src/share/vm/opto/superword.cpp

Mon, 31 Aug 2009 08:31:45 -0700

author
cfang
date
Mon, 31 Aug 2009 08:31:45 -0700
changeset 1387
ace8397c8563
parent 1102
78af5ae8e731
child 1420
685e959d09ea
permissions
-rw-r--r--

6876276: assert(!is_visited,"visit only once")
Summary: schedule the superword loads based on dependence constraints
Reviewed-by: kvn, never

duke@435 1 /*
xdono@1014 2 * Copyright 2007-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 */
duke@435 23
duke@435 24 #include "incls/_precompiled.incl"
duke@435 25 #include "incls/_superword.cpp.incl"
duke@435 26
duke@435 27 //
duke@435 28 // S U P E R W O R D T R A N S F O R M
duke@435 29 //=============================================================================
duke@435 30
duke@435 31 //------------------------------SuperWord---------------------------
duke@435 32 SuperWord::SuperWord(PhaseIdealLoop* phase) :
duke@435 33 _phase(phase),
duke@435 34 _igvn(phase->_igvn),
duke@435 35 _arena(phase->C->comp_arena()),
duke@435 36 _packset(arena(), 8, 0, NULL), // packs for the current block
duke@435 37 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
duke@435 38 _block(arena(), 8, 0, NULL), // nodes in current block
duke@435 39 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
duke@435 40 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
duke@435 41 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
duke@435 42 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
duke@435 43 _align_to_ref(NULL), // memory reference to align vectors to
duke@435 44 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
duke@435 45 _dg(_arena), // dependence graph
duke@435 46 _visited(arena()), // visited node set
duke@435 47 _post_visited(arena()), // post visited node set
duke@435 48 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
duke@435 49 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
duke@435 50 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
duke@435 51 _lpt(NULL), // loop tree node
duke@435 52 _lp(NULL), // LoopNode
duke@435 53 _bb(NULL), // basic block
duke@435 54 _iv(NULL) // induction var
duke@435 55 {}
duke@435 56
duke@435 57 //------------------------------transform_loop---------------------------
duke@435 58 void SuperWord::transform_loop(IdealLoopTree* lpt) {
duke@435 59 assert(lpt->_head->is_CountedLoop(), "must be");
duke@435 60 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
duke@435 61
duke@435 62 if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
duke@435 63
duke@435 64 // Check for no control flow in body (other than exit)
duke@435 65 Node *cl_exit = cl->loopexit();
duke@435 66 if (cl_exit->in(0) != lpt->_head) return;
duke@435 67
never@540 68 // Make sure the are no extra control users of the loop backedge
never@540 69 if (cl->back_control()->outcnt() != 1) {
never@540 70 return;
never@540 71 }
never@540 72
duke@435 73 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
duke@435 74 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
duke@435 75 if (pre_end == NULL) return;
duke@435 76 Node *pre_opaq1 = pre_end->limit();
duke@435 77 if (pre_opaq1->Opcode() != Op_Opaque1) return;
duke@435 78
duke@435 79 // Do vectors exist on this architecture?
duke@435 80 if (vector_width_in_bytes() == 0) return;
duke@435 81
duke@435 82 init(); // initialize data structures
duke@435 83
duke@435 84 set_lpt(lpt);
duke@435 85 set_lp(cl);
duke@435 86
duke@435 87 // For now, define one block which is the entire loop body
duke@435 88 set_bb(cl);
duke@435 89
duke@435 90 assert(_packset.length() == 0, "packset must be empty");
duke@435 91 SLP_extract();
duke@435 92 }
duke@435 93
duke@435 94 //------------------------------SLP_extract---------------------------
duke@435 95 // Extract the superword level parallelism
duke@435 96 //
duke@435 97 // 1) A reverse post-order of nodes in the block is constructed. By scanning
duke@435 98 // this list from first to last, all definitions are visited before their uses.
duke@435 99 //
duke@435 100 // 2) A point-to-point dependence graph is constructed between memory references.
duke@435 101 // This simplies the upcoming "independence" checker.
duke@435 102 //
duke@435 103 // 3) The maximum depth in the node graph from the beginning of the block
duke@435 104 // to each node is computed. This is used to prune the graph search
duke@435 105 // in the independence checker.
duke@435 106 //
duke@435 107 // 4) For integer types, the necessary bit width is propagated backwards
duke@435 108 // from stores to allow packed operations on byte, char, and short
duke@435 109 // integers. This reverses the promotion to type "int" that javac
duke@435 110 // did for operations like: char c1,c2,c3; c1 = c2 + c3.
duke@435 111 //
duke@435 112 // 5) One of the memory references is picked to be an aligned vector reference.
duke@435 113 // The pre-loop trip count is adjusted to align this reference in the
duke@435 114 // unrolled body.
duke@435 115 //
duke@435 116 // 6) The initial set of pack pairs is seeded with memory references.
duke@435 117 //
duke@435 118 // 7) The set of pack pairs is extended by following use->def and def->use links.
duke@435 119 //
duke@435 120 // 8) The pairs are combined into vector sized packs.
duke@435 121 //
duke@435 122 // 9) Reorder the memory slices to co-locate members of the memory packs.
duke@435 123 //
duke@435 124 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
duke@435 125 // inserting scalar promotion, vector creation from multiple scalars, and
duke@435 126 // extraction of scalar values from vectors.
duke@435 127 //
duke@435 128 void SuperWord::SLP_extract() {
duke@435 129
duke@435 130 // Ready the block
duke@435 131
duke@435 132 construct_bb();
duke@435 133
duke@435 134 dependence_graph();
duke@435 135
duke@435 136 compute_max_depth();
duke@435 137
duke@435 138 compute_vector_element_type();
duke@435 139
duke@435 140 // Attempt vectorization
duke@435 141
duke@435 142 find_adjacent_refs();
duke@435 143
duke@435 144 extend_packlist();
duke@435 145
duke@435 146 combine_packs();
duke@435 147
duke@435 148 construct_my_pack_map();
duke@435 149
duke@435 150 filter_packs();
duke@435 151
duke@435 152 schedule();
duke@435 153
duke@435 154 output();
duke@435 155 }
duke@435 156
duke@435 157 //------------------------------find_adjacent_refs---------------------------
duke@435 158 // Find the adjacent memory references and create pack pairs for them.
duke@435 159 // This is the initial set of packs that will then be extended by
duke@435 160 // following use->def and def->use links. The align positions are
duke@435 161 // assigned relative to the reference "align_to_ref"
duke@435 162 void SuperWord::find_adjacent_refs() {
duke@435 163 // Get list of memory operations
duke@435 164 Node_List memops;
duke@435 165 for (int i = 0; i < _block.length(); i++) {
duke@435 166 Node* n = _block.at(i);
kvn@464 167 if (n->is_Mem() && in_bb(n) &&
kvn@464 168 is_java_primitive(n->as_Mem()->memory_type())) {
duke@435 169 int align = memory_alignment(n->as_Mem(), 0);
duke@435 170 if (align != bottom_align) {
duke@435 171 memops.push(n);
duke@435 172 }
duke@435 173 }
duke@435 174 }
duke@435 175 if (memops.size() == 0) return;
duke@435 176
duke@435 177 // Find a memory reference to align to. The pre-loop trip count
duke@435 178 // is modified to align this reference to a vector-aligned address
duke@435 179 find_align_to_ref(memops);
duke@435 180 if (align_to_ref() == NULL) return;
duke@435 181
duke@435 182 SWPointer align_to_ref_p(align_to_ref(), this);
duke@435 183 int offset = align_to_ref_p.offset_in_bytes();
duke@435 184 int scale = align_to_ref_p.scale_in_bytes();
duke@435 185 int vw = vector_width_in_bytes();
duke@435 186 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
duke@435 187 int iv_adjustment = (stride_sign * vw - (offset % vw)) % vw;
duke@435 188
duke@435 189 #ifndef PRODUCT
duke@435 190 if (TraceSuperWord)
never@507 191 tty->print_cr("\noffset = %d iv_adjustment = %d elt_align = %d scale = %d iv_stride = %d",
never@507 192 offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
duke@435 193 #endif
duke@435 194
duke@435 195 // Set alignment relative to "align_to_ref"
duke@435 196 for (int i = memops.size() - 1; i >= 0; i--) {
duke@435 197 MemNode* s = memops.at(i)->as_Mem();
duke@435 198 SWPointer p2(s, this);
duke@435 199 if (p2.comparable(align_to_ref_p)) {
duke@435 200 int align = memory_alignment(s, iv_adjustment);
duke@435 201 set_alignment(s, align);
duke@435 202 } else {
duke@435 203 memops.remove(i);
duke@435 204 }
duke@435 205 }
duke@435 206
duke@435 207 // Create initial pack pairs of memory operations
duke@435 208 for (uint i = 0; i < memops.size(); i++) {
duke@435 209 Node* s1 = memops.at(i);
duke@435 210 for (uint j = 0; j < memops.size(); j++) {
duke@435 211 Node* s2 = memops.at(j);
duke@435 212 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
duke@435 213 int align = alignment(s1);
duke@435 214 if (stmts_can_pack(s1, s2, align)) {
duke@435 215 Node_List* pair = new Node_List();
duke@435 216 pair->push(s1);
duke@435 217 pair->push(s2);
duke@435 218 _packset.append(pair);
duke@435 219 }
duke@435 220 }
duke@435 221 }
duke@435 222 }
duke@435 223
duke@435 224 #ifndef PRODUCT
duke@435 225 if (TraceSuperWord) {
duke@435 226 tty->print_cr("\nAfter find_adjacent_refs");
duke@435 227 print_packset();
duke@435 228 }
duke@435 229 #endif
duke@435 230 }
duke@435 231
duke@435 232 //------------------------------find_align_to_ref---------------------------
duke@435 233 // Find a memory reference to align the loop induction variable to.
duke@435 234 // Looks first at stores then at loads, looking for a memory reference
duke@435 235 // with the largest number of references similar to it.
duke@435 236 void SuperWord::find_align_to_ref(Node_List &memops) {
duke@435 237 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
duke@435 238
duke@435 239 // Count number of comparable memory ops
duke@435 240 for (uint i = 0; i < memops.size(); i++) {
duke@435 241 MemNode* s1 = memops.at(i)->as_Mem();
duke@435 242 SWPointer p1(s1, this);
duke@435 243 // Discard if pre loop can't align this reference
duke@435 244 if (!ref_is_alignable(p1)) {
duke@435 245 *cmp_ct.adr_at(i) = 0;
duke@435 246 continue;
duke@435 247 }
duke@435 248 for (uint j = i+1; j < memops.size(); j++) {
duke@435 249 MemNode* s2 = memops.at(j)->as_Mem();
duke@435 250 if (isomorphic(s1, s2)) {
duke@435 251 SWPointer p2(s2, this);
duke@435 252 if (p1.comparable(p2)) {
duke@435 253 (*cmp_ct.adr_at(i))++;
duke@435 254 (*cmp_ct.adr_at(j))++;
duke@435 255 }
duke@435 256 }
duke@435 257 }
duke@435 258 }
duke@435 259
duke@435 260 // Find Store (or Load) with the greatest number of "comparable" references
duke@435 261 int max_ct = 0;
duke@435 262 int max_idx = -1;
duke@435 263 int min_size = max_jint;
duke@435 264 int min_iv_offset = max_jint;
duke@435 265 for (uint j = 0; j < memops.size(); j++) {
duke@435 266 MemNode* s = memops.at(j)->as_Mem();
duke@435 267 if (s->is_Store()) {
duke@435 268 SWPointer p(s, this);
duke@435 269 if (cmp_ct.at(j) > max_ct ||
duke@435 270 cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
duke@435 271 data_size(s) == min_size &&
duke@435 272 p.offset_in_bytes() < min_iv_offset)) {
duke@435 273 max_ct = cmp_ct.at(j);
duke@435 274 max_idx = j;
duke@435 275 min_size = data_size(s);
duke@435 276 min_iv_offset = p.offset_in_bytes();
duke@435 277 }
duke@435 278 }
duke@435 279 }
duke@435 280 // If no stores, look at loads
duke@435 281 if (max_ct == 0) {
duke@435 282 for (uint j = 0; j < memops.size(); j++) {
duke@435 283 MemNode* s = memops.at(j)->as_Mem();
duke@435 284 if (s->is_Load()) {
duke@435 285 SWPointer p(s, this);
duke@435 286 if (cmp_ct.at(j) > max_ct ||
duke@435 287 cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
duke@435 288 data_size(s) == min_size &&
duke@435 289 p.offset_in_bytes() < min_iv_offset)) {
duke@435 290 max_ct = cmp_ct.at(j);
duke@435 291 max_idx = j;
duke@435 292 min_size = data_size(s);
duke@435 293 min_iv_offset = p.offset_in_bytes();
duke@435 294 }
duke@435 295 }
duke@435 296 }
duke@435 297 }
duke@435 298
duke@435 299 if (max_ct > 0)
duke@435 300 set_align_to_ref(memops.at(max_idx)->as_Mem());
duke@435 301
duke@435 302 #ifndef PRODUCT
duke@435 303 if (TraceSuperWord && Verbose) {
duke@435 304 tty->print_cr("\nVector memops after find_align_to_refs");
duke@435 305 for (uint i = 0; i < memops.size(); i++) {
duke@435 306 MemNode* s = memops.at(i)->as_Mem();
duke@435 307 s->dump();
duke@435 308 }
duke@435 309 }
duke@435 310 #endif
duke@435 311 }
duke@435 312
duke@435 313 //------------------------------ref_is_alignable---------------------------
duke@435 314 // Can the preloop align the reference to position zero in the vector?
duke@435 315 bool SuperWord::ref_is_alignable(SWPointer& p) {
duke@435 316 if (!p.has_iv()) {
duke@435 317 return true; // no induction variable
duke@435 318 }
duke@435 319 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
duke@435 320 assert(pre_end->stride_is_con(), "pre loop stride is constant");
duke@435 321 int preloop_stride = pre_end->stride_con();
duke@435 322
duke@435 323 int span = preloop_stride * p.scale_in_bytes();
duke@435 324
duke@435 325 // Stride one accesses are alignable.
duke@435 326 if (ABS(span) == p.memory_size())
duke@435 327 return true;
duke@435 328
duke@435 329 // If initial offset from start of object is computable,
duke@435 330 // compute alignment within the vector.
duke@435 331 int vw = vector_width_in_bytes();
duke@435 332 if (vw % span == 0) {
duke@435 333 Node* init_nd = pre_end->init_trip();
duke@435 334 if (init_nd->is_Con() && p.invar() == NULL) {
duke@435 335 int init = init_nd->bottom_type()->is_int()->get_con();
duke@435 336
duke@435 337 int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
duke@435 338 assert(init_offset >= 0, "positive offset from object start");
duke@435 339
duke@435 340 if (span > 0) {
duke@435 341 return (vw - (init_offset % vw)) % span == 0;
duke@435 342 } else {
duke@435 343 assert(span < 0, "nonzero stride * scale");
duke@435 344 return (init_offset % vw) % -span == 0;
duke@435 345 }
duke@435 346 }
duke@435 347 }
duke@435 348 return false;
duke@435 349 }
duke@435 350
duke@435 351 //---------------------------dependence_graph---------------------------
duke@435 352 // Construct dependency graph.
duke@435 353 // Add dependence edges to load/store nodes for memory dependence
duke@435 354 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
duke@435 355 void SuperWord::dependence_graph() {
duke@435 356 // First, assign a dependence node to each memory node
duke@435 357 for (int i = 0; i < _block.length(); i++ ) {
duke@435 358 Node *n = _block.at(i);
duke@435 359 if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
duke@435 360 _dg.make_node(n);
duke@435 361 }
duke@435 362 }
duke@435 363
duke@435 364 // For each memory slice, create the dependences
duke@435 365 for (int i = 0; i < _mem_slice_head.length(); i++) {
duke@435 366 Node* n = _mem_slice_head.at(i);
duke@435 367 Node* n_tail = _mem_slice_tail.at(i);
duke@435 368
duke@435 369 // Get slice in predecessor order (last is first)
duke@435 370 mem_slice_preds(n_tail, n, _nlist);
duke@435 371
duke@435 372 // Make the slice dependent on the root
duke@435 373 DepMem* slice = _dg.dep(n);
duke@435 374 _dg.make_edge(_dg.root(), slice);
duke@435 375
duke@435 376 // Create a sink for the slice
duke@435 377 DepMem* slice_sink = _dg.make_node(NULL);
duke@435 378 _dg.make_edge(slice_sink, _dg.tail());
duke@435 379
duke@435 380 // Now visit each pair of memory ops, creating the edges
duke@435 381 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
duke@435 382 Node* s1 = _nlist.at(j);
duke@435 383
duke@435 384 // If no dependency yet, use slice
duke@435 385 if (_dg.dep(s1)->in_cnt() == 0) {
duke@435 386 _dg.make_edge(slice, s1);
duke@435 387 }
duke@435 388 SWPointer p1(s1->as_Mem(), this);
duke@435 389 bool sink_dependent = true;
duke@435 390 for (int k = j - 1; k >= 0; k--) {
duke@435 391 Node* s2 = _nlist.at(k);
duke@435 392 if (s1->is_Load() && s2->is_Load())
duke@435 393 continue;
duke@435 394 SWPointer p2(s2->as_Mem(), this);
duke@435 395
duke@435 396 int cmp = p1.cmp(p2);
duke@435 397 if (SuperWordRTDepCheck &&
duke@435 398 p1.base() != p2.base() && p1.valid() && p2.valid()) {
duke@435 399 // Create a runtime check to disambiguate
duke@435 400 OrderedPair pp(p1.base(), p2.base());
duke@435 401 _disjoint_ptrs.append_if_missing(pp);
duke@435 402 } else if (!SWPointer::not_equal(cmp)) {
duke@435 403 // Possibly same address
duke@435 404 _dg.make_edge(s1, s2);
duke@435 405 sink_dependent = false;
duke@435 406 }
duke@435 407 }
duke@435 408 if (sink_dependent) {
duke@435 409 _dg.make_edge(s1, slice_sink);
duke@435 410 }
duke@435 411 }
duke@435 412 #ifndef PRODUCT
duke@435 413 if (TraceSuperWord) {
duke@435 414 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
duke@435 415 for (int q = 0; q < _nlist.length(); q++) {
duke@435 416 _dg.print(_nlist.at(q));
duke@435 417 }
duke@435 418 tty->cr();
duke@435 419 }
duke@435 420 #endif
duke@435 421 _nlist.clear();
duke@435 422 }
duke@435 423
duke@435 424 #ifndef PRODUCT
duke@435 425 if (TraceSuperWord) {
duke@435 426 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
duke@435 427 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
duke@435 428 _disjoint_ptrs.at(r).print();
duke@435 429 tty->cr();
duke@435 430 }
duke@435 431 tty->cr();
duke@435 432 }
duke@435 433 #endif
duke@435 434 }
duke@435 435
duke@435 436 //---------------------------mem_slice_preds---------------------------
duke@435 437 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 438 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
duke@435 439 assert(preds.length() == 0, "start empty");
duke@435 440 Node* n = start;
duke@435 441 Node* prev = NULL;
duke@435 442 while (true) {
duke@435 443 assert(in_bb(n), "must be in block");
duke@435 444 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 445 Node* out = n->fast_out(i);
duke@435 446 if (out->is_Load()) {
duke@435 447 if (in_bb(out)) {
duke@435 448 preds.push(out);
duke@435 449 }
duke@435 450 } else {
duke@435 451 // FIXME
duke@435 452 if (out->is_MergeMem() && !in_bb(out)) {
duke@435 453 // Either unrolling is causing a memory edge not to disappear,
duke@435 454 // or need to run igvn.optimize() again before SLP
duke@435 455 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
duke@435 456 // Ditto. Not sure what else to check further.
cfang@1102 457 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
duke@435 458 // StoreCM has an input edge used as a precedence edge.
duke@435 459 // Maybe an issue when oop stores are vectorized.
cfang@1102 460 } else if( out->is_MergeMem() && prev &&
cfang@1102 461 prev->Opcode() == Op_StoreCM && out == prev->in(MemNode::OopStore)) {
cfang@1102 462 // Oop store is a MergeMem! This should not happen. Temporarily remove the assertion
cfang@1102 463 // for this case because it could not be superwordized anyway.
duke@435 464 } else {
duke@435 465 assert(out == prev || prev == NULL, "no branches off of store slice");
duke@435 466 }
duke@435 467 }
duke@435 468 }
duke@435 469 if (n == stop) break;
duke@435 470 preds.push(n);
duke@435 471 prev = n;
duke@435 472 n = n->in(MemNode::Memory);
duke@435 473 }
duke@435 474 }
duke@435 475
duke@435 476 //------------------------------stmts_can_pack---------------------------
twisti@1040 477 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
duke@435 478 // s1 aligned at "align"
duke@435 479 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
duke@435 480 if (isomorphic(s1, s2)) {
duke@435 481 if (independent(s1, s2)) {
duke@435 482 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
duke@435 483 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
duke@435 484 int s1_align = alignment(s1);
duke@435 485 int s2_align = alignment(s2);
duke@435 486 if (s1_align == top_align || s1_align == align) {
duke@435 487 if (s2_align == top_align || s2_align == align + data_size(s1)) {
duke@435 488 return true;
duke@435 489 }
duke@435 490 }
duke@435 491 }
duke@435 492 }
duke@435 493 }
duke@435 494 }
duke@435 495 return false;
duke@435 496 }
duke@435 497
duke@435 498 //------------------------------exists_at---------------------------
duke@435 499 // Does s exist in a pack at position pos?
duke@435 500 bool SuperWord::exists_at(Node* s, uint pos) {
duke@435 501 for (int i = 0; i < _packset.length(); i++) {
duke@435 502 Node_List* p = _packset.at(i);
duke@435 503 if (p->at(pos) == s) {
duke@435 504 return true;
duke@435 505 }
duke@435 506 }
duke@435 507 return false;
duke@435 508 }
duke@435 509
duke@435 510 //------------------------------are_adjacent_refs---------------------------
duke@435 511 // Is s1 immediately before s2 in memory?
duke@435 512 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
duke@435 513 if (!s1->is_Mem() || !s2->is_Mem()) return false;
duke@435 514 if (!in_bb(s1) || !in_bb(s2)) return false;
duke@435 515 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
duke@435 516 // only pack memops that are in the same alias set until that's fixed.
duke@435 517 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
duke@435 518 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
duke@435 519 return false;
duke@435 520 SWPointer p1(s1->as_Mem(), this);
duke@435 521 SWPointer p2(s2->as_Mem(), this);
duke@435 522 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
duke@435 523 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
duke@435 524 return diff == data_size(s1);
duke@435 525 }
duke@435 526
duke@435 527 //------------------------------isomorphic---------------------------
duke@435 528 // Are s1 and s2 similar?
duke@435 529 bool SuperWord::isomorphic(Node* s1, Node* s2) {
duke@435 530 if (s1->Opcode() != s2->Opcode()) return false;
duke@435 531 if (s1->req() != s2->req()) return false;
duke@435 532 if (s1->in(0) != s2->in(0)) return false;
duke@435 533 if (velt_type(s1) != velt_type(s2)) return false;
duke@435 534 return true;
duke@435 535 }
duke@435 536
duke@435 537 //------------------------------independent---------------------------
duke@435 538 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 539 bool SuperWord::independent(Node* s1, Node* s2) {
duke@435 540 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
duke@435 541 int d1 = depth(s1);
duke@435 542 int d2 = depth(s2);
duke@435 543 if (d1 == d2) return s1 != s2;
duke@435 544 Node* deep = d1 > d2 ? s1 : s2;
duke@435 545 Node* shallow = d1 > d2 ? s2 : s1;
duke@435 546
duke@435 547 visited_clear();
duke@435 548
duke@435 549 return independent_path(shallow, deep);
duke@435 550 }
duke@435 551
duke@435 552 //------------------------------independent_path------------------------------
duke@435 553 // Helper for independent
duke@435 554 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
duke@435 555 if (dp >= 1000) return false; // stop deep recursion
duke@435 556 visited_set(deep);
duke@435 557 int shal_depth = depth(shallow);
duke@435 558 assert(shal_depth <= depth(deep), "must be");
duke@435 559 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
duke@435 560 Node* pred = preds.current();
duke@435 561 if (in_bb(pred) && !visited_test(pred)) {
duke@435 562 if (shallow == pred) {
duke@435 563 return false;
duke@435 564 }
duke@435 565 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
duke@435 566 return false;
duke@435 567 }
duke@435 568 }
duke@435 569 }
duke@435 570 return true;
duke@435 571 }
duke@435 572
duke@435 573 //------------------------------set_alignment---------------------------
duke@435 574 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
duke@435 575 set_alignment(s1, align);
duke@435 576 set_alignment(s2, align + data_size(s1));
duke@435 577 }
duke@435 578
duke@435 579 //------------------------------data_size---------------------------
duke@435 580 int SuperWord::data_size(Node* s) {
duke@435 581 const Type* t = velt_type(s);
duke@435 582 BasicType bt = t->array_element_basic_type();
kvn@464 583 int bsize = type2aelembytes(bt);
duke@435 584 assert(bsize != 0, "valid size");
duke@435 585 return bsize;
duke@435 586 }
duke@435 587
duke@435 588 //------------------------------extend_packlist---------------------------
duke@435 589 // Extend packset by following use->def and def->use links from pack members.
duke@435 590 void SuperWord::extend_packlist() {
duke@435 591 bool changed;
duke@435 592 do {
duke@435 593 changed = false;
duke@435 594 for (int i = 0; i < _packset.length(); i++) {
duke@435 595 Node_List* p = _packset.at(i);
duke@435 596 changed |= follow_use_defs(p);
duke@435 597 changed |= follow_def_uses(p);
duke@435 598 }
duke@435 599 } while (changed);
duke@435 600
duke@435 601 #ifndef PRODUCT
duke@435 602 if (TraceSuperWord) {
duke@435 603 tty->print_cr("\nAfter extend_packlist");
duke@435 604 print_packset();
duke@435 605 }
duke@435 606 #endif
duke@435 607 }
duke@435 608
duke@435 609 //------------------------------follow_use_defs---------------------------
duke@435 610 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 611 bool SuperWord::follow_use_defs(Node_List* p) {
duke@435 612 Node* s1 = p->at(0);
duke@435 613 Node* s2 = p->at(1);
duke@435 614 assert(p->size() == 2, "just checking");
duke@435 615 assert(s1->req() == s2->req(), "just checking");
duke@435 616 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 617
duke@435 618 if (s1->is_Load()) return false;
duke@435 619
duke@435 620 int align = alignment(s1);
duke@435 621 bool changed = false;
duke@435 622 int start = s1->is_Store() ? MemNode::ValueIn : 1;
duke@435 623 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
duke@435 624 for (int j = start; j < end; j++) {
duke@435 625 Node* t1 = s1->in(j);
duke@435 626 Node* t2 = s2->in(j);
duke@435 627 if (!in_bb(t1) || !in_bb(t2))
duke@435 628 continue;
duke@435 629 if (stmts_can_pack(t1, t2, align)) {
duke@435 630 if (est_savings(t1, t2) >= 0) {
duke@435 631 Node_List* pair = new Node_List();
duke@435 632 pair->push(t1);
duke@435 633 pair->push(t2);
duke@435 634 _packset.append(pair);
duke@435 635 set_alignment(t1, t2, align);
duke@435 636 changed = true;
duke@435 637 }
duke@435 638 }
duke@435 639 }
duke@435 640 return changed;
duke@435 641 }
duke@435 642
duke@435 643 //------------------------------follow_def_uses---------------------------
duke@435 644 // Extend the packset by visiting uses of nodes in pack p
duke@435 645 bool SuperWord::follow_def_uses(Node_List* p) {
duke@435 646 bool changed = false;
duke@435 647 Node* s1 = p->at(0);
duke@435 648 Node* s2 = p->at(1);
duke@435 649 assert(p->size() == 2, "just checking");
duke@435 650 assert(s1->req() == s2->req(), "just checking");
duke@435 651 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 652
duke@435 653 if (s1->is_Store()) return false;
duke@435 654
duke@435 655 int align = alignment(s1);
duke@435 656 int savings = -1;
duke@435 657 Node* u1 = NULL;
duke@435 658 Node* u2 = NULL;
duke@435 659 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 660 Node* t1 = s1->fast_out(i);
duke@435 661 if (!in_bb(t1)) continue;
duke@435 662 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
duke@435 663 Node* t2 = s2->fast_out(j);
duke@435 664 if (!in_bb(t2)) continue;
duke@435 665 if (!opnd_positions_match(s1, t1, s2, t2))
duke@435 666 continue;
duke@435 667 if (stmts_can_pack(t1, t2, align)) {
duke@435 668 int my_savings = est_savings(t1, t2);
duke@435 669 if (my_savings > savings) {
duke@435 670 savings = my_savings;
duke@435 671 u1 = t1;
duke@435 672 u2 = t2;
duke@435 673 }
duke@435 674 }
duke@435 675 }
duke@435 676 }
duke@435 677 if (savings >= 0) {
duke@435 678 Node_List* pair = new Node_List();
duke@435 679 pair->push(u1);
duke@435 680 pair->push(u2);
duke@435 681 _packset.append(pair);
duke@435 682 set_alignment(u1, u2, align);
duke@435 683 changed = true;
duke@435 684 }
duke@435 685 return changed;
duke@435 686 }
duke@435 687
duke@435 688 //---------------------------opnd_positions_match-------------------------
duke@435 689 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 690 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
duke@435 691 uint ct = u1->req();
duke@435 692 if (ct != u2->req()) return false;
duke@435 693 uint i1 = 0;
duke@435 694 uint i2 = 0;
duke@435 695 do {
duke@435 696 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
duke@435 697 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
duke@435 698 if (i1 != i2) {
duke@435 699 return false;
duke@435 700 }
duke@435 701 } while (i1 < ct);
duke@435 702 return true;
duke@435 703 }
duke@435 704
duke@435 705 //------------------------------est_savings---------------------------
duke@435 706 // Estimate the savings from executing s1 and s2 as a pack
duke@435 707 int SuperWord::est_savings(Node* s1, Node* s2) {
duke@435 708 int save = 2 - 1; // 2 operations per instruction in packed form
duke@435 709
duke@435 710 // inputs
duke@435 711 for (uint i = 1; i < s1->req(); i++) {
duke@435 712 Node* x1 = s1->in(i);
duke@435 713 Node* x2 = s2->in(i);
duke@435 714 if (x1 != x2) {
duke@435 715 if (are_adjacent_refs(x1, x2)) {
duke@435 716 save += adjacent_profit(x1, x2);
duke@435 717 } else if (!in_packset(x1, x2)) {
duke@435 718 save -= pack_cost(2);
duke@435 719 } else {
duke@435 720 save += unpack_cost(2);
duke@435 721 }
duke@435 722 }
duke@435 723 }
duke@435 724
duke@435 725 // uses of result
duke@435 726 uint ct = 0;
duke@435 727 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 728 Node* s1_use = s1->fast_out(i);
duke@435 729 for (int j = 0; j < _packset.length(); j++) {
duke@435 730 Node_List* p = _packset.at(j);
duke@435 731 if (p->at(0) == s1_use) {
duke@435 732 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
duke@435 733 Node* s2_use = s2->fast_out(k);
duke@435 734 if (p->at(p->size()-1) == s2_use) {
duke@435 735 ct++;
duke@435 736 if (are_adjacent_refs(s1_use, s2_use)) {
duke@435 737 save += adjacent_profit(s1_use, s2_use);
duke@435 738 }
duke@435 739 }
duke@435 740 }
duke@435 741 }
duke@435 742 }
duke@435 743 }
duke@435 744
duke@435 745 if (ct < s1->outcnt()) save += unpack_cost(1);
duke@435 746 if (ct < s2->outcnt()) save += unpack_cost(1);
duke@435 747
duke@435 748 return save;
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------costs---------------------------
duke@435 752 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
duke@435 753 int SuperWord::pack_cost(int ct) { return ct; }
duke@435 754 int SuperWord::unpack_cost(int ct) { return ct; }
duke@435 755
duke@435 756 //------------------------------combine_packs---------------------------
duke@435 757 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 758 void SuperWord::combine_packs() {
duke@435 759 bool changed;
duke@435 760 do {
duke@435 761 changed = false;
duke@435 762 for (int i = 0; i < _packset.length(); i++) {
duke@435 763 Node_List* p1 = _packset.at(i);
duke@435 764 if (p1 == NULL) continue;
duke@435 765 for (int j = 0; j < _packset.length(); j++) {
duke@435 766 Node_List* p2 = _packset.at(j);
duke@435 767 if (p2 == NULL) continue;
duke@435 768 if (p1->at(p1->size()-1) == p2->at(0)) {
duke@435 769 for (uint k = 1; k < p2->size(); k++) {
duke@435 770 p1->push(p2->at(k));
duke@435 771 }
duke@435 772 _packset.at_put(j, NULL);
duke@435 773 changed = true;
duke@435 774 }
duke@435 775 }
duke@435 776 }
duke@435 777 } while (changed);
duke@435 778
duke@435 779 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 780 Node_List* p1 = _packset.at(i);
duke@435 781 if (p1 == NULL) {
duke@435 782 _packset.remove_at(i);
duke@435 783 }
duke@435 784 }
duke@435 785
duke@435 786 #ifndef PRODUCT
duke@435 787 if (TraceSuperWord) {
duke@435 788 tty->print_cr("\nAfter combine_packs");
duke@435 789 print_packset();
duke@435 790 }
duke@435 791 #endif
duke@435 792 }
duke@435 793
duke@435 794 //-----------------------------construct_my_pack_map--------------------------
duke@435 795 // Construct the map from nodes to packs. Only valid after the
duke@435 796 // point where a node is only in one pack (after combine_packs).
duke@435 797 void SuperWord::construct_my_pack_map() {
duke@435 798 Node_List* rslt = NULL;
duke@435 799 for (int i = 0; i < _packset.length(); i++) {
duke@435 800 Node_List* p = _packset.at(i);
duke@435 801 for (uint j = 0; j < p->size(); j++) {
duke@435 802 Node* s = p->at(j);
duke@435 803 assert(my_pack(s) == NULL, "only in one pack");
duke@435 804 set_my_pack(s, p);
duke@435 805 }
duke@435 806 }
duke@435 807 }
duke@435 808
duke@435 809 //------------------------------filter_packs---------------------------
duke@435 810 // Remove packs that are not implemented or not profitable.
duke@435 811 void SuperWord::filter_packs() {
duke@435 812
duke@435 813 // Remove packs that are not implemented
duke@435 814 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 815 Node_List* pk = _packset.at(i);
duke@435 816 bool impl = implemented(pk);
duke@435 817 if (!impl) {
duke@435 818 #ifndef PRODUCT
duke@435 819 if (TraceSuperWord && Verbose) {
duke@435 820 tty->print_cr("Unimplemented");
duke@435 821 pk->at(0)->dump();
duke@435 822 }
duke@435 823 #endif
duke@435 824 remove_pack_at(i);
duke@435 825 }
duke@435 826 }
duke@435 827
duke@435 828 // Remove packs that are not profitable
duke@435 829 bool changed;
duke@435 830 do {
duke@435 831 changed = false;
duke@435 832 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 833 Node_List* pk = _packset.at(i);
duke@435 834 bool prof = profitable(pk);
duke@435 835 if (!prof) {
duke@435 836 #ifndef PRODUCT
duke@435 837 if (TraceSuperWord && Verbose) {
duke@435 838 tty->print_cr("Unprofitable");
duke@435 839 pk->at(0)->dump();
duke@435 840 }
duke@435 841 #endif
duke@435 842 remove_pack_at(i);
duke@435 843 changed = true;
duke@435 844 }
duke@435 845 }
duke@435 846 } while (changed);
duke@435 847
duke@435 848 #ifndef PRODUCT
duke@435 849 if (TraceSuperWord) {
duke@435 850 tty->print_cr("\nAfter filter_packs");
duke@435 851 print_packset();
duke@435 852 tty->cr();
duke@435 853 }
duke@435 854 #endif
duke@435 855 }
duke@435 856
duke@435 857 //------------------------------implemented---------------------------
duke@435 858 // Can code be generated for pack p?
duke@435 859 bool SuperWord::implemented(Node_List* p) {
duke@435 860 Node* p0 = p->at(0);
duke@435 861 int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
duke@435 862 return vopc > 0 && Matcher::has_match_rule(vopc);
duke@435 863 }
duke@435 864
duke@435 865 //------------------------------profitable---------------------------
duke@435 866 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 867 bool SuperWord::profitable(Node_List* p) {
duke@435 868 Node* p0 = p->at(0);
duke@435 869 uint start, end;
duke@435 870 vector_opd_range(p0, &start, &end);
duke@435 871
duke@435 872 // Return false if some input is not vector and inside block
duke@435 873 for (uint i = start; i < end; i++) {
duke@435 874 if (!is_vector_use(p0, i)) {
duke@435 875 // For now, return false if not scalar promotion case (inputs are the same.)
twisti@1040 876 // Later, implement PackNode and allow differing, non-vector inputs
duke@435 877 // (maybe just the ones from outside the block.)
duke@435 878 Node* p0_def = p0->in(i);
duke@435 879 for (uint j = 1; j < p->size(); j++) {
duke@435 880 Node* use = p->at(j);
duke@435 881 Node* def = use->in(i);
duke@435 882 if (p0_def != def)
duke@435 883 return false;
duke@435 884 }
duke@435 885 }
duke@435 886 }
duke@435 887 if (!p0->is_Store()) {
duke@435 888 // For now, return false if not all uses are vector.
duke@435 889 // Later, implement ExtractNode and allow non-vector uses (maybe
duke@435 890 // just the ones outside the block.)
duke@435 891 for (uint i = 0; i < p->size(); i++) {
duke@435 892 Node* def = p->at(i);
duke@435 893 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 894 Node* use = def->fast_out(j);
duke@435 895 for (uint k = 0; k < use->req(); k++) {
duke@435 896 Node* n = use->in(k);
duke@435 897 if (def == n) {
duke@435 898 if (!is_vector_use(use, k)) {
duke@435 899 return false;
duke@435 900 }
duke@435 901 }
duke@435 902 }
duke@435 903 }
duke@435 904 }
duke@435 905 }
duke@435 906 return true;
duke@435 907 }
duke@435 908
duke@435 909 //------------------------------schedule---------------------------
duke@435 910 // Adjust the memory graph for the packed operations
duke@435 911 void SuperWord::schedule() {
duke@435 912
duke@435 913 // Co-locate in the memory graph the members of each memory pack
duke@435 914 for (int i = 0; i < _packset.length(); i++) {
duke@435 915 co_locate_pack(_packset.at(i));
duke@435 916 }
duke@435 917 }
duke@435 918
cfang@1102 919 //-------------------------------remove_and_insert-------------------
cfang@1102 920 //remove "current" from its current position in the memory graph and insert
cfang@1102 921 //it after the appropriate insertion point (lip or uip)
cfang@1102 922 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
cfang@1102 923 Node *uip, Unique_Node_List &sched_before) {
cfang@1102 924 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 925 _igvn.hash_delete(current);
cfang@1102 926 _igvn.hash_delete(my_mem);
cfang@1102 927
cfang@1102 928 //remove current_store from its current position in the memmory graph
cfang@1102 929 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 930 Node* use = current->out(i);
cfang@1102 931 if (use->is_Mem()) {
cfang@1102 932 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 933 _igvn.hash_delete(use);
cfang@1102 934 if (use == prev) { // connect prev to my_mem
cfang@1102 935 use->set_req(MemNode::Memory, my_mem);
cfang@1102 936 } else if (sched_before.member(use)) {
cfang@1102 937 _igvn.hash_delete(uip);
cfang@1102 938 use->set_req(MemNode::Memory, uip);
cfang@1102 939 } else {
cfang@1102 940 _igvn.hash_delete(lip);
cfang@1102 941 use->set_req(MemNode::Memory, lip);
cfang@1102 942 }
cfang@1102 943 _igvn._worklist.push(use);
cfang@1102 944 --i; //deleted this edge; rescan position
cfang@1102 945 }
cfang@1102 946 }
cfang@1102 947
cfang@1102 948 bool sched_up = sched_before.member(current);
cfang@1102 949 Node *insert_pt = sched_up ? uip : lip;
cfang@1102 950 _igvn.hash_delete(insert_pt);
cfang@1102 951
cfang@1102 952 // all uses of insert_pt's memory state should use current's instead
cfang@1102 953 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
cfang@1102 954 Node* use = insert_pt->out(i);
cfang@1102 955 if (use->is_Mem()) {
cfang@1102 956 assert(use->in(MemNode::Memory) == insert_pt, "must be");
cfang@1102 957 _igvn.hash_delete(use);
cfang@1102 958 use->set_req(MemNode::Memory, current);
cfang@1102 959 _igvn._worklist.push(use);
cfang@1102 960 --i; //deleted this edge; rescan position
cfang@1102 961 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
cfang@1102 962 uint pos; //lip (lower insert point) must be the last one in the memory slice
cfang@1102 963 _igvn.hash_delete(use);
cfang@1102 964 for (pos=1; pos < use->req(); pos++) {
cfang@1102 965 if (use->in(pos) == insert_pt) break;
cfang@1102 966 }
cfang@1102 967 use->set_req(pos, current);
cfang@1102 968 _igvn._worklist.push(use);
cfang@1102 969 --i;
cfang@1102 970 }
cfang@1102 971 }
cfang@1102 972
cfang@1102 973 //connect current to insert_pt
cfang@1102 974 current->set_req(MemNode::Memory, insert_pt);
cfang@1102 975 _igvn._worklist.push(current);
cfang@1102 976 }
cfang@1102 977
cfang@1102 978 //------------------------------co_locate_pack----------------------------------
cfang@1102 979 // To schedule a store pack, we need to move any sandwiched memory ops either before
cfang@1102 980 // or after the pack, based upon dependence information:
cfang@1102 981 // (1) If any store in the pack depends on the sandwiched memory op, the
cfang@1102 982 // sandwiched memory op must be scheduled BEFORE the pack;
cfang@1102 983 // (2) If a sandwiched memory op depends on any store in the pack, the
cfang@1102 984 // sandwiched memory op must be scheduled AFTER the pack;
cfang@1102 985 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
cfang@1102 986 // memory op (say memB), memB must be scheduled before memA. So, if memA is
cfang@1102 987 // scheduled before the pack, memB must also be scheduled before the pack;
cfang@1102 988 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
cfang@1102 989 // schedule this store AFTER the pack
cfang@1102 990 // (5) We know there is no dependence cycle, so there in no other case;
cfang@1102 991 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
cfang@1102 992 //
cfang@1387 993 // To schedule a load pack, we use the memory state of either the first or the last load in
cfang@1387 994 // the pack, based on the dependence constraint.
duke@435 995 void SuperWord::co_locate_pack(Node_List* pk) {
duke@435 996 if (pk->at(0)->is_Store()) {
duke@435 997 MemNode* first = executed_first(pk)->as_Mem();
duke@435 998 MemNode* last = executed_last(pk)->as_Mem();
cfang@1102 999 Unique_Node_List schedule_before_pack;
cfang@1102 1000 Unique_Node_List memops;
cfang@1102 1001
duke@435 1002 MemNode* current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1003 MemNode* previous = last;
duke@435 1004 while (true) {
duke@435 1005 assert(in_bb(current), "stay in block");
cfang@1102 1006 memops.push(previous);
cfang@1102 1007 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1008 Node* use = current->out(i);
cfang@1102 1009 if (use->is_Mem() && use != previous)
cfang@1102 1010 memops.push(use);
cfang@1102 1011 }
cfang@1102 1012 if(current == first) break;
cfang@1102 1013 previous = current;
cfang@1102 1014 current = current->in(MemNode::Memory)->as_Mem();
cfang@1102 1015 }
cfang@1102 1016
cfang@1102 1017 // determine which memory operations should be scheduled before the pack
cfang@1102 1018 for (uint i = 1; i < memops.size(); i++) {
cfang@1102 1019 Node *s1 = memops.at(i);
cfang@1102 1020 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
cfang@1102 1021 for (uint j = 0; j< i; j++) {
cfang@1102 1022 Node *s2 = memops.at(j);
cfang@1102 1023 if (!independent(s1, s2)) {
cfang@1102 1024 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
cfang@1102 1025 schedule_before_pack.push(s1); //s1 must be scheduled before
cfang@1102 1026 Node_List* mem_pk = my_pack(s1);
cfang@1102 1027 if (mem_pk != NULL) {
cfang@1102 1028 for (uint ii = 0; ii < mem_pk->size(); ii++) {
cfang@1102 1029 Node* s = mem_pk->at(ii); // follow partner
cfang@1102 1030 if (memops.member(s) && !schedule_before_pack.member(s))
cfang@1102 1031 schedule_before_pack.push(s);
cfang@1102 1032 }
cfang@1102 1033 }
cfang@1102 1034 }
cfang@1102 1035 }
cfang@1102 1036 }
cfang@1102 1037 }
cfang@1102 1038 }
cfang@1102 1039
cfang@1102 1040 MemNode* lower_insert_pt = last;
cfang@1102 1041 Node* upper_insert_pt = first->in(MemNode::Memory);
cfang@1102 1042 previous = last; //previous store in pk
cfang@1102 1043 current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1044
cfang@1102 1045 //start scheduling from "last" to "first"
cfang@1102 1046 while (true) {
cfang@1102 1047 assert(in_bb(current), "stay in block");
cfang@1102 1048 assert(in_pack(previous, pk), "previous stays in pack");
duke@435 1049 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 1050
duke@435 1051 if (in_pack(current, pk)) {
cfang@1102 1052 // Forward users of my memory state (except "previous) to my input memory state
duke@435 1053 _igvn.hash_delete(current);
duke@435 1054 for (DUIterator i = current->outs(); current->has_out(i); i++) {
duke@435 1055 Node* use = current->out(i);
cfang@1102 1056 if (use->is_Mem() && use != previous) {
duke@435 1057 assert(use->in(MemNode::Memory) == current, "must be");
duke@435 1058 _igvn.hash_delete(use);
cfang@1102 1059 if (schedule_before_pack.member(use)) {
cfang@1102 1060 _igvn.hash_delete(upper_insert_pt);
cfang@1102 1061 use->set_req(MemNode::Memory, upper_insert_pt);
cfang@1102 1062 } else {
cfang@1102 1063 _igvn.hash_delete(lower_insert_pt);
cfang@1102 1064 use->set_req(MemNode::Memory, lower_insert_pt);
cfang@1102 1065 }
duke@435 1066 _igvn._worklist.push(use);
duke@435 1067 --i; // deleted this edge; rescan position
duke@435 1068 }
duke@435 1069 }
cfang@1102 1070 previous = current;
cfang@1102 1071 } else { // !in_pack(current, pk) ==> a sandwiched store
cfang@1102 1072 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
duke@435 1073 }
cfang@1102 1074
duke@435 1075 if (current == first) break;
duke@435 1076 current = my_mem->as_Mem();
cfang@1102 1077 } // end while
cfang@1102 1078 } else if (pk->at(0)->is_Load()) { //load
cfang@1387 1079 // all loads in the pack should have the same memory state. By default,
cfang@1387 1080 // we use the memory state of the last load. However, if any load could
cfang@1387 1081 // not be moved down due to the dependence constraint, we use the memory
cfang@1387 1082 // state of the first load.
cfang@1387 1083 Node* last_mem = executed_last(pk)->in(MemNode::Memory);
cfang@1387 1084 Node* first_mem = executed_first(pk)->in(MemNode::Memory);
cfang@1387 1085 bool schedule_last = true;
cfang@1387 1086 for (uint i = 0; i < pk->size(); i++) {
cfang@1387 1087 Node* ld = pk->at(i);
cfang@1387 1088 for (Node* current = last_mem; current != ld->in(MemNode::Memory);
cfang@1387 1089 current=current->in(MemNode::Memory)) {
cfang@1387 1090 assert(current != first_mem, "corrupted memory graph");
cfang@1387 1091 if(current->is_Mem() && !independent(current, ld)){
cfang@1387 1092 schedule_last = false; // a later store depends on this load
cfang@1387 1093 break;
cfang@1387 1094 }
cfang@1387 1095 }
cfang@1387 1096 }
cfang@1387 1097
cfang@1387 1098 Node* mem_input = schedule_last ? last_mem : first_mem;
cfang@1387 1099 _igvn.hash_delete(mem_input);
cfang@1387 1100 // Give each load the same memory state
duke@435 1101 for (uint i = 0; i < pk->size(); i++) {
duke@435 1102 LoadNode* ld = pk->at(i)->as_Load();
duke@435 1103 _igvn.hash_delete(ld);
cfang@1387 1104 ld->set_req(MemNode::Memory, mem_input);
duke@435 1105 _igvn._worklist.push(ld);
duke@435 1106 }
duke@435 1107 }
duke@435 1108 }
duke@435 1109
duke@435 1110 //------------------------------output---------------------------
duke@435 1111 // Convert packs into vector node operations
duke@435 1112 void SuperWord::output() {
duke@435 1113 if (_packset.length() == 0) return;
duke@435 1114
duke@435 1115 // MUST ENSURE main loop's initial value is properly aligned:
duke@435 1116 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
duke@435 1117
duke@435 1118 align_initial_loop_index(align_to_ref());
duke@435 1119
duke@435 1120 // Insert extract (unpack) operations for scalar uses
duke@435 1121 for (int i = 0; i < _packset.length(); i++) {
duke@435 1122 insert_extracts(_packset.at(i));
duke@435 1123 }
duke@435 1124
duke@435 1125 for (int i = 0; i < _block.length(); i++) {
duke@435 1126 Node* n = _block.at(i);
duke@435 1127 Node_List* p = my_pack(n);
duke@435 1128 if (p && n == executed_last(p)) {
duke@435 1129 uint vlen = p->size();
duke@435 1130 Node* vn = NULL;
duke@435 1131 Node* low_adr = p->at(0);
duke@435 1132 Node* first = executed_first(p);
duke@435 1133 if (n->is_Load()) {
duke@435 1134 int opc = n->Opcode();
duke@435 1135 Node* ctl = n->in(MemNode::Control);
duke@435 1136 Node* mem = first->in(MemNode::Memory);
duke@435 1137 Node* adr = low_adr->in(MemNode::Address);
duke@435 1138 const TypePtr* atyp = n->adr_type();
duke@435 1139 vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
duke@435 1140
duke@435 1141 } else if (n->is_Store()) {
duke@435 1142 // Promote value to be stored to vector
duke@435 1143 VectorNode* val = vector_opd(p, MemNode::ValueIn);
duke@435 1144
duke@435 1145 int opc = n->Opcode();
duke@435 1146 Node* ctl = n->in(MemNode::Control);
duke@435 1147 Node* mem = first->in(MemNode::Memory);
duke@435 1148 Node* adr = low_adr->in(MemNode::Address);
duke@435 1149 const TypePtr* atyp = n->adr_type();
duke@435 1150 vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
duke@435 1151
duke@435 1152 } else if (n->req() == 3) {
duke@435 1153 // Promote operands to vector
duke@435 1154 Node* in1 = vector_opd(p, 1);
duke@435 1155 Node* in2 = vector_opd(p, 2);
duke@435 1156 vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
duke@435 1157
duke@435 1158 } else {
duke@435 1159 ShouldNotReachHere();
duke@435 1160 }
duke@435 1161
duke@435 1162 _phase->_igvn.register_new_node_with_optimizer(vn);
duke@435 1163 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
duke@435 1164 for (uint j = 0; j < p->size(); j++) {
duke@435 1165 Node* pm = p->at(j);
duke@435 1166 _igvn.hash_delete(pm);
duke@435 1167 _igvn.subsume_node(pm, vn);
duke@435 1168 }
duke@435 1169 _igvn._worklist.push(vn);
duke@435 1170 }
duke@435 1171 }
duke@435 1172 }
duke@435 1173
duke@435 1174 //------------------------------vector_opd---------------------------
duke@435 1175 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
duke@435 1176 VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
duke@435 1177 Node* p0 = p->at(0);
duke@435 1178 uint vlen = p->size();
duke@435 1179 Node* opd = p0->in(opd_idx);
duke@435 1180
duke@435 1181 bool same_opd = true;
duke@435 1182 for (uint i = 1; i < vlen; i++) {
duke@435 1183 Node* pi = p->at(i);
duke@435 1184 Node* in = pi->in(opd_idx);
duke@435 1185 if (opd != in) {
duke@435 1186 same_opd = false;
duke@435 1187 break;
duke@435 1188 }
duke@435 1189 }
duke@435 1190
duke@435 1191 if (same_opd) {
duke@435 1192 if (opd->is_Vector()) {
duke@435 1193 return (VectorNode*)opd; // input is matching vector
duke@435 1194 }
duke@435 1195 // Convert scalar input to vector. Use p0's type because it's container
duke@435 1196 // maybe smaller than the operand's container.
duke@435 1197 const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
duke@435 1198 const Type* p0_t = velt_type(p0);
duke@435 1199 if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
duke@435 1200 VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
duke@435 1201
duke@435 1202 _phase->_igvn.register_new_node_with_optimizer(vn);
duke@435 1203 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
duke@435 1204 return vn;
duke@435 1205 }
duke@435 1206
duke@435 1207 // Insert pack operation
duke@435 1208 const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
duke@435 1209 PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
duke@435 1210
duke@435 1211 for (uint i = 1; i < vlen; i++) {
duke@435 1212 Node* pi = p->at(i);
duke@435 1213 Node* in = pi->in(opd_idx);
duke@435 1214 assert(my_pack(in) == NULL, "Should already have been unpacked");
duke@435 1215 assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
duke@435 1216 pk->add_opd(in);
duke@435 1217 }
duke@435 1218 _phase->_igvn.register_new_node_with_optimizer(pk);
duke@435 1219 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
duke@435 1220 return pk;
duke@435 1221 }
duke@435 1222
duke@435 1223 //------------------------------insert_extracts---------------------------
duke@435 1224 // If a use of pack p is not a vector use, then replace the
duke@435 1225 // use with an extract operation.
duke@435 1226 void SuperWord::insert_extracts(Node_List* p) {
duke@435 1227 if (p->at(0)->is_Store()) return;
duke@435 1228 assert(_n_idx_list.is_empty(), "empty (node,index) list");
duke@435 1229
duke@435 1230 // Inspect each use of each pack member. For each use that is
duke@435 1231 // not a vector use, replace the use with an extract operation.
duke@435 1232
duke@435 1233 for (uint i = 0; i < p->size(); i++) {
duke@435 1234 Node* def = p->at(i);
duke@435 1235 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1236 Node* use = def->fast_out(j);
duke@435 1237 for (uint k = 0; k < use->req(); k++) {
duke@435 1238 Node* n = use->in(k);
duke@435 1239 if (def == n) {
duke@435 1240 if (!is_vector_use(use, k)) {
duke@435 1241 _n_idx_list.push(use, k);
duke@435 1242 }
duke@435 1243 }
duke@435 1244 }
duke@435 1245 }
duke@435 1246 }
duke@435 1247
duke@435 1248 while (_n_idx_list.is_nonempty()) {
duke@435 1249 Node* use = _n_idx_list.node();
duke@435 1250 int idx = _n_idx_list.index();
duke@435 1251 _n_idx_list.pop();
duke@435 1252 Node* def = use->in(idx);
duke@435 1253
duke@435 1254 // Insert extract operation
duke@435 1255 _igvn.hash_delete(def);
duke@435 1256 _igvn.hash_delete(use);
duke@435 1257 int def_pos = alignment(def) / data_size(def);
duke@435 1258 const Type* def_t = velt_type(def);
duke@435 1259
duke@435 1260 Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
duke@435 1261 _phase->_igvn.register_new_node_with_optimizer(ex);
duke@435 1262 _phase->set_ctrl(ex, _phase->get_ctrl(def));
duke@435 1263 use->set_req(idx, ex);
duke@435 1264 _igvn._worklist.push(def);
duke@435 1265 _igvn._worklist.push(use);
duke@435 1266
duke@435 1267 bb_insert_after(ex, bb_idx(def));
duke@435 1268 set_velt_type(ex, def_t);
duke@435 1269 }
duke@435 1270 }
duke@435 1271
duke@435 1272 //------------------------------is_vector_use---------------------------
duke@435 1273 // Is use->in(u_idx) a vector use?
duke@435 1274 bool SuperWord::is_vector_use(Node* use, int u_idx) {
duke@435 1275 Node_List* u_pk = my_pack(use);
duke@435 1276 if (u_pk == NULL) return false;
duke@435 1277 Node* def = use->in(u_idx);
duke@435 1278 Node_List* d_pk = my_pack(def);
duke@435 1279 if (d_pk == NULL) {
duke@435 1280 // check for scalar promotion
duke@435 1281 Node* n = u_pk->at(0)->in(u_idx);
duke@435 1282 for (uint i = 1; i < u_pk->size(); i++) {
duke@435 1283 if (u_pk->at(i)->in(u_idx) != n) return false;
duke@435 1284 }
duke@435 1285 return true;
duke@435 1286 }
duke@435 1287 if (u_pk->size() != d_pk->size())
duke@435 1288 return false;
duke@435 1289 for (uint i = 0; i < u_pk->size(); i++) {
duke@435 1290 Node* ui = u_pk->at(i);
duke@435 1291 Node* di = d_pk->at(i);
duke@435 1292 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
duke@435 1293 return false;
duke@435 1294 }
duke@435 1295 return true;
duke@435 1296 }
duke@435 1297
duke@435 1298 //------------------------------construct_bb---------------------------
duke@435 1299 // Construct reverse postorder list of block members
duke@435 1300 void SuperWord::construct_bb() {
duke@435 1301 Node* entry = bb();
duke@435 1302
duke@435 1303 assert(_stk.length() == 0, "stk is empty");
duke@435 1304 assert(_block.length() == 0, "block is empty");
duke@435 1305 assert(_data_entry.length() == 0, "data_entry is empty");
duke@435 1306 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
duke@435 1307 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
duke@435 1308
duke@435 1309 // Find non-control nodes with no inputs from within block,
duke@435 1310 // create a temporary map from node _idx to bb_idx for use
duke@435 1311 // by the visited and post_visited sets,
duke@435 1312 // and count number of nodes in block.
duke@435 1313 int bb_ct = 0;
duke@435 1314 for (uint i = 0; i < lpt()->_body.size(); i++ ) {
duke@435 1315 Node *n = lpt()->_body.at(i);
duke@435 1316 set_bb_idx(n, i); // Create a temporary map
duke@435 1317 if (in_bb(n)) {
duke@435 1318 bb_ct++;
duke@435 1319 if (!n->is_CFG()) {
duke@435 1320 bool found = false;
duke@435 1321 for (uint j = 0; j < n->req(); j++) {
duke@435 1322 Node* def = n->in(j);
duke@435 1323 if (def && in_bb(def)) {
duke@435 1324 found = true;
duke@435 1325 break;
duke@435 1326 }
duke@435 1327 }
duke@435 1328 if (!found) {
duke@435 1329 assert(n != entry, "can't be entry");
duke@435 1330 _data_entry.push(n);
duke@435 1331 }
duke@435 1332 }
duke@435 1333 }
duke@435 1334 }
duke@435 1335
duke@435 1336 // Find memory slices (head and tail)
duke@435 1337 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
duke@435 1338 Node *n = lp()->fast_out(i);
duke@435 1339 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
duke@435 1340 Node* n_tail = n->in(LoopNode::LoopBackControl);
kvn@688 1341 if (n_tail != n->in(LoopNode::EntryControl)) {
kvn@688 1342 _mem_slice_head.push(n);
kvn@688 1343 _mem_slice_tail.push(n_tail);
kvn@688 1344 }
duke@435 1345 }
duke@435 1346 }
duke@435 1347
duke@435 1348 // Create an RPO list of nodes in block
duke@435 1349
duke@435 1350 visited_clear();
duke@435 1351 post_visited_clear();
duke@435 1352
duke@435 1353 // Push all non-control nodes with no inputs from within block, then control entry
duke@435 1354 for (int j = 0; j < _data_entry.length(); j++) {
duke@435 1355 Node* n = _data_entry.at(j);
duke@435 1356 visited_set(n);
duke@435 1357 _stk.push(n);
duke@435 1358 }
duke@435 1359 visited_set(entry);
duke@435 1360 _stk.push(entry);
duke@435 1361
duke@435 1362 // Do a depth first walk over out edges
duke@435 1363 int rpo_idx = bb_ct - 1;
duke@435 1364 int size;
duke@435 1365 while ((size = _stk.length()) > 0) {
duke@435 1366 Node* n = _stk.top(); // Leave node on stack
duke@435 1367 if (!visited_test_set(n)) {
duke@435 1368 // forward arc in graph
duke@435 1369 } else if (!post_visited_test(n)) {
duke@435 1370 // cross or back arc
duke@435 1371 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1372 Node *use = n->fast_out(i);
duke@435 1373 if (in_bb(use) && !visited_test(use) &&
duke@435 1374 // Don't go around backedge
duke@435 1375 (!use->is_Phi() || n == entry)) {
duke@435 1376 _stk.push(use);
duke@435 1377 }
duke@435 1378 }
duke@435 1379 if (_stk.length() == size) {
duke@435 1380 // There were no additional uses, post visit node now
duke@435 1381 _stk.pop(); // Remove node from stack
duke@435 1382 assert(rpo_idx >= 0, "");
duke@435 1383 _block.at_put_grow(rpo_idx, n);
duke@435 1384 rpo_idx--;
duke@435 1385 post_visited_set(n);
duke@435 1386 assert(rpo_idx >= 0 || _stk.is_empty(), "");
duke@435 1387 }
duke@435 1388 } else {
duke@435 1389 _stk.pop(); // Remove post-visited node from stack
duke@435 1390 }
duke@435 1391 }
duke@435 1392
duke@435 1393 // Create real map of block indices for nodes
duke@435 1394 for (int j = 0; j < _block.length(); j++) {
duke@435 1395 Node* n = _block.at(j);
duke@435 1396 set_bb_idx(n, j);
duke@435 1397 }
duke@435 1398
duke@435 1399 initialize_bb(); // Ensure extra info is allocated.
duke@435 1400
duke@435 1401 #ifndef PRODUCT
duke@435 1402 if (TraceSuperWord) {
duke@435 1403 print_bb();
duke@435 1404 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
duke@435 1405 for (int m = 0; m < _data_entry.length(); m++) {
duke@435 1406 tty->print("%3d ", m);
duke@435 1407 _data_entry.at(m)->dump();
duke@435 1408 }
duke@435 1409 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
duke@435 1410 for (int m = 0; m < _mem_slice_head.length(); m++) {
duke@435 1411 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
duke@435 1412 tty->print(" "); _mem_slice_tail.at(m)->dump();
duke@435 1413 }
duke@435 1414 }
duke@435 1415 #endif
duke@435 1416 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
duke@435 1417 }
duke@435 1418
duke@435 1419 //------------------------------initialize_bb---------------------------
duke@435 1420 // Initialize per node info
duke@435 1421 void SuperWord::initialize_bb() {
duke@435 1422 Node* last = _block.at(_block.length() - 1);
duke@435 1423 grow_node_info(bb_idx(last));
duke@435 1424 }
duke@435 1425
duke@435 1426 //------------------------------bb_insert_after---------------------------
duke@435 1427 // Insert n into block after pos
duke@435 1428 void SuperWord::bb_insert_after(Node* n, int pos) {
duke@435 1429 int n_pos = pos + 1;
duke@435 1430 // Make room
duke@435 1431 for (int i = _block.length() - 1; i >= n_pos; i--) {
duke@435 1432 _block.at_put_grow(i+1, _block.at(i));
duke@435 1433 }
duke@435 1434 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
duke@435 1435 _node_info.at_put_grow(j+1, _node_info.at(j));
duke@435 1436 }
duke@435 1437 // Set value
duke@435 1438 _block.at_put_grow(n_pos, n);
duke@435 1439 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
duke@435 1440 // Adjust map from node->_idx to _block index
duke@435 1441 for (int i = n_pos; i < _block.length(); i++) {
duke@435 1442 set_bb_idx(_block.at(i), i);
duke@435 1443 }
duke@435 1444 }
duke@435 1445
duke@435 1446 //------------------------------compute_max_depth---------------------------
duke@435 1447 // Compute max depth for expressions from beginning of block
duke@435 1448 // Use to prune search paths during test for independence.
duke@435 1449 void SuperWord::compute_max_depth() {
duke@435 1450 int ct = 0;
duke@435 1451 bool again;
duke@435 1452 do {
duke@435 1453 again = false;
duke@435 1454 for (int i = 0; i < _block.length(); i++) {
duke@435 1455 Node* n = _block.at(i);
duke@435 1456 if (!n->is_Phi()) {
duke@435 1457 int d_orig = depth(n);
duke@435 1458 int d_in = 0;
duke@435 1459 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
duke@435 1460 Node* pred = preds.current();
duke@435 1461 if (in_bb(pred)) {
duke@435 1462 d_in = MAX2(d_in, depth(pred));
duke@435 1463 }
duke@435 1464 }
duke@435 1465 if (d_in + 1 != d_orig) {
duke@435 1466 set_depth(n, d_in + 1);
duke@435 1467 again = true;
duke@435 1468 }
duke@435 1469 }
duke@435 1470 }
duke@435 1471 ct++;
duke@435 1472 } while (again);
duke@435 1473 #ifndef PRODUCT
duke@435 1474 if (TraceSuperWord && Verbose)
duke@435 1475 tty->print_cr("compute_max_depth iterated: %d times", ct);
duke@435 1476 #endif
duke@435 1477 }
duke@435 1478
duke@435 1479 //-------------------------compute_vector_element_type-----------------------
duke@435 1480 // Compute necessary vector element type for expressions
duke@435 1481 // This propagates backwards a narrower integer type when the
duke@435 1482 // upper bits of the value are not needed.
duke@435 1483 // Example: char a,b,c; a = b + c;
duke@435 1484 // Normally the type of the add is integer, but for packed character
duke@435 1485 // operations the type of the add needs to be char.
duke@435 1486 void SuperWord::compute_vector_element_type() {
duke@435 1487 #ifndef PRODUCT
duke@435 1488 if (TraceSuperWord && Verbose)
duke@435 1489 tty->print_cr("\ncompute_velt_type:");
duke@435 1490 #endif
duke@435 1491
duke@435 1492 // Initial type
duke@435 1493 for (int i = 0; i < _block.length(); i++) {
duke@435 1494 Node* n = _block.at(i);
duke@435 1495 const Type* t = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
duke@435 1496 : _igvn.type(n);
duke@435 1497 const Type* vt = container_type(t);
duke@435 1498 set_velt_type(n, vt);
duke@435 1499 }
duke@435 1500
duke@435 1501 // Propagate narrowed type backwards through operations
duke@435 1502 // that don't depend on higher order bits
duke@435 1503 for (int i = _block.length() - 1; i >= 0; i--) {
duke@435 1504 Node* n = _block.at(i);
duke@435 1505 // Only integer types need be examined
duke@435 1506 if (n->bottom_type()->isa_int()) {
duke@435 1507 uint start, end;
duke@435 1508 vector_opd_range(n, &start, &end);
duke@435 1509 const Type* vt = velt_type(n);
duke@435 1510
duke@435 1511 for (uint j = start; j < end; j++) {
duke@435 1512 Node* in = n->in(j);
duke@435 1513 // Don't propagate through a type conversion
duke@435 1514 if (n->bottom_type() != in->bottom_type())
duke@435 1515 continue;
duke@435 1516 switch(in->Opcode()) {
duke@435 1517 case Op_AddI: case Op_AddL:
duke@435 1518 case Op_SubI: case Op_SubL:
duke@435 1519 case Op_MulI: case Op_MulL:
duke@435 1520 case Op_AndI: case Op_AndL:
duke@435 1521 case Op_OrI: case Op_OrL:
duke@435 1522 case Op_XorI: case Op_XorL:
duke@435 1523 case Op_LShiftI: case Op_LShiftL:
duke@435 1524 case Op_CMoveI: case Op_CMoveL:
duke@435 1525 if (in_bb(in)) {
duke@435 1526 bool same_type = true;
duke@435 1527 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
duke@435 1528 Node *use = in->fast_out(k);
duke@435 1529 if (!in_bb(use) || velt_type(use) != vt) {
duke@435 1530 same_type = false;
duke@435 1531 break;
duke@435 1532 }
duke@435 1533 }
duke@435 1534 if (same_type) {
duke@435 1535 set_velt_type(in, vt);
duke@435 1536 }
duke@435 1537 }
duke@435 1538 }
duke@435 1539 }
duke@435 1540 }
duke@435 1541 }
duke@435 1542 #ifndef PRODUCT
duke@435 1543 if (TraceSuperWord && Verbose) {
duke@435 1544 for (int i = 0; i < _block.length(); i++) {
duke@435 1545 Node* n = _block.at(i);
duke@435 1546 velt_type(n)->dump();
duke@435 1547 tty->print("\t");
duke@435 1548 n->dump();
duke@435 1549 }
duke@435 1550 }
duke@435 1551 #endif
duke@435 1552 }
duke@435 1553
duke@435 1554 //------------------------------memory_alignment---------------------------
duke@435 1555 // Alignment within a vector memory reference
duke@435 1556 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
duke@435 1557 SWPointer p(s, this);
duke@435 1558 if (!p.valid()) {
duke@435 1559 return bottom_align;
duke@435 1560 }
duke@435 1561 int offset = p.offset_in_bytes();
duke@435 1562 offset += iv_adjust_in_bytes;
duke@435 1563 int off_rem = offset % vector_width_in_bytes();
duke@435 1564 int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
duke@435 1565 return off_mod;
duke@435 1566 }
duke@435 1567
duke@435 1568 //---------------------------container_type---------------------------
duke@435 1569 // Smallest type containing range of values
duke@435 1570 const Type* SuperWord::container_type(const Type* t) {
kvn@656 1571 const Type* tp = t->make_ptr();
kvn@656 1572 if (tp && tp->isa_aryptr()) {
kvn@656 1573 t = tp->is_aryptr()->elem();
duke@435 1574 }
duke@435 1575 if (t->basic_type() == T_INT) {
duke@435 1576 if (t->higher_equal(TypeInt::BOOL)) return TypeInt::BOOL;
duke@435 1577 if (t->higher_equal(TypeInt::BYTE)) return TypeInt::BYTE;
duke@435 1578 if (t->higher_equal(TypeInt::CHAR)) return TypeInt::CHAR;
duke@435 1579 if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
duke@435 1580 return TypeInt::INT;
duke@435 1581 }
duke@435 1582 return t;
duke@435 1583 }
duke@435 1584
duke@435 1585 //-------------------------vector_opd_range-----------------------
duke@435 1586 // (Start, end] half-open range defining which operands are vector
duke@435 1587 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
duke@435 1588 switch (n->Opcode()) {
twisti@993 1589 case Op_LoadB: case Op_LoadUS:
duke@435 1590 case Op_LoadI: case Op_LoadL:
duke@435 1591 case Op_LoadF: case Op_LoadD:
duke@435 1592 case Op_LoadP:
duke@435 1593 *start = 0;
duke@435 1594 *end = 0;
duke@435 1595 return;
duke@435 1596 case Op_StoreB: case Op_StoreC:
duke@435 1597 case Op_StoreI: case Op_StoreL:
duke@435 1598 case Op_StoreF: case Op_StoreD:
duke@435 1599 case Op_StoreP:
duke@435 1600 *start = MemNode::ValueIn;
duke@435 1601 *end = *start + 1;
duke@435 1602 return;
duke@435 1603 case Op_LShiftI: case Op_LShiftL:
duke@435 1604 *start = 1;
duke@435 1605 *end = 2;
duke@435 1606 return;
duke@435 1607 case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD:
duke@435 1608 *start = 2;
duke@435 1609 *end = n->req();
duke@435 1610 return;
duke@435 1611 }
duke@435 1612 *start = 1;
duke@435 1613 *end = n->req(); // default is all operands
duke@435 1614 }
duke@435 1615
duke@435 1616 //------------------------------in_packset---------------------------
duke@435 1617 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 1618 bool SuperWord::in_packset(Node* s1, Node* s2) {
duke@435 1619 for (int i = 0; i < _packset.length(); i++) {
duke@435 1620 Node_List* p = _packset.at(i);
duke@435 1621 assert(p->size() == 2, "must be");
duke@435 1622 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
duke@435 1623 return true;
duke@435 1624 }
duke@435 1625 }
duke@435 1626 return false;
duke@435 1627 }
duke@435 1628
duke@435 1629 //------------------------------in_pack---------------------------
duke@435 1630 // Is s in pack p?
duke@435 1631 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
duke@435 1632 for (uint i = 0; i < p->size(); i++) {
duke@435 1633 if (p->at(i) == s) {
duke@435 1634 return p;
duke@435 1635 }
duke@435 1636 }
duke@435 1637 return NULL;
duke@435 1638 }
duke@435 1639
duke@435 1640 //------------------------------remove_pack_at---------------------------
duke@435 1641 // Remove the pack at position pos in the packset
duke@435 1642 void SuperWord::remove_pack_at(int pos) {
duke@435 1643 Node_List* p = _packset.at(pos);
duke@435 1644 for (uint i = 0; i < p->size(); i++) {
duke@435 1645 Node* s = p->at(i);
duke@435 1646 set_my_pack(s, NULL);
duke@435 1647 }
duke@435 1648 _packset.remove_at(pos);
duke@435 1649 }
duke@435 1650
duke@435 1651 //------------------------------executed_first---------------------------
duke@435 1652 // Return the node executed first in pack p. Uses the RPO block list
duke@435 1653 // to determine order.
duke@435 1654 Node* SuperWord::executed_first(Node_List* p) {
duke@435 1655 Node* n = p->at(0);
duke@435 1656 int n_rpo = bb_idx(n);
duke@435 1657 for (uint i = 1; i < p->size(); i++) {
duke@435 1658 Node* s = p->at(i);
duke@435 1659 int s_rpo = bb_idx(s);
duke@435 1660 if (s_rpo < n_rpo) {
duke@435 1661 n = s;
duke@435 1662 n_rpo = s_rpo;
duke@435 1663 }
duke@435 1664 }
duke@435 1665 return n;
duke@435 1666 }
duke@435 1667
duke@435 1668 //------------------------------executed_last---------------------------
duke@435 1669 // Return the node executed last in pack p.
duke@435 1670 Node* SuperWord::executed_last(Node_List* p) {
duke@435 1671 Node* n = p->at(0);
duke@435 1672 int n_rpo = bb_idx(n);
duke@435 1673 for (uint i = 1; i < p->size(); i++) {
duke@435 1674 Node* s = p->at(i);
duke@435 1675 int s_rpo = bb_idx(s);
duke@435 1676 if (s_rpo > n_rpo) {
duke@435 1677 n = s;
duke@435 1678 n_rpo = s_rpo;
duke@435 1679 }
duke@435 1680 }
duke@435 1681 return n;
duke@435 1682 }
duke@435 1683
duke@435 1684 //----------------------------align_initial_loop_index---------------------------
duke@435 1685 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 1686 // to align_to_ref will be a position zero in the vector.
duke@435 1687 // (iv + k) mod vector_align == 0
duke@435 1688 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
duke@435 1689 CountedLoopNode *main_head = lp()->as_CountedLoop();
duke@435 1690 assert(main_head->is_main_loop(), "");
duke@435 1691 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
duke@435 1692 assert(pre_end != NULL, "");
duke@435 1693 Node *pre_opaq1 = pre_end->limit();
duke@435 1694 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
duke@435 1695 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
never@507 1696 Node *lim0 = pre_opaq->in(1);
duke@435 1697
duke@435 1698 // Where we put new limit calculations
duke@435 1699 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1700
duke@435 1701 // Ensure the original loop limit is available from the
duke@435 1702 // pre-loop Opaque1 node.
duke@435 1703 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 1704 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
duke@435 1705
duke@435 1706 SWPointer align_to_ref_p(align_to_ref, this);
duke@435 1707
never@507 1708 // Given:
never@507 1709 // lim0 == original pre loop limit
never@507 1710 // V == v_align (power of 2)
never@507 1711 // invar == extra invariant piece of the address expression
never@507 1712 // e == k [ +/- invar ]
duke@435 1713 //
never@507 1714 // When reassociating expressions involving '%' the basic rules are:
never@507 1715 // (a - b) % k == 0 => a % k == b % k
never@507 1716 // and:
never@507 1717 // (a + b) % k == 0 => a % k == (k - b) % k
never@507 1718 //
never@507 1719 // For stride > 0 && scale > 0,
never@507 1720 // Derive the new pre-loop limit "lim" such that the two constraints:
never@507 1721 // (1) lim = lim0 + N (where N is some positive integer < V)
never@507 1722 // (2) (e + lim) % V == 0
never@507 1723 // are true.
never@507 1724 //
never@507 1725 // Substituting (1) into (2),
never@507 1726 // (e + lim0 + N) % V == 0
never@507 1727 // solve for N:
never@507 1728 // N = (V - (e + lim0)) % V
never@507 1729 // substitute back into (1), so that new limit
never@507 1730 // lim = lim0 + (V - (e + lim0)) % V
never@507 1731 //
never@507 1732 // For stride > 0 && scale < 0
never@507 1733 // Constraints:
never@507 1734 // lim = lim0 + N
never@507 1735 // (e - lim) % V == 0
never@507 1736 // Solving for lim:
never@507 1737 // (e - lim0 - N) % V == 0
never@507 1738 // N = (e - lim0) % V
never@507 1739 // lim = lim0 + (e - lim0) % V
never@507 1740 //
never@507 1741 // For stride < 0 && scale > 0
never@507 1742 // Constraints:
never@507 1743 // lim = lim0 - N
never@507 1744 // (e + lim) % V == 0
never@507 1745 // Solving for lim:
never@507 1746 // (e + lim0 - N) % V == 0
never@507 1747 // N = (e + lim0) % V
never@507 1748 // lim = lim0 - (e + lim0) % V
never@507 1749 //
never@507 1750 // For stride < 0 && scale < 0
never@507 1751 // Constraints:
never@507 1752 // lim = lim0 - N
never@507 1753 // (e - lim) % V == 0
never@507 1754 // Solving for lim:
never@507 1755 // (e - lim0 + N) % V == 0
never@507 1756 // N = (V - (e - lim0)) % V
never@507 1757 // lim = lim0 - (V - (e - lim0)) % V
duke@435 1758
never@507 1759 int stride = iv_stride();
never@507 1760 int scale = align_to_ref_p.scale_in_bytes();
duke@435 1761 int elt_size = align_to_ref_p.memory_size();
duke@435 1762 int v_align = vector_width_in_bytes() / elt_size;
duke@435 1763 int k = align_to_ref_p.offset_in_bytes() / elt_size;
duke@435 1764
duke@435 1765 Node *kn = _igvn.intcon(k);
never@507 1766
never@507 1767 Node *e = kn;
duke@435 1768 if (align_to_ref_p.invar() != NULL) {
never@507 1769 // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
duke@435 1770 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
duke@435 1771 Node* aref = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
duke@435 1772 _phase->_igvn.register_new_node_with_optimizer(aref);
duke@435 1773 _phase->set_ctrl(aref, pre_ctrl);
never@507 1774 if (align_to_ref_p.negate_invar()) {
never@507 1775 e = new (_phase->C, 3) SubINode(e, aref);
duke@435 1776 } else {
never@507 1777 e = new (_phase->C, 3) AddINode(e, aref);
duke@435 1778 }
never@507 1779 _phase->_igvn.register_new_node_with_optimizer(e);
never@507 1780 _phase->set_ctrl(e, pre_ctrl);
duke@435 1781 }
never@507 1782
never@507 1783 // compute e +/- lim0
never@507 1784 if (scale < 0) {
never@507 1785 e = new (_phase->C, 3) SubINode(e, lim0);
never@507 1786 } else {
never@507 1787 e = new (_phase->C, 3) AddINode(e, lim0);
never@507 1788 }
never@507 1789 _phase->_igvn.register_new_node_with_optimizer(e);
never@507 1790 _phase->set_ctrl(e, pre_ctrl);
never@507 1791
never@507 1792 if (stride * scale > 0) {
never@507 1793 // compute V - (e +/- lim0)
never@507 1794 Node* va = _igvn.intcon(v_align);
never@507 1795 e = new (_phase->C, 3) SubINode(va, e);
never@507 1796 _phase->_igvn.register_new_node_with_optimizer(e);
never@507 1797 _phase->set_ctrl(e, pre_ctrl);
never@507 1798 }
never@507 1799 // compute N = (exp) % V
duke@435 1800 Node* va_msk = _igvn.intcon(v_align - 1);
never@507 1801 Node* N = new (_phase->C, 3) AndINode(e, va_msk);
never@507 1802 _phase->_igvn.register_new_node_with_optimizer(N);
never@507 1803 _phase->set_ctrl(N, pre_ctrl);
never@507 1804
never@507 1805 // substitute back into (1), so that new limit
never@507 1806 // lim = lim0 + N
never@507 1807 Node* lim;
never@507 1808 if (stride < 0) {
never@507 1809 lim = new (_phase->C, 3) SubINode(lim0, N);
duke@435 1810 } else {
never@507 1811 lim = new (_phase->C, 3) AddINode(lim0, N);
duke@435 1812 }
never@507 1813 _phase->_igvn.register_new_node_with_optimizer(lim);
never@507 1814 _phase->set_ctrl(lim, pre_ctrl);
duke@435 1815 Node* constrained =
never@507 1816 (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
never@507 1817 : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
duke@435 1818 _phase->_igvn.register_new_node_with_optimizer(constrained);
duke@435 1819 _phase->set_ctrl(constrained, pre_ctrl);
duke@435 1820 _igvn.hash_delete(pre_opaq);
duke@435 1821 pre_opaq->set_req(1, constrained);
duke@435 1822 }
duke@435 1823
duke@435 1824 //----------------------------get_pre_loop_end---------------------------
duke@435 1825 // Find pre loop end from main loop. Returns null if none.
duke@435 1826 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
duke@435 1827 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1828 if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
duke@435 1829 Node *iffm = ctrl->in(0);
duke@435 1830 if (!iffm->is_If()) return NULL;
duke@435 1831 Node *p_f = iffm->in(0);
duke@435 1832 if (!p_f->is_IfFalse()) return NULL;
duke@435 1833 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
duke@435 1834 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 1835 if (!pre_end->loopnode()->is_pre_loop()) return NULL;
duke@435 1836 return pre_end;
duke@435 1837 }
duke@435 1838
duke@435 1839
duke@435 1840 //------------------------------init---------------------------
duke@435 1841 void SuperWord::init() {
duke@435 1842 _dg.init();
duke@435 1843 _packset.clear();
duke@435 1844 _disjoint_ptrs.clear();
duke@435 1845 _block.clear();
duke@435 1846 _data_entry.clear();
duke@435 1847 _mem_slice_head.clear();
duke@435 1848 _mem_slice_tail.clear();
duke@435 1849 _node_info.clear();
duke@435 1850 _align_to_ref = NULL;
duke@435 1851 _lpt = NULL;
duke@435 1852 _lp = NULL;
duke@435 1853 _bb = NULL;
duke@435 1854 _iv = NULL;
duke@435 1855 }
duke@435 1856
duke@435 1857 //------------------------------print_packset---------------------------
duke@435 1858 void SuperWord::print_packset() {
duke@435 1859 #ifndef PRODUCT
duke@435 1860 tty->print_cr("packset");
duke@435 1861 for (int i = 0; i < _packset.length(); i++) {
duke@435 1862 tty->print_cr("Pack: %d", i);
duke@435 1863 Node_List* p = _packset.at(i);
duke@435 1864 print_pack(p);
duke@435 1865 }
duke@435 1866 #endif
duke@435 1867 }
duke@435 1868
duke@435 1869 //------------------------------print_pack---------------------------
duke@435 1870 void SuperWord::print_pack(Node_List* p) {
duke@435 1871 for (uint i = 0; i < p->size(); i++) {
duke@435 1872 print_stmt(p->at(i));
duke@435 1873 }
duke@435 1874 }
duke@435 1875
duke@435 1876 //------------------------------print_bb---------------------------
duke@435 1877 void SuperWord::print_bb() {
duke@435 1878 #ifndef PRODUCT
duke@435 1879 tty->print_cr("\nBlock");
duke@435 1880 for (int i = 0; i < _block.length(); i++) {
duke@435 1881 Node* n = _block.at(i);
duke@435 1882 tty->print("%d ", i);
duke@435 1883 if (n) {
duke@435 1884 n->dump();
duke@435 1885 }
duke@435 1886 }
duke@435 1887 #endif
duke@435 1888 }
duke@435 1889
duke@435 1890 //------------------------------print_stmt---------------------------
duke@435 1891 void SuperWord::print_stmt(Node* s) {
duke@435 1892 #ifndef PRODUCT
duke@435 1893 tty->print(" align: %d \t", alignment(s));
duke@435 1894 s->dump();
duke@435 1895 #endif
duke@435 1896 }
duke@435 1897
duke@435 1898 //------------------------------blank---------------------------
duke@435 1899 char* SuperWord::blank(uint depth) {
duke@435 1900 static char blanks[101];
duke@435 1901 assert(depth < 101, "too deep");
duke@435 1902 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
duke@435 1903 blanks[depth] = '\0';
duke@435 1904 return blanks;
duke@435 1905 }
duke@435 1906
duke@435 1907
duke@435 1908 //==============================SWPointer===========================
duke@435 1909
duke@435 1910 //----------------------------SWPointer------------------------
duke@435 1911 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
duke@435 1912 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
duke@435 1913 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
duke@435 1914
duke@435 1915 Node* adr = mem->in(MemNode::Address);
duke@435 1916 if (!adr->is_AddP()) {
duke@435 1917 assert(!valid(), "too complex");
duke@435 1918 return;
duke@435 1919 }
duke@435 1920 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
duke@435 1921 Node* base = adr->in(AddPNode::Base);
duke@435 1922 for (int i = 0; i < 3; i++) {
duke@435 1923 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
duke@435 1924 assert(!valid(), "too complex");
duke@435 1925 return;
duke@435 1926 }
duke@435 1927 adr = adr->in(AddPNode::Address);
duke@435 1928 if (base == adr || !adr->is_AddP()) {
duke@435 1929 break; // stop looking at addp's
duke@435 1930 }
duke@435 1931 }
duke@435 1932 _base = base;
duke@435 1933 _adr = adr;
duke@435 1934 assert(valid(), "Usable");
duke@435 1935 }
duke@435 1936
duke@435 1937 // Following is used to create a temporary object during
duke@435 1938 // the pattern match of an address expression.
duke@435 1939 SWPointer::SWPointer(SWPointer* p) :
duke@435 1940 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
duke@435 1941 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
duke@435 1942
duke@435 1943 //------------------------scaled_iv_plus_offset--------------------
duke@435 1944 // Match: k*iv + offset
duke@435 1945 // where: k is a constant that maybe zero, and
duke@435 1946 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
duke@435 1947 bool SWPointer::scaled_iv_plus_offset(Node* n) {
duke@435 1948 if (scaled_iv(n)) {
duke@435 1949 return true;
duke@435 1950 }
duke@435 1951 if (offset_plus_k(n)) {
duke@435 1952 return true;
duke@435 1953 }
duke@435 1954 int opc = n->Opcode();
duke@435 1955 if (opc == Op_AddI) {
duke@435 1956 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
duke@435 1957 return true;
duke@435 1958 }
duke@435 1959 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 1960 return true;
duke@435 1961 }
duke@435 1962 } else if (opc == Op_SubI) {
duke@435 1963 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
duke@435 1964 return true;
duke@435 1965 }
duke@435 1966 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 1967 _scale *= -1;
duke@435 1968 return true;
duke@435 1969 }
duke@435 1970 }
duke@435 1971 return false;
duke@435 1972 }
duke@435 1973
duke@435 1974 //----------------------------scaled_iv------------------------
duke@435 1975 // Match: k*iv where k is a constant that's not zero
duke@435 1976 bool SWPointer::scaled_iv(Node* n) {
duke@435 1977 if (_scale != 0) {
duke@435 1978 return false; // already found a scale
duke@435 1979 }
duke@435 1980 if (n == iv()) {
duke@435 1981 _scale = 1;
duke@435 1982 return true;
duke@435 1983 }
duke@435 1984 int opc = n->Opcode();
duke@435 1985 if (opc == Op_MulI) {
duke@435 1986 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 1987 _scale = n->in(2)->get_int();
duke@435 1988 return true;
duke@435 1989 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
duke@435 1990 _scale = n->in(1)->get_int();
duke@435 1991 return true;
duke@435 1992 }
duke@435 1993 } else if (opc == Op_LShiftI) {
duke@435 1994 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 1995 _scale = 1 << n->in(2)->get_int();
duke@435 1996 return true;
duke@435 1997 }
duke@435 1998 } else if (opc == Op_ConvI2L) {
duke@435 1999 if (scaled_iv_plus_offset(n->in(1))) {
duke@435 2000 return true;
duke@435 2001 }
duke@435 2002 } else if (opc == Op_LShiftL) {
duke@435 2003 if (!has_iv() && _invar == NULL) {
duke@435 2004 // Need to preserve the current _offset value, so
duke@435 2005 // create a temporary object for this expression subtree.
duke@435 2006 // Hacky, so should re-engineer the address pattern match.
duke@435 2007 SWPointer tmp(this);
duke@435 2008 if (tmp.scaled_iv_plus_offset(n->in(1))) {
duke@435 2009 if (tmp._invar == NULL) {
duke@435 2010 int mult = 1 << n->in(2)->get_int();
duke@435 2011 _scale = tmp._scale * mult;
duke@435 2012 _offset += tmp._offset * mult;
duke@435 2013 return true;
duke@435 2014 }
duke@435 2015 }
duke@435 2016 }
duke@435 2017 }
duke@435 2018 return false;
duke@435 2019 }
duke@435 2020
duke@435 2021 //----------------------------offset_plus_k------------------------
duke@435 2022 // Match: offset is (k [+/- invariant])
duke@435 2023 // where k maybe zero and invariant is optional, but not both.
duke@435 2024 bool SWPointer::offset_plus_k(Node* n, bool negate) {
duke@435 2025 int opc = n->Opcode();
duke@435 2026 if (opc == Op_ConI) {
duke@435 2027 _offset += negate ? -(n->get_int()) : n->get_int();
duke@435 2028 return true;
duke@435 2029 } else if (opc == Op_ConL) {
duke@435 2030 // Okay if value fits into an int
duke@435 2031 const TypeLong* t = n->find_long_type();
duke@435 2032 if (t->higher_equal(TypeLong::INT)) {
duke@435 2033 jlong loff = n->get_long();
duke@435 2034 jint off = (jint)loff;
duke@435 2035 _offset += negate ? -off : loff;
duke@435 2036 return true;
duke@435 2037 }
duke@435 2038 return false;
duke@435 2039 }
duke@435 2040 if (_invar != NULL) return false; // already have an invariant
duke@435 2041 if (opc == Op_AddI) {
duke@435 2042 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2043 _negate_invar = negate;
duke@435 2044 _invar = n->in(1);
duke@435 2045 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2046 return true;
duke@435 2047 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2048 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2049 _negate_invar = negate;
duke@435 2050 _invar = n->in(2);
duke@435 2051 return true;
duke@435 2052 }
duke@435 2053 }
duke@435 2054 if (opc == Op_SubI) {
duke@435 2055 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2056 _negate_invar = negate;
duke@435 2057 _invar = n->in(1);
duke@435 2058 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2059 return true;
duke@435 2060 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2061 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2062 _negate_invar = !negate;
duke@435 2063 _invar = n->in(2);
duke@435 2064 return true;
duke@435 2065 }
duke@435 2066 }
duke@435 2067 if (invariant(n)) {
duke@435 2068 _negate_invar = negate;
duke@435 2069 _invar = n;
duke@435 2070 return true;
duke@435 2071 }
duke@435 2072 return false;
duke@435 2073 }
duke@435 2074
duke@435 2075 //----------------------------print------------------------
duke@435 2076 void SWPointer::print() {
duke@435 2077 #ifndef PRODUCT
duke@435 2078 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
duke@435 2079 _base != NULL ? _base->_idx : 0,
duke@435 2080 _adr != NULL ? _adr->_idx : 0,
duke@435 2081 _scale, _offset,
duke@435 2082 _negate_invar?'-':'+',
duke@435 2083 _invar != NULL ? _invar->_idx : 0);
duke@435 2084 #endif
duke@435 2085 }
duke@435 2086
duke@435 2087 // ========================= OrderedPair =====================
duke@435 2088
duke@435 2089 const OrderedPair OrderedPair::initial;
duke@435 2090
duke@435 2091 // ========================= SWNodeInfo =====================
duke@435 2092
duke@435 2093 const SWNodeInfo SWNodeInfo::initial;
duke@435 2094
duke@435 2095
duke@435 2096 // ============================ DepGraph ===========================
duke@435 2097
duke@435 2098 //------------------------------make_node---------------------------
duke@435 2099 // Make a new dependence graph node for an ideal node.
duke@435 2100 DepMem* DepGraph::make_node(Node* node) {
duke@435 2101 DepMem* m = new (_arena) DepMem(node);
duke@435 2102 if (node != NULL) {
duke@435 2103 assert(_map.at_grow(node->_idx) == NULL, "one init only");
duke@435 2104 _map.at_put_grow(node->_idx, m);
duke@435 2105 }
duke@435 2106 return m;
duke@435 2107 }
duke@435 2108
duke@435 2109 //------------------------------make_edge---------------------------
duke@435 2110 // Make a new dependence graph edge from dpred -> dsucc
duke@435 2111 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
duke@435 2112 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
duke@435 2113 dpred->set_out_head(e);
duke@435 2114 dsucc->set_in_head(e);
duke@435 2115 return e;
duke@435 2116 }
duke@435 2117
duke@435 2118 // ========================== DepMem ========================
duke@435 2119
duke@435 2120 //------------------------------in_cnt---------------------------
duke@435 2121 int DepMem::in_cnt() {
duke@435 2122 int ct = 0;
duke@435 2123 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
duke@435 2124 return ct;
duke@435 2125 }
duke@435 2126
duke@435 2127 //------------------------------out_cnt---------------------------
duke@435 2128 int DepMem::out_cnt() {
duke@435 2129 int ct = 0;
duke@435 2130 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
duke@435 2131 return ct;
duke@435 2132 }
duke@435 2133
duke@435 2134 //------------------------------print-----------------------------
duke@435 2135 void DepMem::print() {
duke@435 2136 #ifndef PRODUCT
duke@435 2137 tty->print(" DepNode %d (", _node->_idx);
duke@435 2138 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
duke@435 2139 Node* pred = p->pred()->node();
duke@435 2140 tty->print(" %d", pred != NULL ? pred->_idx : 0);
duke@435 2141 }
duke@435 2142 tty->print(") [");
duke@435 2143 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
duke@435 2144 Node* succ = s->succ()->node();
duke@435 2145 tty->print(" %d", succ != NULL ? succ->_idx : 0);
duke@435 2146 }
duke@435 2147 tty->print_cr(" ]");
duke@435 2148 #endif
duke@435 2149 }
duke@435 2150
duke@435 2151 // =========================== DepEdge =========================
duke@435 2152
duke@435 2153 //------------------------------DepPreds---------------------------
duke@435 2154 void DepEdge::print() {
duke@435 2155 #ifndef PRODUCT
duke@435 2156 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
duke@435 2157 #endif
duke@435 2158 }
duke@435 2159
duke@435 2160 // =========================== DepPreds =========================
duke@435 2161 // Iterator over predecessor edges in the dependence graph.
duke@435 2162
duke@435 2163 //------------------------------DepPreds---------------------------
duke@435 2164 DepPreds::DepPreds(Node* n, DepGraph& dg) {
duke@435 2165 _n = n;
duke@435 2166 _done = false;
duke@435 2167 if (_n->is_Store() || _n->is_Load()) {
duke@435 2168 _next_idx = MemNode::Address;
duke@435 2169 _end_idx = n->req();
duke@435 2170 _dep_next = dg.dep(_n)->in_head();
duke@435 2171 } else if (_n->is_Mem()) {
duke@435 2172 _next_idx = 0;
duke@435 2173 _end_idx = 0;
duke@435 2174 _dep_next = dg.dep(_n)->in_head();
duke@435 2175 } else {
duke@435 2176 _next_idx = 1;
duke@435 2177 _end_idx = _n->req();
duke@435 2178 _dep_next = NULL;
duke@435 2179 }
duke@435 2180 next();
duke@435 2181 }
duke@435 2182
duke@435 2183 //------------------------------next---------------------------
duke@435 2184 void DepPreds::next() {
duke@435 2185 if (_dep_next != NULL) {
duke@435 2186 _current = _dep_next->pred()->node();
duke@435 2187 _dep_next = _dep_next->next_in();
duke@435 2188 } else if (_next_idx < _end_idx) {
duke@435 2189 _current = _n->in(_next_idx++);
duke@435 2190 } else {
duke@435 2191 _done = true;
duke@435 2192 }
duke@435 2193 }
duke@435 2194
duke@435 2195 // =========================== DepSuccs =========================
duke@435 2196 // Iterator over successor edges in the dependence graph.
duke@435 2197
duke@435 2198 //------------------------------DepSuccs---------------------------
duke@435 2199 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
duke@435 2200 _n = n;
duke@435 2201 _done = false;
duke@435 2202 if (_n->is_Load()) {
duke@435 2203 _next_idx = 0;
duke@435 2204 _end_idx = _n->outcnt();
duke@435 2205 _dep_next = dg.dep(_n)->out_head();
duke@435 2206 } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
duke@435 2207 _next_idx = 0;
duke@435 2208 _end_idx = 0;
duke@435 2209 _dep_next = dg.dep(_n)->out_head();
duke@435 2210 } else {
duke@435 2211 _next_idx = 0;
duke@435 2212 _end_idx = _n->outcnt();
duke@435 2213 _dep_next = NULL;
duke@435 2214 }
duke@435 2215 next();
duke@435 2216 }
duke@435 2217
duke@435 2218 //-------------------------------next---------------------------
duke@435 2219 void DepSuccs::next() {
duke@435 2220 if (_dep_next != NULL) {
duke@435 2221 _current = _dep_next->succ()->node();
duke@435 2222 _dep_next = _dep_next->next_out();
duke@435 2223 } else if (_next_idx < _end_idx) {
duke@435 2224 _current = _n->raw_out(_next_idx++);
duke@435 2225 } else {
duke@435 2226 _done = true;
duke@435 2227 }
duke@435 2228 }

mercurial