src/share/vm/opto/superword.cpp

Sat, 24 Oct 2020 16:43:47 +0800

author
aoqi
date
Sat, 24 Oct 2020 16:43:47 +0800
changeset 10015
eb7ce841ccec
parent 9806
758c07667682
parent 9977
e649f2136368
permissions
-rw-r--r--

Merge

duke@435 1 /*
mikael@6198 2 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #include "precompiled.hpp"
stefank@2314 25 #include "compiler/compileLog.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/divnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/opcodes.hpp"
stefank@2314 35 #include "opto/superword.hpp"
stefank@2314 36 #include "opto/vectornode.hpp"
duke@435 37
duke@435 38 //
duke@435 39 // S U P E R W O R D T R A N S F O R M
duke@435 40 //=============================================================================
duke@435 41
duke@435 42 //------------------------------SuperWord---------------------------
duke@435 43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
duke@435 44 _phase(phase),
duke@435 45 _igvn(phase->_igvn),
duke@435 46 _arena(phase->C->comp_arena()),
duke@435 47 _packset(arena(), 8, 0, NULL), // packs for the current block
duke@435 48 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
duke@435 49 _block(arena(), 8, 0, NULL), // nodes in current block
duke@435 50 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
duke@435 51 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
duke@435 52 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
duke@435 53 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
duke@435 54 _align_to_ref(NULL), // memory reference to align vectors to
duke@435 55 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
duke@435 56 _dg(_arena), // dependence graph
duke@435 57 _visited(arena()), // visited node set
duke@435 58 _post_visited(arena()), // post visited node set
duke@435 59 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
duke@435 60 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
duke@435 61 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
duke@435 62 _lpt(NULL), // loop tree node
duke@435 63 _lp(NULL), // LoopNode
duke@435 64 _bb(NULL), // basic block
duke@435 65 _iv(NULL) // induction var
duke@435 66 {}
duke@435 67
duke@435 68 //------------------------------transform_loop---------------------------
duke@435 69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
kvn@3882 70 assert(UseSuperWord, "should be");
kvn@3882 71 // Do vectors exist on this architecture?
kvn@3882 72 if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
kvn@3882 73
duke@435 74 assert(lpt->_head->is_CountedLoop(), "must be");
duke@435 75 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
duke@435 76
kvn@3048 77 if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
kvn@3048 78
duke@435 79 if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
duke@435 80
duke@435 81 // Check for no control flow in body (other than exit)
duke@435 82 Node *cl_exit = cl->loopexit();
duke@435 83 if (cl_exit->in(0) != lpt->_head) return;
duke@435 84
never@540 85 // Make sure the are no extra control users of the loop backedge
never@540 86 if (cl->back_control()->outcnt() != 1) {
never@540 87 return;
never@540 88 }
never@540 89
duke@435 90 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
duke@435 91 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
duke@435 92 if (pre_end == NULL) return;
duke@435 93 Node *pre_opaq1 = pre_end->limit();
duke@435 94 if (pre_opaq1->Opcode() != Op_Opaque1) return;
duke@435 95
duke@435 96 init(); // initialize data structures
duke@435 97
duke@435 98 set_lpt(lpt);
duke@435 99 set_lp(cl);
duke@435 100
kvn@3882 101 // For now, define one block which is the entire loop body
duke@435 102 set_bb(cl);
duke@435 103
duke@435 104 assert(_packset.length() == 0, "packset must be empty");
duke@435 105 SLP_extract();
duke@435 106 }
duke@435 107
duke@435 108 //------------------------------SLP_extract---------------------------
duke@435 109 // Extract the superword level parallelism
duke@435 110 //
duke@435 111 // 1) A reverse post-order of nodes in the block is constructed. By scanning
duke@435 112 // this list from first to last, all definitions are visited before their uses.
duke@435 113 //
duke@435 114 // 2) A point-to-point dependence graph is constructed between memory references.
duke@435 115 // This simplies the upcoming "independence" checker.
duke@435 116 //
duke@435 117 // 3) The maximum depth in the node graph from the beginning of the block
duke@435 118 // to each node is computed. This is used to prune the graph search
duke@435 119 // in the independence checker.
duke@435 120 //
duke@435 121 // 4) For integer types, the necessary bit width is propagated backwards
duke@435 122 // from stores to allow packed operations on byte, char, and short
duke@435 123 // integers. This reverses the promotion to type "int" that javac
duke@435 124 // did for operations like: char c1,c2,c3; c1 = c2 + c3.
duke@435 125 //
duke@435 126 // 5) One of the memory references is picked to be an aligned vector reference.
duke@435 127 // The pre-loop trip count is adjusted to align this reference in the
duke@435 128 // unrolled body.
duke@435 129 //
duke@435 130 // 6) The initial set of pack pairs is seeded with memory references.
duke@435 131 //
duke@435 132 // 7) The set of pack pairs is extended by following use->def and def->use links.
duke@435 133 //
duke@435 134 // 8) The pairs are combined into vector sized packs.
duke@435 135 //
duke@435 136 // 9) Reorder the memory slices to co-locate members of the memory packs.
duke@435 137 //
duke@435 138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
duke@435 139 // inserting scalar promotion, vector creation from multiple scalars, and
duke@435 140 // extraction of scalar values from vectors.
duke@435 141 //
duke@435 142 void SuperWord::SLP_extract() {
duke@435 143
duke@435 144 // Ready the block
duke@435 145
kvn@4620 146 if (!construct_bb())
kvn@4620 147 return; // Exit if no interesting nodes or complex graph.
duke@435 148
duke@435 149 dependence_graph();
duke@435 150
duke@435 151 compute_max_depth();
duke@435 152
duke@435 153 compute_vector_element_type();
duke@435 154
duke@435 155 // Attempt vectorization
duke@435 156
duke@435 157 find_adjacent_refs();
duke@435 158
duke@435 159 extend_packlist();
duke@435 160
duke@435 161 combine_packs();
duke@435 162
duke@435 163 construct_my_pack_map();
duke@435 164
duke@435 165 filter_packs();
duke@435 166
duke@435 167 schedule();
duke@435 168
duke@435 169 output();
duke@435 170 }
duke@435 171
duke@435 172 //------------------------------find_adjacent_refs---------------------------
duke@435 173 // Find the adjacent memory references and create pack pairs for them.
duke@435 174 // This is the initial set of packs that will then be extended by
duke@435 175 // following use->def and def->use links. The align positions are
duke@435 176 // assigned relative to the reference "align_to_ref"
duke@435 177 void SuperWord::find_adjacent_refs() {
duke@435 178 // Get list of memory operations
duke@435 179 Node_List memops;
duke@435 180 for (int i = 0; i < _block.length(); i++) {
duke@435 181 Node* n = _block.at(i);
kvn@3882 182 if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
kvn@464 183 is_java_primitive(n->as_Mem()->memory_type())) {
duke@435 184 int align = memory_alignment(n->as_Mem(), 0);
duke@435 185 if (align != bottom_align) {
duke@435 186 memops.push(n);
duke@435 187 }
duke@435 188 }
duke@435 189 }
duke@435 190
kvn@3882 191 Node_List align_to_refs;
kvn@3882 192 int best_iv_adjustment = 0;
kvn@3882 193 MemNode* best_align_to_mem_ref = NULL;
duke@435 194
kvn@3882 195 while (memops.size() != 0) {
kvn@3882 196 // Find a memory reference to align to.
kvn@3882 197 MemNode* mem_ref = find_align_to_ref(memops);
kvn@3882 198 if (mem_ref == NULL) break;
kvn@3882 199 align_to_refs.push(mem_ref);
kvn@3882 200 int iv_adjustment = get_iv_adjustment(mem_ref);
duke@435 201
kvn@3882 202 if (best_align_to_mem_ref == NULL) {
kvn@3882 203 // Set memory reference which is the best from all memory operations
kvn@3882 204 // to be used for alignment. The pre-loop trip count is modified to align
kvn@3882 205 // this reference to a vector-aligned address.
kvn@3882 206 best_align_to_mem_ref = mem_ref;
kvn@3882 207 best_iv_adjustment = iv_adjustment;
kvn@3882 208 }
duke@435 209
kvn@3882 210 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 211 // Set alignment relative to "align_to_ref" for all related memory operations.
kvn@3882 212 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 213 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 214 if (isomorphic(s, mem_ref)) {
kvn@3882 215 SWPointer p2(s, this);
kvn@3882 216 if (p2.comparable(align_to_ref_p)) {
kvn@3882 217 int align = memory_alignment(s, iv_adjustment);
kvn@3882 218 set_alignment(s, align);
duke@435 219 }
duke@435 220 }
duke@435 221 }
kvn@3882 222
kvn@3882 223 // Create initial pack pairs of memory operations for which
kvn@3882 224 // alignment is set and vectors will be aligned.
kvn@3882 225 bool create_pack = true;
kvn@3886 226 if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
kvn@3886 227 if (!Matcher::misaligned_vectors_ok()) {
kvn@3886 228 int vw = vector_width(mem_ref);
kvn@3886 229 int vw_best = vector_width(best_align_to_mem_ref);
kvn@3886 230 if (vw > vw_best) {
kvn@3886 231 // Do not vectorize a memory access with more elements per vector
kvn@3886 232 // if unaligned memory access is not allowed because number of
kvn@3886 233 // iterations in pre-loop will be not enough to align it.
kvn@3886 234 create_pack = false;
thartmann@7819 235 } else {
thartmann@7819 236 SWPointer p2(best_align_to_mem_ref, this);
thartmann@7819 237 if (align_to_ref_p.invar() != p2.invar()) {
thartmann@7819 238 // Do not vectorize memory accesses with different invariants
thartmann@7819 239 // if unaligned memory accesses are not allowed.
thartmann@7819 240 create_pack = false;
thartmann@7819 241 }
kvn@3886 242 }
kvn@3886 243 }
kvn@3886 244 } else {
kvn@3882 245 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 246 // Can't allow vectorization of unaligned memory accesses with the
kvn@3882 247 // same type since it could be overlapped accesses to the same array.
kvn@3882 248 create_pack = false;
kvn@3882 249 } else {
kvn@3882 250 // Allow independent (different type) unaligned memory operations
kvn@3882 251 // if HW supports them.
kvn@3882 252 if (!Matcher::misaligned_vectors_ok()) {
kvn@3882 253 create_pack = false;
kvn@3882 254 } else {
kvn@3882 255 // Check if packs of the same memory type but
kvn@3882 256 // with a different alignment were created before.
kvn@3882 257 for (uint i = 0; i < align_to_refs.size(); i++) {
kvn@3882 258 MemNode* mr = align_to_refs.at(i)->as_Mem();
kvn@3882 259 if (same_velt_type(mr, mem_ref) &&
kvn@3882 260 memory_alignment(mr, iv_adjustment) != 0)
kvn@3882 261 create_pack = false;
kvn@3882 262 }
kvn@3882 263 }
kvn@3882 264 }
kvn@3882 265 }
kvn@3882 266 if (create_pack) {
kvn@3882 267 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 268 Node* s1 = memops.at(i);
kvn@3882 269 int align = alignment(s1);
kvn@3882 270 if (align == top_align) continue;
kvn@3882 271 for (uint j = 0; j < memops.size(); j++) {
kvn@3882 272 Node* s2 = memops.at(j);
kvn@3882 273 if (alignment(s2) == top_align) continue;
kvn@3882 274 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
kvn@3882 275 if (stmts_can_pack(s1, s2, align)) {
kvn@3882 276 Node_List* pair = new Node_List();
kvn@3882 277 pair->push(s1);
kvn@3882 278 pair->push(s2);
kvn@3882 279 _packset.append(pair);
kvn@3882 280 }
kvn@3882 281 }
kvn@3882 282 }
kvn@3882 283 }
kvn@3882 284 } else { // Don't create unaligned pack
kvn@3882 285 // First, remove remaining memory ops of the same type from the list.
kvn@3882 286 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 287 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 288 if (same_velt_type(s, mem_ref)) {
kvn@3882 289 memops.remove(i);
kvn@3882 290 }
kvn@3882 291 }
kvn@3882 292
kvn@3882 293 // Second, remove already constructed packs of the same type.
kvn@3882 294 for (int i = _packset.length() - 1; i >= 0; i--) {
kvn@3882 295 Node_List* p = _packset.at(i);
kvn@3882 296 MemNode* s = p->at(0)->as_Mem();
kvn@3882 297 if (same_velt_type(s, mem_ref)) {
kvn@3882 298 remove_pack_at(i);
kvn@3882 299 }
kvn@3882 300 }
kvn@3882 301
kvn@3882 302 // If needed find the best memory reference for loop alignment again.
kvn@3882 303 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 304 // Put memory ops from remaining packs back on memops list for
kvn@3882 305 // the best alignment search.
kvn@3882 306 uint orig_msize = memops.size();
kvn@3882 307 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 308 Node_List* p = _packset.at(i);
kvn@3882 309 MemNode* s = p->at(0)->as_Mem();
kvn@3882 310 assert(!same_velt_type(s, mem_ref), "sanity");
kvn@3882 311 memops.push(s);
kvn@3882 312 }
kvn@3882 313 MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
kvn@3882 314 if (best_align_to_mem_ref == NULL) break;
kvn@3882 315 best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
kvn@3882 316 // Restore list.
kvn@3882 317 while (memops.size() > orig_msize)
kvn@3882 318 (void)memops.pop();
kvn@3882 319 }
kvn@3882 320 } // unaligned memory accesses
kvn@3882 321
kvn@3882 322 // Remove used mem nodes.
kvn@3882 323 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 324 MemNode* m = memops.at(i)->as_Mem();
kvn@3882 325 if (alignment(m) != top_align) {
kvn@3882 326 memops.remove(i);
kvn@3882 327 }
kvn@3882 328 }
kvn@3882 329
kvn@3882 330 } // while (memops.size() != 0
kvn@3882 331 set_align_to_ref(best_align_to_mem_ref);
duke@435 332
duke@435 333 #ifndef PRODUCT
duke@435 334 if (TraceSuperWord) {
duke@435 335 tty->print_cr("\nAfter find_adjacent_refs");
duke@435 336 print_packset();
duke@435 337 }
duke@435 338 #endif
duke@435 339 }
duke@435 340
duke@435 341 //------------------------------find_align_to_ref---------------------------
duke@435 342 // Find a memory reference to align the loop induction variable to.
duke@435 343 // Looks first at stores then at loads, looking for a memory reference
duke@435 344 // with the largest number of references similar to it.
kvn@3882 345 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
duke@435 346 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
duke@435 347
duke@435 348 // Count number of comparable memory ops
duke@435 349 for (uint i = 0; i < memops.size(); i++) {
duke@435 350 MemNode* s1 = memops.at(i)->as_Mem();
duke@435 351 SWPointer p1(s1, this);
duke@435 352 // Discard if pre loop can't align this reference
duke@435 353 if (!ref_is_alignable(p1)) {
duke@435 354 *cmp_ct.adr_at(i) = 0;
duke@435 355 continue;
duke@435 356 }
duke@435 357 for (uint j = i+1; j < memops.size(); j++) {
duke@435 358 MemNode* s2 = memops.at(j)->as_Mem();
duke@435 359 if (isomorphic(s1, s2)) {
duke@435 360 SWPointer p2(s2, this);
duke@435 361 if (p1.comparable(p2)) {
duke@435 362 (*cmp_ct.adr_at(i))++;
duke@435 363 (*cmp_ct.adr_at(j))++;
duke@435 364 }
duke@435 365 }
duke@435 366 }
duke@435 367 }
duke@435 368
kvn@3882 369 // Find Store (or Load) with the greatest number of "comparable" references,
kvn@3882 370 // biggest vector size, smallest data size and smallest iv offset.
duke@435 371 int max_ct = 0;
kvn@3882 372 int max_vw = 0;
duke@435 373 int max_idx = -1;
duke@435 374 int min_size = max_jint;
duke@435 375 int min_iv_offset = max_jint;
duke@435 376 for (uint j = 0; j < memops.size(); j++) {
duke@435 377 MemNode* s = memops.at(j)->as_Mem();
duke@435 378 if (s->is_Store()) {
kvn@3886 379 int vw = vector_width_in_bytes(s);
kvn@3882 380 assert(vw > 1, "sanity");
duke@435 381 SWPointer p(s, this);
kvn@3882 382 if (cmp_ct.at(j) > max_ct ||
kvn@3882 383 cmp_ct.at(j) == max_ct &&
kvn@3882 384 (vw > max_vw ||
kvn@3882 385 vw == max_vw &&
kvn@3882 386 (data_size(s) < min_size ||
kvn@3882 387 data_size(s) == min_size &&
kvn@3882 388 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 389 max_ct = cmp_ct.at(j);
kvn@3882 390 max_vw = vw;
duke@435 391 max_idx = j;
duke@435 392 min_size = data_size(s);
duke@435 393 min_iv_offset = p.offset_in_bytes();
duke@435 394 }
duke@435 395 }
duke@435 396 }
duke@435 397 // If no stores, look at loads
duke@435 398 if (max_ct == 0) {
duke@435 399 for (uint j = 0; j < memops.size(); j++) {
duke@435 400 MemNode* s = memops.at(j)->as_Mem();
duke@435 401 if (s->is_Load()) {
kvn@3886 402 int vw = vector_width_in_bytes(s);
kvn@3882 403 assert(vw > 1, "sanity");
duke@435 404 SWPointer p(s, this);
kvn@3882 405 if (cmp_ct.at(j) > max_ct ||
kvn@3882 406 cmp_ct.at(j) == max_ct &&
kvn@3882 407 (vw > max_vw ||
kvn@3882 408 vw == max_vw &&
kvn@3882 409 (data_size(s) < min_size ||
kvn@3882 410 data_size(s) == min_size &&
kvn@3882 411 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 412 max_ct = cmp_ct.at(j);
kvn@3882 413 max_vw = vw;
duke@435 414 max_idx = j;
duke@435 415 min_size = data_size(s);
duke@435 416 min_iv_offset = p.offset_in_bytes();
duke@435 417 }
duke@435 418 }
duke@435 419 }
duke@435 420 }
duke@435 421
kvn@3882 422 #ifdef ASSERT
duke@435 423 if (TraceSuperWord && Verbose) {
duke@435 424 tty->print_cr("\nVector memops after find_align_to_refs");
duke@435 425 for (uint i = 0; i < memops.size(); i++) {
duke@435 426 MemNode* s = memops.at(i)->as_Mem();
duke@435 427 s->dump();
duke@435 428 }
duke@435 429 }
duke@435 430 #endif
kvn@3882 431
kvn@3882 432 if (max_ct > 0) {
kvn@3882 433 #ifdef ASSERT
kvn@3882 434 if (TraceSuperWord) {
kvn@3882 435 tty->print("\nVector align to node: ");
kvn@3882 436 memops.at(max_idx)->as_Mem()->dump();
kvn@3882 437 }
kvn@3882 438 #endif
kvn@3882 439 return memops.at(max_idx)->as_Mem();
kvn@3882 440 }
kvn@3882 441 return NULL;
duke@435 442 }
duke@435 443
duke@435 444 //------------------------------ref_is_alignable---------------------------
duke@435 445 // Can the preloop align the reference to position zero in the vector?
duke@435 446 bool SuperWord::ref_is_alignable(SWPointer& p) {
duke@435 447 if (!p.has_iv()) {
duke@435 448 return true; // no induction variable
duke@435 449 }
duke@435 450 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
adlertz@9768 451 assert(pre_end != NULL, "we must have a correct pre-loop");
duke@435 452 assert(pre_end->stride_is_con(), "pre loop stride is constant");
duke@435 453 int preloop_stride = pre_end->stride_con();
duke@435 454
duke@435 455 int span = preloop_stride * p.scale_in_bytes();
kvn@7817 456 int mem_size = p.memory_size();
kvn@7817 457 int offset = p.offset_in_bytes();
kvn@7817 458 // Stride one accesses are alignable if offset is aligned to memory operation size.
kvn@7817 459 // Offset can be unaligned when UseUnalignedAccesses is used.
kvn@7817 460 if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
duke@435 461 return true;
kvn@7817 462 }
thartmann@7819 463 // If the initial offset from start of the object is computable,
thartmann@7819 464 // check if the pre-loop can align the final offset accordingly.
thartmann@7819 465 //
thartmann@7819 466 // In other words: Can we find an i such that the offset
thartmann@7819 467 // after i pre-loop iterations is aligned to vw?
thartmann@7819 468 // (init_offset + pre_loop) % vw == 0 (1)
thartmann@7819 469 // where
thartmann@7819 470 // pre_loop = i * span
thartmann@7819 471 // is the number of bytes added to the offset by i pre-loop iterations.
thartmann@7819 472 //
thartmann@7819 473 // For this to hold we need pre_loop to increase init_offset by
thartmann@7819 474 // pre_loop = vw - (init_offset % vw)
thartmann@7819 475 //
thartmann@7819 476 // This is only possible if pre_loop is divisible by span because each
thartmann@7819 477 // pre-loop iteration increases the initial offset by 'span' bytes:
thartmann@7819 478 // (vw - (init_offset % vw)) % span == 0
thartmann@7819 479 //
kvn@3886 480 int vw = vector_width_in_bytes(p.mem());
kvn@3882 481 assert(vw > 1, "sanity");
thartmann@7819 482 Node* init_nd = pre_end->init_trip();
thartmann@7819 483 if (init_nd->is_Con() && p.invar() == NULL) {
thartmann@7819 484 int init = init_nd->bottom_type()->is_int()->get_con();
thartmann@7819 485 int init_offset = init * p.scale_in_bytes() + offset;
kvn@9740 486 if (init_offset < 0) { // negative offset from object start?
kvn@9740 487 return false; // may happen in dead loop
kvn@9740 488 }
thartmann@7819 489 if (vw % span == 0) {
thartmann@7819 490 // If vm is a multiple of span, we use formula (1).
duke@435 491 if (span > 0) {
duke@435 492 return (vw - (init_offset % vw)) % span == 0;
duke@435 493 } else {
duke@435 494 assert(span < 0, "nonzero stride * scale");
duke@435 495 return (init_offset % vw) % -span == 0;
duke@435 496 }
thartmann@7819 497 } else if (span % vw == 0) {
thartmann@7819 498 // If span is a multiple of vw, we can simplify formula (1) to:
thartmann@7819 499 // (init_offset + i * span) % vw == 0
thartmann@7819 500 // =>
thartmann@7819 501 // (init_offset % vw) + ((i * span) % vw) == 0
thartmann@7819 502 // =>
thartmann@7819 503 // init_offset % vw == 0
thartmann@7819 504 //
thartmann@7819 505 // Because we add a multiple of vw to the initial offset, the final
thartmann@7819 506 // offset is a multiple of vw if and only if init_offset is a multiple.
thartmann@7819 507 //
thartmann@7819 508 return (init_offset % vw) == 0;
duke@435 509 }
duke@435 510 }
duke@435 511 return false;
duke@435 512 }
duke@435 513
kvn@3882 514 //---------------------------get_iv_adjustment---------------------------
kvn@3882 515 // Calculate loop's iv adjustment for this memory ops.
kvn@3882 516 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
kvn@3882 517 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 518 int offset = align_to_ref_p.offset_in_bytes();
kvn@3882 519 int scale = align_to_ref_p.scale_in_bytes();
thartmann@7819 520 int elt_size = align_to_ref_p.memory_size();
kvn@3886 521 int vw = vector_width_in_bytes(mem_ref);
kvn@3882 522 assert(vw > 1, "sanity");
thartmann@7819 523 int iv_adjustment;
thartmann@7819 524 if (scale != 0) {
thartmann@7819 525 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
thartmann@7819 526 // At least one iteration is executed in pre-loop by default. As result
thartmann@7819 527 // several iterations are needed to align memory operations in main-loop even
thartmann@7819 528 // if offset is 0.
thartmann@7819 529 int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
thartmann@7819 530 assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
thartmann@7819 531 err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
thartmann@7819 532 iv_adjustment = iv_adjustment_in_bytes/elt_size;
thartmann@7819 533 } else {
thartmann@7819 534 // This memory op is not dependent on iv (scale == 0)
thartmann@7819 535 iv_adjustment = 0;
thartmann@7819 536 }
kvn@3882 537
kvn@3882 538 #ifndef PRODUCT
kvn@3882 539 if (TraceSuperWord)
kvn@3882 540 tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
kvn@4105 541 offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
kvn@3882 542 #endif
kvn@3882 543 return iv_adjustment;
kvn@3882 544 }
kvn@3882 545
duke@435 546 //---------------------------dependence_graph---------------------------
duke@435 547 // Construct dependency graph.
duke@435 548 // Add dependence edges to load/store nodes for memory dependence
duke@435 549 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
duke@435 550 void SuperWord::dependence_graph() {
duke@435 551 // First, assign a dependence node to each memory node
duke@435 552 for (int i = 0; i < _block.length(); i++ ) {
duke@435 553 Node *n = _block.at(i);
duke@435 554 if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
duke@435 555 _dg.make_node(n);
duke@435 556 }
duke@435 557 }
duke@435 558
duke@435 559 // For each memory slice, create the dependences
duke@435 560 for (int i = 0; i < _mem_slice_head.length(); i++) {
duke@435 561 Node* n = _mem_slice_head.at(i);
duke@435 562 Node* n_tail = _mem_slice_tail.at(i);
duke@435 563
duke@435 564 // Get slice in predecessor order (last is first)
duke@435 565 mem_slice_preds(n_tail, n, _nlist);
duke@435 566
duke@435 567 // Make the slice dependent on the root
duke@435 568 DepMem* slice = _dg.dep(n);
duke@435 569 _dg.make_edge(_dg.root(), slice);
duke@435 570
duke@435 571 // Create a sink for the slice
duke@435 572 DepMem* slice_sink = _dg.make_node(NULL);
duke@435 573 _dg.make_edge(slice_sink, _dg.tail());
duke@435 574
duke@435 575 // Now visit each pair of memory ops, creating the edges
duke@435 576 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
duke@435 577 Node* s1 = _nlist.at(j);
duke@435 578
duke@435 579 // If no dependency yet, use slice
duke@435 580 if (_dg.dep(s1)->in_cnt() == 0) {
duke@435 581 _dg.make_edge(slice, s1);
duke@435 582 }
duke@435 583 SWPointer p1(s1->as_Mem(), this);
duke@435 584 bool sink_dependent = true;
duke@435 585 for (int k = j - 1; k >= 0; k--) {
duke@435 586 Node* s2 = _nlist.at(k);
duke@435 587 if (s1->is_Load() && s2->is_Load())
duke@435 588 continue;
duke@435 589 SWPointer p2(s2->as_Mem(), this);
duke@435 590
duke@435 591 int cmp = p1.cmp(p2);
duke@435 592 if (SuperWordRTDepCheck &&
duke@435 593 p1.base() != p2.base() && p1.valid() && p2.valid()) {
duke@435 594 // Create a runtime check to disambiguate
duke@435 595 OrderedPair pp(p1.base(), p2.base());
duke@435 596 _disjoint_ptrs.append_if_missing(pp);
duke@435 597 } else if (!SWPointer::not_equal(cmp)) {
duke@435 598 // Possibly same address
duke@435 599 _dg.make_edge(s1, s2);
duke@435 600 sink_dependent = false;
duke@435 601 }
duke@435 602 }
duke@435 603 if (sink_dependent) {
duke@435 604 _dg.make_edge(s1, slice_sink);
duke@435 605 }
duke@435 606 }
duke@435 607 #ifndef PRODUCT
duke@435 608 if (TraceSuperWord) {
duke@435 609 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
duke@435 610 for (int q = 0; q < _nlist.length(); q++) {
duke@435 611 _dg.print(_nlist.at(q));
duke@435 612 }
duke@435 613 tty->cr();
duke@435 614 }
duke@435 615 #endif
duke@435 616 _nlist.clear();
duke@435 617 }
duke@435 618
duke@435 619 #ifndef PRODUCT
duke@435 620 if (TraceSuperWord) {
duke@435 621 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
duke@435 622 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
duke@435 623 _disjoint_ptrs.at(r).print();
duke@435 624 tty->cr();
duke@435 625 }
duke@435 626 tty->cr();
duke@435 627 }
duke@435 628 #endif
duke@435 629 }
duke@435 630
duke@435 631 //---------------------------mem_slice_preds---------------------------
duke@435 632 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 633 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
duke@435 634 assert(preds.length() == 0, "start empty");
duke@435 635 Node* n = start;
duke@435 636 Node* prev = NULL;
duke@435 637 while (true) {
duke@435 638 assert(in_bb(n), "must be in block");
duke@435 639 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 640 Node* out = n->fast_out(i);
duke@435 641 if (out->is_Load()) {
duke@435 642 if (in_bb(out)) {
duke@435 643 preds.push(out);
duke@435 644 }
duke@435 645 } else {
duke@435 646 // FIXME
duke@435 647 if (out->is_MergeMem() && !in_bb(out)) {
duke@435 648 // Either unrolling is causing a memory edge not to disappear,
duke@435 649 // or need to run igvn.optimize() again before SLP
duke@435 650 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
duke@435 651 // Ditto. Not sure what else to check further.
cfang@1102 652 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
duke@435 653 // StoreCM has an input edge used as a precedence edge.
duke@435 654 // Maybe an issue when oop stores are vectorized.
duke@435 655 } else {
duke@435 656 assert(out == prev || prev == NULL, "no branches off of store slice");
duke@435 657 }
duke@435 658 }
duke@435 659 }
duke@435 660 if (n == stop) break;
duke@435 661 preds.push(n);
duke@435 662 prev = n;
kvn@4620 663 assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
duke@435 664 n = n->in(MemNode::Memory);
duke@435 665 }
duke@435 666 }
duke@435 667
duke@435 668 //------------------------------stmts_can_pack---------------------------
twisti@1040 669 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
duke@435 670 // s1 aligned at "align"
duke@435 671 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
cfang@1422 672
cfang@1422 673 // Do not use superword for non-primitives
kvn@3882 674 BasicType bt1 = velt_basic_type(s1);
kvn@3882 675 BasicType bt2 = velt_basic_type(s2);
kvn@3882 676 if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
cfang@1422 677 return false;
kvn@3882 678 if (Matcher::max_vector_size(bt1) < 2) {
kvn@3882 679 return false; // No vectors for this type
kvn@3882 680 }
cfang@1422 681
duke@435 682 if (isomorphic(s1, s2)) {
duke@435 683 if (independent(s1, s2)) {
duke@435 684 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
duke@435 685 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
duke@435 686 int s1_align = alignment(s1);
duke@435 687 int s2_align = alignment(s2);
duke@435 688 if (s1_align == top_align || s1_align == align) {
duke@435 689 if (s2_align == top_align || s2_align == align + data_size(s1)) {
duke@435 690 return true;
duke@435 691 }
duke@435 692 }
duke@435 693 }
duke@435 694 }
duke@435 695 }
duke@435 696 }
duke@435 697 return false;
duke@435 698 }
duke@435 699
duke@435 700 //------------------------------exists_at---------------------------
duke@435 701 // Does s exist in a pack at position pos?
duke@435 702 bool SuperWord::exists_at(Node* s, uint pos) {
duke@435 703 for (int i = 0; i < _packset.length(); i++) {
duke@435 704 Node_List* p = _packset.at(i);
duke@435 705 if (p->at(pos) == s) {
duke@435 706 return true;
duke@435 707 }
duke@435 708 }
duke@435 709 return false;
duke@435 710 }
duke@435 711
duke@435 712 //------------------------------are_adjacent_refs---------------------------
duke@435 713 // Is s1 immediately before s2 in memory?
duke@435 714 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
duke@435 715 if (!s1->is_Mem() || !s2->is_Mem()) return false;
duke@435 716 if (!in_bb(s1) || !in_bb(s2)) return false;
never@1940 717
never@1940 718 // Do not use superword for non-primitives
never@1940 719 if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
never@1940 720 !is_java_primitive(s2->as_Mem()->memory_type())) {
never@1940 721 return false;
never@1940 722 }
never@1940 723
duke@435 724 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
duke@435 725 // only pack memops that are in the same alias set until that's fixed.
duke@435 726 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
duke@435 727 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
duke@435 728 return false;
duke@435 729 SWPointer p1(s1->as_Mem(), this);
duke@435 730 SWPointer p2(s2->as_Mem(), this);
duke@435 731 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
duke@435 732 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
duke@435 733 return diff == data_size(s1);
duke@435 734 }
duke@435 735
duke@435 736 //------------------------------isomorphic---------------------------
duke@435 737 // Are s1 and s2 similar?
duke@435 738 bool SuperWord::isomorphic(Node* s1, Node* s2) {
duke@435 739 if (s1->Opcode() != s2->Opcode()) return false;
duke@435 740 if (s1->req() != s2->req()) return false;
duke@435 741 if (s1->in(0) != s2->in(0)) return false;
kvn@3882 742 if (!same_velt_type(s1, s2)) return false;
duke@435 743 return true;
duke@435 744 }
duke@435 745
duke@435 746 //------------------------------independent---------------------------
duke@435 747 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 748 bool SuperWord::independent(Node* s1, Node* s2) {
duke@435 749 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
duke@435 750 int d1 = depth(s1);
duke@435 751 int d2 = depth(s2);
duke@435 752 if (d1 == d2) return s1 != s2;
duke@435 753 Node* deep = d1 > d2 ? s1 : s2;
duke@435 754 Node* shallow = d1 > d2 ? s2 : s1;
duke@435 755
duke@435 756 visited_clear();
duke@435 757
duke@435 758 return independent_path(shallow, deep);
duke@435 759 }
duke@435 760
duke@435 761 //------------------------------independent_path------------------------------
duke@435 762 // Helper for independent
duke@435 763 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
duke@435 764 if (dp >= 1000) return false; // stop deep recursion
duke@435 765 visited_set(deep);
duke@435 766 int shal_depth = depth(shallow);
duke@435 767 assert(shal_depth <= depth(deep), "must be");
duke@435 768 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
duke@435 769 Node* pred = preds.current();
duke@435 770 if (in_bb(pred) && !visited_test(pred)) {
duke@435 771 if (shallow == pred) {
duke@435 772 return false;
duke@435 773 }
duke@435 774 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
duke@435 775 return false;
duke@435 776 }
duke@435 777 }
duke@435 778 }
duke@435 779 return true;
duke@435 780 }
duke@435 781
duke@435 782 //------------------------------set_alignment---------------------------
duke@435 783 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
duke@435 784 set_alignment(s1, align);
kvn@3882 785 if (align == top_align || align == bottom_align) {
kvn@3882 786 set_alignment(s2, align);
kvn@3882 787 } else {
kvn@3882 788 set_alignment(s2, align + data_size(s1));
kvn@3882 789 }
duke@435 790 }
duke@435 791
duke@435 792 //------------------------------data_size---------------------------
duke@435 793 int SuperWord::data_size(Node* s) {
kvn@3882 794 int bsize = type2aelembytes(velt_basic_type(s));
duke@435 795 assert(bsize != 0, "valid size");
duke@435 796 return bsize;
duke@435 797 }
duke@435 798
duke@435 799 //------------------------------extend_packlist---------------------------
duke@435 800 // Extend packset by following use->def and def->use links from pack members.
duke@435 801 void SuperWord::extend_packlist() {
duke@435 802 bool changed;
duke@435 803 do {
duke@435 804 changed = false;
duke@435 805 for (int i = 0; i < _packset.length(); i++) {
duke@435 806 Node_List* p = _packset.at(i);
duke@435 807 changed |= follow_use_defs(p);
duke@435 808 changed |= follow_def_uses(p);
duke@435 809 }
duke@435 810 } while (changed);
duke@435 811
duke@435 812 #ifndef PRODUCT
duke@435 813 if (TraceSuperWord) {
duke@435 814 tty->print_cr("\nAfter extend_packlist");
duke@435 815 print_packset();
duke@435 816 }
duke@435 817 #endif
duke@435 818 }
duke@435 819
duke@435 820 //------------------------------follow_use_defs---------------------------
duke@435 821 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 822 bool SuperWord::follow_use_defs(Node_List* p) {
kvn@3882 823 assert(p->size() == 2, "just checking");
duke@435 824 Node* s1 = p->at(0);
duke@435 825 Node* s2 = p->at(1);
duke@435 826 assert(s1->req() == s2->req(), "just checking");
duke@435 827 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 828
duke@435 829 if (s1->is_Load()) return false;
duke@435 830
duke@435 831 int align = alignment(s1);
duke@435 832 bool changed = false;
duke@435 833 int start = s1->is_Store() ? MemNode::ValueIn : 1;
duke@435 834 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
duke@435 835 for (int j = start; j < end; j++) {
duke@435 836 Node* t1 = s1->in(j);
duke@435 837 Node* t2 = s2->in(j);
duke@435 838 if (!in_bb(t1) || !in_bb(t2))
duke@435 839 continue;
duke@435 840 if (stmts_can_pack(t1, t2, align)) {
duke@435 841 if (est_savings(t1, t2) >= 0) {
duke@435 842 Node_List* pair = new Node_List();
duke@435 843 pair->push(t1);
duke@435 844 pair->push(t2);
duke@435 845 _packset.append(pair);
duke@435 846 set_alignment(t1, t2, align);
duke@435 847 changed = true;
duke@435 848 }
duke@435 849 }
duke@435 850 }
duke@435 851 return changed;
duke@435 852 }
duke@435 853
duke@435 854 //------------------------------follow_def_uses---------------------------
duke@435 855 // Extend the packset by visiting uses of nodes in pack p
duke@435 856 bool SuperWord::follow_def_uses(Node_List* p) {
duke@435 857 bool changed = false;
duke@435 858 Node* s1 = p->at(0);
duke@435 859 Node* s2 = p->at(1);
duke@435 860 assert(p->size() == 2, "just checking");
duke@435 861 assert(s1->req() == s2->req(), "just checking");
duke@435 862 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 863
duke@435 864 if (s1->is_Store()) return false;
duke@435 865
duke@435 866 int align = alignment(s1);
duke@435 867 int savings = -1;
duke@435 868 Node* u1 = NULL;
duke@435 869 Node* u2 = NULL;
duke@435 870 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 871 Node* t1 = s1->fast_out(i);
duke@435 872 if (!in_bb(t1)) continue;
duke@435 873 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
duke@435 874 Node* t2 = s2->fast_out(j);
duke@435 875 if (!in_bb(t2)) continue;
duke@435 876 if (!opnd_positions_match(s1, t1, s2, t2))
duke@435 877 continue;
duke@435 878 if (stmts_can_pack(t1, t2, align)) {
duke@435 879 int my_savings = est_savings(t1, t2);
duke@435 880 if (my_savings > savings) {
duke@435 881 savings = my_savings;
duke@435 882 u1 = t1;
duke@435 883 u2 = t2;
duke@435 884 }
duke@435 885 }
duke@435 886 }
duke@435 887 }
duke@435 888 if (savings >= 0) {
duke@435 889 Node_List* pair = new Node_List();
duke@435 890 pair->push(u1);
duke@435 891 pair->push(u2);
duke@435 892 _packset.append(pair);
duke@435 893 set_alignment(u1, u2, align);
duke@435 894 changed = true;
duke@435 895 }
duke@435 896 return changed;
duke@435 897 }
duke@435 898
duke@435 899 //---------------------------opnd_positions_match-------------------------
duke@435 900 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 901 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
duke@435 902 uint ct = u1->req();
duke@435 903 if (ct != u2->req()) return false;
duke@435 904 uint i1 = 0;
duke@435 905 uint i2 = 0;
duke@435 906 do {
duke@435 907 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
duke@435 908 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
duke@435 909 if (i1 != i2) {
kvn@3882 910 if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
kvn@3882 911 // Further analysis relies on operands position matching.
kvn@3882 912 u2->swap_edges(i1, i2);
kvn@3882 913 } else {
kvn@3882 914 return false;
kvn@3882 915 }
duke@435 916 }
duke@435 917 } while (i1 < ct);
duke@435 918 return true;
duke@435 919 }
duke@435 920
duke@435 921 //------------------------------est_savings---------------------------
duke@435 922 // Estimate the savings from executing s1 and s2 as a pack
duke@435 923 int SuperWord::est_savings(Node* s1, Node* s2) {
kvn@3882 924 int save_in = 2 - 1; // 2 operations per instruction in packed form
duke@435 925
duke@435 926 // inputs
duke@435 927 for (uint i = 1; i < s1->req(); i++) {
duke@435 928 Node* x1 = s1->in(i);
duke@435 929 Node* x2 = s2->in(i);
duke@435 930 if (x1 != x2) {
duke@435 931 if (are_adjacent_refs(x1, x2)) {
kvn@3882 932 save_in += adjacent_profit(x1, x2);
duke@435 933 } else if (!in_packset(x1, x2)) {
kvn@3882 934 save_in -= pack_cost(2);
duke@435 935 } else {
kvn@3882 936 save_in += unpack_cost(2);
duke@435 937 }
duke@435 938 }
duke@435 939 }
duke@435 940
duke@435 941 // uses of result
duke@435 942 uint ct = 0;
kvn@3882 943 int save_use = 0;
duke@435 944 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 945 Node* s1_use = s1->fast_out(i);
duke@435 946 for (int j = 0; j < _packset.length(); j++) {
duke@435 947 Node_List* p = _packset.at(j);
duke@435 948 if (p->at(0) == s1_use) {
duke@435 949 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
duke@435 950 Node* s2_use = s2->fast_out(k);
duke@435 951 if (p->at(p->size()-1) == s2_use) {
duke@435 952 ct++;
duke@435 953 if (are_adjacent_refs(s1_use, s2_use)) {
kvn@3882 954 save_use += adjacent_profit(s1_use, s2_use);
duke@435 955 }
duke@435 956 }
duke@435 957 }
duke@435 958 }
duke@435 959 }
duke@435 960 }
duke@435 961
kvn@3882 962 if (ct < s1->outcnt()) save_use += unpack_cost(1);
kvn@3882 963 if (ct < s2->outcnt()) save_use += unpack_cost(1);
duke@435 964
kvn@3882 965 return MAX2(save_in, save_use);
duke@435 966 }
duke@435 967
duke@435 968 //------------------------------costs---------------------------
duke@435 969 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
duke@435 970 int SuperWord::pack_cost(int ct) { return ct; }
duke@435 971 int SuperWord::unpack_cost(int ct) { return ct; }
duke@435 972
duke@435 973 //------------------------------combine_packs---------------------------
duke@435 974 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 975 void SuperWord::combine_packs() {
kvn@3882 976 bool changed = true;
kvn@3882 977 // Combine packs regardless max vector size.
kvn@3882 978 while (changed) {
duke@435 979 changed = false;
duke@435 980 for (int i = 0; i < _packset.length(); i++) {
duke@435 981 Node_List* p1 = _packset.at(i);
duke@435 982 if (p1 == NULL) continue;
duke@435 983 for (int j = 0; j < _packset.length(); j++) {
duke@435 984 Node_List* p2 = _packset.at(j);
duke@435 985 if (p2 == NULL) continue;
kvn@3882 986 if (i == j) continue;
duke@435 987 if (p1->at(p1->size()-1) == p2->at(0)) {
duke@435 988 for (uint k = 1; k < p2->size(); k++) {
duke@435 989 p1->push(p2->at(k));
duke@435 990 }
duke@435 991 _packset.at_put(j, NULL);
duke@435 992 changed = true;
duke@435 993 }
duke@435 994 }
duke@435 995 }
kvn@3882 996 }
duke@435 997
kvn@3882 998 // Split packs which have size greater then max vector size.
kvn@3882 999 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 1000 Node_List* p1 = _packset.at(i);
kvn@3882 1001 if (p1 != NULL) {
kvn@3882 1002 BasicType bt = velt_basic_type(p1->at(0));
kvn@3882 1003 uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
kvn@3882 1004 assert(is_power_of_2(max_vlen), "sanity");
kvn@3882 1005 uint psize = p1->size();
kvn@3882 1006 if (!is_power_of_2(psize)) {
kvn@3882 1007 // Skip pack which can't be vector.
kvn@3882 1008 // case1: for(...) { a[i] = i; } elements values are different (i+x)
kvn@3882 1009 // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store
kvn@3882 1010 _packset.at_put(i, NULL);
kvn@3882 1011 continue;
kvn@3882 1012 }
kvn@3882 1013 if (psize > max_vlen) {
kvn@3882 1014 Node_List* pack = new Node_List();
kvn@3882 1015 for (uint j = 0; j < psize; j++) {
kvn@3882 1016 pack->push(p1->at(j));
kvn@3882 1017 if (pack->size() >= max_vlen) {
kvn@3882 1018 assert(is_power_of_2(pack->size()), "sanity");
kvn@3882 1019 _packset.append(pack);
kvn@3882 1020 pack = new Node_List();
kvn@3882 1021 }
kvn@3882 1022 }
kvn@3882 1023 _packset.at_put(i, NULL);
kvn@3882 1024 }
kvn@3882 1025 }
kvn@3882 1026 }
kvn@3882 1027
kvn@3882 1028 // Compress list.
duke@435 1029 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1030 Node_List* p1 = _packset.at(i);
duke@435 1031 if (p1 == NULL) {
duke@435 1032 _packset.remove_at(i);
duke@435 1033 }
duke@435 1034 }
duke@435 1035
duke@435 1036 #ifndef PRODUCT
duke@435 1037 if (TraceSuperWord) {
duke@435 1038 tty->print_cr("\nAfter combine_packs");
duke@435 1039 print_packset();
duke@435 1040 }
duke@435 1041 #endif
duke@435 1042 }
duke@435 1043
duke@435 1044 //-----------------------------construct_my_pack_map--------------------------
duke@435 1045 // Construct the map from nodes to packs. Only valid after the
duke@435 1046 // point where a node is only in one pack (after combine_packs).
duke@435 1047 void SuperWord::construct_my_pack_map() {
duke@435 1048 Node_List* rslt = NULL;
duke@435 1049 for (int i = 0; i < _packset.length(); i++) {
duke@435 1050 Node_List* p = _packset.at(i);
duke@435 1051 for (uint j = 0; j < p->size(); j++) {
duke@435 1052 Node* s = p->at(j);
duke@435 1053 assert(my_pack(s) == NULL, "only in one pack");
duke@435 1054 set_my_pack(s, p);
duke@435 1055 }
duke@435 1056 }
duke@435 1057 }
duke@435 1058
duke@435 1059 //------------------------------filter_packs---------------------------
duke@435 1060 // Remove packs that are not implemented or not profitable.
duke@435 1061 void SuperWord::filter_packs() {
duke@435 1062
duke@435 1063 // Remove packs that are not implemented
duke@435 1064 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1065 Node_List* pk = _packset.at(i);
duke@435 1066 bool impl = implemented(pk);
duke@435 1067 if (!impl) {
duke@435 1068 #ifndef PRODUCT
duke@435 1069 if (TraceSuperWord && Verbose) {
duke@435 1070 tty->print_cr("Unimplemented");
duke@435 1071 pk->at(0)->dump();
duke@435 1072 }
duke@435 1073 #endif
duke@435 1074 remove_pack_at(i);
duke@435 1075 }
duke@435 1076 }
duke@435 1077
duke@435 1078 // Remove packs that are not profitable
duke@435 1079 bool changed;
duke@435 1080 do {
duke@435 1081 changed = false;
duke@435 1082 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1083 Node_List* pk = _packset.at(i);
duke@435 1084 bool prof = profitable(pk);
duke@435 1085 if (!prof) {
duke@435 1086 #ifndef PRODUCT
duke@435 1087 if (TraceSuperWord && Verbose) {
duke@435 1088 tty->print_cr("Unprofitable");
duke@435 1089 pk->at(0)->dump();
duke@435 1090 }
duke@435 1091 #endif
duke@435 1092 remove_pack_at(i);
duke@435 1093 changed = true;
duke@435 1094 }
duke@435 1095 }
duke@435 1096 } while (changed);
duke@435 1097
duke@435 1098 #ifndef PRODUCT
duke@435 1099 if (TraceSuperWord) {
duke@435 1100 tty->print_cr("\nAfter filter_packs");
duke@435 1101 print_packset();
duke@435 1102 tty->cr();
duke@435 1103 }
duke@435 1104 #endif
duke@435 1105 }
duke@435 1106
duke@435 1107 //------------------------------implemented---------------------------
duke@435 1108 // Can code be generated for pack p?
duke@435 1109 bool SuperWord::implemented(Node_List* p) {
duke@435 1110 Node* p0 = p->at(0);
kvn@4006 1111 return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
kvn@4006 1112 }
kvn@4006 1113
kvn@4006 1114 //------------------------------same_inputs--------------------------
kvn@4006 1115 // For pack p, are all idx operands the same?
kvn@4006 1116 static bool same_inputs(Node_List* p, int idx) {
kvn@4006 1117 Node* p0 = p->at(0);
kvn@4006 1118 uint vlen = p->size();
kvn@4006 1119 Node* p0_def = p0->in(idx);
kvn@4006 1120 for (uint i = 1; i < vlen; i++) {
kvn@4006 1121 Node* pi = p->at(i);
kvn@4006 1122 Node* pi_def = pi->in(idx);
kvn@4006 1123 if (p0_def != pi_def)
kvn@4006 1124 return false;
kvn@4004 1125 }
kvn@4006 1126 return true;
duke@435 1127 }
duke@435 1128
duke@435 1129 //------------------------------profitable---------------------------
duke@435 1130 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 1131 bool SuperWord::profitable(Node_List* p) {
duke@435 1132 Node* p0 = p->at(0);
duke@435 1133 uint start, end;
kvn@4006 1134 VectorNode::vector_operands(p0, &start, &end);
duke@435 1135
kvn@4114 1136 // Return false if some inputs are not vectors or vectors with different
kvn@4114 1137 // size or alignment.
kvn@4114 1138 // Also, for now, return false if not scalar promotion case when inputs are
kvn@4114 1139 // the same. Later, implement PackNode and allow differing, non-vector inputs
kvn@4114 1140 // (maybe just the ones from outside the block.)
duke@435 1141 for (uint i = start; i < end; i++) {
kvn@4114 1142 if (!is_vector_use(p0, i))
kvn@4114 1143 return false;
duke@435 1144 }
kvn@4006 1145 if (VectorNode::is_shift(p0)) {
kvn@4114 1146 // For now, return false if shift count is vector or not scalar promotion
kvn@4114 1147 // case (different shift counts) because it is not supported yet.
kvn@4114 1148 Node* cnt = p0->in(2);
kvn@4114 1149 Node_List* cnt_pk = my_pack(cnt);
kvn@4114 1150 if (cnt_pk != NULL)
kvn@4006 1151 return false;
kvn@4006 1152 if (!same_inputs(p, 2))
kvn@4006 1153 return false;
kvn@4006 1154 }
duke@435 1155 if (!p0->is_Store()) {
duke@435 1156 // For now, return false if not all uses are vector.
duke@435 1157 // Later, implement ExtractNode and allow non-vector uses (maybe
duke@435 1158 // just the ones outside the block.)
duke@435 1159 for (uint i = 0; i < p->size(); i++) {
duke@435 1160 Node* def = p->at(i);
duke@435 1161 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1162 Node* use = def->fast_out(j);
duke@435 1163 for (uint k = 0; k < use->req(); k++) {
duke@435 1164 Node* n = use->in(k);
duke@435 1165 if (def == n) {
duke@435 1166 if (!is_vector_use(use, k)) {
duke@435 1167 return false;
duke@435 1168 }
duke@435 1169 }
duke@435 1170 }
duke@435 1171 }
duke@435 1172 }
duke@435 1173 }
duke@435 1174 return true;
duke@435 1175 }
duke@435 1176
duke@435 1177 //------------------------------schedule---------------------------
duke@435 1178 // Adjust the memory graph for the packed operations
duke@435 1179 void SuperWord::schedule() {
duke@435 1180
duke@435 1181 // Co-locate in the memory graph the members of each memory pack
duke@435 1182 for (int i = 0; i < _packset.length(); i++) {
duke@435 1183 co_locate_pack(_packset.at(i));
duke@435 1184 }
duke@435 1185 }
duke@435 1186
cfang@1102 1187 //-------------------------------remove_and_insert-------------------
kvn@3882 1188 // Remove "current" from its current position in the memory graph and insert
kvn@3882 1189 // it after the appropriate insertion point (lip or uip).
cfang@1102 1190 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
cfang@1102 1191 Node *uip, Unique_Node_List &sched_before) {
cfang@1102 1192 Node* my_mem = current->in(MemNode::Memory);
kvn@3882 1193 bool sched_up = sched_before.member(current);
cfang@1102 1194
kvn@3882 1195 // remove current_store from its current position in the memmory graph
cfang@1102 1196 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1197 Node* use = current->out(i);
cfang@1102 1198 if (use->is_Mem()) {
cfang@1102 1199 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1200 if (use == prev) { // connect prev to my_mem
kvn@3882 1201 _igvn.replace_input_of(use, MemNode::Memory, my_mem);
kvn@3882 1202 --i; //deleted this edge; rescan position
cfang@1102 1203 } else if (sched_before.member(use)) {
kvn@3882 1204 if (!sched_up) { // Will be moved together with current
kvn@3882 1205 _igvn.replace_input_of(use, MemNode::Memory, uip);
kvn@3882 1206 --i; //deleted this edge; rescan position
kvn@3882 1207 }
cfang@1102 1208 } else {
kvn@3882 1209 if (sched_up) { // Will be moved together with current
kvn@3882 1210 _igvn.replace_input_of(use, MemNode::Memory, lip);
kvn@3882 1211 --i; //deleted this edge; rescan position
kvn@3882 1212 }
cfang@1102 1213 }
cfang@1102 1214 }
cfang@1102 1215 }
cfang@1102 1216
cfang@1102 1217 Node *insert_pt = sched_up ? uip : lip;
cfang@1102 1218
cfang@1102 1219 // all uses of insert_pt's memory state should use current's instead
cfang@1102 1220 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
cfang@1102 1221 Node* use = insert_pt->out(i);
cfang@1102 1222 if (use->is_Mem()) {
cfang@1102 1223 assert(use->in(MemNode::Memory) == insert_pt, "must be");
kvn@3847 1224 _igvn.replace_input_of(use, MemNode::Memory, current);
cfang@1102 1225 --i; //deleted this edge; rescan position
cfang@1102 1226 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
cfang@1102 1227 uint pos; //lip (lower insert point) must be the last one in the memory slice
cfang@1102 1228 for (pos=1; pos < use->req(); pos++) {
cfang@1102 1229 if (use->in(pos) == insert_pt) break;
cfang@1102 1230 }
kvn@3847 1231 _igvn.replace_input_of(use, pos, current);
cfang@1102 1232 --i;
cfang@1102 1233 }
cfang@1102 1234 }
cfang@1102 1235
cfang@1102 1236 //connect current to insert_pt
kvn@3882 1237 _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
cfang@1102 1238 }
cfang@1102 1239
cfang@1102 1240 //------------------------------co_locate_pack----------------------------------
cfang@1102 1241 // To schedule a store pack, we need to move any sandwiched memory ops either before
cfang@1102 1242 // or after the pack, based upon dependence information:
cfang@1102 1243 // (1) If any store in the pack depends on the sandwiched memory op, the
cfang@1102 1244 // sandwiched memory op must be scheduled BEFORE the pack;
cfang@1102 1245 // (2) If a sandwiched memory op depends on any store in the pack, the
cfang@1102 1246 // sandwiched memory op must be scheduled AFTER the pack;
cfang@1102 1247 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
cfang@1102 1248 // memory op (say memB), memB must be scheduled before memA. So, if memA is
cfang@1102 1249 // scheduled before the pack, memB must also be scheduled before the pack;
cfang@1102 1250 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
cfang@1102 1251 // schedule this store AFTER the pack
cfang@1102 1252 // (5) We know there is no dependence cycle, so there in no other case;
cfang@1102 1253 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
cfang@1102 1254 //
cfang@1387 1255 // To schedule a load pack, we use the memory state of either the first or the last load in
cfang@1387 1256 // the pack, based on the dependence constraint.
duke@435 1257 void SuperWord::co_locate_pack(Node_List* pk) {
duke@435 1258 if (pk->at(0)->is_Store()) {
duke@435 1259 MemNode* first = executed_first(pk)->as_Mem();
duke@435 1260 MemNode* last = executed_last(pk)->as_Mem();
cfang@1102 1261 Unique_Node_List schedule_before_pack;
cfang@1102 1262 Unique_Node_List memops;
cfang@1102 1263
duke@435 1264 MemNode* current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1265 MemNode* previous = last;
duke@435 1266 while (true) {
duke@435 1267 assert(in_bb(current), "stay in block");
cfang@1102 1268 memops.push(previous);
cfang@1102 1269 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1270 Node* use = current->out(i);
cfang@1102 1271 if (use->is_Mem() && use != previous)
cfang@1102 1272 memops.push(use);
cfang@1102 1273 }
kvn@3882 1274 if (current == first) break;
cfang@1102 1275 previous = current;
cfang@1102 1276 current = current->in(MemNode::Memory)->as_Mem();
cfang@1102 1277 }
cfang@1102 1278
cfang@1102 1279 // determine which memory operations should be scheduled before the pack
cfang@1102 1280 for (uint i = 1; i < memops.size(); i++) {
cfang@1102 1281 Node *s1 = memops.at(i);
cfang@1102 1282 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
cfang@1102 1283 for (uint j = 0; j< i; j++) {
cfang@1102 1284 Node *s2 = memops.at(j);
cfang@1102 1285 if (!independent(s1, s2)) {
cfang@1102 1286 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
kvn@3882 1287 schedule_before_pack.push(s1); // s1 must be scheduled before
cfang@1102 1288 Node_List* mem_pk = my_pack(s1);
cfang@1102 1289 if (mem_pk != NULL) {
cfang@1102 1290 for (uint ii = 0; ii < mem_pk->size(); ii++) {
kvn@3882 1291 Node* s = mem_pk->at(ii); // follow partner
cfang@1102 1292 if (memops.member(s) && !schedule_before_pack.member(s))
cfang@1102 1293 schedule_before_pack.push(s);
cfang@1102 1294 }
cfang@1102 1295 }
kvn@3882 1296 break;
cfang@1102 1297 }
cfang@1102 1298 }
cfang@1102 1299 }
cfang@1102 1300 }
cfang@1102 1301 }
cfang@1102 1302
kvn@3882 1303 Node* upper_insert_pt = first->in(MemNode::Memory);
kvn@3882 1304 // Following code moves loads connected to upper_insert_pt below aliased stores.
kvn@3882 1305 // Collect such loads here and reconnect them back to upper_insert_pt later.
kvn@3882 1306 memops.clear();
kvn@3882 1307 for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
kvn@3882 1308 Node* use = upper_insert_pt->out(i);
kvn@6639 1309 if (use->is_Mem() && !use->is_Store()) {
kvn@3882 1310 memops.push(use);
kvn@6639 1311 }
kvn@3882 1312 }
kvn@3882 1313
cfang@1102 1314 MemNode* lower_insert_pt = last;
cfang@1102 1315 previous = last; //previous store in pk
cfang@1102 1316 current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1317
kvn@3882 1318 // start scheduling from "last" to "first"
cfang@1102 1319 while (true) {
cfang@1102 1320 assert(in_bb(current), "stay in block");
cfang@1102 1321 assert(in_pack(previous, pk), "previous stays in pack");
duke@435 1322 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 1323
duke@435 1324 if (in_pack(current, pk)) {
cfang@1102 1325 // Forward users of my memory state (except "previous) to my input memory state
duke@435 1326 for (DUIterator i = current->outs(); current->has_out(i); i++) {
duke@435 1327 Node* use = current->out(i);
cfang@1102 1328 if (use->is_Mem() && use != previous) {
duke@435 1329 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1330 if (schedule_before_pack.member(use)) {
kvn@3847 1331 _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
cfang@1102 1332 } else {
kvn@3847 1333 _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
cfang@1102 1334 }
duke@435 1335 --i; // deleted this edge; rescan position
duke@435 1336 }
duke@435 1337 }
cfang@1102 1338 previous = current;
cfang@1102 1339 } else { // !in_pack(current, pk) ==> a sandwiched store
cfang@1102 1340 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
duke@435 1341 }
cfang@1102 1342
duke@435 1343 if (current == first) break;
duke@435 1344 current = my_mem->as_Mem();
cfang@1102 1345 } // end while
kvn@3882 1346
kvn@3882 1347 // Reconnect loads back to upper_insert_pt.
kvn@3882 1348 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 1349 Node *ld = memops.at(i);
kvn@3882 1350 if (ld->in(MemNode::Memory) != upper_insert_pt) {
kvn@3882 1351 _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
kvn@3882 1352 }
kvn@3882 1353 }
cfang@1102 1354 } else if (pk->at(0)->is_Load()) { //load
cfang@1387 1355 // all loads in the pack should have the same memory state. By default,
cfang@1387 1356 // we use the memory state of the last load. However, if any load could
cfang@1387 1357 // not be moved down due to the dependence constraint, we use the memory
cfang@1387 1358 // state of the first load.
cfang@1387 1359 Node* last_mem = executed_last(pk)->in(MemNode::Memory);
cfang@1387 1360 Node* first_mem = executed_first(pk)->in(MemNode::Memory);
cfang@1387 1361 bool schedule_last = true;
cfang@1387 1362 for (uint i = 0; i < pk->size(); i++) {
cfang@1387 1363 Node* ld = pk->at(i);
cfang@1387 1364 for (Node* current = last_mem; current != ld->in(MemNode::Memory);
cfang@1387 1365 current=current->in(MemNode::Memory)) {
cfang@1387 1366 assert(current != first_mem, "corrupted memory graph");
cfang@1387 1367 if(current->is_Mem() && !independent(current, ld)){
cfang@1387 1368 schedule_last = false; // a later store depends on this load
cfang@1387 1369 break;
cfang@1387 1370 }
cfang@1387 1371 }
cfang@1387 1372 }
cfang@1387 1373
cfang@1387 1374 Node* mem_input = schedule_last ? last_mem : first_mem;
cfang@1387 1375 _igvn.hash_delete(mem_input);
cfang@1387 1376 // Give each load the same memory state
duke@435 1377 for (uint i = 0; i < pk->size(); i++) {
duke@435 1378 LoadNode* ld = pk->at(i)->as_Load();
kvn@3847 1379 _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
duke@435 1380 }
duke@435 1381 }
duke@435 1382 }
duke@435 1383
duke@435 1384 //------------------------------output---------------------------
duke@435 1385 // Convert packs into vector node operations
duke@435 1386 void SuperWord::output() {
duke@435 1387 if (_packset.length() == 0) return;
duke@435 1388
kvn@2727 1389 #ifndef PRODUCT
kvn@2727 1390 if (TraceLoopOpts) {
kvn@2727 1391 tty->print("SuperWord ");
kvn@2727 1392 lpt()->dump_head();
kvn@2727 1393 }
kvn@2727 1394 #endif
kvn@2727 1395
duke@435 1396 // MUST ENSURE main loop's initial value is properly aligned:
duke@435 1397 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
duke@435 1398
duke@435 1399 align_initial_loop_index(align_to_ref());
duke@435 1400
duke@435 1401 // Insert extract (unpack) operations for scalar uses
duke@435 1402 for (int i = 0; i < _packset.length(); i++) {
duke@435 1403 insert_extracts(_packset.at(i));
duke@435 1404 }
duke@435 1405
kvn@4103 1406 Compile* C = _phase->C;
kvn@4103 1407 uint max_vlen_in_bytes = 0;
duke@435 1408 for (int i = 0; i < _block.length(); i++) {
duke@435 1409 Node* n = _block.at(i);
duke@435 1410 Node_List* p = my_pack(n);
duke@435 1411 if (p && n == executed_last(p)) {
duke@435 1412 uint vlen = p->size();
kvn@4103 1413 uint vlen_in_bytes = 0;
duke@435 1414 Node* vn = NULL;
duke@435 1415 Node* low_adr = p->at(0);
duke@435 1416 Node* first = executed_first(p);
kvn@3882 1417 int opc = n->Opcode();
duke@435 1418 if (n->is_Load()) {
duke@435 1419 Node* ctl = n->in(MemNode::Control);
duke@435 1420 Node* mem = first->in(MemNode::Memory);
kvn@7025 1421 SWPointer p1(n->as_Mem(), this);
kvn@7025 1422 // Identify the memory dependency for the new loadVector node by
kvn@7025 1423 // walking up through memory chain.
kvn@7025 1424 // This is done to give flexibility to the new loadVector node so that
kvn@7025 1425 // it can move above independent storeVector nodes.
kvn@7025 1426 while (mem->is_StoreVector()) {
kvn@7025 1427 SWPointer p2(mem->as_Mem(), this);
kvn@7025 1428 int cmp = p1.cmp(p2);
kvn@7025 1429 if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
kvn@7025 1430 mem = mem->in(MemNode::Memory);
kvn@7025 1431 } else {
kvn@7025 1432 break; // dependent memory
kvn@7025 1433 }
kvn@7025 1434 }
duke@435 1435 Node* adr = low_adr->in(MemNode::Address);
duke@435 1436 const TypePtr* atyp = n->adr_type();
roland@7859 1437 vn = LoadVectorNode::make(C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
kvn@4103 1438 vlen_in_bytes = vn->as_LoadVector()->memory_size();
duke@435 1439 } else if (n->is_Store()) {
duke@435 1440 // Promote value to be stored to vector
kvn@3040 1441 Node* val = vector_opd(p, MemNode::ValueIn);
duke@435 1442 Node* ctl = n->in(MemNode::Control);
duke@435 1443 Node* mem = first->in(MemNode::Memory);
duke@435 1444 Node* adr = low_adr->in(MemNode::Address);
duke@435 1445 const TypePtr* atyp = n->adr_type();
kvn@4103 1446 vn = StoreVectorNode::make(C, opc, ctl, mem, adr, atyp, val, vlen);
kvn@4103 1447 vlen_in_bytes = vn->as_StoreVector()->memory_size();
duke@435 1448 } else if (n->req() == 3) {
duke@435 1449 // Promote operands to vector
duke@435 1450 Node* in1 = vector_opd(p, 1);
duke@435 1451 Node* in2 = vector_opd(p, 2);
kvn@4001 1452 if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
kvn@4001 1453 // Move invariant vector input into second position to avoid register spilling.
kvn@4001 1454 Node* tmp = in1;
kvn@4001 1455 in1 = in2;
kvn@4001 1456 in2 = tmp;
kvn@4001 1457 }
kvn@4103 1458 vn = VectorNode::make(C, opc, in1, in2, vlen, velt_basic_type(n));
kvn@4103 1459 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
duke@435 1460 } else {
duke@435 1461 ShouldNotReachHere();
duke@435 1462 }
kvn@3882 1463 assert(vn != NULL, "sanity");
kvn@4114 1464 _igvn.register_new_node_with_optimizer(vn);
duke@435 1465 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
duke@435 1466 for (uint j = 0; j < p->size(); j++) {
duke@435 1467 Node* pm = p->at(j);
kvn@1976 1468 _igvn.replace_node(pm, vn);
duke@435 1469 }
duke@435 1470 _igvn._worklist.push(vn);
kvn@4103 1471
kvn@4103 1472 if (vlen_in_bytes > max_vlen_in_bytes) {
kvn@4103 1473 max_vlen_in_bytes = vlen_in_bytes;
kvn@4103 1474 }
kvn@3882 1475 #ifdef ASSERT
kvn@3886 1476 if (TraceNewVectors) {
kvn@3882 1477 tty->print("new Vector node: ");
kvn@3882 1478 vn->dump();
kvn@3882 1479 }
kvn@3882 1480 #endif
duke@435 1481 }
duke@435 1482 }
kvn@4103 1483 C->set_max_vector_size(max_vlen_in_bytes);
duke@435 1484 }
duke@435 1485
duke@435 1486 //------------------------------vector_opd---------------------------
duke@435 1487 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
kvn@3040 1488 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
duke@435 1489 Node* p0 = p->at(0);
duke@435 1490 uint vlen = p->size();
duke@435 1491 Node* opd = p0->in(opd_idx);
duke@435 1492
kvn@4006 1493 if (same_inputs(p, opd_idx)) {
kvn@3882 1494 if (opd->is_Vector() || opd->is_LoadVector()) {
kvn@4004 1495 assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
kvn@3040 1496 return opd; // input is matching vector
duke@435 1497 }
kvn@4001 1498 if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
kvn@4001 1499 Compile* C = _phase->C;
kvn@4001 1500 Node* cnt = opd;
kvn@4134 1501 // Vector instructions do not mask shift count, do it here.
kvn@4001 1502 juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
kvn@4001 1503 const TypeInt* t = opd->find_int_type();
kvn@4001 1504 if (t != NULL && t->is_con()) {
kvn@4001 1505 juint shift = t->get_con();
kvn@4001 1506 if (shift > mask) { // Unsigned cmp
kvn@4001 1507 cnt = ConNode::make(C, TypeInt::make(shift & mask));
kvn@4001 1508 }
kvn@4001 1509 } else {
kvn@4001 1510 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
kvn@4001 1511 cnt = ConNode::make(C, TypeInt::make(mask));
kvn@4114 1512 _igvn.register_new_node_with_optimizer(cnt);
kvn@4115 1513 cnt = new (C) AndINode(opd, cnt);
kvn@4114 1514 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1515 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1516 }
kvn@4001 1517 assert(opd->bottom_type()->isa_int(), "int type only");
kvn@4134 1518 // Move non constant shift count into vector register.
kvn@4134 1519 cnt = VectorNode::shift_count(C, p0, cnt, vlen, velt_basic_type(p0));
kvn@4001 1520 }
kvn@4001 1521 if (cnt != opd) {
kvn@4114 1522 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1523 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1524 }
kvn@4001 1525 return cnt;
kvn@4001 1526 }
kvn@3882 1527 assert(!opd->is_StoreVector(), "such vector is not expected here");
kvn@3748 1528 // Convert scalar input to vector with the same number of elements as
kvn@3748 1529 // p0's vector. Use p0's type because size of operand's container in
kvn@3748 1530 // vector should match p0's size regardless operand's size.
kvn@3748 1531 const Type* p0_t = velt_type(p0);
kvn@3748 1532 VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
duke@435 1533
kvn@4114 1534 _igvn.register_new_node_with_optimizer(vn);
duke@435 1535 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
kvn@3882 1536 #ifdef ASSERT
kvn@3886 1537 if (TraceNewVectors) {
kvn@3882 1538 tty->print("new Vector node: ");
kvn@3882 1539 vn->dump();
kvn@3882 1540 }
kvn@3882 1541 #endif
duke@435 1542 return vn;
duke@435 1543 }
duke@435 1544
duke@435 1545 // Insert pack operation
kvn@3882 1546 BasicType bt = velt_basic_type(p0);
kvn@3882 1547 PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
kvn@3748 1548 DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
duke@435 1549
duke@435 1550 for (uint i = 1; i < vlen; i++) {
duke@435 1551 Node* pi = p->at(i);
duke@435 1552 Node* in = pi->in(opd_idx);
duke@435 1553 assert(my_pack(in) == NULL, "Should already have been unpacked");
kvn@3748 1554 assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
kvn@4006 1555 pk->add_opd(in);
duke@435 1556 }
kvn@4114 1557 _igvn.register_new_node_with_optimizer(pk);
duke@435 1558 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
kvn@3882 1559 #ifdef ASSERT
kvn@4103 1560 if (TraceNewVectors) {
kvn@4103 1561 tty->print("new Vector node: ");
kvn@4103 1562 pk->dump();
kvn@4103 1563 }
kvn@3882 1564 #endif
duke@435 1565 return pk;
duke@435 1566 }
duke@435 1567
duke@435 1568 //------------------------------insert_extracts---------------------------
duke@435 1569 // If a use of pack p is not a vector use, then replace the
duke@435 1570 // use with an extract operation.
duke@435 1571 void SuperWord::insert_extracts(Node_List* p) {
duke@435 1572 if (p->at(0)->is_Store()) return;
duke@435 1573 assert(_n_idx_list.is_empty(), "empty (node,index) list");
duke@435 1574
duke@435 1575 // Inspect each use of each pack member. For each use that is
duke@435 1576 // not a vector use, replace the use with an extract operation.
duke@435 1577
duke@435 1578 for (uint i = 0; i < p->size(); i++) {
duke@435 1579 Node* def = p->at(i);
duke@435 1580 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1581 Node* use = def->fast_out(j);
duke@435 1582 for (uint k = 0; k < use->req(); k++) {
duke@435 1583 Node* n = use->in(k);
duke@435 1584 if (def == n) {
duke@435 1585 if (!is_vector_use(use, k)) {
duke@435 1586 _n_idx_list.push(use, k);
duke@435 1587 }
duke@435 1588 }
duke@435 1589 }
duke@435 1590 }
duke@435 1591 }
duke@435 1592
duke@435 1593 while (_n_idx_list.is_nonempty()) {
duke@435 1594 Node* use = _n_idx_list.node();
duke@435 1595 int idx = _n_idx_list.index();
duke@435 1596 _n_idx_list.pop();
duke@435 1597 Node* def = use->in(idx);
duke@435 1598
duke@435 1599 // Insert extract operation
duke@435 1600 _igvn.hash_delete(def);
duke@435 1601 int def_pos = alignment(def) / data_size(def);
duke@435 1602
kvn@3882 1603 Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
kvn@4114 1604 _igvn.register_new_node_with_optimizer(ex);
duke@435 1605 _phase->set_ctrl(ex, _phase->get_ctrl(def));
kvn@3847 1606 _igvn.replace_input_of(use, idx, ex);
duke@435 1607 _igvn._worklist.push(def);
duke@435 1608
duke@435 1609 bb_insert_after(ex, bb_idx(def));
kvn@3882 1610 set_velt_type(ex, velt_type(def));
duke@435 1611 }
duke@435 1612 }
duke@435 1613
duke@435 1614 //------------------------------is_vector_use---------------------------
duke@435 1615 // Is use->in(u_idx) a vector use?
duke@435 1616 bool SuperWord::is_vector_use(Node* use, int u_idx) {
duke@435 1617 Node_List* u_pk = my_pack(use);
duke@435 1618 if (u_pk == NULL) return false;
duke@435 1619 Node* def = use->in(u_idx);
duke@435 1620 Node_List* d_pk = my_pack(def);
duke@435 1621 if (d_pk == NULL) {
duke@435 1622 // check for scalar promotion
duke@435 1623 Node* n = u_pk->at(0)->in(u_idx);
duke@435 1624 for (uint i = 1; i < u_pk->size(); i++) {
duke@435 1625 if (u_pk->at(i)->in(u_idx) != n) return false;
duke@435 1626 }
duke@435 1627 return true;
duke@435 1628 }
duke@435 1629 if (u_pk->size() != d_pk->size())
duke@435 1630 return false;
duke@435 1631 for (uint i = 0; i < u_pk->size(); i++) {
duke@435 1632 Node* ui = u_pk->at(i);
duke@435 1633 Node* di = d_pk->at(i);
duke@435 1634 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
duke@435 1635 return false;
duke@435 1636 }
duke@435 1637 return true;
duke@435 1638 }
duke@435 1639
duke@435 1640 //------------------------------construct_bb---------------------------
duke@435 1641 // Construct reverse postorder list of block members
kvn@4620 1642 bool SuperWord::construct_bb() {
duke@435 1643 Node* entry = bb();
duke@435 1644
duke@435 1645 assert(_stk.length() == 0, "stk is empty");
duke@435 1646 assert(_block.length() == 0, "block is empty");
duke@435 1647 assert(_data_entry.length() == 0, "data_entry is empty");
duke@435 1648 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
duke@435 1649 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
duke@435 1650
duke@435 1651 // Find non-control nodes with no inputs from within block,
duke@435 1652 // create a temporary map from node _idx to bb_idx for use
duke@435 1653 // by the visited and post_visited sets,
duke@435 1654 // and count number of nodes in block.
duke@435 1655 int bb_ct = 0;
duke@435 1656 for (uint i = 0; i < lpt()->_body.size(); i++ ) {
duke@435 1657 Node *n = lpt()->_body.at(i);
duke@435 1658 set_bb_idx(n, i); // Create a temporary map
duke@435 1659 if (in_bb(n)) {
kvn@4620 1660 if (n->is_LoadStore() || n->is_MergeMem() ||
kvn@4620 1661 (n->is_Proj() && !n->as_Proj()->is_CFG())) {
kvn@4620 1662 // Bailout if the loop has LoadStore, MergeMem or data Proj
kvn@4620 1663 // nodes. Superword optimization does not work with them.
kvn@4620 1664 return false;
kvn@4620 1665 }
duke@435 1666 bb_ct++;
duke@435 1667 if (!n->is_CFG()) {
duke@435 1668 bool found = false;
duke@435 1669 for (uint j = 0; j < n->req(); j++) {
duke@435 1670 Node* def = n->in(j);
duke@435 1671 if (def && in_bb(def)) {
duke@435 1672 found = true;
duke@435 1673 break;
duke@435 1674 }
duke@435 1675 }
duke@435 1676 if (!found) {
duke@435 1677 assert(n != entry, "can't be entry");
duke@435 1678 _data_entry.push(n);
duke@435 1679 }
duke@435 1680 }
duke@435 1681 }
duke@435 1682 }
duke@435 1683
duke@435 1684 // Find memory slices (head and tail)
duke@435 1685 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
duke@435 1686 Node *n = lp()->fast_out(i);
duke@435 1687 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
duke@435 1688 Node* n_tail = n->in(LoopNode::LoopBackControl);
kvn@688 1689 if (n_tail != n->in(LoopNode::EntryControl)) {
kvn@4620 1690 if (!n_tail->is_Mem()) {
kvn@4620 1691 assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
kvn@4620 1692 return false; // Bailout
kvn@4620 1693 }
kvn@688 1694 _mem_slice_head.push(n);
kvn@688 1695 _mem_slice_tail.push(n_tail);
kvn@688 1696 }
duke@435 1697 }
duke@435 1698 }
duke@435 1699
duke@435 1700 // Create an RPO list of nodes in block
duke@435 1701
duke@435 1702 visited_clear();
duke@435 1703 post_visited_clear();
duke@435 1704
duke@435 1705 // Push all non-control nodes with no inputs from within block, then control entry
duke@435 1706 for (int j = 0; j < _data_entry.length(); j++) {
duke@435 1707 Node* n = _data_entry.at(j);
duke@435 1708 visited_set(n);
duke@435 1709 _stk.push(n);
duke@435 1710 }
duke@435 1711 visited_set(entry);
duke@435 1712 _stk.push(entry);
duke@435 1713
duke@435 1714 // Do a depth first walk over out edges
duke@435 1715 int rpo_idx = bb_ct - 1;
duke@435 1716 int size;
duke@435 1717 while ((size = _stk.length()) > 0) {
duke@435 1718 Node* n = _stk.top(); // Leave node on stack
duke@435 1719 if (!visited_test_set(n)) {
duke@435 1720 // forward arc in graph
duke@435 1721 } else if (!post_visited_test(n)) {
duke@435 1722 // cross or back arc
duke@435 1723 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1724 Node *use = n->fast_out(i);
duke@435 1725 if (in_bb(use) && !visited_test(use) &&
duke@435 1726 // Don't go around backedge
duke@435 1727 (!use->is_Phi() || n == entry)) {
duke@435 1728 _stk.push(use);
duke@435 1729 }
duke@435 1730 }
duke@435 1731 if (_stk.length() == size) {
duke@435 1732 // There were no additional uses, post visit node now
duke@435 1733 _stk.pop(); // Remove node from stack
duke@435 1734 assert(rpo_idx >= 0, "");
duke@435 1735 _block.at_put_grow(rpo_idx, n);
duke@435 1736 rpo_idx--;
duke@435 1737 post_visited_set(n);
duke@435 1738 assert(rpo_idx >= 0 || _stk.is_empty(), "");
duke@435 1739 }
duke@435 1740 } else {
duke@435 1741 _stk.pop(); // Remove post-visited node from stack
duke@435 1742 }
duke@435 1743 }
duke@435 1744
duke@435 1745 // Create real map of block indices for nodes
duke@435 1746 for (int j = 0; j < _block.length(); j++) {
duke@435 1747 Node* n = _block.at(j);
duke@435 1748 set_bb_idx(n, j);
duke@435 1749 }
duke@435 1750
duke@435 1751 initialize_bb(); // Ensure extra info is allocated.
duke@435 1752
duke@435 1753 #ifndef PRODUCT
duke@435 1754 if (TraceSuperWord) {
duke@435 1755 print_bb();
duke@435 1756 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
duke@435 1757 for (int m = 0; m < _data_entry.length(); m++) {
duke@435 1758 tty->print("%3d ", m);
duke@435 1759 _data_entry.at(m)->dump();
duke@435 1760 }
duke@435 1761 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
duke@435 1762 for (int m = 0; m < _mem_slice_head.length(); m++) {
duke@435 1763 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
duke@435 1764 tty->print(" "); _mem_slice_tail.at(m)->dump();
duke@435 1765 }
duke@435 1766 }
duke@435 1767 #endif
duke@435 1768 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
kvn@4620 1769 return (_mem_slice_head.length() > 0) || (_data_entry.length() > 0);
duke@435 1770 }
duke@435 1771
duke@435 1772 //------------------------------initialize_bb---------------------------
duke@435 1773 // Initialize per node info
duke@435 1774 void SuperWord::initialize_bb() {
duke@435 1775 Node* last = _block.at(_block.length() - 1);
duke@435 1776 grow_node_info(bb_idx(last));
duke@435 1777 }
duke@435 1778
duke@435 1779 //------------------------------bb_insert_after---------------------------
duke@435 1780 // Insert n into block after pos
duke@435 1781 void SuperWord::bb_insert_after(Node* n, int pos) {
duke@435 1782 int n_pos = pos + 1;
duke@435 1783 // Make room
duke@435 1784 for (int i = _block.length() - 1; i >= n_pos; i--) {
duke@435 1785 _block.at_put_grow(i+1, _block.at(i));
duke@435 1786 }
duke@435 1787 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
duke@435 1788 _node_info.at_put_grow(j+1, _node_info.at(j));
duke@435 1789 }
duke@435 1790 // Set value
duke@435 1791 _block.at_put_grow(n_pos, n);
duke@435 1792 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
duke@435 1793 // Adjust map from node->_idx to _block index
duke@435 1794 for (int i = n_pos; i < _block.length(); i++) {
duke@435 1795 set_bb_idx(_block.at(i), i);
duke@435 1796 }
duke@435 1797 }
duke@435 1798
duke@435 1799 //------------------------------compute_max_depth---------------------------
duke@435 1800 // Compute max depth for expressions from beginning of block
duke@435 1801 // Use to prune search paths during test for independence.
duke@435 1802 void SuperWord::compute_max_depth() {
duke@435 1803 int ct = 0;
duke@435 1804 bool again;
duke@435 1805 do {
duke@435 1806 again = false;
duke@435 1807 for (int i = 0; i < _block.length(); i++) {
duke@435 1808 Node* n = _block.at(i);
duke@435 1809 if (!n->is_Phi()) {
duke@435 1810 int d_orig = depth(n);
duke@435 1811 int d_in = 0;
duke@435 1812 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
duke@435 1813 Node* pred = preds.current();
duke@435 1814 if (in_bb(pred)) {
duke@435 1815 d_in = MAX2(d_in, depth(pred));
duke@435 1816 }
duke@435 1817 }
duke@435 1818 if (d_in + 1 != d_orig) {
duke@435 1819 set_depth(n, d_in + 1);
duke@435 1820 again = true;
duke@435 1821 }
duke@435 1822 }
duke@435 1823 }
duke@435 1824 ct++;
duke@435 1825 } while (again);
duke@435 1826 #ifndef PRODUCT
duke@435 1827 if (TraceSuperWord && Verbose)
duke@435 1828 tty->print_cr("compute_max_depth iterated: %d times", ct);
duke@435 1829 #endif
duke@435 1830 }
duke@435 1831
duke@435 1832 //-------------------------compute_vector_element_type-----------------------
duke@435 1833 // Compute necessary vector element type for expressions
duke@435 1834 // This propagates backwards a narrower integer type when the
duke@435 1835 // upper bits of the value are not needed.
duke@435 1836 // Example: char a,b,c; a = b + c;
duke@435 1837 // Normally the type of the add is integer, but for packed character
duke@435 1838 // operations the type of the add needs to be char.
duke@435 1839 void SuperWord::compute_vector_element_type() {
duke@435 1840 #ifndef PRODUCT
duke@435 1841 if (TraceSuperWord && Verbose)
duke@435 1842 tty->print_cr("\ncompute_velt_type:");
duke@435 1843 #endif
duke@435 1844
duke@435 1845 // Initial type
duke@435 1846 for (int i = 0; i < _block.length(); i++) {
duke@435 1847 Node* n = _block.at(i);
kvn@3882 1848 set_velt_type(n, container_type(n));
duke@435 1849 }
duke@435 1850
kvn@4204 1851 // Propagate integer narrowed type backwards through operations
duke@435 1852 // that don't depend on higher order bits
duke@435 1853 for (int i = _block.length() - 1; i >= 0; i--) {
duke@435 1854 Node* n = _block.at(i);
duke@435 1855 // Only integer types need be examined
kvn@4204 1856 const Type* vtn = velt_type(n);
kvn@4204 1857 if (vtn->basic_type() == T_INT) {
duke@435 1858 uint start, end;
kvn@4006 1859 VectorNode::vector_operands(n, &start, &end);
duke@435 1860
duke@435 1861 for (uint j = start; j < end; j++) {
duke@435 1862 Node* in = n->in(j);
kvn@4001 1863 // Don't propagate through a memory
kvn@4001 1864 if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
kvn@4001 1865 data_size(n) < data_size(in)) {
kvn@4001 1866 bool same_type = true;
kvn@4001 1867 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
kvn@4001 1868 Node *use = in->fast_out(k);
kvn@4001 1869 if (!in_bb(use) || !same_velt_type(use, n)) {
kvn@4001 1870 same_type = false;
kvn@4001 1871 break;
duke@435 1872 }
kvn@4001 1873 }
kvn@4001 1874 if (same_type) {
kvn@4204 1875 // For right shifts of small integer types (bool, byte, char, short)
kvn@4204 1876 // we need precise information about sign-ness. Only Load nodes have
kvn@4204 1877 // this information because Store nodes are the same for signed and
kvn@4204 1878 // unsigned values. And any arithmetic operation after a load may
kvn@4204 1879 // expand a value to signed Int so such right shifts can't be used
kvn@4204 1880 // because vector elements do not have upper bits of Int.
kvn@4204 1881 const Type* vt = vtn;
kvn@4204 1882 if (VectorNode::is_shift(in)) {
kvn@4204 1883 Node* load = in->in(1);
kvn@4207 1884 if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
kvn@4204 1885 vt = velt_type(load);
kvn@4204 1886 } else if (in->Opcode() != Op_LShiftI) {
kvn@4204 1887 // Widen type to Int to avoid creation of right shift vector
kvn@4204 1888 // (align + data_size(s1) check in stmts_can_pack() will fail).
kvn@4204 1889 // Note, left shifts work regardless type.
kvn@4204 1890 vt = TypeInt::INT;
kvn@4204 1891 }
kvn@4204 1892 }
kvn@4001 1893 set_velt_type(in, vt);
duke@435 1894 }
duke@435 1895 }
duke@435 1896 }
duke@435 1897 }
duke@435 1898 }
duke@435 1899 #ifndef PRODUCT
duke@435 1900 if (TraceSuperWord && Verbose) {
duke@435 1901 for (int i = 0; i < _block.length(); i++) {
duke@435 1902 Node* n = _block.at(i);
duke@435 1903 velt_type(n)->dump();
duke@435 1904 tty->print("\t");
duke@435 1905 n->dump();
duke@435 1906 }
duke@435 1907 }
duke@435 1908 #endif
duke@435 1909 }
duke@435 1910
duke@435 1911 //------------------------------memory_alignment---------------------------
duke@435 1912 // Alignment within a vector memory reference
kvn@4105 1913 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
duke@435 1914 SWPointer p(s, this);
duke@435 1915 if (!p.valid()) {
duke@435 1916 return bottom_align;
duke@435 1917 }
kvn@3886 1918 int vw = vector_width_in_bytes(s);
kvn@3882 1919 if (vw < 2) {
kvn@3882 1920 return bottom_align; // No vectors for this type
kvn@3882 1921 }
duke@435 1922 int offset = p.offset_in_bytes();
kvn@4105 1923 offset += iv_adjust*p.memory_size();
kvn@3882 1924 int off_rem = offset % vw;
kvn@3882 1925 int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
duke@435 1926 return off_mod;
duke@435 1927 }
duke@435 1928
duke@435 1929 //---------------------------container_type---------------------------
duke@435 1930 // Smallest type containing range of values
kvn@3882 1931 const Type* SuperWord::container_type(Node* n) {
kvn@3882 1932 if (n->is_Mem()) {
kvn@4204 1933 BasicType bt = n->as_Mem()->memory_type();
kvn@4204 1934 if (n->is_Store() && (bt == T_CHAR)) {
kvn@4204 1935 // Use T_SHORT type instead of T_CHAR for stored values because any
kvn@4204 1936 // preceding arithmetic operation extends values to signed Int.
kvn@4204 1937 bt = T_SHORT;
kvn@4204 1938 }
kvn@4204 1939 if (n->Opcode() == Op_LoadUB) {
kvn@4204 1940 // Adjust type for unsigned byte loads, it is important for right shifts.
kvn@4204 1941 // T_BOOLEAN is used because there is no basic type representing type
kvn@4204 1942 // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
kvn@4204 1943 // size (one byte) and sign is important.
kvn@4204 1944 bt = T_BOOLEAN;
kvn@4204 1945 }
kvn@4204 1946 return Type::get_const_basic_type(bt);
duke@435 1947 }
kvn@3882 1948 const Type* t = _igvn.type(n);
duke@435 1949 if (t->basic_type() == T_INT) {
kvn@4001 1950 // A narrow type of arithmetic operations will be determined by
kvn@4001 1951 // propagating the type of memory operations.
duke@435 1952 return TypeInt::INT;
duke@435 1953 }
duke@435 1954 return t;
duke@435 1955 }
duke@435 1956
kvn@3882 1957 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
kvn@3882 1958 const Type* vt1 = velt_type(n1);
kvn@4105 1959 const Type* vt2 = velt_type(n2);
kvn@3882 1960 if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
kvn@3882 1961 // Compare vectors element sizes for integer types.
kvn@3882 1962 return data_size(n1) == data_size(n2);
kvn@3882 1963 }
kvn@3882 1964 return vt1 == vt2;
kvn@3882 1965 }
kvn@3882 1966
duke@435 1967 //------------------------------in_packset---------------------------
duke@435 1968 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 1969 bool SuperWord::in_packset(Node* s1, Node* s2) {
duke@435 1970 for (int i = 0; i < _packset.length(); i++) {
duke@435 1971 Node_List* p = _packset.at(i);
duke@435 1972 assert(p->size() == 2, "must be");
duke@435 1973 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
duke@435 1974 return true;
duke@435 1975 }
duke@435 1976 }
duke@435 1977 return false;
duke@435 1978 }
duke@435 1979
duke@435 1980 //------------------------------in_pack---------------------------
duke@435 1981 // Is s in pack p?
duke@435 1982 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
duke@435 1983 for (uint i = 0; i < p->size(); i++) {
duke@435 1984 if (p->at(i) == s) {
duke@435 1985 return p;
duke@435 1986 }
duke@435 1987 }
duke@435 1988 return NULL;
duke@435 1989 }
duke@435 1990
duke@435 1991 //------------------------------remove_pack_at---------------------------
duke@435 1992 // Remove the pack at position pos in the packset
duke@435 1993 void SuperWord::remove_pack_at(int pos) {
duke@435 1994 Node_List* p = _packset.at(pos);
duke@435 1995 for (uint i = 0; i < p->size(); i++) {
duke@435 1996 Node* s = p->at(i);
duke@435 1997 set_my_pack(s, NULL);
duke@435 1998 }
duke@435 1999 _packset.remove_at(pos);
duke@435 2000 }
duke@435 2001
duke@435 2002 //------------------------------executed_first---------------------------
duke@435 2003 // Return the node executed first in pack p. Uses the RPO block list
duke@435 2004 // to determine order.
duke@435 2005 Node* SuperWord::executed_first(Node_List* p) {
duke@435 2006 Node* n = p->at(0);
duke@435 2007 int n_rpo = bb_idx(n);
duke@435 2008 for (uint i = 1; i < p->size(); i++) {
duke@435 2009 Node* s = p->at(i);
duke@435 2010 int s_rpo = bb_idx(s);
duke@435 2011 if (s_rpo < n_rpo) {
duke@435 2012 n = s;
duke@435 2013 n_rpo = s_rpo;
duke@435 2014 }
duke@435 2015 }
duke@435 2016 return n;
duke@435 2017 }
duke@435 2018
duke@435 2019 //------------------------------executed_last---------------------------
duke@435 2020 // Return the node executed last in pack p.
duke@435 2021 Node* SuperWord::executed_last(Node_List* p) {
duke@435 2022 Node* n = p->at(0);
duke@435 2023 int n_rpo = bb_idx(n);
duke@435 2024 for (uint i = 1; i < p->size(); i++) {
duke@435 2025 Node* s = p->at(i);
duke@435 2026 int s_rpo = bb_idx(s);
duke@435 2027 if (s_rpo > n_rpo) {
duke@435 2028 n = s;
duke@435 2029 n_rpo = s_rpo;
duke@435 2030 }
duke@435 2031 }
duke@435 2032 return n;
duke@435 2033 }
duke@435 2034
roland@7859 2035 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
roland@7859 2036 LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
roland@7859 2037 for (uint i = 0; i < p->size(); i++) {
roland@7859 2038 Node* n = p->at(i);
roland@7859 2039 assert(n->is_Load(), "only meaningful for loads");
roland@7859 2040 if (!n->depends_only_on_test()) {
roland@7859 2041 dep = LoadNode::Pinned;
roland@7859 2042 }
roland@7859 2043 }
roland@7859 2044 return dep;
roland@7859 2045 }
roland@7859 2046
roland@7859 2047
duke@435 2048 //----------------------------align_initial_loop_index---------------------------
duke@435 2049 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 2050 // to align_to_ref will be a position zero in the vector.
duke@435 2051 // (iv + k) mod vector_align == 0
duke@435 2052 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
duke@435 2053 CountedLoopNode *main_head = lp()->as_CountedLoop();
duke@435 2054 assert(main_head->is_main_loop(), "");
duke@435 2055 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
adlertz@9768 2056 assert(pre_end != NULL, "we must have a correct pre-loop");
duke@435 2057 Node *pre_opaq1 = pre_end->limit();
duke@435 2058 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
duke@435 2059 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
never@507 2060 Node *lim0 = pre_opaq->in(1);
duke@435 2061
duke@435 2062 // Where we put new limit calculations
duke@435 2063 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 2064
duke@435 2065 // Ensure the original loop limit is available from the
duke@435 2066 // pre-loop Opaque1 node.
duke@435 2067 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 2068 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
duke@435 2069
duke@435 2070 SWPointer align_to_ref_p(align_to_ref, this);
kvn@3882 2071 assert(align_to_ref_p.valid(), "sanity");
duke@435 2072
never@507 2073 // Given:
never@507 2074 // lim0 == original pre loop limit
never@507 2075 // V == v_align (power of 2)
never@507 2076 // invar == extra invariant piece of the address expression
kvn@4001 2077 // e == offset [ +/- invar ]
duke@435 2078 //
never@507 2079 // When reassociating expressions involving '%' the basic rules are:
never@507 2080 // (a - b) % k == 0 => a % k == b % k
never@507 2081 // and:
never@507 2082 // (a + b) % k == 0 => a % k == (k - b) % k
never@507 2083 //
never@507 2084 // For stride > 0 && scale > 0,
never@507 2085 // Derive the new pre-loop limit "lim" such that the two constraints:
never@507 2086 // (1) lim = lim0 + N (where N is some positive integer < V)
never@507 2087 // (2) (e + lim) % V == 0
never@507 2088 // are true.
never@507 2089 //
never@507 2090 // Substituting (1) into (2),
never@507 2091 // (e + lim0 + N) % V == 0
never@507 2092 // solve for N:
never@507 2093 // N = (V - (e + lim0)) % V
never@507 2094 // substitute back into (1), so that new limit
never@507 2095 // lim = lim0 + (V - (e + lim0)) % V
never@507 2096 //
never@507 2097 // For stride > 0 && scale < 0
never@507 2098 // Constraints:
never@507 2099 // lim = lim0 + N
never@507 2100 // (e - lim) % V == 0
never@507 2101 // Solving for lim:
never@507 2102 // (e - lim0 - N) % V == 0
never@507 2103 // N = (e - lim0) % V
never@507 2104 // lim = lim0 + (e - lim0) % V
never@507 2105 //
never@507 2106 // For stride < 0 && scale > 0
never@507 2107 // Constraints:
never@507 2108 // lim = lim0 - N
never@507 2109 // (e + lim) % V == 0
never@507 2110 // Solving for lim:
never@507 2111 // (e + lim0 - N) % V == 0
never@507 2112 // N = (e + lim0) % V
never@507 2113 // lim = lim0 - (e + lim0) % V
never@507 2114 //
never@507 2115 // For stride < 0 && scale < 0
never@507 2116 // Constraints:
never@507 2117 // lim = lim0 - N
never@507 2118 // (e - lim) % V == 0
never@507 2119 // Solving for lim:
never@507 2120 // (e - lim0 + N) % V == 0
never@507 2121 // N = (V - (e - lim0)) % V
never@507 2122 // lim = lim0 - (V - (e - lim0)) % V
duke@435 2123
kvn@3886 2124 int vw = vector_width_in_bytes(align_to_ref);
never@507 2125 int stride = iv_stride();
never@507 2126 int scale = align_to_ref_p.scale_in_bytes();
duke@435 2127 int elt_size = align_to_ref_p.memory_size();
kvn@3882 2128 int v_align = vw / elt_size;
kvn@3886 2129 assert(v_align > 1, "sanity");
kvn@4001 2130 int offset = align_to_ref_p.offset_in_bytes() / elt_size;
kvn@4001 2131 Node *offsn = _igvn.intcon(offset);
duke@435 2132
kvn@4001 2133 Node *e = offsn;
duke@435 2134 if (align_to_ref_p.invar() != NULL) {
kvn@4001 2135 // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
duke@435 2136 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2137 Node* aref = new (_phase->C) URShiftINode(align_to_ref_p.invar(), log2_elt);
kvn@4114 2138 _igvn.register_new_node_with_optimizer(aref);
duke@435 2139 _phase->set_ctrl(aref, pre_ctrl);
never@507 2140 if (align_to_ref_p.negate_invar()) {
kvn@4115 2141 e = new (_phase->C) SubINode(e, aref);
duke@435 2142 } else {
kvn@4115 2143 e = new (_phase->C) AddINode(e, aref);
duke@435 2144 }
kvn@4114 2145 _igvn.register_new_node_with_optimizer(e);
never@507 2146 _phase->set_ctrl(e, pre_ctrl);
duke@435 2147 }
kvn@3882 2148 if (vw > ObjectAlignmentInBytes) {
kvn@3882 2149 // incorporate base e +/- base && Mask >>> log2(elt)
kvn@4115 2150 Node* xbase = new(_phase->C) CastP2XNode(NULL, align_to_ref_p.base());
kvn@4114 2151 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2152 #ifdef _LP64
kvn@4115 2153 xbase = new (_phase->C) ConvL2INode(xbase);
kvn@4114 2154 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2155 #endif
kvn@4001 2156 Node* mask = _igvn.intcon(vw-1);
kvn@4115 2157 Node* masked_xbase = new (_phase->C) AndINode(xbase, mask);
kvn@4114 2158 _igvn.register_new_node_with_optimizer(masked_xbase);
kvn@3882 2159 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2160 Node* bref = new (_phase->C) URShiftINode(masked_xbase, log2_elt);
kvn@4114 2161 _igvn.register_new_node_with_optimizer(bref);
kvn@3882 2162 _phase->set_ctrl(bref, pre_ctrl);
kvn@4115 2163 e = new (_phase->C) AddINode(e, bref);
kvn@4114 2164 _igvn.register_new_node_with_optimizer(e);
kvn@3882 2165 _phase->set_ctrl(e, pre_ctrl);
kvn@3882 2166 }
never@507 2167
never@507 2168 // compute e +/- lim0
never@507 2169 if (scale < 0) {
kvn@4115 2170 e = new (_phase->C) SubINode(e, lim0);
never@507 2171 } else {
kvn@4115 2172 e = new (_phase->C) AddINode(e, lim0);
never@507 2173 }
kvn@4114 2174 _igvn.register_new_node_with_optimizer(e);
never@507 2175 _phase->set_ctrl(e, pre_ctrl);
never@507 2176
never@507 2177 if (stride * scale > 0) {
never@507 2178 // compute V - (e +/- lim0)
never@507 2179 Node* va = _igvn.intcon(v_align);
kvn@4115 2180 e = new (_phase->C) SubINode(va, e);
kvn@4114 2181 _igvn.register_new_node_with_optimizer(e);
never@507 2182 _phase->set_ctrl(e, pre_ctrl);
never@507 2183 }
never@507 2184 // compute N = (exp) % V
duke@435 2185 Node* va_msk = _igvn.intcon(v_align - 1);
kvn@4115 2186 Node* N = new (_phase->C) AndINode(e, va_msk);
kvn@4114 2187 _igvn.register_new_node_with_optimizer(N);
never@507 2188 _phase->set_ctrl(N, pre_ctrl);
never@507 2189
never@507 2190 // substitute back into (1), so that new limit
never@507 2191 // lim = lim0 + N
never@507 2192 Node* lim;
never@507 2193 if (stride < 0) {
kvn@4115 2194 lim = new (_phase->C) SubINode(lim0, N);
duke@435 2195 } else {
kvn@4115 2196 lim = new (_phase->C) AddINode(lim0, N);
duke@435 2197 }
kvn@4114 2198 _igvn.register_new_node_with_optimizer(lim);
never@507 2199 _phase->set_ctrl(lim, pre_ctrl);
duke@435 2200 Node* constrained =
kvn@4115 2201 (stride > 0) ? (Node*) new (_phase->C) MinINode(lim, orig_limit)
kvn@4115 2202 : (Node*) new (_phase->C) MaxINode(lim, orig_limit);
kvn@4114 2203 _igvn.register_new_node_with_optimizer(constrained);
duke@435 2204 _phase->set_ctrl(constrained, pre_ctrl);
duke@435 2205 _igvn.hash_delete(pre_opaq);
duke@435 2206 pre_opaq->set_req(1, constrained);
duke@435 2207 }
duke@435 2208
duke@435 2209 //----------------------------get_pre_loop_end---------------------------
duke@435 2210 // Find pre loop end from main loop. Returns null if none.
thartmann@9776 2211 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
zmajo@9977 2212 // The loop cannot be optimized if the graph shape at
zmajo@9977 2213 // the loop entry is inappropriate.
zmajo@9977 2214 if (!PhaseIdealLoop::is_canonical_main_loop_entry(cl)) {
thartmann@9776 2215 return NULL;
thartmann@9776 2216 }
zmajo@9977 2217
zmajo@9977 2218 Node* p_f = cl->in(LoopNode::EntryControl)->in(0)->in(0);
duke@435 2219 if (!p_f->is_IfFalse()) return NULL;
duke@435 2220 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
thartmann@9776 2221 CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
adlertz@9768 2222 CountedLoopNode* loop_node = pre_end->loopnode();
adlertz@9768 2223 if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
duke@435 2224 return pre_end;
duke@435 2225 }
duke@435 2226
duke@435 2227
duke@435 2228 //------------------------------init---------------------------
duke@435 2229 void SuperWord::init() {
duke@435 2230 _dg.init();
duke@435 2231 _packset.clear();
duke@435 2232 _disjoint_ptrs.clear();
duke@435 2233 _block.clear();
duke@435 2234 _data_entry.clear();
duke@435 2235 _mem_slice_head.clear();
duke@435 2236 _mem_slice_tail.clear();
duke@435 2237 _node_info.clear();
duke@435 2238 _align_to_ref = NULL;
duke@435 2239 _lpt = NULL;
duke@435 2240 _lp = NULL;
duke@435 2241 _bb = NULL;
duke@435 2242 _iv = NULL;
duke@435 2243 }
duke@435 2244
duke@435 2245 //------------------------------print_packset---------------------------
duke@435 2246 void SuperWord::print_packset() {
duke@435 2247 #ifndef PRODUCT
duke@435 2248 tty->print_cr("packset");
duke@435 2249 for (int i = 0; i < _packset.length(); i++) {
duke@435 2250 tty->print_cr("Pack: %d", i);
duke@435 2251 Node_List* p = _packset.at(i);
duke@435 2252 print_pack(p);
duke@435 2253 }
duke@435 2254 #endif
duke@435 2255 }
duke@435 2256
duke@435 2257 //------------------------------print_pack---------------------------
duke@435 2258 void SuperWord::print_pack(Node_List* p) {
duke@435 2259 for (uint i = 0; i < p->size(); i++) {
duke@435 2260 print_stmt(p->at(i));
duke@435 2261 }
duke@435 2262 }
duke@435 2263
duke@435 2264 //------------------------------print_bb---------------------------
duke@435 2265 void SuperWord::print_bb() {
duke@435 2266 #ifndef PRODUCT
duke@435 2267 tty->print_cr("\nBlock");
duke@435 2268 for (int i = 0; i < _block.length(); i++) {
duke@435 2269 Node* n = _block.at(i);
duke@435 2270 tty->print("%d ", i);
duke@435 2271 if (n) {
duke@435 2272 n->dump();
duke@435 2273 }
duke@435 2274 }
duke@435 2275 #endif
duke@435 2276 }
duke@435 2277
duke@435 2278 //------------------------------print_stmt---------------------------
duke@435 2279 void SuperWord::print_stmt(Node* s) {
duke@435 2280 #ifndef PRODUCT
duke@435 2281 tty->print(" align: %d \t", alignment(s));
duke@435 2282 s->dump();
duke@435 2283 #endif
duke@435 2284 }
duke@435 2285
duke@435 2286 //------------------------------blank---------------------------
duke@435 2287 char* SuperWord::blank(uint depth) {
duke@435 2288 static char blanks[101];
duke@435 2289 assert(depth < 101, "too deep");
duke@435 2290 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
duke@435 2291 blanks[depth] = '\0';
duke@435 2292 return blanks;
duke@435 2293 }
duke@435 2294
duke@435 2295
duke@435 2296 //==============================SWPointer===========================
duke@435 2297
duke@435 2298 //----------------------------SWPointer------------------------
duke@435 2299 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
duke@435 2300 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
duke@435 2301 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
duke@435 2302
duke@435 2303 Node* adr = mem->in(MemNode::Address);
duke@435 2304 if (!adr->is_AddP()) {
duke@435 2305 assert(!valid(), "too complex");
duke@435 2306 return;
duke@435 2307 }
duke@435 2308 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
duke@435 2309 Node* base = adr->in(AddPNode::Base);
thartmann@7818 2310 // The base address should be loop invariant
thartmann@7818 2311 if (!invariant(base)) {
thartmann@7818 2312 assert(!valid(), "base address is loop variant");
thartmann@7818 2313 return;
thartmann@7818 2314 }
cfang@1493 2315 //unsafe reference could not be aligned appropriately without runtime checking
cfang@1493 2316 if (base == NULL || base->bottom_type() == Type::TOP) {
cfang@1493 2317 assert(!valid(), "unsafe access");
cfang@1493 2318 return;
cfang@1493 2319 }
duke@435 2320 for (int i = 0; i < 3; i++) {
duke@435 2321 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
duke@435 2322 assert(!valid(), "too complex");
duke@435 2323 return;
duke@435 2324 }
duke@435 2325 adr = adr->in(AddPNode::Address);
duke@435 2326 if (base == adr || !adr->is_AddP()) {
duke@435 2327 break; // stop looking at addp's
duke@435 2328 }
duke@435 2329 }
duke@435 2330 _base = base;
duke@435 2331 _adr = adr;
duke@435 2332 assert(valid(), "Usable");
duke@435 2333 }
duke@435 2334
duke@435 2335 // Following is used to create a temporary object during
duke@435 2336 // the pattern match of an address expression.
duke@435 2337 SWPointer::SWPointer(SWPointer* p) :
duke@435 2338 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
duke@435 2339 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
duke@435 2340
duke@435 2341 //------------------------scaled_iv_plus_offset--------------------
duke@435 2342 // Match: k*iv + offset
duke@435 2343 // where: k is a constant that maybe zero, and
duke@435 2344 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
duke@435 2345 bool SWPointer::scaled_iv_plus_offset(Node* n) {
duke@435 2346 if (scaled_iv(n)) {
duke@435 2347 return true;
duke@435 2348 }
duke@435 2349 if (offset_plus_k(n)) {
duke@435 2350 return true;
duke@435 2351 }
duke@435 2352 int opc = n->Opcode();
duke@435 2353 if (opc == Op_AddI) {
duke@435 2354 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
duke@435 2355 return true;
duke@435 2356 }
duke@435 2357 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2358 return true;
duke@435 2359 }
duke@435 2360 } else if (opc == Op_SubI) {
duke@435 2361 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
duke@435 2362 return true;
duke@435 2363 }
duke@435 2364 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2365 _scale *= -1;
duke@435 2366 return true;
duke@435 2367 }
duke@435 2368 }
duke@435 2369 return false;
duke@435 2370 }
duke@435 2371
duke@435 2372 //----------------------------scaled_iv------------------------
duke@435 2373 // Match: k*iv where k is a constant that's not zero
duke@435 2374 bool SWPointer::scaled_iv(Node* n) {
duke@435 2375 if (_scale != 0) {
duke@435 2376 return false; // already found a scale
duke@435 2377 }
duke@435 2378 if (n == iv()) {
duke@435 2379 _scale = 1;
duke@435 2380 return true;
duke@435 2381 }
duke@435 2382 int opc = n->Opcode();
duke@435 2383 if (opc == Op_MulI) {
duke@435 2384 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2385 _scale = n->in(2)->get_int();
duke@435 2386 return true;
duke@435 2387 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
duke@435 2388 _scale = n->in(1)->get_int();
duke@435 2389 return true;
duke@435 2390 }
duke@435 2391 } else if (opc == Op_LShiftI) {
duke@435 2392 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2393 _scale = 1 << n->in(2)->get_int();
duke@435 2394 return true;
duke@435 2395 }
duke@435 2396 } else if (opc == Op_ConvI2L) {
thartmann@8285 2397 if (n->in(1)->Opcode() == Op_CastII &&
thartmann@8285 2398 n->in(1)->as_CastII()->has_range_check()) {
thartmann@8285 2399 // Skip range check dependent CastII nodes
thartmann@8285 2400 n = n->in(1);
thartmann@8285 2401 }
duke@435 2402 if (scaled_iv_plus_offset(n->in(1))) {
duke@435 2403 return true;
duke@435 2404 }
duke@435 2405 } else if (opc == Op_LShiftL) {
duke@435 2406 if (!has_iv() && _invar == NULL) {
duke@435 2407 // Need to preserve the current _offset value, so
duke@435 2408 // create a temporary object for this expression subtree.
duke@435 2409 // Hacky, so should re-engineer the address pattern match.
duke@435 2410 SWPointer tmp(this);
duke@435 2411 if (tmp.scaled_iv_plus_offset(n->in(1))) {
duke@435 2412 if (tmp._invar == NULL) {
duke@435 2413 int mult = 1 << n->in(2)->get_int();
duke@435 2414 _scale = tmp._scale * mult;
duke@435 2415 _offset += tmp._offset * mult;
duke@435 2416 return true;
duke@435 2417 }
duke@435 2418 }
duke@435 2419 }
duke@435 2420 }
duke@435 2421 return false;
duke@435 2422 }
duke@435 2423
duke@435 2424 //----------------------------offset_plus_k------------------------
duke@435 2425 // Match: offset is (k [+/- invariant])
duke@435 2426 // where k maybe zero and invariant is optional, but not both.
duke@435 2427 bool SWPointer::offset_plus_k(Node* n, bool negate) {
duke@435 2428 int opc = n->Opcode();
duke@435 2429 if (opc == Op_ConI) {
duke@435 2430 _offset += negate ? -(n->get_int()) : n->get_int();
duke@435 2431 return true;
duke@435 2432 } else if (opc == Op_ConL) {
duke@435 2433 // Okay if value fits into an int
duke@435 2434 const TypeLong* t = n->find_long_type();
duke@435 2435 if (t->higher_equal(TypeLong::INT)) {
duke@435 2436 jlong loff = n->get_long();
duke@435 2437 jint off = (jint)loff;
duke@435 2438 _offset += negate ? -off : loff;
duke@435 2439 return true;
duke@435 2440 }
duke@435 2441 return false;
duke@435 2442 }
duke@435 2443 if (_invar != NULL) return false; // already have an invariant
duke@435 2444 if (opc == Op_AddI) {
duke@435 2445 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2446 _negate_invar = negate;
duke@435 2447 _invar = n->in(1);
duke@435 2448 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2449 return true;
duke@435 2450 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2451 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2452 _negate_invar = negate;
duke@435 2453 _invar = n->in(2);
duke@435 2454 return true;
duke@435 2455 }
duke@435 2456 }
duke@435 2457 if (opc == Op_SubI) {
duke@435 2458 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2459 _negate_invar = negate;
duke@435 2460 _invar = n->in(1);
duke@435 2461 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2462 return true;
duke@435 2463 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2464 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2465 _negate_invar = !negate;
duke@435 2466 _invar = n->in(2);
duke@435 2467 return true;
duke@435 2468 }
duke@435 2469 }
duke@435 2470 if (invariant(n)) {
duke@435 2471 _negate_invar = negate;
duke@435 2472 _invar = n;
duke@435 2473 return true;
duke@435 2474 }
duke@435 2475 return false;
duke@435 2476 }
duke@435 2477
duke@435 2478 //----------------------------print------------------------
duke@435 2479 void SWPointer::print() {
duke@435 2480 #ifndef PRODUCT
duke@435 2481 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
duke@435 2482 _base != NULL ? _base->_idx : 0,
duke@435 2483 _adr != NULL ? _adr->_idx : 0,
duke@435 2484 _scale, _offset,
duke@435 2485 _negate_invar?'-':'+',
duke@435 2486 _invar != NULL ? _invar->_idx : 0);
duke@435 2487 #endif
duke@435 2488 }
duke@435 2489
duke@435 2490 // ========================= OrderedPair =====================
duke@435 2491
duke@435 2492 const OrderedPair OrderedPair::initial;
duke@435 2493
duke@435 2494 // ========================= SWNodeInfo =====================
duke@435 2495
duke@435 2496 const SWNodeInfo SWNodeInfo::initial;
duke@435 2497
duke@435 2498
duke@435 2499 // ============================ DepGraph ===========================
duke@435 2500
duke@435 2501 //------------------------------make_node---------------------------
duke@435 2502 // Make a new dependence graph node for an ideal node.
duke@435 2503 DepMem* DepGraph::make_node(Node* node) {
duke@435 2504 DepMem* m = new (_arena) DepMem(node);
duke@435 2505 if (node != NULL) {
duke@435 2506 assert(_map.at_grow(node->_idx) == NULL, "one init only");
duke@435 2507 _map.at_put_grow(node->_idx, m);
duke@435 2508 }
duke@435 2509 return m;
duke@435 2510 }
duke@435 2511
duke@435 2512 //------------------------------make_edge---------------------------
duke@435 2513 // Make a new dependence graph edge from dpred -> dsucc
duke@435 2514 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
duke@435 2515 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
duke@435 2516 dpred->set_out_head(e);
duke@435 2517 dsucc->set_in_head(e);
duke@435 2518 return e;
duke@435 2519 }
duke@435 2520
duke@435 2521 // ========================== DepMem ========================
duke@435 2522
duke@435 2523 //------------------------------in_cnt---------------------------
duke@435 2524 int DepMem::in_cnt() {
duke@435 2525 int ct = 0;
duke@435 2526 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
duke@435 2527 return ct;
duke@435 2528 }
duke@435 2529
duke@435 2530 //------------------------------out_cnt---------------------------
duke@435 2531 int DepMem::out_cnt() {
duke@435 2532 int ct = 0;
duke@435 2533 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
duke@435 2534 return ct;
duke@435 2535 }
duke@435 2536
duke@435 2537 //------------------------------print-----------------------------
duke@435 2538 void DepMem::print() {
duke@435 2539 #ifndef PRODUCT
duke@435 2540 tty->print(" DepNode %d (", _node->_idx);
duke@435 2541 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
duke@435 2542 Node* pred = p->pred()->node();
duke@435 2543 tty->print(" %d", pred != NULL ? pred->_idx : 0);
duke@435 2544 }
duke@435 2545 tty->print(") [");
duke@435 2546 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
duke@435 2547 Node* succ = s->succ()->node();
duke@435 2548 tty->print(" %d", succ != NULL ? succ->_idx : 0);
duke@435 2549 }
duke@435 2550 tty->print_cr(" ]");
duke@435 2551 #endif
duke@435 2552 }
duke@435 2553
duke@435 2554 // =========================== DepEdge =========================
duke@435 2555
duke@435 2556 //------------------------------DepPreds---------------------------
duke@435 2557 void DepEdge::print() {
duke@435 2558 #ifndef PRODUCT
duke@435 2559 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
duke@435 2560 #endif
duke@435 2561 }
duke@435 2562
duke@435 2563 // =========================== DepPreds =========================
duke@435 2564 // Iterator over predecessor edges in the dependence graph.
duke@435 2565
duke@435 2566 //------------------------------DepPreds---------------------------
duke@435 2567 DepPreds::DepPreds(Node* n, DepGraph& dg) {
duke@435 2568 _n = n;
duke@435 2569 _done = false;
duke@435 2570 if (_n->is_Store() || _n->is_Load()) {
duke@435 2571 _next_idx = MemNode::Address;
duke@435 2572 _end_idx = n->req();
duke@435 2573 _dep_next = dg.dep(_n)->in_head();
duke@435 2574 } else if (_n->is_Mem()) {
duke@435 2575 _next_idx = 0;
duke@435 2576 _end_idx = 0;
duke@435 2577 _dep_next = dg.dep(_n)->in_head();
duke@435 2578 } else {
duke@435 2579 _next_idx = 1;
duke@435 2580 _end_idx = _n->req();
duke@435 2581 _dep_next = NULL;
duke@435 2582 }
duke@435 2583 next();
duke@435 2584 }
duke@435 2585
duke@435 2586 //------------------------------next---------------------------
duke@435 2587 void DepPreds::next() {
duke@435 2588 if (_dep_next != NULL) {
duke@435 2589 _current = _dep_next->pred()->node();
duke@435 2590 _dep_next = _dep_next->next_in();
duke@435 2591 } else if (_next_idx < _end_idx) {
duke@435 2592 _current = _n->in(_next_idx++);
duke@435 2593 } else {
duke@435 2594 _done = true;
duke@435 2595 }
duke@435 2596 }
duke@435 2597
duke@435 2598 // =========================== DepSuccs =========================
duke@435 2599 // Iterator over successor edges in the dependence graph.
duke@435 2600
duke@435 2601 //------------------------------DepSuccs---------------------------
duke@435 2602 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
duke@435 2603 _n = n;
duke@435 2604 _done = false;
duke@435 2605 if (_n->is_Load()) {
duke@435 2606 _next_idx = 0;
duke@435 2607 _end_idx = _n->outcnt();
duke@435 2608 _dep_next = dg.dep(_n)->out_head();
duke@435 2609 } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
duke@435 2610 _next_idx = 0;
duke@435 2611 _end_idx = 0;
duke@435 2612 _dep_next = dg.dep(_n)->out_head();
duke@435 2613 } else {
duke@435 2614 _next_idx = 0;
duke@435 2615 _end_idx = _n->outcnt();
duke@435 2616 _dep_next = NULL;
duke@435 2617 }
duke@435 2618 next();
duke@435 2619 }
duke@435 2620
duke@435 2621 //-------------------------------next---------------------------
duke@435 2622 void DepSuccs::next() {
duke@435 2623 if (_dep_next != NULL) {
duke@435 2624 _current = _dep_next->succ()->node();
duke@435 2625 _dep_next = _dep_next->next_out();
duke@435 2626 } else if (_next_idx < _end_idx) {
duke@435 2627 _current = _n->raw_out(_next_idx++);
duke@435 2628 } else {
duke@435 2629 _done = true;
duke@435 2630 }
duke@435 2631 }

mercurial