src/share/vm/opto/superword.cpp

Tue, 23 Oct 2012 13:06:37 -0700

author
kvn
date
Tue, 23 Oct 2012 13:06:37 -0700
changeset 4204
b2c669fd8114
parent 4160
f6badecb7ea7
child 4207
410afdc6a07c
permissions
-rw-r--r--

8001183: incorrect results of char vectors right shift operaiton
Summary: do vector right shift operation for small int types only after loads
Reviewed-by: jrose, dlong

duke@435 1 /*
kvn@3882 2 * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #include "precompiled.hpp"
stefank@2314 25 #include "compiler/compileLog.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/divnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/opcodes.hpp"
stefank@2314 35 #include "opto/superword.hpp"
stefank@2314 36 #include "opto/vectornode.hpp"
duke@435 37
duke@435 38 //
duke@435 39 // S U P E R W O R D T R A N S F O R M
duke@435 40 //=============================================================================
duke@435 41
duke@435 42 //------------------------------SuperWord---------------------------
duke@435 43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
duke@435 44 _phase(phase),
duke@435 45 _igvn(phase->_igvn),
duke@435 46 _arena(phase->C->comp_arena()),
duke@435 47 _packset(arena(), 8, 0, NULL), // packs for the current block
duke@435 48 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
duke@435 49 _block(arena(), 8, 0, NULL), // nodes in current block
duke@435 50 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
duke@435 51 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
duke@435 52 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
duke@435 53 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
duke@435 54 _align_to_ref(NULL), // memory reference to align vectors to
duke@435 55 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
duke@435 56 _dg(_arena), // dependence graph
duke@435 57 _visited(arena()), // visited node set
duke@435 58 _post_visited(arena()), // post visited node set
duke@435 59 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
duke@435 60 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
duke@435 61 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
duke@435 62 _lpt(NULL), // loop tree node
duke@435 63 _lp(NULL), // LoopNode
duke@435 64 _bb(NULL), // basic block
duke@435 65 _iv(NULL) // induction var
duke@435 66 {}
duke@435 67
duke@435 68 //------------------------------transform_loop---------------------------
duke@435 69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
kvn@3882 70 assert(UseSuperWord, "should be");
kvn@3882 71 // Do vectors exist on this architecture?
kvn@3882 72 if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
kvn@3882 73
duke@435 74 assert(lpt->_head->is_CountedLoop(), "must be");
duke@435 75 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
duke@435 76
kvn@3048 77 if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
kvn@3048 78
duke@435 79 if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
duke@435 80
duke@435 81 // Check for no control flow in body (other than exit)
duke@435 82 Node *cl_exit = cl->loopexit();
duke@435 83 if (cl_exit->in(0) != lpt->_head) return;
duke@435 84
never@540 85 // Make sure the are no extra control users of the loop backedge
never@540 86 if (cl->back_control()->outcnt() != 1) {
never@540 87 return;
never@540 88 }
never@540 89
duke@435 90 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
duke@435 91 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
duke@435 92 if (pre_end == NULL) return;
duke@435 93 Node *pre_opaq1 = pre_end->limit();
duke@435 94 if (pre_opaq1->Opcode() != Op_Opaque1) return;
duke@435 95
duke@435 96 init(); // initialize data structures
duke@435 97
duke@435 98 set_lpt(lpt);
duke@435 99 set_lp(cl);
duke@435 100
kvn@3882 101 // For now, define one block which is the entire loop body
duke@435 102 set_bb(cl);
duke@435 103
duke@435 104 assert(_packset.length() == 0, "packset must be empty");
duke@435 105 SLP_extract();
duke@435 106 }
duke@435 107
duke@435 108 //------------------------------SLP_extract---------------------------
duke@435 109 // Extract the superword level parallelism
duke@435 110 //
duke@435 111 // 1) A reverse post-order of nodes in the block is constructed. By scanning
duke@435 112 // this list from first to last, all definitions are visited before their uses.
duke@435 113 //
duke@435 114 // 2) A point-to-point dependence graph is constructed between memory references.
duke@435 115 // This simplies the upcoming "independence" checker.
duke@435 116 //
duke@435 117 // 3) The maximum depth in the node graph from the beginning of the block
duke@435 118 // to each node is computed. This is used to prune the graph search
duke@435 119 // in the independence checker.
duke@435 120 //
duke@435 121 // 4) For integer types, the necessary bit width is propagated backwards
duke@435 122 // from stores to allow packed operations on byte, char, and short
duke@435 123 // integers. This reverses the promotion to type "int" that javac
duke@435 124 // did for operations like: char c1,c2,c3; c1 = c2 + c3.
duke@435 125 //
duke@435 126 // 5) One of the memory references is picked to be an aligned vector reference.
duke@435 127 // The pre-loop trip count is adjusted to align this reference in the
duke@435 128 // unrolled body.
duke@435 129 //
duke@435 130 // 6) The initial set of pack pairs is seeded with memory references.
duke@435 131 //
duke@435 132 // 7) The set of pack pairs is extended by following use->def and def->use links.
duke@435 133 //
duke@435 134 // 8) The pairs are combined into vector sized packs.
duke@435 135 //
duke@435 136 // 9) Reorder the memory slices to co-locate members of the memory packs.
duke@435 137 //
duke@435 138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
duke@435 139 // inserting scalar promotion, vector creation from multiple scalars, and
duke@435 140 // extraction of scalar values from vectors.
duke@435 141 //
duke@435 142 void SuperWord::SLP_extract() {
duke@435 143
duke@435 144 // Ready the block
duke@435 145
duke@435 146 construct_bb();
duke@435 147
duke@435 148 dependence_graph();
duke@435 149
duke@435 150 compute_max_depth();
duke@435 151
duke@435 152 compute_vector_element_type();
duke@435 153
duke@435 154 // Attempt vectorization
duke@435 155
duke@435 156 find_adjacent_refs();
duke@435 157
duke@435 158 extend_packlist();
duke@435 159
duke@435 160 combine_packs();
duke@435 161
duke@435 162 construct_my_pack_map();
duke@435 163
duke@435 164 filter_packs();
duke@435 165
duke@435 166 schedule();
duke@435 167
duke@435 168 output();
duke@435 169 }
duke@435 170
duke@435 171 //------------------------------find_adjacent_refs---------------------------
duke@435 172 // Find the adjacent memory references and create pack pairs for them.
duke@435 173 // This is the initial set of packs that will then be extended by
duke@435 174 // following use->def and def->use links. The align positions are
duke@435 175 // assigned relative to the reference "align_to_ref"
duke@435 176 void SuperWord::find_adjacent_refs() {
duke@435 177 // Get list of memory operations
duke@435 178 Node_List memops;
duke@435 179 for (int i = 0; i < _block.length(); i++) {
duke@435 180 Node* n = _block.at(i);
kvn@3882 181 if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
kvn@464 182 is_java_primitive(n->as_Mem()->memory_type())) {
duke@435 183 int align = memory_alignment(n->as_Mem(), 0);
duke@435 184 if (align != bottom_align) {
duke@435 185 memops.push(n);
duke@435 186 }
duke@435 187 }
duke@435 188 }
duke@435 189
kvn@3882 190 Node_List align_to_refs;
kvn@3882 191 int best_iv_adjustment = 0;
kvn@3882 192 MemNode* best_align_to_mem_ref = NULL;
duke@435 193
kvn@3882 194 while (memops.size() != 0) {
kvn@3882 195 // Find a memory reference to align to.
kvn@3882 196 MemNode* mem_ref = find_align_to_ref(memops);
kvn@3882 197 if (mem_ref == NULL) break;
kvn@3882 198 align_to_refs.push(mem_ref);
kvn@3882 199 int iv_adjustment = get_iv_adjustment(mem_ref);
duke@435 200
kvn@3882 201 if (best_align_to_mem_ref == NULL) {
kvn@3882 202 // Set memory reference which is the best from all memory operations
kvn@3882 203 // to be used for alignment. The pre-loop trip count is modified to align
kvn@3882 204 // this reference to a vector-aligned address.
kvn@3882 205 best_align_to_mem_ref = mem_ref;
kvn@3882 206 best_iv_adjustment = iv_adjustment;
kvn@3882 207 }
duke@435 208
kvn@3882 209 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 210 // Set alignment relative to "align_to_ref" for all related memory operations.
kvn@3882 211 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 212 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 213 if (isomorphic(s, mem_ref)) {
kvn@3882 214 SWPointer p2(s, this);
kvn@3882 215 if (p2.comparable(align_to_ref_p)) {
kvn@3882 216 int align = memory_alignment(s, iv_adjustment);
kvn@3882 217 set_alignment(s, align);
duke@435 218 }
duke@435 219 }
duke@435 220 }
kvn@3882 221
kvn@3882 222 // Create initial pack pairs of memory operations for which
kvn@3882 223 // alignment is set and vectors will be aligned.
kvn@3882 224 bool create_pack = true;
kvn@3886 225 if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
kvn@3886 226 if (!Matcher::misaligned_vectors_ok()) {
kvn@3886 227 int vw = vector_width(mem_ref);
kvn@3886 228 int vw_best = vector_width(best_align_to_mem_ref);
kvn@3886 229 if (vw > vw_best) {
kvn@3886 230 // Do not vectorize a memory access with more elements per vector
kvn@3886 231 // if unaligned memory access is not allowed because number of
kvn@3886 232 // iterations in pre-loop will be not enough to align it.
kvn@3886 233 create_pack = false;
kvn@3886 234 }
kvn@3886 235 }
kvn@3886 236 } else {
kvn@3882 237 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 238 // Can't allow vectorization of unaligned memory accesses with the
kvn@3882 239 // same type since it could be overlapped accesses to the same array.
kvn@3882 240 create_pack = false;
kvn@3882 241 } else {
kvn@3882 242 // Allow independent (different type) unaligned memory operations
kvn@3882 243 // if HW supports them.
kvn@3882 244 if (!Matcher::misaligned_vectors_ok()) {
kvn@3882 245 create_pack = false;
kvn@3882 246 } else {
kvn@3882 247 // Check if packs of the same memory type but
kvn@3882 248 // with a different alignment were created before.
kvn@3882 249 for (uint i = 0; i < align_to_refs.size(); i++) {
kvn@3882 250 MemNode* mr = align_to_refs.at(i)->as_Mem();
kvn@3882 251 if (same_velt_type(mr, mem_ref) &&
kvn@3882 252 memory_alignment(mr, iv_adjustment) != 0)
kvn@3882 253 create_pack = false;
kvn@3882 254 }
kvn@3882 255 }
kvn@3882 256 }
kvn@3882 257 }
kvn@3882 258 if (create_pack) {
kvn@3882 259 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 260 Node* s1 = memops.at(i);
kvn@3882 261 int align = alignment(s1);
kvn@3882 262 if (align == top_align) continue;
kvn@3882 263 for (uint j = 0; j < memops.size(); j++) {
kvn@3882 264 Node* s2 = memops.at(j);
kvn@3882 265 if (alignment(s2) == top_align) continue;
kvn@3882 266 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
kvn@3882 267 if (stmts_can_pack(s1, s2, align)) {
kvn@3882 268 Node_List* pair = new Node_List();
kvn@3882 269 pair->push(s1);
kvn@3882 270 pair->push(s2);
kvn@3882 271 _packset.append(pair);
kvn@3882 272 }
kvn@3882 273 }
kvn@3882 274 }
kvn@3882 275 }
kvn@3882 276 } else { // Don't create unaligned pack
kvn@3882 277 // First, remove remaining memory ops of the same type from the list.
kvn@3882 278 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 279 MemNode* s = memops.at(i)->as_Mem();
kvn@3882 280 if (same_velt_type(s, mem_ref)) {
kvn@3882 281 memops.remove(i);
kvn@3882 282 }
kvn@3882 283 }
kvn@3882 284
kvn@3882 285 // Second, remove already constructed packs of the same type.
kvn@3882 286 for (int i = _packset.length() - 1; i >= 0; i--) {
kvn@3882 287 Node_List* p = _packset.at(i);
kvn@3882 288 MemNode* s = p->at(0)->as_Mem();
kvn@3882 289 if (same_velt_type(s, mem_ref)) {
kvn@3882 290 remove_pack_at(i);
kvn@3882 291 }
kvn@3882 292 }
kvn@3882 293
kvn@3882 294 // If needed find the best memory reference for loop alignment again.
kvn@3882 295 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
kvn@3882 296 // Put memory ops from remaining packs back on memops list for
kvn@3882 297 // the best alignment search.
kvn@3882 298 uint orig_msize = memops.size();
kvn@3882 299 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 300 Node_List* p = _packset.at(i);
kvn@3882 301 MemNode* s = p->at(0)->as_Mem();
kvn@3882 302 assert(!same_velt_type(s, mem_ref), "sanity");
kvn@3882 303 memops.push(s);
kvn@3882 304 }
kvn@3882 305 MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
kvn@3882 306 if (best_align_to_mem_ref == NULL) break;
kvn@3882 307 best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
kvn@3882 308 // Restore list.
kvn@3882 309 while (memops.size() > orig_msize)
kvn@3882 310 (void)memops.pop();
kvn@3882 311 }
kvn@3882 312 } // unaligned memory accesses
kvn@3882 313
kvn@3882 314 // Remove used mem nodes.
kvn@3882 315 for (int i = memops.size() - 1; i >= 0; i--) {
kvn@3882 316 MemNode* m = memops.at(i)->as_Mem();
kvn@3882 317 if (alignment(m) != top_align) {
kvn@3882 318 memops.remove(i);
kvn@3882 319 }
kvn@3882 320 }
kvn@3882 321
kvn@3882 322 } // while (memops.size() != 0
kvn@3882 323 set_align_to_ref(best_align_to_mem_ref);
duke@435 324
duke@435 325 #ifndef PRODUCT
duke@435 326 if (TraceSuperWord) {
duke@435 327 tty->print_cr("\nAfter find_adjacent_refs");
duke@435 328 print_packset();
duke@435 329 }
duke@435 330 #endif
duke@435 331 }
duke@435 332
duke@435 333 //------------------------------find_align_to_ref---------------------------
duke@435 334 // Find a memory reference to align the loop induction variable to.
duke@435 335 // Looks first at stores then at loads, looking for a memory reference
duke@435 336 // with the largest number of references similar to it.
kvn@3882 337 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
duke@435 338 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
duke@435 339
duke@435 340 // Count number of comparable memory ops
duke@435 341 for (uint i = 0; i < memops.size(); i++) {
duke@435 342 MemNode* s1 = memops.at(i)->as_Mem();
duke@435 343 SWPointer p1(s1, this);
duke@435 344 // Discard if pre loop can't align this reference
duke@435 345 if (!ref_is_alignable(p1)) {
duke@435 346 *cmp_ct.adr_at(i) = 0;
duke@435 347 continue;
duke@435 348 }
duke@435 349 for (uint j = i+1; j < memops.size(); j++) {
duke@435 350 MemNode* s2 = memops.at(j)->as_Mem();
duke@435 351 if (isomorphic(s1, s2)) {
duke@435 352 SWPointer p2(s2, this);
duke@435 353 if (p1.comparable(p2)) {
duke@435 354 (*cmp_ct.adr_at(i))++;
duke@435 355 (*cmp_ct.adr_at(j))++;
duke@435 356 }
duke@435 357 }
duke@435 358 }
duke@435 359 }
duke@435 360
kvn@3882 361 // Find Store (or Load) with the greatest number of "comparable" references,
kvn@3882 362 // biggest vector size, smallest data size and smallest iv offset.
duke@435 363 int max_ct = 0;
kvn@3882 364 int max_vw = 0;
duke@435 365 int max_idx = -1;
duke@435 366 int min_size = max_jint;
duke@435 367 int min_iv_offset = max_jint;
duke@435 368 for (uint j = 0; j < memops.size(); j++) {
duke@435 369 MemNode* s = memops.at(j)->as_Mem();
duke@435 370 if (s->is_Store()) {
kvn@3886 371 int vw = vector_width_in_bytes(s);
kvn@3882 372 assert(vw > 1, "sanity");
duke@435 373 SWPointer p(s, this);
kvn@3882 374 if (cmp_ct.at(j) > max_ct ||
kvn@3882 375 cmp_ct.at(j) == max_ct &&
kvn@3882 376 (vw > max_vw ||
kvn@3882 377 vw == max_vw &&
kvn@3882 378 (data_size(s) < min_size ||
kvn@3882 379 data_size(s) == min_size &&
kvn@3882 380 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 381 max_ct = cmp_ct.at(j);
kvn@3882 382 max_vw = vw;
duke@435 383 max_idx = j;
duke@435 384 min_size = data_size(s);
duke@435 385 min_iv_offset = p.offset_in_bytes();
duke@435 386 }
duke@435 387 }
duke@435 388 }
duke@435 389 // If no stores, look at loads
duke@435 390 if (max_ct == 0) {
duke@435 391 for (uint j = 0; j < memops.size(); j++) {
duke@435 392 MemNode* s = memops.at(j)->as_Mem();
duke@435 393 if (s->is_Load()) {
kvn@3886 394 int vw = vector_width_in_bytes(s);
kvn@3882 395 assert(vw > 1, "sanity");
duke@435 396 SWPointer p(s, this);
kvn@3882 397 if (cmp_ct.at(j) > max_ct ||
kvn@3882 398 cmp_ct.at(j) == max_ct &&
kvn@3882 399 (vw > max_vw ||
kvn@3882 400 vw == max_vw &&
kvn@3882 401 (data_size(s) < min_size ||
kvn@3882 402 data_size(s) == min_size &&
kvn@3882 403 (p.offset_in_bytes() < min_iv_offset)))) {
duke@435 404 max_ct = cmp_ct.at(j);
kvn@3882 405 max_vw = vw;
duke@435 406 max_idx = j;
duke@435 407 min_size = data_size(s);
duke@435 408 min_iv_offset = p.offset_in_bytes();
duke@435 409 }
duke@435 410 }
duke@435 411 }
duke@435 412 }
duke@435 413
kvn@3882 414 #ifdef ASSERT
duke@435 415 if (TraceSuperWord && Verbose) {
duke@435 416 tty->print_cr("\nVector memops after find_align_to_refs");
duke@435 417 for (uint i = 0; i < memops.size(); i++) {
duke@435 418 MemNode* s = memops.at(i)->as_Mem();
duke@435 419 s->dump();
duke@435 420 }
duke@435 421 }
duke@435 422 #endif
kvn@3882 423
kvn@3882 424 if (max_ct > 0) {
kvn@3882 425 #ifdef ASSERT
kvn@3882 426 if (TraceSuperWord) {
kvn@3882 427 tty->print("\nVector align to node: ");
kvn@3882 428 memops.at(max_idx)->as_Mem()->dump();
kvn@3882 429 }
kvn@3882 430 #endif
kvn@3882 431 return memops.at(max_idx)->as_Mem();
kvn@3882 432 }
kvn@3882 433 return NULL;
duke@435 434 }
duke@435 435
duke@435 436 //------------------------------ref_is_alignable---------------------------
duke@435 437 // Can the preloop align the reference to position zero in the vector?
duke@435 438 bool SuperWord::ref_is_alignable(SWPointer& p) {
duke@435 439 if (!p.has_iv()) {
duke@435 440 return true; // no induction variable
duke@435 441 }
duke@435 442 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
duke@435 443 assert(pre_end->stride_is_con(), "pre loop stride is constant");
duke@435 444 int preloop_stride = pre_end->stride_con();
duke@435 445
duke@435 446 int span = preloop_stride * p.scale_in_bytes();
duke@435 447
duke@435 448 // Stride one accesses are alignable.
duke@435 449 if (ABS(span) == p.memory_size())
duke@435 450 return true;
duke@435 451
duke@435 452 // If initial offset from start of object is computable,
duke@435 453 // compute alignment within the vector.
kvn@3886 454 int vw = vector_width_in_bytes(p.mem());
kvn@3882 455 assert(vw > 1, "sanity");
duke@435 456 if (vw % span == 0) {
duke@435 457 Node* init_nd = pre_end->init_trip();
duke@435 458 if (init_nd->is_Con() && p.invar() == NULL) {
duke@435 459 int init = init_nd->bottom_type()->is_int()->get_con();
duke@435 460
duke@435 461 int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
duke@435 462 assert(init_offset >= 0, "positive offset from object start");
duke@435 463
duke@435 464 if (span > 0) {
duke@435 465 return (vw - (init_offset % vw)) % span == 0;
duke@435 466 } else {
duke@435 467 assert(span < 0, "nonzero stride * scale");
duke@435 468 return (init_offset % vw) % -span == 0;
duke@435 469 }
duke@435 470 }
duke@435 471 }
duke@435 472 return false;
duke@435 473 }
duke@435 474
kvn@3882 475 //---------------------------get_iv_adjustment---------------------------
kvn@3882 476 // Calculate loop's iv adjustment for this memory ops.
kvn@3882 477 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
kvn@3882 478 SWPointer align_to_ref_p(mem_ref, this);
kvn@3882 479 int offset = align_to_ref_p.offset_in_bytes();
kvn@3882 480 int scale = align_to_ref_p.scale_in_bytes();
kvn@3886 481 int vw = vector_width_in_bytes(mem_ref);
kvn@3882 482 assert(vw > 1, "sanity");
kvn@3882 483 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
kvn@4105 484 // At least one iteration is executed in pre-loop by default. As result
kvn@4105 485 // several iterations are needed to align memory operations in main-loop even
kvn@4105 486 // if offset is 0.
kvn@4105 487 int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
kvn@4105 488 int elt_size = align_to_ref_p.memory_size();
kvn@4105 489 assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
kvn@4105 490 err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
kvn@4105 491 int iv_adjustment = iv_adjustment_in_bytes/elt_size;
kvn@3882 492
kvn@3882 493 #ifndef PRODUCT
kvn@3882 494 if (TraceSuperWord)
kvn@3882 495 tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
kvn@4105 496 offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
kvn@3882 497 #endif
kvn@3882 498 return iv_adjustment;
kvn@3882 499 }
kvn@3882 500
duke@435 501 //---------------------------dependence_graph---------------------------
duke@435 502 // Construct dependency graph.
duke@435 503 // Add dependence edges to load/store nodes for memory dependence
duke@435 504 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
duke@435 505 void SuperWord::dependence_graph() {
duke@435 506 // First, assign a dependence node to each memory node
duke@435 507 for (int i = 0; i < _block.length(); i++ ) {
duke@435 508 Node *n = _block.at(i);
duke@435 509 if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
duke@435 510 _dg.make_node(n);
duke@435 511 }
duke@435 512 }
duke@435 513
duke@435 514 // For each memory slice, create the dependences
duke@435 515 for (int i = 0; i < _mem_slice_head.length(); i++) {
duke@435 516 Node* n = _mem_slice_head.at(i);
duke@435 517 Node* n_tail = _mem_slice_tail.at(i);
duke@435 518
duke@435 519 // Get slice in predecessor order (last is first)
duke@435 520 mem_slice_preds(n_tail, n, _nlist);
duke@435 521
duke@435 522 // Make the slice dependent on the root
duke@435 523 DepMem* slice = _dg.dep(n);
duke@435 524 _dg.make_edge(_dg.root(), slice);
duke@435 525
duke@435 526 // Create a sink for the slice
duke@435 527 DepMem* slice_sink = _dg.make_node(NULL);
duke@435 528 _dg.make_edge(slice_sink, _dg.tail());
duke@435 529
duke@435 530 // Now visit each pair of memory ops, creating the edges
duke@435 531 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
duke@435 532 Node* s1 = _nlist.at(j);
duke@435 533
duke@435 534 // If no dependency yet, use slice
duke@435 535 if (_dg.dep(s1)->in_cnt() == 0) {
duke@435 536 _dg.make_edge(slice, s1);
duke@435 537 }
duke@435 538 SWPointer p1(s1->as_Mem(), this);
duke@435 539 bool sink_dependent = true;
duke@435 540 for (int k = j - 1; k >= 0; k--) {
duke@435 541 Node* s2 = _nlist.at(k);
duke@435 542 if (s1->is_Load() && s2->is_Load())
duke@435 543 continue;
duke@435 544 SWPointer p2(s2->as_Mem(), this);
duke@435 545
duke@435 546 int cmp = p1.cmp(p2);
duke@435 547 if (SuperWordRTDepCheck &&
duke@435 548 p1.base() != p2.base() && p1.valid() && p2.valid()) {
duke@435 549 // Create a runtime check to disambiguate
duke@435 550 OrderedPair pp(p1.base(), p2.base());
duke@435 551 _disjoint_ptrs.append_if_missing(pp);
duke@435 552 } else if (!SWPointer::not_equal(cmp)) {
duke@435 553 // Possibly same address
duke@435 554 _dg.make_edge(s1, s2);
duke@435 555 sink_dependent = false;
duke@435 556 }
duke@435 557 }
duke@435 558 if (sink_dependent) {
duke@435 559 _dg.make_edge(s1, slice_sink);
duke@435 560 }
duke@435 561 }
duke@435 562 #ifndef PRODUCT
duke@435 563 if (TraceSuperWord) {
duke@435 564 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
duke@435 565 for (int q = 0; q < _nlist.length(); q++) {
duke@435 566 _dg.print(_nlist.at(q));
duke@435 567 }
duke@435 568 tty->cr();
duke@435 569 }
duke@435 570 #endif
duke@435 571 _nlist.clear();
duke@435 572 }
duke@435 573
duke@435 574 #ifndef PRODUCT
duke@435 575 if (TraceSuperWord) {
duke@435 576 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
duke@435 577 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
duke@435 578 _disjoint_ptrs.at(r).print();
duke@435 579 tty->cr();
duke@435 580 }
duke@435 581 tty->cr();
duke@435 582 }
duke@435 583 #endif
duke@435 584 }
duke@435 585
duke@435 586 //---------------------------mem_slice_preds---------------------------
duke@435 587 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 588 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
duke@435 589 assert(preds.length() == 0, "start empty");
duke@435 590 Node* n = start;
duke@435 591 Node* prev = NULL;
duke@435 592 while (true) {
duke@435 593 assert(in_bb(n), "must be in block");
duke@435 594 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 595 Node* out = n->fast_out(i);
duke@435 596 if (out->is_Load()) {
duke@435 597 if (in_bb(out)) {
duke@435 598 preds.push(out);
duke@435 599 }
duke@435 600 } else {
duke@435 601 // FIXME
duke@435 602 if (out->is_MergeMem() && !in_bb(out)) {
duke@435 603 // Either unrolling is causing a memory edge not to disappear,
duke@435 604 // or need to run igvn.optimize() again before SLP
duke@435 605 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
duke@435 606 // Ditto. Not sure what else to check further.
cfang@1102 607 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
duke@435 608 // StoreCM has an input edge used as a precedence edge.
duke@435 609 // Maybe an issue when oop stores are vectorized.
duke@435 610 } else {
duke@435 611 assert(out == prev || prev == NULL, "no branches off of store slice");
duke@435 612 }
duke@435 613 }
duke@435 614 }
duke@435 615 if (n == stop) break;
duke@435 616 preds.push(n);
duke@435 617 prev = n;
duke@435 618 n = n->in(MemNode::Memory);
duke@435 619 }
duke@435 620 }
duke@435 621
duke@435 622 //------------------------------stmts_can_pack---------------------------
twisti@1040 623 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
duke@435 624 // s1 aligned at "align"
duke@435 625 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
cfang@1422 626
cfang@1422 627 // Do not use superword for non-primitives
kvn@3882 628 BasicType bt1 = velt_basic_type(s1);
kvn@3882 629 BasicType bt2 = velt_basic_type(s2);
kvn@3882 630 if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
cfang@1422 631 return false;
kvn@3882 632 if (Matcher::max_vector_size(bt1) < 2) {
kvn@3882 633 return false; // No vectors for this type
kvn@3882 634 }
cfang@1422 635
duke@435 636 if (isomorphic(s1, s2)) {
duke@435 637 if (independent(s1, s2)) {
duke@435 638 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
duke@435 639 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
duke@435 640 int s1_align = alignment(s1);
duke@435 641 int s2_align = alignment(s2);
duke@435 642 if (s1_align == top_align || s1_align == align) {
duke@435 643 if (s2_align == top_align || s2_align == align + data_size(s1)) {
duke@435 644 return true;
duke@435 645 }
duke@435 646 }
duke@435 647 }
duke@435 648 }
duke@435 649 }
duke@435 650 }
duke@435 651 return false;
duke@435 652 }
duke@435 653
duke@435 654 //------------------------------exists_at---------------------------
duke@435 655 // Does s exist in a pack at position pos?
duke@435 656 bool SuperWord::exists_at(Node* s, uint pos) {
duke@435 657 for (int i = 0; i < _packset.length(); i++) {
duke@435 658 Node_List* p = _packset.at(i);
duke@435 659 if (p->at(pos) == s) {
duke@435 660 return true;
duke@435 661 }
duke@435 662 }
duke@435 663 return false;
duke@435 664 }
duke@435 665
duke@435 666 //------------------------------are_adjacent_refs---------------------------
duke@435 667 // Is s1 immediately before s2 in memory?
duke@435 668 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
duke@435 669 if (!s1->is_Mem() || !s2->is_Mem()) return false;
duke@435 670 if (!in_bb(s1) || !in_bb(s2)) return false;
never@1940 671
never@1940 672 // Do not use superword for non-primitives
never@1940 673 if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
never@1940 674 !is_java_primitive(s2->as_Mem()->memory_type())) {
never@1940 675 return false;
never@1940 676 }
never@1940 677
duke@435 678 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
duke@435 679 // only pack memops that are in the same alias set until that's fixed.
duke@435 680 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
duke@435 681 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
duke@435 682 return false;
duke@435 683 SWPointer p1(s1->as_Mem(), this);
duke@435 684 SWPointer p2(s2->as_Mem(), this);
duke@435 685 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
duke@435 686 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
duke@435 687 return diff == data_size(s1);
duke@435 688 }
duke@435 689
duke@435 690 //------------------------------isomorphic---------------------------
duke@435 691 // Are s1 and s2 similar?
duke@435 692 bool SuperWord::isomorphic(Node* s1, Node* s2) {
duke@435 693 if (s1->Opcode() != s2->Opcode()) return false;
duke@435 694 if (s1->req() != s2->req()) return false;
duke@435 695 if (s1->in(0) != s2->in(0)) return false;
kvn@3882 696 if (!same_velt_type(s1, s2)) return false;
duke@435 697 return true;
duke@435 698 }
duke@435 699
duke@435 700 //------------------------------independent---------------------------
duke@435 701 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 702 bool SuperWord::independent(Node* s1, Node* s2) {
duke@435 703 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
duke@435 704 int d1 = depth(s1);
duke@435 705 int d2 = depth(s2);
duke@435 706 if (d1 == d2) return s1 != s2;
duke@435 707 Node* deep = d1 > d2 ? s1 : s2;
duke@435 708 Node* shallow = d1 > d2 ? s2 : s1;
duke@435 709
duke@435 710 visited_clear();
duke@435 711
duke@435 712 return independent_path(shallow, deep);
duke@435 713 }
duke@435 714
duke@435 715 //------------------------------independent_path------------------------------
duke@435 716 // Helper for independent
duke@435 717 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
duke@435 718 if (dp >= 1000) return false; // stop deep recursion
duke@435 719 visited_set(deep);
duke@435 720 int shal_depth = depth(shallow);
duke@435 721 assert(shal_depth <= depth(deep), "must be");
duke@435 722 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
duke@435 723 Node* pred = preds.current();
duke@435 724 if (in_bb(pred) && !visited_test(pred)) {
duke@435 725 if (shallow == pred) {
duke@435 726 return false;
duke@435 727 }
duke@435 728 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
duke@435 729 return false;
duke@435 730 }
duke@435 731 }
duke@435 732 }
duke@435 733 return true;
duke@435 734 }
duke@435 735
duke@435 736 //------------------------------set_alignment---------------------------
duke@435 737 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
duke@435 738 set_alignment(s1, align);
kvn@3882 739 if (align == top_align || align == bottom_align) {
kvn@3882 740 set_alignment(s2, align);
kvn@3882 741 } else {
kvn@3882 742 set_alignment(s2, align + data_size(s1));
kvn@3882 743 }
duke@435 744 }
duke@435 745
duke@435 746 //------------------------------data_size---------------------------
duke@435 747 int SuperWord::data_size(Node* s) {
kvn@3882 748 int bsize = type2aelembytes(velt_basic_type(s));
duke@435 749 assert(bsize != 0, "valid size");
duke@435 750 return bsize;
duke@435 751 }
duke@435 752
duke@435 753 //------------------------------extend_packlist---------------------------
duke@435 754 // Extend packset by following use->def and def->use links from pack members.
duke@435 755 void SuperWord::extend_packlist() {
duke@435 756 bool changed;
duke@435 757 do {
duke@435 758 changed = false;
duke@435 759 for (int i = 0; i < _packset.length(); i++) {
duke@435 760 Node_List* p = _packset.at(i);
duke@435 761 changed |= follow_use_defs(p);
duke@435 762 changed |= follow_def_uses(p);
duke@435 763 }
duke@435 764 } while (changed);
duke@435 765
duke@435 766 #ifndef PRODUCT
duke@435 767 if (TraceSuperWord) {
duke@435 768 tty->print_cr("\nAfter extend_packlist");
duke@435 769 print_packset();
duke@435 770 }
duke@435 771 #endif
duke@435 772 }
duke@435 773
duke@435 774 //------------------------------follow_use_defs---------------------------
duke@435 775 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 776 bool SuperWord::follow_use_defs(Node_List* p) {
kvn@3882 777 assert(p->size() == 2, "just checking");
duke@435 778 Node* s1 = p->at(0);
duke@435 779 Node* s2 = p->at(1);
duke@435 780 assert(s1->req() == s2->req(), "just checking");
duke@435 781 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 782
duke@435 783 if (s1->is_Load()) return false;
duke@435 784
duke@435 785 int align = alignment(s1);
duke@435 786 bool changed = false;
duke@435 787 int start = s1->is_Store() ? MemNode::ValueIn : 1;
duke@435 788 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
duke@435 789 for (int j = start; j < end; j++) {
duke@435 790 Node* t1 = s1->in(j);
duke@435 791 Node* t2 = s2->in(j);
duke@435 792 if (!in_bb(t1) || !in_bb(t2))
duke@435 793 continue;
duke@435 794 if (stmts_can_pack(t1, t2, align)) {
duke@435 795 if (est_savings(t1, t2) >= 0) {
duke@435 796 Node_List* pair = new Node_List();
duke@435 797 pair->push(t1);
duke@435 798 pair->push(t2);
duke@435 799 _packset.append(pair);
duke@435 800 set_alignment(t1, t2, align);
duke@435 801 changed = true;
duke@435 802 }
duke@435 803 }
duke@435 804 }
duke@435 805 return changed;
duke@435 806 }
duke@435 807
duke@435 808 //------------------------------follow_def_uses---------------------------
duke@435 809 // Extend the packset by visiting uses of nodes in pack p
duke@435 810 bool SuperWord::follow_def_uses(Node_List* p) {
duke@435 811 bool changed = false;
duke@435 812 Node* s1 = p->at(0);
duke@435 813 Node* s2 = p->at(1);
duke@435 814 assert(p->size() == 2, "just checking");
duke@435 815 assert(s1->req() == s2->req(), "just checking");
duke@435 816 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 817
duke@435 818 if (s1->is_Store()) return false;
duke@435 819
duke@435 820 int align = alignment(s1);
duke@435 821 int savings = -1;
duke@435 822 Node* u1 = NULL;
duke@435 823 Node* u2 = NULL;
duke@435 824 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 825 Node* t1 = s1->fast_out(i);
duke@435 826 if (!in_bb(t1)) continue;
duke@435 827 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
duke@435 828 Node* t2 = s2->fast_out(j);
duke@435 829 if (!in_bb(t2)) continue;
duke@435 830 if (!opnd_positions_match(s1, t1, s2, t2))
duke@435 831 continue;
duke@435 832 if (stmts_can_pack(t1, t2, align)) {
duke@435 833 int my_savings = est_savings(t1, t2);
duke@435 834 if (my_savings > savings) {
duke@435 835 savings = my_savings;
duke@435 836 u1 = t1;
duke@435 837 u2 = t2;
duke@435 838 }
duke@435 839 }
duke@435 840 }
duke@435 841 }
duke@435 842 if (savings >= 0) {
duke@435 843 Node_List* pair = new Node_List();
duke@435 844 pair->push(u1);
duke@435 845 pair->push(u2);
duke@435 846 _packset.append(pair);
duke@435 847 set_alignment(u1, u2, align);
duke@435 848 changed = true;
duke@435 849 }
duke@435 850 return changed;
duke@435 851 }
duke@435 852
duke@435 853 //---------------------------opnd_positions_match-------------------------
duke@435 854 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 855 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
duke@435 856 uint ct = u1->req();
duke@435 857 if (ct != u2->req()) return false;
duke@435 858 uint i1 = 0;
duke@435 859 uint i2 = 0;
duke@435 860 do {
duke@435 861 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
duke@435 862 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
duke@435 863 if (i1 != i2) {
kvn@3882 864 if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
kvn@3882 865 // Further analysis relies on operands position matching.
kvn@3882 866 u2->swap_edges(i1, i2);
kvn@3882 867 } else {
kvn@3882 868 return false;
kvn@3882 869 }
duke@435 870 }
duke@435 871 } while (i1 < ct);
duke@435 872 return true;
duke@435 873 }
duke@435 874
duke@435 875 //------------------------------est_savings---------------------------
duke@435 876 // Estimate the savings from executing s1 and s2 as a pack
duke@435 877 int SuperWord::est_savings(Node* s1, Node* s2) {
kvn@3882 878 int save_in = 2 - 1; // 2 operations per instruction in packed form
duke@435 879
duke@435 880 // inputs
duke@435 881 for (uint i = 1; i < s1->req(); i++) {
duke@435 882 Node* x1 = s1->in(i);
duke@435 883 Node* x2 = s2->in(i);
duke@435 884 if (x1 != x2) {
duke@435 885 if (are_adjacent_refs(x1, x2)) {
kvn@3882 886 save_in += adjacent_profit(x1, x2);
duke@435 887 } else if (!in_packset(x1, x2)) {
kvn@3882 888 save_in -= pack_cost(2);
duke@435 889 } else {
kvn@3882 890 save_in += unpack_cost(2);
duke@435 891 }
duke@435 892 }
duke@435 893 }
duke@435 894
duke@435 895 // uses of result
duke@435 896 uint ct = 0;
kvn@3882 897 int save_use = 0;
duke@435 898 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 899 Node* s1_use = s1->fast_out(i);
duke@435 900 for (int j = 0; j < _packset.length(); j++) {
duke@435 901 Node_List* p = _packset.at(j);
duke@435 902 if (p->at(0) == s1_use) {
duke@435 903 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
duke@435 904 Node* s2_use = s2->fast_out(k);
duke@435 905 if (p->at(p->size()-1) == s2_use) {
duke@435 906 ct++;
duke@435 907 if (are_adjacent_refs(s1_use, s2_use)) {
kvn@3882 908 save_use += adjacent_profit(s1_use, s2_use);
duke@435 909 }
duke@435 910 }
duke@435 911 }
duke@435 912 }
duke@435 913 }
duke@435 914 }
duke@435 915
kvn@3882 916 if (ct < s1->outcnt()) save_use += unpack_cost(1);
kvn@3882 917 if (ct < s2->outcnt()) save_use += unpack_cost(1);
duke@435 918
kvn@3882 919 return MAX2(save_in, save_use);
duke@435 920 }
duke@435 921
duke@435 922 //------------------------------costs---------------------------
duke@435 923 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
duke@435 924 int SuperWord::pack_cost(int ct) { return ct; }
duke@435 925 int SuperWord::unpack_cost(int ct) { return ct; }
duke@435 926
duke@435 927 //------------------------------combine_packs---------------------------
duke@435 928 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 929 void SuperWord::combine_packs() {
kvn@3882 930 bool changed = true;
kvn@3882 931 // Combine packs regardless max vector size.
kvn@3882 932 while (changed) {
duke@435 933 changed = false;
duke@435 934 for (int i = 0; i < _packset.length(); i++) {
duke@435 935 Node_List* p1 = _packset.at(i);
duke@435 936 if (p1 == NULL) continue;
duke@435 937 for (int j = 0; j < _packset.length(); j++) {
duke@435 938 Node_List* p2 = _packset.at(j);
duke@435 939 if (p2 == NULL) continue;
kvn@3882 940 if (i == j) continue;
duke@435 941 if (p1->at(p1->size()-1) == p2->at(0)) {
duke@435 942 for (uint k = 1; k < p2->size(); k++) {
duke@435 943 p1->push(p2->at(k));
duke@435 944 }
duke@435 945 _packset.at_put(j, NULL);
duke@435 946 changed = true;
duke@435 947 }
duke@435 948 }
duke@435 949 }
kvn@3882 950 }
duke@435 951
kvn@3882 952 // Split packs which have size greater then max vector size.
kvn@3882 953 for (int i = 0; i < _packset.length(); i++) {
kvn@3882 954 Node_List* p1 = _packset.at(i);
kvn@3882 955 if (p1 != NULL) {
kvn@3882 956 BasicType bt = velt_basic_type(p1->at(0));
kvn@3882 957 uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
kvn@3882 958 assert(is_power_of_2(max_vlen), "sanity");
kvn@3882 959 uint psize = p1->size();
kvn@3882 960 if (!is_power_of_2(psize)) {
kvn@3882 961 // Skip pack which can't be vector.
kvn@3882 962 // case1: for(...) { a[i] = i; } elements values are different (i+x)
kvn@3882 963 // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store
kvn@3882 964 _packset.at_put(i, NULL);
kvn@3882 965 continue;
kvn@3882 966 }
kvn@3882 967 if (psize > max_vlen) {
kvn@3882 968 Node_List* pack = new Node_List();
kvn@3882 969 for (uint j = 0; j < psize; j++) {
kvn@3882 970 pack->push(p1->at(j));
kvn@3882 971 if (pack->size() >= max_vlen) {
kvn@3882 972 assert(is_power_of_2(pack->size()), "sanity");
kvn@3882 973 _packset.append(pack);
kvn@3882 974 pack = new Node_List();
kvn@3882 975 }
kvn@3882 976 }
kvn@3882 977 _packset.at_put(i, NULL);
kvn@3882 978 }
kvn@3882 979 }
kvn@3882 980 }
kvn@3882 981
kvn@3882 982 // Compress list.
duke@435 983 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 984 Node_List* p1 = _packset.at(i);
duke@435 985 if (p1 == NULL) {
duke@435 986 _packset.remove_at(i);
duke@435 987 }
duke@435 988 }
duke@435 989
duke@435 990 #ifndef PRODUCT
duke@435 991 if (TraceSuperWord) {
duke@435 992 tty->print_cr("\nAfter combine_packs");
duke@435 993 print_packset();
duke@435 994 }
duke@435 995 #endif
duke@435 996 }
duke@435 997
duke@435 998 //-----------------------------construct_my_pack_map--------------------------
duke@435 999 // Construct the map from nodes to packs. Only valid after the
duke@435 1000 // point where a node is only in one pack (after combine_packs).
duke@435 1001 void SuperWord::construct_my_pack_map() {
duke@435 1002 Node_List* rslt = NULL;
duke@435 1003 for (int i = 0; i < _packset.length(); i++) {
duke@435 1004 Node_List* p = _packset.at(i);
duke@435 1005 for (uint j = 0; j < p->size(); j++) {
duke@435 1006 Node* s = p->at(j);
duke@435 1007 assert(my_pack(s) == NULL, "only in one pack");
duke@435 1008 set_my_pack(s, p);
duke@435 1009 }
duke@435 1010 }
duke@435 1011 }
duke@435 1012
duke@435 1013 //------------------------------filter_packs---------------------------
duke@435 1014 // Remove packs that are not implemented or not profitable.
duke@435 1015 void SuperWord::filter_packs() {
duke@435 1016
duke@435 1017 // Remove packs that are not implemented
duke@435 1018 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1019 Node_List* pk = _packset.at(i);
duke@435 1020 bool impl = implemented(pk);
duke@435 1021 if (!impl) {
duke@435 1022 #ifndef PRODUCT
duke@435 1023 if (TraceSuperWord && Verbose) {
duke@435 1024 tty->print_cr("Unimplemented");
duke@435 1025 pk->at(0)->dump();
duke@435 1026 }
duke@435 1027 #endif
duke@435 1028 remove_pack_at(i);
duke@435 1029 }
duke@435 1030 }
duke@435 1031
duke@435 1032 // Remove packs that are not profitable
duke@435 1033 bool changed;
duke@435 1034 do {
duke@435 1035 changed = false;
duke@435 1036 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 1037 Node_List* pk = _packset.at(i);
duke@435 1038 bool prof = profitable(pk);
duke@435 1039 if (!prof) {
duke@435 1040 #ifndef PRODUCT
duke@435 1041 if (TraceSuperWord && Verbose) {
duke@435 1042 tty->print_cr("Unprofitable");
duke@435 1043 pk->at(0)->dump();
duke@435 1044 }
duke@435 1045 #endif
duke@435 1046 remove_pack_at(i);
duke@435 1047 changed = true;
duke@435 1048 }
duke@435 1049 }
duke@435 1050 } while (changed);
duke@435 1051
duke@435 1052 #ifndef PRODUCT
duke@435 1053 if (TraceSuperWord) {
duke@435 1054 tty->print_cr("\nAfter filter_packs");
duke@435 1055 print_packset();
duke@435 1056 tty->cr();
duke@435 1057 }
duke@435 1058 #endif
duke@435 1059 }
duke@435 1060
duke@435 1061 //------------------------------implemented---------------------------
duke@435 1062 // Can code be generated for pack p?
duke@435 1063 bool SuperWord::implemented(Node_List* p) {
duke@435 1064 Node* p0 = p->at(0);
kvn@4006 1065 return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
kvn@4006 1066 }
kvn@4006 1067
kvn@4006 1068 //------------------------------same_inputs--------------------------
kvn@4006 1069 // For pack p, are all idx operands the same?
kvn@4006 1070 static bool same_inputs(Node_List* p, int idx) {
kvn@4006 1071 Node* p0 = p->at(0);
kvn@4006 1072 uint vlen = p->size();
kvn@4006 1073 Node* p0_def = p0->in(idx);
kvn@4006 1074 for (uint i = 1; i < vlen; i++) {
kvn@4006 1075 Node* pi = p->at(i);
kvn@4006 1076 Node* pi_def = pi->in(idx);
kvn@4006 1077 if (p0_def != pi_def)
kvn@4006 1078 return false;
kvn@4004 1079 }
kvn@4006 1080 return true;
duke@435 1081 }
duke@435 1082
duke@435 1083 //------------------------------profitable---------------------------
duke@435 1084 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 1085 bool SuperWord::profitable(Node_List* p) {
duke@435 1086 Node* p0 = p->at(0);
duke@435 1087 uint start, end;
kvn@4006 1088 VectorNode::vector_operands(p0, &start, &end);
duke@435 1089
kvn@4114 1090 // Return false if some inputs are not vectors or vectors with different
kvn@4114 1091 // size or alignment.
kvn@4114 1092 // Also, for now, return false if not scalar promotion case when inputs are
kvn@4114 1093 // the same. Later, implement PackNode and allow differing, non-vector inputs
kvn@4114 1094 // (maybe just the ones from outside the block.)
duke@435 1095 for (uint i = start; i < end; i++) {
kvn@4114 1096 if (!is_vector_use(p0, i))
kvn@4114 1097 return false;
duke@435 1098 }
kvn@4006 1099 if (VectorNode::is_shift(p0)) {
kvn@4114 1100 // For now, return false if shift count is vector or not scalar promotion
kvn@4114 1101 // case (different shift counts) because it is not supported yet.
kvn@4114 1102 Node* cnt = p0->in(2);
kvn@4114 1103 Node_List* cnt_pk = my_pack(cnt);
kvn@4114 1104 if (cnt_pk != NULL)
kvn@4006 1105 return false;
kvn@4006 1106 if (!same_inputs(p, 2))
kvn@4006 1107 return false;
kvn@4006 1108 }
duke@435 1109 if (!p0->is_Store()) {
duke@435 1110 // For now, return false if not all uses are vector.
duke@435 1111 // Later, implement ExtractNode and allow non-vector uses (maybe
duke@435 1112 // just the ones outside the block.)
duke@435 1113 for (uint i = 0; i < p->size(); i++) {
duke@435 1114 Node* def = p->at(i);
duke@435 1115 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1116 Node* use = def->fast_out(j);
duke@435 1117 for (uint k = 0; k < use->req(); k++) {
duke@435 1118 Node* n = use->in(k);
duke@435 1119 if (def == n) {
duke@435 1120 if (!is_vector_use(use, k)) {
duke@435 1121 return false;
duke@435 1122 }
duke@435 1123 }
duke@435 1124 }
duke@435 1125 }
duke@435 1126 }
duke@435 1127 }
duke@435 1128 return true;
duke@435 1129 }
duke@435 1130
duke@435 1131 //------------------------------schedule---------------------------
duke@435 1132 // Adjust the memory graph for the packed operations
duke@435 1133 void SuperWord::schedule() {
duke@435 1134
duke@435 1135 // Co-locate in the memory graph the members of each memory pack
duke@435 1136 for (int i = 0; i < _packset.length(); i++) {
duke@435 1137 co_locate_pack(_packset.at(i));
duke@435 1138 }
duke@435 1139 }
duke@435 1140
cfang@1102 1141 //-------------------------------remove_and_insert-------------------
kvn@3882 1142 // Remove "current" from its current position in the memory graph and insert
kvn@3882 1143 // it after the appropriate insertion point (lip or uip).
cfang@1102 1144 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
cfang@1102 1145 Node *uip, Unique_Node_List &sched_before) {
cfang@1102 1146 Node* my_mem = current->in(MemNode::Memory);
kvn@3882 1147 bool sched_up = sched_before.member(current);
cfang@1102 1148
kvn@3882 1149 // remove current_store from its current position in the memmory graph
cfang@1102 1150 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1151 Node* use = current->out(i);
cfang@1102 1152 if (use->is_Mem()) {
cfang@1102 1153 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1154 if (use == prev) { // connect prev to my_mem
kvn@3882 1155 _igvn.replace_input_of(use, MemNode::Memory, my_mem);
kvn@3882 1156 --i; //deleted this edge; rescan position
cfang@1102 1157 } else if (sched_before.member(use)) {
kvn@3882 1158 if (!sched_up) { // Will be moved together with current
kvn@3882 1159 _igvn.replace_input_of(use, MemNode::Memory, uip);
kvn@3882 1160 --i; //deleted this edge; rescan position
kvn@3882 1161 }
cfang@1102 1162 } else {
kvn@3882 1163 if (sched_up) { // Will be moved together with current
kvn@3882 1164 _igvn.replace_input_of(use, MemNode::Memory, lip);
kvn@3882 1165 --i; //deleted this edge; rescan position
kvn@3882 1166 }
cfang@1102 1167 }
cfang@1102 1168 }
cfang@1102 1169 }
cfang@1102 1170
cfang@1102 1171 Node *insert_pt = sched_up ? uip : lip;
cfang@1102 1172
cfang@1102 1173 // all uses of insert_pt's memory state should use current's instead
cfang@1102 1174 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
cfang@1102 1175 Node* use = insert_pt->out(i);
cfang@1102 1176 if (use->is_Mem()) {
cfang@1102 1177 assert(use->in(MemNode::Memory) == insert_pt, "must be");
kvn@3847 1178 _igvn.replace_input_of(use, MemNode::Memory, current);
cfang@1102 1179 --i; //deleted this edge; rescan position
cfang@1102 1180 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
cfang@1102 1181 uint pos; //lip (lower insert point) must be the last one in the memory slice
cfang@1102 1182 for (pos=1; pos < use->req(); pos++) {
cfang@1102 1183 if (use->in(pos) == insert_pt) break;
cfang@1102 1184 }
kvn@3847 1185 _igvn.replace_input_of(use, pos, current);
cfang@1102 1186 --i;
cfang@1102 1187 }
cfang@1102 1188 }
cfang@1102 1189
cfang@1102 1190 //connect current to insert_pt
kvn@3882 1191 _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
cfang@1102 1192 }
cfang@1102 1193
cfang@1102 1194 //------------------------------co_locate_pack----------------------------------
cfang@1102 1195 // To schedule a store pack, we need to move any sandwiched memory ops either before
cfang@1102 1196 // or after the pack, based upon dependence information:
cfang@1102 1197 // (1) If any store in the pack depends on the sandwiched memory op, the
cfang@1102 1198 // sandwiched memory op must be scheduled BEFORE the pack;
cfang@1102 1199 // (2) If a sandwiched memory op depends on any store in the pack, the
cfang@1102 1200 // sandwiched memory op must be scheduled AFTER the pack;
cfang@1102 1201 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
cfang@1102 1202 // memory op (say memB), memB must be scheduled before memA. So, if memA is
cfang@1102 1203 // scheduled before the pack, memB must also be scheduled before the pack;
cfang@1102 1204 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
cfang@1102 1205 // schedule this store AFTER the pack
cfang@1102 1206 // (5) We know there is no dependence cycle, so there in no other case;
cfang@1102 1207 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
cfang@1102 1208 //
cfang@1387 1209 // To schedule a load pack, we use the memory state of either the first or the last load in
cfang@1387 1210 // the pack, based on the dependence constraint.
duke@435 1211 void SuperWord::co_locate_pack(Node_List* pk) {
duke@435 1212 if (pk->at(0)->is_Store()) {
duke@435 1213 MemNode* first = executed_first(pk)->as_Mem();
duke@435 1214 MemNode* last = executed_last(pk)->as_Mem();
cfang@1102 1215 Unique_Node_List schedule_before_pack;
cfang@1102 1216 Unique_Node_List memops;
cfang@1102 1217
duke@435 1218 MemNode* current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1219 MemNode* previous = last;
duke@435 1220 while (true) {
duke@435 1221 assert(in_bb(current), "stay in block");
cfang@1102 1222 memops.push(previous);
cfang@1102 1223 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1224 Node* use = current->out(i);
cfang@1102 1225 if (use->is_Mem() && use != previous)
cfang@1102 1226 memops.push(use);
cfang@1102 1227 }
kvn@3882 1228 if (current == first) break;
cfang@1102 1229 previous = current;
cfang@1102 1230 current = current->in(MemNode::Memory)->as_Mem();
cfang@1102 1231 }
cfang@1102 1232
cfang@1102 1233 // determine which memory operations should be scheduled before the pack
cfang@1102 1234 for (uint i = 1; i < memops.size(); i++) {
cfang@1102 1235 Node *s1 = memops.at(i);
cfang@1102 1236 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
cfang@1102 1237 for (uint j = 0; j< i; j++) {
cfang@1102 1238 Node *s2 = memops.at(j);
cfang@1102 1239 if (!independent(s1, s2)) {
cfang@1102 1240 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
kvn@3882 1241 schedule_before_pack.push(s1); // s1 must be scheduled before
cfang@1102 1242 Node_List* mem_pk = my_pack(s1);
cfang@1102 1243 if (mem_pk != NULL) {
cfang@1102 1244 for (uint ii = 0; ii < mem_pk->size(); ii++) {
kvn@3882 1245 Node* s = mem_pk->at(ii); // follow partner
cfang@1102 1246 if (memops.member(s) && !schedule_before_pack.member(s))
cfang@1102 1247 schedule_before_pack.push(s);
cfang@1102 1248 }
cfang@1102 1249 }
kvn@3882 1250 break;
cfang@1102 1251 }
cfang@1102 1252 }
cfang@1102 1253 }
cfang@1102 1254 }
cfang@1102 1255 }
cfang@1102 1256
kvn@3882 1257 Node* upper_insert_pt = first->in(MemNode::Memory);
kvn@3882 1258 // Following code moves loads connected to upper_insert_pt below aliased stores.
kvn@3882 1259 // Collect such loads here and reconnect them back to upper_insert_pt later.
kvn@3882 1260 memops.clear();
kvn@3882 1261 for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
kvn@3882 1262 Node* use = upper_insert_pt->out(i);
kvn@3882 1263 if (!use->is_Store())
kvn@3882 1264 memops.push(use);
kvn@3882 1265 }
kvn@3882 1266
cfang@1102 1267 MemNode* lower_insert_pt = last;
cfang@1102 1268 previous = last; //previous store in pk
cfang@1102 1269 current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1270
kvn@3882 1271 // start scheduling from "last" to "first"
cfang@1102 1272 while (true) {
cfang@1102 1273 assert(in_bb(current), "stay in block");
cfang@1102 1274 assert(in_pack(previous, pk), "previous stays in pack");
duke@435 1275 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 1276
duke@435 1277 if (in_pack(current, pk)) {
cfang@1102 1278 // Forward users of my memory state (except "previous) to my input memory state
duke@435 1279 for (DUIterator i = current->outs(); current->has_out(i); i++) {
duke@435 1280 Node* use = current->out(i);
cfang@1102 1281 if (use->is_Mem() && use != previous) {
duke@435 1282 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 1283 if (schedule_before_pack.member(use)) {
kvn@3847 1284 _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
cfang@1102 1285 } else {
kvn@3847 1286 _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
cfang@1102 1287 }
duke@435 1288 --i; // deleted this edge; rescan position
duke@435 1289 }
duke@435 1290 }
cfang@1102 1291 previous = current;
cfang@1102 1292 } else { // !in_pack(current, pk) ==> a sandwiched store
cfang@1102 1293 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
duke@435 1294 }
cfang@1102 1295
duke@435 1296 if (current == first) break;
duke@435 1297 current = my_mem->as_Mem();
cfang@1102 1298 } // end while
kvn@3882 1299
kvn@3882 1300 // Reconnect loads back to upper_insert_pt.
kvn@3882 1301 for (uint i = 0; i < memops.size(); i++) {
kvn@3882 1302 Node *ld = memops.at(i);
kvn@3882 1303 if (ld->in(MemNode::Memory) != upper_insert_pt) {
kvn@3882 1304 _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
kvn@3882 1305 }
kvn@3882 1306 }
cfang@1102 1307 } else if (pk->at(0)->is_Load()) { //load
cfang@1387 1308 // all loads in the pack should have the same memory state. By default,
cfang@1387 1309 // we use the memory state of the last load. However, if any load could
cfang@1387 1310 // not be moved down due to the dependence constraint, we use the memory
cfang@1387 1311 // state of the first load.
cfang@1387 1312 Node* last_mem = executed_last(pk)->in(MemNode::Memory);
cfang@1387 1313 Node* first_mem = executed_first(pk)->in(MemNode::Memory);
cfang@1387 1314 bool schedule_last = true;
cfang@1387 1315 for (uint i = 0; i < pk->size(); i++) {
cfang@1387 1316 Node* ld = pk->at(i);
cfang@1387 1317 for (Node* current = last_mem; current != ld->in(MemNode::Memory);
cfang@1387 1318 current=current->in(MemNode::Memory)) {
cfang@1387 1319 assert(current != first_mem, "corrupted memory graph");
cfang@1387 1320 if(current->is_Mem() && !independent(current, ld)){
cfang@1387 1321 schedule_last = false; // a later store depends on this load
cfang@1387 1322 break;
cfang@1387 1323 }
cfang@1387 1324 }
cfang@1387 1325 }
cfang@1387 1326
cfang@1387 1327 Node* mem_input = schedule_last ? last_mem : first_mem;
cfang@1387 1328 _igvn.hash_delete(mem_input);
cfang@1387 1329 // Give each load the same memory state
duke@435 1330 for (uint i = 0; i < pk->size(); i++) {
duke@435 1331 LoadNode* ld = pk->at(i)->as_Load();
kvn@3847 1332 _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
duke@435 1333 }
duke@435 1334 }
duke@435 1335 }
duke@435 1336
duke@435 1337 //------------------------------output---------------------------
duke@435 1338 // Convert packs into vector node operations
duke@435 1339 void SuperWord::output() {
duke@435 1340 if (_packset.length() == 0) return;
duke@435 1341
kvn@2727 1342 #ifndef PRODUCT
kvn@2727 1343 if (TraceLoopOpts) {
kvn@2727 1344 tty->print("SuperWord ");
kvn@2727 1345 lpt()->dump_head();
kvn@2727 1346 }
kvn@2727 1347 #endif
kvn@2727 1348
duke@435 1349 // MUST ENSURE main loop's initial value is properly aligned:
duke@435 1350 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
duke@435 1351
duke@435 1352 align_initial_loop_index(align_to_ref());
duke@435 1353
duke@435 1354 // Insert extract (unpack) operations for scalar uses
duke@435 1355 for (int i = 0; i < _packset.length(); i++) {
duke@435 1356 insert_extracts(_packset.at(i));
duke@435 1357 }
duke@435 1358
kvn@4103 1359 Compile* C = _phase->C;
kvn@4103 1360 uint max_vlen_in_bytes = 0;
duke@435 1361 for (int i = 0; i < _block.length(); i++) {
duke@435 1362 Node* n = _block.at(i);
duke@435 1363 Node_List* p = my_pack(n);
duke@435 1364 if (p && n == executed_last(p)) {
duke@435 1365 uint vlen = p->size();
kvn@4103 1366 uint vlen_in_bytes = 0;
duke@435 1367 Node* vn = NULL;
duke@435 1368 Node* low_adr = p->at(0);
duke@435 1369 Node* first = executed_first(p);
kvn@3882 1370 int opc = n->Opcode();
duke@435 1371 if (n->is_Load()) {
duke@435 1372 Node* ctl = n->in(MemNode::Control);
duke@435 1373 Node* mem = first->in(MemNode::Memory);
duke@435 1374 Node* adr = low_adr->in(MemNode::Address);
duke@435 1375 const TypePtr* atyp = n->adr_type();
kvn@4103 1376 vn = LoadVectorNode::make(C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n));
kvn@4103 1377 vlen_in_bytes = vn->as_LoadVector()->memory_size();
duke@435 1378 } else if (n->is_Store()) {
duke@435 1379 // Promote value to be stored to vector
kvn@3040 1380 Node* val = vector_opd(p, MemNode::ValueIn);
duke@435 1381 Node* ctl = n->in(MemNode::Control);
duke@435 1382 Node* mem = first->in(MemNode::Memory);
duke@435 1383 Node* adr = low_adr->in(MemNode::Address);
duke@435 1384 const TypePtr* atyp = n->adr_type();
kvn@4103 1385 vn = StoreVectorNode::make(C, opc, ctl, mem, adr, atyp, val, vlen);
kvn@4103 1386 vlen_in_bytes = vn->as_StoreVector()->memory_size();
duke@435 1387 } else if (n->req() == 3) {
duke@435 1388 // Promote operands to vector
duke@435 1389 Node* in1 = vector_opd(p, 1);
duke@435 1390 Node* in2 = vector_opd(p, 2);
kvn@4001 1391 if (VectorNode::is_invariant_vector(in1) && (n->is_Add() || n->is_Mul())) {
kvn@4001 1392 // Move invariant vector input into second position to avoid register spilling.
kvn@4001 1393 Node* tmp = in1;
kvn@4001 1394 in1 = in2;
kvn@4001 1395 in2 = tmp;
kvn@4001 1396 }
kvn@4103 1397 vn = VectorNode::make(C, opc, in1, in2, vlen, velt_basic_type(n));
kvn@4103 1398 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
duke@435 1399 } else {
duke@435 1400 ShouldNotReachHere();
duke@435 1401 }
kvn@3882 1402 assert(vn != NULL, "sanity");
kvn@4114 1403 _igvn.register_new_node_with_optimizer(vn);
duke@435 1404 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
duke@435 1405 for (uint j = 0; j < p->size(); j++) {
duke@435 1406 Node* pm = p->at(j);
kvn@1976 1407 _igvn.replace_node(pm, vn);
duke@435 1408 }
duke@435 1409 _igvn._worklist.push(vn);
kvn@4103 1410
kvn@4103 1411 if (vlen_in_bytes > max_vlen_in_bytes) {
kvn@4103 1412 max_vlen_in_bytes = vlen_in_bytes;
kvn@4103 1413 }
kvn@3882 1414 #ifdef ASSERT
kvn@3886 1415 if (TraceNewVectors) {
kvn@3882 1416 tty->print("new Vector node: ");
kvn@3882 1417 vn->dump();
kvn@3882 1418 }
kvn@3882 1419 #endif
duke@435 1420 }
duke@435 1421 }
kvn@4103 1422 C->set_max_vector_size(max_vlen_in_bytes);
duke@435 1423 }
duke@435 1424
duke@435 1425 //------------------------------vector_opd---------------------------
duke@435 1426 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
kvn@3040 1427 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
duke@435 1428 Node* p0 = p->at(0);
duke@435 1429 uint vlen = p->size();
duke@435 1430 Node* opd = p0->in(opd_idx);
duke@435 1431
kvn@4006 1432 if (same_inputs(p, opd_idx)) {
kvn@3882 1433 if (opd->is_Vector() || opd->is_LoadVector()) {
kvn@4004 1434 assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
kvn@3040 1435 return opd; // input is matching vector
duke@435 1436 }
kvn@4001 1437 if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
kvn@4001 1438 Compile* C = _phase->C;
kvn@4001 1439 Node* cnt = opd;
kvn@4134 1440 // Vector instructions do not mask shift count, do it here.
kvn@4001 1441 juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
kvn@4001 1442 const TypeInt* t = opd->find_int_type();
kvn@4001 1443 if (t != NULL && t->is_con()) {
kvn@4001 1444 juint shift = t->get_con();
kvn@4001 1445 if (shift > mask) { // Unsigned cmp
kvn@4001 1446 cnt = ConNode::make(C, TypeInt::make(shift & mask));
kvn@4001 1447 }
kvn@4001 1448 } else {
kvn@4001 1449 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
kvn@4001 1450 cnt = ConNode::make(C, TypeInt::make(mask));
kvn@4114 1451 _igvn.register_new_node_with_optimizer(cnt);
kvn@4115 1452 cnt = new (C) AndINode(opd, cnt);
kvn@4114 1453 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1454 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1455 }
kvn@4001 1456 assert(opd->bottom_type()->isa_int(), "int type only");
kvn@4134 1457 // Move non constant shift count into vector register.
kvn@4134 1458 cnt = VectorNode::shift_count(C, p0, cnt, vlen, velt_basic_type(p0));
kvn@4001 1459 }
kvn@4001 1460 if (cnt != opd) {
kvn@4114 1461 _igvn.register_new_node_with_optimizer(cnt);
kvn@4001 1462 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
kvn@4001 1463 }
kvn@4001 1464 return cnt;
kvn@4001 1465 }
kvn@3882 1466 assert(!opd->is_StoreVector(), "such vector is not expected here");
kvn@3748 1467 // Convert scalar input to vector with the same number of elements as
kvn@3748 1468 // p0's vector. Use p0's type because size of operand's container in
kvn@3748 1469 // vector should match p0's size regardless operand's size.
kvn@3748 1470 const Type* p0_t = velt_type(p0);
kvn@3748 1471 VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
duke@435 1472
kvn@4114 1473 _igvn.register_new_node_with_optimizer(vn);
duke@435 1474 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
kvn@3882 1475 #ifdef ASSERT
kvn@3886 1476 if (TraceNewVectors) {
kvn@3882 1477 tty->print("new Vector node: ");
kvn@3882 1478 vn->dump();
kvn@3882 1479 }
kvn@3882 1480 #endif
duke@435 1481 return vn;
duke@435 1482 }
duke@435 1483
duke@435 1484 // Insert pack operation
kvn@3882 1485 BasicType bt = velt_basic_type(p0);
kvn@3882 1486 PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
kvn@3748 1487 DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
duke@435 1488
duke@435 1489 for (uint i = 1; i < vlen; i++) {
duke@435 1490 Node* pi = p->at(i);
duke@435 1491 Node* in = pi->in(opd_idx);
duke@435 1492 assert(my_pack(in) == NULL, "Should already have been unpacked");
kvn@3748 1493 assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
kvn@4006 1494 pk->add_opd(in);
duke@435 1495 }
kvn@4114 1496 _igvn.register_new_node_with_optimizer(pk);
duke@435 1497 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
kvn@3882 1498 #ifdef ASSERT
kvn@4103 1499 if (TraceNewVectors) {
kvn@4103 1500 tty->print("new Vector node: ");
kvn@4103 1501 pk->dump();
kvn@4103 1502 }
kvn@3882 1503 #endif
duke@435 1504 return pk;
duke@435 1505 }
duke@435 1506
duke@435 1507 //------------------------------insert_extracts---------------------------
duke@435 1508 // If a use of pack p is not a vector use, then replace the
duke@435 1509 // use with an extract operation.
duke@435 1510 void SuperWord::insert_extracts(Node_List* p) {
duke@435 1511 if (p->at(0)->is_Store()) return;
duke@435 1512 assert(_n_idx_list.is_empty(), "empty (node,index) list");
duke@435 1513
duke@435 1514 // Inspect each use of each pack member. For each use that is
duke@435 1515 // not a vector use, replace the use with an extract operation.
duke@435 1516
duke@435 1517 for (uint i = 0; i < p->size(); i++) {
duke@435 1518 Node* def = p->at(i);
duke@435 1519 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1520 Node* use = def->fast_out(j);
duke@435 1521 for (uint k = 0; k < use->req(); k++) {
duke@435 1522 Node* n = use->in(k);
duke@435 1523 if (def == n) {
duke@435 1524 if (!is_vector_use(use, k)) {
duke@435 1525 _n_idx_list.push(use, k);
duke@435 1526 }
duke@435 1527 }
duke@435 1528 }
duke@435 1529 }
duke@435 1530 }
duke@435 1531
duke@435 1532 while (_n_idx_list.is_nonempty()) {
duke@435 1533 Node* use = _n_idx_list.node();
duke@435 1534 int idx = _n_idx_list.index();
duke@435 1535 _n_idx_list.pop();
duke@435 1536 Node* def = use->in(idx);
duke@435 1537
duke@435 1538 // Insert extract operation
duke@435 1539 _igvn.hash_delete(def);
duke@435 1540 int def_pos = alignment(def) / data_size(def);
duke@435 1541
kvn@3882 1542 Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
kvn@4114 1543 _igvn.register_new_node_with_optimizer(ex);
duke@435 1544 _phase->set_ctrl(ex, _phase->get_ctrl(def));
kvn@3847 1545 _igvn.replace_input_of(use, idx, ex);
duke@435 1546 _igvn._worklist.push(def);
duke@435 1547
duke@435 1548 bb_insert_after(ex, bb_idx(def));
kvn@3882 1549 set_velt_type(ex, velt_type(def));
duke@435 1550 }
duke@435 1551 }
duke@435 1552
duke@435 1553 //------------------------------is_vector_use---------------------------
duke@435 1554 // Is use->in(u_idx) a vector use?
duke@435 1555 bool SuperWord::is_vector_use(Node* use, int u_idx) {
duke@435 1556 Node_List* u_pk = my_pack(use);
duke@435 1557 if (u_pk == NULL) return false;
duke@435 1558 Node* def = use->in(u_idx);
duke@435 1559 Node_List* d_pk = my_pack(def);
duke@435 1560 if (d_pk == NULL) {
duke@435 1561 // check for scalar promotion
duke@435 1562 Node* n = u_pk->at(0)->in(u_idx);
duke@435 1563 for (uint i = 1; i < u_pk->size(); i++) {
duke@435 1564 if (u_pk->at(i)->in(u_idx) != n) return false;
duke@435 1565 }
duke@435 1566 return true;
duke@435 1567 }
duke@435 1568 if (u_pk->size() != d_pk->size())
duke@435 1569 return false;
duke@435 1570 for (uint i = 0; i < u_pk->size(); i++) {
duke@435 1571 Node* ui = u_pk->at(i);
duke@435 1572 Node* di = d_pk->at(i);
duke@435 1573 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
duke@435 1574 return false;
duke@435 1575 }
duke@435 1576 return true;
duke@435 1577 }
duke@435 1578
duke@435 1579 //------------------------------construct_bb---------------------------
duke@435 1580 // Construct reverse postorder list of block members
duke@435 1581 void SuperWord::construct_bb() {
duke@435 1582 Node* entry = bb();
duke@435 1583
duke@435 1584 assert(_stk.length() == 0, "stk is empty");
duke@435 1585 assert(_block.length() == 0, "block is empty");
duke@435 1586 assert(_data_entry.length() == 0, "data_entry is empty");
duke@435 1587 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
duke@435 1588 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
duke@435 1589
duke@435 1590 // Find non-control nodes with no inputs from within block,
duke@435 1591 // create a temporary map from node _idx to bb_idx for use
duke@435 1592 // by the visited and post_visited sets,
duke@435 1593 // and count number of nodes in block.
duke@435 1594 int bb_ct = 0;
duke@435 1595 for (uint i = 0; i < lpt()->_body.size(); i++ ) {
duke@435 1596 Node *n = lpt()->_body.at(i);
duke@435 1597 set_bb_idx(n, i); // Create a temporary map
duke@435 1598 if (in_bb(n)) {
duke@435 1599 bb_ct++;
duke@435 1600 if (!n->is_CFG()) {
duke@435 1601 bool found = false;
duke@435 1602 for (uint j = 0; j < n->req(); j++) {
duke@435 1603 Node* def = n->in(j);
duke@435 1604 if (def && in_bb(def)) {
duke@435 1605 found = true;
duke@435 1606 break;
duke@435 1607 }
duke@435 1608 }
duke@435 1609 if (!found) {
duke@435 1610 assert(n != entry, "can't be entry");
duke@435 1611 _data_entry.push(n);
duke@435 1612 }
duke@435 1613 }
duke@435 1614 }
duke@435 1615 }
duke@435 1616
duke@435 1617 // Find memory slices (head and tail)
duke@435 1618 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
duke@435 1619 Node *n = lp()->fast_out(i);
duke@435 1620 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
duke@435 1621 Node* n_tail = n->in(LoopNode::LoopBackControl);
kvn@688 1622 if (n_tail != n->in(LoopNode::EntryControl)) {
kvn@688 1623 _mem_slice_head.push(n);
kvn@688 1624 _mem_slice_tail.push(n_tail);
kvn@688 1625 }
duke@435 1626 }
duke@435 1627 }
duke@435 1628
duke@435 1629 // Create an RPO list of nodes in block
duke@435 1630
duke@435 1631 visited_clear();
duke@435 1632 post_visited_clear();
duke@435 1633
duke@435 1634 // Push all non-control nodes with no inputs from within block, then control entry
duke@435 1635 for (int j = 0; j < _data_entry.length(); j++) {
duke@435 1636 Node* n = _data_entry.at(j);
duke@435 1637 visited_set(n);
duke@435 1638 _stk.push(n);
duke@435 1639 }
duke@435 1640 visited_set(entry);
duke@435 1641 _stk.push(entry);
duke@435 1642
duke@435 1643 // Do a depth first walk over out edges
duke@435 1644 int rpo_idx = bb_ct - 1;
duke@435 1645 int size;
duke@435 1646 while ((size = _stk.length()) > 0) {
duke@435 1647 Node* n = _stk.top(); // Leave node on stack
duke@435 1648 if (!visited_test_set(n)) {
duke@435 1649 // forward arc in graph
duke@435 1650 } else if (!post_visited_test(n)) {
duke@435 1651 // cross or back arc
duke@435 1652 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1653 Node *use = n->fast_out(i);
duke@435 1654 if (in_bb(use) && !visited_test(use) &&
duke@435 1655 // Don't go around backedge
duke@435 1656 (!use->is_Phi() || n == entry)) {
duke@435 1657 _stk.push(use);
duke@435 1658 }
duke@435 1659 }
duke@435 1660 if (_stk.length() == size) {
duke@435 1661 // There were no additional uses, post visit node now
duke@435 1662 _stk.pop(); // Remove node from stack
duke@435 1663 assert(rpo_idx >= 0, "");
duke@435 1664 _block.at_put_grow(rpo_idx, n);
duke@435 1665 rpo_idx--;
duke@435 1666 post_visited_set(n);
duke@435 1667 assert(rpo_idx >= 0 || _stk.is_empty(), "");
duke@435 1668 }
duke@435 1669 } else {
duke@435 1670 _stk.pop(); // Remove post-visited node from stack
duke@435 1671 }
duke@435 1672 }
duke@435 1673
duke@435 1674 // Create real map of block indices for nodes
duke@435 1675 for (int j = 0; j < _block.length(); j++) {
duke@435 1676 Node* n = _block.at(j);
duke@435 1677 set_bb_idx(n, j);
duke@435 1678 }
duke@435 1679
duke@435 1680 initialize_bb(); // Ensure extra info is allocated.
duke@435 1681
duke@435 1682 #ifndef PRODUCT
duke@435 1683 if (TraceSuperWord) {
duke@435 1684 print_bb();
duke@435 1685 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
duke@435 1686 for (int m = 0; m < _data_entry.length(); m++) {
duke@435 1687 tty->print("%3d ", m);
duke@435 1688 _data_entry.at(m)->dump();
duke@435 1689 }
duke@435 1690 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
duke@435 1691 for (int m = 0; m < _mem_slice_head.length(); m++) {
duke@435 1692 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
duke@435 1693 tty->print(" "); _mem_slice_tail.at(m)->dump();
duke@435 1694 }
duke@435 1695 }
duke@435 1696 #endif
duke@435 1697 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
duke@435 1698 }
duke@435 1699
duke@435 1700 //------------------------------initialize_bb---------------------------
duke@435 1701 // Initialize per node info
duke@435 1702 void SuperWord::initialize_bb() {
duke@435 1703 Node* last = _block.at(_block.length() - 1);
duke@435 1704 grow_node_info(bb_idx(last));
duke@435 1705 }
duke@435 1706
duke@435 1707 //------------------------------bb_insert_after---------------------------
duke@435 1708 // Insert n into block after pos
duke@435 1709 void SuperWord::bb_insert_after(Node* n, int pos) {
duke@435 1710 int n_pos = pos + 1;
duke@435 1711 // Make room
duke@435 1712 for (int i = _block.length() - 1; i >= n_pos; i--) {
duke@435 1713 _block.at_put_grow(i+1, _block.at(i));
duke@435 1714 }
duke@435 1715 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
duke@435 1716 _node_info.at_put_grow(j+1, _node_info.at(j));
duke@435 1717 }
duke@435 1718 // Set value
duke@435 1719 _block.at_put_grow(n_pos, n);
duke@435 1720 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
duke@435 1721 // Adjust map from node->_idx to _block index
duke@435 1722 for (int i = n_pos; i < _block.length(); i++) {
duke@435 1723 set_bb_idx(_block.at(i), i);
duke@435 1724 }
duke@435 1725 }
duke@435 1726
duke@435 1727 //------------------------------compute_max_depth---------------------------
duke@435 1728 // Compute max depth for expressions from beginning of block
duke@435 1729 // Use to prune search paths during test for independence.
duke@435 1730 void SuperWord::compute_max_depth() {
duke@435 1731 int ct = 0;
duke@435 1732 bool again;
duke@435 1733 do {
duke@435 1734 again = false;
duke@435 1735 for (int i = 0; i < _block.length(); i++) {
duke@435 1736 Node* n = _block.at(i);
duke@435 1737 if (!n->is_Phi()) {
duke@435 1738 int d_orig = depth(n);
duke@435 1739 int d_in = 0;
duke@435 1740 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
duke@435 1741 Node* pred = preds.current();
duke@435 1742 if (in_bb(pred)) {
duke@435 1743 d_in = MAX2(d_in, depth(pred));
duke@435 1744 }
duke@435 1745 }
duke@435 1746 if (d_in + 1 != d_orig) {
duke@435 1747 set_depth(n, d_in + 1);
duke@435 1748 again = true;
duke@435 1749 }
duke@435 1750 }
duke@435 1751 }
duke@435 1752 ct++;
duke@435 1753 } while (again);
duke@435 1754 #ifndef PRODUCT
duke@435 1755 if (TraceSuperWord && Verbose)
duke@435 1756 tty->print_cr("compute_max_depth iterated: %d times", ct);
duke@435 1757 #endif
duke@435 1758 }
duke@435 1759
duke@435 1760 //-------------------------compute_vector_element_type-----------------------
duke@435 1761 // Compute necessary vector element type for expressions
duke@435 1762 // This propagates backwards a narrower integer type when the
duke@435 1763 // upper bits of the value are not needed.
duke@435 1764 // Example: char a,b,c; a = b + c;
duke@435 1765 // Normally the type of the add is integer, but for packed character
duke@435 1766 // operations the type of the add needs to be char.
duke@435 1767 void SuperWord::compute_vector_element_type() {
duke@435 1768 #ifndef PRODUCT
duke@435 1769 if (TraceSuperWord && Verbose)
duke@435 1770 tty->print_cr("\ncompute_velt_type:");
duke@435 1771 #endif
duke@435 1772
duke@435 1773 // Initial type
duke@435 1774 for (int i = 0; i < _block.length(); i++) {
duke@435 1775 Node* n = _block.at(i);
kvn@3882 1776 set_velt_type(n, container_type(n));
duke@435 1777 }
duke@435 1778
kvn@4204 1779 // Propagate integer narrowed type backwards through operations
duke@435 1780 // that don't depend on higher order bits
duke@435 1781 for (int i = _block.length() - 1; i >= 0; i--) {
duke@435 1782 Node* n = _block.at(i);
duke@435 1783 // Only integer types need be examined
kvn@4204 1784 const Type* vtn = velt_type(n);
kvn@4204 1785 if (vtn->basic_type() == T_INT) {
duke@435 1786 uint start, end;
kvn@4006 1787 VectorNode::vector_operands(n, &start, &end);
duke@435 1788
duke@435 1789 for (uint j = start; j < end; j++) {
duke@435 1790 Node* in = n->in(j);
kvn@4001 1791 // Don't propagate through a memory
kvn@4001 1792 if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
kvn@4001 1793 data_size(n) < data_size(in)) {
kvn@4001 1794 bool same_type = true;
kvn@4001 1795 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
kvn@4001 1796 Node *use = in->fast_out(k);
kvn@4001 1797 if (!in_bb(use) || !same_velt_type(use, n)) {
kvn@4001 1798 same_type = false;
kvn@4001 1799 break;
duke@435 1800 }
kvn@4001 1801 }
kvn@4001 1802 if (same_type) {
kvn@4204 1803 // For right shifts of small integer types (bool, byte, char, short)
kvn@4204 1804 // we need precise information about sign-ness. Only Load nodes have
kvn@4204 1805 // this information because Store nodes are the same for signed and
kvn@4204 1806 // unsigned values. And any arithmetic operation after a load may
kvn@4204 1807 // expand a value to signed Int so such right shifts can't be used
kvn@4204 1808 // because vector elements do not have upper bits of Int.
kvn@4204 1809 const Type* vt = vtn;
kvn@4204 1810 if (VectorNode::is_shift(in)) {
kvn@4204 1811 Node* load = in->in(1);
kvn@4204 1812 if (load->is_Load() && (velt_type(load)->basic_type() == T_INT)) {
kvn@4204 1813 vt = velt_type(load);
kvn@4204 1814 } else if (in->Opcode() != Op_LShiftI) {
kvn@4204 1815 // Widen type to Int to avoid creation of right shift vector
kvn@4204 1816 // (align + data_size(s1) check in stmts_can_pack() will fail).
kvn@4204 1817 // Note, left shifts work regardless type.
kvn@4204 1818 vt = TypeInt::INT;
kvn@4204 1819 }
kvn@4204 1820 }
kvn@4001 1821 set_velt_type(in, vt);
duke@435 1822 }
duke@435 1823 }
duke@435 1824 }
duke@435 1825 }
duke@435 1826 }
duke@435 1827 #ifndef PRODUCT
duke@435 1828 if (TraceSuperWord && Verbose) {
duke@435 1829 for (int i = 0; i < _block.length(); i++) {
duke@435 1830 Node* n = _block.at(i);
duke@435 1831 velt_type(n)->dump();
duke@435 1832 tty->print("\t");
duke@435 1833 n->dump();
duke@435 1834 }
duke@435 1835 }
duke@435 1836 #endif
duke@435 1837 }
duke@435 1838
duke@435 1839 //------------------------------memory_alignment---------------------------
duke@435 1840 // Alignment within a vector memory reference
kvn@4105 1841 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
duke@435 1842 SWPointer p(s, this);
duke@435 1843 if (!p.valid()) {
duke@435 1844 return bottom_align;
duke@435 1845 }
kvn@3886 1846 int vw = vector_width_in_bytes(s);
kvn@3882 1847 if (vw < 2) {
kvn@3882 1848 return bottom_align; // No vectors for this type
kvn@3882 1849 }
duke@435 1850 int offset = p.offset_in_bytes();
kvn@4105 1851 offset += iv_adjust*p.memory_size();
kvn@3882 1852 int off_rem = offset % vw;
kvn@3882 1853 int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
duke@435 1854 return off_mod;
duke@435 1855 }
duke@435 1856
duke@435 1857 //---------------------------container_type---------------------------
duke@435 1858 // Smallest type containing range of values
kvn@3882 1859 const Type* SuperWord::container_type(Node* n) {
kvn@3882 1860 if (n->is_Mem()) {
kvn@4204 1861 BasicType bt = n->as_Mem()->memory_type();
kvn@4204 1862 if (n->is_Store() && (bt == T_CHAR)) {
kvn@4204 1863 // Use T_SHORT type instead of T_CHAR for stored values because any
kvn@4204 1864 // preceding arithmetic operation extends values to signed Int.
kvn@4204 1865 bt = T_SHORT;
kvn@4204 1866 }
kvn@4204 1867 if (n->Opcode() == Op_LoadUB) {
kvn@4204 1868 // Adjust type for unsigned byte loads, it is important for right shifts.
kvn@4204 1869 // T_BOOLEAN is used because there is no basic type representing type
kvn@4204 1870 // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
kvn@4204 1871 // size (one byte) and sign is important.
kvn@4204 1872 bt = T_BOOLEAN;
kvn@4204 1873 }
kvn@4204 1874 return Type::get_const_basic_type(bt);
duke@435 1875 }
kvn@3882 1876 const Type* t = _igvn.type(n);
duke@435 1877 if (t->basic_type() == T_INT) {
kvn@4001 1878 // A narrow type of arithmetic operations will be determined by
kvn@4001 1879 // propagating the type of memory operations.
duke@435 1880 return TypeInt::INT;
duke@435 1881 }
duke@435 1882 return t;
duke@435 1883 }
duke@435 1884
kvn@3882 1885 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
kvn@3882 1886 const Type* vt1 = velt_type(n1);
kvn@4105 1887 const Type* vt2 = velt_type(n2);
kvn@3882 1888 if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
kvn@3882 1889 // Compare vectors element sizes for integer types.
kvn@3882 1890 return data_size(n1) == data_size(n2);
kvn@3882 1891 }
kvn@3882 1892 return vt1 == vt2;
kvn@3882 1893 }
kvn@3882 1894
duke@435 1895 //------------------------------in_packset---------------------------
duke@435 1896 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 1897 bool SuperWord::in_packset(Node* s1, Node* s2) {
duke@435 1898 for (int i = 0; i < _packset.length(); i++) {
duke@435 1899 Node_List* p = _packset.at(i);
duke@435 1900 assert(p->size() == 2, "must be");
duke@435 1901 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
duke@435 1902 return true;
duke@435 1903 }
duke@435 1904 }
duke@435 1905 return false;
duke@435 1906 }
duke@435 1907
duke@435 1908 //------------------------------in_pack---------------------------
duke@435 1909 // Is s in pack p?
duke@435 1910 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
duke@435 1911 for (uint i = 0; i < p->size(); i++) {
duke@435 1912 if (p->at(i) == s) {
duke@435 1913 return p;
duke@435 1914 }
duke@435 1915 }
duke@435 1916 return NULL;
duke@435 1917 }
duke@435 1918
duke@435 1919 //------------------------------remove_pack_at---------------------------
duke@435 1920 // Remove the pack at position pos in the packset
duke@435 1921 void SuperWord::remove_pack_at(int pos) {
duke@435 1922 Node_List* p = _packset.at(pos);
duke@435 1923 for (uint i = 0; i < p->size(); i++) {
duke@435 1924 Node* s = p->at(i);
duke@435 1925 set_my_pack(s, NULL);
duke@435 1926 }
duke@435 1927 _packset.remove_at(pos);
duke@435 1928 }
duke@435 1929
duke@435 1930 //------------------------------executed_first---------------------------
duke@435 1931 // Return the node executed first in pack p. Uses the RPO block list
duke@435 1932 // to determine order.
duke@435 1933 Node* SuperWord::executed_first(Node_List* p) {
duke@435 1934 Node* n = p->at(0);
duke@435 1935 int n_rpo = bb_idx(n);
duke@435 1936 for (uint i = 1; i < p->size(); i++) {
duke@435 1937 Node* s = p->at(i);
duke@435 1938 int s_rpo = bb_idx(s);
duke@435 1939 if (s_rpo < n_rpo) {
duke@435 1940 n = s;
duke@435 1941 n_rpo = s_rpo;
duke@435 1942 }
duke@435 1943 }
duke@435 1944 return n;
duke@435 1945 }
duke@435 1946
duke@435 1947 //------------------------------executed_last---------------------------
duke@435 1948 // Return the node executed last in pack p.
duke@435 1949 Node* SuperWord::executed_last(Node_List* p) {
duke@435 1950 Node* n = p->at(0);
duke@435 1951 int n_rpo = bb_idx(n);
duke@435 1952 for (uint i = 1; i < p->size(); i++) {
duke@435 1953 Node* s = p->at(i);
duke@435 1954 int s_rpo = bb_idx(s);
duke@435 1955 if (s_rpo > n_rpo) {
duke@435 1956 n = s;
duke@435 1957 n_rpo = s_rpo;
duke@435 1958 }
duke@435 1959 }
duke@435 1960 return n;
duke@435 1961 }
duke@435 1962
duke@435 1963 //----------------------------align_initial_loop_index---------------------------
duke@435 1964 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 1965 // to align_to_ref will be a position zero in the vector.
duke@435 1966 // (iv + k) mod vector_align == 0
duke@435 1967 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
duke@435 1968 CountedLoopNode *main_head = lp()->as_CountedLoop();
duke@435 1969 assert(main_head->is_main_loop(), "");
duke@435 1970 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
duke@435 1971 assert(pre_end != NULL, "");
duke@435 1972 Node *pre_opaq1 = pre_end->limit();
duke@435 1973 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
duke@435 1974 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
never@507 1975 Node *lim0 = pre_opaq->in(1);
duke@435 1976
duke@435 1977 // Where we put new limit calculations
duke@435 1978 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1979
duke@435 1980 // Ensure the original loop limit is available from the
duke@435 1981 // pre-loop Opaque1 node.
duke@435 1982 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 1983 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
duke@435 1984
duke@435 1985 SWPointer align_to_ref_p(align_to_ref, this);
kvn@3882 1986 assert(align_to_ref_p.valid(), "sanity");
duke@435 1987
never@507 1988 // Given:
never@507 1989 // lim0 == original pre loop limit
never@507 1990 // V == v_align (power of 2)
never@507 1991 // invar == extra invariant piece of the address expression
kvn@4001 1992 // e == offset [ +/- invar ]
duke@435 1993 //
never@507 1994 // When reassociating expressions involving '%' the basic rules are:
never@507 1995 // (a - b) % k == 0 => a % k == b % k
never@507 1996 // and:
never@507 1997 // (a + b) % k == 0 => a % k == (k - b) % k
never@507 1998 //
never@507 1999 // For stride > 0 && scale > 0,
never@507 2000 // Derive the new pre-loop limit "lim" such that the two constraints:
never@507 2001 // (1) lim = lim0 + N (where N is some positive integer < V)
never@507 2002 // (2) (e + lim) % V == 0
never@507 2003 // are true.
never@507 2004 //
never@507 2005 // Substituting (1) into (2),
never@507 2006 // (e + lim0 + N) % V == 0
never@507 2007 // solve for N:
never@507 2008 // N = (V - (e + lim0)) % V
never@507 2009 // substitute back into (1), so that new limit
never@507 2010 // lim = lim0 + (V - (e + lim0)) % V
never@507 2011 //
never@507 2012 // For stride > 0 && scale < 0
never@507 2013 // Constraints:
never@507 2014 // lim = lim0 + N
never@507 2015 // (e - lim) % V == 0
never@507 2016 // Solving for lim:
never@507 2017 // (e - lim0 - N) % V == 0
never@507 2018 // N = (e - lim0) % V
never@507 2019 // lim = lim0 + (e - lim0) % V
never@507 2020 //
never@507 2021 // For stride < 0 && scale > 0
never@507 2022 // Constraints:
never@507 2023 // lim = lim0 - N
never@507 2024 // (e + lim) % V == 0
never@507 2025 // Solving for lim:
never@507 2026 // (e + lim0 - N) % V == 0
never@507 2027 // N = (e + lim0) % V
never@507 2028 // lim = lim0 - (e + lim0) % V
never@507 2029 //
never@507 2030 // For stride < 0 && scale < 0
never@507 2031 // Constraints:
never@507 2032 // lim = lim0 - N
never@507 2033 // (e - lim) % V == 0
never@507 2034 // Solving for lim:
never@507 2035 // (e - lim0 + N) % V == 0
never@507 2036 // N = (V - (e - lim0)) % V
never@507 2037 // lim = lim0 - (V - (e - lim0)) % V
duke@435 2038
kvn@3886 2039 int vw = vector_width_in_bytes(align_to_ref);
never@507 2040 int stride = iv_stride();
never@507 2041 int scale = align_to_ref_p.scale_in_bytes();
duke@435 2042 int elt_size = align_to_ref_p.memory_size();
kvn@3882 2043 int v_align = vw / elt_size;
kvn@3886 2044 assert(v_align > 1, "sanity");
kvn@4001 2045 int offset = align_to_ref_p.offset_in_bytes() / elt_size;
kvn@4001 2046 Node *offsn = _igvn.intcon(offset);
duke@435 2047
kvn@4001 2048 Node *e = offsn;
duke@435 2049 if (align_to_ref_p.invar() != NULL) {
kvn@4001 2050 // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
duke@435 2051 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2052 Node* aref = new (_phase->C) URShiftINode(align_to_ref_p.invar(), log2_elt);
kvn@4114 2053 _igvn.register_new_node_with_optimizer(aref);
duke@435 2054 _phase->set_ctrl(aref, pre_ctrl);
never@507 2055 if (align_to_ref_p.negate_invar()) {
kvn@4115 2056 e = new (_phase->C) SubINode(e, aref);
duke@435 2057 } else {
kvn@4115 2058 e = new (_phase->C) AddINode(e, aref);
duke@435 2059 }
kvn@4114 2060 _igvn.register_new_node_with_optimizer(e);
never@507 2061 _phase->set_ctrl(e, pre_ctrl);
duke@435 2062 }
kvn@3882 2063 if (vw > ObjectAlignmentInBytes) {
kvn@3882 2064 // incorporate base e +/- base && Mask >>> log2(elt)
kvn@4115 2065 Node* xbase = new(_phase->C) CastP2XNode(NULL, align_to_ref_p.base());
kvn@4114 2066 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2067 #ifdef _LP64
kvn@4115 2068 xbase = new (_phase->C) ConvL2INode(xbase);
kvn@4114 2069 _igvn.register_new_node_with_optimizer(xbase);
kvn@4001 2070 #endif
kvn@4001 2071 Node* mask = _igvn.intcon(vw-1);
kvn@4115 2072 Node* masked_xbase = new (_phase->C) AndINode(xbase, mask);
kvn@4114 2073 _igvn.register_new_node_with_optimizer(masked_xbase);
kvn@3882 2074 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
kvn@4115 2075 Node* bref = new (_phase->C) URShiftINode(masked_xbase, log2_elt);
kvn@4114 2076 _igvn.register_new_node_with_optimizer(bref);
kvn@3882 2077 _phase->set_ctrl(bref, pre_ctrl);
kvn@4115 2078 e = new (_phase->C) AddINode(e, bref);
kvn@4114 2079 _igvn.register_new_node_with_optimizer(e);
kvn@3882 2080 _phase->set_ctrl(e, pre_ctrl);
kvn@3882 2081 }
never@507 2082
never@507 2083 // compute e +/- lim0
never@507 2084 if (scale < 0) {
kvn@4115 2085 e = new (_phase->C) SubINode(e, lim0);
never@507 2086 } else {
kvn@4115 2087 e = new (_phase->C) AddINode(e, lim0);
never@507 2088 }
kvn@4114 2089 _igvn.register_new_node_with_optimizer(e);
never@507 2090 _phase->set_ctrl(e, pre_ctrl);
never@507 2091
never@507 2092 if (stride * scale > 0) {
never@507 2093 // compute V - (e +/- lim0)
never@507 2094 Node* va = _igvn.intcon(v_align);
kvn@4115 2095 e = new (_phase->C) SubINode(va, e);
kvn@4114 2096 _igvn.register_new_node_with_optimizer(e);
never@507 2097 _phase->set_ctrl(e, pre_ctrl);
never@507 2098 }
never@507 2099 // compute N = (exp) % V
duke@435 2100 Node* va_msk = _igvn.intcon(v_align - 1);
kvn@4115 2101 Node* N = new (_phase->C) AndINode(e, va_msk);
kvn@4114 2102 _igvn.register_new_node_with_optimizer(N);
never@507 2103 _phase->set_ctrl(N, pre_ctrl);
never@507 2104
never@507 2105 // substitute back into (1), so that new limit
never@507 2106 // lim = lim0 + N
never@507 2107 Node* lim;
never@507 2108 if (stride < 0) {
kvn@4115 2109 lim = new (_phase->C) SubINode(lim0, N);
duke@435 2110 } else {
kvn@4115 2111 lim = new (_phase->C) AddINode(lim0, N);
duke@435 2112 }
kvn@4114 2113 _igvn.register_new_node_with_optimizer(lim);
never@507 2114 _phase->set_ctrl(lim, pre_ctrl);
duke@435 2115 Node* constrained =
kvn@4115 2116 (stride > 0) ? (Node*) new (_phase->C) MinINode(lim, orig_limit)
kvn@4115 2117 : (Node*) new (_phase->C) MaxINode(lim, orig_limit);
kvn@4114 2118 _igvn.register_new_node_with_optimizer(constrained);
duke@435 2119 _phase->set_ctrl(constrained, pre_ctrl);
duke@435 2120 _igvn.hash_delete(pre_opaq);
duke@435 2121 pre_opaq->set_req(1, constrained);
duke@435 2122 }
duke@435 2123
duke@435 2124 //----------------------------get_pre_loop_end---------------------------
duke@435 2125 // Find pre loop end from main loop. Returns null if none.
duke@435 2126 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
duke@435 2127 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 2128 if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
duke@435 2129 Node *iffm = ctrl->in(0);
duke@435 2130 if (!iffm->is_If()) return NULL;
duke@435 2131 Node *p_f = iffm->in(0);
duke@435 2132 if (!p_f->is_IfFalse()) return NULL;
duke@435 2133 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
duke@435 2134 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 2135 if (!pre_end->loopnode()->is_pre_loop()) return NULL;
duke@435 2136 return pre_end;
duke@435 2137 }
duke@435 2138
duke@435 2139
duke@435 2140 //------------------------------init---------------------------
duke@435 2141 void SuperWord::init() {
duke@435 2142 _dg.init();
duke@435 2143 _packset.clear();
duke@435 2144 _disjoint_ptrs.clear();
duke@435 2145 _block.clear();
duke@435 2146 _data_entry.clear();
duke@435 2147 _mem_slice_head.clear();
duke@435 2148 _mem_slice_tail.clear();
duke@435 2149 _node_info.clear();
duke@435 2150 _align_to_ref = NULL;
duke@435 2151 _lpt = NULL;
duke@435 2152 _lp = NULL;
duke@435 2153 _bb = NULL;
duke@435 2154 _iv = NULL;
duke@435 2155 }
duke@435 2156
duke@435 2157 //------------------------------print_packset---------------------------
duke@435 2158 void SuperWord::print_packset() {
duke@435 2159 #ifndef PRODUCT
duke@435 2160 tty->print_cr("packset");
duke@435 2161 for (int i = 0; i < _packset.length(); i++) {
duke@435 2162 tty->print_cr("Pack: %d", i);
duke@435 2163 Node_List* p = _packset.at(i);
duke@435 2164 print_pack(p);
duke@435 2165 }
duke@435 2166 #endif
duke@435 2167 }
duke@435 2168
duke@435 2169 //------------------------------print_pack---------------------------
duke@435 2170 void SuperWord::print_pack(Node_List* p) {
duke@435 2171 for (uint i = 0; i < p->size(); i++) {
duke@435 2172 print_stmt(p->at(i));
duke@435 2173 }
duke@435 2174 }
duke@435 2175
duke@435 2176 //------------------------------print_bb---------------------------
duke@435 2177 void SuperWord::print_bb() {
duke@435 2178 #ifndef PRODUCT
duke@435 2179 tty->print_cr("\nBlock");
duke@435 2180 for (int i = 0; i < _block.length(); i++) {
duke@435 2181 Node* n = _block.at(i);
duke@435 2182 tty->print("%d ", i);
duke@435 2183 if (n) {
duke@435 2184 n->dump();
duke@435 2185 }
duke@435 2186 }
duke@435 2187 #endif
duke@435 2188 }
duke@435 2189
duke@435 2190 //------------------------------print_stmt---------------------------
duke@435 2191 void SuperWord::print_stmt(Node* s) {
duke@435 2192 #ifndef PRODUCT
duke@435 2193 tty->print(" align: %d \t", alignment(s));
duke@435 2194 s->dump();
duke@435 2195 #endif
duke@435 2196 }
duke@435 2197
duke@435 2198 //------------------------------blank---------------------------
duke@435 2199 char* SuperWord::blank(uint depth) {
duke@435 2200 static char blanks[101];
duke@435 2201 assert(depth < 101, "too deep");
duke@435 2202 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
duke@435 2203 blanks[depth] = '\0';
duke@435 2204 return blanks;
duke@435 2205 }
duke@435 2206
duke@435 2207
duke@435 2208 //==============================SWPointer===========================
duke@435 2209
duke@435 2210 //----------------------------SWPointer------------------------
duke@435 2211 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
duke@435 2212 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
duke@435 2213 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
duke@435 2214
duke@435 2215 Node* adr = mem->in(MemNode::Address);
duke@435 2216 if (!adr->is_AddP()) {
duke@435 2217 assert(!valid(), "too complex");
duke@435 2218 return;
duke@435 2219 }
duke@435 2220 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
duke@435 2221 Node* base = adr->in(AddPNode::Base);
cfang@1493 2222 //unsafe reference could not be aligned appropriately without runtime checking
cfang@1493 2223 if (base == NULL || base->bottom_type() == Type::TOP) {
cfang@1493 2224 assert(!valid(), "unsafe access");
cfang@1493 2225 return;
cfang@1493 2226 }
duke@435 2227 for (int i = 0; i < 3; i++) {
duke@435 2228 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
duke@435 2229 assert(!valid(), "too complex");
duke@435 2230 return;
duke@435 2231 }
duke@435 2232 adr = adr->in(AddPNode::Address);
duke@435 2233 if (base == adr || !adr->is_AddP()) {
duke@435 2234 break; // stop looking at addp's
duke@435 2235 }
duke@435 2236 }
duke@435 2237 _base = base;
duke@435 2238 _adr = adr;
duke@435 2239 assert(valid(), "Usable");
duke@435 2240 }
duke@435 2241
duke@435 2242 // Following is used to create a temporary object during
duke@435 2243 // the pattern match of an address expression.
duke@435 2244 SWPointer::SWPointer(SWPointer* p) :
duke@435 2245 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
duke@435 2246 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
duke@435 2247
duke@435 2248 //------------------------scaled_iv_plus_offset--------------------
duke@435 2249 // Match: k*iv + offset
duke@435 2250 // where: k is a constant that maybe zero, and
duke@435 2251 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
duke@435 2252 bool SWPointer::scaled_iv_plus_offset(Node* n) {
duke@435 2253 if (scaled_iv(n)) {
duke@435 2254 return true;
duke@435 2255 }
duke@435 2256 if (offset_plus_k(n)) {
duke@435 2257 return true;
duke@435 2258 }
duke@435 2259 int opc = n->Opcode();
duke@435 2260 if (opc == Op_AddI) {
duke@435 2261 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
duke@435 2262 return true;
duke@435 2263 }
duke@435 2264 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2265 return true;
duke@435 2266 }
duke@435 2267 } else if (opc == Op_SubI) {
duke@435 2268 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
duke@435 2269 return true;
duke@435 2270 }
duke@435 2271 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 2272 _scale *= -1;
duke@435 2273 return true;
duke@435 2274 }
duke@435 2275 }
duke@435 2276 return false;
duke@435 2277 }
duke@435 2278
duke@435 2279 //----------------------------scaled_iv------------------------
duke@435 2280 // Match: k*iv where k is a constant that's not zero
duke@435 2281 bool SWPointer::scaled_iv(Node* n) {
duke@435 2282 if (_scale != 0) {
duke@435 2283 return false; // already found a scale
duke@435 2284 }
duke@435 2285 if (n == iv()) {
duke@435 2286 _scale = 1;
duke@435 2287 return true;
duke@435 2288 }
duke@435 2289 int opc = n->Opcode();
duke@435 2290 if (opc == Op_MulI) {
duke@435 2291 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2292 _scale = n->in(2)->get_int();
duke@435 2293 return true;
duke@435 2294 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
duke@435 2295 _scale = n->in(1)->get_int();
duke@435 2296 return true;
duke@435 2297 }
duke@435 2298 } else if (opc == Op_LShiftI) {
duke@435 2299 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2300 _scale = 1 << n->in(2)->get_int();
duke@435 2301 return true;
duke@435 2302 }
duke@435 2303 } else if (opc == Op_ConvI2L) {
duke@435 2304 if (scaled_iv_plus_offset(n->in(1))) {
duke@435 2305 return true;
duke@435 2306 }
duke@435 2307 } else if (opc == Op_LShiftL) {
duke@435 2308 if (!has_iv() && _invar == NULL) {
duke@435 2309 // Need to preserve the current _offset value, so
duke@435 2310 // create a temporary object for this expression subtree.
duke@435 2311 // Hacky, so should re-engineer the address pattern match.
duke@435 2312 SWPointer tmp(this);
duke@435 2313 if (tmp.scaled_iv_plus_offset(n->in(1))) {
duke@435 2314 if (tmp._invar == NULL) {
duke@435 2315 int mult = 1 << n->in(2)->get_int();
duke@435 2316 _scale = tmp._scale * mult;
duke@435 2317 _offset += tmp._offset * mult;
duke@435 2318 return true;
duke@435 2319 }
duke@435 2320 }
duke@435 2321 }
duke@435 2322 }
duke@435 2323 return false;
duke@435 2324 }
duke@435 2325
duke@435 2326 //----------------------------offset_plus_k------------------------
duke@435 2327 // Match: offset is (k [+/- invariant])
duke@435 2328 // where k maybe zero and invariant is optional, but not both.
duke@435 2329 bool SWPointer::offset_plus_k(Node* n, bool negate) {
duke@435 2330 int opc = n->Opcode();
duke@435 2331 if (opc == Op_ConI) {
duke@435 2332 _offset += negate ? -(n->get_int()) : n->get_int();
duke@435 2333 return true;
duke@435 2334 } else if (opc == Op_ConL) {
duke@435 2335 // Okay if value fits into an int
duke@435 2336 const TypeLong* t = n->find_long_type();
duke@435 2337 if (t->higher_equal(TypeLong::INT)) {
duke@435 2338 jlong loff = n->get_long();
duke@435 2339 jint off = (jint)loff;
duke@435 2340 _offset += negate ? -off : loff;
duke@435 2341 return true;
duke@435 2342 }
duke@435 2343 return false;
duke@435 2344 }
duke@435 2345 if (_invar != NULL) return false; // already have an invariant
duke@435 2346 if (opc == Op_AddI) {
duke@435 2347 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2348 _negate_invar = negate;
duke@435 2349 _invar = n->in(1);
duke@435 2350 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2351 return true;
duke@435 2352 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2353 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2354 _negate_invar = negate;
duke@435 2355 _invar = n->in(2);
duke@435 2356 return true;
duke@435 2357 }
duke@435 2358 }
duke@435 2359 if (opc == Op_SubI) {
duke@435 2360 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2361 _negate_invar = negate;
duke@435 2362 _invar = n->in(1);
duke@435 2363 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2364 return true;
duke@435 2365 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2366 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2367 _negate_invar = !negate;
duke@435 2368 _invar = n->in(2);
duke@435 2369 return true;
duke@435 2370 }
duke@435 2371 }
duke@435 2372 if (invariant(n)) {
duke@435 2373 _negate_invar = negate;
duke@435 2374 _invar = n;
duke@435 2375 return true;
duke@435 2376 }
duke@435 2377 return false;
duke@435 2378 }
duke@435 2379
duke@435 2380 //----------------------------print------------------------
duke@435 2381 void SWPointer::print() {
duke@435 2382 #ifndef PRODUCT
duke@435 2383 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
duke@435 2384 _base != NULL ? _base->_idx : 0,
duke@435 2385 _adr != NULL ? _adr->_idx : 0,
duke@435 2386 _scale, _offset,
duke@435 2387 _negate_invar?'-':'+',
duke@435 2388 _invar != NULL ? _invar->_idx : 0);
duke@435 2389 #endif
duke@435 2390 }
duke@435 2391
duke@435 2392 // ========================= OrderedPair =====================
duke@435 2393
duke@435 2394 const OrderedPair OrderedPair::initial;
duke@435 2395
duke@435 2396 // ========================= SWNodeInfo =====================
duke@435 2397
duke@435 2398 const SWNodeInfo SWNodeInfo::initial;
duke@435 2399
duke@435 2400
duke@435 2401 // ============================ DepGraph ===========================
duke@435 2402
duke@435 2403 //------------------------------make_node---------------------------
duke@435 2404 // Make a new dependence graph node for an ideal node.
duke@435 2405 DepMem* DepGraph::make_node(Node* node) {
duke@435 2406 DepMem* m = new (_arena) DepMem(node);
duke@435 2407 if (node != NULL) {
duke@435 2408 assert(_map.at_grow(node->_idx) == NULL, "one init only");
duke@435 2409 _map.at_put_grow(node->_idx, m);
duke@435 2410 }
duke@435 2411 return m;
duke@435 2412 }
duke@435 2413
duke@435 2414 //------------------------------make_edge---------------------------
duke@435 2415 // Make a new dependence graph edge from dpred -> dsucc
duke@435 2416 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
duke@435 2417 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
duke@435 2418 dpred->set_out_head(e);
duke@435 2419 dsucc->set_in_head(e);
duke@435 2420 return e;
duke@435 2421 }
duke@435 2422
duke@435 2423 // ========================== DepMem ========================
duke@435 2424
duke@435 2425 //------------------------------in_cnt---------------------------
duke@435 2426 int DepMem::in_cnt() {
duke@435 2427 int ct = 0;
duke@435 2428 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
duke@435 2429 return ct;
duke@435 2430 }
duke@435 2431
duke@435 2432 //------------------------------out_cnt---------------------------
duke@435 2433 int DepMem::out_cnt() {
duke@435 2434 int ct = 0;
duke@435 2435 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
duke@435 2436 return ct;
duke@435 2437 }
duke@435 2438
duke@435 2439 //------------------------------print-----------------------------
duke@435 2440 void DepMem::print() {
duke@435 2441 #ifndef PRODUCT
duke@435 2442 tty->print(" DepNode %d (", _node->_idx);
duke@435 2443 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
duke@435 2444 Node* pred = p->pred()->node();
duke@435 2445 tty->print(" %d", pred != NULL ? pred->_idx : 0);
duke@435 2446 }
duke@435 2447 tty->print(") [");
duke@435 2448 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
duke@435 2449 Node* succ = s->succ()->node();
duke@435 2450 tty->print(" %d", succ != NULL ? succ->_idx : 0);
duke@435 2451 }
duke@435 2452 tty->print_cr(" ]");
duke@435 2453 #endif
duke@435 2454 }
duke@435 2455
duke@435 2456 // =========================== DepEdge =========================
duke@435 2457
duke@435 2458 //------------------------------DepPreds---------------------------
duke@435 2459 void DepEdge::print() {
duke@435 2460 #ifndef PRODUCT
duke@435 2461 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
duke@435 2462 #endif
duke@435 2463 }
duke@435 2464
duke@435 2465 // =========================== DepPreds =========================
duke@435 2466 // Iterator over predecessor edges in the dependence graph.
duke@435 2467
duke@435 2468 //------------------------------DepPreds---------------------------
duke@435 2469 DepPreds::DepPreds(Node* n, DepGraph& dg) {
duke@435 2470 _n = n;
duke@435 2471 _done = false;
duke@435 2472 if (_n->is_Store() || _n->is_Load()) {
duke@435 2473 _next_idx = MemNode::Address;
duke@435 2474 _end_idx = n->req();
duke@435 2475 _dep_next = dg.dep(_n)->in_head();
duke@435 2476 } else if (_n->is_Mem()) {
duke@435 2477 _next_idx = 0;
duke@435 2478 _end_idx = 0;
duke@435 2479 _dep_next = dg.dep(_n)->in_head();
duke@435 2480 } else {
duke@435 2481 _next_idx = 1;
duke@435 2482 _end_idx = _n->req();
duke@435 2483 _dep_next = NULL;
duke@435 2484 }
duke@435 2485 next();
duke@435 2486 }
duke@435 2487
duke@435 2488 //------------------------------next---------------------------
duke@435 2489 void DepPreds::next() {
duke@435 2490 if (_dep_next != NULL) {
duke@435 2491 _current = _dep_next->pred()->node();
duke@435 2492 _dep_next = _dep_next->next_in();
duke@435 2493 } else if (_next_idx < _end_idx) {
duke@435 2494 _current = _n->in(_next_idx++);
duke@435 2495 } else {
duke@435 2496 _done = true;
duke@435 2497 }
duke@435 2498 }
duke@435 2499
duke@435 2500 // =========================== DepSuccs =========================
duke@435 2501 // Iterator over successor edges in the dependence graph.
duke@435 2502
duke@435 2503 //------------------------------DepSuccs---------------------------
duke@435 2504 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
duke@435 2505 _n = n;
duke@435 2506 _done = false;
duke@435 2507 if (_n->is_Load()) {
duke@435 2508 _next_idx = 0;
duke@435 2509 _end_idx = _n->outcnt();
duke@435 2510 _dep_next = dg.dep(_n)->out_head();
duke@435 2511 } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
duke@435 2512 _next_idx = 0;
duke@435 2513 _end_idx = 0;
duke@435 2514 _dep_next = dg.dep(_n)->out_head();
duke@435 2515 } else {
duke@435 2516 _next_idx = 0;
duke@435 2517 _end_idx = _n->outcnt();
duke@435 2518 _dep_next = NULL;
duke@435 2519 }
duke@435 2520 next();
duke@435 2521 }
duke@435 2522
duke@435 2523 //-------------------------------next---------------------------
duke@435 2524 void DepSuccs::next() {
duke@435 2525 if (_dep_next != NULL) {
duke@435 2526 _current = _dep_next->succ()->node();
duke@435 2527 _dep_next = _dep_next->next_out();
duke@435 2528 } else if (_next_idx < _end_idx) {
duke@435 2529 _current = _n->raw_out(_next_idx++);
duke@435 2530 } else {
duke@435 2531 _done = true;
duke@435 2532 }
duke@435 2533 }

mercurial