src/share/vm/opto/superword.cpp

Sat, 24 Oct 2020 16:43:47 +0800

author
aoqi
date
Sat, 24 Oct 2020 16:43:47 +0800
changeset 10015
eb7ce841ccec
parent 9806
758c07667682
parent 9977
e649f2136368
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "compiler/compileLog.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/divnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/superword.hpp"
    36 #include "opto/vectornode.hpp"
    38 //
    39 //                  S U P E R W O R D   T R A N S F O R M
    40 //=============================================================================
    42 //------------------------------SuperWord---------------------------
    43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    44   _phase(phase),
    45   _igvn(phase->_igvn),
    46   _arena(phase->C->comp_arena()),
    47   _packset(arena(), 8,  0, NULL),         // packs for the current block
    48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    49   _block(arena(), 8,  0, NULL),           // nodes in current block
    50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    54   _align_to_ref(NULL),                    // memory reference to align vectors to
    55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    56   _dg(_arena),                            // dependence graph
    57   _visited(arena()),                      // visited node set
    58   _post_visited(arena()),                 // post visited node set
    59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    62   _lpt(NULL),                             // loop tree node
    63   _lp(NULL),                              // LoopNode
    64   _bb(NULL),                              // basic block
    65   _iv(NULL)                               // induction var
    66 {}
    68 //------------------------------transform_loop---------------------------
    69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    70   assert(UseSuperWord, "should be");
    71   // Do vectors exist on this architecture?
    72   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
    74   assert(lpt->_head->is_CountedLoop(), "must be");
    75   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    77   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
    79   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    81   // Check for no control flow in body (other than exit)
    82   Node *cl_exit = cl->loopexit();
    83   if (cl_exit->in(0) != lpt->_head) return;
    85   // Make sure the are no extra control users of the loop backedge
    86   if (cl->back_control()->outcnt() != 1) {
    87     return;
    88   }
    90   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    91   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    92   if (pre_end == NULL) return;
    93   Node *pre_opaq1 = pre_end->limit();
    94   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    96   init(); // initialize data structures
    98   set_lpt(lpt);
    99   set_lp(cl);
   101   // For now, define one block which is the entire loop body
   102   set_bb(cl);
   104   assert(_packset.length() == 0, "packset must be empty");
   105   SLP_extract();
   106 }
   108 //------------------------------SLP_extract---------------------------
   109 // Extract the superword level parallelism
   110 //
   111 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
   112 //    this list from first to last, all definitions are visited before their uses.
   113 //
   114 // 2) A point-to-point dependence graph is constructed between memory references.
   115 //    This simplies the upcoming "independence" checker.
   116 //
   117 // 3) The maximum depth in the node graph from the beginning of the block
   118 //    to each node is computed.  This is used to prune the graph search
   119 //    in the independence checker.
   120 //
   121 // 4) For integer types, the necessary bit width is propagated backwards
   122 //    from stores to allow packed operations on byte, char, and short
   123 //    integers.  This reverses the promotion to type "int" that javac
   124 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   125 //
   126 // 5) One of the memory references is picked to be an aligned vector reference.
   127 //    The pre-loop trip count is adjusted to align this reference in the
   128 //    unrolled body.
   129 //
   130 // 6) The initial set of pack pairs is seeded with memory references.
   131 //
   132 // 7) The set of pack pairs is extended by following use->def and def->use links.
   133 //
   134 // 8) The pairs are combined into vector sized packs.
   135 //
   136 // 9) Reorder the memory slices to co-locate members of the memory packs.
   137 //
   138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   139 //    inserting scalar promotion, vector creation from multiple scalars, and
   140 //    extraction of scalar values from vectors.
   141 //
   142 void SuperWord::SLP_extract() {
   144   // Ready the block
   146   if (!construct_bb())
   147     return; // Exit if no interesting nodes or complex graph.
   149   dependence_graph();
   151   compute_max_depth();
   153   compute_vector_element_type();
   155   // Attempt vectorization
   157   find_adjacent_refs();
   159   extend_packlist();
   161   combine_packs();
   163   construct_my_pack_map();
   165   filter_packs();
   167   schedule();
   169   output();
   170 }
   172 //------------------------------find_adjacent_refs---------------------------
   173 // Find the adjacent memory references and create pack pairs for them.
   174 // This is the initial set of packs that will then be extended by
   175 // following use->def and def->use links.  The align positions are
   176 // assigned relative to the reference "align_to_ref"
   177 void SuperWord::find_adjacent_refs() {
   178   // Get list of memory operations
   179   Node_List memops;
   180   for (int i = 0; i < _block.length(); i++) {
   181     Node* n = _block.at(i);
   182     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
   183         is_java_primitive(n->as_Mem()->memory_type())) {
   184       int align = memory_alignment(n->as_Mem(), 0);
   185       if (align != bottom_align) {
   186         memops.push(n);
   187       }
   188     }
   189   }
   191   Node_List align_to_refs;
   192   int best_iv_adjustment = 0;
   193   MemNode* best_align_to_mem_ref = NULL;
   195   while (memops.size() != 0) {
   196     // Find a memory reference to align to.
   197     MemNode* mem_ref = find_align_to_ref(memops);
   198     if (mem_ref == NULL) break;
   199     align_to_refs.push(mem_ref);
   200     int iv_adjustment = get_iv_adjustment(mem_ref);
   202     if (best_align_to_mem_ref == NULL) {
   203       // Set memory reference which is the best from all memory operations
   204       // to be used for alignment. The pre-loop trip count is modified to align
   205       // this reference to a vector-aligned address.
   206       best_align_to_mem_ref = mem_ref;
   207       best_iv_adjustment = iv_adjustment;
   208     }
   210     SWPointer align_to_ref_p(mem_ref, this);
   211     // Set alignment relative to "align_to_ref" for all related memory operations.
   212     for (int i = memops.size() - 1; i >= 0; i--) {
   213       MemNode* s = memops.at(i)->as_Mem();
   214       if (isomorphic(s, mem_ref)) {
   215         SWPointer p2(s, this);
   216         if (p2.comparable(align_to_ref_p)) {
   217           int align = memory_alignment(s, iv_adjustment);
   218           set_alignment(s, align);
   219         }
   220       }
   221     }
   223     // Create initial pack pairs of memory operations for which
   224     // alignment is set and vectors will be aligned.
   225     bool create_pack = true;
   226     if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
   227       if (!Matcher::misaligned_vectors_ok()) {
   228         int vw = vector_width(mem_ref);
   229         int vw_best = vector_width(best_align_to_mem_ref);
   230         if (vw > vw_best) {
   231           // Do not vectorize a memory access with more elements per vector
   232           // if unaligned memory access is not allowed because number of
   233           // iterations in pre-loop will be not enough to align it.
   234           create_pack = false;
   235         } else {
   236           SWPointer p2(best_align_to_mem_ref, this);
   237           if (align_to_ref_p.invar() != p2.invar()) {
   238             // Do not vectorize memory accesses with different invariants
   239             // if unaligned memory accesses are not allowed.
   240             create_pack = false;
   241           }
   242         }
   243       }
   244     } else {
   245       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   246         // Can't allow vectorization of unaligned memory accesses with the
   247         // same type since it could be overlapped accesses to the same array.
   248         create_pack = false;
   249       } else {
   250         // Allow independent (different type) unaligned memory operations
   251         // if HW supports them.
   252         if (!Matcher::misaligned_vectors_ok()) {
   253           create_pack = false;
   254         } else {
   255           // Check if packs of the same memory type but
   256           // with a different alignment were created before.
   257           for (uint i = 0; i < align_to_refs.size(); i++) {
   258             MemNode* mr = align_to_refs.at(i)->as_Mem();
   259             if (same_velt_type(mr, mem_ref) &&
   260                 memory_alignment(mr, iv_adjustment) != 0)
   261               create_pack = false;
   262           }
   263         }
   264       }
   265     }
   266     if (create_pack) {
   267       for (uint i = 0; i < memops.size(); i++) {
   268         Node* s1 = memops.at(i);
   269         int align = alignment(s1);
   270         if (align == top_align) continue;
   271         for (uint j = 0; j < memops.size(); j++) {
   272           Node* s2 = memops.at(j);
   273           if (alignment(s2) == top_align) continue;
   274           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   275             if (stmts_can_pack(s1, s2, align)) {
   276               Node_List* pair = new Node_List();
   277               pair->push(s1);
   278               pair->push(s2);
   279               _packset.append(pair);
   280             }
   281           }
   282         }
   283       }
   284     } else { // Don't create unaligned pack
   285       // First, remove remaining memory ops of the same type from the list.
   286       for (int i = memops.size() - 1; i >= 0; i--) {
   287         MemNode* s = memops.at(i)->as_Mem();
   288         if (same_velt_type(s, mem_ref)) {
   289           memops.remove(i);
   290         }
   291       }
   293       // Second, remove already constructed packs of the same type.
   294       for (int i = _packset.length() - 1; i >= 0; i--) {
   295         Node_List* p = _packset.at(i);
   296         MemNode* s = p->at(0)->as_Mem();
   297         if (same_velt_type(s, mem_ref)) {
   298           remove_pack_at(i);
   299         }
   300       }
   302       // If needed find the best memory reference for loop alignment again.
   303       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   304         // Put memory ops from remaining packs back on memops list for
   305         // the best alignment search.
   306         uint orig_msize = memops.size();
   307         for (int i = 0; i < _packset.length(); i++) {
   308           Node_List* p = _packset.at(i);
   309           MemNode* s = p->at(0)->as_Mem();
   310           assert(!same_velt_type(s, mem_ref), "sanity");
   311           memops.push(s);
   312         }
   313         MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
   314         if (best_align_to_mem_ref == NULL) break;
   315         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
   316         // Restore list.
   317         while (memops.size() > orig_msize)
   318           (void)memops.pop();
   319       }
   320     } // unaligned memory accesses
   322     // Remove used mem nodes.
   323     for (int i = memops.size() - 1; i >= 0; i--) {
   324       MemNode* m = memops.at(i)->as_Mem();
   325       if (alignment(m) != top_align) {
   326         memops.remove(i);
   327       }
   328     }
   330   } // while (memops.size() != 0
   331   set_align_to_ref(best_align_to_mem_ref);
   333 #ifndef PRODUCT
   334   if (TraceSuperWord) {
   335     tty->print_cr("\nAfter find_adjacent_refs");
   336     print_packset();
   337   }
   338 #endif
   339 }
   341 //------------------------------find_align_to_ref---------------------------
   342 // Find a memory reference to align the loop induction variable to.
   343 // Looks first at stores then at loads, looking for a memory reference
   344 // with the largest number of references similar to it.
   345 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
   346   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   348   // Count number of comparable memory ops
   349   for (uint i = 0; i < memops.size(); i++) {
   350     MemNode* s1 = memops.at(i)->as_Mem();
   351     SWPointer p1(s1, this);
   352     // Discard if pre loop can't align this reference
   353     if (!ref_is_alignable(p1)) {
   354       *cmp_ct.adr_at(i) = 0;
   355       continue;
   356     }
   357     for (uint j = i+1; j < memops.size(); j++) {
   358       MemNode* s2 = memops.at(j)->as_Mem();
   359       if (isomorphic(s1, s2)) {
   360         SWPointer p2(s2, this);
   361         if (p1.comparable(p2)) {
   362           (*cmp_ct.adr_at(i))++;
   363           (*cmp_ct.adr_at(j))++;
   364         }
   365       }
   366     }
   367   }
   369   // Find Store (or Load) with the greatest number of "comparable" references,
   370   // biggest vector size, smallest data size and smallest iv offset.
   371   int max_ct        = 0;
   372   int max_vw        = 0;
   373   int max_idx       = -1;
   374   int min_size      = max_jint;
   375   int min_iv_offset = max_jint;
   376   for (uint j = 0; j < memops.size(); j++) {
   377     MemNode* s = memops.at(j)->as_Mem();
   378     if (s->is_Store()) {
   379       int vw = vector_width_in_bytes(s);
   380       assert(vw > 1, "sanity");
   381       SWPointer p(s, this);
   382       if (cmp_ct.at(j) >  max_ct ||
   383           cmp_ct.at(j) == max_ct &&
   384             (vw >  max_vw ||
   385              vw == max_vw &&
   386               (data_size(s) <  min_size ||
   387                data_size(s) == min_size &&
   388                  (p.offset_in_bytes() < min_iv_offset)))) {
   389         max_ct = cmp_ct.at(j);
   390         max_vw = vw;
   391         max_idx = j;
   392         min_size = data_size(s);
   393         min_iv_offset = p.offset_in_bytes();
   394       }
   395     }
   396   }
   397   // If no stores, look at loads
   398   if (max_ct == 0) {
   399     for (uint j = 0; j < memops.size(); j++) {
   400       MemNode* s = memops.at(j)->as_Mem();
   401       if (s->is_Load()) {
   402         int vw = vector_width_in_bytes(s);
   403         assert(vw > 1, "sanity");
   404         SWPointer p(s, this);
   405         if (cmp_ct.at(j) >  max_ct ||
   406             cmp_ct.at(j) == max_ct &&
   407               (vw >  max_vw ||
   408                vw == max_vw &&
   409                 (data_size(s) <  min_size ||
   410                  data_size(s) == min_size &&
   411                    (p.offset_in_bytes() < min_iv_offset)))) {
   412           max_ct = cmp_ct.at(j);
   413           max_vw = vw;
   414           max_idx = j;
   415           min_size = data_size(s);
   416           min_iv_offset = p.offset_in_bytes();
   417         }
   418       }
   419     }
   420   }
   422 #ifdef ASSERT
   423   if (TraceSuperWord && Verbose) {
   424     tty->print_cr("\nVector memops after find_align_to_refs");
   425     for (uint i = 0; i < memops.size(); i++) {
   426       MemNode* s = memops.at(i)->as_Mem();
   427       s->dump();
   428     }
   429   }
   430 #endif
   432   if (max_ct > 0) {
   433 #ifdef ASSERT
   434     if (TraceSuperWord) {
   435       tty->print("\nVector align to node: ");
   436       memops.at(max_idx)->as_Mem()->dump();
   437     }
   438 #endif
   439     return memops.at(max_idx)->as_Mem();
   440   }
   441   return NULL;
   442 }
   444 //------------------------------ref_is_alignable---------------------------
   445 // Can the preloop align the reference to position zero in the vector?
   446 bool SuperWord::ref_is_alignable(SWPointer& p) {
   447   if (!p.has_iv()) {
   448     return true;   // no induction variable
   449   }
   450   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   451   assert(pre_end != NULL, "we must have a correct pre-loop");
   452   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   453   int preloop_stride = pre_end->stride_con();
   455   int span = preloop_stride * p.scale_in_bytes();
   456   int mem_size = p.memory_size();
   457   int offset   = p.offset_in_bytes();
   458   // Stride one accesses are alignable if offset is aligned to memory operation size.
   459   // Offset can be unaligned when UseUnalignedAccesses is used.
   460   if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
   461     return true;
   462   }
   463   // If the initial offset from start of the object is computable,
   464   // check if the pre-loop can align the final offset accordingly.
   465   //
   466   // In other words: Can we find an i such that the offset
   467   // after i pre-loop iterations is aligned to vw?
   468   //   (init_offset + pre_loop) % vw == 0              (1)
   469   // where
   470   //   pre_loop = i * span
   471   // is the number of bytes added to the offset by i pre-loop iterations.
   472   //
   473   // For this to hold we need pre_loop to increase init_offset by
   474   //   pre_loop = vw - (init_offset % vw)
   475   //
   476   // This is only possible if pre_loop is divisible by span because each
   477   // pre-loop iteration increases the initial offset by 'span' bytes:
   478   //   (vw - (init_offset % vw)) % span == 0
   479   //
   480   int vw = vector_width_in_bytes(p.mem());
   481   assert(vw > 1, "sanity");
   482   Node* init_nd = pre_end->init_trip();
   483   if (init_nd->is_Con() && p.invar() == NULL) {
   484     int init = init_nd->bottom_type()->is_int()->get_con();
   485     int init_offset = init * p.scale_in_bytes() + offset;
   486     if (init_offset < 0) { // negative offset from object start?
   487       return false;        // may happen in dead loop
   488     }
   489     if (vw % span == 0) {
   490       // If vm is a multiple of span, we use formula (1).
   491       if (span > 0) {
   492         return (vw - (init_offset % vw)) % span == 0;
   493       } else {
   494         assert(span < 0, "nonzero stride * scale");
   495         return (init_offset % vw) % -span == 0;
   496       }
   497     } else if (span % vw == 0) {
   498       // If span is a multiple of vw, we can simplify formula (1) to:
   499       //   (init_offset + i * span) % vw == 0
   500       //     =>
   501       //   (init_offset % vw) + ((i * span) % vw) == 0
   502       //     =>
   503       //   init_offset % vw == 0
   504       //
   505       // Because we add a multiple of vw to the initial offset, the final
   506       // offset is a multiple of vw if and only if init_offset is a multiple.
   507       //
   508       return (init_offset % vw) == 0;
   509     }
   510   }
   511   return false;
   512 }
   514 //---------------------------get_iv_adjustment---------------------------
   515 // Calculate loop's iv adjustment for this memory ops.
   516 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
   517   SWPointer align_to_ref_p(mem_ref, this);
   518   int offset = align_to_ref_p.offset_in_bytes();
   519   int scale  = align_to_ref_p.scale_in_bytes();
   520   int elt_size = align_to_ref_p.memory_size();
   521   int vw       = vector_width_in_bytes(mem_ref);
   522   assert(vw > 1, "sanity");
   523   int iv_adjustment;
   524   if (scale != 0) {
   525     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
   526     // At least one iteration is executed in pre-loop by default. As result
   527     // several iterations are needed to align memory operations in main-loop even
   528     // if offset is 0.
   529     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
   530     assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
   531            err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
   532     iv_adjustment = iv_adjustment_in_bytes/elt_size;
   533   } else {
   534     // This memory op is not dependent on iv (scale == 0)
   535     iv_adjustment = 0;
   536   }
   538 #ifndef PRODUCT
   539   if (TraceSuperWord)
   540     tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
   541                   offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
   542 #endif
   543   return iv_adjustment;
   544 }
   546 //---------------------------dependence_graph---------------------------
   547 // Construct dependency graph.
   548 // Add dependence edges to load/store nodes for memory dependence
   549 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   550 void SuperWord::dependence_graph() {
   551   // First, assign a dependence node to each memory node
   552   for (int i = 0; i < _block.length(); i++ ) {
   553     Node *n = _block.at(i);
   554     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   555       _dg.make_node(n);
   556     }
   557   }
   559   // For each memory slice, create the dependences
   560   for (int i = 0; i < _mem_slice_head.length(); i++) {
   561     Node* n      = _mem_slice_head.at(i);
   562     Node* n_tail = _mem_slice_tail.at(i);
   564     // Get slice in predecessor order (last is first)
   565     mem_slice_preds(n_tail, n, _nlist);
   567     // Make the slice dependent on the root
   568     DepMem* slice = _dg.dep(n);
   569     _dg.make_edge(_dg.root(), slice);
   571     // Create a sink for the slice
   572     DepMem* slice_sink = _dg.make_node(NULL);
   573     _dg.make_edge(slice_sink, _dg.tail());
   575     // Now visit each pair of memory ops, creating the edges
   576     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   577       Node* s1 = _nlist.at(j);
   579       // If no dependency yet, use slice
   580       if (_dg.dep(s1)->in_cnt() == 0) {
   581         _dg.make_edge(slice, s1);
   582       }
   583       SWPointer p1(s1->as_Mem(), this);
   584       bool sink_dependent = true;
   585       for (int k = j - 1; k >= 0; k--) {
   586         Node* s2 = _nlist.at(k);
   587         if (s1->is_Load() && s2->is_Load())
   588           continue;
   589         SWPointer p2(s2->as_Mem(), this);
   591         int cmp = p1.cmp(p2);
   592         if (SuperWordRTDepCheck &&
   593             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   594           // Create a runtime check to disambiguate
   595           OrderedPair pp(p1.base(), p2.base());
   596           _disjoint_ptrs.append_if_missing(pp);
   597         } else if (!SWPointer::not_equal(cmp)) {
   598           // Possibly same address
   599           _dg.make_edge(s1, s2);
   600           sink_dependent = false;
   601         }
   602       }
   603       if (sink_dependent) {
   604         _dg.make_edge(s1, slice_sink);
   605       }
   606     }
   607 #ifndef PRODUCT
   608     if (TraceSuperWord) {
   609       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   610       for (int q = 0; q < _nlist.length(); q++) {
   611         _dg.print(_nlist.at(q));
   612       }
   613       tty->cr();
   614     }
   615 #endif
   616     _nlist.clear();
   617   }
   619 #ifndef PRODUCT
   620   if (TraceSuperWord) {
   621     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   622     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   623       _disjoint_ptrs.at(r).print();
   624       tty->cr();
   625     }
   626     tty->cr();
   627   }
   628 #endif
   629 }
   631 //---------------------------mem_slice_preds---------------------------
   632 // Return a memory slice (node list) in predecessor order starting at "start"
   633 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   634   assert(preds.length() == 0, "start empty");
   635   Node* n = start;
   636   Node* prev = NULL;
   637   while (true) {
   638     assert(in_bb(n), "must be in block");
   639     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   640       Node* out = n->fast_out(i);
   641       if (out->is_Load()) {
   642         if (in_bb(out)) {
   643           preds.push(out);
   644         }
   645       } else {
   646         // FIXME
   647         if (out->is_MergeMem() && !in_bb(out)) {
   648           // Either unrolling is causing a memory edge not to disappear,
   649           // or need to run igvn.optimize() again before SLP
   650         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   651           // Ditto.  Not sure what else to check further.
   652         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   653           // StoreCM has an input edge used as a precedence edge.
   654           // Maybe an issue when oop stores are vectorized.
   655         } else {
   656           assert(out == prev || prev == NULL, "no branches off of store slice");
   657         }
   658       }
   659     }
   660     if (n == stop) break;
   661     preds.push(n);
   662     prev = n;
   663     assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
   664     n = n->in(MemNode::Memory);
   665   }
   666 }
   668 //------------------------------stmts_can_pack---------------------------
   669 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   670 // s1 aligned at "align"
   671 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   673   // Do not use superword for non-primitives
   674   BasicType bt1 = velt_basic_type(s1);
   675   BasicType bt2 = velt_basic_type(s2);
   676   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
   677     return false;
   678   if (Matcher::max_vector_size(bt1) < 2) {
   679     return false; // No vectors for this type
   680   }
   682   if (isomorphic(s1, s2)) {
   683     if (independent(s1, s2)) {
   684       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   685         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   686           int s1_align = alignment(s1);
   687           int s2_align = alignment(s2);
   688           if (s1_align == top_align || s1_align == align) {
   689             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   690               return true;
   691             }
   692           }
   693         }
   694       }
   695     }
   696   }
   697   return false;
   698 }
   700 //------------------------------exists_at---------------------------
   701 // Does s exist in a pack at position pos?
   702 bool SuperWord::exists_at(Node* s, uint pos) {
   703   for (int i = 0; i < _packset.length(); i++) {
   704     Node_List* p = _packset.at(i);
   705     if (p->at(pos) == s) {
   706       return true;
   707     }
   708   }
   709   return false;
   710 }
   712 //------------------------------are_adjacent_refs---------------------------
   713 // Is s1 immediately before s2 in memory?
   714 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   715   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   716   if (!in_bb(s1)    || !in_bb(s2))    return false;
   718   // Do not use superword for non-primitives
   719   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
   720       !is_java_primitive(s2->as_Mem()->memory_type())) {
   721     return false;
   722   }
   724   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   725   // only pack memops that are in the same alias set until that's fixed.
   726   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   727       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   728     return false;
   729   SWPointer p1(s1->as_Mem(), this);
   730   SWPointer p2(s2->as_Mem(), this);
   731   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   732   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   733   return diff == data_size(s1);
   734 }
   736 //------------------------------isomorphic---------------------------
   737 // Are s1 and s2 similar?
   738 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   739   if (s1->Opcode() != s2->Opcode()) return false;
   740   if (s1->req() != s2->req()) return false;
   741   if (s1->in(0) != s2->in(0)) return false;
   742   if (!same_velt_type(s1, s2)) return false;
   743   return true;
   744 }
   746 //------------------------------independent---------------------------
   747 // Is there no data path from s1 to s2 or s2 to s1?
   748 bool SuperWord::independent(Node* s1, Node* s2) {
   749   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   750   int d1 = depth(s1);
   751   int d2 = depth(s2);
   752   if (d1 == d2) return s1 != s2;
   753   Node* deep    = d1 > d2 ? s1 : s2;
   754   Node* shallow = d1 > d2 ? s2 : s1;
   756   visited_clear();
   758   return independent_path(shallow, deep);
   759 }
   761 //------------------------------independent_path------------------------------
   762 // Helper for independent
   763 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   764   if (dp >= 1000) return false; // stop deep recursion
   765   visited_set(deep);
   766   int shal_depth = depth(shallow);
   767   assert(shal_depth <= depth(deep), "must be");
   768   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   769     Node* pred = preds.current();
   770     if (in_bb(pred) && !visited_test(pred)) {
   771       if (shallow == pred) {
   772         return false;
   773       }
   774       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   775         return false;
   776       }
   777     }
   778   }
   779   return true;
   780 }
   782 //------------------------------set_alignment---------------------------
   783 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   784   set_alignment(s1, align);
   785   if (align == top_align || align == bottom_align) {
   786     set_alignment(s2, align);
   787   } else {
   788     set_alignment(s2, align + data_size(s1));
   789   }
   790 }
   792 //------------------------------data_size---------------------------
   793 int SuperWord::data_size(Node* s) {
   794   int bsize = type2aelembytes(velt_basic_type(s));
   795   assert(bsize != 0, "valid size");
   796   return bsize;
   797 }
   799 //------------------------------extend_packlist---------------------------
   800 // Extend packset by following use->def and def->use links from pack members.
   801 void SuperWord::extend_packlist() {
   802   bool changed;
   803   do {
   804     changed = false;
   805     for (int i = 0; i < _packset.length(); i++) {
   806       Node_List* p = _packset.at(i);
   807       changed |= follow_use_defs(p);
   808       changed |= follow_def_uses(p);
   809     }
   810   } while (changed);
   812 #ifndef PRODUCT
   813   if (TraceSuperWord) {
   814     tty->print_cr("\nAfter extend_packlist");
   815     print_packset();
   816   }
   817 #endif
   818 }
   820 //------------------------------follow_use_defs---------------------------
   821 // Extend the packset by visiting operand definitions of nodes in pack p
   822 bool SuperWord::follow_use_defs(Node_List* p) {
   823   assert(p->size() == 2, "just checking");
   824   Node* s1 = p->at(0);
   825   Node* s2 = p->at(1);
   826   assert(s1->req() == s2->req(), "just checking");
   827   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   829   if (s1->is_Load()) return false;
   831   int align = alignment(s1);
   832   bool changed = false;
   833   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   834   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   835   for (int j = start; j < end; j++) {
   836     Node* t1 = s1->in(j);
   837     Node* t2 = s2->in(j);
   838     if (!in_bb(t1) || !in_bb(t2))
   839       continue;
   840     if (stmts_can_pack(t1, t2, align)) {
   841       if (est_savings(t1, t2) >= 0) {
   842         Node_List* pair = new Node_List();
   843         pair->push(t1);
   844         pair->push(t2);
   845         _packset.append(pair);
   846         set_alignment(t1, t2, align);
   847         changed = true;
   848       }
   849     }
   850   }
   851   return changed;
   852 }
   854 //------------------------------follow_def_uses---------------------------
   855 // Extend the packset by visiting uses of nodes in pack p
   856 bool SuperWord::follow_def_uses(Node_List* p) {
   857   bool changed = false;
   858   Node* s1 = p->at(0);
   859   Node* s2 = p->at(1);
   860   assert(p->size() == 2, "just checking");
   861   assert(s1->req() == s2->req(), "just checking");
   862   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   864   if (s1->is_Store()) return false;
   866   int align = alignment(s1);
   867   int savings = -1;
   868   Node* u1 = NULL;
   869   Node* u2 = NULL;
   870   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   871     Node* t1 = s1->fast_out(i);
   872     if (!in_bb(t1)) continue;
   873     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   874       Node* t2 = s2->fast_out(j);
   875       if (!in_bb(t2)) continue;
   876       if (!opnd_positions_match(s1, t1, s2, t2))
   877         continue;
   878       if (stmts_can_pack(t1, t2, align)) {
   879         int my_savings = est_savings(t1, t2);
   880         if (my_savings > savings) {
   881           savings = my_savings;
   882           u1 = t1;
   883           u2 = t2;
   884         }
   885       }
   886     }
   887   }
   888   if (savings >= 0) {
   889     Node_List* pair = new Node_List();
   890     pair->push(u1);
   891     pair->push(u2);
   892     _packset.append(pair);
   893     set_alignment(u1, u2, align);
   894     changed = true;
   895   }
   896   return changed;
   897 }
   899 //---------------------------opnd_positions_match-------------------------
   900 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   901 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   902   uint ct = u1->req();
   903   if (ct != u2->req()) return false;
   904   uint i1 = 0;
   905   uint i2 = 0;
   906   do {
   907     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   908     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   909     if (i1 != i2) {
   910       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
   911         // Further analysis relies on operands position matching.
   912         u2->swap_edges(i1, i2);
   913       } else {
   914         return false;
   915       }
   916     }
   917   } while (i1 < ct);
   918   return true;
   919 }
   921 //------------------------------est_savings---------------------------
   922 // Estimate the savings from executing s1 and s2 as a pack
   923 int SuperWord::est_savings(Node* s1, Node* s2) {
   924   int save_in = 2 - 1; // 2 operations per instruction in packed form
   926   // inputs
   927   for (uint i = 1; i < s1->req(); i++) {
   928     Node* x1 = s1->in(i);
   929     Node* x2 = s2->in(i);
   930     if (x1 != x2) {
   931       if (are_adjacent_refs(x1, x2)) {
   932         save_in += adjacent_profit(x1, x2);
   933       } else if (!in_packset(x1, x2)) {
   934         save_in -= pack_cost(2);
   935       } else {
   936         save_in += unpack_cost(2);
   937       }
   938     }
   939   }
   941   // uses of result
   942   uint ct = 0;
   943   int save_use = 0;
   944   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   945     Node* s1_use = s1->fast_out(i);
   946     for (int j = 0; j < _packset.length(); j++) {
   947       Node_List* p = _packset.at(j);
   948       if (p->at(0) == s1_use) {
   949         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   950           Node* s2_use = s2->fast_out(k);
   951           if (p->at(p->size()-1) == s2_use) {
   952             ct++;
   953             if (are_adjacent_refs(s1_use, s2_use)) {
   954               save_use += adjacent_profit(s1_use, s2_use);
   955             }
   956           }
   957         }
   958       }
   959     }
   960   }
   962   if (ct < s1->outcnt()) save_use += unpack_cost(1);
   963   if (ct < s2->outcnt()) save_use += unpack_cost(1);
   965   return MAX2(save_in, save_use);
   966 }
   968 //------------------------------costs---------------------------
   969 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   970 int SuperWord::pack_cost(int ct)   { return ct; }
   971 int SuperWord::unpack_cost(int ct) { return ct; }
   973 //------------------------------combine_packs---------------------------
   974 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   975 void SuperWord::combine_packs() {
   976   bool changed = true;
   977   // Combine packs regardless max vector size.
   978   while (changed) {
   979     changed = false;
   980     for (int i = 0; i < _packset.length(); i++) {
   981       Node_List* p1 = _packset.at(i);
   982       if (p1 == NULL) continue;
   983       for (int j = 0; j < _packset.length(); j++) {
   984         Node_List* p2 = _packset.at(j);
   985         if (p2 == NULL) continue;
   986         if (i == j) continue;
   987         if (p1->at(p1->size()-1) == p2->at(0)) {
   988           for (uint k = 1; k < p2->size(); k++) {
   989             p1->push(p2->at(k));
   990           }
   991           _packset.at_put(j, NULL);
   992           changed = true;
   993         }
   994       }
   995     }
   996   }
   998   // Split packs which have size greater then max vector size.
   999   for (int i = 0; i < _packset.length(); i++) {
  1000     Node_List* p1 = _packset.at(i);
  1001     if (p1 != NULL) {
  1002       BasicType bt = velt_basic_type(p1->at(0));
  1003       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
  1004       assert(is_power_of_2(max_vlen), "sanity");
  1005       uint psize = p1->size();
  1006       if (!is_power_of_2(psize)) {
  1007         // Skip pack which can't be vector.
  1008         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
  1009         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
  1010         _packset.at_put(i, NULL);
  1011         continue;
  1013       if (psize > max_vlen) {
  1014         Node_List* pack = new Node_List();
  1015         for (uint j = 0; j < psize; j++) {
  1016           pack->push(p1->at(j));
  1017           if (pack->size() >= max_vlen) {
  1018             assert(is_power_of_2(pack->size()), "sanity");
  1019             _packset.append(pack);
  1020             pack = new Node_List();
  1023         _packset.at_put(i, NULL);
  1028   // Compress list.
  1029   for (int i = _packset.length() - 1; i >= 0; i--) {
  1030     Node_List* p1 = _packset.at(i);
  1031     if (p1 == NULL) {
  1032       _packset.remove_at(i);
  1036 #ifndef PRODUCT
  1037   if (TraceSuperWord) {
  1038     tty->print_cr("\nAfter combine_packs");
  1039     print_packset();
  1041 #endif
  1044 //-----------------------------construct_my_pack_map--------------------------
  1045 // Construct the map from nodes to packs.  Only valid after the
  1046 // point where a node is only in one pack (after combine_packs).
  1047 void SuperWord::construct_my_pack_map() {
  1048   Node_List* rslt = NULL;
  1049   for (int i = 0; i < _packset.length(); i++) {
  1050     Node_List* p = _packset.at(i);
  1051     for (uint j = 0; j < p->size(); j++) {
  1052       Node* s = p->at(j);
  1053       assert(my_pack(s) == NULL, "only in one pack");
  1054       set_my_pack(s, p);
  1059 //------------------------------filter_packs---------------------------
  1060 // Remove packs that are not implemented or not profitable.
  1061 void SuperWord::filter_packs() {
  1063   // Remove packs that are not implemented
  1064   for (int i = _packset.length() - 1; i >= 0; i--) {
  1065     Node_List* pk = _packset.at(i);
  1066     bool impl = implemented(pk);
  1067     if (!impl) {
  1068 #ifndef PRODUCT
  1069       if (TraceSuperWord && Verbose) {
  1070         tty->print_cr("Unimplemented");
  1071         pk->at(0)->dump();
  1073 #endif
  1074       remove_pack_at(i);
  1078   // Remove packs that are not profitable
  1079   bool changed;
  1080   do {
  1081     changed = false;
  1082     for (int i = _packset.length() - 1; i >= 0; i--) {
  1083       Node_List* pk = _packset.at(i);
  1084       bool prof = profitable(pk);
  1085       if (!prof) {
  1086 #ifndef PRODUCT
  1087         if (TraceSuperWord && Verbose) {
  1088           tty->print_cr("Unprofitable");
  1089           pk->at(0)->dump();
  1091 #endif
  1092         remove_pack_at(i);
  1093         changed = true;
  1096   } while (changed);
  1098 #ifndef PRODUCT
  1099   if (TraceSuperWord) {
  1100     tty->print_cr("\nAfter filter_packs");
  1101     print_packset();
  1102     tty->cr();
  1104 #endif
  1107 //------------------------------implemented---------------------------
  1108 // Can code be generated for pack p?
  1109 bool SuperWord::implemented(Node_List* p) {
  1110   Node* p0 = p->at(0);
  1111   return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
  1114 //------------------------------same_inputs--------------------------
  1115 // For pack p, are all idx operands the same?
  1116 static bool same_inputs(Node_List* p, int idx) {
  1117   Node* p0 = p->at(0);
  1118   uint vlen = p->size();
  1119   Node* p0_def = p0->in(idx);
  1120   for (uint i = 1; i < vlen; i++) {
  1121     Node* pi = p->at(i);
  1122     Node* pi_def = pi->in(idx);
  1123     if (p0_def != pi_def)
  1124       return false;
  1126   return true;
  1129 //------------------------------profitable---------------------------
  1130 // For pack p, are all operands and all uses (with in the block) vector?
  1131 bool SuperWord::profitable(Node_List* p) {
  1132   Node* p0 = p->at(0);
  1133   uint start, end;
  1134   VectorNode::vector_operands(p0, &start, &end);
  1136   // Return false if some inputs are not vectors or vectors with different
  1137   // size or alignment.
  1138   // Also, for now, return false if not scalar promotion case when inputs are
  1139   // the same. Later, implement PackNode and allow differing, non-vector inputs
  1140   // (maybe just the ones from outside the block.)
  1141   for (uint i = start; i < end; i++) {
  1142     if (!is_vector_use(p0, i))
  1143       return false;
  1145   if (VectorNode::is_shift(p0)) {
  1146     // For now, return false if shift count is vector or not scalar promotion
  1147     // case (different shift counts) because it is not supported yet.
  1148     Node* cnt = p0->in(2);
  1149     Node_List* cnt_pk = my_pack(cnt);
  1150     if (cnt_pk != NULL)
  1151       return false;
  1152     if (!same_inputs(p, 2))
  1153       return false;
  1155   if (!p0->is_Store()) {
  1156     // For now, return false if not all uses are vector.
  1157     // Later, implement ExtractNode and allow non-vector uses (maybe
  1158     // just the ones outside the block.)
  1159     for (uint i = 0; i < p->size(); i++) {
  1160       Node* def = p->at(i);
  1161       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1162         Node* use = def->fast_out(j);
  1163         for (uint k = 0; k < use->req(); k++) {
  1164           Node* n = use->in(k);
  1165           if (def == n) {
  1166             if (!is_vector_use(use, k)) {
  1167               return false;
  1174   return true;
  1177 //------------------------------schedule---------------------------
  1178 // Adjust the memory graph for the packed operations
  1179 void SuperWord::schedule() {
  1181   // Co-locate in the memory graph the members of each memory pack
  1182   for (int i = 0; i < _packset.length(); i++) {
  1183     co_locate_pack(_packset.at(i));
  1187 //-------------------------------remove_and_insert-------------------
  1188 // Remove "current" from its current position in the memory graph and insert
  1189 // it after the appropriate insertion point (lip or uip).
  1190 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
  1191                                   Node *uip, Unique_Node_List &sched_before) {
  1192   Node* my_mem = current->in(MemNode::Memory);
  1193   bool sched_up = sched_before.member(current);
  1195   // remove current_store from its current position in the memmory graph
  1196   for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1197     Node* use = current->out(i);
  1198     if (use->is_Mem()) {
  1199       assert(use->in(MemNode::Memory) == current, "must be");
  1200       if (use == prev) { // connect prev to my_mem
  1201           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
  1202           --i; //deleted this edge; rescan position
  1203       } else if (sched_before.member(use)) {
  1204         if (!sched_up) { // Will be moved together with current
  1205           _igvn.replace_input_of(use, MemNode::Memory, uip);
  1206           --i; //deleted this edge; rescan position
  1208       } else {
  1209         if (sched_up) { // Will be moved together with current
  1210           _igvn.replace_input_of(use, MemNode::Memory, lip);
  1211           --i; //deleted this edge; rescan position
  1217   Node *insert_pt =  sched_up ?  uip : lip;
  1219   // all uses of insert_pt's memory state should use current's instead
  1220   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
  1221     Node* use = insert_pt->out(i);
  1222     if (use->is_Mem()) {
  1223       assert(use->in(MemNode::Memory) == insert_pt, "must be");
  1224       _igvn.replace_input_of(use, MemNode::Memory, current);
  1225       --i; //deleted this edge; rescan position
  1226     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
  1227       uint pos; //lip (lower insert point) must be the last one in the memory slice
  1228       for (pos=1; pos < use->req(); pos++) {
  1229         if (use->in(pos) == insert_pt) break;
  1231       _igvn.replace_input_of(use, pos, current);
  1232       --i;
  1236   //connect current to insert_pt
  1237   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
  1240 //------------------------------co_locate_pack----------------------------------
  1241 // To schedule a store pack, we need to move any sandwiched memory ops either before
  1242 // or after the pack, based upon dependence information:
  1243 // (1) If any store in the pack depends on the sandwiched memory op, the
  1244 //     sandwiched memory op must be scheduled BEFORE the pack;
  1245 // (2) If a sandwiched memory op depends on any store in the pack, the
  1246 //     sandwiched memory op must be scheduled AFTER the pack;
  1247 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
  1248 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
  1249 //     scheduled before the pack, memB must also be scheduled before the pack;
  1250 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
  1251 //     schedule this store AFTER the pack
  1252 // (5) We know there is no dependence cycle, so there in no other case;
  1253 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
  1254 //
  1255 // To schedule a load pack, we use the memory state of either the first or the last load in
  1256 // the pack, based on the dependence constraint.
  1257 void SuperWord::co_locate_pack(Node_List* pk) {
  1258   if (pk->at(0)->is_Store()) {
  1259     MemNode* first     = executed_first(pk)->as_Mem();
  1260     MemNode* last      = executed_last(pk)->as_Mem();
  1261     Unique_Node_List schedule_before_pack;
  1262     Unique_Node_List memops;
  1264     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1265     MemNode* previous  = last;
  1266     while (true) {
  1267       assert(in_bb(current), "stay in block");
  1268       memops.push(previous);
  1269       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1270         Node* use = current->out(i);
  1271         if (use->is_Mem() && use != previous)
  1272           memops.push(use);
  1274       if (current == first) break;
  1275       previous = current;
  1276       current  = current->in(MemNode::Memory)->as_Mem();
  1279     // determine which memory operations should be scheduled before the pack
  1280     for (uint i = 1; i < memops.size(); i++) {
  1281       Node *s1 = memops.at(i);
  1282       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1283         for (uint j = 0; j< i; j++) {
  1284           Node *s2 = memops.at(j);
  1285           if (!independent(s1, s2)) {
  1286             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1287               schedule_before_pack.push(s1); // s1 must be scheduled before
  1288               Node_List* mem_pk = my_pack(s1);
  1289               if (mem_pk != NULL) {
  1290                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1291                   Node* s = mem_pk->at(ii);  // follow partner
  1292                   if (memops.member(s) && !schedule_before_pack.member(s))
  1293                     schedule_before_pack.push(s);
  1296               break;
  1303     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1304     // Following code moves loads connected to upper_insert_pt below aliased stores.
  1305     // Collect such loads here and reconnect them back to upper_insert_pt later.
  1306     memops.clear();
  1307     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
  1308       Node* use = upper_insert_pt->out(i);
  1309       if (use->is_Mem() && !use->is_Store()) {
  1310         memops.push(use);
  1314     MemNode* lower_insert_pt = last;
  1315     previous                 = last; //previous store in pk
  1316     current                  = last->in(MemNode::Memory)->as_Mem();
  1318     // start scheduling from "last" to "first"
  1319     while (true) {
  1320       assert(in_bb(current), "stay in block");
  1321       assert(in_pack(previous, pk), "previous stays in pack");
  1322       Node* my_mem = current->in(MemNode::Memory);
  1324       if (in_pack(current, pk)) {
  1325         // Forward users of my memory state (except "previous) to my input memory state
  1326         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1327           Node* use = current->out(i);
  1328           if (use->is_Mem() && use != previous) {
  1329             assert(use->in(MemNode::Memory) == current, "must be");
  1330             if (schedule_before_pack.member(use)) {
  1331               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
  1332             } else {
  1333               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
  1335             --i; // deleted this edge; rescan position
  1338         previous = current;
  1339       } else { // !in_pack(current, pk) ==> a sandwiched store
  1340         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1343       if (current == first) break;
  1344       current = my_mem->as_Mem();
  1345     } // end while
  1347     // Reconnect loads back to upper_insert_pt.
  1348     for (uint i = 0; i < memops.size(); i++) {
  1349       Node *ld = memops.at(i);
  1350       if (ld->in(MemNode::Memory) != upper_insert_pt) {
  1351         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
  1354   } else if (pk->at(0)->is_Load()) { //load
  1355     // all loads in the pack should have the same memory state. By default,
  1356     // we use the memory state of the last load. However, if any load could
  1357     // not be moved down due to the dependence constraint, we use the memory
  1358     // state of the first load.
  1359     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1360     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1361     bool schedule_last = true;
  1362     for (uint i = 0; i < pk->size(); i++) {
  1363       Node* ld = pk->at(i);
  1364       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1365            current=current->in(MemNode::Memory)) {
  1366         assert(current != first_mem, "corrupted memory graph");
  1367         if(current->is_Mem() && !independent(current, ld)){
  1368           schedule_last = false; // a later store depends on this load
  1369           break;
  1374     Node* mem_input = schedule_last ? last_mem : first_mem;
  1375     _igvn.hash_delete(mem_input);
  1376     // Give each load the same memory state
  1377     for (uint i = 0; i < pk->size(); i++) {
  1378       LoadNode* ld = pk->at(i)->as_Load();
  1379       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
  1384 //------------------------------output---------------------------
  1385 // Convert packs into vector node operations
  1386 void SuperWord::output() {
  1387   if (_packset.length() == 0) return;
  1389 #ifndef PRODUCT
  1390   if (TraceLoopOpts) {
  1391     tty->print("SuperWord    ");
  1392     lpt()->dump_head();
  1394 #endif
  1396   // MUST ENSURE main loop's initial value is properly aligned:
  1397   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1399   align_initial_loop_index(align_to_ref());
  1401   // Insert extract (unpack) operations for scalar uses
  1402   for (int i = 0; i < _packset.length(); i++) {
  1403     insert_extracts(_packset.at(i));
  1406   Compile* C = _phase->C;
  1407   uint max_vlen_in_bytes = 0;
  1408   for (int i = 0; i < _block.length(); i++) {
  1409     Node* n = _block.at(i);
  1410     Node_List* p = my_pack(n);
  1411     if (p && n == executed_last(p)) {
  1412       uint vlen = p->size();
  1413       uint vlen_in_bytes = 0;
  1414       Node* vn = NULL;
  1415       Node* low_adr = p->at(0);
  1416       Node* first   = executed_first(p);
  1417       int   opc = n->Opcode();
  1418       if (n->is_Load()) {
  1419         Node* ctl = n->in(MemNode::Control);
  1420         Node* mem = first->in(MemNode::Memory);
  1421         SWPointer p1(n->as_Mem(), this);
  1422         // Identify the memory dependency for the new loadVector node by
  1423         // walking up through memory chain.
  1424         // This is done to give flexibility to the new loadVector node so that
  1425         // it can move above independent storeVector nodes.
  1426         while (mem->is_StoreVector()) {
  1427           SWPointer p2(mem->as_Mem(), this);
  1428           int cmp = p1.cmp(p2);
  1429           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
  1430             mem = mem->in(MemNode::Memory);
  1431           } else {
  1432             break; // dependent memory
  1435         Node* adr = low_adr->in(MemNode::Address);
  1436         const TypePtr* atyp = n->adr_type();
  1437         vn = LoadVectorNode::make(C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
  1438         vlen_in_bytes = vn->as_LoadVector()->memory_size();
  1439       } else if (n->is_Store()) {
  1440         // Promote value to be stored to vector
  1441         Node* val = vector_opd(p, MemNode::ValueIn);
  1442         Node* ctl = n->in(MemNode::Control);
  1443         Node* mem = first->in(MemNode::Memory);
  1444         Node* adr = low_adr->in(MemNode::Address);
  1445         const TypePtr* atyp = n->adr_type();
  1446         vn = StoreVectorNode::make(C, opc, ctl, mem, adr, atyp, val, vlen);
  1447         vlen_in_bytes = vn->as_StoreVector()->memory_size();
  1448       } else if (n->req() == 3) {
  1449         // Promote operands to vector
  1450         Node* in1 = vector_opd(p, 1);
  1451         Node* in2 = vector_opd(p, 2);
  1452         if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
  1453           // Move invariant vector input into second position to avoid register spilling.
  1454           Node* tmp = in1;
  1455           in1 = in2;
  1456           in2 = tmp;
  1458         vn = VectorNode::make(C, opc, in1, in2, vlen, velt_basic_type(n));
  1459         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
  1460       } else {
  1461         ShouldNotReachHere();
  1463       assert(vn != NULL, "sanity");
  1464       _igvn.register_new_node_with_optimizer(vn);
  1465       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1466       for (uint j = 0; j < p->size(); j++) {
  1467         Node* pm = p->at(j);
  1468         _igvn.replace_node(pm, vn);
  1470       _igvn._worklist.push(vn);
  1472       if (vlen_in_bytes > max_vlen_in_bytes) {
  1473         max_vlen_in_bytes = vlen_in_bytes;
  1475 #ifdef ASSERT
  1476       if (TraceNewVectors) {
  1477         tty->print("new Vector node: ");
  1478         vn->dump();
  1480 #endif
  1483   C->set_max_vector_size(max_vlen_in_bytes);
  1486 //------------------------------vector_opd---------------------------
  1487 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1488 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1489   Node* p0 = p->at(0);
  1490   uint vlen = p->size();
  1491   Node* opd = p0->in(opd_idx);
  1493   if (same_inputs(p, opd_idx)) {
  1494     if (opd->is_Vector() || opd->is_LoadVector()) {
  1495       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
  1496       return opd; // input is matching vector
  1498     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
  1499       Compile* C = _phase->C;
  1500       Node* cnt = opd;
  1501       // Vector instructions do not mask shift count, do it here.
  1502       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  1503       const TypeInt* t = opd->find_int_type();
  1504       if (t != NULL && t->is_con()) {
  1505         juint shift = t->get_con();
  1506         if (shift > mask) { // Unsigned cmp
  1507           cnt = ConNode::make(C, TypeInt::make(shift & mask));
  1509       } else {
  1510         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  1511           cnt = ConNode::make(C, TypeInt::make(mask));
  1512           _igvn.register_new_node_with_optimizer(cnt);
  1513           cnt = new (C) AndINode(opd, cnt);
  1514           _igvn.register_new_node_with_optimizer(cnt);
  1515           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
  1517         assert(opd->bottom_type()->isa_int(), "int type only");
  1518         // Move non constant shift count into vector register.
  1519         cnt = VectorNode::shift_count(C, p0, cnt, vlen, velt_basic_type(p0));
  1521       if (cnt != opd) {
  1522         _igvn.register_new_node_with_optimizer(cnt);
  1523         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
  1525       return cnt;
  1527     assert(!opd->is_StoreVector(), "such vector is not expected here");
  1528     // Convert scalar input to vector with the same number of elements as
  1529     // p0's vector. Use p0's type because size of operand's container in
  1530     // vector should match p0's size regardless operand's size.
  1531     const Type* p0_t = velt_type(p0);
  1532     VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
  1534     _igvn.register_new_node_with_optimizer(vn);
  1535     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1536 #ifdef ASSERT
  1537     if (TraceNewVectors) {
  1538       tty->print("new Vector node: ");
  1539       vn->dump();
  1541 #endif
  1542     return vn;
  1545   // Insert pack operation
  1546   BasicType bt = velt_basic_type(p0);
  1547   PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
  1548   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
  1550   for (uint i = 1; i < vlen; i++) {
  1551     Node* pi = p->at(i);
  1552     Node* in = pi->in(opd_idx);
  1553     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1554     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
  1555     pk->add_opd(in);
  1557   _igvn.register_new_node_with_optimizer(pk);
  1558   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1559 #ifdef ASSERT
  1560   if (TraceNewVectors) {
  1561     tty->print("new Vector node: ");
  1562     pk->dump();
  1564 #endif
  1565   return pk;
  1568 //------------------------------insert_extracts---------------------------
  1569 // If a use of pack p is not a vector use, then replace the
  1570 // use with an extract operation.
  1571 void SuperWord::insert_extracts(Node_List* p) {
  1572   if (p->at(0)->is_Store()) return;
  1573   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1575   // Inspect each use of each pack member.  For each use that is
  1576   // not a vector use, replace the use with an extract operation.
  1578   for (uint i = 0; i < p->size(); i++) {
  1579     Node* def = p->at(i);
  1580     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1581       Node* use = def->fast_out(j);
  1582       for (uint k = 0; k < use->req(); k++) {
  1583         Node* n = use->in(k);
  1584         if (def == n) {
  1585           if (!is_vector_use(use, k)) {
  1586             _n_idx_list.push(use, k);
  1593   while (_n_idx_list.is_nonempty()) {
  1594     Node* use = _n_idx_list.node();
  1595     int   idx = _n_idx_list.index();
  1596     _n_idx_list.pop();
  1597     Node* def = use->in(idx);
  1599     // Insert extract operation
  1600     _igvn.hash_delete(def);
  1601     int def_pos = alignment(def) / data_size(def);
  1603     Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
  1604     _igvn.register_new_node_with_optimizer(ex);
  1605     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1606     _igvn.replace_input_of(use, idx, ex);
  1607     _igvn._worklist.push(def);
  1609     bb_insert_after(ex, bb_idx(def));
  1610     set_velt_type(ex, velt_type(def));
  1614 //------------------------------is_vector_use---------------------------
  1615 // Is use->in(u_idx) a vector use?
  1616 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1617   Node_List* u_pk = my_pack(use);
  1618   if (u_pk == NULL) return false;
  1619   Node* def = use->in(u_idx);
  1620   Node_List* d_pk = my_pack(def);
  1621   if (d_pk == NULL) {
  1622     // check for scalar promotion
  1623     Node* n = u_pk->at(0)->in(u_idx);
  1624     for (uint i = 1; i < u_pk->size(); i++) {
  1625       if (u_pk->at(i)->in(u_idx) != n) return false;
  1627     return true;
  1629   if (u_pk->size() != d_pk->size())
  1630     return false;
  1631   for (uint i = 0; i < u_pk->size(); i++) {
  1632     Node* ui = u_pk->at(i);
  1633     Node* di = d_pk->at(i);
  1634     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1635       return false;
  1637   return true;
  1640 //------------------------------construct_bb---------------------------
  1641 // Construct reverse postorder list of block members
  1642 bool SuperWord::construct_bb() {
  1643   Node* entry = bb();
  1645   assert(_stk.length() == 0,            "stk is empty");
  1646   assert(_block.length() == 0,          "block is empty");
  1647   assert(_data_entry.length() == 0,     "data_entry is empty");
  1648   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1649   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1651   // Find non-control nodes with no inputs from within block,
  1652   // create a temporary map from node _idx to bb_idx for use
  1653   // by the visited and post_visited sets,
  1654   // and count number of nodes in block.
  1655   int bb_ct = 0;
  1656   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1657     Node *n = lpt()->_body.at(i);
  1658     set_bb_idx(n, i); // Create a temporary map
  1659     if (in_bb(n)) {
  1660       if (n->is_LoadStore() || n->is_MergeMem() ||
  1661           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
  1662         // Bailout if the loop has LoadStore, MergeMem or data Proj
  1663         // nodes. Superword optimization does not work with them.
  1664         return false;
  1666       bb_ct++;
  1667       if (!n->is_CFG()) {
  1668         bool found = false;
  1669         for (uint j = 0; j < n->req(); j++) {
  1670           Node* def = n->in(j);
  1671           if (def && in_bb(def)) {
  1672             found = true;
  1673             break;
  1676         if (!found) {
  1677           assert(n != entry, "can't be entry");
  1678           _data_entry.push(n);
  1684   // Find memory slices (head and tail)
  1685   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1686     Node *n = lp()->fast_out(i);
  1687     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1688       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1689       if (n_tail != n->in(LoopNode::EntryControl)) {
  1690         if (!n_tail->is_Mem()) {
  1691           assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
  1692           return false; // Bailout
  1694         _mem_slice_head.push(n);
  1695         _mem_slice_tail.push(n_tail);
  1700   // Create an RPO list of nodes in block
  1702   visited_clear();
  1703   post_visited_clear();
  1705   // Push all non-control nodes with no inputs from within block, then control entry
  1706   for (int j = 0; j < _data_entry.length(); j++) {
  1707     Node* n = _data_entry.at(j);
  1708     visited_set(n);
  1709     _stk.push(n);
  1711   visited_set(entry);
  1712   _stk.push(entry);
  1714   // Do a depth first walk over out edges
  1715   int rpo_idx = bb_ct - 1;
  1716   int size;
  1717   while ((size = _stk.length()) > 0) {
  1718     Node* n = _stk.top(); // Leave node on stack
  1719     if (!visited_test_set(n)) {
  1720       // forward arc in graph
  1721     } else if (!post_visited_test(n)) {
  1722       // cross or back arc
  1723       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1724         Node *use = n->fast_out(i);
  1725         if (in_bb(use) && !visited_test(use) &&
  1726             // Don't go around backedge
  1727             (!use->is_Phi() || n == entry)) {
  1728           _stk.push(use);
  1731       if (_stk.length() == size) {
  1732         // There were no additional uses, post visit node now
  1733         _stk.pop(); // Remove node from stack
  1734         assert(rpo_idx >= 0, "");
  1735         _block.at_put_grow(rpo_idx, n);
  1736         rpo_idx--;
  1737         post_visited_set(n);
  1738         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1740     } else {
  1741       _stk.pop(); // Remove post-visited node from stack
  1745   // Create real map of block indices for nodes
  1746   for (int j = 0; j < _block.length(); j++) {
  1747     Node* n = _block.at(j);
  1748     set_bb_idx(n, j);
  1751   initialize_bb(); // Ensure extra info is allocated.
  1753 #ifndef PRODUCT
  1754   if (TraceSuperWord) {
  1755     print_bb();
  1756     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1757     for (int m = 0; m < _data_entry.length(); m++) {
  1758       tty->print("%3d ", m);
  1759       _data_entry.at(m)->dump();
  1761     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1762     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1763       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1764       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1767 #endif
  1768   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1769   return (_mem_slice_head.length() > 0) || (_data_entry.length() > 0);
  1772 //------------------------------initialize_bb---------------------------
  1773 // Initialize per node info
  1774 void SuperWord::initialize_bb() {
  1775   Node* last = _block.at(_block.length() - 1);
  1776   grow_node_info(bb_idx(last));
  1779 //------------------------------bb_insert_after---------------------------
  1780 // Insert n into block after pos
  1781 void SuperWord::bb_insert_after(Node* n, int pos) {
  1782   int n_pos = pos + 1;
  1783   // Make room
  1784   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1785     _block.at_put_grow(i+1, _block.at(i));
  1787   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1788     _node_info.at_put_grow(j+1, _node_info.at(j));
  1790   // Set value
  1791   _block.at_put_grow(n_pos, n);
  1792   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1793   // Adjust map from node->_idx to _block index
  1794   for (int i = n_pos; i < _block.length(); i++) {
  1795     set_bb_idx(_block.at(i), i);
  1799 //------------------------------compute_max_depth---------------------------
  1800 // Compute max depth for expressions from beginning of block
  1801 // Use to prune search paths during test for independence.
  1802 void SuperWord::compute_max_depth() {
  1803   int ct = 0;
  1804   bool again;
  1805   do {
  1806     again = false;
  1807     for (int i = 0; i < _block.length(); i++) {
  1808       Node* n = _block.at(i);
  1809       if (!n->is_Phi()) {
  1810         int d_orig = depth(n);
  1811         int d_in   = 0;
  1812         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1813           Node* pred = preds.current();
  1814           if (in_bb(pred)) {
  1815             d_in = MAX2(d_in, depth(pred));
  1818         if (d_in + 1 != d_orig) {
  1819           set_depth(n, d_in + 1);
  1820           again = true;
  1824     ct++;
  1825   } while (again);
  1826 #ifndef PRODUCT
  1827   if (TraceSuperWord && Verbose)
  1828     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1829 #endif
  1832 //-------------------------compute_vector_element_type-----------------------
  1833 // Compute necessary vector element type for expressions
  1834 // This propagates backwards a narrower integer type when the
  1835 // upper bits of the value are not needed.
  1836 // Example:  char a,b,c;  a = b + c;
  1837 // Normally the type of the add is integer, but for packed character
  1838 // operations the type of the add needs to be char.
  1839 void SuperWord::compute_vector_element_type() {
  1840 #ifndef PRODUCT
  1841   if (TraceSuperWord && Verbose)
  1842     tty->print_cr("\ncompute_velt_type:");
  1843 #endif
  1845   // Initial type
  1846   for (int i = 0; i < _block.length(); i++) {
  1847     Node* n = _block.at(i);
  1848     set_velt_type(n, container_type(n));
  1851   // Propagate integer narrowed type backwards through operations
  1852   // that don't depend on higher order bits
  1853   for (int i = _block.length() - 1; i >= 0; i--) {
  1854     Node* n = _block.at(i);
  1855     // Only integer types need be examined
  1856     const Type* vtn = velt_type(n);
  1857     if (vtn->basic_type() == T_INT) {
  1858       uint start, end;
  1859       VectorNode::vector_operands(n, &start, &end);
  1861       for (uint j = start; j < end; j++) {
  1862         Node* in  = n->in(j);
  1863         // Don't propagate through a memory
  1864         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
  1865             data_size(n) < data_size(in)) {
  1866           bool same_type = true;
  1867           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1868             Node *use = in->fast_out(k);
  1869             if (!in_bb(use) || !same_velt_type(use, n)) {
  1870               same_type = false;
  1871               break;
  1874           if (same_type) {
  1875             // For right shifts of small integer types (bool, byte, char, short)
  1876             // we need precise information about sign-ness. Only Load nodes have
  1877             // this information because Store nodes are the same for signed and
  1878             // unsigned values. And any arithmetic operation after a load may
  1879             // expand a value to signed Int so such right shifts can't be used
  1880             // because vector elements do not have upper bits of Int.
  1881             const Type* vt = vtn;
  1882             if (VectorNode::is_shift(in)) {
  1883               Node* load = in->in(1);
  1884               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
  1885                 vt = velt_type(load);
  1886               } else if (in->Opcode() != Op_LShiftI) {
  1887                 // Widen type to Int to avoid creation of right shift vector
  1888                 // (align + data_size(s1) check in stmts_can_pack() will fail).
  1889                 // Note, left shifts work regardless type.
  1890                 vt = TypeInt::INT;
  1893             set_velt_type(in, vt);
  1899 #ifndef PRODUCT
  1900   if (TraceSuperWord && Verbose) {
  1901     for (int i = 0; i < _block.length(); i++) {
  1902       Node* n = _block.at(i);
  1903       velt_type(n)->dump();
  1904       tty->print("\t");
  1905       n->dump();
  1908 #endif
  1911 //------------------------------memory_alignment---------------------------
  1912 // Alignment within a vector memory reference
  1913 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
  1914   SWPointer p(s, this);
  1915   if (!p.valid()) {
  1916     return bottom_align;
  1918   int vw = vector_width_in_bytes(s);
  1919   if (vw < 2) {
  1920     return bottom_align; // No vectors for this type
  1922   int offset  = p.offset_in_bytes();
  1923   offset     += iv_adjust*p.memory_size();
  1924   int off_rem = offset % vw;
  1925   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
  1926   return off_mod;
  1929 //---------------------------container_type---------------------------
  1930 // Smallest type containing range of values
  1931 const Type* SuperWord::container_type(Node* n) {
  1932   if (n->is_Mem()) {
  1933     BasicType bt = n->as_Mem()->memory_type();
  1934     if (n->is_Store() && (bt == T_CHAR)) {
  1935       // Use T_SHORT type instead of T_CHAR for stored values because any
  1936       // preceding arithmetic operation extends values to signed Int.
  1937       bt = T_SHORT;
  1939     if (n->Opcode() == Op_LoadUB) {
  1940       // Adjust type for unsigned byte loads, it is important for right shifts.
  1941       // T_BOOLEAN is used because there is no basic type representing type
  1942       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
  1943       // size (one byte) and sign is important.
  1944       bt = T_BOOLEAN;
  1946     return Type::get_const_basic_type(bt);
  1948   const Type* t = _igvn.type(n);
  1949   if (t->basic_type() == T_INT) {
  1950     // A narrow type of arithmetic operations will be determined by
  1951     // propagating the type of memory operations.
  1952     return TypeInt::INT;
  1954   return t;
  1957 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
  1958   const Type* vt1 = velt_type(n1);
  1959   const Type* vt2 = velt_type(n2);
  1960   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
  1961     // Compare vectors element sizes for integer types.
  1962     return data_size(n1) == data_size(n2);
  1964   return vt1 == vt2;
  1967 //------------------------------in_packset---------------------------
  1968 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1969 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1970   for (int i = 0; i < _packset.length(); i++) {
  1971     Node_List* p = _packset.at(i);
  1972     assert(p->size() == 2, "must be");
  1973     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1974       return true;
  1977   return false;
  1980 //------------------------------in_pack---------------------------
  1981 // Is s in pack p?
  1982 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1983   for (uint i = 0; i < p->size(); i++) {
  1984     if (p->at(i) == s) {
  1985       return p;
  1988   return NULL;
  1991 //------------------------------remove_pack_at---------------------------
  1992 // Remove the pack at position pos in the packset
  1993 void SuperWord::remove_pack_at(int pos) {
  1994   Node_List* p = _packset.at(pos);
  1995   for (uint i = 0; i < p->size(); i++) {
  1996     Node* s = p->at(i);
  1997     set_my_pack(s, NULL);
  1999   _packset.remove_at(pos);
  2002 //------------------------------executed_first---------------------------
  2003 // Return the node executed first in pack p.  Uses the RPO block list
  2004 // to determine order.
  2005 Node* SuperWord::executed_first(Node_List* p) {
  2006   Node* n = p->at(0);
  2007   int n_rpo = bb_idx(n);
  2008   for (uint i = 1; i < p->size(); i++) {
  2009     Node* s = p->at(i);
  2010     int s_rpo = bb_idx(s);
  2011     if (s_rpo < n_rpo) {
  2012       n = s;
  2013       n_rpo = s_rpo;
  2016   return n;
  2019 //------------------------------executed_last---------------------------
  2020 // Return the node executed last in pack p.
  2021 Node* SuperWord::executed_last(Node_List* p) {
  2022   Node* n = p->at(0);
  2023   int n_rpo = bb_idx(n);
  2024   for (uint i = 1; i < p->size(); i++) {
  2025     Node* s = p->at(i);
  2026     int s_rpo = bb_idx(s);
  2027     if (s_rpo > n_rpo) {
  2028       n = s;
  2029       n_rpo = s_rpo;
  2032   return n;
  2035 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
  2036   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
  2037   for (uint i = 0; i < p->size(); i++) {
  2038     Node* n = p->at(i);
  2039     assert(n->is_Load(), "only meaningful for loads");
  2040     if (!n->depends_only_on_test()) {
  2041       dep = LoadNode::Pinned;
  2044   return dep;
  2048 //----------------------------align_initial_loop_index---------------------------
  2049 // Adjust pre-loop limit so that in main loop, a load/store reference
  2050 // to align_to_ref will be a position zero in the vector.
  2051 //   (iv + k) mod vector_align == 0
  2052 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  2053   CountedLoopNode *main_head = lp()->as_CountedLoop();
  2054   assert(main_head->is_main_loop(), "");
  2055   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  2056   assert(pre_end != NULL, "we must have a correct pre-loop");
  2057   Node *pre_opaq1 = pre_end->limit();
  2058   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  2059   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  2060   Node *lim0 = pre_opaq->in(1);
  2062   // Where we put new limit calculations
  2063   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  2065   // Ensure the original loop limit is available from the
  2066   // pre-loop Opaque1 node.
  2067   Node *orig_limit = pre_opaq->original_loop_limit();
  2068   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  2070   SWPointer align_to_ref_p(align_to_ref, this);
  2071   assert(align_to_ref_p.valid(), "sanity");
  2073   // Given:
  2074   //     lim0 == original pre loop limit
  2075   //     V == v_align (power of 2)
  2076   //     invar == extra invariant piece of the address expression
  2077   //     e == offset [ +/- invar ]
  2078   //
  2079   // When reassociating expressions involving '%' the basic rules are:
  2080   //     (a - b) % k == 0   =>  a % k == b % k
  2081   // and:
  2082   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  2083   //
  2084   // For stride > 0 && scale > 0,
  2085   //   Derive the new pre-loop limit "lim" such that the two constraints:
  2086   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  2087   //     (2) (e + lim) % V == 0
  2088   //   are true.
  2089   //
  2090   //   Substituting (1) into (2),
  2091   //     (e + lim0 + N) % V == 0
  2092   //   solve for N:
  2093   //     N = (V - (e + lim0)) % V
  2094   //   substitute back into (1), so that new limit
  2095   //     lim = lim0 + (V - (e + lim0)) % V
  2096   //
  2097   // For stride > 0 && scale < 0
  2098   //   Constraints:
  2099   //     lim = lim0 + N
  2100   //     (e - lim) % V == 0
  2101   //   Solving for lim:
  2102   //     (e - lim0 - N) % V == 0
  2103   //     N = (e - lim0) % V
  2104   //     lim = lim0 + (e - lim0) % V
  2105   //
  2106   // For stride < 0 && scale > 0
  2107   //   Constraints:
  2108   //     lim = lim0 - N
  2109   //     (e + lim) % V == 0
  2110   //   Solving for lim:
  2111   //     (e + lim0 - N) % V == 0
  2112   //     N = (e + lim0) % V
  2113   //     lim = lim0 - (e + lim0) % V
  2114   //
  2115   // For stride < 0 && scale < 0
  2116   //   Constraints:
  2117   //     lim = lim0 - N
  2118   //     (e - lim) % V == 0
  2119   //   Solving for lim:
  2120   //     (e - lim0 + N) % V == 0
  2121   //     N = (V - (e - lim0)) % V
  2122   //     lim = lim0 - (V - (e - lim0)) % V
  2124   int vw = vector_width_in_bytes(align_to_ref);
  2125   int stride   = iv_stride();
  2126   int scale    = align_to_ref_p.scale_in_bytes();
  2127   int elt_size = align_to_ref_p.memory_size();
  2128   int v_align  = vw / elt_size;
  2129   assert(v_align > 1, "sanity");
  2130   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
  2131   Node *offsn  = _igvn.intcon(offset);
  2133   Node *e = offsn;
  2134   if (align_to_ref_p.invar() != NULL) {
  2135     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
  2136     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  2137     Node* aref     = new (_phase->C) URShiftINode(align_to_ref_p.invar(), log2_elt);
  2138     _igvn.register_new_node_with_optimizer(aref);
  2139     _phase->set_ctrl(aref, pre_ctrl);
  2140     if (align_to_ref_p.negate_invar()) {
  2141       e = new (_phase->C) SubINode(e, aref);
  2142     } else {
  2143       e = new (_phase->C) AddINode(e, aref);
  2145     _igvn.register_new_node_with_optimizer(e);
  2146     _phase->set_ctrl(e, pre_ctrl);
  2148   if (vw > ObjectAlignmentInBytes) {
  2149     // incorporate base e +/- base && Mask >>> log2(elt)
  2150     Node* xbase = new(_phase->C) CastP2XNode(NULL, align_to_ref_p.base());
  2151     _igvn.register_new_node_with_optimizer(xbase);
  2152 #ifdef _LP64
  2153     xbase  = new (_phase->C) ConvL2INode(xbase);
  2154     _igvn.register_new_node_with_optimizer(xbase);
  2155 #endif
  2156     Node* mask = _igvn.intcon(vw-1);
  2157     Node* masked_xbase  = new (_phase->C) AndINode(xbase, mask);
  2158     _igvn.register_new_node_with_optimizer(masked_xbase);
  2159     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  2160     Node* bref     = new (_phase->C) URShiftINode(masked_xbase, log2_elt);
  2161     _igvn.register_new_node_with_optimizer(bref);
  2162     _phase->set_ctrl(bref, pre_ctrl);
  2163     e = new (_phase->C) AddINode(e, bref);
  2164     _igvn.register_new_node_with_optimizer(e);
  2165     _phase->set_ctrl(e, pre_ctrl);
  2168   // compute e +/- lim0
  2169   if (scale < 0) {
  2170     e = new (_phase->C) SubINode(e, lim0);
  2171   } else {
  2172     e = new (_phase->C) AddINode(e, lim0);
  2174   _igvn.register_new_node_with_optimizer(e);
  2175   _phase->set_ctrl(e, pre_ctrl);
  2177   if (stride * scale > 0) {
  2178     // compute V - (e +/- lim0)
  2179     Node* va  = _igvn.intcon(v_align);
  2180     e = new (_phase->C) SubINode(va, e);
  2181     _igvn.register_new_node_with_optimizer(e);
  2182     _phase->set_ctrl(e, pre_ctrl);
  2184   // compute N = (exp) % V
  2185   Node* va_msk = _igvn.intcon(v_align - 1);
  2186   Node* N = new (_phase->C) AndINode(e, va_msk);
  2187   _igvn.register_new_node_with_optimizer(N);
  2188   _phase->set_ctrl(N, pre_ctrl);
  2190   //   substitute back into (1), so that new limit
  2191   //     lim = lim0 + N
  2192   Node* lim;
  2193   if (stride < 0) {
  2194     lim = new (_phase->C) SubINode(lim0, N);
  2195   } else {
  2196     lim = new (_phase->C) AddINode(lim0, N);
  2198   _igvn.register_new_node_with_optimizer(lim);
  2199   _phase->set_ctrl(lim, pre_ctrl);
  2200   Node* constrained =
  2201     (stride > 0) ? (Node*) new (_phase->C) MinINode(lim, orig_limit)
  2202                  : (Node*) new (_phase->C) MaxINode(lim, orig_limit);
  2203   _igvn.register_new_node_with_optimizer(constrained);
  2204   _phase->set_ctrl(constrained, pre_ctrl);
  2205   _igvn.hash_delete(pre_opaq);
  2206   pre_opaq->set_req(1, constrained);
  2209 //----------------------------get_pre_loop_end---------------------------
  2210 // Find pre loop end from main loop.  Returns null if none.
  2211 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
  2212   // The loop cannot be optimized if the graph shape at
  2213   // the loop entry is inappropriate.
  2214   if (!PhaseIdealLoop::is_canonical_main_loop_entry(cl)) {
  2215     return NULL;
  2218   Node* p_f = cl->in(LoopNode::EntryControl)->in(0)->in(0);
  2219   if (!p_f->is_IfFalse()) return NULL;
  2220   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  2221   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
  2222   CountedLoopNode* loop_node = pre_end->loopnode();
  2223   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
  2224   return pre_end;
  2228 //------------------------------init---------------------------
  2229 void SuperWord::init() {
  2230   _dg.init();
  2231   _packset.clear();
  2232   _disjoint_ptrs.clear();
  2233   _block.clear();
  2234   _data_entry.clear();
  2235   _mem_slice_head.clear();
  2236   _mem_slice_tail.clear();
  2237   _node_info.clear();
  2238   _align_to_ref = NULL;
  2239   _lpt = NULL;
  2240   _lp = NULL;
  2241   _bb = NULL;
  2242   _iv = NULL;
  2245 //------------------------------print_packset---------------------------
  2246 void SuperWord::print_packset() {
  2247 #ifndef PRODUCT
  2248   tty->print_cr("packset");
  2249   for (int i = 0; i < _packset.length(); i++) {
  2250     tty->print_cr("Pack: %d", i);
  2251     Node_List* p = _packset.at(i);
  2252     print_pack(p);
  2254 #endif
  2257 //------------------------------print_pack---------------------------
  2258 void SuperWord::print_pack(Node_List* p) {
  2259   for (uint i = 0; i < p->size(); i++) {
  2260     print_stmt(p->at(i));
  2264 //------------------------------print_bb---------------------------
  2265 void SuperWord::print_bb() {
  2266 #ifndef PRODUCT
  2267   tty->print_cr("\nBlock");
  2268   for (int i = 0; i < _block.length(); i++) {
  2269     Node* n = _block.at(i);
  2270     tty->print("%d ", i);
  2271     if (n) {
  2272       n->dump();
  2275 #endif
  2278 //------------------------------print_stmt---------------------------
  2279 void SuperWord::print_stmt(Node* s) {
  2280 #ifndef PRODUCT
  2281   tty->print(" align: %d \t", alignment(s));
  2282   s->dump();
  2283 #endif
  2286 //------------------------------blank---------------------------
  2287 char* SuperWord::blank(uint depth) {
  2288   static char blanks[101];
  2289   assert(depth < 101, "too deep");
  2290   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  2291   blanks[depth] = '\0';
  2292   return blanks;
  2296 //==============================SWPointer===========================
  2298 //----------------------------SWPointer------------------------
  2299 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  2300   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  2301   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  2303   Node* adr = mem->in(MemNode::Address);
  2304   if (!adr->is_AddP()) {
  2305     assert(!valid(), "too complex");
  2306     return;
  2308   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  2309   Node* base = adr->in(AddPNode::Base);
  2310   // The base address should be loop invariant
  2311   if (!invariant(base)) {
  2312     assert(!valid(), "base address is loop variant");
  2313     return;
  2315   //unsafe reference could not be aligned appropriately without runtime checking
  2316   if (base == NULL || base->bottom_type() == Type::TOP) {
  2317     assert(!valid(), "unsafe access");
  2318     return;
  2320   for (int i = 0; i < 3; i++) {
  2321     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  2322       assert(!valid(), "too complex");
  2323       return;
  2325     adr = adr->in(AddPNode::Address);
  2326     if (base == adr || !adr->is_AddP()) {
  2327       break; // stop looking at addp's
  2330   _base = base;
  2331   _adr  = adr;
  2332   assert(valid(), "Usable");
  2335 // Following is used to create a temporary object during
  2336 // the pattern match of an address expression.
  2337 SWPointer::SWPointer(SWPointer* p) :
  2338   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  2339   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  2341 //------------------------scaled_iv_plus_offset--------------------
  2342 // Match: k*iv + offset
  2343 // where: k is a constant that maybe zero, and
  2344 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  2345 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  2346   if (scaled_iv(n)) {
  2347     return true;
  2349   if (offset_plus_k(n)) {
  2350     return true;
  2352   int opc = n->Opcode();
  2353   if (opc == Op_AddI) {
  2354     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  2355       return true;
  2357     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2358       return true;
  2360   } else if (opc == Op_SubI) {
  2361     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  2362       return true;
  2364     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2365       _scale *= -1;
  2366       return true;
  2369   return false;
  2372 //----------------------------scaled_iv------------------------
  2373 // Match: k*iv where k is a constant that's not zero
  2374 bool SWPointer::scaled_iv(Node* n) {
  2375   if (_scale != 0) {
  2376     return false;  // already found a scale
  2378   if (n == iv()) {
  2379     _scale = 1;
  2380     return true;
  2382   int opc = n->Opcode();
  2383   if (opc == Op_MulI) {
  2384     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2385       _scale = n->in(2)->get_int();
  2386       return true;
  2387     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  2388       _scale = n->in(1)->get_int();
  2389       return true;
  2391   } else if (opc == Op_LShiftI) {
  2392     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2393       _scale = 1 << n->in(2)->get_int();
  2394       return true;
  2396   } else if (opc == Op_ConvI2L) {
  2397     if (n->in(1)->Opcode() == Op_CastII &&
  2398         n->in(1)->as_CastII()->has_range_check()) {
  2399       // Skip range check dependent CastII nodes
  2400       n = n->in(1);
  2402     if (scaled_iv_plus_offset(n->in(1))) {
  2403       return true;
  2405   } else if (opc == Op_LShiftL) {
  2406     if (!has_iv() && _invar == NULL) {
  2407       // Need to preserve the current _offset value, so
  2408       // create a temporary object for this expression subtree.
  2409       // Hacky, so should re-engineer the address pattern match.
  2410       SWPointer tmp(this);
  2411       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2412         if (tmp._invar == NULL) {
  2413           int mult = 1 << n->in(2)->get_int();
  2414           _scale   = tmp._scale  * mult;
  2415           _offset += tmp._offset * mult;
  2416           return true;
  2421   return false;
  2424 //----------------------------offset_plus_k------------------------
  2425 // Match: offset is (k [+/- invariant])
  2426 // where k maybe zero and invariant is optional, but not both.
  2427 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2428   int opc = n->Opcode();
  2429   if (opc == Op_ConI) {
  2430     _offset += negate ? -(n->get_int()) : n->get_int();
  2431     return true;
  2432   } else if (opc == Op_ConL) {
  2433     // Okay if value fits into an int
  2434     const TypeLong* t = n->find_long_type();
  2435     if (t->higher_equal(TypeLong::INT)) {
  2436       jlong loff = n->get_long();
  2437       jint  off  = (jint)loff;
  2438       _offset += negate ? -off : loff;
  2439       return true;
  2441     return false;
  2443   if (_invar != NULL) return false; // already have an invariant
  2444   if (opc == Op_AddI) {
  2445     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2446       _negate_invar = negate;
  2447       _invar = n->in(1);
  2448       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2449       return true;
  2450     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2451       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2452       _negate_invar = negate;
  2453       _invar = n->in(2);
  2454       return true;
  2457   if (opc == Op_SubI) {
  2458     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2459       _negate_invar = negate;
  2460       _invar = n->in(1);
  2461       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2462       return true;
  2463     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2464       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2465       _negate_invar = !negate;
  2466       _invar = n->in(2);
  2467       return true;
  2470   if (invariant(n)) {
  2471     _negate_invar = negate;
  2472     _invar = n;
  2473     return true;
  2475   return false;
  2478 //----------------------------print------------------------
  2479 void SWPointer::print() {
  2480 #ifndef PRODUCT
  2481   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2482              _base != NULL ? _base->_idx : 0,
  2483              _adr  != NULL ? _adr->_idx  : 0,
  2484              _scale, _offset,
  2485              _negate_invar?'-':'+',
  2486              _invar != NULL ? _invar->_idx : 0);
  2487 #endif
  2490 // ========================= OrderedPair =====================
  2492 const OrderedPair OrderedPair::initial;
  2494 // ========================= SWNodeInfo =====================
  2496 const SWNodeInfo SWNodeInfo::initial;
  2499 // ============================ DepGraph ===========================
  2501 //------------------------------make_node---------------------------
  2502 // Make a new dependence graph node for an ideal node.
  2503 DepMem* DepGraph::make_node(Node* node) {
  2504   DepMem* m = new (_arena) DepMem(node);
  2505   if (node != NULL) {
  2506     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2507     _map.at_put_grow(node->_idx, m);
  2509   return m;
  2512 //------------------------------make_edge---------------------------
  2513 // Make a new dependence graph edge from dpred -> dsucc
  2514 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2515   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2516   dpred->set_out_head(e);
  2517   dsucc->set_in_head(e);
  2518   return e;
  2521 // ========================== DepMem ========================
  2523 //------------------------------in_cnt---------------------------
  2524 int DepMem::in_cnt() {
  2525   int ct = 0;
  2526   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2527   return ct;
  2530 //------------------------------out_cnt---------------------------
  2531 int DepMem::out_cnt() {
  2532   int ct = 0;
  2533   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2534   return ct;
  2537 //------------------------------print-----------------------------
  2538 void DepMem::print() {
  2539 #ifndef PRODUCT
  2540   tty->print("  DepNode %d (", _node->_idx);
  2541   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2542     Node* pred = p->pred()->node();
  2543     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2545   tty->print(") [");
  2546   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2547     Node* succ = s->succ()->node();
  2548     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2550   tty->print_cr(" ]");
  2551 #endif
  2554 // =========================== DepEdge =========================
  2556 //------------------------------DepPreds---------------------------
  2557 void DepEdge::print() {
  2558 #ifndef PRODUCT
  2559   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2560 #endif
  2563 // =========================== DepPreds =========================
  2564 // Iterator over predecessor edges in the dependence graph.
  2566 //------------------------------DepPreds---------------------------
  2567 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2568   _n = n;
  2569   _done = false;
  2570   if (_n->is_Store() || _n->is_Load()) {
  2571     _next_idx = MemNode::Address;
  2572     _end_idx  = n->req();
  2573     _dep_next = dg.dep(_n)->in_head();
  2574   } else if (_n->is_Mem()) {
  2575     _next_idx = 0;
  2576     _end_idx  = 0;
  2577     _dep_next = dg.dep(_n)->in_head();
  2578   } else {
  2579     _next_idx = 1;
  2580     _end_idx  = _n->req();
  2581     _dep_next = NULL;
  2583   next();
  2586 //------------------------------next---------------------------
  2587 void DepPreds::next() {
  2588   if (_dep_next != NULL) {
  2589     _current  = _dep_next->pred()->node();
  2590     _dep_next = _dep_next->next_in();
  2591   } else if (_next_idx < _end_idx) {
  2592     _current  = _n->in(_next_idx++);
  2593   } else {
  2594     _done = true;
  2598 // =========================== DepSuccs =========================
  2599 // Iterator over successor edges in the dependence graph.
  2601 //------------------------------DepSuccs---------------------------
  2602 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2603   _n = n;
  2604   _done = false;
  2605   if (_n->is_Load()) {
  2606     _next_idx = 0;
  2607     _end_idx  = _n->outcnt();
  2608     _dep_next = dg.dep(_n)->out_head();
  2609   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2610     _next_idx = 0;
  2611     _end_idx  = 0;
  2612     _dep_next = dg.dep(_n)->out_head();
  2613   } else {
  2614     _next_idx = 0;
  2615     _end_idx  = _n->outcnt();
  2616     _dep_next = NULL;
  2618   next();
  2621 //-------------------------------next---------------------------
  2622 void DepSuccs::next() {
  2623   if (_dep_next != NULL) {
  2624     _current  = _dep_next->succ()->node();
  2625     _dep_next = _dep_next->next_out();
  2626   } else if (_next_idx < _end_idx) {
  2627     _current  = _n->raw_out(_next_idx++);
  2628   } else {
  2629     _done = true;

mercurial