src/share/vm/opto/escape.cpp

Thu, 19 Aug 2010 14:51:47 -0700

author
never
date
Thu, 19 Aug 2010 14:51:47 -0700
changeset 2085
f55c4f82ab9d
parent 1989
60a14ad85270
child 2170
5867d89c129b
permissions
-rw-r--r--

6978249: spill between cpu and fpu registers when those moves are fast
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 29 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 30 if (_edges == NULL) {
duke@435 31 Arena *a = Compile::current()->comp_arena();
duke@435 32 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 33 }
duke@435 34 _edges->append_if_missing(v);
duke@435 35 }
duke@435 36
duke@435 37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39
duke@435 40 _edges->remove(v);
duke@435 41 }
duke@435 42
duke@435 43 #ifndef PRODUCT
kvn@512 44 static const char *node_type_names[] = {
duke@435 45 "UnknownType",
duke@435 46 "JavaObject",
duke@435 47 "LocalVar",
duke@435 48 "Field"
duke@435 49 };
duke@435 50
kvn@512 51 static const char *esc_names[] = {
duke@435 52 "UnknownEscape",
kvn@500 53 "NoEscape",
kvn@500 54 "ArgEscape",
kvn@500 55 "GlobalEscape"
duke@435 56 };
duke@435 57
kvn@512 58 static const char *edge_type_suffix[] = {
duke@435 59 "?", // UnknownEdge
duke@435 60 "P", // PointsToEdge
duke@435 61 "D", // DeferredEdge
duke@435 62 "F" // FieldEdge
duke@435 63 };
duke@435 64
kvn@688 65 void PointsToNode::dump(bool print_state) const {
duke@435 66 NodeType nt = node_type();
kvn@688 67 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 68 if (print_state) {
kvn@688 69 EscapeState es = escape_state();
kvn@688 70 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 71 }
kvn@688 72 tty->print("[[");
duke@435 73 for (uint i = 0; i < edge_count(); i++) {
duke@435 74 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 75 }
duke@435 76 tty->print("]] ");
duke@435 77 if (_node == NULL)
duke@435 78 tty->print_cr("<null>");
duke@435 79 else
duke@435 80 _node->dump();
duke@435 81 }
duke@435 82 #endif
duke@435 83
kvn@1989 84 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@679 85 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 86 _processed(C->comp_arena()),
kvn@679 87 _collecting(true),
kvn@679 88 _compile(C),
kvn@1989 89 _igvn(igvn),
kvn@679 90 _node_map(C->comp_arena()) {
kvn@679 91
kvn@688 92 _phantom_object = C->top()->_idx,
kvn@688 93 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 94
kvn@688 95 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 96 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 97 _oop_null = oop_null->_idx;
kvn@688 98 assert(_oop_null < C->unique(), "should be created already");
kvn@688 99 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 100
kvn@688 101 if (UseCompressedOops) {
kvn@688 102 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 103 _noop_null = noop_null->_idx;
kvn@688 104 assert(_noop_null < C->unique(), "should be created already");
kvn@688 105 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 106 }
duke@435 107 }
duke@435 108
duke@435 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 110 PointsToNode *f = ptnode_adr(from_i);
duke@435 111 PointsToNode *t = ptnode_adr(to_i);
duke@435 112
duke@435 113 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 114 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 115 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 116 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 117 }
duke@435 118
duke@435 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 120 PointsToNode *f = ptnode_adr(from_i);
duke@435 121 PointsToNode *t = ptnode_adr(to_i);
duke@435 122
duke@435 123 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 124 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 125 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 126 // don't add a self-referential edge, this can occur during removal of
duke@435 127 // deferred edges
duke@435 128 if (from_i != to_i)
duke@435 129 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 130 }
duke@435 131
kvn@500 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 133 const Type *adr_type = phase->type(adr);
kvn@500 134 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 135 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 136 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 137 // We are computing a raw address for a store captured by an Initialize
kvn@500 138 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 139 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 140 assert(offs != Type::OffsetBot ||
kvn@500 141 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 142 "offset must be a constant or it is initialization of array");
kvn@500 143 return offs;
kvn@500 144 }
kvn@500 145 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 146 assert(t_ptr != NULL, "must be a pointer type");
duke@435 147 return t_ptr->offset();
duke@435 148 }
duke@435 149
duke@435 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 151 PointsToNode *f = ptnode_adr(from_i);
duke@435 152 PointsToNode *t = ptnode_adr(to_i);
duke@435 153
duke@435 154 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 155 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 156 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 157 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 158 t->set_offset(offset);
duke@435 159
duke@435 160 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 161 }
duke@435 162
duke@435 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 164 PointsToNode *npt = ptnode_adr(ni);
duke@435 165 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 166 if (es > old_es)
duke@435 167 npt->set_escape_state(es);
duke@435 168 }
duke@435 169
kvn@500 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 171 PointsToNode::EscapeState es, bool done) {
kvn@500 172 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 173 ptadr->_node = n;
kvn@500 174 ptadr->set_node_type(nt);
kvn@500 175
kvn@500 176 // inline set_escape_state(idx, es);
kvn@500 177 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 178 if (es > old_es)
kvn@500 179 ptadr->set_escape_state(es);
kvn@500 180
kvn@500 181 if (done)
kvn@500 182 _processed.set(n->_idx);
kvn@500 183 }
kvn@500 184
kvn@1989 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
duke@435 186 uint idx = n->_idx;
duke@435 187 PointsToNode::EscapeState es;
duke@435 188
kvn@500 189 // If we are still collecting or there were no non-escaping allocations
kvn@500 190 // we don't know the answer yet
kvn@679 191 if (_collecting)
duke@435 192 return PointsToNode::UnknownEscape;
duke@435 193
duke@435 194 // if the node was created after the escape computation, return
duke@435 195 // UnknownEscape
kvn@679 196 if (idx >= nodes_size())
duke@435 197 return PointsToNode::UnknownEscape;
duke@435 198
kvn@679 199 es = ptnode_adr(idx)->escape_state();
duke@435 200
duke@435 201 // if we have already computed a value, return it
kvn@895 202 if (es != PointsToNode::UnknownEscape &&
kvn@895 203 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 204 return es;
duke@435 205
kvn@679 206 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 207 if (n->uncast()->_idx >= nodes_size())
kvn@679 208 return PointsToNode::UnknownEscape;
kvn@679 209
kvn@1989 210 PointsToNode::EscapeState orig_es = es;
kvn@1989 211
duke@435 212 // compute max escape state of anything this node could point to
duke@435 213 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 214 PointsTo(ptset, n);
kvn@500 215 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 216 uint pt = i.elem;
kvn@679 217 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 218 if (pes > es)
duke@435 219 es = pes;
duke@435 220 }
kvn@1989 221 if (orig_es != es) {
kvn@1989 222 // cache the computed escape state
kvn@1989 223 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@1989 224 ptnode_adr(idx)->set_escape_state(es);
kvn@1989 225 } // orig_es could be PointsToNode::UnknownEscape
duke@435 226 return es;
duke@435 227 }
duke@435 228
kvn@1989 229 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n) {
duke@435 230 VectorSet visited(Thread::current()->resource_area());
duke@435 231 GrowableArray<uint> worklist;
duke@435 232
kvn@559 233 #ifdef ASSERT
kvn@559 234 Node *orig_n = n;
kvn@559 235 #endif
kvn@559 236
kvn@500 237 n = n->uncast();
kvn@679 238 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 239
duke@435 240 // If we have a JavaObject, return just that object
kvn@679 241 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 242 ptset.set(n->_idx);
duke@435 243 return;
duke@435 244 }
kvn@559 245 #ifdef ASSERT
kvn@679 246 if (npt->_node == NULL) {
kvn@559 247 if (orig_n != n)
kvn@559 248 orig_n->dump();
kvn@559 249 n->dump();
kvn@679 250 assert(npt->_node != NULL, "unregistered node");
kvn@559 251 }
kvn@559 252 #endif
duke@435 253 worklist.push(n->_idx);
duke@435 254 while(worklist.length() > 0) {
duke@435 255 int ni = worklist.pop();
kvn@679 256 if (visited.test_set(ni))
kvn@679 257 continue;
duke@435 258
kvn@679 259 PointsToNode* pn = ptnode_adr(ni);
kvn@679 260 // ensure that all inputs of a Phi have been processed
kvn@679 261 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 262
kvn@679 263 int edges_processed = 0;
kvn@679 264 uint e_cnt = pn->edge_count();
kvn@679 265 for (uint e = 0; e < e_cnt; e++) {
kvn@679 266 uint etgt = pn->edge_target(e);
kvn@679 267 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 268 if (et == PointsToNode::PointsToEdge) {
kvn@679 269 ptset.set(etgt);
kvn@679 270 edges_processed++;
kvn@679 271 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 272 worklist.push(etgt);
kvn@679 273 edges_processed++;
kvn@679 274 } else {
kvn@679 275 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 276 }
kvn@679 277 }
kvn@679 278 if (edges_processed == 0) {
kvn@679 279 // no deferred or pointsto edges found. Assume the value was set
kvn@679 280 // outside this method. Add the phantom object to the pointsto set.
kvn@679 281 ptset.set(_phantom_object);
duke@435 282 }
duke@435 283 }
duke@435 284 }
duke@435 285
kvn@536 286 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 287 // This method is most expensive during ConnectionGraph construction.
kvn@536 288 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 289 deferred_edges->clear();
kvn@536 290 visited->Clear();
duke@435 291
kvn@679 292 visited->set(ni);
duke@435 293 PointsToNode *ptn = ptnode_adr(ni);
duke@435 294
kvn@536 295 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 296 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 297 uint t = ptn->edge_target(i);
kvn@536 298 #ifdef ASSERT
kvn@536 299 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 300 #else
kvn@536 301 visited->set(t);
kvn@536 302 #endif
kvn@536 303 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 304 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 305 deferred_edges->append(t);
kvn@559 306 } else {
kvn@559 307 i++;
kvn@536 308 }
kvn@536 309 }
kvn@536 310 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 311 uint t = deferred_edges->at(next);
kvn@500 312 PointsToNode *ptt = ptnode_adr(t);
kvn@679 313 uint e_cnt = ptt->edge_count();
kvn@679 314 for (uint e = 0; e < e_cnt; e++) {
kvn@679 315 uint etgt = ptt->edge_target(e);
kvn@679 316 if (visited->test_set(etgt))
kvn@536 317 continue;
kvn@679 318
kvn@679 319 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 320 if (et == PointsToNode::PointsToEdge) {
kvn@679 321 add_pointsto_edge(ni, etgt);
kvn@679 322 if(etgt == _phantom_object) {
kvn@679 323 // Special case - field set outside (globally escaping).
kvn@679 324 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 325 }
kvn@679 326 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 327 deferred_edges->append(etgt);
kvn@679 328 } else {
kvn@679 329 assert(false,"invalid connection graph");
duke@435 330 }
duke@435 331 }
duke@435 332 }
duke@435 333 }
duke@435 334
duke@435 335
duke@435 336 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 337 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 338 // a pointsto edge is added if it is a JavaObject
duke@435 339
duke@435 340 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 341 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 342 PointsToNode* to = ptnode_adr(to_i);
kvn@679 343 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 344
kvn@679 345 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 346 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 347 int fi = an->edge_target(fe);
kvn@679 348 PointsToNode* pf = ptnode_adr(fi);
kvn@679 349 int po = pf->offset();
duke@435 350 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 351 if (deferred)
duke@435 352 add_deferred_edge(fi, to_i);
duke@435 353 else
duke@435 354 add_pointsto_edge(fi, to_i);
duke@435 355 }
duke@435 356 }
duke@435 357 }
duke@435 358
kvn@500 359 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 360 // whose offset matches "offset".
duke@435 361 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 362 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 363 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 364 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 365 int fi = an->edge_target(fe);
kvn@679 366 PointsToNode* pf = ptnode_adr(fi);
kvn@679 367 int po = pf->offset();
kvn@679 368 if (pf->edge_count() == 0) {
duke@435 369 // we have not seen any stores to this field, assume it was set outside this method
duke@435 370 add_pointsto_edge(fi, _phantom_object);
duke@435 371 }
duke@435 372 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 373 add_deferred_edge(from_i, fi);
duke@435 374 }
duke@435 375 }
duke@435 376 }
duke@435 377
kvn@500 378 // Helper functions
kvn@500 379
kvn@500 380 static Node* get_addp_base(Node *addp) {
kvn@500 381 assert(addp->is_AddP(), "must be AddP");
kvn@500 382 //
kvn@500 383 // AddP cases for Base and Address inputs:
kvn@500 384 // case #1. Direct object's field reference:
kvn@500 385 // Allocate
kvn@500 386 // |
kvn@500 387 // Proj #5 ( oop result )
kvn@500 388 // |
kvn@500 389 // CheckCastPP (cast to instance type)
kvn@500 390 // | |
kvn@500 391 // AddP ( base == address )
kvn@500 392 //
kvn@500 393 // case #2. Indirect object's field reference:
kvn@500 394 // Phi
kvn@500 395 // |
kvn@500 396 // CastPP (cast to instance type)
kvn@500 397 // | |
kvn@500 398 // AddP ( base == address )
kvn@500 399 //
kvn@500 400 // case #3. Raw object's field reference for Initialize node:
kvn@500 401 // Allocate
kvn@500 402 // |
kvn@500 403 // Proj #5 ( oop result )
kvn@500 404 // top |
kvn@500 405 // \ |
kvn@500 406 // AddP ( base == top )
kvn@500 407 //
kvn@500 408 // case #4. Array's element reference:
kvn@500 409 // {CheckCastPP | CastPP}
kvn@500 410 // | | |
kvn@500 411 // | AddP ( array's element offset )
kvn@500 412 // | |
kvn@500 413 // AddP ( array's offset )
kvn@500 414 //
kvn@500 415 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 416 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 417 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 418 // Allocate
kvn@500 419 // |
kvn@500 420 // Proj #5 ( oop result )
kvn@500 421 // | |
kvn@500 422 // AddP ( base == address )
kvn@500 423 //
kvn@512 424 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 425 // Raw object's field reference:
kvn@512 426 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 427 // top |
kvn@500 428 // \ |
kvn@500 429 // AddP ( base == top )
kvn@500 430 //
kvn@512 431 // case #7. Klass's field reference.
kvn@512 432 // LoadKlass
kvn@512 433 // | |
kvn@512 434 // AddP ( base == address )
kvn@512 435 //
kvn@599 436 // case #8. narrow Klass's field reference.
kvn@599 437 // LoadNKlass
kvn@599 438 // |
kvn@599 439 // DecodeN
kvn@599 440 // | |
kvn@599 441 // AddP ( base == address )
kvn@599 442 //
kvn@500 443 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 444 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 445 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 446 while (base->is_AddP()) {
kvn@1392 447 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 448 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 449 base = base->in(AddPNode::Address)->uncast();
kvn@1392 450 }
kvn@500 451 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 452 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 453 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 454 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 455 }
kvn@500 456 return base;
kvn@500 457 }
kvn@500 458
kvn@500 459 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 460 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 461
kvn@500 462 Node* addp2 = addp->raw_out(0);
kvn@500 463 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 464 addp2->in(AddPNode::Base) == n &&
kvn@500 465 addp2->in(AddPNode::Address) == addp) {
kvn@500 466
kvn@500 467 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 468 //
kvn@500 469 // Find array's offset to push it on worklist first and
kvn@500 470 // as result process an array's element offset first (pushed second)
kvn@500 471 // to avoid CastPP for the array's offset.
kvn@500 472 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 473 // the AddP (Field) points to. Which would be wrong since
kvn@500 474 // the algorithm expects the CastPP has the same point as
kvn@500 475 // as AddP's base CheckCastPP (LocalVar).
kvn@500 476 //
kvn@500 477 // ArrayAllocation
kvn@500 478 // |
kvn@500 479 // CheckCastPP
kvn@500 480 // |
kvn@500 481 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 482 // | ||
kvn@500 483 // | || Int (element index)
kvn@500 484 // | || | ConI (log(element size))
kvn@500 485 // | || | /
kvn@500 486 // | || LShift
kvn@500 487 // | || /
kvn@500 488 // | AddP (array's element offset)
kvn@500 489 // | |
kvn@500 490 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 491 // | / /
kvn@500 492 // AddP (array's offset)
kvn@500 493 // |
kvn@500 494 // Load/Store (memory operation on array's element)
kvn@500 495 //
kvn@500 496 return addp2;
kvn@500 497 }
kvn@500 498 return NULL;
duke@435 499 }
duke@435 500
duke@435 501 //
duke@435 502 // Adjust the type and inputs of an AddP which computes the
duke@435 503 // address of a field of an instance
duke@435 504 //
kvn@728 505 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 506 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 507 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 508 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 509 if (t == NULL) {
kvn@500 510 // We are computing a raw address for a store captured by an Initialize
kvn@728 511 // compute an appropriate address type (cases #3 and #5).
kvn@500 512 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 513 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 514 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 515 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 516 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 517 }
kvn@658 518 int inst_id = base_t->instance_id();
kvn@658 519 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 520 "old type must be non-instance or match new type");
kvn@728 521
kvn@728 522 // The type 't' could be subclass of 'base_t'.
kvn@728 523 // As result t->offset() could be large then base_t's size and it will
kvn@728 524 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 525 // constructor verifies correctness of the offset.
kvn@728 526 //
twisti@1040 527 // It could happened on subclass's branch (from the type profiling
kvn@728 528 // inlining) which was not eliminated during parsing since the exactness
kvn@728 529 // of the allocation type was not propagated to the subclass type check.
kvn@728 530 //
kvn@1423 531 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 532 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 533 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 534 //
kvn@728 535 // Do nothing for such AddP node and don't process its users since
kvn@728 536 // this code branch will go away.
kvn@728 537 //
kvn@728 538 if (!t->is_known_instance() &&
kvn@1423 539 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 540 return false; // bail out
kvn@728 541 }
kvn@728 542
duke@435 543 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 544 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 545 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 546 // has side effect.
duke@435 547 int alias_idx = _compile->get_alias_index(tinst);
duke@435 548 igvn->set_type(addp, tinst);
duke@435 549 // record the allocation in the node map
kvn@1536 550 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 551 set_map(addp->_idx, get_map(base->_idx));
kvn@688 552
kvn@688 553 // Set addp's Base and Address to 'base'.
kvn@688 554 Node *abase = addp->in(AddPNode::Base);
kvn@688 555 Node *adr = addp->in(AddPNode::Address);
kvn@688 556 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 557 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 558 // Skip AddP cases #3 and #5.
kvn@688 559 } else {
kvn@688 560 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 561 if (abase != base) {
kvn@688 562 igvn->hash_delete(addp);
kvn@688 563 addp->set_req(AddPNode::Base, base);
kvn@688 564 if (abase == adr) {
kvn@688 565 addp->set_req(AddPNode::Address, base);
kvn@688 566 } else {
kvn@688 567 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 568 #ifdef ASSERT
kvn@688 569 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 570 assert(adr->is_AddP() && atype != NULL &&
kvn@688 571 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 572 #endif
kvn@688 573 }
kvn@688 574 igvn->hash_insert(addp);
duke@435 575 }
duke@435 576 }
kvn@500 577 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 578 record_for_optimizer(addp);
kvn@728 579 return true;
duke@435 580 }
duke@435 581
duke@435 582 //
duke@435 583 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 584 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 585 // phi was created. Cache the last newly created phi in the node map.
duke@435 586 //
duke@435 587 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 588 Compile *C = _compile;
duke@435 589 new_created = false;
duke@435 590 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 591 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 592 if (phi_alias_idx == alias_idx) {
duke@435 593 return orig_phi;
duke@435 594 }
kvn@1286 595 // Have we recently created a Phi for this alias index?
duke@435 596 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 597 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 598 return result;
duke@435 599 }
kvn@1286 600 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 601 // for different memory slices. Search all Phis for this region.
kvn@1286 602 if (result != NULL) {
kvn@1286 603 Node* region = orig_phi->in(0);
kvn@1286 604 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 605 Node* phi = region->fast_out(i);
kvn@1286 606 if (phi->is_Phi() &&
kvn@1286 607 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 608 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 609 return phi->as_Phi();
kvn@1286 610 }
kvn@1286 611 }
kvn@1286 612 }
kvn@473 613 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 614 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 615 // Retry compilation without escape analysis.
kvn@473 616 // If this is the first failure, the sentinel string will "stick"
kvn@473 617 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 618 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 619 }
kvn@473 620 return NULL;
kvn@473 621 }
duke@435 622 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 623 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 624 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 625 C->copy_node_notes_to(result, orig_phi);
duke@435 626 igvn->set_type(result, result->bottom_type());
duke@435 627 record_for_optimizer(result);
kvn@1536 628
kvn@1536 629 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 630 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 631 set_map(orig_phi->_idx, result);
kvn@1536 632 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 633
duke@435 634 new_created = true;
duke@435 635 return result;
duke@435 636 }
duke@435 637
duke@435 638 //
duke@435 639 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 640 // specified alias index.
duke@435 641 //
duke@435 642 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 643
duke@435 644 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 645 Compile *C = _compile;
duke@435 646 bool new_phi_created;
kvn@500 647 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 648 if (!new_phi_created) {
duke@435 649 return result;
duke@435 650 }
duke@435 651
duke@435 652 GrowableArray<PhiNode *> phi_list;
duke@435 653 GrowableArray<uint> cur_input;
duke@435 654
duke@435 655 PhiNode *phi = orig_phi;
duke@435 656 uint idx = 1;
duke@435 657 bool finished = false;
duke@435 658 while(!finished) {
duke@435 659 while (idx < phi->req()) {
kvn@500 660 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 661 if (mem != NULL && mem->is_Phi()) {
kvn@500 662 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 663 if (new_phi_created) {
duke@435 664 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 665 // processing new one
duke@435 666 phi_list.push(phi);
duke@435 667 cur_input.push(idx);
duke@435 668 phi = mem->as_Phi();
kvn@500 669 result = newphi;
duke@435 670 idx = 1;
duke@435 671 continue;
duke@435 672 } else {
kvn@500 673 mem = newphi;
duke@435 674 }
duke@435 675 }
kvn@473 676 if (C->failing()) {
kvn@473 677 return NULL;
kvn@473 678 }
duke@435 679 result->set_req(idx++, mem);
duke@435 680 }
duke@435 681 #ifdef ASSERT
duke@435 682 // verify that the new Phi has an input for each input of the original
duke@435 683 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 684 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 685 #endif
kvn@500 686 // Check if all new phi's inputs have specified alias index.
kvn@500 687 // Otherwise use old phi.
duke@435 688 for (uint i = 1; i < phi->req(); i++) {
kvn@500 689 Node* in = result->in(i);
kvn@500 690 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 691 }
duke@435 692 // we have finished processing a Phi, see if there are any more to do
duke@435 693 finished = (phi_list.length() == 0 );
duke@435 694 if (!finished) {
duke@435 695 phi = phi_list.pop();
duke@435 696 idx = cur_input.pop();
kvn@500 697 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 698 prev_result->set_req(idx++, result);
kvn@500 699 result = prev_result;
duke@435 700 }
duke@435 701 }
duke@435 702 return result;
duke@435 703 }
duke@435 704
kvn@500 705
kvn@500 706 //
kvn@500 707 // The next methods are derived from methods in MemNode.
kvn@500 708 //
kvn@500 709 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 710 Node *mem = mmem;
kvn@500 711 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 712 // means an array I have not precisely typed yet. Do not do any
kvn@500 713 // alias stuff with it any time soon.
kvn@500 714 if( tinst->base() != Type::AnyPtr &&
kvn@500 715 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 716 tinst->offset() == Type::OffsetBot) ) {
kvn@500 717 mem = mmem->memory_at(alias_idx);
kvn@500 718 // Update input if it is progress over what we have now
kvn@500 719 }
kvn@500 720 return mem;
kvn@500 721 }
kvn@500 722
kvn@500 723 //
kvn@1536 724 // Move memory users to their memory slices.
kvn@1536 725 //
kvn@1536 726 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 727 Compile* C = _compile;
kvn@1536 728
kvn@1536 729 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 730 assert(tp != NULL, "ptr type");
kvn@1536 731 int alias_idx = C->get_alias_index(tp);
kvn@1536 732 int general_idx = C->get_general_index(alias_idx);
kvn@1536 733
kvn@1536 734 // Move users first
kvn@1536 735 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 736 Node* use = n->fast_out(i);
kvn@1536 737 if (use->is_MergeMem()) {
kvn@1536 738 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 739 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 740 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 741 continue; // Nothing to do
kvn@1536 742 }
kvn@1536 743 // Replace previous general reference to mem node.
kvn@1536 744 uint orig_uniq = C->unique();
kvn@1536 745 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 746 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 747 mmem->set_memory_at(general_idx, m);
kvn@1536 748 --imax;
kvn@1536 749 --i;
kvn@1536 750 } else if (use->is_MemBar()) {
kvn@1536 751 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 752 if (use->req() > MemBarNode::Precedent &&
kvn@1536 753 use->in(MemBarNode::Precedent) == n) {
kvn@1536 754 // Don't move related membars.
kvn@1536 755 record_for_optimizer(use);
kvn@1536 756 continue;
kvn@1536 757 }
kvn@1536 758 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 759 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 760 alias_idx == general_idx) {
kvn@1536 761 continue; // Nothing to do
kvn@1536 762 }
kvn@1536 763 // Move to general memory slice.
kvn@1536 764 uint orig_uniq = C->unique();
kvn@1536 765 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 766 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 767 igvn->hash_delete(use);
kvn@1536 768 imax -= use->replace_edge(n, m);
kvn@1536 769 igvn->hash_insert(use);
kvn@1536 770 record_for_optimizer(use);
kvn@1536 771 --i;
kvn@1536 772 #ifdef ASSERT
kvn@1536 773 } else if (use->is_Mem()) {
kvn@1536 774 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 775 // Don't move related cardmark.
kvn@1536 776 continue;
kvn@1536 777 }
kvn@1536 778 // Memory nodes should have new memory input.
kvn@1536 779 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 780 assert(tp != NULL, "ptr type");
kvn@1536 781 int idx = C->get_alias_index(tp);
kvn@1536 782 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 783 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 784 } else if (use->is_Phi()) {
kvn@1536 785 // Phi nodes should be split and moved already.
kvn@1536 786 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 787 assert(tp != NULL, "ptr type");
kvn@1536 788 int idx = C->get_alias_index(tp);
kvn@1536 789 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 790 } else {
kvn@1536 791 use->dump();
kvn@1536 792 assert(false, "should not be here");
kvn@1536 793 #endif
kvn@1536 794 }
kvn@1536 795 }
kvn@1536 796 }
kvn@1536 797
kvn@1536 798 //
kvn@500 799 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 800 // is the specified alias index.
kvn@500 801 //
kvn@500 802 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 803 if (orig_mem == NULL)
kvn@500 804 return orig_mem;
kvn@500 805 Compile* C = phase->C;
kvn@500 806 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@658 807 bool is_instance = (tinst != NULL) && tinst->is_known_instance();
kvn@688 808 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 809 Node *prev = NULL;
kvn@500 810 Node *result = orig_mem;
kvn@500 811 while (prev != result) {
kvn@500 812 prev = result;
kvn@688 813 if (result == start_mem)
twisti@1040 814 break; // hit one of our sentinels
kvn@500 815 if (result->is_Mem()) {
kvn@688 816 const Type *at = phase->type(result->in(MemNode::Address));
kvn@500 817 if (at != Type::TOP) {
kvn@500 818 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 819 int idx = C->get_alias_index(at->is_ptr());
kvn@500 820 if (idx == alias_idx)
kvn@500 821 break;
kvn@500 822 }
kvn@688 823 result = result->in(MemNode::Memory);
kvn@500 824 }
kvn@500 825 if (!is_instance)
kvn@500 826 continue; // don't search further for non-instance types
kvn@500 827 // skip over a call which does not affect this memory slice
kvn@500 828 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 829 Node *proj_in = result->in(0);
kvn@688 830 if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
twisti@1040 831 break; // hit one of our sentinels
kvn@688 832 } else if (proj_in->is_Call()) {
kvn@500 833 CallNode *call = proj_in->as_Call();
kvn@500 834 if (!call->may_modify(tinst, phase)) {
kvn@500 835 result = call->in(TypeFunc::Memory);
kvn@500 836 }
kvn@500 837 } else if (proj_in->is_Initialize()) {
kvn@500 838 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 839 // Stop if this is the initialization for the object instance which
kvn@500 840 // which contains this memory slice, otherwise skip over it.
kvn@658 841 if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
kvn@500 842 result = proj_in->in(TypeFunc::Memory);
kvn@500 843 }
kvn@500 844 } else if (proj_in->is_MemBar()) {
kvn@500 845 result = proj_in->in(TypeFunc::Memory);
kvn@500 846 }
kvn@500 847 } else if (result->is_MergeMem()) {
kvn@500 848 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 849 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 850 if (result == mmem->base_memory()) {
kvn@500 851 // Didn't find instance memory, search through general slice recursively.
kvn@500 852 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 853 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 854 if (C->failing()) {
kvn@500 855 return NULL;
kvn@500 856 }
kvn@500 857 mmem->set_memory_at(alias_idx, result);
kvn@500 858 }
kvn@500 859 } else if (result->is_Phi() &&
kvn@500 860 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 861 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 862 if (un != NULL) {
kvn@1536 863 orig_phis.append_if_missing(result->as_Phi());
kvn@500 864 result = un;
kvn@500 865 } else {
kvn@500 866 break;
kvn@500 867 }
kvn@1535 868 } else if (result->is_ClearArray()) {
kvn@1535 869 if (!ClearArrayNode::step_through(&result, (uint)tinst->instance_id(), phase)) {
kvn@1535 870 // Can not bypass initialization of the instance
kvn@1535 871 // we are looking for.
kvn@1535 872 break;
kvn@1535 873 }
kvn@1535 874 // Otherwise skip it (the call updated 'result' value).
kvn@1019 875 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 876 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 877 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 878 if (at != Type::TOP) {
kvn@1019 879 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 880 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 881 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 882 break;
kvn@1019 883 }
kvn@1019 884 result = result->in(0)->in(MemNode::Memory);
kvn@500 885 }
kvn@500 886 }
kvn@682 887 if (result->is_Phi()) {
kvn@500 888 PhiNode *mphi = result->as_Phi();
kvn@500 889 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 890 const TypePtr *t = mphi->adr_type();
kvn@500 891 if (C->get_alias_index(t) != alias_idx) {
kvn@682 892 // Create a new Phi with the specified alias index type.
kvn@500 893 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@682 894 } else if (!is_instance) {
kvn@682 895 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 896 // during Phase 4 if needed.
kvn@682 897 orig_phis.append_if_missing(mphi);
kvn@500 898 }
kvn@500 899 }
kvn@500 900 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 901 return result;
kvn@500 902 }
kvn@500 903
duke@435 904 //
duke@435 905 // Convert the types of unescaped object to instance types where possible,
duke@435 906 // propagate the new type information through the graph, and update memory
duke@435 907 // edges and MergeMem inputs to reflect the new type.
duke@435 908 //
duke@435 909 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 910 // The processing is done in 4 phases:
duke@435 911 //
duke@435 912 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 913 // types for the CheckCastPP for allocations where possible.
duke@435 914 // Propagate the the new types through users as follows:
duke@435 915 // casts and Phi: push users on alloc_worklist
duke@435 916 // AddP: cast Base and Address inputs to the instance type
duke@435 917 // push any AddP users on alloc_worklist and push any memnode
duke@435 918 // users onto memnode_worklist.
duke@435 919 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 920 // search the Memory chain for a store with the appropriate type
duke@435 921 // address type. If a Phi is found, create a new version with
twisti@1040 922 // the appropriate memory slices from each of the Phi inputs.
duke@435 923 // For stores, process the users as follows:
duke@435 924 // MemNode: push on memnode_worklist
duke@435 925 // MergeMem: push on mergemem_worklist
duke@435 926 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 927 // moving the first node encountered of each instance type to the
duke@435 928 // the input corresponding to its alias index.
duke@435 929 // appropriate memory slice.
duke@435 930 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 931 //
duke@435 932 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 933 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 934 // instance type.
duke@435 935 //
duke@435 936 // We start with:
duke@435 937 //
duke@435 938 // 7 Parm #memory
duke@435 939 // 10 ConI "12"
duke@435 940 // 19 CheckCastPP "Foo"
duke@435 941 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 942 // 29 CheckCastPP "Foo"
duke@435 943 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 944 //
duke@435 945 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 946 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 947 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 948 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 949 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 950 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 951 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 952 //
duke@435 953 //
duke@435 954 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 955 // and creating a new alias index for node 30. This gives:
duke@435 956 //
duke@435 957 // 7 Parm #memory
duke@435 958 // 10 ConI "12"
duke@435 959 // 19 CheckCastPP "Foo"
duke@435 960 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 961 // 29 CheckCastPP "Foo" iid=24
duke@435 962 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 963 //
duke@435 964 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 965 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 966 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 967 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 968 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 969 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 970 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 971 //
duke@435 972 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 973 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 974 // node 80 are updated and then the memory nodes are updated with the
duke@435 975 // values computed in phase 2. This results in:
duke@435 976 //
duke@435 977 // 7 Parm #memory
duke@435 978 // 10 ConI "12"
duke@435 979 // 19 CheckCastPP "Foo"
duke@435 980 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 981 // 29 CheckCastPP "Foo" iid=24
duke@435 982 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 983 //
duke@435 984 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 985 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 986 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 987 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 988 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 989 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 990 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 991 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 992 //
duke@435 993 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 994 GrowableArray<Node *> memnode_worklist;
duke@435 995 GrowableArray<PhiNode *> orig_phis;
kvn@1536 996
kvn@1989 997 PhaseGVN *igvn = _igvn;
duke@435 998 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 999 Arena* arena = Thread::current()->resource_area();
kvn@1536 1000 VectorSet visited(arena);
kvn@1536 1001 VectorSet ptset(arena);
duke@435 1002
kvn@500 1003
kvn@500 1004 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1005 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1006 //
kvn@679 1007 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1008 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1009 // see the comment in find_second_addp().)
kvn@679 1010 //
duke@435 1011 while (alloc_worklist.length() != 0) {
duke@435 1012 Node *n = alloc_worklist.pop();
duke@435 1013 uint ni = n->_idx;
kvn@500 1014 const TypeOopPtr* tinst = NULL;
duke@435 1015 if (n->is_Call()) {
duke@435 1016 CallNode *alloc = n->as_Call();
duke@435 1017 // copy escape information to call node
kvn@679 1018 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@1989 1019 PointsToNode::EscapeState es = escape_state(alloc);
kvn@500 1020 // We have an allocation or call which returns a Java object,
kvn@500 1021 // see if it is unescaped.
kvn@500 1022 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 1023 continue;
kvn@1219 1024
kvn@1219 1025 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1026 n = alloc->result_cast();
kvn@1219 1027 if (n == NULL) { // No uses except Initialize node
kvn@1219 1028 if (alloc->is_Allocate()) {
kvn@1219 1029 // Set the scalar_replaceable flag for allocation
kvn@1219 1030 // so it could be eliminated if it has no uses.
kvn@1219 1031 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1032 }
kvn@1219 1033 continue;
kvn@474 1034 }
kvn@1219 1035 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1036 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1037 continue;
kvn@1219 1038 }
kvn@1219 1039
kvn@500 1040 // The inline code for Object.clone() casts the allocation result to
kvn@682 1041 // java.lang.Object and then to the actual type of the allocated
kvn@500 1042 // object. Detect this case and use the second cast.
kvn@682 1043 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1044 // the allocation result is cast to java.lang.Object and then
kvn@682 1045 // to the actual Array type.
kvn@500 1046 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1047 && (alloc->is_AllocateArray() ||
kvn@682 1048 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1049 Node *cast2 = NULL;
kvn@500 1050 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1051 Node *use = n->fast_out(i);
kvn@500 1052 if (use->is_CheckCastPP()) {
kvn@500 1053 cast2 = use;
kvn@500 1054 break;
kvn@500 1055 }
kvn@500 1056 }
kvn@500 1057 if (cast2 != NULL) {
kvn@500 1058 n = cast2;
kvn@500 1059 } else {
kvn@1219 1060 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1061 // (reflection allocation), the object can't be restored during
kvn@1219 1062 // deoptimization without precise type.
kvn@500 1063 continue;
kvn@500 1064 }
kvn@500 1065 }
kvn@1219 1066 if (alloc->is_Allocate()) {
kvn@1219 1067 // Set the scalar_replaceable flag for allocation
kvn@1219 1068 // so it could be eliminated.
kvn@1219 1069 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1070 }
kvn@500 1071 set_escape_state(n->_idx, es);
kvn@682 1072 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1073 // - a direct allocation (not a call returning an object)
kvn@500 1074 // - non-escaping
kvn@500 1075 // - eligible to be a unique type
kvn@500 1076 // - not determined to be ineligible by escape analysis
kvn@1536 1077 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1078 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1079 set_map(alloc->_idx, n);
duke@435 1080 set_map(n->_idx, alloc);
kvn@500 1081 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1082 if (t == NULL)
duke@435 1083 continue; // not a TypeInstPtr
kvn@682 1084 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1085 igvn->hash_delete(n);
duke@435 1086 igvn->set_type(n, tinst);
duke@435 1087 n->raise_bottom_type(tinst);
duke@435 1088 igvn->hash_insert(n);
kvn@500 1089 record_for_optimizer(n);
kvn@500 1090 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 1091 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1092
kvn@598 1093 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1094 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1095 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1096 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1097 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1098 "only AddP nodes are Field edges in CG");
kvn@598 1099 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1100 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1101 if (addp2 != NULL) {
kvn@598 1102 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1103 alloc_worklist.append_if_missing(addp2);
kvn@598 1104 }
kvn@598 1105 alloc_worklist.append_if_missing(use);
kvn@598 1106 }
kvn@598 1107 }
kvn@598 1108
kvn@500 1109 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1110 // the users of the raw allocation result and push AddP users
kvn@500 1111 // on alloc_worklist.
kvn@500 1112 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1113 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1114 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1115 Node *use = raw_result->fast_out(i);
kvn@500 1116 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1117 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1118 if (addp2 != NULL) {
kvn@500 1119 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1120 alloc_worklist.append_if_missing(addp2);
kvn@500 1121 }
kvn@500 1122 alloc_worklist.append_if_missing(use);
kvn@1535 1123 } else if (use->is_MemBar()) {
kvn@500 1124 memnode_worklist.append_if_missing(use);
kvn@500 1125 }
kvn@500 1126 }
kvn@500 1127 }
duke@435 1128 } else if (n->is_AddP()) {
duke@435 1129 ptset.Clear();
kvn@1989 1130 PointsTo(ptset, get_addp_base(n));
duke@435 1131 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 1132 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1133 if (elem == _phantom_object) {
kvn@1535 1134 assert(false, "escaped allocation");
kvn@500 1135 continue; // Assume the value was set outside this method.
kvn@1535 1136 }
kvn@500 1137 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1138 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1139 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1140 } else if (n->is_Phi() ||
kvn@500 1141 n->is_CheckCastPP() ||
kvn@603 1142 n->is_EncodeP() ||
kvn@603 1143 n->is_DecodeN() ||
kvn@500 1144 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1145 if (visited.test_set(n->_idx)) {
duke@435 1146 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1147 continue; // already processed
duke@435 1148 }
duke@435 1149 ptset.Clear();
kvn@1989 1150 PointsTo(ptset, n);
duke@435 1151 if (ptset.Size() == 1) {
kvn@500 1152 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1153 if (elem == _phantom_object) {
kvn@1535 1154 assert(false, "escaped allocation");
kvn@500 1155 continue; // Assume the value was set outside this method.
kvn@1535 1156 }
kvn@500 1157 Node *val = get_map(elem); // CheckCastPP node
duke@435 1158 TypeNode *tn = n->as_Type();
kvn@500 1159 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1160 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1161 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1162
kvn@598 1163 const Type *tn_type = igvn->type(tn);
kvn@658 1164 const TypeOopPtr *tn_t;
kvn@658 1165 if (tn_type->isa_narrowoop()) {
kvn@658 1166 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1167 } else {
kvn@658 1168 tn_t = tn_type->isa_oopptr();
kvn@658 1169 }
duke@435 1170
kvn@1535 1171 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1172 if (tn_type->isa_narrowoop()) {
kvn@598 1173 tn_type = tinst->make_narrowoop();
kvn@598 1174 } else {
kvn@598 1175 tn_type = tinst;
kvn@598 1176 }
duke@435 1177 igvn->hash_delete(tn);
kvn@598 1178 igvn->set_type(tn, tn_type);
kvn@598 1179 tn->set_type(tn_type);
duke@435 1180 igvn->hash_insert(tn);
kvn@500 1181 record_for_optimizer(n);
kvn@728 1182 } else {
kvn@1535 1183 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1184 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1185 "unexpected type");
kvn@1535 1186 continue; // Skip dead path with different type
duke@435 1187 }
duke@435 1188 }
duke@435 1189 } else {
kvn@1535 1190 debug_only(n->dump();)
kvn@1535 1191 assert(false, "EA: unexpected node");
duke@435 1192 continue;
duke@435 1193 }
kvn@1535 1194 // push allocation's users on appropriate worklist
duke@435 1195 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1196 Node *use = n->fast_out(i);
duke@435 1197 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1198 // Load/store to instance's field
kvn@500 1199 memnode_worklist.append_if_missing(use);
kvn@1535 1200 } else if (use->is_MemBar()) {
kvn@500 1201 memnode_worklist.append_if_missing(use);
kvn@500 1202 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1203 Node* addp2 = find_second_addp(use, n);
kvn@500 1204 if (addp2 != NULL) {
kvn@500 1205 alloc_worklist.append_if_missing(addp2);
kvn@500 1206 }
kvn@500 1207 alloc_worklist.append_if_missing(use);
kvn@500 1208 } else if (use->is_Phi() ||
kvn@500 1209 use->is_CheckCastPP() ||
kvn@603 1210 use->is_EncodeP() ||
kvn@603 1211 use->is_DecodeN() ||
kvn@500 1212 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1213 alloc_worklist.append_if_missing(use);
kvn@1535 1214 #ifdef ASSERT
kvn@1535 1215 } else if (use->is_Mem()) {
kvn@1535 1216 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1217 } else if (use->is_MergeMem()) {
kvn@1535 1218 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1219 } else if (use->is_SafePoint()) {
kvn@1535 1220 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1221 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1222 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1223 if (m->is_MergeMem()) {
kvn@1535 1224 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1225 }
kvn@1535 1226 } else {
kvn@1535 1227 uint op = use->Opcode();
kvn@1535 1228 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1229 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1230 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1231 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1232 n->dump();
kvn@1535 1233 use->dump();
kvn@1535 1234 assert(false, "EA: missing allocation reference path");
kvn@1535 1235 }
kvn@1535 1236 #endif
duke@435 1237 }
duke@435 1238 }
duke@435 1239
duke@435 1240 }
kvn@500 1241 // New alias types were created in split_AddP().
duke@435 1242 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1243
duke@435 1244 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1245 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1246 // actually updated until phase 4.)
duke@435 1247 if (memnode_worklist.length() == 0)
duke@435 1248 return; // nothing to do
duke@435 1249
duke@435 1250 while (memnode_worklist.length() != 0) {
duke@435 1251 Node *n = memnode_worklist.pop();
kvn@500 1252 if (visited.test_set(n->_idx))
kvn@500 1253 continue;
kvn@1535 1254 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1255 // we don't need to do anything, but the users must be pushed
kvn@1535 1256 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1257 // we don't need to do anything, but the users must be pushed
kvn@1535 1258 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1259 if (n == NULL)
duke@435 1260 continue;
duke@435 1261 } else {
duke@435 1262 assert(n->is_Mem(), "memory node required.");
duke@435 1263 Node *addr = n->in(MemNode::Address);
duke@435 1264 const Type *addr_t = igvn->type(addr);
duke@435 1265 if (addr_t == Type::TOP)
duke@435 1266 continue;
duke@435 1267 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1268 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1269 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1270 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1271 if (_compile->failing()) {
kvn@473 1272 return;
kvn@473 1273 }
kvn@500 1274 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1275 // We delay the memory edge update since we need old one in
kvn@1536 1276 // MergeMem code below when instances memory slices are separated.
kvn@1536 1277 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1278 assert(pn == NULL || pn == n, "wrong node");
duke@435 1279 set_map(n->_idx, mem);
kvn@679 1280 ptnode_adr(n->_idx)->_node = n;
kvn@500 1281 }
duke@435 1282 if (n->is_Load()) {
duke@435 1283 continue; // don't push users
duke@435 1284 } else if (n->is_LoadStore()) {
duke@435 1285 // get the memory projection
duke@435 1286 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1287 Node *use = n->fast_out(i);
duke@435 1288 if (use->Opcode() == Op_SCMemProj) {
duke@435 1289 n = use;
duke@435 1290 break;
duke@435 1291 }
duke@435 1292 }
duke@435 1293 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1294 }
duke@435 1295 }
duke@435 1296 // push user on appropriate worklist
duke@435 1297 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1298 Node *use = n->fast_out(i);
kvn@1535 1299 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1300 memnode_worklist.append_if_missing(use);
duke@435 1301 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1302 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1303 continue;
kvn@500 1304 memnode_worklist.append_if_missing(use);
kvn@1535 1305 } else if (use->is_MemBar()) {
kvn@500 1306 memnode_worklist.append_if_missing(use);
kvn@1535 1307 #ifdef ASSERT
kvn@1535 1308 } else if(use->is_Mem()) {
kvn@1535 1309 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1310 } else if (use->is_MergeMem()) {
kvn@1535 1311 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1312 } else {
kvn@1535 1313 uint op = use->Opcode();
kvn@1535 1314 if (!(op == Op_StoreCM ||
kvn@1535 1315 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1316 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1317 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1318 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1319 n->dump();
kvn@1535 1320 use->dump();
kvn@1535 1321 assert(false, "EA: missing memory path");
kvn@1535 1322 }
kvn@1535 1323 #endif
duke@435 1324 }
duke@435 1325 }
duke@435 1326 }
duke@435 1327
kvn@500 1328 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1329 // Walk each memory slice moving the first node encountered of each
kvn@500 1330 // instance type to the the input corresponding to its alias index.
kvn@1535 1331 uint length = _mergemem_worklist.length();
kvn@1535 1332 for( uint next = 0; next < length; ++next ) {
kvn@1535 1333 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1334 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1335 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1336 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1337 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1338 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1339 igvn->hash_delete(nmm);
duke@435 1340 uint nslices = nmm->req();
duke@435 1341 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1342 Node* mem = nmm->in(i);
kvn@500 1343 Node* cur = NULL;
duke@435 1344 if (mem == NULL || mem->is_top())
duke@435 1345 continue;
kvn@1536 1346 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1347 // if their type became more precise since this mergemem was created.
duke@435 1348 while (mem->is_Mem()) {
duke@435 1349 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1350 if (at != Type::TOP) {
duke@435 1351 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1352 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1353 if (idx == i) {
duke@435 1354 if (cur == NULL)
duke@435 1355 cur = mem;
duke@435 1356 } else {
duke@435 1357 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1358 nmm->set_memory_at(idx, mem);
duke@435 1359 }
duke@435 1360 }
duke@435 1361 }
duke@435 1362 mem = mem->in(MemNode::Memory);
duke@435 1363 }
duke@435 1364 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1365 // Find any instance of the current type if we haven't encountered
kvn@1536 1366 // already a memory slice of the instance along the memory chain.
kvn@500 1367 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1368 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1369 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1370 if (nmm->is_empty_memory(m)) {
kvn@500 1371 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1372 if (_compile->failing()) {
kvn@500 1373 return;
kvn@500 1374 }
kvn@500 1375 nmm->set_memory_at(ni, result);
kvn@500 1376 }
kvn@500 1377 }
kvn@500 1378 }
kvn@500 1379 }
kvn@500 1380 // Find the rest of instances values
kvn@500 1381 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1382 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1383 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1384 if (result == nmm->base_memory()) {
kvn@500 1385 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1386 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1387 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1388 if (_compile->failing()) {
kvn@500 1389 return;
kvn@500 1390 }
kvn@500 1391 nmm->set_memory_at(ni, result);
kvn@500 1392 }
kvn@500 1393 }
kvn@500 1394 igvn->hash_insert(nmm);
kvn@500 1395 record_for_optimizer(nmm);
duke@435 1396 }
duke@435 1397
kvn@500 1398 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1399 // the Memory input of memnodes
duke@435 1400 // First update the inputs of any non-instance Phi's from
duke@435 1401 // which we split out an instance Phi. Note we don't have
duke@435 1402 // to recursively process Phi's encounted on the input memory
duke@435 1403 // chains as is done in split_memory_phi() since they will
duke@435 1404 // also be processed here.
kvn@682 1405 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1406 PhiNode *phi = orig_phis.at(j);
duke@435 1407 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1408 igvn->hash_delete(phi);
duke@435 1409 for (uint i = 1; i < phi->req(); i++) {
duke@435 1410 Node *mem = phi->in(i);
kvn@500 1411 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1412 if (_compile->failing()) {
kvn@500 1413 return;
kvn@500 1414 }
duke@435 1415 if (mem != new_mem) {
duke@435 1416 phi->set_req(i, new_mem);
duke@435 1417 }
duke@435 1418 }
duke@435 1419 igvn->hash_insert(phi);
duke@435 1420 record_for_optimizer(phi);
duke@435 1421 }
duke@435 1422
duke@435 1423 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1424 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@1536 1425 #ifdef ASSERT
kvn@1536 1426 visited.Clear();
kvn@1536 1427 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1428 #endif
kvn@679 1429 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1430 Node *nmem = get_map(i);
duke@435 1431 if (nmem != NULL) {
kvn@679 1432 Node *n = ptnode_adr(i)->_node;
kvn@1536 1433 assert(n != NULL, "sanity");
kvn@1536 1434 if (n->is_Mem()) {
kvn@1536 1435 #ifdef ASSERT
kvn@1536 1436 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1437 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1438 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1439 }
kvn@1536 1440 #endif
kvn@1536 1441 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1442 if (!n->is_Load()) {
kvn@1536 1443 // Move memory users of a store first.
kvn@1536 1444 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1445 }
kvn@1536 1446 // Now update memory input
duke@435 1447 igvn->hash_delete(n);
duke@435 1448 n->set_req(MemNode::Memory, nmem);
duke@435 1449 igvn->hash_insert(n);
duke@435 1450 record_for_optimizer(n);
kvn@1536 1451 } else {
kvn@1536 1452 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1453 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1454 }
duke@435 1455 }
duke@435 1456 }
kvn@1536 1457 #ifdef ASSERT
kvn@1536 1458 // Verify that memory was split correctly
kvn@1536 1459 while (old_mems.is_nonempty()) {
kvn@1536 1460 Node* old_mem = old_mems.node();
kvn@1536 1461 uint old_cnt = old_mems.index();
kvn@1536 1462 old_mems.pop();
kvn@1536 1463 assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
kvn@1536 1464 }
kvn@1536 1465 #endif
duke@435 1466 }
duke@435 1467
kvn@679 1468 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1469 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1470 // are represented by ideal Macro nodes.
kvn@679 1471 int cnt = C->macro_count();
kvn@679 1472 for( int i=0; i < cnt; i++ ) {
kvn@679 1473 Node *n = C->macro_node(i);
kvn@679 1474 if ( n->is_Allocate() )
kvn@679 1475 return true;
kvn@679 1476 if( n->is_Lock() ) {
kvn@679 1477 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1478 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1479 return true;
kvn@679 1480 }
kvn@679 1481 }
kvn@679 1482 return false;
kvn@679 1483 }
kvn@679 1484
kvn@1989 1485 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@1989 1486 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@1989 1487 // to create space for them in ConnectionGraph::_nodes[].
kvn@1989 1488 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@1989 1489 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@1989 1490
kvn@1989 1491 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@1989 1492 // Perform escape analysis
kvn@1989 1493 if (congraph->compute_escape()) {
kvn@1989 1494 // There are non escaping objects.
kvn@1989 1495 C->set_congraph(congraph);
kvn@1989 1496 }
kvn@1989 1497
kvn@1989 1498 // Cleanup.
kvn@1989 1499 if (oop_null->outcnt() == 0)
kvn@1989 1500 igvn->hash_delete(oop_null);
kvn@1989 1501 if (noop_null->outcnt() == 0)
kvn@1989 1502 igvn->hash_delete(noop_null);
kvn@1989 1503 }
kvn@1989 1504
kvn@679 1505 bool ConnectionGraph::compute_escape() {
kvn@679 1506 Compile* C = _compile;
duke@435 1507
kvn@598 1508 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1509
kvn@500 1510 Unique_Node_List worklist_init;
kvn@679 1511 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1512
kvn@500 1513 // Initialize worklist
kvn@679 1514 if (C->root() != NULL) {
kvn@679 1515 worklist_init.push(C->root());
kvn@500 1516 }
kvn@500 1517
kvn@500 1518 GrowableArray<int> cg_worklist;
kvn@1989 1519 PhaseGVN* igvn = _igvn;
kvn@500 1520 bool has_allocations = false;
kvn@500 1521
kvn@500 1522 // Push all useful nodes onto CG list and set their type.
kvn@500 1523 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1524 Node* n = worklist_init.at(next);
kvn@500 1525 record_for_escape_analysis(n, igvn);
kvn@679 1526 // Only allocations and java static calls results are checked
kvn@679 1527 // for an escape status. See process_call_result() below.
kvn@679 1528 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1529 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1530 has_allocations = true;
kvn@500 1531 }
kvn@1535 1532 if(n->is_AddP()) {
kvn@1535 1533 // Collect address nodes which directly reference an allocation.
kvn@1535 1534 // Use them during stage 3 below to build initial connection graph
kvn@1535 1535 // field edges. Other field edges could be added after StoreP/LoadP
kvn@1535 1536 // nodes are processed during stage 4 below.
kvn@1535 1537 Node* base = get_addp_base(n);
kvn@1535 1538 if(base->is_Proj() && base->in(0)->is_Allocate()) {
kvn@1535 1539 cg_worklist.append(n->_idx);
kvn@1535 1540 }
kvn@1535 1541 } else if (n->is_MergeMem()) {
kvn@1535 1542 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1543 // scalar replaceable objects in split_unique_types().
kvn@1535 1544 _mergemem_worklist.append(n->as_MergeMem());
kvn@1535 1545 }
kvn@500 1546 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1547 Node* m = n->fast_out(i); // Get user
kvn@500 1548 worklist_init.push(m);
kvn@500 1549 }
kvn@500 1550 }
kvn@500 1551
kvn@679 1552 if (!has_allocations) {
kvn@500 1553 _collecting = false;
kvn@679 1554 return false; // Nothing to do.
kvn@500 1555 }
kvn@500 1556
kvn@500 1557 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1558 uint delayed_size = _delayed_worklist.size();
kvn@679 1559 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1560 Node* n = _delayed_worklist.at(next);
kvn@500 1561 build_connection_graph(n, igvn);
kvn@500 1562 }
kvn@500 1563
kvn@500 1564 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@679 1565 uint cg_length = cg_worklist.length();
kvn@679 1566 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1567 int ni = cg_worklist.at(next);
kvn@679 1568 build_connection_graph(ptnode_adr(ni)->_node, igvn);
kvn@500 1569 }
kvn@500 1570
kvn@500 1571 cg_worklist.clear();
kvn@500 1572 cg_worklist.append(_phantom_object);
kvn@500 1573
kvn@500 1574 // 4. Build Connection Graph which need
kvn@500 1575 // to walk the connection graph.
kvn@679 1576 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1577 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1578 Node *n = ptn->_node;
kvn@500 1579 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1580 build_connection_graph(n, igvn);
kvn@500 1581 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1582 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1583 }
duke@435 1584 }
duke@435 1585
kvn@1535 1586 Arena* arena = Thread::current()->resource_area();
kvn@1535 1587 VectorSet ptset(arena);
kvn@536 1588 GrowableArray<uint> deferred_edges;
kvn@1535 1589 VectorSet visited(arena);
duke@435 1590
kvn@1535 1591 // 5. Remove deferred edges from the graph and adjust
kvn@1535 1592 // escape state of nonescaping objects.
kvn@679 1593 cg_length = cg_worklist.length();
kvn@679 1594 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1595 int ni = cg_worklist.at(next);
kvn@679 1596 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1597 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1598 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1599 remove_deferred(ni, &deferred_edges, &visited);
kvn@679 1600 Node *n = ptn->_node;
duke@435 1601 if (n->is_AddP()) {
kvn@1535 1602 // Search for objects which are not scalar replaceable
kvn@1535 1603 // and adjust their escape state.
kvn@1535 1604 verify_escape_state(ni, ptset, igvn);
duke@435 1605 }
duke@435 1606 }
duke@435 1607 }
kvn@500 1608
kvn@679 1609 // 6. Propagate escape states.
kvn@679 1610 GrowableArray<int> worklist;
kvn@679 1611 bool has_non_escaping_obj = false;
kvn@679 1612
duke@435 1613 // push all GlobalEscape nodes on the worklist
kvn@679 1614 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1615 int nk = cg_worklist.at(next);
kvn@679 1616 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1617 worklist.push(nk);
duke@435 1618 }
kvn@679 1619 // mark all nodes reachable from GlobalEscape nodes
duke@435 1620 while(worklist.length() > 0) {
kvn@679 1621 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1622 uint e_cnt = ptn->edge_count();
kvn@679 1623 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1624 uint npi = ptn->edge_target(ei);
duke@435 1625 PointsToNode *np = ptnode_adr(npi);
kvn@500 1626 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1627 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1628 worklist.push(npi);
duke@435 1629 }
duke@435 1630 }
duke@435 1631 }
duke@435 1632
duke@435 1633 // push all ArgEscape nodes on the worklist
kvn@679 1634 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1635 int nk = cg_worklist.at(next);
kvn@679 1636 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1637 worklist.push(nk);
duke@435 1638 }
kvn@679 1639 // mark all nodes reachable from ArgEscape nodes
duke@435 1640 while(worklist.length() > 0) {
kvn@679 1641 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1642 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1643 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1644 uint e_cnt = ptn->edge_count();
kvn@679 1645 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1646 uint npi = ptn->edge_target(ei);
duke@435 1647 PointsToNode *np = ptnode_adr(npi);
kvn@500 1648 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1649 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1650 worklist.push(npi);
duke@435 1651 }
duke@435 1652 }
duke@435 1653 }
kvn@500 1654
kvn@679 1655 GrowableArray<Node*> alloc_worklist;
kvn@679 1656
kvn@500 1657 // push all NoEscape nodes on the worklist
kvn@679 1658 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1659 int nk = cg_worklist.at(next);
kvn@679 1660 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1661 worklist.push(nk);
kvn@500 1662 }
kvn@679 1663 // mark all nodes reachable from NoEscape nodes
kvn@500 1664 while(worklist.length() > 0) {
kvn@679 1665 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1666 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1667 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1668 Node* n = ptn->_node;
kvn@679 1669 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1670 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1671 // for processing in split_unique_types().
kvn@679 1672 alloc_worklist.append(n);
kvn@679 1673 }
kvn@679 1674 uint e_cnt = ptn->edge_count();
kvn@679 1675 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1676 uint npi = ptn->edge_target(ei);
kvn@500 1677 PointsToNode *np = ptnode_adr(npi);
kvn@500 1678 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1679 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1680 worklist.push(npi);
kvn@500 1681 }
kvn@500 1682 }
kvn@500 1683 }
kvn@500 1684
duke@435 1685 _collecting = false;
kvn@679 1686 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1687
kvn@1989 1688 #ifndef PRODUCT
kvn@1989 1689 if (PrintEscapeAnalysis) {
kvn@1989 1690 dump(); // Dump ConnectionGraph
kvn@1989 1691 }
kvn@1989 1692 #endif
kvn@1989 1693
kvn@679 1694 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1695 if ( has_scalar_replaceable_candidates &&
kvn@679 1696 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1697
kvn@679 1698 // Now use the escape information to create unique types for
kvn@679 1699 // scalar replaceable objects.
kvn@679 1700 split_unique_types(alloc_worklist);
duke@435 1701
kvn@679 1702 if (C->failing()) return false;
duke@435 1703
kvn@679 1704 C->print_method("After Escape Analysis", 2);
duke@435 1705
kvn@500 1706 #ifdef ASSERT
kvn@679 1707 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1708 tty->print("=== No allocations eliminated for ");
kvn@679 1709 C->method()->print_short_name();
kvn@500 1710 if(!EliminateAllocations) {
kvn@500 1711 tty->print(" since EliminateAllocations is off ===");
kvn@679 1712 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1713 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1714 } else if(C->AliasLevel() < 3) {
kvn@500 1715 tty->print(" since AliasLevel < 3 ===");
duke@435 1716 }
kvn@500 1717 tty->cr();
kvn@500 1718 #endif
duke@435 1719 }
kvn@679 1720 return has_non_escaping_obj;
duke@435 1721 }
duke@435 1722
kvn@1535 1723 // Search for objects which are not scalar replaceable.
kvn@1535 1724 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
kvn@1535 1725 PointsToNode* ptn = ptnode_adr(nidx);
kvn@1535 1726 Node* n = ptn->_node;
kvn@1535 1727 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@1535 1728 // Search for objects which are not scalar replaceable.
kvn@1535 1729 // Mark their escape state as ArgEscape to propagate the state
kvn@1535 1730 // to referenced objects.
kvn@1535 1731 // Note: currently there are no difference in compiler optimizations
kvn@1535 1732 // for ArgEscape objects and NoEscape objects which are not
kvn@1535 1733 // scalar replaceable.
kvn@1535 1734
kvn@1535 1735 Compile* C = _compile;
kvn@1535 1736
kvn@1535 1737 int offset = ptn->offset();
kvn@1535 1738 Node* base = get_addp_base(n);
kvn@1535 1739 ptset.Clear();
kvn@1989 1740 PointsTo(ptset, base);
kvn@1535 1741 int ptset_size = ptset.Size();
kvn@1535 1742
kvn@1535 1743 // Check if a oop field's initializing value is recorded and add
kvn@1535 1744 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1745 // Connection Graph does not record a default initialization by NULL
kvn@1535 1746 // captured by Initialize node.
kvn@1535 1747 //
kvn@1535 1748 // Note: it will disable scalar replacement in some cases:
kvn@1535 1749 //
kvn@1535 1750 // Point p[] = new Point[1];
kvn@1535 1751 // p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1752 //
kvn@1535 1753 // but it will save us from incorrect optimizations in next cases:
kvn@1535 1754 //
kvn@1535 1755 // Point p[] = new Point[1];
kvn@1535 1756 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1757 //
kvn@1535 1758 // Do a simple control flow analysis to distinguish above cases.
kvn@1535 1759 //
kvn@1535 1760 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@1535 1761 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1762 // It does not matter if it is not Allocation node since
kvn@1535 1763 // only non-escaping allocations are scalar replaced.
kvn@1535 1764 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@1535 1765 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@1535 1766 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@1535 1767 InitializeNode* ini = alloc->initialization();
kvn@1535 1768
kvn@1535 1769 // Check only oop fields.
kvn@1535 1770 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@1535 1771 BasicType basic_field_type = T_INT;
kvn@1535 1772 if (adr_type->isa_instptr()) {
kvn@1535 1773 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1774 if (field != NULL) {
kvn@1535 1775 basic_field_type = field->layout_type();
kvn@1535 1776 } else {
kvn@1535 1777 // Ignore non field load (for example, klass load)
kvn@1535 1778 }
kvn@1535 1779 } else if (adr_type->isa_aryptr()) {
kvn@1535 1780 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@1535 1781 basic_field_type = elemtype->array_element_basic_type();
kvn@1535 1782 } else {
kvn@1535 1783 // Raw pointers are used for initializing stores so skip it.
kvn@1535 1784 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1785 (base->in(0) == alloc),"unexpected pointer type");
kvn@1535 1786 }
kvn@1535 1787 if (basic_field_type == T_OBJECT ||
kvn@1535 1788 basic_field_type == T_NARROWOOP ||
kvn@1535 1789 basic_field_type == T_ARRAY) {
kvn@1535 1790 Node* value = NULL;
kvn@1535 1791 if (ini != NULL) {
kvn@1535 1792 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1793 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1794 if (store != NULL && store->is_Store()) {
kvn@1535 1795 value = store->in(MemNode::ValueIn);
kvn@1535 1796 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1797 // Check for a store which follows allocation without branches.
kvn@1535 1798 // For example, a volatile field store is not collected
kvn@1535 1799 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@1535 1800 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1801 store = n->fast_out(i);
kvn@1535 1802 if (store->is_Store() && store->in(0) != NULL) {
kvn@1535 1803 Node* ctrl = store->in(0);
kvn@1535 1804 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@1535 1805 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@1535 1806 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@1535 1807 ctrl = ctrl->in(0);
kvn@1535 1808 }
kvn@1535 1809 if (ctrl == ini || ctrl == alloc) {
kvn@1535 1810 value = store->in(MemNode::ValueIn);
kvn@1535 1811 break;
kvn@1535 1812 }
kvn@1535 1813 }
kvn@1535 1814 }
kvn@1535 1815 }
kvn@1535 1816 }
kvn@1535 1817 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1818 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1819 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@1535 1820 add_pointsto_edge(nidx, null_idx);
kvn@1535 1821 }
kvn@1535 1822 }
kvn@1535 1823 }
kvn@1535 1824 }
kvn@1535 1825
kvn@1535 1826 // An object is not scalar replaceable if the field which may point
kvn@1535 1827 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1828 //
kvn@1535 1829 if (offset == Type::OffsetBot) {
kvn@1535 1830 uint e_cnt = ptn->edge_count();
kvn@1535 1831 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1832 uint npi = ptn->edge_target(ei);
kvn@1535 1833 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@1535 1834 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@1535 1835 }
kvn@1535 1836 }
kvn@1535 1837
kvn@1535 1838 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1839 // access its field since the field value is unknown after it.
kvn@1535 1840 //
kvn@1535 1841 bool has_LoadStore = false;
kvn@1535 1842 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1843 Node *use = n->fast_out(i);
kvn@1535 1844 if (use->is_LoadStore()) {
kvn@1535 1845 has_LoadStore = true;
kvn@1535 1846 break;
kvn@1535 1847 }
kvn@1535 1848 }
kvn@1535 1849 // An object is not scalar replaceable if the address points
kvn@1535 1850 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 1851 //
kvn@1535 1852 // Or the address may point to more then one object. This may produce
kvn@1535 1853 // the false positive result (set scalar_replaceable to false)
kvn@1535 1854 // since the flow-insensitive escape analysis can't separate
kvn@1535 1855 // the case when stores overwrite the field's value from the case
kvn@1535 1856 // when stores happened on different control branches.
kvn@1535 1857 //
kvn@1535 1858 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 1859 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@1535 1860 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@1535 1861 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@1535 1862 ptnode_adr(j.elem)->_scalar_replaceable = false;
kvn@1535 1863 }
kvn@1535 1864 }
kvn@1535 1865 }
kvn@1535 1866
duke@435 1867 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1868
duke@435 1869 switch (call->Opcode()) {
kvn@500 1870 #ifdef ASSERT
duke@435 1871 case Op_Allocate:
duke@435 1872 case Op_AllocateArray:
duke@435 1873 case Op_Lock:
duke@435 1874 case Op_Unlock:
kvn@500 1875 assert(false, "should be done already");
duke@435 1876 break;
kvn@500 1877 #endif
kvn@1535 1878 case Op_CallLeaf:
kvn@500 1879 case Op_CallLeafNoFP:
kvn@500 1880 {
kvn@500 1881 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1882 // Adjust escape state for outgoing arguments.
kvn@500 1883 const TypeTuple * d = call->tf()->domain();
kvn@500 1884 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1885 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1886 const Type* at = d->field_at(i);
kvn@500 1887 Node *arg = call->in(i)->uncast();
kvn@500 1888 const Type *aat = phase->type(arg);
kvn@1535 1889 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 1890 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 1891
kvn@500 1892 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1893 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 1894 #ifdef ASSERT
kvn@1535 1895 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 1896 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1897 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 1898 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1899 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 1900 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 1901 ) {
kvn@1535 1902 call->dump();
kvn@1535 1903 assert(false, "EA: unexpected CallLeaf");
kvn@1535 1904 }
kvn@1535 1905 #endif
kvn@500 1906 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1907 if (arg->is_AddP()) {
kvn@500 1908 //
kvn@500 1909 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1910 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1911 //
kvn@500 1912 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1913 // pointer to the base (with offset) is passed as argument.
kvn@500 1914 //
kvn@500 1915 arg = get_addp_base(arg);
kvn@500 1916 }
kvn@500 1917 ptset.Clear();
kvn@1989 1918 PointsTo(ptset, arg);
kvn@500 1919 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1920 uint pt = j.elem;
kvn@500 1921 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1922 }
kvn@500 1923 }
kvn@500 1924 }
kvn@500 1925 break;
kvn@500 1926 }
duke@435 1927
duke@435 1928 case Op_CallStaticJava:
duke@435 1929 // For a static call, we know exactly what method is being called.
duke@435 1930 // Use bytecode estimator to record the call's escape affects
duke@435 1931 {
duke@435 1932 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1933 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1934 // fall-through if not a Java method or no analyzer information
kvn@500 1935 if (call_analyzer != NULL) {
duke@435 1936 const TypeTuple * d = call->tf()->domain();
duke@435 1937 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1938 bool copy_dependencies = false;
duke@435 1939 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1940 const Type* at = d->field_at(i);
duke@435 1941 int k = i - TypeFunc::Parms;
kvn@1535 1942 Node *arg = call->in(i)->uncast();
duke@435 1943
kvn@1535 1944 if (at->isa_oopptr() != NULL &&
kvn@1571 1945 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1946
kvn@500 1947 bool global_escapes = false;
kvn@500 1948 bool fields_escapes = false;
kvn@500 1949 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1950 // The argument global escapes, mark everything it could point to
kvn@500 1951 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1952 global_escapes = true;
kvn@500 1953 } else {
kvn@500 1954 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1955 // The argument itself doesn't escape, but any fields might
kvn@500 1956 fields_escapes = true;
kvn@500 1957 }
kvn@500 1958 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1959 copy_dependencies = true;
kvn@500 1960 }
duke@435 1961
kvn@500 1962 ptset.Clear();
kvn@1989 1963 PointsTo(ptset, arg);
kvn@500 1964 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1965 uint pt = j.elem;
kvn@500 1966 if (global_escapes) {
kvn@500 1967 //The argument global escapes, mark everything it could point to
duke@435 1968 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1969 } else {
kvn@500 1970 if (fields_escapes) {
kvn@500 1971 // The argument itself doesn't escape, but any fields might
kvn@500 1972 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1973 }
kvn@500 1974 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1975 }
duke@435 1976 }
duke@435 1977 }
duke@435 1978 }
kvn@500 1979 if (copy_dependencies)
kvn@679 1980 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1981 break;
duke@435 1982 }
duke@435 1983 }
duke@435 1984
duke@435 1985 default:
kvn@500 1986 // Fall-through here if not a Java method or no analyzer information
kvn@500 1987 // or some other type of call, assume the worst case: all arguments
duke@435 1988 // globally escape.
duke@435 1989 {
duke@435 1990 // adjust escape state for outgoing arguments
duke@435 1991 const TypeTuple * d = call->tf()->domain();
duke@435 1992 VectorSet ptset(Thread::current()->resource_area());
duke@435 1993 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1994 const Type* at = d->field_at(i);
duke@435 1995 if (at->isa_oopptr() != NULL) {
kvn@500 1996 Node *arg = call->in(i)->uncast();
kvn@500 1997 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1998 ptset.Clear();
kvn@1989 1999 PointsTo(ptset, arg);
duke@435 2000 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 2001 uint pt = j.elem;
duke@435 2002 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 2003 }
duke@435 2004 }
duke@435 2005 }
duke@435 2006 }
duke@435 2007 }
duke@435 2008 }
duke@435 2009 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 2010 CallNode *call = resproj->in(0)->as_Call();
kvn@679 2011 uint call_idx = call->_idx;
kvn@679 2012 uint resproj_idx = resproj->_idx;
duke@435 2013
duke@435 2014 switch (call->Opcode()) {
duke@435 2015 case Op_Allocate:
duke@435 2016 {
duke@435 2017 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2018 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
duke@435 2019 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2020 ciKlass* cik = kt->klass();
duke@435 2021
kvn@500 2022 PointsToNode::EscapeState es;
kvn@500 2023 uint edge_to;
kvn@1894 2024 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@1894 2025 !cik->is_instance_klass() || // StressReflectiveCode
kvn@1894 2026 cik->as_instance_klass()->has_finalizer()) {
kvn@500 2027 es = PointsToNode::GlobalEscape;
kvn@500 2028 edge_to = _phantom_object; // Could not be worse
duke@435 2029 } else {
kvn@500 2030 es = PointsToNode::NoEscape;
kvn@679 2031 edge_to = call_idx;
duke@435 2032 }
kvn@679 2033 set_escape_state(call_idx, es);
kvn@679 2034 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2035 _processed.set(resproj_idx);
duke@435 2036 break;
duke@435 2037 }
duke@435 2038
duke@435 2039 case Op_AllocateArray:
duke@435 2040 {
kvn@1894 2041
kvn@1894 2042 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2043 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
kvn@1894 2044 assert(kt != NULL, "TypeKlassPtr required.");
kvn@1894 2045 ciKlass* cik = kt->klass();
kvn@1894 2046
kvn@1894 2047 PointsToNode::EscapeState es;
kvn@1894 2048 uint edge_to;
kvn@1894 2049 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@1894 2050 es = PointsToNode::GlobalEscape;
kvn@1894 2051 edge_to = _phantom_object;
kvn@1894 2052 } else {
kvn@1894 2053 es = PointsToNode::NoEscape;
kvn@1894 2054 edge_to = call_idx;
kvn@1894 2055 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@1894 2056 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@1894 2057 // Not scalar replaceable if the length is not constant or too big.
kvn@1894 2058 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@1894 2059 }
kvn@500 2060 }
kvn@1894 2061 set_escape_state(call_idx, es);
kvn@1894 2062 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2063 _processed.set(resproj_idx);
duke@435 2064 break;
duke@435 2065 }
duke@435 2066
duke@435 2067 case Op_CallStaticJava:
duke@435 2068 // For a static call, we know exactly what method is being called.
duke@435 2069 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2070 {
kvn@500 2071 bool done = true;
duke@435 2072 const TypeTuple *r = call->tf()->range();
duke@435 2073 const Type* ret_type = NULL;
duke@435 2074
duke@435 2075 if (r->cnt() > TypeFunc::Parms)
duke@435 2076 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2077
duke@435 2078 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2079 // _multianewarray functions return a TypeRawPtr.
kvn@500 2080 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2081 _processed.set(resproj_idx);
duke@435 2082 break; // doesn't return a pointer type
kvn@500 2083 }
duke@435 2084 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2085 const TypeTuple * d = call->tf()->domain();
duke@435 2086 if (meth == NULL) {
duke@435 2087 // not a Java method, assume global escape
kvn@679 2088 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2089 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2090 } else {
kvn@500 2091 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2092 bool copy_dependencies = false;
duke@435 2093
kvn@500 2094 if (call_analyzer->is_return_allocated()) {
kvn@500 2095 // Returns a newly allocated unescaped object, simply
kvn@500 2096 // update dependency information.
kvn@500 2097 // Mark it as NoEscape so that objects referenced by
kvn@500 2098 // it's fields will be marked as NoEscape at least.
kvn@679 2099 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 2100 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2101 copy_dependencies = true;
kvn@679 2102 } else if (call_analyzer->is_return_local()) {
duke@435 2103 // determine whether any arguments are returned
kvn@679 2104 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 2105 bool ret_arg = false;
duke@435 2106 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2107 const Type* at = d->field_at(i);
duke@435 2108
duke@435 2109 if (at->isa_oopptr() != NULL) {
kvn@500 2110 Node *arg = call->in(i)->uncast();
duke@435 2111
kvn@500 2112 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2113 ret_arg = true;
kvn@679 2114 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2115 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2116 done = false;
kvn@500 2117 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2118 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2119 else
kvn@679 2120 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2121 arg_esp->_hidden_alias = true;
duke@435 2122 }
duke@435 2123 }
duke@435 2124 }
kvn@742 2125 if (done && !ret_arg) {
kvn@742 2126 // Returns unknown object.
kvn@742 2127 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 2128 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 2129 }
kvn@500 2130 copy_dependencies = true;
duke@435 2131 } else {
kvn@679 2132 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2133 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 2134 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2135 const Type* at = d->field_at(i);
kvn@500 2136 if (at->isa_oopptr() != NULL) {
kvn@500 2137 Node *arg = call->in(i)->uncast();
kvn@679 2138 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2139 arg_esp->_hidden_alias = true;
kvn@500 2140 }
kvn@500 2141 }
duke@435 2142 }
kvn@500 2143 if (copy_dependencies)
kvn@679 2144 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2145 }
kvn@500 2146 if (done)
kvn@679 2147 _processed.set(resproj_idx);
duke@435 2148 break;
duke@435 2149 }
duke@435 2150
duke@435 2151 default:
duke@435 2152 // Some other type of call, assume the worst case that the
duke@435 2153 // returned value, if any, globally escapes.
duke@435 2154 {
duke@435 2155 const TypeTuple *r = call->tf()->range();
duke@435 2156 if (r->cnt() > TypeFunc::Parms) {
duke@435 2157 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2158
duke@435 2159 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2160 // _multianewarray functions return a TypeRawPtr.
duke@435 2161 if (ret_type->isa_ptr() != NULL) {
kvn@679 2162 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2163 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2164 }
duke@435 2165 }
kvn@679 2166 _processed.set(resproj_idx);
duke@435 2167 }
duke@435 2168 }
duke@435 2169 }
duke@435 2170
kvn@500 2171 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2172 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2173 // or to call PointsTo() to walk the connection graph).
kvn@500 2174 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2175 if (_processed.test(n->_idx))
kvn@500 2176 return; // No need to redefine node's state.
kvn@500 2177
kvn@500 2178 if (n->is_Call()) {
kvn@500 2179 // Arguments to allocation and locking don't escape.
kvn@500 2180 if (n->is_Allocate()) {
kvn@500 2181 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2182 record_for_optimizer(n);
kvn@500 2183 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2184 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2185 // the first IGVN optimization when escape information is still available.
kvn@500 2186 record_for_optimizer(n);
kvn@500 2187 _processed.set(n->_idx);
kvn@500 2188 } else {
kvn@1535 2189 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2190 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2191 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2192
kvn@500 2193 // Check if a call returns an object.
kvn@500 2194 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2195 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2196 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2197 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2198 nt = PointsToNode::JavaObject;
kvn@1535 2199 if (!n->is_CallStaticJava()) {
kvn@1535 2200 // Since the called mathod is statically unknown assume
kvn@1535 2201 // the worst case that the returned value globally escapes.
kvn@1535 2202 es = PointsToNode::GlobalEscape;
kvn@500 2203 }
duke@435 2204 }
kvn@1535 2205 add_node(n, nt, es, false);
duke@435 2206 }
kvn@500 2207 return;
duke@435 2208 }
kvn@500 2209
kvn@500 2210 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2211 // ThreadLocal has RawPrt type.
kvn@500 2212 switch (n->Opcode()) {
kvn@500 2213 case Op_AddP:
kvn@500 2214 {
kvn@500 2215 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2216 break;
kvn@500 2217 }
kvn@500 2218 case Op_CastX2P:
kvn@500 2219 { // "Unsafe" memory access.
kvn@500 2220 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2221 break;
kvn@500 2222 }
kvn@500 2223 case Op_CastPP:
kvn@500 2224 case Op_CheckCastPP:
kvn@559 2225 case Op_EncodeP:
kvn@559 2226 case Op_DecodeN:
kvn@500 2227 {
kvn@500 2228 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2229 int ti = n->in(1)->_idx;
kvn@679 2230 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2231 if (nt == PointsToNode::UnknownType) {
kvn@500 2232 _delayed_worklist.push(n); // Process it later.
kvn@500 2233 break;
kvn@500 2234 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2235 add_pointsto_edge(n->_idx, ti);
kvn@500 2236 } else {
kvn@500 2237 add_deferred_edge(n->_idx, ti);
kvn@500 2238 }
kvn@500 2239 _processed.set(n->_idx);
kvn@500 2240 break;
kvn@500 2241 }
kvn@500 2242 case Op_ConP:
kvn@500 2243 {
kvn@500 2244 // assume all pointer constants globally escape except for null
kvn@500 2245 PointsToNode::EscapeState es;
kvn@500 2246 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2247 es = PointsToNode::NoEscape;
kvn@500 2248 else
kvn@500 2249 es = PointsToNode::GlobalEscape;
kvn@500 2250
kvn@500 2251 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2252 break;
kvn@500 2253 }
coleenp@548 2254 case Op_ConN:
coleenp@548 2255 {
coleenp@548 2256 // assume all narrow oop constants globally escape except for null
coleenp@548 2257 PointsToNode::EscapeState es;
coleenp@548 2258 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2259 es = PointsToNode::NoEscape;
coleenp@548 2260 else
coleenp@548 2261 es = PointsToNode::GlobalEscape;
coleenp@548 2262
coleenp@548 2263 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2264 break;
coleenp@548 2265 }
kvn@559 2266 case Op_CreateEx:
kvn@559 2267 {
kvn@559 2268 // assume that all exception objects globally escape
kvn@559 2269 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2270 break;
kvn@559 2271 }
kvn@500 2272 case Op_LoadKlass:
kvn@599 2273 case Op_LoadNKlass:
kvn@500 2274 {
kvn@500 2275 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2276 break;
kvn@500 2277 }
kvn@500 2278 case Op_LoadP:
coleenp@548 2279 case Op_LoadN:
kvn@500 2280 {
kvn@500 2281 const Type *t = phase->type(n);
kvn@688 2282 if (t->make_ptr() == NULL) {
kvn@500 2283 _processed.set(n->_idx);
kvn@500 2284 return;
kvn@500 2285 }
kvn@500 2286 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2287 break;
kvn@500 2288 }
kvn@500 2289 case Op_Parm:
kvn@500 2290 {
kvn@500 2291 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2292 uint con = n->as_Proj()->_con;
kvn@500 2293 if (con < TypeFunc::Parms)
kvn@500 2294 return;
kvn@500 2295 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2296 if (t->isa_ptr() == NULL)
kvn@500 2297 return;
kvn@500 2298 // We have to assume all input parameters globally escape
kvn@500 2299 // (Note: passing 'false' since _processed is already set).
kvn@500 2300 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2301 break;
kvn@500 2302 }
kvn@500 2303 case Op_Phi:
kvn@500 2304 {
kvn@688 2305 const Type *t = n->as_Phi()->type();
kvn@688 2306 if (t->make_ptr() == NULL) {
kvn@688 2307 // nothing to do if not an oop or narrow oop
kvn@500 2308 _processed.set(n->_idx);
kvn@500 2309 return;
kvn@500 2310 }
kvn@500 2311 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2312 uint i;
kvn@500 2313 for (i = 1; i < n->req() ; i++) {
kvn@500 2314 Node* in = n->in(i);
kvn@500 2315 if (in == NULL)
kvn@500 2316 continue; // ignore NULL
kvn@500 2317 in = in->uncast();
kvn@500 2318 if (in->is_top() || in == n)
kvn@500 2319 continue; // ignore top or inputs which go back this node
kvn@500 2320 int ti = in->_idx;
kvn@679 2321 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2322 if (nt == PointsToNode::UnknownType) {
kvn@500 2323 break;
kvn@500 2324 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2325 add_pointsto_edge(n->_idx, ti);
kvn@500 2326 } else {
kvn@500 2327 add_deferred_edge(n->_idx, ti);
kvn@500 2328 }
kvn@500 2329 }
kvn@500 2330 if (i >= n->req())
kvn@500 2331 _processed.set(n->_idx);
kvn@500 2332 else
kvn@500 2333 _delayed_worklist.push(n);
kvn@500 2334 break;
kvn@500 2335 }
kvn@500 2336 case Op_Proj:
kvn@500 2337 {
kvn@1535 2338 // we are only interested in the oop result projection from a call
kvn@500 2339 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2340 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2341 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2342 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2343 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2344 int ti = n->in(0)->_idx;
kvn@1535 2345 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2346 // if this is the projection from backbranch edge of Phi.
kvn@1535 2347 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2348 process_call_result(n->as_Proj(), phase);
kvn@1535 2349 }
kvn@1535 2350 if (!_processed.test(n->_idx)) {
kvn@1535 2351 // The call's result may need to be processed later if the call
kvn@1535 2352 // returns it's argument and the argument is not processed yet.
kvn@1535 2353 _delayed_worklist.push(n);
kvn@1535 2354 }
kvn@1535 2355 break;
kvn@500 2356 }
kvn@500 2357 }
kvn@1535 2358 _processed.set(n->_idx);
kvn@500 2359 break;
kvn@500 2360 }
kvn@500 2361 case Op_Return:
kvn@500 2362 {
kvn@500 2363 if( n->req() > TypeFunc::Parms &&
kvn@500 2364 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2365 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2366 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2367 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2368 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2369 if (nt == PointsToNode::UnknownType) {
kvn@500 2370 _delayed_worklist.push(n); // Process it later.
kvn@500 2371 break;
kvn@500 2372 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2373 add_pointsto_edge(n->_idx, ti);
kvn@500 2374 } else {
kvn@500 2375 add_deferred_edge(n->_idx, ti);
kvn@500 2376 }
kvn@500 2377 }
kvn@500 2378 _processed.set(n->_idx);
kvn@500 2379 break;
kvn@500 2380 }
kvn@500 2381 case Op_StoreP:
coleenp@548 2382 case Op_StoreN:
kvn@500 2383 {
kvn@500 2384 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2385 adr_type = adr_type->make_ptr();
kvn@500 2386 if (adr_type->isa_oopptr()) {
kvn@500 2387 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2388 } else {
kvn@500 2389 Node* adr = n->in(MemNode::Address);
kvn@500 2390 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2391 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2392 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2393 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2394 // We are computing a raw address for a store captured
kvn@500 2395 // by an Initialize compute an appropriate address type.
kvn@500 2396 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2397 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2398 } else {
kvn@500 2399 _processed.set(n->_idx);
kvn@500 2400 return;
kvn@500 2401 }
kvn@500 2402 }
kvn@500 2403 break;
kvn@500 2404 }
kvn@500 2405 case Op_StorePConditional:
kvn@500 2406 case Op_CompareAndSwapP:
coleenp@548 2407 case Op_CompareAndSwapN:
kvn@500 2408 {
kvn@500 2409 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2410 adr_type = adr_type->make_ptr();
kvn@500 2411 if (adr_type->isa_oopptr()) {
kvn@500 2412 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2413 } else {
kvn@500 2414 _processed.set(n->_idx);
kvn@500 2415 return;
kvn@500 2416 }
kvn@500 2417 break;
kvn@500 2418 }
kvn@1535 2419 case Op_AryEq:
kvn@1535 2420 case Op_StrComp:
kvn@1535 2421 case Op_StrEquals:
kvn@1535 2422 case Op_StrIndexOf:
kvn@1535 2423 {
kvn@1535 2424 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2425 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2426 break;
kvn@1535 2427 }
kvn@500 2428 case Op_ThreadLocal:
kvn@500 2429 {
kvn@500 2430 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2431 break;
kvn@500 2432 }
kvn@500 2433 default:
kvn@500 2434 ;
kvn@500 2435 // nothing to do
kvn@500 2436 }
kvn@500 2437 return;
duke@435 2438 }
duke@435 2439
kvn@500 2440 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2441 uint n_idx = n->_idx;
kvn@1535 2442 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2443
kvn@500 2444 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2445 // they may need more then one pass to process.
kvn@679 2446 if (_processed.test(n_idx))
kvn@500 2447 return; // No need to redefine node's state.
duke@435 2448
duke@435 2449 if (n->is_Call()) {
duke@435 2450 CallNode *call = n->as_Call();
duke@435 2451 process_call_arguments(call, phase);
kvn@679 2452 _processed.set(n_idx);
duke@435 2453 return;
duke@435 2454 }
duke@435 2455
kvn@500 2456 switch (n->Opcode()) {
duke@435 2457 case Op_AddP:
duke@435 2458 {
kvn@500 2459 Node *base = get_addp_base(n);
kvn@500 2460 // Create a field edge to this node from everything base could point to.
duke@435 2461 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2462 PointsTo(ptset, base);
duke@435 2463 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2464 uint pt = i.elem;
kvn@679 2465 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2466 }
kvn@500 2467 break;
kvn@500 2468 }
kvn@500 2469 case Op_CastX2P:
kvn@500 2470 {
kvn@500 2471 assert(false, "Op_CastX2P");
kvn@500 2472 break;
kvn@500 2473 }
kvn@500 2474 case Op_CastPP:
kvn@500 2475 case Op_CheckCastPP:
coleenp@548 2476 case Op_EncodeP:
coleenp@548 2477 case Op_DecodeN:
kvn@500 2478 {
kvn@500 2479 int ti = n->in(1)->_idx;
kvn@1535 2480 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2481 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2482 add_pointsto_edge(n_idx, ti);
kvn@500 2483 } else {
kvn@679 2484 add_deferred_edge(n_idx, ti);
kvn@500 2485 }
kvn@679 2486 _processed.set(n_idx);
kvn@500 2487 break;
kvn@500 2488 }
kvn@500 2489 case Op_ConP:
kvn@500 2490 {
kvn@500 2491 assert(false, "Op_ConP");
kvn@500 2492 break;
kvn@500 2493 }
kvn@598 2494 case Op_ConN:
kvn@598 2495 {
kvn@598 2496 assert(false, "Op_ConN");
kvn@598 2497 break;
kvn@598 2498 }
kvn@500 2499 case Op_CreateEx:
kvn@500 2500 {
kvn@500 2501 assert(false, "Op_CreateEx");
kvn@500 2502 break;
kvn@500 2503 }
kvn@500 2504 case Op_LoadKlass:
kvn@599 2505 case Op_LoadNKlass:
kvn@500 2506 {
kvn@500 2507 assert(false, "Op_LoadKlass");
kvn@500 2508 break;
kvn@500 2509 }
kvn@500 2510 case Op_LoadP:
kvn@559 2511 case Op_LoadN:
kvn@500 2512 {
kvn@500 2513 const Type *t = phase->type(n);
kvn@500 2514 #ifdef ASSERT
kvn@688 2515 if (t->make_ptr() == NULL)
kvn@500 2516 assert(false, "Op_LoadP");
kvn@500 2517 #endif
kvn@500 2518
kvn@500 2519 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2520 Node* adr_base;
kvn@500 2521 if (adr->is_AddP()) {
kvn@500 2522 adr_base = get_addp_base(adr);
kvn@500 2523 } else {
kvn@500 2524 adr_base = adr;
kvn@500 2525 }
kvn@500 2526
kvn@500 2527 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2528 // this node to each field with the same offset.
kvn@500 2529 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2530 PointsTo(ptset, adr_base);
kvn@500 2531 int offset = address_offset(adr, phase);
kvn@500 2532 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2533 uint pt = i.elem;
kvn@679 2534 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2535 }
duke@435 2536 break;
duke@435 2537 }
duke@435 2538 case Op_Parm:
duke@435 2539 {
kvn@500 2540 assert(false, "Op_Parm");
kvn@500 2541 break;
kvn@500 2542 }
kvn@500 2543 case Op_Phi:
kvn@500 2544 {
kvn@500 2545 #ifdef ASSERT
kvn@688 2546 const Type *t = n->as_Phi()->type();
kvn@688 2547 if (t->make_ptr() == NULL)
kvn@500 2548 assert(false, "Op_Phi");
kvn@500 2549 #endif
kvn@500 2550 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2551 Node* in = n->in(i);
kvn@500 2552 if (in == NULL)
kvn@500 2553 continue; // ignore NULL
kvn@500 2554 in = in->uncast();
kvn@500 2555 if (in->is_top() || in == n)
kvn@500 2556 continue; // ignore top or inputs which go back this node
kvn@500 2557 int ti = in->_idx;
kvn@742 2558 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2559 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2560 if (nt == PointsToNode::JavaObject) {
kvn@679 2561 add_pointsto_edge(n_idx, ti);
kvn@500 2562 } else {
kvn@679 2563 add_deferred_edge(n_idx, ti);
kvn@500 2564 }
duke@435 2565 }
kvn@679 2566 _processed.set(n_idx);
duke@435 2567 break;
duke@435 2568 }
kvn@500 2569 case Op_Proj:
duke@435 2570 {
kvn@1535 2571 // we are only interested in the oop result projection from a call
kvn@500 2572 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2573 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2574 "all nodes should be registered");
kvn@1535 2575 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2576 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2577 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2578 process_call_result(n->as_Proj(), phase);
kvn@1535 2579 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2580 break;
kvn@1535 2581 }
kvn@500 2582 }
kvn@1535 2583 assert(false, "Op_Proj");
duke@435 2584 break;
duke@435 2585 }
kvn@500 2586 case Op_Return:
duke@435 2587 {
kvn@500 2588 #ifdef ASSERT
kvn@500 2589 if( n->req() <= TypeFunc::Parms ||
kvn@500 2590 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2591 assert(false, "Op_Return");
kvn@500 2592 }
kvn@500 2593 #endif
kvn@500 2594 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2595 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2596 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2597 add_pointsto_edge(n_idx, ti);
kvn@500 2598 } else {
kvn@679 2599 add_deferred_edge(n_idx, ti);
kvn@500 2600 }
kvn@679 2601 _processed.set(n_idx);
duke@435 2602 break;
duke@435 2603 }
duke@435 2604 case Op_StoreP:
kvn@559 2605 case Op_StoreN:
duke@435 2606 case Op_StorePConditional:
duke@435 2607 case Op_CompareAndSwapP:
kvn@559 2608 case Op_CompareAndSwapN:
duke@435 2609 {
duke@435 2610 Node *adr = n->in(MemNode::Address);
kvn@656 2611 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2612 #ifdef ASSERT
duke@435 2613 if (!adr_type->isa_oopptr())
kvn@500 2614 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2615 #endif
duke@435 2616
kvn@500 2617 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2618 Node *adr_base = get_addp_base(adr);
kvn@500 2619 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2620 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2621 // to "val" from each field with the same offset.
duke@435 2622 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2623 PointsTo(ptset, adr_base);
duke@435 2624 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2625 uint pt = i.elem;
kvn@500 2626 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2627 }
duke@435 2628 break;
duke@435 2629 }
kvn@1535 2630 case Op_AryEq:
kvn@1535 2631 case Op_StrComp:
kvn@1535 2632 case Op_StrEquals:
kvn@1535 2633 case Op_StrIndexOf:
kvn@1535 2634 {
kvn@1535 2635 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2636 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2637 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2638 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2639 Node* adr = n->in(i)->uncast();
kvn@1535 2640 const Type *at = phase->type(adr);
kvn@1535 2641 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2642 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2643 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2644 if (adr->is_AddP()) {
kvn@1535 2645 adr = get_addp_base(adr);
kvn@1535 2646 }
kvn@1535 2647 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2648 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2649 }
kvn@1535 2650 }
kvn@1535 2651 _processed.set(n_idx);
kvn@1535 2652 break;
kvn@1535 2653 }
kvn@500 2654 case Op_ThreadLocal:
duke@435 2655 {
kvn@500 2656 assert(false, "Op_ThreadLocal");
duke@435 2657 break;
duke@435 2658 }
duke@435 2659 default:
kvn@1535 2660 // This method should be called only for EA specific nodes.
kvn@1535 2661 ShouldNotReachHere();
duke@435 2662 }
duke@435 2663 }
duke@435 2664
duke@435 2665 #ifndef PRODUCT
duke@435 2666 void ConnectionGraph::dump() {
duke@435 2667 bool first = true;
duke@435 2668
kvn@679 2669 uint size = nodes_size();
kvn@500 2670 for (uint ni = 0; ni < size; ni++) {
kvn@679 2671 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2672 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2673
kvn@500 2674 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2675 continue;
kvn@1989 2676 PointsToNode::EscapeState es = escape_state(ptn->_node);
kvn@500 2677 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2678 if (first) {
kvn@500 2679 tty->cr();
kvn@500 2680 tty->print("======== Connection graph for ");
kvn@679 2681 _compile->method()->print_short_name();
kvn@500 2682 tty->cr();
kvn@500 2683 first = false;
kvn@500 2684 }
kvn@500 2685 tty->print("%6d ", ni);
kvn@500 2686 ptn->dump();
kvn@500 2687 // Print all locals which reference this allocation
kvn@500 2688 for (uint li = ni; li < size; li++) {
kvn@679 2689 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2690 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2691 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2692 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2693 ptnode_adr(li)->dump(false);
duke@435 2694 }
duke@435 2695 }
kvn@500 2696 if (Verbose) {
kvn@500 2697 // Print all fields which reference this allocation
kvn@500 2698 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2699 uint ei = ptn->edge_target(i);
kvn@688 2700 ptnode_adr(ei)->dump(false);
kvn@500 2701 }
kvn@500 2702 }
kvn@500 2703 tty->cr();
duke@435 2704 }
duke@435 2705 }
duke@435 2706 }
duke@435 2707 #endif

mercurial