src/share/vm/opto/library_call.cpp

Fri, 10 Feb 2012 10:55:15 -0500

author
bpittore
date
Fri, 10 Feb 2012 10:55:15 -0500
changeset 3529
f174909614bd
parent 3521
b9bc6cae88f2
parent 3526
a79cb7c55012
child 3631
b40ac3579043
permissions
-rw-r--r--

Merge

duke@435 1 /*
kvn@2602 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
twisti@2687 28 #include "compiler/compileBroker.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "oops/objArrayKlass.hpp"
stefank@2314 31 #include "opto/addnode.hpp"
stefank@2314 32 #include "opto/callGenerator.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/idealKit.hpp"
stefank@2314 35 #include "opto/mulnode.hpp"
stefank@2314 36 #include "opto/parse.hpp"
stefank@2314 37 #include "opto/runtime.hpp"
stefank@2314 38 #include "opto/subnode.hpp"
stefank@2314 39 #include "prims/nativeLookup.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 43 // Extend the set of intrinsics known to the runtime:
duke@435 44 public:
duke@435 45 private:
duke@435 46 bool _is_virtual;
duke@435 47 vmIntrinsics::ID _intrinsic_id;
duke@435 48
duke@435 49 public:
duke@435 50 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 51 : InlineCallGenerator(m),
duke@435 52 _is_virtual(is_virtual),
duke@435 53 _intrinsic_id(id)
duke@435 54 {
duke@435 55 }
duke@435 56 virtual bool is_intrinsic() const { return true; }
duke@435 57 virtual bool is_virtual() const { return _is_virtual; }
duke@435 58 virtual JVMState* generate(JVMState* jvms);
duke@435 59 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 60 };
duke@435 61
duke@435 62
duke@435 63 // Local helper class for LibraryIntrinsic:
duke@435 64 class LibraryCallKit : public GraphKit {
duke@435 65 private:
duke@435 66 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 67
duke@435 68 public:
duke@435 69 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 70 : GraphKit(caller),
duke@435 71 _intrinsic(intrinsic)
duke@435 72 {
duke@435 73 }
duke@435 74
duke@435 75 ciMethod* caller() const { return jvms()->method(); }
duke@435 76 int bci() const { return jvms()->bci(); }
duke@435 77 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 78 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 79 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 80 ciSignature* signature() const { return callee()->signature(); }
duke@435 81 int arg_size() const { return callee()->arg_size(); }
duke@435 82
duke@435 83 bool try_to_inline();
duke@435 84
duke@435 85 // Helper functions to inline natives
duke@435 86 void push_result(RegionNode* region, PhiNode* value);
duke@435 87 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 88 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 89 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 90 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 91 // resulting CastII of index:
duke@435 92 Node* *pos_index = NULL);
duke@435 93 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 94 // resulting CastII of index:
duke@435 95 Node* *pos_index = NULL);
duke@435 96 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 97 Node* array_length,
duke@435 98 RegionNode* region);
duke@435 99 Node* generate_current_thread(Node* &tls_output);
duke@435 100 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
iveresov@2606 101 bool disjoint_bases, const char* &name, bool dest_uninitialized);
duke@435 102 Node* load_mirror_from_klass(Node* klass);
duke@435 103 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 104 int nargs,
duke@435 105 RegionNode* region, int null_path,
duke@435 106 int offset);
duke@435 107 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 108 RegionNode* region, int null_path) {
duke@435 109 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 110 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 111 region, null_path,
duke@435 112 offset);
duke@435 113 }
duke@435 114 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 115 int nargs,
duke@435 116 RegionNode* region, int null_path) {
duke@435 117 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 118 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 119 region, null_path,
duke@435 120 offset);
duke@435 121 }
duke@435 122 Node* generate_access_flags_guard(Node* kls,
duke@435 123 int modifier_mask, int modifier_bits,
duke@435 124 RegionNode* region);
duke@435 125 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 126 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 127 return generate_array_guard_common(kls, region, false, false);
duke@435 128 }
duke@435 129 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 130 return generate_array_guard_common(kls, region, false, true);
duke@435 131 }
duke@435 132 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 133 return generate_array_guard_common(kls, region, true, false);
duke@435 134 }
duke@435 135 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 136 return generate_array_guard_common(kls, region, true, true);
duke@435 137 }
duke@435 138 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 139 bool obj_array, bool not_array);
duke@435 140 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 141 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 142 bool is_virtual = false, bool is_static = false);
duke@435 143 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 144 return generate_method_call(method_id, false, true);
duke@435 145 }
duke@435 146 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 147 return generate_method_call(method_id, true, false);
duke@435 148 }
duke@435 149
kvn@1421 150 Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
duke@435 151 bool inline_string_compareTo();
duke@435 152 bool inline_string_indexOf();
duke@435 153 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 154 bool inline_string_equals();
duke@435 155 Node* pop_math_arg();
duke@435 156 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 157 bool inline_math_native(vmIntrinsics::ID id);
duke@435 158 bool inline_trig(vmIntrinsics::ID id);
duke@435 159 bool inline_trans(vmIntrinsics::ID id);
duke@435 160 bool inline_abs(vmIntrinsics::ID id);
duke@435 161 bool inline_sqrt(vmIntrinsics::ID id);
duke@435 162 bool inline_pow(vmIntrinsics::ID id);
duke@435 163 bool inline_exp(vmIntrinsics::ID id);
duke@435 164 bool inline_min_max(vmIntrinsics::ID id);
duke@435 165 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 166 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 167 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 168 Node* make_unsafe_address(Node* base, Node* offset);
johnc@2781 169 // Helper for inline_unsafe_access.
johnc@2781 170 // Generates the guards that check whether the result of
johnc@2781 171 // Unsafe.getObject should be recorded in an SATB log buffer.
johnc@2781 172 void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
duke@435 173 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 174 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 175 bool inline_unsafe_allocate();
duke@435 176 bool inline_unsafe_copyMemory();
duke@435 177 bool inline_native_currentThread();
duke@435 178 bool inline_native_time_funcs(bool isNano);
duke@435 179 bool inline_native_isInterrupted();
duke@435 180 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 181 bool inline_native_subtype_check();
duke@435 182
duke@435 183 bool inline_native_newArray();
duke@435 184 bool inline_native_getLength();
duke@435 185 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 186 bool inline_array_equals();
kvn@1268 187 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 188 bool inline_native_clone(bool is_virtual);
duke@435 189 bool inline_native_Reflection_getCallerClass();
duke@435 190 bool inline_native_AtomicLong_get();
duke@435 191 bool inline_native_AtomicLong_attemptUpdate();
duke@435 192 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 193 // Helper function for inlining native object hash method
duke@435 194 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 195 bool inline_native_getClass();
duke@435 196
duke@435 197 // Helper functions for inlining arraycopy
duke@435 198 bool inline_arraycopy();
duke@435 199 void generate_arraycopy(const TypePtr* adr_type,
duke@435 200 BasicType basic_elem_type,
duke@435 201 Node* src, Node* src_offset,
duke@435 202 Node* dest, Node* dest_offset,
duke@435 203 Node* copy_length,
duke@435 204 bool disjoint_bases = false,
duke@435 205 bool length_never_negative = false,
duke@435 206 RegionNode* slow_region = NULL);
duke@435 207 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 208 RegionNode* slow_region);
duke@435 209 void generate_clear_array(const TypePtr* adr_type,
duke@435 210 Node* dest,
duke@435 211 BasicType basic_elem_type,
duke@435 212 Node* slice_off,
duke@435 213 Node* slice_len,
duke@435 214 Node* slice_end);
duke@435 215 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 216 BasicType basic_elem_type,
duke@435 217 AllocateNode* alloc,
duke@435 218 Node* src, Node* src_offset,
duke@435 219 Node* dest, Node* dest_offset,
iveresov@2606 220 Node* dest_size, bool dest_uninitialized);
duke@435 221 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 222 Node* src, Node* src_offset,
duke@435 223 Node* dest, Node* dest_offset,
iveresov@2606 224 Node* copy_length, bool dest_uninitialized);
duke@435 225 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 226 Node* dest_elem_klass,
duke@435 227 Node* src, Node* src_offset,
duke@435 228 Node* dest, Node* dest_offset,
iveresov@2606 229 Node* copy_length, bool dest_uninitialized);
duke@435 230 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 231 Node* src, Node* src_offset,
duke@435 232 Node* dest, Node* dest_offset,
iveresov@2606 233 Node* copy_length, bool dest_uninitialized);
duke@435 234 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 235 BasicType basic_elem_type,
duke@435 236 bool disjoint_bases,
duke@435 237 Node* src, Node* src_offset,
duke@435 238 Node* dest, Node* dest_offset,
iveresov@2606 239 Node* copy_length, bool dest_uninitialized);
duke@435 240 bool inline_unsafe_CAS(BasicType type);
duke@435 241 bool inline_unsafe_ordered_store(BasicType type);
duke@435 242 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@1210 243 bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
twisti@1210 244 bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
twisti@1078 245 bool inline_bitCount(vmIntrinsics::ID id);
duke@435 246 bool inline_reverseBytes(vmIntrinsics::ID id);
johnc@2781 247
johnc@2781 248 bool inline_reference_get();
duke@435 249 };
duke@435 250
duke@435 251
duke@435 252 //---------------------------make_vm_intrinsic----------------------------
duke@435 253 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 254 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 255 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 256
duke@435 257 if (DisableIntrinsic[0] != '\0'
duke@435 258 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 259 // disabled by a user request on the command line:
duke@435 260 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 261 return NULL;
duke@435 262 }
duke@435 263
duke@435 264 if (!m->is_loaded()) {
duke@435 265 // do not attempt to inline unloaded methods
duke@435 266 return NULL;
duke@435 267 }
duke@435 268
duke@435 269 // Only a few intrinsics implement a virtual dispatch.
duke@435 270 // They are expensive calls which are also frequently overridden.
duke@435 271 if (is_virtual) {
duke@435 272 switch (id) {
duke@435 273 case vmIntrinsics::_hashCode:
duke@435 274 case vmIntrinsics::_clone:
duke@435 275 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 276 break;
duke@435 277 default:
duke@435 278 return NULL;
duke@435 279 }
duke@435 280 }
duke@435 281
duke@435 282 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 283 if (!InlineNatives) {
duke@435 284 switch (id) {
duke@435 285 case vmIntrinsics::_indexOf:
duke@435 286 case vmIntrinsics::_compareTo:
cfang@1116 287 case vmIntrinsics::_equals:
rasbold@604 288 case vmIntrinsics::_equalsC:
duke@435 289 break; // InlineNatives does not control String.compareTo
duke@435 290 default:
duke@435 291 return NULL;
duke@435 292 }
duke@435 293 }
duke@435 294
duke@435 295 switch (id) {
duke@435 296 case vmIntrinsics::_compareTo:
duke@435 297 if (!SpecialStringCompareTo) return NULL;
duke@435 298 break;
duke@435 299 case vmIntrinsics::_indexOf:
duke@435 300 if (!SpecialStringIndexOf) return NULL;
duke@435 301 break;
cfang@1116 302 case vmIntrinsics::_equals:
cfang@1116 303 if (!SpecialStringEquals) return NULL;
cfang@1116 304 break;
rasbold@604 305 case vmIntrinsics::_equalsC:
rasbold@604 306 if (!SpecialArraysEquals) return NULL;
rasbold@604 307 break;
duke@435 308 case vmIntrinsics::_arraycopy:
duke@435 309 if (!InlineArrayCopy) return NULL;
duke@435 310 break;
duke@435 311 case vmIntrinsics::_copyMemory:
duke@435 312 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 313 if (!InlineArrayCopy) return NULL;
duke@435 314 break;
duke@435 315 case vmIntrinsics::_hashCode:
duke@435 316 if (!InlineObjectHash) return NULL;
duke@435 317 break;
duke@435 318 case vmIntrinsics::_clone:
duke@435 319 case vmIntrinsics::_copyOf:
duke@435 320 case vmIntrinsics::_copyOfRange:
duke@435 321 if (!InlineObjectCopy) return NULL;
duke@435 322 // These also use the arraycopy intrinsic mechanism:
duke@435 323 if (!InlineArrayCopy) return NULL;
duke@435 324 break;
duke@435 325 case vmIntrinsics::_checkIndex:
duke@435 326 // We do not intrinsify this. The optimizer does fine with it.
duke@435 327 return NULL;
duke@435 328
duke@435 329 case vmIntrinsics::_get_AtomicLong:
duke@435 330 case vmIntrinsics::_attemptUpdate:
duke@435 331 if (!InlineAtomicLong) return NULL;
duke@435 332 break;
duke@435 333
duke@435 334 case vmIntrinsics::_getCallerClass:
duke@435 335 if (!UseNewReflection) return NULL;
duke@435 336 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 337 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 338 break;
duke@435 339
twisti@1078 340 case vmIntrinsics::_bitCount_i:
twisti@1078 341 case vmIntrinsics::_bitCount_l:
twisti@1078 342 if (!UsePopCountInstruction) return NULL;
twisti@1078 343 break;
twisti@1078 344
johnc@2781 345 case vmIntrinsics::_Reference_get:
johnc@2781 346 // It is only when G1 is enabled that we absolutely
johnc@2781 347 // need to use the intrinsic version of Reference.get()
johnc@2781 348 // so that the value in the referent field, if necessary,
johnc@2781 349 // can be registered by the pre-barrier code.
johnc@2781 350 if (!UseG1GC) return NULL;
johnc@2781 351 break;
johnc@2781 352
duke@435 353 default:
jrose@1291 354 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 355 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 356 break;
duke@435 357 }
duke@435 358
duke@435 359 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 360 // The flag applies to all reflective calls, notably Array.newArray
duke@435 361 // (visible to Java programmers as Array.newInstance).
duke@435 362 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 363 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 364 if (!InlineClassNatives) return NULL;
duke@435 365 }
duke@435 366
duke@435 367 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 368 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 369 if (!InlineThreadNatives) return NULL;
duke@435 370 }
duke@435 371
duke@435 372 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 373 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 374 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 375 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 376 if (!InlineMathNatives) return NULL;
duke@435 377 }
duke@435 378
duke@435 379 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 380 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 381 if (!InlineUnsafeOps) return NULL;
duke@435 382 }
duke@435 383
duke@435 384 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 385 }
duke@435 386
duke@435 387 //----------------------register_library_intrinsics-----------------------
duke@435 388 // Initialize this file's data structures, for each Compile instance.
duke@435 389 void Compile::register_library_intrinsics() {
duke@435 390 // Nothing to do here.
duke@435 391 }
duke@435 392
duke@435 393 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 394 LibraryCallKit kit(jvms, this);
duke@435 395 Compile* C = kit.C;
duke@435 396 int nodes = C->unique();
duke@435 397 #ifndef PRODUCT
duke@435 398 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 399 char buf[1000];
duke@435 400 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 401 tty->print_cr("Intrinsic %s", str);
duke@435 402 }
duke@435 403 #endif
johnc@2781 404
duke@435 405 if (kit.try_to_inline()) {
duke@435 406 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
twisti@2687 407 CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
duke@435 408 }
duke@435 409 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 410 if (C->log()) {
duke@435 411 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 412 vmIntrinsics::name_at(intrinsic_id()),
duke@435 413 (is_virtual() ? " virtual='1'" : ""),
duke@435 414 C->unique() - nodes);
duke@435 415 }
duke@435 416 return kit.transfer_exceptions_into_jvms();
duke@435 417 }
duke@435 418
duke@435 419 if (PrintIntrinsics) {
johnc@2781 420 if (jvms->has_method()) {
johnc@2781 421 // Not a root compile.
johnc@2781 422 tty->print("Did not inline intrinsic %s%s at bci:%d in",
johnc@2781 423 vmIntrinsics::name_at(intrinsic_id()),
johnc@2781 424 (is_virtual() ? " (virtual)" : ""), kit.bci());
johnc@2781 425 kit.caller()->print_short_name(tty);
johnc@2781 426 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
johnc@2781 427 } else {
johnc@2781 428 // Root compile
johnc@2781 429 tty->print("Did not generate intrinsic %s%s at bci:%d in",
jrose@1291 430 vmIntrinsics::name_at(intrinsic_id()),
jrose@1291 431 (is_virtual() ? " (virtual)" : ""), kit.bci());
johnc@2781 432 }
duke@435 433 }
duke@435 434 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 435 return NULL;
duke@435 436 }
duke@435 437
duke@435 438 bool LibraryCallKit::try_to_inline() {
duke@435 439 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 440 const bool is_store = true;
duke@435 441 const bool is_native_ptr = true;
duke@435 442 const bool is_static = true;
duke@435 443
johnc@2781 444 if (!jvms()->has_method()) {
johnc@2781 445 // Root JVMState has a null method.
johnc@2781 446 assert(map()->memory()->Opcode() == Op_Parm, "");
johnc@2781 447 // Insert the memory aliasing node
johnc@2781 448 set_all_memory(reset_memory());
johnc@2781 449 }
johnc@2781 450 assert(merged_memory(), "");
johnc@2781 451
duke@435 452 switch (intrinsic_id()) {
duke@435 453 case vmIntrinsics::_hashCode:
duke@435 454 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 455 case vmIntrinsics::_identityHashCode:
duke@435 456 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 457 case vmIntrinsics::_getClass:
duke@435 458 return inline_native_getClass();
duke@435 459
duke@435 460 case vmIntrinsics::_dsin:
duke@435 461 case vmIntrinsics::_dcos:
duke@435 462 case vmIntrinsics::_dtan:
duke@435 463 case vmIntrinsics::_dabs:
duke@435 464 case vmIntrinsics::_datan2:
duke@435 465 case vmIntrinsics::_dsqrt:
duke@435 466 case vmIntrinsics::_dexp:
duke@435 467 case vmIntrinsics::_dlog:
duke@435 468 case vmIntrinsics::_dlog10:
duke@435 469 case vmIntrinsics::_dpow:
duke@435 470 return inline_math_native(intrinsic_id());
duke@435 471
duke@435 472 case vmIntrinsics::_min:
duke@435 473 case vmIntrinsics::_max:
duke@435 474 return inline_min_max(intrinsic_id());
duke@435 475
duke@435 476 case vmIntrinsics::_arraycopy:
duke@435 477 return inline_arraycopy();
duke@435 478
duke@435 479 case vmIntrinsics::_compareTo:
duke@435 480 return inline_string_compareTo();
duke@435 481 case vmIntrinsics::_indexOf:
duke@435 482 return inline_string_indexOf();
cfang@1116 483 case vmIntrinsics::_equals:
cfang@1116 484 return inline_string_equals();
duke@435 485
duke@435 486 case vmIntrinsics::_getObject:
duke@435 487 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 488 case vmIntrinsics::_getBoolean:
duke@435 489 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 490 case vmIntrinsics::_getByte:
duke@435 491 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 492 case vmIntrinsics::_getShort:
duke@435 493 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 494 case vmIntrinsics::_getChar:
duke@435 495 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 496 case vmIntrinsics::_getInt:
duke@435 497 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 498 case vmIntrinsics::_getLong:
duke@435 499 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 500 case vmIntrinsics::_getFloat:
duke@435 501 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 502 case vmIntrinsics::_getDouble:
duke@435 503 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 504
duke@435 505 case vmIntrinsics::_putObject:
duke@435 506 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 507 case vmIntrinsics::_putBoolean:
duke@435 508 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 509 case vmIntrinsics::_putByte:
duke@435 510 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 511 case vmIntrinsics::_putShort:
duke@435 512 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 513 case vmIntrinsics::_putChar:
duke@435 514 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 515 case vmIntrinsics::_putInt:
duke@435 516 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 517 case vmIntrinsics::_putLong:
duke@435 518 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 519 case vmIntrinsics::_putFloat:
duke@435 520 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 521 case vmIntrinsics::_putDouble:
duke@435 522 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 523
duke@435 524 case vmIntrinsics::_getByte_raw:
duke@435 525 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 526 case vmIntrinsics::_getShort_raw:
duke@435 527 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 528 case vmIntrinsics::_getChar_raw:
duke@435 529 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 530 case vmIntrinsics::_getInt_raw:
duke@435 531 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 532 case vmIntrinsics::_getLong_raw:
duke@435 533 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 534 case vmIntrinsics::_getFloat_raw:
duke@435 535 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 536 case vmIntrinsics::_getDouble_raw:
duke@435 537 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 538 case vmIntrinsics::_getAddress_raw:
duke@435 539 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 540
duke@435 541 case vmIntrinsics::_putByte_raw:
duke@435 542 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 543 case vmIntrinsics::_putShort_raw:
duke@435 544 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 545 case vmIntrinsics::_putChar_raw:
duke@435 546 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 547 case vmIntrinsics::_putInt_raw:
duke@435 548 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 549 case vmIntrinsics::_putLong_raw:
duke@435 550 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 551 case vmIntrinsics::_putFloat_raw:
duke@435 552 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 553 case vmIntrinsics::_putDouble_raw:
duke@435 554 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 555 case vmIntrinsics::_putAddress_raw:
duke@435 556 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 557
duke@435 558 case vmIntrinsics::_getObjectVolatile:
duke@435 559 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 560 case vmIntrinsics::_getBooleanVolatile:
duke@435 561 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 562 case vmIntrinsics::_getByteVolatile:
duke@435 563 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 564 case vmIntrinsics::_getShortVolatile:
duke@435 565 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 566 case vmIntrinsics::_getCharVolatile:
duke@435 567 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 568 case vmIntrinsics::_getIntVolatile:
duke@435 569 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 570 case vmIntrinsics::_getLongVolatile:
duke@435 571 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 572 case vmIntrinsics::_getFloatVolatile:
duke@435 573 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 574 case vmIntrinsics::_getDoubleVolatile:
duke@435 575 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 576
duke@435 577 case vmIntrinsics::_putObjectVolatile:
duke@435 578 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 579 case vmIntrinsics::_putBooleanVolatile:
duke@435 580 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 581 case vmIntrinsics::_putByteVolatile:
duke@435 582 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 583 case vmIntrinsics::_putShortVolatile:
duke@435 584 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 585 case vmIntrinsics::_putCharVolatile:
duke@435 586 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 587 case vmIntrinsics::_putIntVolatile:
duke@435 588 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 589 case vmIntrinsics::_putLongVolatile:
duke@435 590 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 591 case vmIntrinsics::_putFloatVolatile:
duke@435 592 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 593 case vmIntrinsics::_putDoubleVolatile:
duke@435 594 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 595
duke@435 596 case vmIntrinsics::_prefetchRead:
duke@435 597 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 598 case vmIntrinsics::_prefetchWrite:
duke@435 599 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 600 case vmIntrinsics::_prefetchReadStatic:
duke@435 601 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 602 case vmIntrinsics::_prefetchWriteStatic:
duke@435 603 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 604
duke@435 605 case vmIntrinsics::_compareAndSwapObject:
duke@435 606 return inline_unsafe_CAS(T_OBJECT);
duke@435 607 case vmIntrinsics::_compareAndSwapInt:
duke@435 608 return inline_unsafe_CAS(T_INT);
duke@435 609 case vmIntrinsics::_compareAndSwapLong:
duke@435 610 return inline_unsafe_CAS(T_LONG);
duke@435 611
duke@435 612 case vmIntrinsics::_putOrderedObject:
duke@435 613 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 614 case vmIntrinsics::_putOrderedInt:
duke@435 615 return inline_unsafe_ordered_store(T_INT);
duke@435 616 case vmIntrinsics::_putOrderedLong:
duke@435 617 return inline_unsafe_ordered_store(T_LONG);
duke@435 618
duke@435 619 case vmIntrinsics::_currentThread:
duke@435 620 return inline_native_currentThread();
duke@435 621 case vmIntrinsics::_isInterrupted:
duke@435 622 return inline_native_isInterrupted();
duke@435 623
duke@435 624 case vmIntrinsics::_currentTimeMillis:
duke@435 625 return inline_native_time_funcs(false);
duke@435 626 case vmIntrinsics::_nanoTime:
duke@435 627 return inline_native_time_funcs(true);
duke@435 628 case vmIntrinsics::_allocateInstance:
duke@435 629 return inline_unsafe_allocate();
duke@435 630 case vmIntrinsics::_copyMemory:
duke@435 631 return inline_unsafe_copyMemory();
duke@435 632 case vmIntrinsics::_newArray:
duke@435 633 return inline_native_newArray();
duke@435 634 case vmIntrinsics::_getLength:
duke@435 635 return inline_native_getLength();
duke@435 636 case vmIntrinsics::_copyOf:
duke@435 637 return inline_array_copyOf(false);
duke@435 638 case vmIntrinsics::_copyOfRange:
duke@435 639 return inline_array_copyOf(true);
rasbold@604 640 case vmIntrinsics::_equalsC:
rasbold@604 641 return inline_array_equals();
duke@435 642 case vmIntrinsics::_clone:
duke@435 643 return inline_native_clone(intrinsic()->is_virtual());
duke@435 644
duke@435 645 case vmIntrinsics::_isAssignableFrom:
duke@435 646 return inline_native_subtype_check();
duke@435 647
duke@435 648 case vmIntrinsics::_isInstance:
duke@435 649 case vmIntrinsics::_getModifiers:
duke@435 650 case vmIntrinsics::_isInterface:
duke@435 651 case vmIntrinsics::_isArray:
duke@435 652 case vmIntrinsics::_isPrimitive:
duke@435 653 case vmIntrinsics::_getSuperclass:
duke@435 654 case vmIntrinsics::_getComponentType:
duke@435 655 case vmIntrinsics::_getClassAccessFlags:
duke@435 656 return inline_native_Class_query(intrinsic_id());
duke@435 657
duke@435 658 case vmIntrinsics::_floatToRawIntBits:
duke@435 659 case vmIntrinsics::_floatToIntBits:
duke@435 660 case vmIntrinsics::_intBitsToFloat:
duke@435 661 case vmIntrinsics::_doubleToRawLongBits:
duke@435 662 case vmIntrinsics::_doubleToLongBits:
duke@435 663 case vmIntrinsics::_longBitsToDouble:
duke@435 664 return inline_fp_conversions(intrinsic_id());
duke@435 665
twisti@1210 666 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 667 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 668 return inline_numberOfLeadingZeros(intrinsic_id());
twisti@1210 669
twisti@1210 670 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 671 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 672 return inline_numberOfTrailingZeros(intrinsic_id());
twisti@1210 673
twisti@1078 674 case vmIntrinsics::_bitCount_i:
twisti@1078 675 case vmIntrinsics::_bitCount_l:
twisti@1078 676 return inline_bitCount(intrinsic_id());
twisti@1078 677
duke@435 678 case vmIntrinsics::_reverseBytes_i:
duke@435 679 case vmIntrinsics::_reverseBytes_l:
never@1831 680 case vmIntrinsics::_reverseBytes_s:
never@1831 681 case vmIntrinsics::_reverseBytes_c:
duke@435 682 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 683
duke@435 684 case vmIntrinsics::_get_AtomicLong:
duke@435 685 return inline_native_AtomicLong_get();
duke@435 686 case vmIntrinsics::_attemptUpdate:
duke@435 687 return inline_native_AtomicLong_attemptUpdate();
duke@435 688
duke@435 689 case vmIntrinsics::_getCallerClass:
duke@435 690 return inline_native_Reflection_getCallerClass();
duke@435 691
johnc@2781 692 case vmIntrinsics::_Reference_get:
johnc@2781 693 return inline_reference_get();
johnc@2781 694
duke@435 695 default:
duke@435 696 // If you get here, it may be that someone has added a new intrinsic
duke@435 697 // to the list in vmSymbols.hpp without implementing it here.
duke@435 698 #ifndef PRODUCT
duke@435 699 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 700 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 701 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 702 }
duke@435 703 #endif
duke@435 704 return false;
duke@435 705 }
duke@435 706 }
duke@435 707
duke@435 708 //------------------------------push_result------------------------------
duke@435 709 // Helper function for finishing intrinsics.
duke@435 710 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 711 record_for_igvn(region);
duke@435 712 set_control(_gvn.transform(region));
duke@435 713 BasicType value_type = value->type()->basic_type();
duke@435 714 push_node(value_type, _gvn.transform(value));
duke@435 715 }
duke@435 716
duke@435 717 //------------------------------generate_guard---------------------------
duke@435 718 // Helper function for generating guarded fast-slow graph structures.
duke@435 719 // The given 'test', if true, guards a slow path. If the test fails
duke@435 720 // then a fast path can be taken. (We generally hope it fails.)
duke@435 721 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 722 // The returned value represents the control for the slow path.
duke@435 723 // The return value is never 'top'; it is either a valid control
duke@435 724 // or NULL if it is obvious that the slow path can never be taken.
duke@435 725 // Also, if region and the slow control are not NULL, the slow edge
duke@435 726 // is appended to the region.
duke@435 727 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 728 if (stopped()) {
duke@435 729 // Already short circuited.
duke@435 730 return NULL;
duke@435 731 }
duke@435 732
duke@435 733 // Build an if node and its projections.
duke@435 734 // If test is true we take the slow path, which we assume is uncommon.
duke@435 735 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 736 // The slow branch is never taken. No need to build this guard.
duke@435 737 return NULL;
duke@435 738 }
duke@435 739
duke@435 740 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 741
duke@435 742 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 743 if (if_slow == top()) {
duke@435 744 // The slow branch is never taken. No need to build this guard.
duke@435 745 return NULL;
duke@435 746 }
duke@435 747
duke@435 748 if (region != NULL)
duke@435 749 region->add_req(if_slow);
duke@435 750
duke@435 751 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 752 set_control(if_fast);
duke@435 753
duke@435 754 return if_slow;
duke@435 755 }
duke@435 756
duke@435 757 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 758 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 759 }
duke@435 760 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 761 return generate_guard(test, region, PROB_FAIR);
duke@435 762 }
duke@435 763
duke@435 764 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 765 Node* *pos_index) {
duke@435 766 if (stopped())
duke@435 767 return NULL; // already stopped
duke@435 768 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 769 return NULL; // index is already adequately typed
duke@435 770 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 771 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 772 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 773 if (is_neg != NULL && pos_index != NULL) {
duke@435 774 // Emulate effect of Parse::adjust_map_after_if.
duke@435 775 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 776 ccast->set_req(0, control());
duke@435 777 (*pos_index) = _gvn.transform(ccast);
duke@435 778 }
duke@435 779 return is_neg;
duke@435 780 }
duke@435 781
duke@435 782 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 783 Node* *pos_index) {
duke@435 784 if (stopped())
duke@435 785 return NULL; // already stopped
duke@435 786 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 787 return NULL; // index is already adequately typed
duke@435 788 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 789 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 790 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 791 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 792 if (is_notp != NULL && pos_index != NULL) {
duke@435 793 // Emulate effect of Parse::adjust_map_after_if.
duke@435 794 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 795 ccast->set_req(0, control());
duke@435 796 (*pos_index) = _gvn.transform(ccast);
duke@435 797 }
duke@435 798 return is_notp;
duke@435 799 }
duke@435 800
duke@435 801 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 802 // There are two equivalent plans for checking this:
duke@435 803 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 804 // B. offset <= (arrayLength - copyLength)
duke@435 805 // We require that all of the values above, except for the sum and
duke@435 806 // difference, are already known to be non-negative.
duke@435 807 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 808 // are both hugely positive.
duke@435 809 //
duke@435 810 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 811 // all, since the difference of two non-negatives is always
duke@435 812 // representable. Whenever Java methods must perform the equivalent
duke@435 813 // check they generally use Plan B instead of Plan A.
duke@435 814 // For the moment we use Plan A.
duke@435 815 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 816 Node* subseq_length,
duke@435 817 Node* array_length,
duke@435 818 RegionNode* region) {
duke@435 819 if (stopped())
duke@435 820 return NULL; // already stopped
duke@435 821 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
kvn@3407 822 if (zero_offset && subseq_length->eqv_uncast(array_length))
duke@435 823 return NULL; // common case of whole-array copy
duke@435 824 Node* last = subseq_length;
duke@435 825 if (!zero_offset) // last += offset
duke@435 826 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 827 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 828 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 829 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 830 return is_over;
duke@435 831 }
duke@435 832
duke@435 833
duke@435 834 //--------------------------generate_current_thread--------------------
duke@435 835 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 836 ciKlass* thread_klass = env()->Thread_klass();
duke@435 837 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 838 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 839 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 840 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 841 tls_output = thread;
duke@435 842 return threadObj;
duke@435 843 }
duke@435 844
duke@435 845
kvn@1421 846 //------------------------------make_string_method_node------------------------
kvn@1421 847 // Helper method for String intrinsic finctions.
kvn@1421 848 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
kvn@1421 849 const int value_offset = java_lang_String::value_offset_in_bytes();
kvn@1421 850 const int count_offset = java_lang_String::count_offset_in_bytes();
kvn@1421 851 const int offset_offset = java_lang_String::offset_offset_in_bytes();
kvn@1421 852
kvn@1421 853 Node* no_ctrl = NULL;
kvn@1421 854
kvn@1421 855 ciInstanceKlass* klass = env()->String_klass();
never@1851 856 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@1421 857
kvn@1421 858 const TypeAryPtr* value_type =
kvn@1421 859 TypeAryPtr::make(TypePtr::NotNull,
kvn@1421 860 TypeAry::make(TypeInt::CHAR,TypeInt::POS),
kvn@1421 861 ciTypeArrayKlass::make(T_CHAR), true, 0);
kvn@1421 862
kvn@1421 863 // Get start addr of string and substring
kvn@1421 864 Node* str1_valuea = basic_plus_adr(str1, str1, value_offset);
kvn@1421 865 Node* str1_value = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
kvn@1421 866 Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
kvn@1421 867 Node* str1_offset = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
kvn@1421 868 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 869
kvn@1421 870 Node* str2_valuea = basic_plus_adr(str2, str2, value_offset);
kvn@2869 871 Node* str2_value = make_load(no_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
kvn@1421 872 Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
kvn@2869 873 Node* str2_offset = make_load(no_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
kvn@1421 874 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 875
kvn@1421 876 Node* result = NULL;
kvn@1421 877 switch (opcode) {
kvn@1421 878 case Op_StrIndexOf:
kvn@1421 879 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 880 str1_start, cnt1, str2_start, cnt2);
kvn@1421 881 break;
kvn@1421 882 case Op_StrComp:
kvn@1421 883 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 884 str1_start, cnt1, str2_start, cnt2);
kvn@1421 885 break;
kvn@1421 886 case Op_StrEquals:
kvn@1421 887 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 888 str1_start, str2_start, cnt1);
kvn@1421 889 break;
kvn@1421 890 default:
kvn@1421 891 ShouldNotReachHere();
kvn@1421 892 return NULL;
kvn@1421 893 }
kvn@1421 894
kvn@1421 895 // All these intrinsics have checks.
kvn@1421 896 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 897
kvn@1421 898 return _gvn.transform(result);
kvn@1421 899 }
kvn@1421 900
duke@435 901 //------------------------------inline_string_compareTo------------------------
duke@435 902 bool LibraryCallKit::inline_string_compareTo() {
duke@435 903
cfang@1116 904 if (!Matcher::has_match_rule(Op_StrComp)) return false;
cfang@1116 905
duke@435 906 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 907 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 908 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 909
duke@435 910 _sp += 2;
duke@435 911 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 912 Node *receiver = pop();
duke@435 913
duke@435 914 // Null check on self without removing any arguments. The argument
duke@435 915 // null check technically happens in the wrong place, which can lead to
duke@435 916 // invalid stack traces when string compare is inlined into a method
duke@435 917 // which handles NullPointerExceptions.
duke@435 918 _sp += 2;
duke@435 919 receiver = do_null_check(receiver, T_OBJECT);
duke@435 920 argument = do_null_check(argument, T_OBJECT);
duke@435 921 _sp -= 2;
duke@435 922 if (stopped()) {
duke@435 923 return true;
duke@435 924 }
duke@435 925
duke@435 926 ciInstanceKlass* klass = env()->String_klass();
never@1851 927 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@1421 928 Node* no_ctrl = NULL;
kvn@1421 929
kvn@1421 930 // Get counts for string and argument
kvn@1421 931 Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 932 Node* receiver_cnt = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 933
kvn@1421 934 Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 935 Node* argument_cnt = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 936
kvn@1421 937 Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
duke@435 938 push(compare);
duke@435 939 return true;
duke@435 940 }
duke@435 941
cfang@1116 942 //------------------------------inline_string_equals------------------------
cfang@1116 943 bool LibraryCallKit::inline_string_equals() {
cfang@1116 944
cfang@1116 945 if (!Matcher::has_match_rule(Op_StrEquals)) return false;
cfang@1116 946
cfang@1116 947 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 948 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 949 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 950
jrose@2101 951 int nargs = 2;
jrose@2101 952 _sp += nargs;
cfang@1116 953 Node* argument = pop(); // pop non-receiver first: it was pushed second
cfang@1116 954 Node* receiver = pop();
cfang@1116 955
cfang@1116 956 // Null check on self without removing any arguments. The argument
cfang@1116 957 // null check technically happens in the wrong place, which can lead to
cfang@1116 958 // invalid stack traces when string compare is inlined into a method
cfang@1116 959 // which handles NullPointerExceptions.
jrose@2101 960 _sp += nargs;
cfang@1116 961 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 962 //should not do null check for argument for String.equals(), because spec
cfang@1116 963 //allows to specify NULL as argument.
jrose@2101 964 _sp -= nargs;
cfang@1116 965
cfang@1116 966 if (stopped()) {
cfang@1116 967 return true;
cfang@1116 968 }
cfang@1116 969
kvn@1421 970 // paths (plus control) merge
kvn@1421 971 RegionNode* region = new (C, 5) RegionNode(5);
kvn@1421 972 Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
kvn@1421 973
kvn@1421 974 // does source == target string?
kvn@1421 975 Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
kvn@1421 976 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
kvn@1421 977
kvn@1421 978 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 979 if (if_eq != NULL) {
kvn@1421 980 // receiver == argument
kvn@1421 981 phi->init_req(2, intcon(1));
kvn@1421 982 region->init_req(2, if_eq);
kvn@1421 983 }
kvn@1421 984
cfang@1116 985 // get String klass for instanceOf
cfang@1116 986 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 987
kvn@1421 988 if (!stopped()) {
jrose@2101 989 _sp += nargs; // gen_instanceof might do an uncommon trap
kvn@1421 990 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
jrose@2101 991 _sp -= nargs;
kvn@1421 992 Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
kvn@1421 993 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@1421 994
kvn@1421 995 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 996 //instanceOf == true, fallthrough
kvn@1421 997
kvn@1421 998 if (inst_false != NULL) {
kvn@1421 999 phi->init_req(3, intcon(0));
kvn@1421 1000 region->init_req(3, inst_false);
kvn@1421 1001 }
kvn@1421 1002 }
cfang@1116 1003
never@1851 1004 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
cfang@1116 1005
kvn@1421 1006 Node* no_ctrl = NULL;
kvn@1421 1007 Node* receiver_cnt;
kvn@1421 1008 Node* argument_cnt;
kvn@1421 1009
kvn@1421 1010 if (!stopped()) {
never@1851 1011 // Properly cast the argument to String
never@1851 1012 argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
kvn@2869 1013 // This path is taken only when argument's type is String:NotNull.
kvn@2869 1014 argument = cast_not_null(argument, false);
never@1851 1015
kvn@1421 1016 // Get counts for string and argument
kvn@1421 1017 Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 1018 receiver_cnt = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1019
kvn@1421 1020 Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@2869 1021 argument_cnt = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1022
kvn@1421 1023 // Check for receiver count != argument count
kvn@1421 1024 Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
kvn@1421 1025 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
kvn@1421 1026 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 1027 if (if_ne != NULL) {
kvn@1421 1028 phi->init_req(4, intcon(0));
kvn@1421 1029 region->init_req(4, if_ne);
kvn@1421 1030 }
kvn@1421 1031 }
kvn@1421 1032
kvn@1421 1033 // Check for count == 0 is done by mach node StrEquals.
kvn@1421 1034
kvn@1421 1035 if (!stopped()) {
kvn@1421 1036 Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
kvn@1421 1037 phi->init_req(1, equals);
kvn@1421 1038 region->init_req(1, control());
kvn@1421 1039 }
cfang@1116 1040
cfang@1116 1041 // post merge
cfang@1116 1042 set_control(_gvn.transform(region));
cfang@1116 1043 record_for_igvn(region);
cfang@1116 1044
cfang@1116 1045 push(_gvn.transform(phi));
cfang@1116 1046
cfang@1116 1047 return true;
cfang@1116 1048 }
cfang@1116 1049
rasbold@604 1050 //------------------------------inline_array_equals----------------------------
rasbold@604 1051 bool LibraryCallKit::inline_array_equals() {
rasbold@604 1052
rasbold@609 1053 if (!Matcher::has_match_rule(Op_AryEq)) return false;
rasbold@609 1054
rasbold@604 1055 _sp += 2;
rasbold@604 1056 Node *argument2 = pop();
rasbold@604 1057 Node *argument1 = pop();
rasbold@604 1058
rasbold@604 1059 Node* equals =
kvn@1421 1060 _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 1061 argument1, argument2) );
rasbold@604 1062 push(equals);
rasbold@604 1063 return true;
rasbold@604 1064 }
rasbold@604 1065
duke@435 1066 // Java version of String.indexOf(constant string)
duke@435 1067 // class StringDecl {
duke@435 1068 // StringDecl(char[] ca) {
duke@435 1069 // offset = 0;
duke@435 1070 // count = ca.length;
duke@435 1071 // value = ca;
duke@435 1072 // }
duke@435 1073 // int offset;
duke@435 1074 // int count;
duke@435 1075 // char[] value;
duke@435 1076 // }
duke@435 1077 //
duke@435 1078 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1079 // int targetOffset, int cache_i, int md2) {
duke@435 1080 // int cache = cache_i;
duke@435 1081 // int sourceOffset = string_object.offset;
duke@435 1082 // int sourceCount = string_object.count;
duke@435 1083 // int targetCount = target_object.length;
duke@435 1084 //
duke@435 1085 // int targetCountLess1 = targetCount - 1;
duke@435 1086 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1087 //
duke@435 1088 // char[] source = string_object.value;
duke@435 1089 // char[] target = target_object;
duke@435 1090 // int lastChar = target[targetCountLess1];
duke@435 1091 //
duke@435 1092 // outer_loop:
duke@435 1093 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1094 // int src = source[i + targetCountLess1];
duke@435 1095 // if (src == lastChar) {
duke@435 1096 // // With random strings and a 4-character alphabet,
duke@435 1097 // // reverse matching at this point sets up 0.8% fewer
duke@435 1098 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1099 // // Since those probes are nearer the lastChar probe,
duke@435 1100 // // there is may be a net D$ win with reverse matching.
duke@435 1101 // // But, reversing loop inhibits unroll of inner loop
duke@435 1102 // // for unknown reason. So, does running outer loop from
duke@435 1103 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1104 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1105 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1106 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1107 // if (md2 < j+1) {
duke@435 1108 // i += j+1;
duke@435 1109 // continue outer_loop;
duke@435 1110 // }
duke@435 1111 // }
duke@435 1112 // i += md2;
duke@435 1113 // continue outer_loop;
duke@435 1114 // }
duke@435 1115 // }
duke@435 1116 // return i - sourceOffset;
duke@435 1117 // }
duke@435 1118 // if ((cache & (1 << src)) == 0) {
duke@435 1119 // i += targetCountLess1;
duke@435 1120 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1121 // i++;
duke@435 1122 // }
duke@435 1123 // return -1;
duke@435 1124 // }
duke@435 1125
duke@435 1126 //------------------------------string_indexOf------------------------
duke@435 1127 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1128 jint cache_i, jint md2_i) {
duke@435 1129
duke@435 1130 Node* no_ctrl = NULL;
duke@435 1131 float likely = PROB_LIKELY(0.9);
duke@435 1132 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1133
kvn@2665 1134 const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
kvn@2665 1135
duke@435 1136 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 1137 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 1138 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 1139
duke@435 1140 ciInstanceKlass* klass = env()->String_klass();
never@1851 1141 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
duke@435 1142 const TypeAryPtr* source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
duke@435 1143
duke@435 1144 Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
duke@435 1145 Node* sourceOffset = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
duke@435 1146 Node* sourceCounta = basic_plus_adr(string_object, string_object, count_offset);
duke@435 1147 Node* sourceCount = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
duke@435 1148 Node* sourcea = basic_plus_adr(string_object, string_object, value_offset);
duke@435 1149 Node* source = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
duke@435 1150
jcoomes@2661 1151 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
duke@435 1152 jint target_length = target_array->length();
duke@435 1153 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1154 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1155
kvn@2726 1156 IdealKit kit(this, false, true);
duke@435 1157 #define __ kit.
duke@435 1158 Node* zero = __ ConI(0);
duke@435 1159 Node* one = __ ConI(1);
duke@435 1160 Node* cache = __ ConI(cache_i);
duke@435 1161 Node* md2 = __ ConI(md2_i);
duke@435 1162 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1163 Node* targetCount = __ ConI(target_length);
duke@435 1164 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1165 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1166 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1167
kvn@1286 1168 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1169 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1170 Node* return_ = __ make_label(1);
duke@435 1171
duke@435 1172 __ set(rtn,__ ConI(-1));
kvn@2665 1173 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1174 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1175 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1176 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1177 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
kvn@2665 1178 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1179 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1180 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1181 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1182 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1183 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1184 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1185 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1186 __ increment(i, __ AddI(__ value(j), one));
duke@435 1187 __ goto_(outer_loop);
duke@435 1188 } __ end_if(); __ dead(j);
duke@435 1189 }__ end_if(); __ dead(j);
duke@435 1190 __ increment(i, md2);
duke@435 1191 __ goto_(outer_loop);
duke@435 1192 }__ end_if();
duke@435 1193 __ increment(j, one);
duke@435 1194 }__ end_loop(); __ dead(j);
duke@435 1195 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1196 __ goto_(return_);
duke@435 1197 }__ end_if();
duke@435 1198 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1199 __ increment(i, targetCountLess1);
duke@435 1200 }__ end_if();
duke@435 1201 __ increment(i, one);
duke@435 1202 __ bind(outer_loop);
duke@435 1203 }__ end_loop(); __ dead(i);
duke@435 1204 __ bind(return_);
kvn@1286 1205
kvn@1286 1206 // Final sync IdealKit and GraphKit.
kvn@2726 1207 final_sync(kit);
duke@435 1208 Node* result = __ value(rtn);
duke@435 1209 #undef __
duke@435 1210 C->set_has_loops(true);
duke@435 1211 return result;
duke@435 1212 }
duke@435 1213
duke@435 1214 //------------------------------inline_string_indexOf------------------------
duke@435 1215 bool LibraryCallKit::inline_string_indexOf() {
duke@435 1216
cfang@1116 1217 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 1218 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 1219 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 1220
duke@435 1221 _sp += 2;
duke@435 1222 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 1223 Node *receiver = pop();
duke@435 1224
cfang@1116 1225 Node* result;
iveresov@1859 1226 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1227 // the load doesn't cross into the uncommited space.
kvn@2602 1228 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1229 UseSSE42Intrinsics) {
cfang@1116 1230 // Generate SSE4.2 version of indexOf
cfang@1116 1231 // We currently only have match rules that use SSE4.2
cfang@1116 1232
cfang@1116 1233 // Null check on self without removing any arguments. The argument
cfang@1116 1234 // null check technically happens in the wrong place, which can lead to
cfang@1116 1235 // invalid stack traces when string compare is inlined into a method
cfang@1116 1236 // which handles NullPointerExceptions.
cfang@1116 1237 _sp += 2;
cfang@1116 1238 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1239 argument = do_null_check(argument, T_OBJECT);
cfang@1116 1240 _sp -= 2;
cfang@1116 1241
cfang@1116 1242 if (stopped()) {
cfang@1116 1243 return true;
cfang@1116 1244 }
cfang@1116 1245
kvn@2602 1246 ciInstanceKlass* str_klass = env()->String_klass();
kvn@2602 1247 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
kvn@2602 1248
kvn@1421 1249 // Make the merge point
kvn@2602 1250 RegionNode* result_rgn = new (C, 4) RegionNode(4);
kvn@2602 1251 Node* result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1252 Node* no_ctrl = NULL;
kvn@1421 1253
kvn@1421 1254 // Get counts for string and substr
kvn@1421 1255 Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 1256 Node* source_cnt = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1257
kvn@1421 1258 Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 1259 Node* substr_cnt = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1260
kvn@1421 1261 // Check for substr count > string count
kvn@1421 1262 Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
kvn@1421 1263 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1264 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1265 if (if_gt != NULL) {
kvn@1421 1266 result_phi->init_req(2, intcon(-1));
kvn@1421 1267 result_rgn->init_req(2, if_gt);
kvn@1421 1268 }
kvn@1421 1269
kvn@1421 1270 if (!stopped()) {
kvn@2602 1271 // Check for substr count == 0
kvn@2602 1272 cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
kvn@2602 1273 bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
kvn@2602 1274 Node* if_zero = generate_slow_guard(bol, NULL);
kvn@2602 1275 if (if_zero != NULL) {
kvn@2602 1276 result_phi->init_req(3, intcon(0));
kvn@2602 1277 result_rgn->init_req(3, if_zero);
kvn@2602 1278 }
kvn@2602 1279 }
kvn@2602 1280
kvn@2602 1281 if (!stopped()) {
kvn@1421 1282 result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
kvn@1421 1283 result_phi->init_req(1, result);
kvn@1421 1284 result_rgn->init_req(1, control());
kvn@1421 1285 }
kvn@1421 1286 set_control(_gvn.transform(result_rgn));
kvn@1421 1287 record_for_igvn(result_rgn);
kvn@1421 1288 result = _gvn.transform(result_phi);
kvn@1421 1289
kvn@2602 1290 } else { // Use LibraryCallKit::string_indexOf
kvn@2602 1291 // don't intrinsify if argument isn't a constant string.
cfang@1116 1292 if (!argument->is_Con()) {
cfang@1116 1293 return false;
cfang@1116 1294 }
cfang@1116 1295 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
cfang@1116 1296 if (str_type == NULL) {
cfang@1116 1297 return false;
cfang@1116 1298 }
cfang@1116 1299 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1300 ciObject* str_const = str_type->const_oop();
cfang@1116 1301 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1302 return false;
cfang@1116 1303 }
cfang@1116 1304 ciInstance* str = str_const->as_instance();
cfang@1116 1305 assert(str != NULL, "must be instance");
cfang@1116 1306
cfang@1116 1307 ciObject* v = str->field_value_by_offset(value_offset).as_object();
cfang@1116 1308 int o = str->field_value_by_offset(offset_offset).as_int();
cfang@1116 1309 int c = str->field_value_by_offset(count_offset).as_int();
cfang@1116 1310 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1311
cfang@1116 1312 // constant strings have no offset and count == length which
cfang@1116 1313 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1314 if (o != 0 || c != pat->length()) {
cfang@1116 1315 return false;
cfang@1116 1316 }
cfang@1116 1317
cfang@1116 1318 // Null check on self without removing any arguments. The argument
cfang@1116 1319 // null check technically happens in the wrong place, which can lead to
cfang@1116 1320 // invalid stack traces when string compare is inlined into a method
cfang@1116 1321 // which handles NullPointerExceptions.
cfang@1116 1322 _sp += 2;
cfang@1116 1323 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1324 // No null check on the argument is needed since it's a constant String oop.
cfang@1116 1325 _sp -= 2;
cfang@1116 1326 if (stopped()) {
kvn@2602 1327 return true;
cfang@1116 1328 }
cfang@1116 1329
cfang@1116 1330 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1331 if (c == 0) {
cfang@1116 1332 push(intcon(0));
cfang@1116 1333 return true;
cfang@1116 1334 }
cfang@1116 1335
cfang@1116 1336 // Generate default indexOf
cfang@1116 1337 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1338 int cache = 0;
cfang@1116 1339 int i;
cfang@1116 1340 for (i = 0; i < c - 1; i++) {
cfang@1116 1341 assert(i < pat->length(), "out of range");
cfang@1116 1342 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1343 }
cfang@1116 1344
cfang@1116 1345 int md2 = c;
cfang@1116 1346 for (i = 0; i < c - 1; i++) {
cfang@1116 1347 assert(i < pat->length(), "out of range");
cfang@1116 1348 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1349 md2 = (c - 1) - i;
cfang@1116 1350 }
cfang@1116 1351 }
cfang@1116 1352
cfang@1116 1353 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1354 }
cfang@1116 1355
duke@435 1356 push(result);
duke@435 1357 return true;
duke@435 1358 }
duke@435 1359
duke@435 1360 //--------------------------pop_math_arg--------------------------------
duke@435 1361 // Pop a double argument to a math function from the stack
duke@435 1362 // rounding it if necessary.
duke@435 1363 Node * LibraryCallKit::pop_math_arg() {
duke@435 1364 Node *arg = pop_pair();
duke@435 1365 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1366 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1367 return arg;
duke@435 1368 }
duke@435 1369
duke@435 1370 //------------------------------inline_trig----------------------------------
duke@435 1371 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1372 // argument reduction which will turn into a fast/slow diamond.
duke@435 1373 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1374 _sp += arg_size(); // restore stack pointer
duke@435 1375 Node* arg = pop_math_arg();
duke@435 1376 Node* trig = NULL;
duke@435 1377
duke@435 1378 switch (id) {
duke@435 1379 case vmIntrinsics::_dsin:
duke@435 1380 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1381 break;
duke@435 1382 case vmIntrinsics::_dcos:
duke@435 1383 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1384 break;
duke@435 1385 case vmIntrinsics::_dtan:
duke@435 1386 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1387 break;
duke@435 1388 default:
duke@435 1389 assert(false, "bad intrinsic was passed in");
duke@435 1390 return false;
duke@435 1391 }
duke@435 1392
duke@435 1393 // Rounding required? Check for argument reduction!
duke@435 1394 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1395
duke@435 1396 static const double pi_4 = 0.7853981633974483;
duke@435 1397 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1398 // pi/2 in 80-bit extended precision
duke@435 1399 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1400 // -pi/2 in 80-bit extended precision
duke@435 1401 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1402 // Cutoff value for using this argument reduction technique
duke@435 1403 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1404 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1405
duke@435 1406 // Pseudocode for sin:
duke@435 1407 // if (x <= Math.PI / 4.0) {
duke@435 1408 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1409 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1410 // } else {
duke@435 1411 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1412 // }
duke@435 1413 // return StrictMath.sin(x);
duke@435 1414
duke@435 1415 // Pseudocode for cos:
duke@435 1416 // if (x <= Math.PI / 4.0) {
duke@435 1417 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1418 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1419 // } else {
duke@435 1420 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1421 // }
duke@435 1422 // return StrictMath.cos(x);
duke@435 1423
duke@435 1424 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1425 // requires a special machine instruction to load it. Instead we'll try
duke@435 1426 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1427 // probably do the math inside the SIN encoding.
duke@435 1428
duke@435 1429 // Make the merge point
duke@435 1430 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1431 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1432
duke@435 1433 // Flatten arg so we need only 1 test
duke@435 1434 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1435 // Node for PI/4 constant
duke@435 1436 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1437 // Check PI/4 : abs(arg)
duke@435 1438 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1439 // Check: If PI/4 < abs(arg) then go slow
duke@435 1440 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1441 // Branch either way
duke@435 1442 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1443 set_control(opt_iff(r,iff));
duke@435 1444
duke@435 1445 // Set fast path result
duke@435 1446 phi->init_req(2,trig);
duke@435 1447
duke@435 1448 // Slow path - non-blocking leaf call
duke@435 1449 Node* call = NULL;
duke@435 1450 switch (id) {
duke@435 1451 case vmIntrinsics::_dsin:
duke@435 1452 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1453 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1454 "Sin", NULL, arg, top());
duke@435 1455 break;
duke@435 1456 case vmIntrinsics::_dcos:
duke@435 1457 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1458 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1459 "Cos", NULL, arg, top());
duke@435 1460 break;
duke@435 1461 case vmIntrinsics::_dtan:
duke@435 1462 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1463 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1464 "Tan", NULL, arg, top());
duke@435 1465 break;
duke@435 1466 }
duke@435 1467 assert(control()->in(0) == call, "");
duke@435 1468 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1469 r->init_req(1,control());
duke@435 1470 phi->init_req(1,slow_result);
duke@435 1471
duke@435 1472 // Post-merge
duke@435 1473 set_control(_gvn.transform(r));
duke@435 1474 record_for_igvn(r);
duke@435 1475 trig = _gvn.transform(phi);
duke@435 1476
duke@435 1477 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1478 }
duke@435 1479 // Push result back on JVM stack
duke@435 1480 push_pair(trig);
duke@435 1481 return true;
duke@435 1482 }
duke@435 1483
duke@435 1484 //------------------------------inline_sqrt-------------------------------------
duke@435 1485 // Inline square root instruction, if possible.
duke@435 1486 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1487 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1488 _sp += arg_size(); // restore stack pointer
duke@435 1489 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1490 return true;
duke@435 1491 }
duke@435 1492
duke@435 1493 //------------------------------inline_abs-------------------------------------
duke@435 1494 // Inline absolute value instruction, if possible.
duke@435 1495 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1496 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1497 _sp += arg_size(); // restore stack pointer
duke@435 1498 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1499 return true;
duke@435 1500 }
duke@435 1501
duke@435 1502 //------------------------------inline_exp-------------------------------------
duke@435 1503 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1504 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1505 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1506 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1507
duke@435 1508 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1509 // every again. NaN results requires StrictMath.exp handling.
duke@435 1510 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1511
duke@435 1512 // Do not intrinsify on older platforms which lack cmove.
duke@435 1513 if (ConditionalMoveLimit == 0) return false;
duke@435 1514
duke@435 1515 _sp += arg_size(); // restore stack pointer
duke@435 1516 Node *x = pop_math_arg();
duke@435 1517 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1518
duke@435 1519 //-------------------
duke@435 1520 //result=(result.isNaN())? StrictMath::exp():result;
duke@435 1521 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1522 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1523 // Build the boolean node
duke@435 1524 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1525
duke@435 1526 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1527 // End the current control-flow path
duke@435 1528 push_pair(x);
duke@435 1529 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
duke@435 1530 // to handle. Recompile without intrinsifying Math.exp
duke@435 1531 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1532 Deoptimization::Action_make_not_entrant);
duke@435 1533 }
duke@435 1534
duke@435 1535 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1536
duke@435 1537 push_pair(result);
duke@435 1538
duke@435 1539 return true;
duke@435 1540 }
duke@435 1541
duke@435 1542 //------------------------------inline_pow-------------------------------------
duke@435 1543 // Inline power instructions, if possible.
duke@435 1544 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1545 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1546
duke@435 1547 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1548 // every again. NaN results requires StrictMath.pow handling.
duke@435 1549 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1550
duke@435 1551 // Do not intrinsify on older platforms which lack cmove.
duke@435 1552 if (ConditionalMoveLimit == 0) return false;
duke@435 1553
duke@435 1554 // Pseudocode for pow
duke@435 1555 // if (x <= 0.0) {
duke@435 1556 // if ((double)((int)y)==y) { // if y is int
duke@435 1557 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1558 // } else {
duke@435 1559 // result = NaN;
duke@435 1560 // }
duke@435 1561 // } else {
duke@435 1562 // result = DPow(x,y);
duke@435 1563 // }
duke@435 1564 // if (result != result)? {
twisti@1040 1565 // uncommon_trap();
duke@435 1566 // }
duke@435 1567 // return result;
duke@435 1568
duke@435 1569 _sp += arg_size(); // restore stack pointer
duke@435 1570 Node* y = pop_math_arg();
duke@435 1571 Node* x = pop_math_arg();
duke@435 1572
duke@435 1573 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1574
duke@435 1575 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
duke@435 1576 // inside of something) then skip the fancy tests and just check for
duke@435 1577 // NaN result.
duke@435 1578 Node *result = NULL;
duke@435 1579 if( jvms()->depth() >= 1 ) {
duke@435 1580 result = fast_result;
duke@435 1581 } else {
duke@435 1582
duke@435 1583 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1584 // There are four possible paths to region node and phi node
duke@435 1585 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1586 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1587
duke@435 1588 // Build the first if node: if (x <= 0.0)
duke@435 1589 // Node for 0 constant
duke@435 1590 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1591 // Check x:0
duke@435 1592 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1593 // Check: If (x<=0) then go complex path
duke@435 1594 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1595 // Branch either way
duke@435 1596 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1597 Node *opt_test = _gvn.transform(if1);
duke@435 1598 //assert( opt_test->is_If(), "Expect an IfNode");
duke@435 1599 IfNode *opt_if1 = (IfNode*)opt_test;
duke@435 1600 // Fast path taken; set region slot 3
duke@435 1601 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
duke@435 1602 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1603
duke@435 1604 // Fast path not-taken, i.e. slow path
duke@435 1605 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
duke@435 1606
duke@435 1607 // Set fast path result
duke@435 1608 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
duke@435 1609 phi->init_req(3, fast_result);
duke@435 1610
duke@435 1611 // Complex path
duke@435 1612 // Build the second if node (if y is int)
duke@435 1613 // Node for (int)y
duke@435 1614 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
duke@435 1615 // Node for (double)((int) y)
duke@435 1616 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
duke@435 1617 // Check (double)((int) y) : y
duke@435 1618 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
duke@435 1619 // Check if (y isn't int) then go to slow path
duke@435 1620
duke@435 1621 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
twisti@1040 1622 // Branch either way
duke@435 1623 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1624 Node *slow_path = opt_iff(r,if2); // Set region path 2
duke@435 1625
duke@435 1626 // Calculate DPow(abs(x), y)*(1 & (int)y)
duke@435 1627 // Node for constant 1
duke@435 1628 Node *conone = intcon(1);
duke@435 1629 // 1& (int)y
duke@435 1630 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
duke@435 1631 // zero node
duke@435 1632 Node *conzero = intcon(0);
duke@435 1633 // Check (1&(int)y)==0?
duke@435 1634 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
duke@435 1635 // Check if (1&(int)y)!=0?, if so the result is negative
duke@435 1636 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1637 // abs(x)
duke@435 1638 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1639 // abs(x)^y
duke@435 1640 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
duke@435 1641 // -abs(x)^y
duke@435 1642 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
duke@435 1643 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1644 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
duke@435 1645 // Set complex path fast result
duke@435 1646 phi->init_req(2, signresult);
duke@435 1647
duke@435 1648 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1649 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1650 r->init_req(1,slow_path);
duke@435 1651 phi->init_req(1,slow_result);
duke@435 1652
duke@435 1653 // Post merge
duke@435 1654 set_control(_gvn.transform(r));
duke@435 1655 record_for_igvn(r);
duke@435 1656 result=_gvn.transform(phi);
duke@435 1657 }
duke@435 1658
duke@435 1659 //-------------------
duke@435 1660 //result=(result.isNaN())? uncommon_trap():result;
duke@435 1661 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1662 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1663 // Build the boolean node
duke@435 1664 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1665
duke@435 1666 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1667 // End the current control-flow path
duke@435 1668 push_pair(x);
duke@435 1669 push_pair(y);
duke@435 1670 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
duke@435 1671 // to handle. Recompile without intrinsifying Math.pow.
duke@435 1672 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1673 Deoptimization::Action_make_not_entrant);
duke@435 1674 }
duke@435 1675
duke@435 1676 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1677
duke@435 1678 push_pair(result);
duke@435 1679
duke@435 1680 return true;
duke@435 1681 }
duke@435 1682
duke@435 1683 //------------------------------inline_trans-------------------------------------
duke@435 1684 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1685 // these right, no funny corner cases missed.
duke@435 1686 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1687 _sp += arg_size(); // restore stack pointer
duke@435 1688 Node* arg = pop_math_arg();
duke@435 1689 Node* trans = NULL;
duke@435 1690
duke@435 1691 switch (id) {
duke@435 1692 case vmIntrinsics::_dlog:
duke@435 1693 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1694 break;
duke@435 1695 case vmIntrinsics::_dlog10:
duke@435 1696 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1697 break;
duke@435 1698 default:
duke@435 1699 assert(false, "bad intrinsic was passed in");
duke@435 1700 return false;
duke@435 1701 }
duke@435 1702
duke@435 1703 // Push result back on JVM stack
duke@435 1704 push_pair(trans);
duke@435 1705 return true;
duke@435 1706 }
duke@435 1707
duke@435 1708 //------------------------------runtime_math-----------------------------
duke@435 1709 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1710 Node* a = NULL;
duke@435 1711 Node* b = NULL;
duke@435 1712
duke@435 1713 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1714 "must be (DD)D or (D)D type");
duke@435 1715
duke@435 1716 // Inputs
duke@435 1717 _sp += arg_size(); // restore stack pointer
duke@435 1718 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1719 b = pop_math_arg();
duke@435 1720 }
duke@435 1721 a = pop_math_arg();
duke@435 1722
duke@435 1723 const TypePtr* no_memory_effects = NULL;
duke@435 1724 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1725 no_memory_effects,
duke@435 1726 a, top(), b, b ? top() : NULL);
duke@435 1727 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1728 #ifdef ASSERT
duke@435 1729 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1730 assert(value_top == top(), "second value must be top");
duke@435 1731 #endif
duke@435 1732
duke@435 1733 push_pair(value);
duke@435 1734 return true;
duke@435 1735 }
duke@435 1736
duke@435 1737 //------------------------------inline_math_native-----------------------------
duke@435 1738 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1739 switch (id) {
duke@435 1740 // These intrinsics are not properly supported on all hardware
duke@435 1741 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1742 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1743 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1744 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1745 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1746 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1747
duke@435 1748 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1749 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1750 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1751 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1752
duke@435 1753 // These intrinsics are supported on all hardware
duke@435 1754 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1755 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1756
duke@435 1757 // These intrinsics don't work on X86. The ad implementation doesn't
duke@435 1758 // handle NaN's properly. Instead of returning infinity, the ad
duke@435 1759 // implementation returns a NaN on overflow. See bug: 6304089
duke@435 1760 // Once the ad implementations are fixed, change the code below
duke@435 1761 // to match the intrinsics above
duke@435 1762
duke@435 1763 case vmIntrinsics::_dexp: return
duke@435 1764 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1765 case vmIntrinsics::_dpow: return
duke@435 1766 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1767
duke@435 1768 // These intrinsics are not yet correctly implemented
duke@435 1769 case vmIntrinsics::_datan2:
duke@435 1770 return false;
duke@435 1771
duke@435 1772 default:
duke@435 1773 ShouldNotReachHere();
duke@435 1774 return false;
duke@435 1775 }
duke@435 1776 }
duke@435 1777
duke@435 1778 static bool is_simple_name(Node* n) {
duke@435 1779 return (n->req() == 1 // constant
duke@435 1780 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1781 || n->is_Proj() // parameter or return value
duke@435 1782 || n->is_Phi() // local of some sort
duke@435 1783 );
duke@435 1784 }
duke@435 1785
duke@435 1786 //----------------------------inline_min_max-----------------------------------
duke@435 1787 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1788 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1789
duke@435 1790 return true;
duke@435 1791 }
duke@435 1792
duke@435 1793 Node*
duke@435 1794 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1795 // These are the candidate return value:
duke@435 1796 Node* xvalue = x0;
duke@435 1797 Node* yvalue = y0;
duke@435 1798
duke@435 1799 if (xvalue == yvalue) {
duke@435 1800 return xvalue;
duke@435 1801 }
duke@435 1802
duke@435 1803 bool want_max = (id == vmIntrinsics::_max);
duke@435 1804
duke@435 1805 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1806 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1807 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1808 // This is not really necessary, but it is consistent with a
duke@435 1809 // hypothetical MaxINode::Value method:
duke@435 1810 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1811
duke@435 1812 // %%% This folding logic should (ideally) be in a different place.
duke@435 1813 // Some should be inside IfNode, and there to be a more reliable
duke@435 1814 // transformation of ?: style patterns into cmoves. We also want
duke@435 1815 // more powerful optimizations around cmove and min/max.
duke@435 1816
duke@435 1817 // Try to find a dominating comparison of these guys.
duke@435 1818 // It can simplify the index computation for Arrays.copyOf
duke@435 1819 // and similar uses of System.arraycopy.
duke@435 1820 // First, compute the normalized version of CmpI(x, y).
duke@435 1821 int cmp_op = Op_CmpI;
duke@435 1822 Node* xkey = xvalue;
duke@435 1823 Node* ykey = yvalue;
duke@435 1824 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1825 if (ideal_cmpxy->is_Cmp()) {
duke@435 1826 // E.g., if we have CmpI(length - offset, count),
duke@435 1827 // it might idealize to CmpI(length, count + offset)
duke@435 1828 cmp_op = ideal_cmpxy->Opcode();
duke@435 1829 xkey = ideal_cmpxy->in(1);
duke@435 1830 ykey = ideal_cmpxy->in(2);
duke@435 1831 }
duke@435 1832
duke@435 1833 // Start by locating any relevant comparisons.
duke@435 1834 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1835 Node* cmpxy = NULL;
duke@435 1836 Node* cmpyx = NULL;
duke@435 1837 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1838 Node* cmp = start_from->fast_out(k);
duke@435 1839 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1840 cmp->in(0) == NULL && // must be context-independent
duke@435 1841 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1842 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1843 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1844 }
duke@435 1845 }
duke@435 1846
duke@435 1847 const int NCMPS = 2;
duke@435 1848 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1849 int cmpn;
duke@435 1850 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1851 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1852 }
duke@435 1853 if (cmpn < NCMPS) {
duke@435 1854 // Look for a dominating test that tells us the min and max.
duke@435 1855 int depth = 0; // Limit search depth for speed
duke@435 1856 Node* dom = control();
duke@435 1857 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1858 if (++depth >= 100) break;
duke@435 1859 Node* ifproj = dom;
duke@435 1860 if (!ifproj->is_Proj()) continue;
duke@435 1861 Node* iff = ifproj->in(0);
duke@435 1862 if (!iff->is_If()) continue;
duke@435 1863 Node* bol = iff->in(1);
duke@435 1864 if (!bol->is_Bool()) continue;
duke@435 1865 Node* cmp = bol->in(1);
duke@435 1866 if (cmp == NULL) continue;
duke@435 1867 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1868 if (cmps[cmpn] == cmp) break;
duke@435 1869 if (cmpn == NCMPS) continue;
duke@435 1870 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1871 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1872 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1873 // At this point, we know that 'x btest y' is true.
duke@435 1874 switch (btest) {
duke@435 1875 case BoolTest::eq:
duke@435 1876 // They are proven equal, so we can collapse the min/max.
duke@435 1877 // Either value is the answer. Choose the simpler.
duke@435 1878 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1879 return yvalue;
duke@435 1880 return xvalue;
duke@435 1881 case BoolTest::lt: // x < y
duke@435 1882 case BoolTest::le: // x <= y
duke@435 1883 return (want_max ? yvalue : xvalue);
duke@435 1884 case BoolTest::gt: // x > y
duke@435 1885 case BoolTest::ge: // x >= y
duke@435 1886 return (want_max ? xvalue : yvalue);
duke@435 1887 }
duke@435 1888 }
duke@435 1889 }
duke@435 1890
duke@435 1891 // We failed to find a dominating test.
duke@435 1892 // Let's pick a test that might GVN with prior tests.
duke@435 1893 Node* best_bol = NULL;
duke@435 1894 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1895 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1896 Node* cmp = cmps[cmpn];
duke@435 1897 if (cmp == NULL) continue;
duke@435 1898 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1899 Node* bol = cmp->fast_out(j);
duke@435 1900 if (!bol->is_Bool()) continue;
duke@435 1901 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1902 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1903 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1904 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1905 best_bol = bol->as_Bool();
duke@435 1906 best_btest = btest;
duke@435 1907 }
duke@435 1908 }
duke@435 1909 }
duke@435 1910
duke@435 1911 Node* answer_if_true = NULL;
duke@435 1912 Node* answer_if_false = NULL;
duke@435 1913 switch (best_btest) {
duke@435 1914 default:
duke@435 1915 if (cmpxy == NULL)
duke@435 1916 cmpxy = ideal_cmpxy;
duke@435 1917 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 1918 // and fall through:
duke@435 1919 case BoolTest::lt: // x < y
duke@435 1920 case BoolTest::le: // x <= y
duke@435 1921 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 1922 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 1923 break;
duke@435 1924 case BoolTest::gt: // x > y
duke@435 1925 case BoolTest::ge: // x >= y
duke@435 1926 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 1927 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 1928 break;
duke@435 1929 }
duke@435 1930
duke@435 1931 jint hi, lo;
duke@435 1932 if (want_max) {
duke@435 1933 // We can sharpen the minimum.
duke@435 1934 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 1935 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 1936 } else {
duke@435 1937 // We can sharpen the maximum.
duke@435 1938 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 1939 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 1940 }
duke@435 1941
duke@435 1942 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 1943 // which could hinder other optimizations.
duke@435 1944 // Since Math.min/max is often used with arraycopy, we want
duke@435 1945 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 1946 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 1947 answer_if_false, answer_if_true,
duke@435 1948 TypeInt::make(lo, hi, widen));
duke@435 1949
duke@435 1950 return _gvn.transform(cmov);
duke@435 1951
duke@435 1952 /*
duke@435 1953 // This is not as desirable as it may seem, since Min and Max
duke@435 1954 // nodes do not have a full set of optimizations.
duke@435 1955 // And they would interfere, anyway, with 'if' optimizations
duke@435 1956 // and with CMoveI canonical forms.
duke@435 1957 switch (id) {
duke@435 1958 case vmIntrinsics::_min:
duke@435 1959 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 1960 case vmIntrinsics::_max:
duke@435 1961 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 1962 default:
duke@435 1963 ShouldNotReachHere();
duke@435 1964 }
duke@435 1965 */
duke@435 1966 }
duke@435 1967
duke@435 1968 inline int
duke@435 1969 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 1970 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 1971 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 1972 if (base_type == NULL) {
duke@435 1973 // Unknown type.
duke@435 1974 return Type::AnyPtr;
duke@435 1975 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 1976 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 1977 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 1978 offset = MakeConX(0);
duke@435 1979 return Type::RawPtr;
duke@435 1980 } else if (base_type->base() == Type::RawPtr) {
duke@435 1981 return Type::RawPtr;
duke@435 1982 } else if (base_type->isa_oopptr()) {
duke@435 1983 // Base is never null => always a heap address.
duke@435 1984 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 1985 return Type::OopPtr;
duke@435 1986 }
duke@435 1987 // Offset is small => always a heap address.
duke@435 1988 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 1989 if (offset_type != NULL &&
duke@435 1990 base_type->offset() == 0 && // (should always be?)
duke@435 1991 offset_type->_lo >= 0 &&
duke@435 1992 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 1993 return Type::OopPtr;
duke@435 1994 }
duke@435 1995 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 1996 return Type::AnyPtr;
duke@435 1997 } else {
duke@435 1998 // No information:
duke@435 1999 return Type::AnyPtr;
duke@435 2000 }
duke@435 2001 }
duke@435 2002
duke@435 2003 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 2004 int kind = classify_unsafe_addr(base, offset);
duke@435 2005 if (kind == Type::RawPtr) {
duke@435 2006 return basic_plus_adr(top(), base, offset);
duke@435 2007 } else {
duke@435 2008 return basic_plus_adr(base, offset);
duke@435 2009 }
duke@435 2010 }
duke@435 2011
twisti@1210 2012 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
twisti@1210 2013 // inline int Integer.numberOfLeadingZeros(int)
twisti@1210 2014 // inline int Long.numberOfLeadingZeros(long)
twisti@1210 2015 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
twisti@1210 2016 assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
twisti@1210 2017 if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
twisti@1210 2018 if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
twisti@1210 2019 _sp += arg_size(); // restore stack pointer
twisti@1210 2020 switch (id) {
twisti@1210 2021 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 2022 push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
twisti@1210 2023 break;
twisti@1210 2024 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 2025 push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
twisti@1210 2026 break;
twisti@1210 2027 default:
twisti@1210 2028 ShouldNotReachHere();
twisti@1210 2029 }
twisti@1210 2030 return true;
twisti@1210 2031 }
twisti@1210 2032
twisti@1210 2033 //-------------------inline_numberOfTrailingZeros_int/long----------------------
twisti@1210 2034 // inline int Integer.numberOfTrailingZeros(int)
twisti@1210 2035 // inline int Long.numberOfTrailingZeros(long)
twisti@1210 2036 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
twisti@1210 2037 assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
twisti@1210 2038 if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
twisti@1210 2039 if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
twisti@1210 2040 _sp += arg_size(); // restore stack pointer
twisti@1210 2041 switch (id) {
twisti@1210 2042 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 2043 push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
twisti@1210 2044 break;
twisti@1210 2045 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 2046 push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
twisti@1210 2047 break;
twisti@1210 2048 default:
twisti@1210 2049 ShouldNotReachHere();
twisti@1210 2050 }
twisti@1210 2051 return true;
twisti@1210 2052 }
twisti@1210 2053
twisti@1078 2054 //----------------------------inline_bitCount_int/long-----------------------
twisti@1078 2055 // inline int Integer.bitCount(int)
twisti@1078 2056 // inline int Long.bitCount(long)
twisti@1078 2057 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
twisti@1078 2058 assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
twisti@1078 2059 if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
twisti@1078 2060 if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
twisti@1078 2061 _sp += arg_size(); // restore stack pointer
twisti@1078 2062 switch (id) {
twisti@1078 2063 case vmIntrinsics::_bitCount_i:
twisti@1078 2064 push(_gvn.transform(new (C, 2) PopCountINode(pop())));
twisti@1078 2065 break;
twisti@1078 2066 case vmIntrinsics::_bitCount_l:
twisti@1078 2067 push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
twisti@1078 2068 break;
twisti@1078 2069 default:
twisti@1078 2070 ShouldNotReachHere();
twisti@1078 2071 }
twisti@1078 2072 return true;
twisti@1078 2073 }
twisti@1078 2074
never@1831 2075 //----------------------------inline_reverseBytes_int/long/char/short-------------------
twisti@1040 2076 // inline Integer.reverseBytes(int)
twisti@1040 2077 // inline Long.reverseBytes(long)
never@1831 2078 // inline Character.reverseBytes(char)
never@1831 2079 // inline Short.reverseBytes(short)
duke@435 2080 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
never@1831 2081 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
never@1831 2082 id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
never@1831 2083 "not reverse Bytes");
never@1831 2084 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
never@1831 2085 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
never@1831 2086 if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
never@1831 2087 if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS)) return false;
duke@435 2088 _sp += arg_size(); // restore stack pointer
duke@435 2089 switch (id) {
duke@435 2090 case vmIntrinsics::_reverseBytes_i:
duke@435 2091 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 2092 break;
duke@435 2093 case vmIntrinsics::_reverseBytes_l:
duke@435 2094 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 2095 break;
never@1831 2096 case vmIntrinsics::_reverseBytes_c:
never@1831 2097 push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
never@1831 2098 break;
never@1831 2099 case vmIntrinsics::_reverseBytes_s:
never@1831 2100 push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
never@1831 2101 break;
duke@435 2102 default:
duke@435 2103 ;
duke@435 2104 }
duke@435 2105 return true;
duke@435 2106 }
duke@435 2107
duke@435 2108 //----------------------------inline_unsafe_access----------------------------
duke@435 2109
duke@435 2110 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2111
johnc@2781 2112 // Helper that guards and inserts a G1 pre-barrier.
johnc@2781 2113 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
johnc@2781 2114 assert(UseG1GC, "should not call this otherwise");
johnc@2781 2115
johnc@2781 2116 // We could be accessing the referent field of a reference object. If so, when G1
johnc@2781 2117 // is enabled, we need to log the value in the referent field in an SATB buffer.
johnc@2781 2118 // This routine performs some compile time filters and generates suitable
johnc@2781 2119 // runtime filters that guard the pre-barrier code.
johnc@2781 2120
johnc@2781 2121 // Some compile time checks.
johnc@2781 2122
johnc@2781 2123 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
johnc@2781 2124 const TypeX* otype = offset->find_intptr_t_type();
johnc@2781 2125 if (otype != NULL && otype->is_con() &&
johnc@2781 2126 otype->get_con() != java_lang_ref_Reference::referent_offset) {
johnc@2781 2127 // Constant offset but not the reference_offset so just return
johnc@2781 2128 return;
johnc@2781 2129 }
johnc@2781 2130
johnc@2781 2131 // We only need to generate the runtime guards for instances.
johnc@2781 2132 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
johnc@2781 2133 if (btype != NULL) {
johnc@2781 2134 if (btype->isa_aryptr()) {
johnc@2781 2135 // Array type so nothing to do
johnc@2781 2136 return;
johnc@2781 2137 }
johnc@2781 2138
johnc@2781 2139 const TypeInstPtr* itype = btype->isa_instptr();
johnc@2781 2140 if (itype != NULL) {
johnc@2781 2141 // Can the klass of base_oop be statically determined
johnc@2781 2142 // to be _not_ a sub-class of Reference?
johnc@2781 2143 ciKlass* klass = itype->klass();
johnc@2781 2144 if (klass->is_subtype_of(env()->Reference_klass()) &&
johnc@2781 2145 !env()->Reference_klass()->is_subtype_of(klass)) {
johnc@2781 2146 return;
johnc@2781 2147 }
johnc@2781 2148 }
johnc@2781 2149 }
johnc@2781 2150
johnc@2781 2151 // The compile time filters did not reject base_oop/offset so
johnc@2781 2152 // we need to generate the following runtime filters
johnc@2781 2153 //
johnc@2781 2154 // if (offset == java_lang_ref_Reference::_reference_offset) {
johnc@2781 2155 // if (base != null) {
jiangli@3526 2156 // if (instance_of(base, java.lang.ref.Reference)) {
johnc@2781 2157 // pre_barrier(_, pre_val, ...);
johnc@2781 2158 // }
johnc@2781 2159 // }
johnc@2781 2160 // }
johnc@2781 2161
johnc@2781 2162 float likely = PROB_LIKELY(0.999);
johnc@2781 2163 float unlikely = PROB_UNLIKELY(0.999);
johnc@2781 2164
johnc@2787 2165 IdealKit ideal(this);
johnc@2781 2166 #define __ ideal.
johnc@2781 2167
johnc@2786 2168 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
johnc@2781 2169
johnc@2781 2170 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
johnc@2781 2171 __ if_then(base_oop, BoolTest::ne, null(), likely); {
johnc@2781 2172
johnc@2781 2173 // Update graphKit memory and control from IdealKit.
johnc@2787 2174 sync_kit(ideal);
johnc@2781 2175
johnc@2781 2176 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
johnc@2781 2177 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
johnc@2781 2178
johnc@2781 2179 // Update IdealKit memory and control from graphKit.
johnc@2787 2180 __ sync_kit(this);
johnc@2781 2181
johnc@2781 2182 Node* one = __ ConI(1);
johnc@2781 2183
johnc@2781 2184 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
johnc@2781 2185
johnc@2781 2186 // Update graphKit from IdeakKit.
johnc@2787 2187 sync_kit(ideal);
johnc@2781 2188
johnc@2781 2189 // Use the pre-barrier to record the value in the referent field
johnc@2781 2190 pre_barrier(false /* do_load */,
johnc@2781 2191 __ ctrl(),
johnc@2790 2192 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 2193 pre_val /* pre_val */,
johnc@2781 2194 T_OBJECT);
johnc@2781 2195
johnc@2781 2196 // Update IdealKit from graphKit.
johnc@2787 2197 __ sync_kit(this);
johnc@2781 2198
johnc@2781 2199 } __ end_if(); // _ref_type != ref_none
johnc@2781 2200 } __ end_if(); // base != NULL
johnc@2781 2201 } __ end_if(); // offset == referent_offset
johnc@2781 2202
johnc@2781 2203 // Final sync IdealKit and GraphKit.
johnc@2787 2204 final_sync(ideal);
johnc@2781 2205 #undef __
johnc@2781 2206 }
johnc@2781 2207
johnc@2781 2208
duke@435 2209 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2210 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2211
duke@435 2212 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2213 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2214
duke@435 2215 #ifndef PRODUCT
duke@435 2216 {
duke@435 2217 ResourceMark rm;
duke@435 2218 // Check the signatures.
duke@435 2219 ciSignature* sig = signature();
duke@435 2220 #ifdef ASSERT
duke@435 2221 if (!is_store) {
duke@435 2222 // Object getObject(Object base, int/long offset), etc.
duke@435 2223 BasicType rtype = sig->return_type()->basic_type();
duke@435 2224 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2225 rtype = T_ADDRESS; // it is really a C void*
duke@435 2226 assert(rtype == type, "getter must return the expected value");
duke@435 2227 if (!is_native_ptr) {
duke@435 2228 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2229 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2230 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2231 } else {
duke@435 2232 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2233 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2234 }
duke@435 2235 } else {
duke@435 2236 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2237 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2238 if (!is_native_ptr) {
duke@435 2239 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2240 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2241 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2242 } else {
duke@435 2243 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2244 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2245 }
duke@435 2246 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2247 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2248 vtype = T_ADDRESS; // it is really a C void*
duke@435 2249 assert(vtype == type, "putter must accept the expected value");
duke@435 2250 }
duke@435 2251 #endif // ASSERT
duke@435 2252 }
duke@435 2253 #endif //PRODUCT
duke@435 2254
duke@435 2255 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2256
duke@435 2257 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 2258
duke@435 2259 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 2260 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
duke@435 2261
duke@435 2262 debug_only(int saved_sp = _sp);
duke@435 2263 _sp += nargs;
duke@435 2264
duke@435 2265 Node* val;
duke@435 2266 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 2267
duke@435 2268
duke@435 2269 if (is_store) {
duke@435 2270 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 2271 switch (type) {
duke@435 2272 case T_DOUBLE:
duke@435 2273 case T_LONG:
duke@435 2274 case T_ADDRESS:
duke@435 2275 val = pop_pair();
duke@435 2276 break;
duke@435 2277 default:
duke@435 2278 val = pop();
duke@435 2279 }
duke@435 2280 }
duke@435 2281
duke@435 2282 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 2283 Node *adr;
duke@435 2284 Node *heap_base_oop = top();
johnc@2781 2285 Node* offset = top();
johnc@2781 2286
duke@435 2287 if (!is_native_ptr) {
duke@435 2288 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
johnc@2781 2289 offset = pop_pair();
duke@435 2290 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2291 Node* base = pop();
duke@435 2292 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2293 // to be plain byte offsets, which are also the same as those accepted
duke@435 2294 // by oopDesc::field_base.
duke@435 2295 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2296 "fieldOffset must be byte-scaled");
duke@435 2297 // 32-bit machines ignore the high half!
duke@435 2298 offset = ConvL2X(offset);
duke@435 2299 adr = make_unsafe_address(base, offset);
duke@435 2300 heap_base_oop = base;
duke@435 2301 } else {
duke@435 2302 Node* ptr = pop_pair();
duke@435 2303 // Adjust Java long to machine word:
duke@435 2304 ptr = ConvL2X(ptr);
duke@435 2305 adr = make_unsafe_address(NULL, ptr);
duke@435 2306 }
duke@435 2307
duke@435 2308 // Pop receiver last: it was pushed first.
duke@435 2309 Node *receiver = pop();
duke@435 2310
duke@435 2311 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2312
duke@435 2313 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2314
duke@435 2315 // First guess at the value type.
duke@435 2316 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2317
duke@435 2318 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2319 // there was not enough information to nail it down.
duke@435 2320 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2321 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2322
duke@435 2323 // We will need memory barriers unless we can determine a unique
duke@435 2324 // alias category for this reference. (Note: If for some reason
duke@435 2325 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2326 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2327 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2328 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2329
johnc@2781 2330 // If we are reading the value of the referent field of a Reference
johnc@2781 2331 // object (either by using Unsafe directly or through reflection)
johnc@2781 2332 // then, if G1 is enabled, we need to record the referent in an
johnc@2781 2333 // SATB log buffer using the pre-barrier mechanism.
johnc@2781 2334 bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
johnc@2781 2335 offset != top() && heap_base_oop != top();
johnc@2781 2336
duke@435 2337 if (!is_store && type == T_OBJECT) {
duke@435 2338 // Attempt to infer a sharper value type from the offset and base type.
duke@435 2339 ciKlass* sharpened_klass = NULL;
duke@435 2340
duke@435 2341 // See if it is an instance field, with an object type.
duke@435 2342 if (alias_type->field() != NULL) {
duke@435 2343 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 2344 if (alias_type->field()->type()->is_klass()) {
duke@435 2345 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 2346 }
duke@435 2347 }
duke@435 2348
duke@435 2349 // See if it is a narrow oop array.
duke@435 2350 if (adr_type->isa_aryptr()) {
twisti@1330 2351 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
duke@435 2352 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 2353 if (elem_type != NULL) {
duke@435 2354 sharpened_klass = elem_type->klass();
duke@435 2355 }
duke@435 2356 }
duke@435 2357 }
duke@435 2358
duke@435 2359 if (sharpened_klass != NULL) {
duke@435 2360 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 2361
duke@435 2362 // Sharpen the value type.
duke@435 2363 value_type = tjp;
duke@435 2364
duke@435 2365 #ifndef PRODUCT
duke@435 2366 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2367 tty->print(" from base type: "); adr_type->dump();
duke@435 2368 tty->print(" sharpened value: "); value_type->dump();
duke@435 2369 }
duke@435 2370 #endif
duke@435 2371 }
duke@435 2372 }
duke@435 2373
duke@435 2374 // Null check on self without removing any arguments. The argument
duke@435 2375 // null check technically happens in the wrong place, which can lead to
duke@435 2376 // invalid stack traces when the primitive is inlined into a method
duke@435 2377 // which handles NullPointerExceptions.
duke@435 2378 _sp += nargs;
duke@435 2379 do_null_check(receiver, T_OBJECT);
duke@435 2380 _sp -= nargs;
duke@435 2381 if (stopped()) {
duke@435 2382 return true;
duke@435 2383 }
duke@435 2384 // Heap pointers get a null-check from the interpreter,
duke@435 2385 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2386 // and it is not possible to fully distinguish unintended nulls
duke@435 2387 // from intended ones in this API.
duke@435 2388
duke@435 2389 if (is_volatile) {
duke@435 2390 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2391 // addition to memory membars when is_volatile. This is a little
duke@435 2392 // too strong, but avoids the need to insert per-alias-type
duke@435 2393 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2394 // we cannot do effectively here because we probably only have a
duke@435 2395 // rough approximation of type.
duke@435 2396 need_mem_bar = true;
duke@435 2397 // For Stores, place a memory ordering barrier now.
duke@435 2398 if (is_store)
duke@435 2399 insert_mem_bar(Op_MemBarRelease);
duke@435 2400 }
duke@435 2401
duke@435 2402 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2403 // bypassing each other. Happens after null checks, so the
duke@435 2404 // exception paths do not take memory state from the memory barrier,
duke@435 2405 // so there's no problems making a strong assert about mixing users
duke@435 2406 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2407 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2408 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2409
duke@435 2410 if (!is_store) {
duke@435 2411 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 2412 // load value and push onto stack
duke@435 2413 switch (type) {
duke@435 2414 case T_BOOLEAN:
duke@435 2415 case T_CHAR:
duke@435 2416 case T_BYTE:
duke@435 2417 case T_SHORT:
duke@435 2418 case T_INT:
duke@435 2419 case T_FLOAT:
johnc@2781 2420 push(p);
johnc@2781 2421 break;
duke@435 2422 case T_OBJECT:
johnc@2781 2423 if (need_read_barrier) {
johnc@2781 2424 insert_g1_pre_barrier(heap_base_oop, offset, p);
johnc@2781 2425 }
johnc@2781 2426 push(p);
duke@435 2427 break;
duke@435 2428 case T_ADDRESS:
duke@435 2429 // Cast to an int type.
duke@435 2430 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 2431 p = ConvX2L(p);
duke@435 2432 push_pair(p);
duke@435 2433 break;
duke@435 2434 case T_DOUBLE:
duke@435 2435 case T_LONG:
duke@435 2436 push_pair( p );
duke@435 2437 break;
duke@435 2438 default: ShouldNotReachHere();
duke@435 2439 }
duke@435 2440 } else {
duke@435 2441 // place effect of store into memory
duke@435 2442 switch (type) {
duke@435 2443 case T_DOUBLE:
duke@435 2444 val = dstore_rounding(val);
duke@435 2445 break;
duke@435 2446 case T_ADDRESS:
duke@435 2447 // Repackage the long as a pointer.
duke@435 2448 val = ConvL2X(val);
duke@435 2449 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 2450 break;
duke@435 2451 }
duke@435 2452
duke@435 2453 if (type != T_OBJECT ) {
duke@435 2454 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2455 } else {
duke@435 2456 // Possibly an oop being stored to Java heap or native memory
duke@435 2457 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2458 // oop to Java heap.
never@1260 2459 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2460 } else {
duke@435 2461 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2462 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2463 // store.
duke@435 2464
kvn@2726 2465 IdealKit ideal(this);
kvn@1286 2466 #define __ ideal.
duke@435 2467 // QQQ who knows what probability is here??
kvn@1286 2468 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2469 // Sync IdealKit and graphKit.
kvn@2726 2470 sync_kit(ideal);
kvn@1286 2471 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2472 // Update IdealKit memory.
kvn@2726 2473 __ sync_kit(this);
kvn@1286 2474 } __ else_(); {
kvn@1286 2475 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2476 } __ end_if();
kvn@1286 2477 // Final sync IdealKit and GraphKit.
kvn@2726 2478 final_sync(ideal);
kvn@1286 2479 #undef __
duke@435 2480 }
duke@435 2481 }
duke@435 2482 }
duke@435 2483
duke@435 2484 if (is_volatile) {
duke@435 2485 if (!is_store)
duke@435 2486 insert_mem_bar(Op_MemBarAcquire);
duke@435 2487 else
duke@435 2488 insert_mem_bar(Op_MemBarVolatile);
duke@435 2489 }
duke@435 2490
duke@435 2491 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2492
duke@435 2493 return true;
duke@435 2494 }
duke@435 2495
duke@435 2496 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2497
duke@435 2498 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2499 #ifndef PRODUCT
duke@435 2500 {
duke@435 2501 ResourceMark rm;
duke@435 2502 // Check the signatures.
duke@435 2503 ciSignature* sig = signature();
duke@435 2504 #ifdef ASSERT
duke@435 2505 // Object getObject(Object base, int/long offset), etc.
duke@435 2506 BasicType rtype = sig->return_type()->basic_type();
duke@435 2507 if (!is_native_ptr) {
duke@435 2508 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2509 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2510 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2511 } else {
duke@435 2512 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2513 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2514 }
duke@435 2515 #endif // ASSERT
duke@435 2516 }
duke@435 2517 #endif // !PRODUCT
duke@435 2518
duke@435 2519 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2520
duke@435 2521 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2522 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2523
duke@435 2524 debug_only(int saved_sp = _sp);
duke@435 2525 _sp += nargs;
duke@435 2526
duke@435 2527 // Build address expression. See the code in inline_unsafe_access.
duke@435 2528 Node *adr;
duke@435 2529 if (!is_native_ptr) {
duke@435 2530 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2531 Node* offset = pop_pair();
duke@435 2532 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2533 Node* base = pop();
duke@435 2534 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2535 // to be plain byte offsets, which are also the same as those accepted
duke@435 2536 // by oopDesc::field_base.
duke@435 2537 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2538 "fieldOffset must be byte-scaled");
duke@435 2539 // 32-bit machines ignore the high half!
duke@435 2540 offset = ConvL2X(offset);
duke@435 2541 adr = make_unsafe_address(base, offset);
duke@435 2542 } else {
duke@435 2543 Node* ptr = pop_pair();
duke@435 2544 // Adjust Java long to machine word:
duke@435 2545 ptr = ConvL2X(ptr);
duke@435 2546 adr = make_unsafe_address(NULL, ptr);
duke@435 2547 }
duke@435 2548
duke@435 2549 if (is_static) {
duke@435 2550 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2551 } else {
duke@435 2552 // Pop receiver last: it was pushed first.
duke@435 2553 Node *receiver = pop();
duke@435 2554 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2555
duke@435 2556 // Null check on self without removing any arguments. The argument
duke@435 2557 // null check technically happens in the wrong place, which can lead to
duke@435 2558 // invalid stack traces when the primitive is inlined into a method
duke@435 2559 // which handles NullPointerExceptions.
duke@435 2560 _sp += nargs;
duke@435 2561 do_null_check(receiver, T_OBJECT);
duke@435 2562 _sp -= nargs;
duke@435 2563 if (stopped()) {
duke@435 2564 return true;
duke@435 2565 }
duke@435 2566 }
duke@435 2567
duke@435 2568 // Generate the read or write prefetch
duke@435 2569 Node *prefetch;
duke@435 2570 if (is_store) {
duke@435 2571 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2572 } else {
duke@435 2573 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2574 }
duke@435 2575 prefetch->init_req(0, control());
duke@435 2576 set_i_o(_gvn.transform(prefetch));
duke@435 2577
duke@435 2578 return true;
duke@435 2579 }
duke@435 2580
duke@435 2581 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2582
duke@435 2583 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2584 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2585 // differs in enough details that combining them would make the code
duke@435 2586 // overly confusing. (This is a true fact! I originally combined
duke@435 2587 // them, but even I was confused by it!) As much code/comments as
duke@435 2588 // possible are retained from inline_unsafe_access though to make
twisti@1040 2589 // the correspondences clearer. - dl
duke@435 2590
duke@435 2591 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2592
duke@435 2593 #ifndef PRODUCT
duke@435 2594 {
duke@435 2595 ResourceMark rm;
duke@435 2596 // Check the signatures.
duke@435 2597 ciSignature* sig = signature();
duke@435 2598 #ifdef ASSERT
duke@435 2599 BasicType rtype = sig->return_type()->basic_type();
duke@435 2600 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2601 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2602 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2603 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2604 #endif // ASSERT
duke@435 2605 }
duke@435 2606 #endif //PRODUCT
duke@435 2607
duke@435 2608 // number of stack slots per value argument (1 or 2)
duke@435 2609 int type_words = type2size[type];
duke@435 2610
duke@435 2611 // Cannot inline wide CAS on machines that don't support it natively
kvn@464 2612 if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2613 return false;
duke@435 2614
duke@435 2615 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2616
duke@435 2617 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2618 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2619
duke@435 2620 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2621 debug_only(int saved_sp = _sp);
duke@435 2622 _sp += nargs;
duke@435 2623 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2624 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2625 Node *offset = pop_pair();
duke@435 2626 Node *base = pop();
duke@435 2627 Node *receiver = pop();
duke@435 2628 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2629
duke@435 2630 // Null check receiver.
duke@435 2631 _sp += nargs;
duke@435 2632 do_null_check(receiver, T_OBJECT);
duke@435 2633 _sp -= nargs;
duke@435 2634 if (stopped()) {
duke@435 2635 return true;
duke@435 2636 }
duke@435 2637
duke@435 2638 // Build field offset expression.
duke@435 2639 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2640 // to be plain byte offsets, which are also the same as those accepted
duke@435 2641 // by oopDesc::field_base.
duke@435 2642 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2643 // 32-bit machines ignore the high half of long offsets
duke@435 2644 offset = ConvL2X(offset);
duke@435 2645 Node* adr = make_unsafe_address(base, offset);
duke@435 2646 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2647
duke@435 2648 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2649 // to refine types. Just use the coarse types here.
duke@435 2650 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2651 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2652 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2653 int alias_idx = C->get_alias_index(adr_type);
duke@435 2654
duke@435 2655 // Memory-model-wise, a CAS acts like a little synchronized block,
twisti@1040 2656 // so needs barriers on each side. These don't translate into
duke@435 2657 // actual barriers on most machines, but we still need rest of
duke@435 2658 // compiler to respect ordering.
duke@435 2659
duke@435 2660 insert_mem_bar(Op_MemBarRelease);
duke@435 2661 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2662
duke@435 2663 // 4984716: MemBars must be inserted before this
duke@435 2664 // memory node in order to avoid a false
duke@435 2665 // dependency which will confuse the scheduler.
duke@435 2666 Node *mem = memory(alias_idx);
duke@435 2667
duke@435 2668 // For now, we handle only those cases that actually exist: ints,
duke@435 2669 // longs, and Object. Adding others should be straightforward.
duke@435 2670 Node* cas;
duke@435 2671 switch(type) {
duke@435 2672 case T_INT:
duke@435 2673 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2674 break;
duke@435 2675 case T_LONG:
duke@435 2676 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2677 break;
duke@435 2678 case T_OBJECT:
kvn@3521 2679 // Transformation of a value which could be NULL pointer (CastPP #NULL)
kvn@3521 2680 // could be delayed during Parse (for example, in adjust_map_after_if()).
kvn@3521 2681 // Execute transformation here to avoid barrier generation in such case.
kvn@3521 2682 if (_gvn.type(newval) == TypePtr::NULL_PTR)
kvn@3521 2683 newval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@3521 2684
kvn@3521 2685 // Reference stores need a store barrier.
duke@435 2686 // (They don't if CAS fails, but it isn't worth checking.)
johnc@2781 2687 pre_barrier(true /* do_load*/,
johnc@2781 2688 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
johnc@2781 2689 NULL /* pre_val*/,
johnc@2781 2690 T_OBJECT);
coleenp@548 2691 #ifdef _LP64
kvn@598 2692 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 2693 Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
kvn@656 2694 Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
coleenp@548 2695 cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
kvn@656 2696 newval_enc, oldval_enc));
coleenp@548 2697 } else
coleenp@548 2698 #endif
kvn@656 2699 {
kvn@656 2700 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
kvn@656 2701 }
duke@435 2702 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2703 break;
duke@435 2704 default:
duke@435 2705 ShouldNotReachHere();
duke@435 2706 break;
duke@435 2707 }
duke@435 2708
duke@435 2709 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2710 // role is to prevent CAS nodes from being optimized away when their
duke@435 2711 // results aren't used.
duke@435 2712 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2713 set_memory(proj, alias_idx);
duke@435 2714
duke@435 2715 // Add the trailing membar surrounding the access
duke@435 2716 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2717 insert_mem_bar(Op_MemBarAcquire);
duke@435 2718
duke@435 2719 push(cas);
duke@435 2720 return true;
duke@435 2721 }
duke@435 2722
duke@435 2723 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2724 // This is another variant of inline_unsafe_access, differing in
duke@435 2725 // that it always issues store-store ("release") barrier and ensures
duke@435 2726 // store-atomicity (which only matters for "long").
duke@435 2727
duke@435 2728 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2729
duke@435 2730 #ifndef PRODUCT
duke@435 2731 {
duke@435 2732 ResourceMark rm;
duke@435 2733 // Check the signatures.
duke@435 2734 ciSignature* sig = signature();
duke@435 2735 #ifdef ASSERT
duke@435 2736 BasicType rtype = sig->return_type()->basic_type();
duke@435 2737 assert(rtype == T_VOID, "must return void");
duke@435 2738 assert(sig->count() == 3, "has 3 arguments");
duke@435 2739 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2740 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2741 #endif // ASSERT
duke@435 2742 }
duke@435 2743 #endif //PRODUCT
duke@435 2744
duke@435 2745 // number of stack slots per value argument (1 or 2)
duke@435 2746 int type_words = type2size[type];
duke@435 2747
duke@435 2748 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2749
duke@435 2750 // Argument words: "this" plus oop plus offset plus value;
duke@435 2751 int nargs = 1 + 1 + 2 + type_words;
duke@435 2752
duke@435 2753 // pop arguments: val, offset, base, and receiver
duke@435 2754 debug_only(int saved_sp = _sp);
duke@435 2755 _sp += nargs;
duke@435 2756 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2757 Node *offset = pop_pair();
duke@435 2758 Node *base = pop();
duke@435 2759 Node *receiver = pop();
duke@435 2760 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2761
duke@435 2762 // Null check receiver.
duke@435 2763 _sp += nargs;
duke@435 2764 do_null_check(receiver, T_OBJECT);
duke@435 2765 _sp -= nargs;
duke@435 2766 if (stopped()) {
duke@435 2767 return true;
duke@435 2768 }
duke@435 2769
duke@435 2770 // Build field offset expression.
duke@435 2771 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2772 // 32-bit machines ignore the high half of long offsets
duke@435 2773 offset = ConvL2X(offset);
duke@435 2774 Node* adr = make_unsafe_address(base, offset);
duke@435 2775 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2776 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2777 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2778
duke@435 2779 insert_mem_bar(Op_MemBarRelease);
duke@435 2780 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2781 // Ensure that the store is atomic for longs:
duke@435 2782 bool require_atomic_access = true;
duke@435 2783 Node* store;
duke@435 2784 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2785 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2786 else {
duke@435 2787 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2788 }
duke@435 2789 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2790 return true;
duke@435 2791 }
duke@435 2792
duke@435 2793 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2794 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2795 int nargs = 1 + 1;
duke@435 2796 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2797 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2798 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2799 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2800 _sp -= nargs;
duke@435 2801 if (stopped()) return true;
duke@435 2802
duke@435 2803 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2804 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2805 kls = do_null_check(kls, T_OBJECT);
duke@435 2806 _sp -= nargs;
duke@435 2807 if (stopped()) return true; // argument was like int.class
duke@435 2808
duke@435 2809 // Note: The argument might still be an illegal value like
duke@435 2810 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2811 // But we must make an explicit check for initialization.
stefank@3391 2812 Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
coleenp@3368 2813 // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
coleenp@3368 2814 // can generate code to load it as unsigned byte.
coleenp@3368 2815 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
duke@435 2816 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2817 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2818 // The 'test' is non-zero if we need to take a slow path.
duke@435 2819
duke@435 2820 Node* obj = new_instance(kls, test);
duke@435 2821 push(obj);
duke@435 2822
duke@435 2823 return true;
duke@435 2824 }
duke@435 2825
duke@435 2826 //------------------------inline_native_time_funcs--------------
duke@435 2827 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2828 // these have the same type and signature
duke@435 2829 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
duke@435 2830 address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
duke@435 2831 CAST_FROM_FN_PTR(address, os::javaTimeMillis);
duke@435 2832 const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
duke@435 2833 const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
duke@435 2834 const TypePtr* no_memory_effects = NULL;
duke@435 2835 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2836 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2837 #ifdef ASSERT
duke@435 2838 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2839 assert(value_top == top(), "second value must be top");
duke@435 2840 #endif
duke@435 2841 push_pair(value);
duke@435 2842 return true;
duke@435 2843 }
duke@435 2844
duke@435 2845 //------------------------inline_native_currentThread------------------
duke@435 2846 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2847 Node* junk = NULL;
duke@435 2848 push(generate_current_thread(junk));
duke@435 2849 return true;
duke@435 2850 }
duke@435 2851
duke@435 2852 //------------------------inline_native_isInterrupted------------------
duke@435 2853 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2854 const int nargs = 1+1; // receiver + boolean
duke@435 2855 assert(nargs == arg_size(), "sanity");
duke@435 2856 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2857 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2858 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2859 // So, in the common case that the interrupt bit is false,
duke@435 2860 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2861 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2862 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2863 // because there must be some locking done around the operation.
duke@435 2864
duke@435 2865 // We only go to the fast case code if we pass two guards.
duke@435 2866 // Paths which do not pass are accumulated in the slow_region.
duke@435 2867 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 2868 record_for_igvn(slow_region);
duke@435 2869 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 2870 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 2871 enum { no_int_result_path = 1,
duke@435 2872 no_clear_result_path = 2,
duke@435 2873 slow_result_path = 3
duke@435 2874 };
duke@435 2875
duke@435 2876 // (a) Receiving thread must be the current thread.
duke@435 2877 Node* rec_thr = argument(0);
duke@435 2878 Node* tls_ptr = NULL;
duke@435 2879 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 2880 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 2881 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 2882
duke@435 2883 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 2884 if (!known_current_thread)
duke@435 2885 generate_slow_guard(bol_thr, slow_region);
duke@435 2886
duke@435 2887 // (b) Interrupt bit on TLS must be false.
duke@435 2888 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 2889 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 2890 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
kvn@1222 2891 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 2892 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
duke@435 2893 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 2894 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 2895
duke@435 2896 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 2897
duke@435 2898 // First fast path: if (!TLS._interrupted) return false;
duke@435 2899 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 2900 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 2901 result_val->init_req(no_int_result_path, intcon(0));
duke@435 2902
duke@435 2903 // drop through to next case
duke@435 2904 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 2905
duke@435 2906 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 2907 Node* clr_arg = argument(1);
duke@435 2908 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 2909 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 2910 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 2911
duke@435 2912 // Second fast path: ... else if (!clear_int) return true;
duke@435 2913 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 2914 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 2915 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 2916
duke@435 2917 // drop through to next case
duke@435 2918 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 2919
duke@435 2920 // (d) Otherwise, go to the slow path.
duke@435 2921 slow_region->add_req(control());
duke@435 2922 set_control( _gvn.transform(slow_region) );
duke@435 2923
duke@435 2924 if (stopped()) {
duke@435 2925 // There is no slow path.
duke@435 2926 result_rgn->init_req(slow_result_path, top());
duke@435 2927 result_val->init_req(slow_result_path, top());
duke@435 2928 } else {
duke@435 2929 // non-virtual because it is a private non-static
duke@435 2930 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 2931
duke@435 2932 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 2933 // this->control() comes from set_results_for_java_call
duke@435 2934
duke@435 2935 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 2936 if (known_current_thread) slow_val = intcon(1);
duke@435 2937
duke@435 2938 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 2939 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 2940 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 2941 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 2942 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 2943
duke@435 2944 result_rgn->init_req(slow_result_path, control());
duke@435 2945 io_phi ->init_req(slow_result_path, i_o());
duke@435 2946 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 2947 result_val->init_req(slow_result_path, slow_val);
duke@435 2948
duke@435 2949 set_all_memory( _gvn.transform(mem_phi) );
duke@435 2950 set_i_o( _gvn.transform(io_phi) );
duke@435 2951 }
duke@435 2952
duke@435 2953 push_result(result_rgn, result_val);
duke@435 2954 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2955
duke@435 2956 return true;
duke@435 2957 }
duke@435 2958
duke@435 2959 //---------------------------load_mirror_from_klass----------------------------
duke@435 2960 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 2961 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
stefank@3391 2962 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
duke@435 2963 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 2964 }
duke@435 2965
duke@435 2966 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 2967 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 2968 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 2969 // and branch to the given path on the region.
duke@435 2970 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 2971 // compile for the non-null case.
duke@435 2972 // If the region is NULL, force never_see_null = true.
duke@435 2973 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 2974 bool never_see_null,
duke@435 2975 int nargs,
duke@435 2976 RegionNode* region,
duke@435 2977 int null_path,
duke@435 2978 int offset) {
duke@435 2979 if (region == NULL) never_see_null = true;
duke@435 2980 Node* p = basic_plus_adr(mirror, offset);
duke@435 2981 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 2982 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 2983 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 2984 Node* null_ctl = top();
duke@435 2985 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 2986 if (region != NULL) {
duke@435 2987 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 2988 region->init_req(null_path, null_ctl);
duke@435 2989 } else {
duke@435 2990 assert(null_ctl == top(), "no loose ends");
duke@435 2991 }
duke@435 2992 _sp -= nargs;
duke@435 2993 return kls;
duke@435 2994 }
duke@435 2995
duke@435 2996 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 2997 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 2998 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 2999 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 3000 // Branch around if the given klass has the given modifier bit set.
duke@435 3001 // Like generate_guard, adds a new path onto the region.
stefank@3391 3002 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3003 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 3004 Node* mask = intcon(modifier_mask);
duke@435 3005 Node* bits = intcon(modifier_bits);
duke@435 3006 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 3007 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 3008 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 3009 return generate_fair_guard(bol, region);
duke@435 3010 }
duke@435 3011 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 3012 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 3013 }
duke@435 3014
duke@435 3015 //-------------------------inline_native_Class_query-------------------
duke@435 3016 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 3017 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 3018 const Type* return_type = TypeInt::BOOL;
duke@435 3019 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 3020 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3021 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 3022
duke@435 3023 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 3024
duke@435 3025 switch (id) {
duke@435 3026 case vmIntrinsics::_isInstance:
duke@435 3027 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 3028 // nothing is an instance of a primitive type
duke@435 3029 prim_return_value = intcon(0);
duke@435 3030 break;
duke@435 3031 case vmIntrinsics::_getModifiers:
duke@435 3032 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3033 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 3034 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 3035 break;
duke@435 3036 case vmIntrinsics::_isInterface:
duke@435 3037 prim_return_value = intcon(0);
duke@435 3038 break;
duke@435 3039 case vmIntrinsics::_isArray:
duke@435 3040 prim_return_value = intcon(0);
duke@435 3041 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 3042 break;
duke@435 3043 case vmIntrinsics::_isPrimitive:
duke@435 3044 prim_return_value = intcon(1);
duke@435 3045 expect_prim = true; // obviously
duke@435 3046 break;
duke@435 3047 case vmIntrinsics::_getSuperclass:
duke@435 3048 prim_return_value = null();
duke@435 3049 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3050 break;
duke@435 3051 case vmIntrinsics::_getComponentType:
duke@435 3052 prim_return_value = null();
duke@435 3053 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3054 break;
duke@435 3055 case vmIntrinsics::_getClassAccessFlags:
duke@435 3056 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3057 return_type = TypeInt::INT; // not bool! 6297094
duke@435 3058 break;
duke@435 3059 default:
duke@435 3060 ShouldNotReachHere();
duke@435 3061 }
duke@435 3062
duke@435 3063 Node* mirror = argument(0);
duke@435 3064 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 3065
duke@435 3066 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 3067 if (mirror_con == NULL) return false; // cannot happen?
duke@435 3068
duke@435 3069 #ifndef PRODUCT
duke@435 3070 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 3071 ciType* k = mirror_con->java_mirror_type();
duke@435 3072 if (k) {
duke@435 3073 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 3074 k->print_name();
duke@435 3075 tty->cr();
duke@435 3076 }
duke@435 3077 }
duke@435 3078 #endif
duke@435 3079
duke@435 3080 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 3081 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3082 record_for_igvn(region);
duke@435 3083 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 3084
duke@435 3085 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 3086 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 3087 // if it is. See bug 4774291.
duke@435 3088
duke@435 3089 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 3090 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 3091 // situation.
duke@435 3092 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3093 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3094 _sp -= nargs;
duke@435 3095 // If mirror or obj is dead, only null-path is taken.
duke@435 3096 if (stopped()) return true;
duke@435 3097
duke@435 3098 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 3099
duke@435 3100 // Now load the mirror's klass metaobject, and null-check it.
duke@435 3101 // Side-effects region with the control path if the klass is null.
duke@435 3102 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 3103 region, _prim_path);
duke@435 3104 // If kls is null, we have a primitive mirror.
duke@435 3105 phi->init_req(_prim_path, prim_return_value);
duke@435 3106 if (stopped()) { push_result(region, phi); return true; }
duke@435 3107
duke@435 3108 Node* p; // handy temp
duke@435 3109 Node* null_ctl;
duke@435 3110
duke@435 3111 // Now that we have the non-null klass, we can perform the real query.
duke@435 3112 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 3113 Node* query_value = top();
duke@435 3114 switch (id) {
duke@435 3115 case vmIntrinsics::_isInstance:
duke@435 3116 // nothing is an instance of a primitive type
jrose@2101 3117 _sp += nargs; // gen_instanceof might do an uncommon trap
duke@435 3118 query_value = gen_instanceof(obj, kls);
jrose@2101 3119 _sp -= nargs;
duke@435 3120 break;
duke@435 3121
duke@435 3122 case vmIntrinsics::_getModifiers:
stefank@3391 3123 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
duke@435 3124 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3125 break;
duke@435 3126
duke@435 3127 case vmIntrinsics::_isInterface:
duke@435 3128 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3129 if (generate_interface_guard(kls, region) != NULL)
duke@435 3130 // A guard was added. If the guard is taken, it was an interface.
duke@435 3131 phi->add_req(intcon(1));
duke@435 3132 // If we fall through, it's a plain class.
duke@435 3133 query_value = intcon(0);
duke@435 3134 break;
duke@435 3135
duke@435 3136 case vmIntrinsics::_isArray:
duke@435 3137 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 3138 if (generate_array_guard(kls, region) != NULL)
duke@435 3139 // A guard was added. If the guard is taken, it was an array.
duke@435 3140 phi->add_req(intcon(1));
duke@435 3141 // If we fall through, it's a plain class.
duke@435 3142 query_value = intcon(0);
duke@435 3143 break;
duke@435 3144
duke@435 3145 case vmIntrinsics::_isPrimitive:
duke@435 3146 query_value = intcon(0); // "normal" path produces false
duke@435 3147 break;
duke@435 3148
duke@435 3149 case vmIntrinsics::_getSuperclass:
duke@435 3150 // The rules here are somewhat unfortunate, but we can still do better
duke@435 3151 // with random logic than with a JNI call.
duke@435 3152 // Interfaces store null or Object as _super, but must report null.
duke@435 3153 // Arrays store an intermediate super as _super, but must report Object.
duke@435 3154 // Other types can report the actual _super.
duke@435 3155 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3156 if (generate_interface_guard(kls, region) != NULL)
duke@435 3157 // A guard was added. If the guard is taken, it was an interface.
duke@435 3158 phi->add_req(null());
duke@435 3159 if (generate_array_guard(kls, region) != NULL)
duke@435 3160 // A guard was added. If the guard is taken, it was an array.
duke@435 3161 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 3162 // If we fall through, it's a plain class. Get its _super.
stefank@3391 3163 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kvn@599 3164 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 3165 null_ctl = top();
duke@435 3166 kls = null_check_oop(kls, &null_ctl);
duke@435 3167 if (null_ctl != top()) {
duke@435 3168 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3169 region->add_req(null_ctl);
duke@435 3170 phi ->add_req(null());
duke@435 3171 }
duke@435 3172 if (!stopped()) {
duke@435 3173 query_value = load_mirror_from_klass(kls);
duke@435 3174 }
duke@435 3175 break;
duke@435 3176
duke@435 3177 case vmIntrinsics::_getComponentType:
duke@435 3178 if (generate_array_guard(kls, region) != NULL) {
duke@435 3179 // Be sure to pin the oop load to the guard edge just created:
duke@435 3180 Node* is_array_ctrl = region->in(region->req()-1);
stefank@3391 3181 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
duke@435 3182 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3183 phi->add_req(cmo);
duke@435 3184 }
duke@435 3185 query_value = null(); // non-array case is null
duke@435 3186 break;
duke@435 3187
duke@435 3188 case vmIntrinsics::_getClassAccessFlags:
stefank@3391 3189 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3190 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3191 break;
duke@435 3192
duke@435 3193 default:
duke@435 3194 ShouldNotReachHere();
duke@435 3195 }
duke@435 3196
duke@435 3197 // Fall-through is the normal case of a query to a real class.
duke@435 3198 phi->init_req(1, query_value);
duke@435 3199 region->init_req(1, control());
duke@435 3200
duke@435 3201 push_result(region, phi);
duke@435 3202 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3203
duke@435 3204 return true;
duke@435 3205 }
duke@435 3206
duke@435 3207 //--------------------------inline_native_subtype_check------------------------
duke@435 3208 // This intrinsic takes the JNI calls out of the heart of
duke@435 3209 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3210 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3211 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 3212
duke@435 3213 // Pull both arguments off the stack.
duke@435 3214 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3215 args[0] = argument(0);
duke@435 3216 args[1] = argument(1);
duke@435 3217 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3218 klasses[0] = klasses[1] = top();
duke@435 3219
duke@435 3220 enum {
duke@435 3221 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3222 _prim_0_path = 1, // {P,N} => false
duke@435 3223 // {P,P} & superc!=subc => false
duke@435 3224 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3225 _prim_1_path, // {N,P} => false
duke@435 3226 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3227 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3228 PATH_LIMIT
duke@435 3229 };
duke@435 3230
duke@435 3231 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3232 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 3233 record_for_igvn(region);
duke@435 3234
duke@435 3235 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3236 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3237 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3238
duke@435 3239 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3240 int which_arg;
duke@435 3241 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3242 Node* arg = args[which_arg];
duke@435 3243 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3244 arg = do_null_check(arg, T_OBJECT);
duke@435 3245 _sp -= nargs;
duke@435 3246 if (stopped()) break;
duke@435 3247 args[which_arg] = _gvn.transform(arg);
duke@435 3248
duke@435 3249 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3250 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3251 klasses[which_arg] = _gvn.transform(kls);
duke@435 3252 }
duke@435 3253
duke@435 3254 // Having loaded both klasses, test each for null.
duke@435 3255 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3256 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3257 Node* kls = klasses[which_arg];
duke@435 3258 Node* null_ctl = top();
duke@435 3259 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3260 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3261 _sp -= nargs;
duke@435 3262 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3263 region->init_req(prim_path, null_ctl);
duke@435 3264 if (stopped()) break;
duke@435 3265 klasses[which_arg] = kls;
duke@435 3266 }
duke@435 3267
duke@435 3268 if (!stopped()) {
duke@435 3269 // now we have two reference types, in klasses[0..1]
duke@435 3270 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3271 Node* superk = klasses[0]; // the receiver
duke@435 3272 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3273 // now we have a successful reference subtype check
duke@435 3274 region->set_req(_ref_subtype_path, control());
duke@435 3275 }
duke@435 3276
duke@435 3277 // If both operands are primitive (both klasses null), then
duke@435 3278 // we must return true when they are identical primitives.
duke@435 3279 // It is convenient to test this after the first null klass check.
duke@435 3280 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3281 if (!stopped()) {
duke@435 3282 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 3283 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 3284 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3285 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3286 if (region->req() == PATH_LIMIT+1) {
duke@435 3287 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3288 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3289 region->del_req(PATH_LIMIT);
duke@435 3290 }
duke@435 3291 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3292 }
duke@435 3293
duke@435 3294 // these are the only paths that produce 'true':
duke@435 3295 phi->set_req(_prim_same_path, intcon(1));
duke@435 3296 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3297
duke@435 3298 // pull together the cases:
duke@435 3299 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3300 for (uint i = 1; i < region->req(); i++) {
duke@435 3301 Node* ctl = region->in(i);
duke@435 3302 if (ctl == NULL || ctl == top()) {
duke@435 3303 region->set_req(i, top());
duke@435 3304 phi ->set_req(i, top());
duke@435 3305 } else if (phi->in(i) == NULL) {
duke@435 3306 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3307 }
duke@435 3308 }
duke@435 3309
duke@435 3310 set_control(_gvn.transform(region));
duke@435 3311 push(_gvn.transform(phi));
duke@435 3312
duke@435 3313 return true;
duke@435 3314 }
duke@435 3315
duke@435 3316 //---------------------generate_array_guard_common------------------------
duke@435 3317 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3318 bool obj_array, bool not_array) {
duke@435 3319 // If obj_array/non_array==false/false:
duke@435 3320 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3321 // If obj_array/non_array==false/true:
duke@435 3322 // Branch around if the given klass is not an array klass of any kind.
duke@435 3323 // If obj_array/non_array==true/true:
duke@435 3324 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3325 // If obj_array/non_array==true/false:
duke@435 3326 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3327 //
duke@435 3328 // Like generate_guard, adds a new path onto the region.
duke@435 3329 jint layout_con = 0;
duke@435 3330 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3331 if (layout_val == NULL) {
duke@435 3332 bool query = (obj_array
duke@435 3333 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 3334 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 3335 if (query == not_array) {
duke@435 3336 return NULL; // never a branch
duke@435 3337 } else { // always a branch
duke@435 3338 Node* always_branch = control();
duke@435 3339 if (region != NULL)
duke@435 3340 region->add_req(always_branch);
duke@435 3341 set_control(top());
duke@435 3342 return always_branch;
duke@435 3343 }
duke@435 3344 }
duke@435 3345 // Now test the correct condition.
duke@435 3346 jint nval = (obj_array
duke@435 3347 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3348 << Klass::_lh_array_tag_shift)
duke@435 3349 : Klass::_lh_neutral_value);
duke@435 3350 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 3351 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3352 // invert the test if we are looking for a non-array
duke@435 3353 if (not_array) btest = BoolTest(btest).negate();
duke@435 3354 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 3355 return generate_fair_guard(bol, region);
duke@435 3356 }
duke@435 3357
duke@435 3358
duke@435 3359 //-----------------------inline_native_newArray--------------------------
duke@435 3360 bool LibraryCallKit::inline_native_newArray() {
duke@435 3361 int nargs = 2;
duke@435 3362 Node* mirror = argument(0);
duke@435 3363 Node* count_val = argument(1);
duke@435 3364
duke@435 3365 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3366 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3367 _sp -= nargs;
kvn@598 3368 // If mirror or obj is dead, only null-path is taken.
kvn@598 3369 if (stopped()) return true;
duke@435 3370
duke@435 3371 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 3372 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3373 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3374 TypeInstPtr::NOTNULL);
duke@435 3375 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3376 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3377 TypePtr::BOTTOM);
duke@435 3378
duke@435 3379 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3380 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3381 nargs,
duke@435 3382 result_reg, _slow_path);
duke@435 3383 Node* normal_ctl = control();
duke@435 3384 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3385
duke@435 3386 // Generate code for the slow case. We make a call to newArray().
duke@435 3387 set_control(no_array_ctl);
duke@435 3388 if (!stopped()) {
duke@435 3389 // Either the input type is void.class, or else the
duke@435 3390 // array klass has not yet been cached. Either the
duke@435 3391 // ensuing call will throw an exception, or else it
duke@435 3392 // will cache the array klass for next time.
duke@435 3393 PreserveJVMState pjvms(this);
duke@435 3394 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3395 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3396 // this->control() comes from set_results_for_java_call
duke@435 3397 result_reg->set_req(_slow_path, control());
duke@435 3398 result_val->set_req(_slow_path, slow_result);
duke@435 3399 result_io ->set_req(_slow_path, i_o());
duke@435 3400 result_mem->set_req(_slow_path, reset_memory());
duke@435 3401 }
duke@435 3402
duke@435 3403 set_control(normal_ctl);
duke@435 3404 if (!stopped()) {
duke@435 3405 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3406 // The following call works fine even if the array type is polymorphic.
duke@435 3407 // It could be a dynamic mix of int[], boolean[], Object[], etc.
cfang@1165 3408 Node* obj = new_array(klass_node, count_val, nargs);
duke@435 3409 result_reg->init_req(_normal_path, control());
duke@435 3410 result_val->init_req(_normal_path, obj);
duke@435 3411 result_io ->init_req(_normal_path, i_o());
duke@435 3412 result_mem->init_req(_normal_path, reset_memory());
duke@435 3413 }
duke@435 3414
duke@435 3415 // Return the combined state.
duke@435 3416 set_i_o( _gvn.transform(result_io) );
duke@435 3417 set_all_memory( _gvn.transform(result_mem) );
duke@435 3418 push_result(result_reg, result_val);
duke@435 3419 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3420
duke@435 3421 return true;
duke@435 3422 }
duke@435 3423
duke@435 3424 //----------------------inline_native_getLength--------------------------
duke@435 3425 bool LibraryCallKit::inline_native_getLength() {
duke@435 3426 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3427
duke@435 3428 int nargs = 1;
duke@435 3429 Node* array = argument(0);
duke@435 3430
duke@435 3431 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3432 array = do_null_check(array, T_OBJECT);
duke@435 3433 _sp -= nargs;
duke@435 3434
duke@435 3435 // If array is dead, only null-path is taken.
duke@435 3436 if (stopped()) return true;
duke@435 3437
duke@435 3438 // Deoptimize if it is a non-array.
duke@435 3439 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3440
duke@435 3441 if (non_array != NULL) {
duke@435 3442 PreserveJVMState pjvms(this);
duke@435 3443 set_control(non_array);
duke@435 3444 _sp += nargs; // push the arguments back on the stack
duke@435 3445 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3446 Deoptimization::Action_maybe_recompile);
duke@435 3447 }
duke@435 3448
duke@435 3449 // If control is dead, only non-array-path is taken.
duke@435 3450 if (stopped()) return true;
duke@435 3451
duke@435 3452 // The works fine even if the array type is polymorphic.
duke@435 3453 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 3454 push( load_array_length(array) );
duke@435 3455
duke@435 3456 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3457
duke@435 3458 return true;
duke@435 3459 }
duke@435 3460
duke@435 3461 //------------------------inline_array_copyOf----------------------------
duke@435 3462 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3463 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3464
duke@435 3465 // Restore the stack and pop off the arguments.
duke@435 3466 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 3467 Node* original = argument(0);
duke@435 3468 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3469 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3470 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3471
cfang@1337 3472 Node* newcopy;
cfang@1337 3473
cfang@1337 3474 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1337 3475 //the bytecode that invokes Arrays.copyOf if deoptimization happens
cfang@1337 3476 { PreserveReexecuteState preexecs(this);
cfang@1337 3477 _sp += nargs;
cfang@1337 3478 jvms()->set_should_reexecute(true);
cfang@1337 3479
cfang@1337 3480 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
cfang@1337 3481 original = do_null_check(original, T_OBJECT);
cfang@1337 3482
cfang@1337 3483 // Check if a null path was taken unconditionally.
cfang@1337 3484 if (stopped()) return true;
cfang@1337 3485
cfang@1337 3486 Node* orig_length = load_array_length(original);
cfang@1337 3487
cfang@1337 3488 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
cfang@1337 3489 NULL, 0);
cfang@1337 3490 klass_node = do_null_check(klass_node, T_OBJECT);
cfang@1337 3491
cfang@1337 3492 RegionNode* bailout = new (C, 1) RegionNode(1);
cfang@1337 3493 record_for_igvn(bailout);
cfang@1337 3494
cfang@1337 3495 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3496 // Bail out if that is so.
cfang@1337 3497 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3498 if (not_objArray != NULL) {
cfang@1337 3499 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3500 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3501 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
cfang@1337 3502 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
cfang@1337 3503 cast->init_req(0, control());
cfang@1337 3504 klass_node = _gvn.transform(cast);
cfang@1337 3505 }
cfang@1337 3506
cfang@1337 3507 // Bail out if either start or end is negative.
cfang@1337 3508 generate_negative_guard(start, bailout, &start);
cfang@1337 3509 generate_negative_guard(end, bailout, &end);
cfang@1337 3510
cfang@1337 3511 Node* length = end;
cfang@1337 3512 if (_gvn.type(start) != TypeInt::ZERO) {
cfang@1337 3513 length = _gvn.transform( new (C, 3) SubINode(end, start) );
cfang@1337 3514 }
cfang@1337 3515
cfang@1337 3516 // Bail out if length is negative.
cfang@1337 3517 // ...Not needed, since the new_array will throw the right exception.
cfang@1337 3518 //generate_negative_guard(length, bailout, &length);
cfang@1337 3519
cfang@1337 3520 if (bailout->req() > 1) {
cfang@1337 3521 PreserveJVMState pjvms(this);
cfang@1337 3522 set_control( _gvn.transform(bailout) );
cfang@1337 3523 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3524 Deoptimization::Action_maybe_recompile);
cfang@1337 3525 }
cfang@1337 3526
cfang@1337 3527 if (!stopped()) {
cfang@1335 3528
cfang@1335 3529 // How many elements will we copy from the original?
cfang@1335 3530 // The answer is MinI(orig_length - start, length).
cfang@1335 3531 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
cfang@1335 3532 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3533
kvn@2810 3534 newcopy = new_array(klass_node, length, 0);
cfang@1335 3535
cfang@1335 3536 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3537 // We know the copy is disjoint but we might not know if the
cfang@1335 3538 // oop stores need checking.
cfang@1335 3539 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3540 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3541 bool disjoint_bases = true;
cfang@1335 3542 bool length_never_negative = true;
cfang@1335 3543 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3544 original, start, newcopy, intcon(0), moved,
cfang@1335 3545 disjoint_bases, length_never_negative);
cfang@1337 3546 }
cfang@1337 3547 } //original reexecute and sp are set back here
cfang@1337 3548
cfang@1337 3549 if(!stopped()) {
duke@435 3550 push(newcopy);
duke@435 3551 }
duke@435 3552
duke@435 3553 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3554
duke@435 3555 return true;
duke@435 3556 }
duke@435 3557
duke@435 3558
duke@435 3559 //----------------------generate_virtual_guard---------------------------
duke@435 3560 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3561 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3562 RegionNode* slow_region) {
duke@435 3563 ciMethod* method = callee();
duke@435 3564 int vtable_index = method->vtable_index();
duke@435 3565 // Get the methodOop out of the appropriate vtable entry.
duke@435 3566 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3567 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3568 vtableEntry::method_offset_in_bytes();
duke@435 3569 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3570 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3571
duke@435 3572 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3573 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3574
duke@435 3575 Node* native_call = makecon(native_call_addr);
duke@435 3576 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3577 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3578
duke@435 3579 return generate_slow_guard(test_native, slow_region);
duke@435 3580 }
duke@435 3581
duke@435 3582 //-----------------------generate_method_call----------------------------
duke@435 3583 // Use generate_method_call to make a slow-call to the real
duke@435 3584 // method if the fast path fails. An alternative would be to
duke@435 3585 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3586 // This only works for expanding the current library call,
duke@435 3587 // not another intrinsic. (E.g., don't use this for making an
duke@435 3588 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3589 CallJavaNode*
duke@435 3590 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3591 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3592 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3593
duke@435 3594 ciMethod* method = callee();
duke@435 3595 // ensure the JVMS we have will be correct for this call
duke@435 3596 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3597
duke@435 3598 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3599 int tfdc = tf->domain()->cnt();
duke@435 3600 CallJavaNode* slow_call;
duke@435 3601 if (is_static) {
duke@435 3602 assert(!is_virtual, "");
duke@435 3603 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3604 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3605 method, bci());
duke@435 3606 } else if (is_virtual) {
duke@435 3607 null_check_receiver(method);
duke@435 3608 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3609 if (UseInlineCaches) {
duke@435 3610 // Suppress the vtable call
duke@435 3611 } else {
duke@435 3612 // hashCode and clone are not a miranda methods,
duke@435 3613 // so the vtable index is fixed.
duke@435 3614 // No need to use the linkResolver to get it.
duke@435 3615 vtable_index = method->vtable_index();
duke@435 3616 }
duke@435 3617 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3618 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3619 method, vtable_index, bci());
duke@435 3620 } else { // neither virtual nor static: opt_virtual
duke@435 3621 null_check_receiver(method);
duke@435 3622 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3623 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3624 method, bci());
duke@435 3625 slow_call->set_optimized_virtual(true);
duke@435 3626 }
duke@435 3627 set_arguments_for_java_call(slow_call);
duke@435 3628 set_edges_for_java_call(slow_call);
duke@435 3629 return slow_call;
duke@435 3630 }
duke@435 3631
duke@435 3632
duke@435 3633 //------------------------------inline_native_hashcode--------------------
duke@435 3634 // Build special case code for calls to hashCode on an object.
duke@435 3635 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3636 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3637 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3638
duke@435 3639 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3640
duke@435 3641 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3642 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3643 TypeInt::INT);
duke@435 3644 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3645 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3646 TypePtr::BOTTOM);
duke@435 3647 Node* obj = NULL;
duke@435 3648 if (!is_static) {
duke@435 3649 // Check for hashing null object
duke@435 3650 obj = null_check_receiver(callee());
duke@435 3651 if (stopped()) return true; // unconditionally null
duke@435 3652 result_reg->init_req(_null_path, top());
duke@435 3653 result_val->init_req(_null_path, top());
duke@435 3654 } else {
duke@435 3655 // Do a null check, and return zero if null.
duke@435 3656 // System.identityHashCode(null) == 0
duke@435 3657 obj = argument(0);
duke@435 3658 Node* null_ctl = top();
duke@435 3659 obj = null_check_oop(obj, &null_ctl);
duke@435 3660 result_reg->init_req(_null_path, null_ctl);
duke@435 3661 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3662 }
duke@435 3663
duke@435 3664 // Unconditionally null? Then return right away.
duke@435 3665 if (stopped()) {
duke@435 3666 set_control( result_reg->in(_null_path) );
duke@435 3667 if (!stopped())
duke@435 3668 push( result_val ->in(_null_path) );
duke@435 3669 return true;
duke@435 3670 }
duke@435 3671
duke@435 3672 // After null check, get the object's klass.
duke@435 3673 Node* obj_klass = load_object_klass(obj);
duke@435 3674
duke@435 3675 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3676 // For each case we generate slightly different code.
duke@435 3677
duke@435 3678 // We only go to the fast case code if we pass a number of guards. The
duke@435 3679 // paths which do not pass are accumulated in the slow_region.
duke@435 3680 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3681 record_for_igvn(slow_region);
duke@435 3682
duke@435 3683 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3684 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3685 // If the target method which we are calling happens to be the native
duke@435 3686 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3687 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3688 // Object hashCode().
duke@435 3689 if (is_virtual) {
duke@435 3690 generate_virtual_guard(obj_klass, slow_region);
duke@435 3691 }
duke@435 3692
duke@435 3693 // Get the header out of the object, use LoadMarkNode when available
duke@435 3694 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3695 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3696
duke@435 3697 // Test the header to see if it is unlocked.
duke@435 3698 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3699 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3700 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3701 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3702 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3703
duke@435 3704 generate_slow_guard(test_unlocked, slow_region);
duke@435 3705
duke@435 3706 // Get the hash value and check to see that it has been properly assigned.
duke@435 3707 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3708 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3709 // vm: see markOop.hpp.
duke@435 3710 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3711 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3712 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3713 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3714 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3715 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3716 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3717 hshifted_header = ConvX2I(hshifted_header);
duke@435 3718 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3719
duke@435 3720 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3721 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3722 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3723
duke@435 3724 generate_slow_guard(test_assigned, slow_region);
duke@435 3725
duke@435 3726 Node* init_mem = reset_memory();
duke@435 3727 // fill in the rest of the null path:
duke@435 3728 result_io ->init_req(_null_path, i_o());
duke@435 3729 result_mem->init_req(_null_path, init_mem);
duke@435 3730
duke@435 3731 result_val->init_req(_fast_path, hash_val);
duke@435 3732 result_reg->init_req(_fast_path, control());
duke@435 3733 result_io ->init_req(_fast_path, i_o());
duke@435 3734 result_mem->init_req(_fast_path, init_mem);
duke@435 3735
duke@435 3736 // Generate code for the slow case. We make a call to hashCode().
duke@435 3737 set_control(_gvn.transform(slow_region));
duke@435 3738 if (!stopped()) {
duke@435 3739 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3740 set_all_memory(init_mem);
duke@435 3741 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3742 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3743 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3744 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3745 // this->control() comes from set_results_for_java_call
duke@435 3746 result_reg->init_req(_slow_path, control());
duke@435 3747 result_val->init_req(_slow_path, slow_result);
duke@435 3748 result_io ->set_req(_slow_path, i_o());
duke@435 3749 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3750 }
duke@435 3751
duke@435 3752 // Return the combined state.
duke@435 3753 set_i_o( _gvn.transform(result_io) );
duke@435 3754 set_all_memory( _gvn.transform(result_mem) );
duke@435 3755 push_result(result_reg, result_val);
duke@435 3756
duke@435 3757 return true;
duke@435 3758 }
duke@435 3759
duke@435 3760 //---------------------------inline_native_getClass----------------------------
twisti@1040 3761 // Build special case code for calls to getClass on an object.
duke@435 3762 bool LibraryCallKit::inline_native_getClass() {
duke@435 3763 Node* obj = null_check_receiver(callee());
duke@435 3764 if (stopped()) return true;
duke@435 3765 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3766 return true;
duke@435 3767 }
duke@435 3768
duke@435 3769 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3770 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3771 //
duke@435 3772 // NOTE that this code must perform the same logic as
duke@435 3773 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3774 // Method.invoke() and auxiliary frames.
duke@435 3775
duke@435 3776
duke@435 3777
duke@435 3778
duke@435 3779 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3780 ciMethod* method = callee();
duke@435 3781
duke@435 3782 #ifndef PRODUCT
duke@435 3783 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3784 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3785 }
duke@435 3786 #endif
duke@435 3787
duke@435 3788 debug_only(int saved_sp = _sp);
duke@435 3789
duke@435 3790 // Argument words: (int depth)
duke@435 3791 int nargs = 1;
duke@435 3792
duke@435 3793 _sp += nargs;
duke@435 3794 Node* caller_depth_node = pop();
duke@435 3795
duke@435 3796 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3797
duke@435 3798 // The depth value must be a constant in order for the runtime call
duke@435 3799 // to be eliminated.
duke@435 3800 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3801 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3802 #ifndef PRODUCT
duke@435 3803 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3804 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3805 }
duke@435 3806 #endif
duke@435 3807 return false;
duke@435 3808 }
duke@435 3809 // Note that the JVM state at this point does not include the
duke@435 3810 // getCallerClass() frame which we are trying to inline. The
duke@435 3811 // semantics of getCallerClass(), however, are that the "first"
duke@435 3812 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3813 // requested depth before continuing. We don't inline requests of
duke@435 3814 // getCallerClass(0).
duke@435 3815 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3816 if (caller_depth < 0) {
duke@435 3817 #ifndef PRODUCT
duke@435 3818 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3819 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3820 }
duke@435 3821 #endif
duke@435 3822 return false;
duke@435 3823 }
duke@435 3824
duke@435 3825 if (!jvms()->has_method()) {
duke@435 3826 #ifndef PRODUCT
duke@435 3827 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3828 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3829 }
duke@435 3830 #endif
duke@435 3831 return false;
duke@435 3832 }
duke@435 3833 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3834
duke@435 3835 // Walk back up the JVM state to find the caller at the required
duke@435 3836 // depth. NOTE that this code must perform the same logic as
duke@435 3837 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3838 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3839 // 1-based (1 is the bottom of the inlining).
duke@435 3840 int inlining_depth = _depth;
duke@435 3841 JVMState* caller_jvms = NULL;
duke@435 3842
duke@435 3843 if (inlining_depth > 0) {
duke@435 3844 caller_jvms = jvms();
duke@435 3845 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3846 do {
duke@435 3847 // The following if-tests should be performed in this order
duke@435 3848 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3849 // Skip a Method.invoke() or auxiliary frame
duke@435 3850 } else if (caller_depth > 0) {
duke@435 3851 // Skip real frame
duke@435 3852 --caller_depth;
duke@435 3853 } else {
duke@435 3854 // We're done: reached desired caller after skipping.
duke@435 3855 break;
duke@435 3856 }
duke@435 3857 caller_jvms = caller_jvms->caller();
duke@435 3858 --inlining_depth;
duke@435 3859 } while (inlining_depth > 0);
duke@435 3860 }
duke@435 3861
duke@435 3862 if (inlining_depth == 0) {
duke@435 3863 #ifndef PRODUCT
duke@435 3864 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3865 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3866 tty->print_cr(" JVM state at this point:");
duke@435 3867 for (int i = _depth; i >= 1; i--) {
duke@435 3868 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3869 }
duke@435 3870 }
duke@435 3871 #endif
duke@435 3872 return false; // Reached end of inlining
duke@435 3873 }
duke@435 3874
duke@435 3875 // Acquire method holder as java.lang.Class
duke@435 3876 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3877 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 3878 // Push this as a constant
duke@435 3879 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 3880 #ifndef PRODUCT
duke@435 3881 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3882 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3883 tty->print_cr(" JVM state at this point:");
duke@435 3884 for (int i = _depth; i >= 1; i--) {
duke@435 3885 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3886 }
duke@435 3887 }
duke@435 3888 #endif
duke@435 3889 return true;
duke@435 3890 }
duke@435 3891
duke@435 3892 // Helper routine for above
duke@435 3893 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
twisti@1587 3894 ciMethod* method = jvms->method();
twisti@1587 3895
duke@435 3896 // Is this the Method.invoke method itself?
twisti@1587 3897 if (method->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3898 return true;
duke@435 3899
duke@435 3900 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
twisti@1587 3901 ciKlass* k = method->holder();
duke@435 3902 if (k->is_instance_klass()) {
duke@435 3903 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3904 for (; ik != NULL; ik = ik->super()) {
duke@435 3905 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3906 ik == env()->find_system_klass(ik->name())) {
duke@435 3907 return true;
duke@435 3908 }
duke@435 3909 }
duke@435 3910 }
twisti@1587 3911 else if (method->is_method_handle_adapter()) {
twisti@1587 3912 // This is an internal adapter frame from the MethodHandleCompiler -- skip it
twisti@1587 3913 return true;
twisti@1587 3914 }
duke@435 3915
duke@435 3916 return false;
duke@435 3917 }
duke@435 3918
duke@435 3919 static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
duke@435 3920 // inline_native_AtomicLong_attemptUpdate() but it has no way of
duke@435 3921 // computing it since there is no lookup field by name function in the
duke@435 3922 // CI interface. This is computed and set by inline_native_AtomicLong_get().
duke@435 3923 // Using a static variable here is safe even if we have multiple compilation
duke@435 3924 // threads because the offset is constant. At worst the same offset will be
duke@435 3925 // computed and stored multiple
duke@435 3926
duke@435 3927 bool LibraryCallKit::inline_native_AtomicLong_get() {
duke@435 3928 // Restore the stack and pop off the argument
duke@435 3929 _sp+=1;
duke@435 3930 Node *obj = pop();
duke@435 3931
duke@435 3932 // get the offset of the "value" field. Since the CI interfaces
duke@435 3933 // does not provide a way to look up a field by name, we scan the bytecodes
duke@435 3934 // to get the field index. We expect the first 2 instructions of the method
duke@435 3935 // to be:
duke@435 3936 // 0 aload_0
duke@435 3937 // 1 getfield "value"
duke@435 3938 ciMethod* method = callee();
duke@435 3939 if (value_field_offset == -1)
duke@435 3940 {
duke@435 3941 ciField* value_field;
duke@435 3942 ciBytecodeStream iter(method);
duke@435 3943 Bytecodes::Code bc = iter.next();
duke@435 3944
duke@435 3945 if ((bc != Bytecodes::_aload_0) &&
duke@435 3946 ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
duke@435 3947 return false;
duke@435 3948 bc = iter.next();
duke@435 3949 if (bc != Bytecodes::_getfield)
duke@435 3950 return false;
duke@435 3951 bool ignore;
duke@435 3952 value_field = iter.get_field(ignore);
duke@435 3953 value_field_offset = value_field->offset_in_bytes();
duke@435 3954 }
duke@435 3955
duke@435 3956 // Null check without removing any arguments.
duke@435 3957 _sp++;
duke@435 3958 obj = do_null_check(obj, T_OBJECT);
duke@435 3959 _sp--;
duke@435 3960 // Check for locking null object
duke@435 3961 if (stopped()) return true;
duke@435 3962
duke@435 3963 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3964 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3965 int alias_idx = C->get_alias_index(adr_type);
duke@435 3966
duke@435 3967 Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
duke@435 3968
duke@435 3969 push_pair(result);
duke@435 3970
duke@435 3971 return true;
duke@435 3972 }
duke@435 3973
duke@435 3974 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
duke@435 3975 // Restore the stack and pop off the arguments
duke@435 3976 _sp+=5;
duke@435 3977 Node *newVal = pop_pair();
duke@435 3978 Node *oldVal = pop_pair();
duke@435 3979 Node *obj = pop();
duke@435 3980
duke@435 3981 // we need the offset of the "value" field which was computed when
duke@435 3982 // inlining the get() method. Give up if we don't have it.
duke@435 3983 if (value_field_offset == -1)
duke@435 3984 return false;
duke@435 3985
duke@435 3986 // Null check without removing any arguments.
duke@435 3987 _sp+=5;
duke@435 3988 obj = do_null_check(obj, T_OBJECT);
duke@435 3989 _sp-=5;
duke@435 3990 // Check for locking null object
duke@435 3991 if (stopped()) return true;
duke@435 3992
duke@435 3993 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3994 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3995 int alias_idx = C->get_alias_index(adr_type);
duke@435 3996
kvn@855 3997 Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
kvn@855 3998 Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 3999 set_memory(store_proj, alias_idx);
kvn@855 4000 Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
kvn@855 4001
kvn@855 4002 Node *result;
kvn@855 4003 // CMove node is not used to be able fold a possible check code
kvn@855 4004 // after attemptUpdate() call. This code could be transformed
kvn@855 4005 // into CMove node by loop optimizations.
kvn@855 4006 {
kvn@855 4007 RegionNode *r = new (C, 3) RegionNode(3);
kvn@855 4008 result = new (C, 3) PhiNode(r, TypeInt::BOOL);
kvn@855 4009
kvn@855 4010 Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
kvn@855 4011 Node *iftrue = opt_iff(r, iff);
kvn@855 4012 r->init_req(1, iftrue);
kvn@855 4013 result->init_req(1, intcon(1));
kvn@855 4014 result->init_req(2, intcon(0));
kvn@855 4015
kvn@855 4016 set_control(_gvn.transform(r));
kvn@855 4017 record_for_igvn(r);
kvn@855 4018
kvn@855 4019 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@855 4020 }
kvn@855 4021
kvn@855 4022 push(_gvn.transform(result));
duke@435 4023 return true;
duke@435 4024 }
duke@435 4025
duke@435 4026 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 4027 // restore the arguments
duke@435 4028 _sp += arg_size();
duke@435 4029
duke@435 4030 switch (id) {
duke@435 4031 case vmIntrinsics::_floatToRawIntBits:
duke@435 4032 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 4033 break;
duke@435 4034
duke@435 4035 case vmIntrinsics::_intBitsToFloat:
duke@435 4036 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 4037 break;
duke@435 4038
duke@435 4039 case vmIntrinsics::_doubleToRawLongBits:
duke@435 4040 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 4041 break;
duke@435 4042
duke@435 4043 case vmIntrinsics::_longBitsToDouble:
duke@435 4044 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 4045 break;
duke@435 4046
duke@435 4047 case vmIntrinsics::_doubleToLongBits: {
duke@435 4048 Node* value = pop_pair();
duke@435 4049
duke@435 4050 // two paths (plus control) merge in a wood
duke@435 4051 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4052 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 4053
duke@435 4054 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 4055 // Build the boolean node
duke@435 4056 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4057
duke@435 4058 // Branch either way.
duke@435 4059 // NaN case is less traveled, which makes all the difference.
duke@435 4060 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4061 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4062 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4063 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4064 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4065
duke@435 4066 set_control(iftrue);
duke@435 4067
duke@435 4068 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 4069 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 4070 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4071 r->init_req(1, iftrue);
duke@435 4072
duke@435 4073 // Else fall through
duke@435 4074 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4075 set_control(iffalse);
duke@435 4076
duke@435 4077 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 4078 r->init_req(2, iffalse);
duke@435 4079
duke@435 4080 // Post merge
duke@435 4081 set_control(_gvn.transform(r));
duke@435 4082 record_for_igvn(r);
duke@435 4083
duke@435 4084 Node* result = _gvn.transform(phi);
duke@435 4085 assert(result->bottom_type()->isa_long(), "must be");
duke@435 4086 push_pair(result);
duke@435 4087
duke@435 4088 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4089
duke@435 4090 break;
duke@435 4091 }
duke@435 4092
duke@435 4093 case vmIntrinsics::_floatToIntBits: {
duke@435 4094 Node* value = pop();
duke@435 4095
duke@435 4096 // two paths (plus control) merge in a wood
duke@435 4097 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4098 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 4099
duke@435 4100 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 4101 // Build the boolean node
duke@435 4102 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4103
duke@435 4104 // Branch either way.
duke@435 4105 // NaN case is less traveled, which makes all the difference.
duke@435 4106 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4107 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4108 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4109 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4110 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4111
duke@435 4112 set_control(iftrue);
duke@435 4113
duke@435 4114 static const jint nan_bits = 0x7fc00000;
duke@435 4115 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 4116 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4117 r->init_req(1, iftrue);
duke@435 4118
duke@435 4119 // Else fall through
duke@435 4120 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4121 set_control(iffalse);
duke@435 4122
duke@435 4123 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 4124 r->init_req(2, iffalse);
duke@435 4125
duke@435 4126 // Post merge
duke@435 4127 set_control(_gvn.transform(r));
duke@435 4128 record_for_igvn(r);
duke@435 4129
duke@435 4130 Node* result = _gvn.transform(phi);
duke@435 4131 assert(result->bottom_type()->isa_int(), "must be");
duke@435 4132 push(result);
duke@435 4133
duke@435 4134 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4135
duke@435 4136 break;
duke@435 4137 }
duke@435 4138
duke@435 4139 default:
duke@435 4140 ShouldNotReachHere();
duke@435 4141 }
duke@435 4142
duke@435 4143 return true;
duke@435 4144 }
duke@435 4145
duke@435 4146 #ifdef _LP64
duke@435 4147 #define XTOP ,top() /*additional argument*/
duke@435 4148 #else //_LP64
duke@435 4149 #define XTOP /*no additional argument*/
duke@435 4150 #endif //_LP64
duke@435 4151
duke@435 4152 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 4153 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 4154 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 4155 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 4156 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 4157 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 4158 if (stopped()) return true;
duke@435 4159
duke@435 4160 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 4161
duke@435 4162 Node* src_ptr = argument(1);
duke@435 4163 Node* src_off = ConvL2X(argument(2));
duke@435 4164 assert(argument(3)->is_top(), "2nd half of long");
duke@435 4165 Node* dst_ptr = argument(4);
duke@435 4166 Node* dst_off = ConvL2X(argument(5));
duke@435 4167 assert(argument(6)->is_top(), "2nd half of long");
duke@435 4168 Node* size = ConvL2X(argument(7));
duke@435 4169 assert(argument(8)->is_top(), "2nd half of long");
duke@435 4170
duke@435 4171 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4172 "fieldOffset must be byte-scaled");
duke@435 4173
duke@435 4174 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4175 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4176
duke@435 4177 // Conservatively insert a memory barrier on all memory slices.
duke@435 4178 // Do not let writes of the copy source or destination float below the copy.
duke@435 4179 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4180
duke@435 4181 // Call it. Note that the length argument is not scaled.
duke@435 4182 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4183 OptoRuntime::fast_arraycopy_Type(),
duke@435 4184 StubRoutines::unsafe_arraycopy(),
duke@435 4185 "unsafe_arraycopy",
duke@435 4186 TypeRawPtr::BOTTOM,
duke@435 4187 src, dst, size XTOP);
duke@435 4188
duke@435 4189 // Do not let reads of the copy destination float above the copy.
duke@435 4190 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4191
duke@435 4192 return true;
duke@435 4193 }
duke@435 4194
kvn@1268 4195 //------------------------clone_coping-----------------------------------
kvn@1268 4196 // Helper function for inline_native_clone.
kvn@1268 4197 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4198 assert(obj_size != NULL, "");
kvn@1268 4199 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4200 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4201
roland@3392 4202 AllocateNode* alloc = NULL;
kvn@1268 4203 if (ReduceBulkZeroing) {
kvn@1268 4204 // We will be completely responsible for initializing this object -
kvn@1268 4205 // mark Initialize node as complete.
roland@3392 4206 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4207 // The object was just allocated - there should be no any stores!
kvn@1268 4208 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
roland@3392 4209 // Mark as complete_with_arraycopy so that on AllocateNode
roland@3392 4210 // expansion, we know this AllocateNode is initialized by an array
roland@3392 4211 // copy and a StoreStore barrier exists after the array copy.
roland@3392 4212 alloc->initialization()->set_complete_with_arraycopy();
kvn@1268 4213 }
kvn@1268 4214
kvn@1268 4215 // Copy the fastest available way.
kvn@1268 4216 // TODO: generate fields copies for small objects instead.
kvn@1268 4217 Node* src = obj;
kvn@1393 4218 Node* dest = alloc_obj;
kvn@1268 4219 Node* size = _gvn.transform(obj_size);
kvn@1268 4220
kvn@1268 4221 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4222 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4223 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4224 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4225 // base_off:
kvn@1268 4226 // 8 - 32-bit VM
kvn@1268 4227 // 12 - 64-bit VM, compressed oops
kvn@1268 4228 // 16 - 64-bit VM, normal oops
kvn@1268 4229 if (base_off % BytesPerLong != 0) {
kvn@1268 4230 assert(UseCompressedOops, "");
kvn@1268 4231 if (is_array) {
kvn@1268 4232 // Exclude length to copy by 8 bytes words.
kvn@1268 4233 base_off += sizeof(int);
kvn@1268 4234 } else {
kvn@1268 4235 // Include klass to copy by 8 bytes words.
kvn@1268 4236 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4237 }
kvn@1268 4238 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4239 }
kvn@1268 4240 src = basic_plus_adr(src, base_off);
kvn@1268 4241 dest = basic_plus_adr(dest, base_off);
kvn@1268 4242
kvn@1268 4243 // Compute the length also, if needed:
kvn@1268 4244 Node* countx = size;
kvn@1268 4245 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
kvn@1268 4246 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4247
kvn@1268 4248 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4249 bool disjoint_bases = true;
kvn@1268 4250 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
iveresov@2606 4251 src, NULL, dest, NULL, countx,
iveresov@2606 4252 /*dest_uninitialized*/true);
kvn@1268 4253
kvn@1268 4254 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4255 if (card_mark) {
kvn@1268 4256 assert(!is_array, "");
kvn@1268 4257 // Put in store barrier for any and all oops we are sticking
kvn@1268 4258 // into this object. (We could avoid this if we could prove
kvn@1268 4259 // that the object type contains no oop fields at all.)
kvn@1268 4260 Node* no_particular_value = NULL;
kvn@1268 4261 Node* no_particular_field = NULL;
kvn@1268 4262 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4263 post_barrier(control(),
kvn@1268 4264 memory(raw_adr_type),
kvn@1393 4265 alloc_obj,
kvn@1268 4266 no_particular_field,
kvn@1268 4267 raw_adr_idx,
kvn@1268 4268 no_particular_value,
kvn@1268 4269 T_OBJECT,
kvn@1268 4270 false);
kvn@1268 4271 }
kvn@1268 4272
kvn@1393 4273 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4274 if (alloc != NULL) {
roland@3392 4275 // Do not let stores that initialize this object be reordered with
roland@3392 4276 // a subsequent store that would make this object accessible by
roland@3392 4277 // other threads.
roland@3392 4278 // Record what AllocateNode this StoreStore protects so that
roland@3392 4279 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4280 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4281 // based on the escape status of the AllocateNode.
roland@3392 4282 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4283 } else {
roland@3392 4284 insert_mem_bar(Op_MemBarCPUOrder);
roland@3392 4285 }
kvn@1268 4286 }
duke@435 4287
duke@435 4288 //------------------------inline_native_clone----------------------------
duke@435 4289 // Here are the simple edge cases:
duke@435 4290 // null receiver => normal trap
duke@435 4291 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4292 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4293 //
duke@435 4294 // The general case has two steps, allocation and copying.
duke@435 4295 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4296 //
duke@435 4297 // Copying also has two cases, oop arrays and everything else.
duke@435 4298 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4299 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4300 //
duke@435 4301 // These steps fold up nicely if and when the cloned object's klass
duke@435 4302 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4303 //
duke@435 4304 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 4305 int nargs = 1;
cfang@1337 4306 PhiNode* result_val;
duke@435 4307
cfang@1335 4308 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1335 4309 //the bytecode that invokes Object.clone if deoptimization happens
cfang@1335 4310 { PreserveReexecuteState preexecs(this);
cfang@1337 4311 jvms()->set_should_reexecute(true);
cfang@1337 4312
cfang@1337 4313 //null_check_receiver will adjust _sp (push and pop)
cfang@1337 4314 Node* obj = null_check_receiver(callee());
cfang@1337 4315 if (stopped()) return true;
cfang@1337 4316
cfang@1335 4317 _sp += nargs;
cfang@1337 4318
cfang@1337 4319 Node* obj_klass = load_object_klass(obj);
cfang@1337 4320 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4321 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4322 ? tklass->as_instance_type()
cfang@1337 4323 : TypeInstPtr::NOTNULL);
cfang@1337 4324
cfang@1337 4325 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4326 // Do not let writes into the original float below the clone.
cfang@1337 4327 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4328
cfang@1337 4329 // paths into result_reg:
cfang@1337 4330 enum {
cfang@1337 4331 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4332 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4333 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4334 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4335 PATH_LIMIT
cfang@1337 4336 };
cfang@1337 4337 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
cfang@1337 4338 result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
cfang@1337 4339 TypeInstPtr::NOTNULL);
cfang@1337 4340 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
cfang@1337 4341 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
cfang@1337 4342 TypePtr::BOTTOM);
cfang@1337 4343 record_for_igvn(result_reg);
cfang@1337 4344
cfang@1337 4345 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4346 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1335 4347
cfang@1335 4348 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4349 if (array_ctl != NULL) {
cfang@1335 4350 // It's an array.
cfang@1335 4351 PreserveJVMState pjvms(this);
cfang@1335 4352 set_control(array_ctl);
cfang@1335 4353 Node* obj_length = load_array_length(obj);
cfang@1335 4354 Node* obj_size = NULL;
kvn@2810 4355 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
cfang@1335 4356
cfang@1335 4357 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4358 // If it is an oop array, it requires very special treatment,
cfang@1335 4359 // because card marking is required on each card of the array.
cfang@1335 4360 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4361 if (is_obja != NULL) {
cfang@1335 4362 PreserveJVMState pjvms2(this);
cfang@1335 4363 set_control(is_obja);
cfang@1335 4364 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4365 bool disjoint_bases = true;
cfang@1335 4366 bool length_never_negative = true;
cfang@1335 4367 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4368 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4369 obj_length,
cfang@1335 4370 disjoint_bases, length_never_negative);
cfang@1335 4371 result_reg->init_req(_objArray_path, control());
cfang@1335 4372 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4373 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4374 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4375 }
cfang@1335 4376 }
cfang@1335 4377 // Otherwise, there are no card marks to worry about.
ysr@1462 4378 // (We can dispense with card marks if we know the allocation
ysr@1462 4379 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4380 // causes the non-eden paths to take compensating steps to
ysr@1462 4381 // simulate a fresh allocation, so that no further
ysr@1462 4382 // card marks are required in compiled code to initialize
ysr@1462 4383 // the object.)
cfang@1335 4384
cfang@1335 4385 if (!stopped()) {
cfang@1335 4386 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4387
cfang@1335 4388 // Present the results of the copy.
cfang@1335 4389 result_reg->init_req(_array_path, control());
cfang@1335 4390 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4391 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4392 result_mem ->set_req(_array_path, reset_memory());
duke@435 4393 }
duke@435 4394 }
cfang@1335 4395
cfang@1335 4396 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4397 // The paths which do not pass are accumulated in the slow_region.
cfang@1335 4398 RegionNode* slow_region = new (C, 1) RegionNode(1);
cfang@1335 4399 record_for_igvn(slow_region);
kvn@1268 4400 if (!stopped()) {
cfang@1335 4401 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4402 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4403 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4404 // If the target method which we are calling happens to be the
cfang@1335 4405 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4406 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4407 // Object clone().
cfang@1335 4408 if (is_virtual) {
cfang@1335 4409 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4410 }
cfang@1335 4411
cfang@1335 4412 // The object must be cloneable and must not have a finalizer.
cfang@1335 4413 // Both of these conditions may be checked in a single test.
cfang@1335 4414 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4415 generate_access_flags_guard(obj_klass,
cfang@1335 4416 // Test both conditions:
cfang@1335 4417 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4418 // Must be cloneable but not finalizer:
cfang@1335 4419 JVM_ACC_IS_CLONEABLE,
cfang@1335 4420 slow_region);
kvn@1268 4421 }
cfang@1335 4422
cfang@1335 4423 if (!stopped()) {
cfang@1335 4424 // It's an instance, and it passed the slow-path tests.
cfang@1335 4425 PreserveJVMState pjvms(this);
cfang@1335 4426 Node* obj_size = NULL;
kvn@2810 4427 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
cfang@1335 4428
cfang@1335 4429 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4430
cfang@1335 4431 // Present the results of the slow call.
cfang@1335 4432 result_reg->init_req(_instance_path, control());
cfang@1335 4433 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4434 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4435 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4436 }
duke@435 4437
cfang@1335 4438 // Generate code for the slow case. We make a call to clone().
cfang@1335 4439 set_control(_gvn.transform(slow_region));
cfang@1335 4440 if (!stopped()) {
cfang@1335 4441 PreserveJVMState pjvms(this);
cfang@1335 4442 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4443 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4444 // this->control() comes from set_results_for_java_call
cfang@1335 4445 result_reg->init_req(_slow_path, control());
cfang@1335 4446 result_val->init_req(_slow_path, slow_result);
cfang@1335 4447 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4448 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4449 }
cfang@1337 4450
cfang@1337 4451 // Return the combined state.
cfang@1337 4452 set_control( _gvn.transform(result_reg) );
cfang@1337 4453 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4454 set_all_memory( _gvn.transform(result_mem) );
cfang@1335 4455 } //original reexecute and sp are set back here
duke@435 4456
kvn@1268 4457 push(_gvn.transform(result_val));
duke@435 4458
duke@435 4459 return true;
duke@435 4460 }
duke@435 4461
duke@435 4462 //------------------------------basictype2arraycopy----------------------------
duke@435 4463 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4464 Node* src_offset,
duke@435 4465 Node* dest_offset,
duke@435 4466 bool disjoint_bases,
iveresov@2606 4467 const char* &name,
iveresov@2606 4468 bool dest_uninitialized) {
duke@435 4469 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4470 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4471
duke@435 4472 bool aligned = false;
duke@435 4473 bool disjoint = disjoint_bases;
duke@435 4474
duke@435 4475 // if the offsets are the same, we can treat the memory regions as
duke@435 4476 // disjoint, because either the memory regions are in different arrays,
duke@435 4477 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4478 // treat a copy with a destination index less that the source index
duke@435 4479 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4480 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4481 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4482 // both indices are constants
duke@435 4483 int s_offs = src_offset_inttype->get_con();
duke@435 4484 int d_offs = dest_offset_inttype->get_con();
kvn@464 4485 int element_size = type2aelembytes(t);
duke@435 4486 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4487 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4488 if (s_offs >= d_offs) disjoint = true;
duke@435 4489 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4490 // This can occur if the offsets are identical non-constants.
duke@435 4491 disjoint = true;
duke@435 4492 }
duke@435 4493
roland@2728 4494 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
duke@435 4495 }
duke@435 4496
duke@435 4497
duke@435 4498 //------------------------------inline_arraycopy-----------------------
duke@435 4499 bool LibraryCallKit::inline_arraycopy() {
duke@435 4500 // Restore the stack and pop off the arguments.
duke@435 4501 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 4502 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 4503
duke@435 4504 Node *src = argument(0);
duke@435 4505 Node *src_offset = argument(1);
duke@435 4506 Node *dest = argument(2);
duke@435 4507 Node *dest_offset = argument(3);
duke@435 4508 Node *length = argument(4);
duke@435 4509
duke@435 4510 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4511 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4512 // is. The checks we choose to mandate at compile time are:
duke@435 4513 //
duke@435 4514 // (1) src and dest are arrays.
duke@435 4515 const Type* src_type = src->Value(&_gvn);
duke@435 4516 const Type* dest_type = dest->Value(&_gvn);
duke@435 4517 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4518 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4519 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4520 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4521 // Conservatively insert a memory barrier on all memory slices.
duke@435 4522 // Do not let writes into the source float below the arraycopy.
duke@435 4523 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4524
duke@435 4525 // Call StubRoutines::generic_arraycopy stub.
duke@435 4526 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4527 src, src_offset, dest, dest_offset, length);
duke@435 4528
duke@435 4529 // Do not let reads from the destination float above the arraycopy.
duke@435 4530 // Since we cannot type the arrays, we don't know which slices
duke@435 4531 // might be affected. We could restrict this barrier only to those
duke@435 4532 // memory slices which pertain to array elements--but don't bother.
duke@435 4533 if (!InsertMemBarAfterArraycopy)
duke@435 4534 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4535 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4536 return true;
duke@435 4537 }
duke@435 4538
duke@435 4539 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4540 // Figure out the size and type of the elements we will be copying.
duke@435 4541 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4542 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4543 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4544 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4545
duke@435 4546 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4547 // The component types are not the same or are not recognized. Punt.
duke@435 4548 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4549 generate_slow_arraycopy(TypePtr::BOTTOM,
iveresov@2606 4550 src, src_offset, dest, dest_offset, length,
iveresov@2606 4551 /*dest_uninitialized*/false);
duke@435 4552 return true;
duke@435 4553 }
duke@435 4554
duke@435 4555 //---------------------------------------------------------------------------
duke@435 4556 // We will make a fast path for this call to arraycopy.
duke@435 4557
duke@435 4558 // We have the following tests left to perform:
duke@435 4559 //
duke@435 4560 // (3) src and dest must not be null.
duke@435 4561 // (4) src_offset must not be negative.
duke@435 4562 // (5) dest_offset must not be negative.
duke@435 4563 // (6) length must not be negative.
duke@435 4564 // (7) src_offset + length must not exceed length of src.
duke@435 4565 // (8) dest_offset + length must not exceed length of dest.
duke@435 4566 // (9) each element of an oop array must be assignable
duke@435 4567
duke@435 4568 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4569 record_for_igvn(slow_region);
duke@435 4570
duke@435 4571 // (3) operands must not be null
duke@435 4572 // We currently perform our null checks with the do_null_check routine.
duke@435 4573 // This means that the null exceptions will be reported in the caller
duke@435 4574 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4575 // This should be corrected, given time. We do our null check with the
duke@435 4576 // stack pointer restored.
duke@435 4577 _sp += nargs;
duke@435 4578 src = do_null_check(src, T_ARRAY);
duke@435 4579 dest = do_null_check(dest, T_ARRAY);
duke@435 4580 _sp -= nargs;
duke@435 4581
duke@435 4582 // (4) src_offset must not be negative.
duke@435 4583 generate_negative_guard(src_offset, slow_region);
duke@435 4584
duke@435 4585 // (5) dest_offset must not be negative.
duke@435 4586 generate_negative_guard(dest_offset, slow_region);
duke@435 4587
duke@435 4588 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4589 // generate_negative_guard(length, slow_region);
duke@435 4590
duke@435 4591 // (7) src_offset + length must not exceed length of src.
duke@435 4592 generate_limit_guard(src_offset, length,
duke@435 4593 load_array_length(src),
duke@435 4594 slow_region);
duke@435 4595
duke@435 4596 // (8) dest_offset + length must not exceed length of dest.
duke@435 4597 generate_limit_guard(dest_offset, length,
duke@435 4598 load_array_length(dest),
duke@435 4599 slow_region);
duke@435 4600
duke@435 4601 // (9) each element of an oop array must be assignable
duke@435 4602 // The generate_arraycopy subroutine checks this.
duke@435 4603
duke@435 4604 // This is where the memory effects are placed:
duke@435 4605 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4606 generate_arraycopy(adr_type, dest_elem,
duke@435 4607 src, src_offset, dest, dest_offset, length,
kvn@1268 4608 false, false, slow_region);
duke@435 4609
duke@435 4610 return true;
duke@435 4611 }
duke@435 4612
duke@435 4613 //-----------------------------generate_arraycopy----------------------
duke@435 4614 // Generate an optimized call to arraycopy.
duke@435 4615 // Caller must guard against non-arrays.
duke@435 4616 // Caller must determine a common array basic-type for both arrays.
duke@435 4617 // Caller must validate offsets against array bounds.
duke@435 4618 // The slow_region has already collected guard failure paths
duke@435 4619 // (such as out of bounds length or non-conformable array types).
duke@435 4620 // The generated code has this shape, in general:
duke@435 4621 //
duke@435 4622 // if (length == 0) return // via zero_path
duke@435 4623 // slowval = -1
duke@435 4624 // if (types unknown) {
duke@435 4625 // slowval = call generic copy loop
duke@435 4626 // if (slowval == 0) return // via checked_path
duke@435 4627 // } else if (indexes in bounds) {
duke@435 4628 // if ((is object array) && !(array type check)) {
duke@435 4629 // slowval = call checked copy loop
duke@435 4630 // if (slowval == 0) return // via checked_path
duke@435 4631 // } else {
duke@435 4632 // call bulk copy loop
duke@435 4633 // return // via fast_path
duke@435 4634 // }
duke@435 4635 // }
duke@435 4636 // // adjust params for remaining work:
duke@435 4637 // if (slowval != -1) {
duke@435 4638 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4639 // }
duke@435 4640 // slow_region:
duke@435 4641 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4642 // return // via slow_call_path
duke@435 4643 //
duke@435 4644 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4645 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4646 //
duke@435 4647 void
duke@435 4648 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4649 BasicType basic_elem_type,
duke@435 4650 Node* src, Node* src_offset,
duke@435 4651 Node* dest, Node* dest_offset,
duke@435 4652 Node* copy_length,
duke@435 4653 bool disjoint_bases,
duke@435 4654 bool length_never_negative,
duke@435 4655 RegionNode* slow_region) {
duke@435 4656
duke@435 4657 if (slow_region == NULL) {
duke@435 4658 slow_region = new(C,1) RegionNode(1);
duke@435 4659 record_for_igvn(slow_region);
duke@435 4660 }
duke@435 4661
duke@435 4662 Node* original_dest = dest;
duke@435 4663 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
iveresov@2606 4664 bool dest_uninitialized = false;
duke@435 4665
duke@435 4666 // See if this is the initialization of a newly-allocated array.
duke@435 4667 // If so, we will take responsibility here for initializing it to zero.
duke@435 4668 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4669 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4670 // from it until we have checked its uses.)
duke@435 4671 if (ReduceBulkZeroing
duke@435 4672 && !ZeroTLAB // pointless if already zeroed
duke@435 4673 && basic_elem_type != T_CONFLICT // avoid corner case
kvn@3407 4674 && !src->eqv_uncast(dest)
duke@435 4675 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4676 != NULL)
kvn@469 4677 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4678 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4679 // "You break it, you buy it."
duke@435 4680 InitializeNode* init = alloc->initialization();
duke@435 4681 assert(init->is_complete(), "we just did this");
kvn@3157 4682 init->set_complete_with_arraycopy();
kvn@1268 4683 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4684 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4685 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4686 // From this point on, every exit path is responsible for
duke@435 4687 // initializing any non-copied parts of the object to zero.
iveresov@2606 4688 // Also, if this flag is set we make sure that arraycopy interacts properly
iveresov@2606 4689 // with G1, eliding pre-barriers. See CR 6627983.
iveresov@2606 4690 dest_uninitialized = true;
duke@435 4691 } else {
duke@435 4692 // No zeroing elimination here.
duke@435 4693 alloc = NULL;
duke@435 4694 //original_dest = dest;
iveresov@2606 4695 //dest_uninitialized = false;
duke@435 4696 }
duke@435 4697
duke@435 4698 // Results are placed here:
duke@435 4699 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4700 checked_path = 2, // special assembly stub with cleanup
duke@435 4701 slow_call_path = 3, // something went wrong; call the VM
duke@435 4702 zero_path = 4, // bypass when length of copy is zero
duke@435 4703 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4704 PATH_LIMIT = 6
duke@435 4705 };
duke@435 4706 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4707 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4708 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4709 record_for_igvn(result_region);
duke@435 4710 _gvn.set_type_bottom(result_i_o);
duke@435 4711 _gvn.set_type_bottom(result_memory);
duke@435 4712 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4713
duke@435 4714 // The slow_control path:
duke@435 4715 Node* slow_control;
duke@435 4716 Node* slow_i_o = i_o();
duke@435 4717 Node* slow_mem = memory(adr_type);
duke@435 4718 debug_only(slow_control = (Node*) badAddress);
duke@435 4719
duke@435 4720 // Checked control path:
duke@435 4721 Node* checked_control = top();
duke@435 4722 Node* checked_mem = NULL;
duke@435 4723 Node* checked_i_o = NULL;
duke@435 4724 Node* checked_value = NULL;
duke@435 4725
duke@435 4726 if (basic_elem_type == T_CONFLICT) {
iveresov@2606 4727 assert(!dest_uninitialized, "");
duke@435 4728 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4729 src, src_offset, dest, dest_offset,
iveresov@2606 4730 copy_length, dest_uninitialized);
duke@435 4731 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4732 checked_control = control();
duke@435 4733 checked_i_o = i_o();
duke@435 4734 checked_mem = memory(adr_type);
duke@435 4735 checked_value = cv;
duke@435 4736 set_control(top()); // no fast path
duke@435 4737 }
duke@435 4738
duke@435 4739 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4740 if (not_pos != NULL) {
duke@435 4741 PreserveJVMState pjvms(this);
duke@435 4742 set_control(not_pos);
duke@435 4743
duke@435 4744 // (6) length must not be negative.
duke@435 4745 if (!length_never_negative) {
duke@435 4746 generate_negative_guard(copy_length, slow_region);
duke@435 4747 }
duke@435 4748
kvn@1271 4749 // copy_length is 0.
iveresov@2606 4750 if (!stopped() && dest_uninitialized) {
duke@435 4751 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@3407 4752 if (copy_length->eqv_uncast(dest_length)
duke@435 4753 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4754 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4755 } else {
duke@435 4756 // Clear the whole thing since there are no source elements to copy.
duke@435 4757 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4758 intcon(0), NULL,
duke@435 4759 alloc->in(AllocateNode::AllocSize));
kvn@1271 4760 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4761 // Currently it is needed only on this path since other
kvn@1271 4762 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4763 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4764 Compile::AliasIdxRaw,
kvn@1271 4765 top())->as_Initialize();
kvn@1271 4766 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4767 }
duke@435 4768 }
duke@435 4769
duke@435 4770 // Present the results of the fast call.
duke@435 4771 result_region->init_req(zero_path, control());
duke@435 4772 result_i_o ->init_req(zero_path, i_o());
duke@435 4773 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4774 }
duke@435 4775
iveresov@2606 4776 if (!stopped() && dest_uninitialized) {
duke@435 4777 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4778 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4779 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4780 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4781 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4782 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4783 copy_length) );
duke@435 4784
duke@435 4785 // If there is a head section that needs zeroing, do it now.
duke@435 4786 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4787 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4788 intcon(0), dest_offset,
duke@435 4789 NULL);
duke@435 4790 }
duke@435 4791
duke@435 4792 // Next, perform a dynamic check on the tail length.
duke@435 4793 // It is often zero, and we can win big if we prove this.
duke@435 4794 // There are two wins: Avoid generating the ClearArray
duke@435 4795 // with its attendant messy index arithmetic, and upgrade
duke@435 4796 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4797 Node* tail_ctl = NULL;
kvn@3407 4798 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
duke@435 4799 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4800 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4801 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4802 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4803 }
duke@435 4804
duke@435 4805 // At this point, let's assume there is no tail.
duke@435 4806 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4807 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4808 bool didit = false;
duke@435 4809 { PreserveJVMState pjvms(this);
duke@435 4810 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4811 src, src_offset, dest, dest_offset,
iveresov@2606 4812 dest_size, dest_uninitialized);
duke@435 4813 if (didit) {
duke@435 4814 // Present the results of the block-copying fast call.
duke@435 4815 result_region->init_req(bcopy_path, control());
duke@435 4816 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4817 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4818 }
duke@435 4819 }
duke@435 4820 if (didit)
duke@435 4821 set_control(top()); // no regular fast path
duke@435 4822 }
duke@435 4823
duke@435 4824 // Clear the tail, if any.
duke@435 4825 if (tail_ctl != NULL) {
duke@435 4826 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4827 set_control(tail_ctl);
duke@435 4828 if (notail_ctl == NULL) {
duke@435 4829 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4830 dest_tail, NULL,
duke@435 4831 dest_size);
duke@435 4832 } else {
duke@435 4833 // Make a local merge.
duke@435 4834 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4835 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4836 done_ctl->init_req(1, notail_ctl);
duke@435 4837 done_mem->init_req(1, memory(adr_type));
duke@435 4838 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4839 dest_tail, NULL,
duke@435 4840 dest_size);
duke@435 4841 done_ctl->init_req(2, control());
duke@435 4842 done_mem->init_req(2, memory(adr_type));
duke@435 4843 set_control( _gvn.transform(done_ctl) );
duke@435 4844 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4845 }
duke@435 4846 }
duke@435 4847 }
duke@435 4848
duke@435 4849 BasicType copy_type = basic_elem_type;
duke@435 4850 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4851 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4852 // If src and dest have compatible element types, we can copy bits.
duke@435 4853 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4854 //
duke@435 4855 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4856 // which performs a fast optimistic per-oop check, and backs off
duke@435 4857 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4858 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4859
duke@435 4860 // Get the klassOop for both src and dest
duke@435 4861 Node* src_klass = load_object_klass(src);
duke@435 4862 Node* dest_klass = load_object_klass(dest);
duke@435 4863
duke@435 4864 // Generate the subtype check.
duke@435 4865 // This might fold up statically, or then again it might not.
duke@435 4866 //
duke@435 4867 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4868 // The backing store for a List<String> is always an Object[],
duke@435 4869 // but its elements are always type String, if the generic types
duke@435 4870 // are correct at the source level.
duke@435 4871 //
duke@435 4872 // Test S[] against D[], not S against D, because (probably)
duke@435 4873 // the secondary supertype cache is less busy for S[] than S.
duke@435 4874 // This usually only matters when D is an interface.
duke@435 4875 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4876 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4877 if (not_subtype_ctrl != top()) {
duke@435 4878 PreserveJVMState pjvms(this);
duke@435 4879 set_control(not_subtype_ctrl);
duke@435 4880 // (At this point we can assume disjoint_bases, since types differ.)
stefank@3391 4881 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
duke@435 4882 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4883 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4884 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4885 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4886 dest_elem_klass,
duke@435 4887 src, src_offset, dest, dest_offset,
iveresov@2606 4888 ConvI2X(copy_length), dest_uninitialized);
duke@435 4889 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4890 checked_control = control();
duke@435 4891 checked_i_o = i_o();
duke@435 4892 checked_mem = memory(adr_type);
duke@435 4893 checked_value = cv;
duke@435 4894 }
duke@435 4895 // At this point we know we do not need type checks on oop stores.
duke@435 4896
duke@435 4897 // Let's see if we need card marks:
duke@435 4898 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4899 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4900 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4901 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4902 "sizes agree");
duke@435 4903 }
duke@435 4904 }
duke@435 4905
duke@435 4906 if (!stopped()) {
duke@435 4907 // Generate the fast path, if possible.
duke@435 4908 PreserveJVMState pjvms(this);
duke@435 4909 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4910 src, src_offset, dest, dest_offset,
iveresov@2606 4911 ConvI2X(copy_length), dest_uninitialized);
duke@435 4912
duke@435 4913 // Present the results of the fast call.
duke@435 4914 result_region->init_req(fast_path, control());
duke@435 4915 result_i_o ->init_req(fast_path, i_o());
duke@435 4916 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4917 }
duke@435 4918
duke@435 4919 // Here are all the slow paths up to this point, in one bundle:
duke@435 4920 slow_control = top();
duke@435 4921 if (slow_region != NULL)
duke@435 4922 slow_control = _gvn.transform(slow_region);
duke@435 4923 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 4924
duke@435 4925 set_control(checked_control);
duke@435 4926 if (!stopped()) {
duke@435 4927 // Clean up after the checked call.
duke@435 4928 // The returned value is either 0 or -1^K,
duke@435 4929 // where K = number of partially transferred array elements.
duke@435 4930 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 4931 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 4932 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4933
duke@435 4934 // If it is 0, we are done, so transfer to the end.
duke@435 4935 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 4936 result_region->init_req(checked_path, checks_done);
duke@435 4937 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4938 result_memory->init_req(checked_path, checked_mem);
duke@435 4939
duke@435 4940 // If it is not zero, merge into the slow call.
duke@435 4941 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 4942 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 4943 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 4944 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4945 record_for_igvn(slow_reg2);
duke@435 4946 slow_reg2 ->init_req(1, slow_control);
duke@435 4947 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4948 slow_mem2 ->init_req(1, slow_mem);
duke@435 4949 slow_reg2 ->init_req(2, control());
kvn@1268 4950 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4951 slow_mem2 ->init_req(2, checked_mem);
duke@435 4952
duke@435 4953 slow_control = _gvn.transform(slow_reg2);
duke@435 4954 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4955 slow_mem = _gvn.transform(slow_mem2);
duke@435 4956
duke@435 4957 if (alloc != NULL) {
duke@435 4958 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4959 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4960 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4961 } else {
duke@435 4962 // We must continue the copy exactly where it failed, or else
duke@435 4963 // another thread might see the wrong number of writes to dest.
duke@435 4964 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 4965 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4966 slow_offset->init_req(1, intcon(0));
duke@435 4967 slow_offset->init_req(2, checked_offset);
duke@435 4968 slow_offset = _gvn.transform(slow_offset);
duke@435 4969
duke@435 4970 // Adjust the arguments by the conditionally incoming offset.
duke@435 4971 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 4972 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 4973 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 4974
duke@435 4975 // Tweak the node variables to adjust the code produced below:
duke@435 4976 src_offset = src_off_plus;
duke@435 4977 dest_offset = dest_off_plus;
duke@435 4978 copy_length = length_minus;
duke@435 4979 }
duke@435 4980 }
duke@435 4981
duke@435 4982 set_control(slow_control);
duke@435 4983 if (!stopped()) {
duke@435 4984 // Generate the slow path, if needed.
duke@435 4985 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4986
duke@435 4987 set_memory(slow_mem, adr_type);
duke@435 4988 set_i_o(slow_i_o);
duke@435 4989
iveresov@2606 4990 if (dest_uninitialized) {
duke@435 4991 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4992 intcon(0), NULL,
duke@435 4993 alloc->in(AllocateNode::AllocSize));
duke@435 4994 }
duke@435 4995
duke@435 4996 generate_slow_arraycopy(adr_type,
duke@435 4997 src, src_offset, dest, dest_offset,
iveresov@2606 4998 copy_length, /*dest_uninitialized*/false);
duke@435 4999
duke@435 5000 result_region->init_req(slow_call_path, control());
duke@435 5001 result_i_o ->init_req(slow_call_path, i_o());
duke@435 5002 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 5003 }
duke@435 5004
duke@435 5005 // Remove unused edges.
duke@435 5006 for (uint i = 1; i < result_region->req(); i++) {
duke@435 5007 if (result_region->in(i) == NULL)
duke@435 5008 result_region->init_req(i, top());
duke@435 5009 }
duke@435 5010
duke@435 5011 // Finished; return the combined state.
duke@435 5012 set_control( _gvn.transform(result_region) );
duke@435 5013 set_i_o( _gvn.transform(result_i_o) );
duke@435 5014 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 5015
duke@435 5016 // The memory edges above are precise in order to model effects around
twisti@1040 5017 // array copies accurately to allow value numbering of field loads around
duke@435 5018 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 5019 // collections and similar classes involving header/array data structures.
duke@435 5020 //
duke@435 5021 // But with low number of register or when some registers are used or killed
duke@435 5022 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 5023 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 5024 // optimized away (which it can, sometimes) then we can manually remove
duke@435 5025 // the membar also.
kvn@1393 5026 //
kvn@1393 5027 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 5028 if (alloc != NULL) {
roland@3392 5029 // Do not let stores that initialize this object be reordered with
roland@3392 5030 // a subsequent store that would make this object accessible by
roland@3392 5031 // other threads.
roland@3392 5032 // Record what AllocateNode this StoreStore protects so that
roland@3392 5033 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 5034 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 5035 // based on the escape status of the AllocateNode.
roland@3392 5036 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 5037 } else if (InsertMemBarAfterArraycopy)
duke@435 5038 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 5039 }
duke@435 5040
duke@435 5041
duke@435 5042 // Helper function which determines if an arraycopy immediately follows
duke@435 5043 // an allocation, with no intervening tests or other escapes for the object.
duke@435 5044 AllocateArrayNode*
duke@435 5045 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 5046 RegionNode* slow_region) {
duke@435 5047 if (stopped()) return NULL; // no fast path
duke@435 5048 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 5049
duke@435 5050 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 5051 if (alloc == NULL) return NULL;
duke@435 5052
duke@435 5053 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 5054 // Is the allocation's memory state untouched?
duke@435 5055 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 5056 // Bail out if there have been raw-memory effects since the allocation.
duke@435 5057 // (Example: There might have been a call or safepoint.)
duke@435 5058 return NULL;
duke@435 5059 }
duke@435 5060 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 5061 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 5062 return NULL;
duke@435 5063 }
duke@435 5064
duke@435 5065 // There must be no unexpected observers of this allocation.
duke@435 5066 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 5067 Node* obs = ptr->fast_out(i);
duke@435 5068 if (obs != this->map()) {
duke@435 5069 return NULL;
duke@435 5070 }
duke@435 5071 }
duke@435 5072
duke@435 5073 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 5074 Node* alloc_ctl = ptr->in(0);
duke@435 5075 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 5076
duke@435 5077 Node* ctl = control();
duke@435 5078 while (ctl != alloc_ctl) {
duke@435 5079 // There may be guards which feed into the slow_region.
duke@435 5080 // Any other control flow means that we might not get a chance
duke@435 5081 // to finish initializing the allocated object.
duke@435 5082 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 5083 IfNode* iff = ctl->in(0)->as_If();
duke@435 5084 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 5085 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 5086 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 5087 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 5088 continue;
duke@435 5089 }
duke@435 5090 // One more try: Various low-level checks bottom out in
duke@435 5091 // uncommon traps. If the debug-info of the trap omits
duke@435 5092 // any reference to the allocation, as we've already
duke@435 5093 // observed, then there can be no objection to the trap.
duke@435 5094 bool found_trap = false;
duke@435 5095 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 5096 Node* obs = not_ctl->fast_out(j);
duke@435 5097 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 5098 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 5099 found_trap = true; break;
duke@435 5100 }
duke@435 5101 }
duke@435 5102 if (found_trap) {
duke@435 5103 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 5104 continue;
duke@435 5105 }
duke@435 5106 }
duke@435 5107 return NULL;
duke@435 5108 }
duke@435 5109
duke@435 5110 // If we get this far, we have an allocation which immediately
duke@435 5111 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 5112 // The arraycopy will finish the initialization, and provide
duke@435 5113 // a new control state to which we will anchor the destination pointer.
duke@435 5114
duke@435 5115 return alloc;
duke@435 5116 }
duke@435 5117
duke@435 5118 // Helper for initialization of arrays, creating a ClearArray.
duke@435 5119 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5120 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5121 //
duke@435 5122 // Since the object is otherwise uninitialized, we are free
duke@435 5123 // to put a little "slop" around the edges of the cleared area,
duke@435 5124 // as long as it does not go back into the array's header,
duke@435 5125 // or beyond the array end within the heap.
duke@435 5126 //
duke@435 5127 // The lower edge can be rounded down to the nearest jint and the
duke@435 5128 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5129 //
duke@435 5130 // Arguments:
duke@435 5131 // adr_type memory slice where writes are generated
duke@435 5132 // dest oop of the destination array
duke@435 5133 // basic_elem_type element type of the destination
duke@435 5134 // slice_idx array index of first element to store
duke@435 5135 // slice_len number of elements to store (or NULL)
duke@435 5136 // dest_size total size in bytes of the array object
duke@435 5137 //
duke@435 5138 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5139 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5140 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5141 void
duke@435 5142 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5143 Node* dest,
duke@435 5144 BasicType basic_elem_type,
duke@435 5145 Node* slice_idx,
duke@435 5146 Node* slice_len,
duke@435 5147 Node* dest_size) {
duke@435 5148 // one or the other but not both of slice_len and dest_size:
duke@435 5149 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5150 if (slice_len == NULL) slice_len = top();
duke@435 5151 if (dest_size == NULL) dest_size = top();
duke@435 5152
duke@435 5153 // operate on this memory slice:
duke@435 5154 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5155
duke@435 5156 // scaling and rounding of indexes:
kvn@464 5157 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5158 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5159 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5160 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5161
duke@435 5162 // determine constant starts and ends
duke@435 5163 const intptr_t BIG_NEG = -128;
duke@435 5164 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5165 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5166 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5167 if (slice_len_con == 0) {
duke@435 5168 return; // nothing to do here
duke@435 5169 }
duke@435 5170 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5171 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5172 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5173 assert(end_con < 0, "not two cons");
duke@435 5174 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5175 BytesPerLong);
duke@435 5176 }
duke@435 5177
duke@435 5178 if (start_con >= 0 && end_con >= 0) {
duke@435 5179 // Constant start and end. Simple.
duke@435 5180 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5181 start_con, end_con, &_gvn);
duke@435 5182 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5183 // Constant start, pre-rounded end after the tail of the array.
duke@435 5184 Node* end = dest_size;
duke@435 5185 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5186 start_con, end, &_gvn);
duke@435 5187 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5188 // Constant start, non-constant end. End needs rounding up.
duke@435 5189 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5190 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5191 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5192 Node* end = ConvI2X(slice_len);
duke@435 5193 if (scale != 0)
duke@435 5194 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 5195 end_base += end_round;
duke@435 5196 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 5197 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 5198 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5199 start_con, end, &_gvn);
duke@435 5200 } else if (start_con < 0 && dest_size != top()) {
duke@435 5201 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5202 // This is almost certainly a "round-to-end" operation.
duke@435 5203 Node* start = slice_idx;
duke@435 5204 start = ConvI2X(start);
duke@435 5205 if (scale != 0)
duke@435 5206 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 5207 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 5208 if ((bump_bit | clear_low) != 0) {
duke@435 5209 int to_clear = (bump_bit | clear_low);
duke@435 5210 // Align up mod 8, then store a jint zero unconditionally
duke@435 5211 // just before the mod-8 boundary.
coleenp@548 5212 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5213 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5214 bump_bit = 0;
coleenp@548 5215 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5216 } else {
coleenp@548 5217 // Bump 'start' up to (or past) the next jint boundary:
coleenp@548 5218 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5219 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5220 }
duke@435 5221 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 5222 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5223 if (bump_bit != 0) {
coleenp@548 5224 // Store a zero to the immediately preceding jint:
coleenp@548 5225 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5226 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5227 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5228 mem = _gvn.transform(mem);
coleenp@548 5229 }
duke@435 5230 }
duke@435 5231 Node* end = dest_size; // pre-rounded
duke@435 5232 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5233 start, end, &_gvn);
duke@435 5234 } else {
duke@435 5235 // Non-constant start, unrounded non-constant end.
duke@435 5236 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5237 ShouldNotReachHere(); // fix caller
duke@435 5238 }
duke@435 5239
duke@435 5240 // Done.
duke@435 5241 set_memory(mem, adr_type);
duke@435 5242 }
duke@435 5243
duke@435 5244
duke@435 5245 bool
duke@435 5246 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5247 BasicType basic_elem_type,
duke@435 5248 AllocateNode* alloc,
duke@435 5249 Node* src, Node* src_offset,
duke@435 5250 Node* dest, Node* dest_offset,
iveresov@2606 5251 Node* dest_size, bool dest_uninitialized) {
duke@435 5252 // See if there is an advantage from block transfer.
kvn@464 5253 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5254 if (scale >= LogBytesPerLong)
duke@435 5255 return false; // it is already a block transfer
duke@435 5256
duke@435 5257 // Look at the alignment of the starting offsets.
duke@435 5258 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@2939 5259
kvn@2939 5260 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
kvn@2939 5261 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
kvn@2939 5262 if (src_off_con < 0 || dest_off_con < 0)
duke@435 5263 // At present, we can only understand constants.
duke@435 5264 return false;
duke@435 5265
kvn@2939 5266 intptr_t src_off = abase + (src_off_con << scale);
kvn@2939 5267 intptr_t dest_off = abase + (dest_off_con << scale);
kvn@2939 5268
duke@435 5269 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5270 // Non-aligned; too bad.
duke@435 5271 // One more chance: Pick off an initial 32-bit word.
duke@435 5272 // This is a common case, since abase can be odd mod 8.
duke@435 5273 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5274 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5275 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5276 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5277 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5278 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5279 src_off += BytesPerInt;
duke@435 5280 dest_off += BytesPerInt;
duke@435 5281 } else {
duke@435 5282 return false;
duke@435 5283 }
duke@435 5284 }
duke@435 5285 assert(src_off % BytesPerLong == 0, "");
duke@435 5286 assert(dest_off % BytesPerLong == 0, "");
duke@435 5287
duke@435 5288 // Do this copy by giant steps.
duke@435 5289 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5290 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5291 Node* countx = dest_size;
duke@435 5292 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 5293 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5294
duke@435 5295 bool disjoint_bases = true; // since alloc != NULL
duke@435 5296 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
iveresov@2606 5297 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
duke@435 5298
duke@435 5299 return true;
duke@435 5300 }
duke@435 5301
duke@435 5302
duke@435 5303 // Helper function; generates code for the slow case.
duke@435 5304 // We make a call to a runtime method which emulates the native method,
duke@435 5305 // but without the native wrapper overhead.
duke@435 5306 void
duke@435 5307 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5308 Node* src, Node* src_offset,
duke@435 5309 Node* dest, Node* dest_offset,
iveresov@2606 5310 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5311 assert(!dest_uninitialized, "Invariant");
duke@435 5312 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5313 OptoRuntime::slow_arraycopy_Type(),
duke@435 5314 OptoRuntime::slow_arraycopy_Java(),
duke@435 5315 "slow_arraycopy", adr_type,
duke@435 5316 src, src_offset, dest, dest_offset,
duke@435 5317 copy_length);
duke@435 5318
duke@435 5319 // Handle exceptions thrown by this fellow:
duke@435 5320 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5321 }
duke@435 5322
duke@435 5323 // Helper function; generates code for cases requiring runtime checks.
duke@435 5324 Node*
duke@435 5325 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5326 Node* dest_elem_klass,
duke@435 5327 Node* src, Node* src_offset,
duke@435 5328 Node* dest, Node* dest_offset,
iveresov@2606 5329 Node* copy_length, bool dest_uninitialized) {
duke@435 5330 if (stopped()) return NULL;
duke@435 5331
iveresov@2606 5332 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
duke@435 5333 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5334 return NULL;
duke@435 5335 }
duke@435 5336
duke@435 5337 // Pick out the parameters required to perform a store-check
duke@435 5338 // for the target array. This is an optimistic check. It will
duke@435 5339 // look in each non-null element's class, at the desired klass's
duke@435 5340 // super_check_offset, for the desired klass.
stefank@3391 5341 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 5342 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@1964 5343 Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5344 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5345 Node* check_value = dest_elem_klass;
duke@435 5346
duke@435 5347 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5348 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5349
duke@435 5350 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5351 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5352 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5353 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5354 // five arguments, of which two are
duke@435 5355 // intptr_t (jlong in LP64)
duke@435 5356 src_start, dest_start,
duke@435 5357 copy_length XTOP,
duke@435 5358 check_offset XTOP,
duke@435 5359 check_value);
duke@435 5360
duke@435 5361 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5362 }
duke@435 5363
duke@435 5364
duke@435 5365 // Helper function; generates code for cases requiring runtime checks.
duke@435 5366 Node*
duke@435 5367 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5368 Node* src, Node* src_offset,
duke@435 5369 Node* dest, Node* dest_offset,
iveresov@2606 5370 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5371 assert(!dest_uninitialized, "Invariant");
duke@435 5372 if (stopped()) return NULL;
duke@435 5373 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5374 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5375 return NULL;
duke@435 5376 }
duke@435 5377
duke@435 5378 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5379 OptoRuntime::generic_arraycopy_Type(),
duke@435 5380 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5381 src, src_offset, dest, dest_offset, copy_length);
duke@435 5382
duke@435 5383 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5384 }
duke@435 5385
duke@435 5386 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5387 void
duke@435 5388 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5389 BasicType basic_elem_type,
duke@435 5390 bool disjoint_bases,
duke@435 5391 Node* src, Node* src_offset,
duke@435 5392 Node* dest, Node* dest_offset,
iveresov@2606 5393 Node* copy_length, bool dest_uninitialized) {
duke@435 5394 if (stopped()) return; // nothing to do
duke@435 5395
duke@435 5396 Node* src_start = src;
duke@435 5397 Node* dest_start = dest;
duke@435 5398 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5399 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5400 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5401 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5402 }
duke@435 5403
duke@435 5404 // Figure out which arraycopy runtime method to call.
duke@435 5405 const char* copyfunc_name = "arraycopy";
duke@435 5406 address copyfunc_addr =
duke@435 5407 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
iveresov@2606 5408 disjoint_bases, copyfunc_name, dest_uninitialized);
duke@435 5409
duke@435 5410 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5411 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5412 OptoRuntime::fast_arraycopy_Type(),
duke@435 5413 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5414 src_start, dest_start, copy_length XTOP);
duke@435 5415 }
johnc@2781 5416
johnc@2781 5417 //----------------------------inline_reference_get----------------------------
johnc@2781 5418
johnc@2781 5419 bool LibraryCallKit::inline_reference_get() {
johnc@2781 5420 const int nargs = 1; // self
johnc@2781 5421
johnc@2781 5422 guarantee(java_lang_ref_Reference::referent_offset > 0,
johnc@2781 5423 "should have already been set");
johnc@2781 5424
johnc@2781 5425 int referent_offset = java_lang_ref_Reference::referent_offset;
johnc@2781 5426
johnc@2781 5427 // Restore the stack and pop off the argument
johnc@2781 5428 _sp += nargs;
johnc@2781 5429 Node *reference_obj = pop();
johnc@2781 5430
johnc@2781 5431 // Null check on self without removing any arguments.
johnc@2781 5432 _sp += nargs;
johnc@2781 5433 reference_obj = do_null_check(reference_obj, T_OBJECT);
johnc@2781 5434 _sp -= nargs;;
johnc@2781 5435
johnc@2781 5436 if (stopped()) return true;
johnc@2781 5437
johnc@2781 5438 Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
johnc@2781 5439
johnc@2781 5440 ciInstanceKlass* klass = env()->Object_klass();
johnc@2781 5441 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
johnc@2781 5442
johnc@2781 5443 Node* no_ctrl = NULL;
johnc@2781 5444 Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
johnc@2781 5445
johnc@2781 5446 // Use the pre-barrier to record the value in the referent field
johnc@2781 5447 pre_barrier(false /* do_load */,
johnc@2781 5448 control(),
johnc@2790 5449 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 5450 result /* pre_val */,
johnc@2781 5451 T_OBJECT);
johnc@2781 5452
johnc@2781 5453 push(result);
johnc@2781 5454 return true;
johnc@2781 5455 }
johnc@2781 5456

mercurial