_stack()) {
  1099     if (type == T_OBJECT || type == T_ARRAY) {
  1100       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1101       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1102     } else {
  1103 #ifndef _LP64
  1104       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1105       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1106 #else
  1107       //no pushl on 64bits
  1108       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1109       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1110 #endif
  1113   } else if (src->is_double_stack()) {
  1114 #ifdef _LP64
  1115     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1116     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1117 #else
  1118     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1119     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1120     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1121     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1122     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1123 #endif // _LP64
  1125   } else {
  1126     ShouldNotReachHere();
  1131 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
  1132   assert(src->is_address(), "should not call otherwise");
  1133   assert(dest->is_register(), "should not call otherwise");
  1135   LIR_Address* addr = src->as_address_ptr();
  1136   Address from_addr = as_Address(addr);
  1138   switch (type) {
  1139     case T_BOOLEAN: // fall through
  1140     case T_BYTE:    // fall through
  1141     case T_CHAR:    // fall through
  1142     case T_SHORT:
  1143       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1144         // on pre P6 processors we may get partial register stalls
  1145         // so blow away the value of to_rinfo before loading a
  1146         // partial word into it.  Do it here so that it precedes
  1147         // the potential patch point below.
  1148         __ xorptr(dest->as_register(), dest->as_register());
  1150       break;
  1153   PatchingStub* patch = NULL;
  1154   if (patch_code != lir_patch_none) {
  1155     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1156     assert(from_addr.disp() != 0, "must have");
  1158   if (info != NULL) {
  1159     add_debug_info_for_null_check_here(info);
  1162   switch (type) {
  1163     case T_FLOAT: {
  1164       if (dest->is_single_xmm()) {
  1165         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1166       } else {
  1167         assert(dest->is_single_fpu(), "must be");
  1168         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1169         __ fld_s(from_addr);
  1171       break;
  1174     case T_DOUBLE: {
  1175       if (dest->is_double_xmm()) {
  1176         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1177       } else {
  1178         assert(dest->is_double_fpu(), "must be");
  1179         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1180         __ fld_d(from_addr);
  1182       break;
  1185     case T_ADDRESS: // fall through
  1186     case T_OBJECT:  // fall through
  1187     case T_ARRAY:   // fall through
  1188 #ifdef _LP64
  1189       __ movptr(dest->as_register(), from_addr);
  1190       break;
  1191 #endif // _L64
  1192     case T_INT:
  1193       // %%% could this be a movl? this is safer but longer instruction
  1194       __ movl2ptr(dest->as_register(), from_addr);
  1195       break;
  1197     case T_LONG: {
  1198       Register to_lo = dest->as_register_lo();
  1199       Register to_hi = dest->as_register_hi();
  1200 #ifdef _LP64
  1201       __ movptr(to_lo, as_Address_lo(addr));
  1202 #else
  1203       Register base = addr->base()->as_register();
  1204       Register index = noreg;
  1205       if (addr->index()->is_register()) {
  1206         index = addr->index()->as_register();
  1208       if ((base == to_lo && index == to_hi) ||
  1209           (base == to_hi && index == to_lo)) {
  1210         // addresses with 2 registers are only formed as a result of
  1211         // array access so this code will never have to deal with
  1212         // patches or null checks.
  1213         assert(info == NULL && patch == NULL, "must be");
  1214         __ lea(to_hi, as_Address(addr));
  1215         __ movl(to_lo, Address(to_hi, 0));
  1216         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1217       } else if (base == to_lo || index == to_lo) {
  1218         assert(base != to_hi, "can't be");
  1219         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1220         __ movl(to_hi, as_Address_hi(addr));
  1221         if (patch != NULL) {
  1222           patching_epilog(patch, lir_patch_high, base, info);
  1223           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1224           patch_code = lir_patch_low;
  1226         __ movl(to_lo, as_Address_lo(addr));
  1227       } else {
  1228         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1229         __ movl(to_lo, as_Address_lo(addr));
  1230         if (patch != NULL) {
  1231           patching_epilog(patch, lir_patch_low, base, info);
  1232           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1233           patch_code = lir_patch_high;
  1235         __ movl(to_hi, as_Address_hi(addr));
  1237 #endif // _LP64
  1238       break;
  1241     case T_BOOLEAN: // fall through
  1242     case T_BYTE: {
  1243       Register dest_reg = dest->as_register();
  1244       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1245       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1246         __ movsbl(dest_reg, from_addr);
  1247       } else {
  1248         __ movb(dest_reg, from_addr);
  1249         __ shll(dest_reg, 24);
  1250         __ sarl(dest_reg, 24);
  1252       // These are unsigned so the zero extension on 64bit is just what we need
  1253       break;
  1256     case T_CHAR: {
  1257       Register dest_reg = dest->as_register();
  1258       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1259       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1260         __ movzwl(dest_reg, from_addr);
  1261       } else {
  1262         __ movw(dest_reg, from_addr);
  1264       // This is unsigned so the zero extension on 64bit is just what we need
  1265       // __ movl2ptr(dest_reg, dest_reg);
  1266       break;
  1269     case T_SHORT: {
  1270       Register dest_reg = dest->as_register();
  1271       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1272         __ movswl(dest_reg, from_addr);
  1273       } else {
  1274         __ movw(dest_reg, from_addr);
  1275         __ shll(dest_reg, 16);
  1276         __ sarl(dest_reg, 16);
  1278       // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
  1279       __ movl2ptr(dest_reg, dest_reg);
  1280       break;
  1283     default:
  1284       ShouldNotReachHere();
  1287   if (patch != NULL) {
  1288     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1291   if (type == T_ARRAY || type == T_OBJECT) {
  1292     __ verify_oop(dest->as_register());
  1297 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1298   LIR_Address* addr = src->as_address_ptr();
  1299   Address from_addr = as_Address(addr);
  1301   if (VM_Version::supports_sse()) {
  1302     switch (ReadPrefetchInstr) {
  1303       case 0:
  1304         __ prefetchnta(from_addr); break;
  1305       case 1:
  1306         __ prefetcht0(from_addr); break;
  1307       case 2:
  1308         __ prefetcht2(from_addr); break;
  1309       default:
  1310         ShouldNotReachHere(); break;
  1312   } else if (VM_Version::supports_3dnow()) {
  1313     __ prefetchr(from_addr);
  1318 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1319   LIR_Address* addr = src->as_address_ptr();
  1320   Address from_addr = as_Address(addr);
  1322   if (VM_Version::supports_sse()) {
  1323     switch (AllocatePrefetchInstr) {
  1324       case 0:
  1325         __ prefetchnta(from_addr); break;
  1326       case 1:
  1327         __ prefetcht0(from_addr); break;
  1328       case 2:
  1329         __ prefetcht2(from_addr); break;
  1330       case 3:
  1331         __ prefetchw(from_addr); break;
  1332       default:
  1333         ShouldNotReachHere(); break;
  1335   } else if (VM_Version::supports_3dnow()) {
  1336     __ prefetchw(from_addr);
  1341 NEEDS_CLEANUP; // This could be static?
  1342 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1343   int elem_size = type2aelembytes(type);
  1344   switch (elem_size) {
  1345     case 1: return Address::times_1;
  1346     case 2: return Address::times_2;
  1347     case 4: return Address::times_4;
  1348     case 8: return Address::times_8;
  1350   ShouldNotReachHere();
  1351   return Address::no_scale;
  1355 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1356   switch (op->code()) {
  1357     case lir_idiv:
  1358     case lir_irem:
  1359       arithmetic_idiv(op->code(),
  1360                       op->in_opr1(),
  1361                       op->in_opr2(),
  1362                       op->in_opr3(),
  1363                       op->result_opr(),
  1364                       op->info());
  1365       break;
  1366     default:      ShouldNotReachHere(); break;
  1370 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1371 #ifdef ASSERT
  1372   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1373   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1374   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1375 #endif
  1377   if (op->cond() == lir_cond_always) {
  1378     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1379     __ jmp (*(op->label()));
  1380   } else {
  1381     Assembler::Condition acond = Assembler::zero;
  1382     if (op->code() == lir_cond_float_branch) {
  1383       assert(op->ublock() != NULL, "must have unordered successor");
  1384       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1385       switch(op->cond()) {
  1386         case lir_cond_equal:        acond = Assembler::equal;      break;
  1387         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1388         case lir_cond_less:         acond = Assembler::below;      break;
  1389         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1390         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1391         case lir_cond_greater:      acond = Assembler::above;      break;
  1392         default:                         ShouldNotReachHere();
  1394     } else {
  1395       switch (op->cond()) {
  1396         case lir_cond_equal:        acond = Assembler::equal;       break;
  1397         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1398         case lir_cond_less:         acond = Assembler::less;        break;
  1399         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1400         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1401         case lir_cond_greater:      acond = Assembler::greater;     break;
  1402         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1403         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1404         default:                         ShouldNotReachHere();
  1407     __ jcc(acond,*(op->label()));
  1411 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1412   LIR_Opr src  = op->in_opr();
  1413   LIR_Opr dest = op->result_opr();
  1415   switch (op->bytecode()) {
  1416     case Bytecodes::_i2l:
  1417 #ifdef _LP64
  1418       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1419 #else
  1420       move_regs(src->as_register(), dest->as_register_lo());
  1421       move_regs(src->as_register(), dest->as_register_hi());
  1422       __ sarl(dest->as_register_hi(), 31);
  1423 #endif // LP64
  1424       break;
  1426     case Bytecodes::_l2i:
  1427       move_regs(src->as_register_lo(), dest->as_register());
  1428       break;
  1430     case Bytecodes::_i2b:
  1431       move_regs(src->as_register(), dest->as_register());
  1432       __ sign_extend_byte(dest->as_register());
  1433       break;
  1435     case Bytecodes::_i2c:
  1436       move_regs(src->as_register(), dest->as_register());
  1437       __ andl(dest->as_register(), 0xFFFF);
  1438       break;
  1440     case Bytecodes::_i2s:
  1441       move_regs(src->as_register(), dest->as_register());
  1442       __ sign_extend_short(dest->as_register());
  1443       break;
  1446     case Bytecodes::_f2d:
  1447     case Bytecodes::_d2f:
  1448       if (dest->is_single_xmm()) {
  1449         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1450       } else if (dest->is_double_xmm()) {
  1451         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1452       } else {
  1453         assert(src->fpu() == dest->fpu(), "register must be equal");
  1454         // do nothing (float result is rounded later through spilling)
  1456       break;
  1458     case Bytecodes::_i2f:
  1459     case Bytecodes::_i2d:
  1460       if (dest->is_single_xmm()) {
  1461         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1462       } else if (dest->is_double_xmm()) {
  1463         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1464       } else {
  1465         assert(dest->fpu() == 0, "result must be on TOS");
  1466         __ movl(Address(rsp, 0), src->as_register());
  1467         __ fild_s(Address(rsp, 0));
  1469       break;
  1471     case Bytecodes::_f2i:
  1472     case Bytecodes::_d2i:
  1473       if (src->is_single_xmm()) {
  1474         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1475       } else if (src->is_double_xmm()) {
  1476         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1477       } else {
  1478         assert(src->fpu() == 0, "input must be on TOS");
  1479         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1480         __ fist_s(Address(rsp, 0));
  1481         __ movl(dest->as_register(), Address(rsp, 0));
  1482         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1485       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1486       assert(op->stub() != NULL, "stub required");
  1487       __ cmpl(dest->as_register(), 0x80000000);
  1488       __ jcc(Assembler::equal, *op->stub()->entry());
  1489       __ bind(*op->stub()->continuation());
  1490       break;
  1492     case Bytecodes::_l2f:
  1493     case Bytecodes::_l2d:
  1494       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1495       assert(dest->fpu() == 0, "result must be on TOS");
  1497       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1498       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1499       __ fild_d(Address(rsp, 0));
  1500       // float result is rounded later through spilling
  1501       break;
  1503     case Bytecodes::_f2l:
  1504     case Bytecodes::_d2l:
  1505       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1506       assert(src->fpu() == 0, "input must be on TOS");
  1507       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1509       // instruction sequence too long to inline it here
  1511         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1513       break;
  1515     default: ShouldNotReachHere();
  1519 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1520   if (op->init_check()) {
  1521     __ cmpl(Address(op->klass()->as_register(),
  1522                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1523             instanceKlass::fully_initialized);
  1524     add_debug_info_for_null_check_here(op->stub()->info());
  1525     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1527   __ allocate_object(op->obj()->as_register(),
  1528                      op->tmp1()->as_register(),
  1529                      op->tmp2()->as_register(),
  1530                      op->header_size(),
  1531                      op->object_size(),
  1532                      op->klass()->as_register(),
  1533                      *op->stub()->entry());
  1534   __ bind(*op->stub()->continuation());
  1537 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1538   if (UseSlowPath ||
  1539       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1540       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1541     __ jmp(*op->stub()->entry());
  1542   } else {
  1543     Register len =  op->len()->as_register();
  1544     Register tmp1 = op->tmp1()->as_register();
  1545     Register tmp2 = op->tmp2()->as_register();
  1546     Register tmp3 = op->tmp3()->as_register();
  1547     if (len == tmp1) {
  1548       tmp1 = tmp3;
  1549     } else if (len == tmp2) {
  1550       tmp2 = tmp3;
  1551     } else if (len == tmp3) {
  1552       // everything is ok
  1553     } else {
  1554       __ mov(tmp3, len);
  1556     __ allocate_array(op->obj()->as_register(),
  1557                       len,
  1558                       tmp1,
  1559                       tmp2,
  1560                       arrayOopDesc::header_size(op->type()),
  1561                       array_element_size(op->type()),
  1562                       op->klass()->as_register(),
  1563                       *op->stub()->entry());
  1565   __ bind(*op->stub()->continuation());
  1570 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1571   LIR_Code code = op->code();
  1572   if (code == lir_store_check) {
  1573     Register value = op->object()->as_register();
  1574     Register array = op->array()->as_register();
  1575     Register k_RInfo = op->tmp1()->as_register();
  1576     Register klass_RInfo = op->tmp2()->as_register();
  1577     Register Rtmp1 = op->tmp3()->as_register();
  1579     CodeStub* stub = op->stub();
  1580     Label done;
  1581     __ cmpptr(value, (int32_t)NULL_WORD);
  1582     __ jcc(Assembler::equal, done);
  1583     add_debug_info_for_null_check_here(op->info_for_exception());
  1584     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
  1585     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
  1587     // get instance klass
  1588     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1589     // perform the fast part of the checking logic
  1590     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1591     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1592     __ push(klass_RInfo);
  1593     __ push(k_RInfo);
  1594     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1595     __ pop(klass_RInfo);
  1596     __ pop(k_RInfo);
  1597     // result is a boolean
  1598     __ cmpl(k_RInfo, 0);
  1599     __ jcc(Assembler::equal, *stub->entry());
  1600     __ bind(done);
  1601   } else if (op->code() == lir_checkcast) {
  1602     // we always need a stub for the failure case.
  1603     CodeStub* stub = op->stub();
  1604     Register obj = op->object()->as_register();
  1605     Register k_RInfo = op->tmp1()->as_register();
  1606     Register klass_RInfo = op->tmp2()->as_register();
  1607     Register dst = op->result_opr()->as_register();
  1608     ciKlass* k = op->klass();
  1609     Register Rtmp1 = noreg;
  1611     Label done;
  1612     if (obj == k_RInfo) {
  1613       k_RInfo = dst;
  1614     } else if (obj == klass_RInfo) {
  1615       klass_RInfo = dst;
  1617     if (k->is_loaded()) {
  1618       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1619     } else {
  1620       Rtmp1 = op->tmp3()->as_register();
  1621       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1624     assert_different_registers(obj, k_RInfo, klass_RInfo);
  1625     if (!k->is_loaded()) {
  1626       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1627     } else {
  1628 #ifdef _LP64
  1629       __ movoop(k_RInfo, k->constant_encoding());
  1630 #else
  1631       k_RInfo = noreg;
  1632 #endif // _LP64
  1634     assert(obj != k_RInfo, "must be different");
  1635     __ cmpptr(obj, (int32_t)NULL_WORD);
  1636     if (op->profiled_method() != NULL) {
  1637       ciMethod* method = op->profiled_method();
  1638       int bci          = op->profiled_bci();
  1640       Label profile_done;
  1641       __ jcc(Assembler::notEqual, profile_done);
  1642       // Object is null; update methodDataOop
  1643       ciMethodData* md = method->method_data();
  1644       if (md == NULL) {
  1645         bailout("out of memory building methodDataOop");
  1646         return;
  1648       ciProfileData* data = md->bci_to_data(bci);
  1649       assert(data != NULL,       "need data for checkcast");
  1650       assert(data->is_BitData(), "need BitData for checkcast");
  1651       Register mdo  = klass_RInfo;
  1652       __ movoop(mdo, md->constant_encoding());
  1653       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1654       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1655       __ orl(data_addr, header_bits);
  1656       __ jmp(done);
  1657       __ bind(profile_done);
  1658     } else {
  1659       __ jcc(Assembler::equal, done);
  1661     __ verify_oop(obj);
  1663     if (op->fast_check()) {
  1664       // get object classo
  1665       // not a safepoint as obj null check happens earlier
  1666       if (k->is_loaded()) {
  1667 #ifdef _LP64
  1668         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1669 #else
  1670         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1671 #endif // _LP64
  1672       } else {
  1673         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1676       __ jcc(Assembler::notEqual, *stub->entry());
  1677       __ bind(done);
  1678     } else {
  1679       // get object class
  1680       // not a safepoint as obj null check happens earlier
  1681       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1682       if (k->is_loaded()) {
  1683         // See if we get an immediate positive hit
  1684 #ifdef _LP64
  1685         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1686 #else
  1687         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1688 #endif // _LP64
  1689         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1690           __ jcc(Assembler::notEqual, *stub->entry());
  1691         } else {
  1692           // See if we get an immediate positive hit
  1693           __ jcc(Assembler::equal, done);
  1694           // check for self
  1695 #ifdef _LP64
  1696           __ cmpptr(klass_RInfo, k_RInfo);
  1697 #else
  1698           __ cmpoop(klass_RInfo, k->constant_encoding());
  1699 #endif // _LP64
  1700           __ jcc(Assembler::equal, done);
  1702           __ push(klass_RInfo);
  1703 #ifdef _LP64
  1704           __ push(k_RInfo);
  1705 #else
  1706           __ pushoop(k->constant_encoding());
  1707 #endif // _LP64
  1708           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1709           __ pop(klass_RInfo);
  1710           __ pop(klass_RInfo);
  1711           // result is a boolean
  1712           __ cmpl(klass_RInfo, 0);
  1713           __ jcc(Assembler::equal, *stub->entry());
  1715         __ bind(done);
  1716       } else {
  1717         // perform the fast part of the checking logic
  1718         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1719         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1720         __ push(klass_RInfo);
  1721         __ push(k_RInfo);
  1722         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1723         __ pop(klass_RInfo);
  1724         __ pop(k_RInfo);
  1725         // result is a boolean
  1726         __ cmpl(k_RInfo, 0);
  1727         __ jcc(Assembler::equal, *stub->entry());
  1728         __ bind(done);
  1732     if (dst != obj) {
  1733       __ mov(dst, obj);
  1735   } else if (code == lir_instanceof) {
  1736     Register obj = op->object()->as_register();
  1737     Register k_RInfo = op->tmp1()->as_register();
  1738     Register klass_RInfo = op->tmp2()->as_register();
  1739     Register dst = op->result_opr()->as_register();
  1740     ciKlass* k = op->klass();
  1742     Label done;
  1743     Label zero;
  1744     Label one;
  1745     if (obj == k_RInfo) {
  1746       k_RInfo = klass_RInfo;
  1747       klass_RInfo = obj;
  1749     // patching may screw with our temporaries on sparc,
  1750     // so let's do it before loading the class
  1751     if (!k->is_loaded()) {
  1752       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1753     } else {
  1754       LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
  1756     assert(obj != k_RInfo, "must be different");
  1758     __ verify_oop(obj);
  1759     if (op->fast_check()) {
  1760       __ cmpptr(obj, (int32_t)NULL_WORD);
  1761       __ jcc(Assembler::equal, zero);
  1762       // get object class
  1763       // not a safepoint as obj null check happens earlier
  1764       if (LP64_ONLY(false &&) k->is_loaded()) {
  1765         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
  1766         k_RInfo = noreg;
  1767       } else {
  1768         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1771       __ jcc(Assembler::equal, one);
  1772     } else {
  1773       // get object class
  1774       // not a safepoint as obj null check happens earlier
  1775       __ cmpptr(obj, (int32_t)NULL_WORD);
  1776       __ jcc(Assembler::equal, zero);
  1777       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1779 #ifndef _LP64
  1780       if (k->is_loaded()) {
  1781         // See if we get an immediate positive hit
  1782         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1783         __ jcc(Assembler::equal, one);
  1784         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
  1785           // check for self
  1786           __ cmpoop(klass_RInfo, k->constant_encoding());
  1787           __ jcc(Assembler::equal, one);
  1788           __ push(klass_RInfo);
  1789           __ pushoop(k->constant_encoding());
  1790           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1791           __ pop(klass_RInfo);
  1792           __ pop(dst);
  1793           __ jmp(done);
  1796         else // next block is unconditional if LP64:
  1797 #endif // LP64
  1799         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  1801         // perform the fast part of the checking logic
  1802         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
  1803         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1804         __ push(klass_RInfo);
  1805         __ push(k_RInfo);
  1806         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1807         __ pop(klass_RInfo);
  1808         __ pop(dst);
  1809         __ jmp(done);
  1812     __ bind(zero);
  1813     __ xorptr(dst, dst);
  1814     __ jmp(done);
  1815     __ bind(one);
  1816     __ movptr(dst, 1);
  1817     __ bind(done);
  1818   } else {
  1819     ShouldNotReachHere();
  1825 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1826   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1827     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1828     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1829     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1830     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1831     Register addr = op->addr()->as_register();
  1832     if (os::is_MP()) {
  1833       __ lock();
  1835     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1837   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1838     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1839     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1840     Register newval = op->new_value()->as_register();
  1841     Register cmpval = op->cmp_value()->as_register();
  1842     assert(cmpval == rax, "wrong register");
  1843     assert(newval != NULL, "new val must be register");
  1844     assert(cmpval != newval, "cmp and new values must be in different registers");
  1845     assert(cmpval != addr, "cmp and addr must be in different registers");
  1846     assert(newval != addr, "new value and addr must be in different registers");
  1847     if (os::is_MP()) {
  1848       __ lock();
  1850     if ( op->code() == lir_cas_obj) {
  1851       __ cmpxchgptr(newval, Address(addr, 0));
  1852     } else if (op->code() == lir_cas_int) {
  1853       __ cmpxchgl(newval, Address(addr, 0));
  1854     } else {
  1855       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
  1857 #ifdef _LP64
  1858   } else if (op->code() == lir_cas_long) {
  1859     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1860     Register newval = op->new_value()->as_register_lo();
  1861     Register cmpval = op->cmp_value()->as_register_lo();
  1862     assert(cmpval == rax, "wrong register");
  1863     assert(newval != NULL, "new val must be register");
  1864     assert(cmpval != newval, "cmp and new values must be in different registers");
  1865     assert(cmpval != addr, "cmp and addr must be in different registers");
  1866     assert(newval != addr, "new value and addr must be in different registers");
  1867     if (os::is_MP()) {
  1868       __ lock();
  1870     __ cmpxchgq(newval, Address(addr, 0));
  1871 #endif // _LP64
  1872   } else {
  1873     Unimplemented();
  1878 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1879   Assembler::Condition acond, ncond;
  1880   switch (condition) {
  1881     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1882     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1883     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1884     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1885     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1886     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1887     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1888     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1889     default:                    ShouldNotReachHere();
  1892   if (opr1->is_cpu_register()) {
  1893     reg2reg(opr1, result);
  1894   } else if (opr1->is_stack()) {
  1895     stack2reg(opr1, result, result->type());
  1896   } else if (opr1->is_constant()) {
  1897     const2reg(opr1, result, lir_patch_none, NULL);
  1898   } else {
  1899     ShouldNotReachHere();
  1902   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1903     // optimized version that does not require a branch
  1904     if (opr2->is_single_cpu()) {
  1905       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  1906       __ cmov(ncond, result->as_register(), opr2->as_register());
  1907     } else if (opr2->is_double_cpu()) {
  1908       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1909       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1910       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  1911       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  1912     } else if (opr2->is_single_stack()) {
  1913       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  1914     } else if (opr2->is_double_stack()) {
  1915       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  1916       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  1917     } else {
  1918       ShouldNotReachHere();
  1921   } else {
  1922     Label skip;
  1923     __ jcc (acond, skip);
  1924     if (opr2->is_cpu_register()) {
  1925       reg2reg(opr2, result);
  1926     } else if (opr2->is_stack()) {
  1927       stack2reg(opr2, result, result->type());
  1928     } else if (opr2->is_constant()) {
  1929       const2reg(opr2, result, lir_patch_none, NULL);
  1930     } else {
  1931       ShouldNotReachHere();
  1933     __ bind(skip);
  1938 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1939   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  1941   if (left->is_single_cpu()) {
  1942     assert(left == dest, "left and dest must be equal");
  1943     Register lreg = left->as_register();
  1945     if (right->is_single_cpu()) {
  1946       // cpu register - cpu register
  1947       Register rreg = right->as_register();
  1948       switch (code) {
  1949         case lir_add: __ addl (lreg, rreg); break;
  1950         case lir_sub: __ subl (lreg, rreg); break;
  1951         case lir_mul: __ imull(lreg, rreg); break;
  1952         default:      ShouldNotReachHere();
  1955     } else if (right->is_stack()) {
  1956       // cpu register - stack
  1957       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  1958       switch (code) {
  1959         case lir_add: __ addl(lreg, raddr); break;
  1960         case lir_sub: __ subl(lreg, raddr); break;
  1961         default:      ShouldNotReachHere();
  1964     } else if (right->is_constant()) {
  1965       // cpu register - constant
  1966       jint c = right->as_constant_ptr()->as_jint();
  1967       switch (code) {
  1968         case lir_add: {
  1969           __ increment(lreg, c);
  1970           break;
  1972         case lir_sub: {
  1973           __ decrement(lreg, c);
  1974           break;
  1976         default: ShouldNotReachHere();
  1979     } else {
  1980       ShouldNotReachHere();
  1983   } else if (left->is_double_cpu()) {
  1984     assert(left == dest, "left and dest must be equal");
  1985     Register lreg_lo = left->as_register_lo();
  1986     Register lreg_hi = left->as_register_hi();
  1988     if (right->is_double_cpu()) {
  1989       // cpu register - cpu register
  1990       Register rreg_lo = right->as_register_lo();
  1991       Register rreg_hi = right->as_register_hi();
  1992       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  1993       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  1994       switch (code) {
  1995         case lir_add:
  1996           __ addptr(lreg_lo, rreg_lo);
  1997           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  1998           break;
  1999         case lir_sub:
  2000           __ subptr(lreg_lo, rreg_lo);
  2001           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2002           break;
  2003         case lir_mul:
  2004 #ifdef _LP64
  2005           __ imulq(lreg_lo, rreg_lo);
  2006 #else
  2007           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2008           __ imull(lreg_hi, rreg_lo);
  2009           __ imull(rreg_hi, lreg_lo);
  2010           __ addl (rreg_hi, lreg_hi);
  2011           __ mull (rreg_lo);
  2012           __ addl (lreg_hi, rreg_hi);
  2013 #endif // _LP64
  2014           break;
  2015         default:
  2016           ShouldNotReachHere();
  2019     } else if (right->is_constant()) {
  2020       // cpu register - constant
  2021 #ifdef _LP64
  2022       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2023       __ movptr(r10, (intptr_t) c);
  2024       switch (code) {
  2025         case lir_add:
  2026           __ addptr(lreg_lo, r10);
  2027           break;
  2028         case lir_sub:
  2029           __ subptr(lreg_lo, r10);
  2030           break;
  2031         default:
  2032           ShouldNotReachHere();
  2034 #else
  2035       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2036       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2037       switch (code) {
  2038         case lir_add:
  2039           __ addptr(lreg_lo, c_lo);
  2040           __ adcl(lreg_hi, c_hi);
  2041           break;
  2042         case lir_sub:
  2043           __ subptr(lreg_lo, c_lo);
  2044           __ sbbl(lreg_hi, c_hi);
  2045           break;
  2046         default:
  2047           ShouldNotReachHere();
  2049 #endif // _LP64
  2051     } else {
  2052       ShouldNotReachHere();
  2055   } else if (left->is_single_xmm()) {
  2056     assert(left == dest, "left and dest must be equal");
  2057     XMMRegister lreg = left->as_xmm_float_reg();
  2059     if (right->is_single_xmm()) {
  2060       XMMRegister rreg = right->as_xmm_float_reg();
  2061       switch (code) {
  2062         case lir_add: __ addss(lreg, rreg);  break;
  2063         case lir_sub: __ subss(lreg, rreg);  break;
  2064         case lir_mul_strictfp: // fall through
  2065         case lir_mul: __ mulss(lreg, rreg);  break;
  2066         case lir_div_strictfp: // fall through
  2067         case lir_div: __ divss(lreg, rreg);  break;
  2068         default: ShouldNotReachHere();
  2070     } else {
  2071       Address raddr;
  2072       if (right->is_single_stack()) {
  2073         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2074       } else if (right->is_constant()) {
  2075         // hack for now
  2076         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2077       } else {
  2078         ShouldNotReachHere();
  2080       switch (code) {
  2081         case lir_add: __ addss(lreg, raddr);  break;
  2082         case lir_sub: __ subss(lreg, raddr);  break;
  2083         case lir_mul_strictfp: // fall through
  2084         case lir_mul: __ mulss(lreg, raddr);  break;
  2085         case lir_div_strictfp: // fall through
  2086         case lir_div: __ divss(lreg, raddr);  break;
  2087         default: ShouldNotReachHere();
  2091   } else if (left->is_double_xmm()) {
  2092     assert(left == dest, "left and dest must be equal");
  2094     XMMRegister lreg = left->as_xmm_double_reg();
  2095     if (right->is_double_xmm()) {
  2096       XMMRegister rreg = right->as_xmm_double_reg();
  2097       switch (code) {
  2098         case lir_add: __ addsd(lreg, rreg);  break;
  2099         case lir_sub: __ subsd(lreg, rreg);  break;
  2100         case lir_mul_strictfp: // fall through
  2101         case lir_mul: __ mulsd(lreg, rreg);  break;
  2102         case lir_div_strictfp: // fall through
  2103         case lir_div: __ divsd(lreg, rreg);  break;
  2104         default: ShouldNotReachHere();
  2106     } else {
  2107       Address raddr;
  2108       if (right->is_double_stack()) {
  2109         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2110       } else if (right->is_constant()) {
  2111         // hack for now
  2112         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2113       } else {
  2114         ShouldNotReachHere();
  2116       switch (code) {
  2117         case lir_add: __ addsd(lreg, raddr);  break;
  2118         case lir_sub: __ subsd(lreg, raddr);  break;
  2119         case lir_mul_strictfp: // fall through
  2120         case lir_mul: __ mulsd(lreg, raddr);  break;
  2121         case lir_div_strictfp: // fall through
  2122         case lir_div: __ divsd(lreg, raddr);  break;
  2123         default: ShouldNotReachHere();
  2127   } else if (left->is_single_fpu()) {
  2128     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2130     if (right->is_single_fpu()) {
  2131       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2133     } else {
  2134       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2135       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2137       Address raddr;
  2138       if (right->is_single_stack()) {
  2139         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2140       } else if (right->is_constant()) {
  2141         address const_addr = float_constant(right->as_jfloat());
  2142         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2143         // hack for now
  2144         raddr = __ as_Address(InternalAddress(const_addr));
  2145       } else {
  2146         ShouldNotReachHere();
  2149       switch (code) {
  2150         case lir_add: __ fadd_s(raddr); break;
  2151         case lir_sub: __ fsub_s(raddr); break;
  2152         case lir_mul_strictfp: // fall through
  2153         case lir_mul: __ fmul_s(raddr); break;
  2154         case lir_div_strictfp: // fall through
  2155         case lir_div: __ fdiv_s(raddr); break;
  2156         default:      ShouldNotReachHere();
  2160   } else if (left->is_double_fpu()) {
  2161     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2163     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2164       // Double values require special handling for strictfp mul/div on x86
  2165       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2166       __ fmulp(left->fpu_regnrLo() + 1);
  2169     if (right->is_double_fpu()) {
  2170       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2172     } else {
  2173       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2174       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2176       Address raddr;
  2177       if (right->is_double_stack()) {
  2178         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2179       } else if (right->is_constant()) {
  2180         // hack for now
  2181         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2182       } else {
  2183         ShouldNotReachHere();
  2186       switch (code) {
  2187         case lir_add: __ fadd_d(raddr); break;
  2188         case lir_sub: __ fsub_d(raddr); break;
  2189         case lir_mul_strictfp: // fall through
  2190         case lir_mul: __ fmul_d(raddr); break;
  2191         case lir_div_strictfp: // fall through
  2192         case lir_div: __ fdiv_d(raddr); break;
  2193         default: ShouldNotReachHere();
  2197     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2198       // Double values require special handling for strictfp mul/div on x86
  2199       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2200       __ fmulp(dest->fpu_regnrLo() + 1);
  2203   } else if (left->is_single_stack() || left->is_address()) {
  2204     assert(left == dest, "left and dest must be equal");
  2206     Address laddr;
  2207     if (left->is_single_stack()) {
  2208       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2209     } else if (left->is_address()) {
  2210       laddr = as_Address(left->as_address_ptr());
  2211     } else {
  2212       ShouldNotReachHere();
  2215     if (right->is_single_cpu()) {
  2216       Register rreg = right->as_register();
  2217       switch (code) {
  2218         case lir_add: __ addl(laddr, rreg); break;
  2219         case lir_sub: __ subl(laddr, rreg); break;
  2220         default:      ShouldNotReachHere();
  2222     } else if (right->is_constant()) {
  2223       jint c = right->as_constant_ptr()->as_jint();
  2224       switch (code) {
  2225         case lir_add: {
  2226           __ incrementl(laddr, c);
  2227           break;
  2229         case lir_sub: {
  2230           __ decrementl(laddr, c);
  2231           break;
  2233         default: ShouldNotReachHere();
  2235     } else {
  2236       ShouldNotReachHere();
  2239   } else {
  2240     ShouldNotReachHere();
  2244 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2245   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2246   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2247   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2249   bool left_is_tos = (left_index == 0);
  2250   bool dest_is_tos = (dest_index == 0);
  2251   int non_tos_index = (left_is_tos ? right_index : left_index);
  2253   switch (code) {
  2254     case lir_add:
  2255       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2256       else if (dest_is_tos)    __ fadd (non_tos_index);
  2257       else                     __ fadda(non_tos_index);
  2258       break;
  2260     case lir_sub:
  2261       if (left_is_tos) {
  2262         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2263         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2264         else                   __ fsubra(non_tos_index);
  2265       } else {
  2266         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2267         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2268         else                   __ fsuba (non_tos_index);
  2270       break;
  2272     case lir_mul_strictfp: // fall through
  2273     case lir_mul:
  2274       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2275       else if (dest_is_tos)    __ fmul (non_tos_index);
  2276       else                     __ fmula(non_tos_index);
  2277       break;
  2279     case lir_div_strictfp: // fall through
  2280     case lir_div:
  2281       if (left_is_tos) {
  2282         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2283         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2284         else                   __ fdivra(non_tos_index);
  2285       } else {
  2286         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2287         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2288         else                   __ fdiva (non_tos_index);
  2290       break;
  2292     case lir_rem:
  2293       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2294       __ fremr(noreg);
  2295       break;
  2297     default:
  2298       ShouldNotReachHere();
  2303 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2304   if (value->is_double_xmm()) {
  2305     switch(code) {
  2306       case lir_abs :
  2308           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2309             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2311           __ andpd(dest->as_xmm_double_reg(),
  2312                     ExternalAddress((address)double_signmask_pool));
  2314         break;
  2316       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2317       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2318       default      : ShouldNotReachHere();
  2321   } else if (value->is_double_fpu()) {
  2322     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2323     switch(code) {
  2324       case lir_log   : __ flog() ; break;
  2325       case lir_log10 : __ flog10() ; break;
  2326       case lir_abs   : __ fabs() ; break;
  2327       case lir_sqrt  : __ fsqrt(); break;
  2328       case lir_sin   :
  2329         // Should consider not saving rbx, if not necessary
  2330         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2331         break;
  2332       case lir_cos :
  2333         // Should consider not saving rbx, if not necessary
  2334         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2335         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2336         break;
  2337       case lir_tan :
  2338         // Should consider not saving rbx, if not necessary
  2339         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2340         break;
  2341       default      : ShouldNotReachHere();
  2343   } else {
  2344     Unimplemented();
  2348 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2349   // assert(left->destroys_register(), "check");
  2350   if (left->is_single_cpu()) {
  2351     Register reg = left->as_register();
  2352     if (right->is_constant()) {
  2353       int val = right->as_constant_ptr()->as_jint();
  2354       switch (code) {
  2355         case lir_logic_and: __ andl (reg, val); break;
  2356         case lir_logic_or:  __ orl  (reg, val); break;
  2357         case lir_logic_xor: __ xorl (reg, val); break;
  2358         default: ShouldNotReachHere();
  2360     } else if (right->is_stack()) {
  2361       // added support for stack operands
  2362       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2363       switch (code) {
  2364         case lir_logic_and: __ andl (reg, raddr); break;
  2365         case lir_logic_or:  __ orl  (reg, raddr); break;
  2366         case lir_logic_xor: __ xorl (reg, raddr); break;
  2367         default: ShouldNotReachHere();
  2369     } else {
  2370       Register rright = right->as_register();
  2371       switch (code) {
  2372         case lir_logic_and: __ andptr (reg, rright); break;
  2373         case lir_logic_or : __ orptr  (reg, rright); break;
  2374         case lir_logic_xor: __ xorptr (reg, rright); break;
  2375         default: ShouldNotReachHere();
  2378     move_regs(reg, dst->as_register());
  2379   } else {
  2380     Register l_lo = left->as_register_lo();
  2381     Register l_hi = left->as_register_hi();
  2382     if (right->is_constant()) {
  2383 #ifdef _LP64
  2384       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2385       switch (code) {
  2386         case lir_logic_and:
  2387           __ andq(l_lo, rscratch1);
  2388           break;
  2389         case lir_logic_or:
  2390           __ orq(l_lo, rscratch1);
  2391           break;
  2392         case lir_logic_xor:
  2393           __ xorq(l_lo, rscratch1);
  2394           break;
  2395         default: ShouldNotReachHere();
  2397 #else
  2398       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2399       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2400       switch (code) {
  2401         case lir_logic_and:
  2402           __ andl(l_lo, r_lo);
  2403           __ andl(l_hi, r_hi);
  2404           break;
  2405         case lir_logic_or:
  2406           __ orl(l_lo, r_lo);
  2407           __ orl(l_hi, r_hi);
  2408           break;
  2409         case lir_logic_xor:
  2410           __ xorl(l_lo, r_lo);
  2411           __ xorl(l_hi, r_hi);
  2412           break;
  2413         default: ShouldNotReachHere();
  2415 #endif // _LP64
  2416     } else {
  2417       Register r_lo = right->as_register_lo();
  2418       Register r_hi = right->as_register_hi();
  2419       assert(l_lo != r_hi, "overwriting registers");
  2420       switch (code) {
  2421         case lir_logic_and:
  2422           __ andptr(l_lo, r_lo);
  2423           NOT_LP64(__ andptr(l_hi, r_hi);)
  2424           break;
  2425         case lir_logic_or:
  2426           __ orptr(l_lo, r_lo);
  2427           NOT_LP64(__ orptr(l_hi, r_hi);)
  2428           break;
  2429         case lir_logic_xor:
  2430           __ xorptr(l_lo, r_lo);
  2431           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2432           break;
  2433         default: ShouldNotReachHere();
  2437     Register dst_lo = dst->as_register_lo();
  2438     Register dst_hi = dst->as_register_hi();
  2440 #ifdef _LP64
  2441     move_regs(l_lo, dst_lo);
  2442 #else
  2443     if (dst_lo == l_hi) {
  2444       assert(dst_hi != l_lo, "overwriting registers");
  2445       move_regs(l_hi, dst_hi);
  2446       move_regs(l_lo, dst_lo);
  2447     } else {
  2448       assert(dst_lo != l_hi, "overwriting registers");
  2449       move_regs(l_lo, dst_lo);
  2450       move_regs(l_hi, dst_hi);
  2452 #endif // _LP64
  2457 // we assume that rax, and rdx can be overwritten
  2458 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2460   assert(left->is_single_cpu(),   "left must be register");
  2461   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2462   assert(result->is_single_cpu(), "result must be register");
  2464   //  assert(left->destroys_register(), "check");
  2465   //  assert(right->destroys_register(), "check");
  2467   Register lreg = left->as_register();
  2468   Register dreg = result->as_register();
  2470   if (right->is_constant()) {
  2471     int divisor = right->as_constant_ptr()->as_jint();
  2472     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2473     if (code == lir_idiv) {
  2474       assert(lreg == rax, "must be rax,");
  2475       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2476       __ cdql(); // sign extend into rdx:rax
  2477       if (divisor == 2) {
  2478         __ subl(lreg, rdx);
  2479       } else {
  2480         __ andl(rdx, divisor - 1);
  2481         __ addl(lreg, rdx);
  2483       __ sarl(lreg, log2_intptr(divisor));
  2484       move_regs(lreg, dreg);
  2485     } else if (code == lir_irem) {
  2486       Label done;
  2487       __ mov(dreg, lreg);
  2488       __ andl(dreg, 0x80000000 | (divisor - 1));
  2489       __ jcc(Assembler::positive, done);
  2490       __ decrement(dreg);
  2491       __ orl(dreg, ~(divisor - 1));
  2492       __ increment(dreg);
  2493       __ bind(done);
  2494     } else {
  2495       ShouldNotReachHere();
  2497   } else {
  2498     Register rreg = right->as_register();
  2499     assert(lreg == rax, "left register must be rax,");
  2500     assert(rreg != rdx, "right register must not be rdx");
  2501     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2503     move_regs(lreg, rax);
  2505     int idivl_offset = __ corrected_idivl(rreg);
  2506     add_debug_info_for_div0(idivl_offset, info);
  2507     if (code == lir_irem) {
  2508       move_regs(rdx, dreg); // result is in rdx
  2509     } else {
  2510       move_regs(rax, dreg);
  2516 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2517   if (opr1->is_single_cpu()) {
  2518     Register reg1 = opr1->as_register();
  2519     if (opr2->is_single_cpu()) {
  2520       // cpu register - cpu register
  2521       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2522         __ cmpptr(reg1, opr2->as_register());
  2523       } else {
  2524         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2525         __ cmpl(reg1, opr2->as_register());
  2527     } else if (opr2->is_stack()) {
  2528       // cpu register - stack
  2529       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2530         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2531       } else {
  2532         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2534     } else if (opr2->is_constant()) {
  2535       // cpu register - constant
  2536       LIR_Const* c = opr2->as_constant_ptr();
  2537       if (c->type() == T_INT) {
  2538         __ cmpl(reg1, c->as_jint());
  2539       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2540         // In 64bit oops are single register
  2541         jobject o = c->as_jobject();
  2542         if (o == NULL) {
  2543           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2544         } else {
  2545 #ifdef _LP64
  2546           __ movoop(rscratch1, o);
  2547           __ cmpptr(reg1, rscratch1);
  2548 #else
  2549           __ cmpoop(reg1, c->as_jobject());
  2550 #endif // _LP64
  2552       } else {
  2553         ShouldNotReachHere();
  2555       // cpu register - address
  2556     } else if (opr2->is_address()) {
  2557       if (op->info() != NULL) {
  2558         add_debug_info_for_null_check_here(op->info());
  2560       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2561     } else {
  2562       ShouldNotReachHere();
  2565   } else if(opr1->is_double_cpu()) {
  2566     Register xlo = opr1->as_register_lo();
  2567     Register xhi = opr1->as_register_hi();
  2568     if (opr2->is_double_cpu()) {
  2569 #ifdef _LP64
  2570       __ cmpptr(xlo, opr2->as_register_lo());
  2571 #else
  2572       // cpu register - cpu register
  2573       Register ylo = opr2->as_register_lo();
  2574       Register yhi = opr2->as_register_hi();
  2575       __ subl(xlo, ylo);
  2576       __ sbbl(xhi, yhi);
  2577       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2578         __ orl(xhi, xlo);
  2580 #endif // _LP64
  2581     } else if (opr2->is_constant()) {
  2582       // cpu register - constant 0
  2583       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2584 #ifdef _LP64
  2585       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2586 #else
  2587       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2588       __ orl(xhi, xlo);
  2589 #endif // _LP64
  2590     } else {
  2591       ShouldNotReachHere();
  2594   } else if (opr1->is_single_xmm()) {
  2595     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2596     if (opr2->is_single_xmm()) {
  2597       // xmm register - xmm register
  2598       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2599     } else if (opr2->is_stack()) {
  2600       // xmm register - stack
  2601       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2602     } else if (opr2->is_constant()) {
  2603       // xmm register - constant
  2604       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2605     } else if (opr2->is_address()) {
  2606       // xmm register - address
  2607       if (op->info() != NULL) {
  2608         add_debug_info_for_null_check_here(op->info());
  2610       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2611     } else {
  2612       ShouldNotReachHere();
  2615   } else if (opr1->is_double_xmm()) {
  2616     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2617     if (opr2->is_double_xmm()) {
  2618       // xmm register - xmm register
  2619       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2620     } else if (opr2->is_stack()) {
  2621       // xmm register - stack
  2622       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2623     } else if (opr2->is_constant()) {
  2624       // xmm register - constant
  2625       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2626     } else if (opr2->is_address()) {
  2627       // xmm register - address
  2628       if (op->info() != NULL) {
  2629         add_debug_info_for_null_check_here(op->info());
  2631       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2632     } else {
  2633       ShouldNotReachHere();
  2636   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2637     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2638     assert(opr2->is_fpu_register(), "both must be registers");
  2639     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2641   } else if (opr1->is_address() && opr2->is_constant()) {
  2642     LIR_Const* c = opr2->as_constant_ptr();
  2643 #ifdef _LP64
  2644     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2645       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2646       __ movoop(rscratch1, c->as_jobject());
  2648 #endif // LP64
  2649     if (op->info() != NULL) {
  2650       add_debug_info_for_null_check_here(op->info());
  2652     // special case: address - constant
  2653     LIR_Address* addr = opr1->as_address_ptr();
  2654     if (c->type() == T_INT) {
  2655       __ cmpl(as_Address(addr), c->as_jint());
  2656     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2657 #ifdef _LP64
  2658       // %%% Make this explode if addr isn't reachable until we figure out a
  2659       // better strategy by giving noreg as the temp for as_Address
  2660       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2661 #else
  2662       __ cmpoop(as_Address(addr), c->as_jobject());
  2663 #endif // _LP64
  2664     } else {
  2665       ShouldNotReachHere();
  2668   } else {
  2669     ShouldNotReachHere();
  2673 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2674   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2675     if (left->is_single_xmm()) {
  2676       assert(right->is_single_xmm(), "must match");
  2677       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2678     } else if (left->is_double_xmm()) {
  2679       assert(right->is_double_xmm(), "must match");
  2680       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2682     } else {
  2683       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2684       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2686       assert(left->fpu() == 0, "left must be on TOS");
  2687       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2688                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2690   } else {
  2691     assert(code == lir_cmp_l2i, "check");
  2692 #ifdef _LP64
  2693       Register dest = dst->as_register();
  2694       __ xorptr(dest, dest);
  2695       Label high, done;
  2696       __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2697       __ jcc(Assembler::equal, done);
  2698       __ jcc(Assembler::greater, high);
  2699       __ decrement(dest);
  2700       __ jmp(done);
  2701       __ bind(high);
  2702       __ increment(dest);
  2704       __ bind(done);
  2706 #else
  2707     __ lcmp2int(left->as_register_hi(),
  2708                 left->as_register_lo(),
  2709                 right->as_register_hi(),
  2710                 right->as_register_lo());
  2711     move_regs(left->as_register_hi(), dst->as_register());
  2712 #endif // _LP64
  2717 void LIR_Assembler::align_call(LIR_Code code) {
  2718   if (os::is_MP()) {
  2719     // make sure that the displacement word of the call ends up word aligned
  2720     int offset = __ offset();
  2721     switch (code) {
  2722       case lir_static_call:
  2723       case lir_optvirtual_call:
  2724       case lir_dynamic_call:
  2725         offset += NativeCall::displacement_offset;
  2726         break;
  2727       case lir_icvirtual_call:
  2728         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2729       break;
  2730       case lir_virtual_call:  // currently, sparc-specific for niagara
  2731       default: ShouldNotReachHere();
  2733     while (offset++ % BytesPerWord != 0) {
  2734       __ nop();
  2740 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2741   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2742          "must be aligned");
  2743   __ call(AddressLiteral(op->addr(), rtype));
  2744   add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
  2748 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2749   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2750   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2751   assert(!os::is_MP() ||
  2752          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2753          "must be aligned");
  2754   __ call(AddressLiteral(op->addr(), rh));
  2755   add_call_info(code_offset(), op->info(), op->is_method_handle_invoke());
  2759 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2760 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2761   ShouldNotReachHere();
  2765 void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
  2766   __ movptr(FrameMap::method_handle_invoke_SP_save_opr()->as_register(), rsp);
  2770 void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
  2771   __ movptr(rsp, FrameMap::method_handle_invoke_SP_save_opr()->as_register());
  2775 void LIR_Assembler::emit_static_call_stub() {
  2776   address call_pc = __ pc();
  2777   address stub = __ start_a_stub(call_stub_size);
  2778   if (stub == NULL) {
  2779     bailout("static call stub overflow");
  2780     return;
  2783   int start = __ offset();
  2784   if (os::is_MP()) {
  2785     // make sure that the displacement word of the call ends up word aligned
  2786     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2787     while (offset++ % BytesPerWord != 0) {
  2788       __ nop();
  2791   __ relocate(static_stub_Relocation::spec(call_pc));
  2792   __ movoop(rbx, (jobject)NULL);
  2793   // must be set to -1 at code generation time
  2794   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2795   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2796   __ jump(RuntimeAddress(__ pc()));
  2798   assert(__ offset() - start <= call_stub_size, "stub too big")
  2799   __ end_a_stub();
  2803 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2804   assert(exceptionOop->as_register() == rax, "must match");
  2805   assert(unwind || exceptionPC->as_register() == rdx, "must match");
  2807   // exception object is not added to oop map by LinearScan
  2808   // (LinearScan assumes that no oops are in fixed registers)
  2809   info->add_register_oop(exceptionOop);
  2810   Runtime1::StubID unwind_id;
  2812   if (!unwind) {
  2813     // get current pc information
  2814     // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2815     int pc_for_athrow_offset = __ offset();
  2816     InternalAddress pc_for_athrow(__ pc());
  2817     __ lea(exceptionPC->as_register(), pc_for_athrow);
  2818     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2820     __ verify_not_null_oop(rax);
  2821     // search an exception handler (rax: exception oop, rdx: throwing pc)
  2822     if (compilation()->has_fpu_code()) {
  2823       unwind_id = Runtime1::handle_exception_id;
  2824     } else {
  2825       unwind_id = Runtime1::handle_exception_nofpu_id;
  2827     __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2828   } else {
  2829     // remove the activation
  2830     __ remove_frame(initial_frame_size_in_bytes());
  2831     __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
  2834   // enough room for two byte trap
  2835   __ nop();
  2839 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2841   // optimized version for linear scan:
  2842   // * count must be already in ECX (guaranteed by LinearScan)
  2843   // * left and dest must be equal
  2844   // * tmp must be unused
  2845   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2846   assert(left == dest, "left and dest must be equal");
  2847   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2849   if (left->is_single_cpu()) {
  2850     Register value = left->as_register();
  2851     assert(value != SHIFT_count, "left cannot be ECX");
  2853     switch (code) {
  2854       case lir_shl:  __ shll(value); break;
  2855       case lir_shr:  __ sarl(value); break;
  2856       case lir_ushr: __ shrl(value); break;
  2857       default: ShouldNotReachHere();
  2859   } else if (left->is_double_cpu()) {
  2860     Register lo = left->as_register_lo();
  2861     Register hi = left->as_register_hi();
  2862     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2863 #ifdef _LP64
  2864     switch (code) {
  2865       case lir_shl:  __ shlptr(lo);        break;
  2866       case lir_shr:  __ sarptr(lo);        break;
  2867       case lir_ushr: __ shrptr(lo);        break;
  2868       default: ShouldNotReachHere();
  2870 #else
  2872     switch (code) {
  2873       case lir_shl:  __ lshl(hi, lo);        break;
  2874       case lir_shr:  __ lshr(hi, lo, true);  break;
  2875       case lir_ushr: __ lshr(hi, lo, false); break;
  2876       default: ShouldNotReachHere();
  2878 #endif // LP64
  2879   } else {
  2880     ShouldNotReachHere();
  2885 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2886   if (dest->is_single_cpu()) {
  2887     // first move left into dest so that left is not destroyed by the shift
  2888     Register value = dest->as_register();
  2889     count = count & 0x1F; // Java spec
  2891     move_regs(left->as_register(), value);
  2892     switch (code) {
  2893       case lir_shl:  __ shll(value, count); break;
  2894       case lir_shr:  __ sarl(value, count); break;
  2895       case lir_ushr: __ shrl(value, count); break;
  2896       default: ShouldNotReachHere();
  2898   } else if (dest->is_double_cpu()) {
  2899 #ifndef _LP64
  2900     Unimplemented();
  2901 #else
  2902     // first move left into dest so that left is not destroyed by the shift
  2903     Register value = dest->as_register_lo();
  2904     count = count & 0x1F; // Java spec
  2906     move_regs(left->as_register_lo(), value);
  2907     switch (code) {
  2908       case lir_shl:  __ shlptr(value, count); break;
  2909       case lir_shr:  __ sarptr(value, count); break;
  2910       case lir_ushr: __ shrptr(value, count); break;
  2911       default: ShouldNotReachHere();
  2913 #endif // _LP64
  2914   } else {
  2915     ShouldNotReachHere();
  2920 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  2921   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2922   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2923   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2924   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  2928 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  2929   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2930   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2931   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2932   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  2936 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  2937   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2938   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2939   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2940   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  2944 // This code replaces a call to arraycopy; no exception may
  2945 // be thrown in this code, they must be thrown in the System.arraycopy
  2946 // activation frame; we could save some checks if this would not be the case
  2947 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2948   ciArrayKlass* default_type = op->expected_type();
  2949   Register src = op->src()->as_register();
  2950   Register dst = op->dst()->as_register();
  2951   Register src_pos = op->src_pos()->as_register();
  2952   Register dst_pos = op->dst_pos()->as_register();
  2953   Register length  = op->length()->as_register();
  2954   Register tmp = op->tmp()->as_register();
  2956   CodeStub* stub = op->stub();
  2957   int flags = op->flags();
  2958   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2959   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2961   // if we don't know anything or it's an object array, just go through the generic arraycopy
  2962   if (default_type == NULL) {
  2963     Label done;
  2964     // save outgoing arguments on stack in case call to System.arraycopy is needed
  2965     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  2966     // for interpreter calling conventions. Now we have to do it in new style conventions.
  2967     // For the moment until C1 gets the new register allocator I just force all the
  2968     // args to the right place (except the register args) and then on the back side
  2969     // reload the register args properly if we go slow path. Yuck
  2971     // These are proper for the calling convention
  2973     store_parameter(length, 2);
  2974     store_parameter(dst_pos, 1);
  2975     store_parameter(dst, 0);
  2977     // these are just temporary placements until we need to reload
  2978     store_parameter(src_pos, 3);
  2979     store_parameter(src, 4);
  2980     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  2982     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  2984     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  2985 #ifdef _LP64
  2986     // The arguments are in java calling convention so we can trivially shift them to C
  2987     // convention
  2988     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  2989     __ mov(c_rarg0, j_rarg0);
  2990     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  2991     __ mov(c_rarg1, j_rarg1);
  2992     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  2993     __ mov(c_rarg2, j_rarg2);
  2994     assert_different_registers(c_rarg3, j_rarg4);
  2995     __ mov(c_rarg3, j_rarg3);
  2996 #ifdef _WIN64
  2997     // Allocate abi space for args but be sure to keep stack aligned
  2998     __ subptr(rsp, 6*wordSize);
  2999     store_parameter(j_rarg4, 4);
  3000     __ call(RuntimeAddress(entry));
  3001     __ addptr(rsp, 6*wordSize);
  3002 #else
  3003     __ mov(c_rarg4, j_rarg4);
  3004     __ call(RuntimeAddress(entry));
  3005 #endif // _WIN64
  3006 #else
  3007     __ push(length);
  3008     __ push(dst_pos);
  3009     __ push(dst);
  3010     __ push(src_pos);
  3011     __ push(src);
  3012     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3014 #endif // _LP64
  3016     __ cmpl(rax, 0);
  3017     __ jcc(Assembler::equal, *stub->continuation());
  3019     // Reload values from the stack so they are where the stub
  3020     // expects them.
  3021     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3022     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3023     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3024     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3025     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3026     __ jmp(*stub->entry());
  3028     __ bind(*stub->continuation());
  3029     return;
  3032   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3034   int elem_size = type2aelembytes(basic_type);
  3035   int shift_amount;
  3036   Address::ScaleFactor scale;
  3038   switch (elem_size) {
  3039     case 1 :
  3040       shift_amount = 0;
  3041       scale = Address::times_1;
  3042       break;
  3043     case 2 :
  3044       shift_amount = 1;
  3045       scale = Address::times_2;
  3046       break;
  3047     case 4 :
  3048       shift_amount = 2;
  3049       scale = Address::times_4;
  3050       break;
  3051     case 8 :
  3052       shift_amount = 3;
  3053       scale = Address::times_8;
  3054       break;
  3055     default:
  3056       ShouldNotReachHere();
  3059   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3060   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3061   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3062   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3064   // length and pos's are all sign extended at this point on 64bit
  3066   // test for NULL
  3067   if (flags & LIR_OpArrayCopy::src_null_check) {
  3068     __ testptr(src, src);
  3069     __ jcc(Assembler::zero, *stub->entry());
  3071   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3072     __ testptr(dst, dst);
  3073     __ jcc(Assembler::zero, *stub->entry());
  3076   // check if negative
  3077   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3078     __ testl(src_pos, src_pos);
  3079     __ jcc(Assembler::less, *stub->entry());
  3081   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3082     __ testl(dst_pos, dst_pos);
  3083     __ jcc(Assembler::less, *stub->entry());
  3085   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3086     __ testl(length, length);
  3087     __ jcc(Assembler::less, *stub->entry());
  3090   if (flags & LIR_OpArrayCopy::src_range_check) {
  3091     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3092     __ cmpl(tmp, src_length_addr);
  3093     __ jcc(Assembler::above, *stub->entry());
  3095   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3096     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3097     __ cmpl(tmp, dst_length_addr);
  3098     __ jcc(Assembler::above, *stub->entry());
  3101   if (flags & LIR_OpArrayCopy::type_check) {
  3102     __ movptr(tmp, src_klass_addr);
  3103     __ cmpptr(tmp, dst_klass_addr);
  3104     __ jcc(Assembler::notEqual, *stub->entry());
  3107 #ifdef ASSERT
  3108   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3109     // Sanity check the known type with the incoming class.  For the
  3110     // primitive case the types must match exactly with src.klass and
  3111     // dst.klass each exactly matching the default type.  For the
  3112     // object array case, if no type check is needed then either the
  3113     // dst type is exactly the expected type and the src type is a
  3114     // subtype which we can't check or src is the same array as dst
  3115     // but not necessarily exactly of type default_type.
  3116     Label known_ok, halt;
  3117     __ movoop(tmp, default_type->constant_encoding());
  3118     if (basic_type != T_OBJECT) {
  3119       __ cmpptr(tmp, dst_klass_addr);
  3120       __ jcc(Assembler::notEqual, halt);
  3121       __ cmpptr(tmp, src_klass_addr);
  3122       __ jcc(Assembler::equal, known_ok);
  3123     } else {
  3124       __ cmpptr(tmp, dst_klass_addr);
  3125       __ jcc(Assembler::equal, known_ok);
  3126       __ cmpptr(src, dst);
  3127       __ jcc(Assembler::equal, known_ok);
  3129     __ bind(halt);
  3130     __ stop("incorrect type information in arraycopy");
  3131     __ bind(known_ok);
  3133 #endif
  3135   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3136     __ shlptr(length, shift_amount);
  3139 #ifdef _LP64
  3140   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3141   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3142   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3143   assert_different_registers(c_rarg1, length);
  3144   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3145   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3146   __ mov(c_rarg2, length);
  3148 #else
  3149   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3150   store_parameter(tmp, 0);
  3151   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3152   store_parameter(tmp, 1);
  3153   store_parameter(length, 2);
  3154 #endif // _LP64
  3155   if (basic_type == T_OBJECT) {
  3156     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3157   } else {
  3158     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3161   __ bind(*stub->continuation());
  3165 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3166   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3167   Register hdr = op->hdr_opr()->as_register();
  3168   Register lock = op->lock_opr()->as_register();
  3169   if (!UseFastLocking) {
  3170     __ jmp(*op->stub()->entry());
  3171   } else if (op->code() == lir_lock) {
  3172     Register scratch = noreg;
  3173     if (UseBiasedLocking) {
  3174       scratch = op->scratch_opr()->as_register();
  3176     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3177     // add debug info for NullPointerException only if one is possible
  3178     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3179     if (op->info() != NULL) {
  3180       add_debug_info_for_null_check(null_check_offset, op->info());
  3182     // done
  3183   } else if (op->code() == lir_unlock) {
  3184     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3185     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3186   } else {
  3187     Unimplemented();
  3189   __ bind(*op->stub()->continuation());
  3193 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3194   ciMethod* method = op->profiled_method();
  3195   int bci          = op->profiled_bci();
  3197   // Update counter for all call types
  3198   ciMethodData* md = method->method_data();
  3199   if (md == NULL) {
  3200     bailout("out of memory building methodDataOop");
  3201     return;
  3203   ciProfileData* data = md->bci_to_data(bci);
  3204   assert(data->is_CounterData(), "need CounterData for calls");
  3205   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3206   Register mdo  = op->mdo()->as_register();
  3207   __ movoop(mdo, md->constant_encoding());
  3208   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3209   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3210   // Perform additional virtual call profiling for invokevirtual and
  3211   // invokeinterface bytecodes
  3212   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3213       Tier1ProfileVirtualCalls) {
  3214     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3215     Register recv = op->recv()->as_register();
  3216     assert_different_registers(mdo, recv);
  3217     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3218     ciKlass* known_klass = op->known_holder();
  3219     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3220       // We know the type that will be seen at this call site; we can
  3221       // statically update the methodDataOop rather than needing to do
  3222       // dynamic tests on the receiver type
  3224       // NOTE: we should probably put a lock around this search to
  3225       // avoid collisions by concurrent compilations
  3226       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3227       uint i;
  3228       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3229         ciKlass* receiver = vc_data->receiver(i);
  3230         if (known_klass->equals(receiver)) {
  3231           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3232           __ addl(data_addr, DataLayout::counter_increment);
  3233           return;
  3237       // Receiver type not found in profile data; select an empty slot
  3239       // Note that this is less efficient than it should be because it
  3240       // always does a write to the receiver part of the
  3241       // VirtualCallData rather than just the first time
  3242       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3243         ciKlass* receiver = vc_data->receiver(i);
  3244         if (receiver == NULL) {
  3245           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3246           __ movoop(recv_addr, known_klass->constant_encoding());
  3247           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3248           __ addl(data_addr, DataLayout::counter_increment);
  3249           return;
  3252     } else {
  3253       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
  3254       Label update_done;
  3255       uint i;
  3256       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3257         Label next_test;
  3258         // See if the receiver is receiver[n].
  3259         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
  3260         __ jcc(Assembler::notEqual, next_test);
  3261         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3262         __ addl(data_addr, DataLayout::counter_increment);
  3263         __ jmp(update_done);
  3264         __ bind(next_test);
  3267       // Didn't find receiver; find next empty slot and fill it in
  3268       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3269         Label next_test;
  3270         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3271         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
  3272         __ jcc(Assembler::notEqual, next_test);
  3273         __ movptr(recv_addr, recv);
  3274         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
  3275         __ jmp(update_done);
  3276         __ bind(next_test);
  3278       // Receiver did not match any saved receiver and there is no empty row for it.
  3279       // Increment total counter to indicate polymorphic case.
  3280       __ addl(counter_addr, DataLayout::counter_increment);
  3282       __ bind(update_done);
  3284   } else {
  3285     // Static call
  3286     __ addl(counter_addr, DataLayout::counter_increment);
  3291 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3292   Unimplemented();
  3296 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3297   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3301 void LIR_Assembler::align_backward_branch_target() {
  3302   __ align(BytesPerWord);
  3306 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3307   if (left->is_single_cpu()) {
  3308     __ negl(left->as_register());
  3309     move_regs(left->as_register(), dest->as_register());
  3311   } else if (left->is_double_cpu()) {
  3312     Register lo = left->as_register_lo();
  3313 #ifdef _LP64
  3314     Register dst = dest->as_register_lo();
  3315     __ movptr(dst, lo);
  3316     __ negptr(dst);
  3317 #else
  3318     Register hi = left->as_register_hi();
  3319     __ lneg(hi, lo);
  3320     if (dest->as_register_lo() == hi) {
  3321       assert(dest->as_register_hi() != lo, "destroying register");
  3322       move_regs(hi, dest->as_register_hi());
  3323       move_regs(lo, dest->as_register_lo());
  3324     } else {
  3325       move_regs(lo, dest->as_register_lo());
  3326       move_regs(hi, dest->as_register_hi());
  3328 #endif // _LP64
  3330   } else if (dest->is_single_xmm()) {
  3331     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3332       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3334     __ xorps(dest->as_xmm_float_reg(),
  3335              ExternalAddress((address)float_signflip_pool));
  3337   } else if (dest->is_double_xmm()) {
  3338     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3339       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3341     __ xorpd(dest->as_xmm_double_reg(),
  3342              ExternalAddress((address)double_signflip_pool));
  3344   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3345     assert(left->fpu() == 0, "arg must be on TOS");
  3346     assert(dest->fpu() == 0, "dest must be TOS");
  3347     __ fchs();
  3349   } else {
  3350     ShouldNotReachHere();
  3355 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3356   assert(addr->is_address() && dest->is_register(), "check");
  3357   Register reg;
  3358   reg = dest->as_pointer_register();
  3359   __ lea(reg, as_Address(addr->as_address_ptr()));
  3364 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3365   assert(!tmp->is_valid(), "don't need temporary");
  3366   __ call(RuntimeAddress(dest));
  3367   if (info != NULL) {
  3368     add_call_info_here(info);
  3373 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3374   assert(type == T_LONG, "only for volatile long fields");
  3376   if (info != NULL) {
  3377     add_debug_info_for_null_check_here(info);
  3380   if (src->is_double_xmm()) {
  3381     if (dest->is_double_cpu()) {
  3382 #ifdef _LP64
  3383       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3384 #else
  3385       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3386       __ psrlq(src->as_xmm_double_reg(), 32);
  3387       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3388 #endif // _LP64
  3389     } else if (dest->is_double_stack()) {
  3390       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3391     } else if (dest->is_address()) {
  3392       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3393     } else {
  3394       ShouldNotReachHere();
  3397   } else if (dest->is_double_xmm()) {
  3398     if (src->is_double_stack()) {
  3399       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3400     } else if (src->is_address()) {
  3401       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3402     } else {
  3403       ShouldNotReachHere();
  3406   } else if (src->is_double_fpu()) {
  3407     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3408     if (dest->is_double_stack()) {
  3409       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3410     } else if (dest->is_address()) {
  3411       __ fistp_d(as_Address(dest->as_address_ptr()));
  3412     } else {
  3413       ShouldNotReachHere();
  3416   } else if (dest->is_double_fpu()) {
  3417     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3418     if (src->is_double_stack()) {
  3419       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3420     } else if (src->is_address()) {
  3421       __ fild_d(as_Address(src->as_address_ptr()));
  3422     } else {
  3423       ShouldNotReachHere();
  3425   } else {
  3426     ShouldNotReachHere();
  3431 void LIR_Assembler::membar() {
  3432   // QQQ sparc TSO uses this,
  3433   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3436 void LIR_Assembler::membar_acquire() {
  3437   // No x86 machines currently require load fences
  3438   // __ load_fence();
  3441 void LIR_Assembler::membar_release() {
  3442   // No x86 machines currently require store fences
  3443   // __ store_fence();
  3446 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3447   assert(result_reg->is_register(), "check");
  3448 #ifdef _LP64
  3449   // __ get_thread(result_reg->as_register_lo());
  3450   __ mov(result_reg->as_register(), r15_thread);
  3451 #else
  3452   __ get_thread(result_reg->as_register());
  3453 #endif // _LP64
  3457 void LIR_Assembler::peephole(LIR_List*) {
  3458   // do nothing for now
  3462 #undef __

mercurial