src/share/vm/opto/superword.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 464
d5fc211aea19
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 */
duke@435 23
duke@435 24 #include "incls/_precompiled.incl"
duke@435 25 #include "incls/_superword.cpp.incl"
duke@435 26
duke@435 27 //
duke@435 28 // S U P E R W O R D T R A N S F O R M
duke@435 29 //=============================================================================
duke@435 30
duke@435 31 //------------------------------SuperWord---------------------------
duke@435 32 SuperWord::SuperWord(PhaseIdealLoop* phase) :
duke@435 33 _phase(phase),
duke@435 34 _igvn(phase->_igvn),
duke@435 35 _arena(phase->C->comp_arena()),
duke@435 36 _packset(arena(), 8, 0, NULL), // packs for the current block
duke@435 37 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
duke@435 38 _block(arena(), 8, 0, NULL), // nodes in current block
duke@435 39 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
duke@435 40 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
duke@435 41 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
duke@435 42 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
duke@435 43 _align_to_ref(NULL), // memory reference to align vectors to
duke@435 44 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
duke@435 45 _dg(_arena), // dependence graph
duke@435 46 _visited(arena()), // visited node set
duke@435 47 _post_visited(arena()), // post visited node set
duke@435 48 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
duke@435 49 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
duke@435 50 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
duke@435 51 _lpt(NULL), // loop tree node
duke@435 52 _lp(NULL), // LoopNode
duke@435 53 _bb(NULL), // basic block
duke@435 54 _iv(NULL) // induction var
duke@435 55 {}
duke@435 56
duke@435 57 //------------------------------transform_loop---------------------------
duke@435 58 void SuperWord::transform_loop(IdealLoopTree* lpt) {
duke@435 59 assert(lpt->_head->is_CountedLoop(), "must be");
duke@435 60 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
duke@435 61
duke@435 62 if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
duke@435 63
duke@435 64 // Check for no control flow in body (other than exit)
duke@435 65 Node *cl_exit = cl->loopexit();
duke@435 66 if (cl_exit->in(0) != lpt->_head) return;
duke@435 67
duke@435 68 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
duke@435 69 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
duke@435 70 if (pre_end == NULL) return;
duke@435 71 Node *pre_opaq1 = pre_end->limit();
duke@435 72 if (pre_opaq1->Opcode() != Op_Opaque1) return;
duke@435 73
duke@435 74 // Do vectors exist on this architecture?
duke@435 75 if (vector_width_in_bytes() == 0) return;
duke@435 76
duke@435 77 init(); // initialize data structures
duke@435 78
duke@435 79 set_lpt(lpt);
duke@435 80 set_lp(cl);
duke@435 81
duke@435 82 // For now, define one block which is the entire loop body
duke@435 83 set_bb(cl);
duke@435 84
duke@435 85 assert(_packset.length() == 0, "packset must be empty");
duke@435 86 SLP_extract();
duke@435 87 }
duke@435 88
duke@435 89 //------------------------------SLP_extract---------------------------
duke@435 90 // Extract the superword level parallelism
duke@435 91 //
duke@435 92 // 1) A reverse post-order of nodes in the block is constructed. By scanning
duke@435 93 // this list from first to last, all definitions are visited before their uses.
duke@435 94 //
duke@435 95 // 2) A point-to-point dependence graph is constructed between memory references.
duke@435 96 // This simplies the upcoming "independence" checker.
duke@435 97 //
duke@435 98 // 3) The maximum depth in the node graph from the beginning of the block
duke@435 99 // to each node is computed. This is used to prune the graph search
duke@435 100 // in the independence checker.
duke@435 101 //
duke@435 102 // 4) For integer types, the necessary bit width is propagated backwards
duke@435 103 // from stores to allow packed operations on byte, char, and short
duke@435 104 // integers. This reverses the promotion to type "int" that javac
duke@435 105 // did for operations like: char c1,c2,c3; c1 = c2 + c3.
duke@435 106 //
duke@435 107 // 5) One of the memory references is picked to be an aligned vector reference.
duke@435 108 // The pre-loop trip count is adjusted to align this reference in the
duke@435 109 // unrolled body.
duke@435 110 //
duke@435 111 // 6) The initial set of pack pairs is seeded with memory references.
duke@435 112 //
duke@435 113 // 7) The set of pack pairs is extended by following use->def and def->use links.
duke@435 114 //
duke@435 115 // 8) The pairs are combined into vector sized packs.
duke@435 116 //
duke@435 117 // 9) Reorder the memory slices to co-locate members of the memory packs.
duke@435 118 //
duke@435 119 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
duke@435 120 // inserting scalar promotion, vector creation from multiple scalars, and
duke@435 121 // extraction of scalar values from vectors.
duke@435 122 //
duke@435 123 void SuperWord::SLP_extract() {
duke@435 124
duke@435 125 // Ready the block
duke@435 126
duke@435 127 construct_bb();
duke@435 128
duke@435 129 dependence_graph();
duke@435 130
duke@435 131 compute_max_depth();
duke@435 132
duke@435 133 compute_vector_element_type();
duke@435 134
duke@435 135 // Attempt vectorization
duke@435 136
duke@435 137 find_adjacent_refs();
duke@435 138
duke@435 139 extend_packlist();
duke@435 140
duke@435 141 combine_packs();
duke@435 142
duke@435 143 construct_my_pack_map();
duke@435 144
duke@435 145 filter_packs();
duke@435 146
duke@435 147 schedule();
duke@435 148
duke@435 149 output();
duke@435 150 }
duke@435 151
duke@435 152 //------------------------------find_adjacent_refs---------------------------
duke@435 153 // Find the adjacent memory references and create pack pairs for them.
duke@435 154 // This is the initial set of packs that will then be extended by
duke@435 155 // following use->def and def->use links. The align positions are
duke@435 156 // assigned relative to the reference "align_to_ref"
duke@435 157 void SuperWord::find_adjacent_refs() {
duke@435 158 // Get list of memory operations
duke@435 159 Node_List memops;
duke@435 160 for (int i = 0; i < _block.length(); i++) {
duke@435 161 Node* n = _block.at(i);
duke@435 162 if (n->is_Mem() && in_bb(n)) {
duke@435 163 int align = memory_alignment(n->as_Mem(), 0);
duke@435 164 if (align != bottom_align) {
duke@435 165 memops.push(n);
duke@435 166 }
duke@435 167 }
duke@435 168 }
duke@435 169 if (memops.size() == 0) return;
duke@435 170
duke@435 171 // Find a memory reference to align to. The pre-loop trip count
duke@435 172 // is modified to align this reference to a vector-aligned address
duke@435 173 find_align_to_ref(memops);
duke@435 174 if (align_to_ref() == NULL) return;
duke@435 175
duke@435 176 SWPointer align_to_ref_p(align_to_ref(), this);
duke@435 177 int offset = align_to_ref_p.offset_in_bytes();
duke@435 178 int scale = align_to_ref_p.scale_in_bytes();
duke@435 179 int vw = vector_width_in_bytes();
duke@435 180 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
duke@435 181 int iv_adjustment = (stride_sign * vw - (offset % vw)) % vw;
duke@435 182
duke@435 183 #ifndef PRODUCT
duke@435 184 if (TraceSuperWord)
duke@435 185 tty->print_cr("\noffset = %d iv_adjustment = %d elt_align = %d",
duke@435 186 offset, iv_adjustment, align_to_ref_p.memory_size());
duke@435 187 #endif
duke@435 188
duke@435 189 // Set alignment relative to "align_to_ref"
duke@435 190 for (int i = memops.size() - 1; i >= 0; i--) {
duke@435 191 MemNode* s = memops.at(i)->as_Mem();
duke@435 192 SWPointer p2(s, this);
duke@435 193 if (p2.comparable(align_to_ref_p)) {
duke@435 194 int align = memory_alignment(s, iv_adjustment);
duke@435 195 set_alignment(s, align);
duke@435 196 } else {
duke@435 197 memops.remove(i);
duke@435 198 }
duke@435 199 }
duke@435 200
duke@435 201 // Create initial pack pairs of memory operations
duke@435 202 for (uint i = 0; i < memops.size(); i++) {
duke@435 203 Node* s1 = memops.at(i);
duke@435 204 for (uint j = 0; j < memops.size(); j++) {
duke@435 205 Node* s2 = memops.at(j);
duke@435 206 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
duke@435 207 int align = alignment(s1);
duke@435 208 if (stmts_can_pack(s1, s2, align)) {
duke@435 209 Node_List* pair = new Node_List();
duke@435 210 pair->push(s1);
duke@435 211 pair->push(s2);
duke@435 212 _packset.append(pair);
duke@435 213 }
duke@435 214 }
duke@435 215 }
duke@435 216 }
duke@435 217
duke@435 218 #ifndef PRODUCT
duke@435 219 if (TraceSuperWord) {
duke@435 220 tty->print_cr("\nAfter find_adjacent_refs");
duke@435 221 print_packset();
duke@435 222 }
duke@435 223 #endif
duke@435 224 }
duke@435 225
duke@435 226 //------------------------------find_align_to_ref---------------------------
duke@435 227 // Find a memory reference to align the loop induction variable to.
duke@435 228 // Looks first at stores then at loads, looking for a memory reference
duke@435 229 // with the largest number of references similar to it.
duke@435 230 void SuperWord::find_align_to_ref(Node_List &memops) {
duke@435 231 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
duke@435 232
duke@435 233 // Count number of comparable memory ops
duke@435 234 for (uint i = 0; i < memops.size(); i++) {
duke@435 235 MemNode* s1 = memops.at(i)->as_Mem();
duke@435 236 SWPointer p1(s1, this);
duke@435 237 // Discard if pre loop can't align this reference
duke@435 238 if (!ref_is_alignable(p1)) {
duke@435 239 *cmp_ct.adr_at(i) = 0;
duke@435 240 continue;
duke@435 241 }
duke@435 242 for (uint j = i+1; j < memops.size(); j++) {
duke@435 243 MemNode* s2 = memops.at(j)->as_Mem();
duke@435 244 if (isomorphic(s1, s2)) {
duke@435 245 SWPointer p2(s2, this);
duke@435 246 if (p1.comparable(p2)) {
duke@435 247 (*cmp_ct.adr_at(i))++;
duke@435 248 (*cmp_ct.adr_at(j))++;
duke@435 249 }
duke@435 250 }
duke@435 251 }
duke@435 252 }
duke@435 253
duke@435 254 // Find Store (or Load) with the greatest number of "comparable" references
duke@435 255 int max_ct = 0;
duke@435 256 int max_idx = -1;
duke@435 257 int min_size = max_jint;
duke@435 258 int min_iv_offset = max_jint;
duke@435 259 for (uint j = 0; j < memops.size(); j++) {
duke@435 260 MemNode* s = memops.at(j)->as_Mem();
duke@435 261 if (s->is_Store()) {
duke@435 262 SWPointer p(s, this);
duke@435 263 if (cmp_ct.at(j) > max_ct ||
duke@435 264 cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
duke@435 265 data_size(s) == min_size &&
duke@435 266 p.offset_in_bytes() < min_iv_offset)) {
duke@435 267 max_ct = cmp_ct.at(j);
duke@435 268 max_idx = j;
duke@435 269 min_size = data_size(s);
duke@435 270 min_iv_offset = p.offset_in_bytes();
duke@435 271 }
duke@435 272 }
duke@435 273 }
duke@435 274 // If no stores, look at loads
duke@435 275 if (max_ct == 0) {
duke@435 276 for (uint j = 0; j < memops.size(); j++) {
duke@435 277 MemNode* s = memops.at(j)->as_Mem();
duke@435 278 if (s->is_Load()) {
duke@435 279 SWPointer p(s, this);
duke@435 280 if (cmp_ct.at(j) > max_ct ||
duke@435 281 cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
duke@435 282 data_size(s) == min_size &&
duke@435 283 p.offset_in_bytes() < min_iv_offset)) {
duke@435 284 max_ct = cmp_ct.at(j);
duke@435 285 max_idx = j;
duke@435 286 min_size = data_size(s);
duke@435 287 min_iv_offset = p.offset_in_bytes();
duke@435 288 }
duke@435 289 }
duke@435 290 }
duke@435 291 }
duke@435 292
duke@435 293 if (max_ct > 0)
duke@435 294 set_align_to_ref(memops.at(max_idx)->as_Mem());
duke@435 295
duke@435 296 #ifndef PRODUCT
duke@435 297 if (TraceSuperWord && Verbose) {
duke@435 298 tty->print_cr("\nVector memops after find_align_to_refs");
duke@435 299 for (uint i = 0; i < memops.size(); i++) {
duke@435 300 MemNode* s = memops.at(i)->as_Mem();
duke@435 301 s->dump();
duke@435 302 }
duke@435 303 }
duke@435 304 #endif
duke@435 305 }
duke@435 306
duke@435 307 //------------------------------ref_is_alignable---------------------------
duke@435 308 // Can the preloop align the reference to position zero in the vector?
duke@435 309 bool SuperWord::ref_is_alignable(SWPointer& p) {
duke@435 310 if (!p.has_iv()) {
duke@435 311 return true; // no induction variable
duke@435 312 }
duke@435 313 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
duke@435 314 assert(pre_end->stride_is_con(), "pre loop stride is constant");
duke@435 315 int preloop_stride = pre_end->stride_con();
duke@435 316
duke@435 317 int span = preloop_stride * p.scale_in_bytes();
duke@435 318
duke@435 319 // Stride one accesses are alignable.
duke@435 320 if (ABS(span) == p.memory_size())
duke@435 321 return true;
duke@435 322
duke@435 323 // If initial offset from start of object is computable,
duke@435 324 // compute alignment within the vector.
duke@435 325 int vw = vector_width_in_bytes();
duke@435 326 if (vw % span == 0) {
duke@435 327 Node* init_nd = pre_end->init_trip();
duke@435 328 if (init_nd->is_Con() && p.invar() == NULL) {
duke@435 329 int init = init_nd->bottom_type()->is_int()->get_con();
duke@435 330
duke@435 331 int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
duke@435 332 assert(init_offset >= 0, "positive offset from object start");
duke@435 333
duke@435 334 if (span > 0) {
duke@435 335 return (vw - (init_offset % vw)) % span == 0;
duke@435 336 } else {
duke@435 337 assert(span < 0, "nonzero stride * scale");
duke@435 338 return (init_offset % vw) % -span == 0;
duke@435 339 }
duke@435 340 }
duke@435 341 }
duke@435 342 return false;
duke@435 343 }
duke@435 344
duke@435 345 //---------------------------dependence_graph---------------------------
duke@435 346 // Construct dependency graph.
duke@435 347 // Add dependence edges to load/store nodes for memory dependence
duke@435 348 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
duke@435 349 void SuperWord::dependence_graph() {
duke@435 350 // First, assign a dependence node to each memory node
duke@435 351 for (int i = 0; i < _block.length(); i++ ) {
duke@435 352 Node *n = _block.at(i);
duke@435 353 if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
duke@435 354 _dg.make_node(n);
duke@435 355 }
duke@435 356 }
duke@435 357
duke@435 358 // For each memory slice, create the dependences
duke@435 359 for (int i = 0; i < _mem_slice_head.length(); i++) {
duke@435 360 Node* n = _mem_slice_head.at(i);
duke@435 361 Node* n_tail = _mem_slice_tail.at(i);
duke@435 362
duke@435 363 // Get slice in predecessor order (last is first)
duke@435 364 mem_slice_preds(n_tail, n, _nlist);
duke@435 365
duke@435 366 // Make the slice dependent on the root
duke@435 367 DepMem* slice = _dg.dep(n);
duke@435 368 _dg.make_edge(_dg.root(), slice);
duke@435 369
duke@435 370 // Create a sink for the slice
duke@435 371 DepMem* slice_sink = _dg.make_node(NULL);
duke@435 372 _dg.make_edge(slice_sink, _dg.tail());
duke@435 373
duke@435 374 // Now visit each pair of memory ops, creating the edges
duke@435 375 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
duke@435 376 Node* s1 = _nlist.at(j);
duke@435 377
duke@435 378 // If no dependency yet, use slice
duke@435 379 if (_dg.dep(s1)->in_cnt() == 0) {
duke@435 380 _dg.make_edge(slice, s1);
duke@435 381 }
duke@435 382 SWPointer p1(s1->as_Mem(), this);
duke@435 383 bool sink_dependent = true;
duke@435 384 for (int k = j - 1; k >= 0; k--) {
duke@435 385 Node* s2 = _nlist.at(k);
duke@435 386 if (s1->is_Load() && s2->is_Load())
duke@435 387 continue;
duke@435 388 SWPointer p2(s2->as_Mem(), this);
duke@435 389
duke@435 390 int cmp = p1.cmp(p2);
duke@435 391 if (SuperWordRTDepCheck &&
duke@435 392 p1.base() != p2.base() && p1.valid() && p2.valid()) {
duke@435 393 // Create a runtime check to disambiguate
duke@435 394 OrderedPair pp(p1.base(), p2.base());
duke@435 395 _disjoint_ptrs.append_if_missing(pp);
duke@435 396 } else if (!SWPointer::not_equal(cmp)) {
duke@435 397 // Possibly same address
duke@435 398 _dg.make_edge(s1, s2);
duke@435 399 sink_dependent = false;
duke@435 400 }
duke@435 401 }
duke@435 402 if (sink_dependent) {
duke@435 403 _dg.make_edge(s1, slice_sink);
duke@435 404 }
duke@435 405 }
duke@435 406 #ifndef PRODUCT
duke@435 407 if (TraceSuperWord) {
duke@435 408 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
duke@435 409 for (int q = 0; q < _nlist.length(); q++) {
duke@435 410 _dg.print(_nlist.at(q));
duke@435 411 }
duke@435 412 tty->cr();
duke@435 413 }
duke@435 414 #endif
duke@435 415 _nlist.clear();
duke@435 416 }
duke@435 417
duke@435 418 #ifndef PRODUCT
duke@435 419 if (TraceSuperWord) {
duke@435 420 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
duke@435 421 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
duke@435 422 _disjoint_ptrs.at(r).print();
duke@435 423 tty->cr();
duke@435 424 }
duke@435 425 tty->cr();
duke@435 426 }
duke@435 427 #endif
duke@435 428 }
duke@435 429
duke@435 430 //---------------------------mem_slice_preds---------------------------
duke@435 431 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 432 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
duke@435 433 assert(preds.length() == 0, "start empty");
duke@435 434 Node* n = start;
duke@435 435 Node* prev = NULL;
duke@435 436 while (true) {
duke@435 437 assert(in_bb(n), "must be in block");
duke@435 438 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 439 Node* out = n->fast_out(i);
duke@435 440 if (out->is_Load()) {
duke@435 441 if (in_bb(out)) {
duke@435 442 preds.push(out);
duke@435 443 }
duke@435 444 } else {
duke@435 445 // FIXME
duke@435 446 if (out->is_MergeMem() && !in_bb(out)) {
duke@435 447 // Either unrolling is causing a memory edge not to disappear,
duke@435 448 // or need to run igvn.optimize() again before SLP
duke@435 449 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
duke@435 450 // Ditto. Not sure what else to check further.
duke@435 451 } else if (out->Opcode() == Op_StoreCM && out->in(4) == n) {
duke@435 452 // StoreCM has an input edge used as a precedence edge.
duke@435 453 // Maybe an issue when oop stores are vectorized.
duke@435 454 } else {
duke@435 455 assert(out == prev || prev == NULL, "no branches off of store slice");
duke@435 456 }
duke@435 457 }
duke@435 458 }
duke@435 459 if (n == stop) break;
duke@435 460 preds.push(n);
duke@435 461 prev = n;
duke@435 462 n = n->in(MemNode::Memory);
duke@435 463 }
duke@435 464 }
duke@435 465
duke@435 466 //------------------------------stmts_can_pack---------------------------
duke@435 467 // Can s1 and s2 be in a pack with s1 immediately preceeding s2 and
duke@435 468 // s1 aligned at "align"
duke@435 469 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
duke@435 470 if (isomorphic(s1, s2)) {
duke@435 471 if (independent(s1, s2)) {
duke@435 472 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
duke@435 473 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
duke@435 474 int s1_align = alignment(s1);
duke@435 475 int s2_align = alignment(s2);
duke@435 476 if (s1_align == top_align || s1_align == align) {
duke@435 477 if (s2_align == top_align || s2_align == align + data_size(s1)) {
duke@435 478 return true;
duke@435 479 }
duke@435 480 }
duke@435 481 }
duke@435 482 }
duke@435 483 }
duke@435 484 }
duke@435 485 return false;
duke@435 486 }
duke@435 487
duke@435 488 //------------------------------exists_at---------------------------
duke@435 489 // Does s exist in a pack at position pos?
duke@435 490 bool SuperWord::exists_at(Node* s, uint pos) {
duke@435 491 for (int i = 0; i < _packset.length(); i++) {
duke@435 492 Node_List* p = _packset.at(i);
duke@435 493 if (p->at(pos) == s) {
duke@435 494 return true;
duke@435 495 }
duke@435 496 }
duke@435 497 return false;
duke@435 498 }
duke@435 499
duke@435 500 //------------------------------are_adjacent_refs---------------------------
duke@435 501 // Is s1 immediately before s2 in memory?
duke@435 502 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
duke@435 503 if (!s1->is_Mem() || !s2->is_Mem()) return false;
duke@435 504 if (!in_bb(s1) || !in_bb(s2)) return false;
duke@435 505 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
duke@435 506 // only pack memops that are in the same alias set until that's fixed.
duke@435 507 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
duke@435 508 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
duke@435 509 return false;
duke@435 510 SWPointer p1(s1->as_Mem(), this);
duke@435 511 SWPointer p2(s2->as_Mem(), this);
duke@435 512 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
duke@435 513 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
duke@435 514 return diff == data_size(s1);
duke@435 515 }
duke@435 516
duke@435 517 //------------------------------isomorphic---------------------------
duke@435 518 // Are s1 and s2 similar?
duke@435 519 bool SuperWord::isomorphic(Node* s1, Node* s2) {
duke@435 520 if (s1->Opcode() != s2->Opcode()) return false;
duke@435 521 if (s1->req() != s2->req()) return false;
duke@435 522 if (s1->in(0) != s2->in(0)) return false;
duke@435 523 if (velt_type(s1) != velt_type(s2)) return false;
duke@435 524 return true;
duke@435 525 }
duke@435 526
duke@435 527 //------------------------------independent---------------------------
duke@435 528 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 529 bool SuperWord::independent(Node* s1, Node* s2) {
duke@435 530 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
duke@435 531 int d1 = depth(s1);
duke@435 532 int d2 = depth(s2);
duke@435 533 if (d1 == d2) return s1 != s2;
duke@435 534 Node* deep = d1 > d2 ? s1 : s2;
duke@435 535 Node* shallow = d1 > d2 ? s2 : s1;
duke@435 536
duke@435 537 visited_clear();
duke@435 538
duke@435 539 return independent_path(shallow, deep);
duke@435 540 }
duke@435 541
duke@435 542 //------------------------------independent_path------------------------------
duke@435 543 // Helper for independent
duke@435 544 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
duke@435 545 if (dp >= 1000) return false; // stop deep recursion
duke@435 546 visited_set(deep);
duke@435 547 int shal_depth = depth(shallow);
duke@435 548 assert(shal_depth <= depth(deep), "must be");
duke@435 549 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
duke@435 550 Node* pred = preds.current();
duke@435 551 if (in_bb(pred) && !visited_test(pred)) {
duke@435 552 if (shallow == pred) {
duke@435 553 return false;
duke@435 554 }
duke@435 555 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
duke@435 556 return false;
duke@435 557 }
duke@435 558 }
duke@435 559 }
duke@435 560 return true;
duke@435 561 }
duke@435 562
duke@435 563 //------------------------------set_alignment---------------------------
duke@435 564 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
duke@435 565 set_alignment(s1, align);
duke@435 566 set_alignment(s2, align + data_size(s1));
duke@435 567 }
duke@435 568
duke@435 569 //------------------------------data_size---------------------------
duke@435 570 int SuperWord::data_size(Node* s) {
duke@435 571 const Type* t = velt_type(s);
duke@435 572 BasicType bt = t->array_element_basic_type();
duke@435 573 int bsize = type2aelembytes[bt];
duke@435 574 assert(bsize != 0, "valid size");
duke@435 575 return bsize;
duke@435 576 }
duke@435 577
duke@435 578 //------------------------------extend_packlist---------------------------
duke@435 579 // Extend packset by following use->def and def->use links from pack members.
duke@435 580 void SuperWord::extend_packlist() {
duke@435 581 bool changed;
duke@435 582 do {
duke@435 583 changed = false;
duke@435 584 for (int i = 0; i < _packset.length(); i++) {
duke@435 585 Node_List* p = _packset.at(i);
duke@435 586 changed |= follow_use_defs(p);
duke@435 587 changed |= follow_def_uses(p);
duke@435 588 }
duke@435 589 } while (changed);
duke@435 590
duke@435 591 #ifndef PRODUCT
duke@435 592 if (TraceSuperWord) {
duke@435 593 tty->print_cr("\nAfter extend_packlist");
duke@435 594 print_packset();
duke@435 595 }
duke@435 596 #endif
duke@435 597 }
duke@435 598
duke@435 599 //------------------------------follow_use_defs---------------------------
duke@435 600 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 601 bool SuperWord::follow_use_defs(Node_List* p) {
duke@435 602 Node* s1 = p->at(0);
duke@435 603 Node* s2 = p->at(1);
duke@435 604 assert(p->size() == 2, "just checking");
duke@435 605 assert(s1->req() == s2->req(), "just checking");
duke@435 606 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 607
duke@435 608 if (s1->is_Load()) return false;
duke@435 609
duke@435 610 int align = alignment(s1);
duke@435 611 bool changed = false;
duke@435 612 int start = s1->is_Store() ? MemNode::ValueIn : 1;
duke@435 613 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
duke@435 614 for (int j = start; j < end; j++) {
duke@435 615 Node* t1 = s1->in(j);
duke@435 616 Node* t2 = s2->in(j);
duke@435 617 if (!in_bb(t1) || !in_bb(t2))
duke@435 618 continue;
duke@435 619 if (stmts_can_pack(t1, t2, align)) {
duke@435 620 if (est_savings(t1, t2) >= 0) {
duke@435 621 Node_List* pair = new Node_List();
duke@435 622 pair->push(t1);
duke@435 623 pair->push(t2);
duke@435 624 _packset.append(pair);
duke@435 625 set_alignment(t1, t2, align);
duke@435 626 changed = true;
duke@435 627 }
duke@435 628 }
duke@435 629 }
duke@435 630 return changed;
duke@435 631 }
duke@435 632
duke@435 633 //------------------------------follow_def_uses---------------------------
duke@435 634 // Extend the packset by visiting uses of nodes in pack p
duke@435 635 bool SuperWord::follow_def_uses(Node_List* p) {
duke@435 636 bool changed = false;
duke@435 637 Node* s1 = p->at(0);
duke@435 638 Node* s2 = p->at(1);
duke@435 639 assert(p->size() == 2, "just checking");
duke@435 640 assert(s1->req() == s2->req(), "just checking");
duke@435 641 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 642
duke@435 643 if (s1->is_Store()) return false;
duke@435 644
duke@435 645 int align = alignment(s1);
duke@435 646 int savings = -1;
duke@435 647 Node* u1 = NULL;
duke@435 648 Node* u2 = NULL;
duke@435 649 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 650 Node* t1 = s1->fast_out(i);
duke@435 651 if (!in_bb(t1)) continue;
duke@435 652 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
duke@435 653 Node* t2 = s2->fast_out(j);
duke@435 654 if (!in_bb(t2)) continue;
duke@435 655 if (!opnd_positions_match(s1, t1, s2, t2))
duke@435 656 continue;
duke@435 657 if (stmts_can_pack(t1, t2, align)) {
duke@435 658 int my_savings = est_savings(t1, t2);
duke@435 659 if (my_savings > savings) {
duke@435 660 savings = my_savings;
duke@435 661 u1 = t1;
duke@435 662 u2 = t2;
duke@435 663 }
duke@435 664 }
duke@435 665 }
duke@435 666 }
duke@435 667 if (savings >= 0) {
duke@435 668 Node_List* pair = new Node_List();
duke@435 669 pair->push(u1);
duke@435 670 pair->push(u2);
duke@435 671 _packset.append(pair);
duke@435 672 set_alignment(u1, u2, align);
duke@435 673 changed = true;
duke@435 674 }
duke@435 675 return changed;
duke@435 676 }
duke@435 677
duke@435 678 //---------------------------opnd_positions_match-------------------------
duke@435 679 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 680 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
duke@435 681 uint ct = u1->req();
duke@435 682 if (ct != u2->req()) return false;
duke@435 683 uint i1 = 0;
duke@435 684 uint i2 = 0;
duke@435 685 do {
duke@435 686 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
duke@435 687 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
duke@435 688 if (i1 != i2) {
duke@435 689 return false;
duke@435 690 }
duke@435 691 } while (i1 < ct);
duke@435 692 return true;
duke@435 693 }
duke@435 694
duke@435 695 //------------------------------est_savings---------------------------
duke@435 696 // Estimate the savings from executing s1 and s2 as a pack
duke@435 697 int SuperWord::est_savings(Node* s1, Node* s2) {
duke@435 698 int save = 2 - 1; // 2 operations per instruction in packed form
duke@435 699
duke@435 700 // inputs
duke@435 701 for (uint i = 1; i < s1->req(); i++) {
duke@435 702 Node* x1 = s1->in(i);
duke@435 703 Node* x2 = s2->in(i);
duke@435 704 if (x1 != x2) {
duke@435 705 if (are_adjacent_refs(x1, x2)) {
duke@435 706 save += adjacent_profit(x1, x2);
duke@435 707 } else if (!in_packset(x1, x2)) {
duke@435 708 save -= pack_cost(2);
duke@435 709 } else {
duke@435 710 save += unpack_cost(2);
duke@435 711 }
duke@435 712 }
duke@435 713 }
duke@435 714
duke@435 715 // uses of result
duke@435 716 uint ct = 0;
duke@435 717 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 718 Node* s1_use = s1->fast_out(i);
duke@435 719 for (int j = 0; j < _packset.length(); j++) {
duke@435 720 Node_List* p = _packset.at(j);
duke@435 721 if (p->at(0) == s1_use) {
duke@435 722 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
duke@435 723 Node* s2_use = s2->fast_out(k);
duke@435 724 if (p->at(p->size()-1) == s2_use) {
duke@435 725 ct++;
duke@435 726 if (are_adjacent_refs(s1_use, s2_use)) {
duke@435 727 save += adjacent_profit(s1_use, s2_use);
duke@435 728 }
duke@435 729 }
duke@435 730 }
duke@435 731 }
duke@435 732 }
duke@435 733 }
duke@435 734
duke@435 735 if (ct < s1->outcnt()) save += unpack_cost(1);
duke@435 736 if (ct < s2->outcnt()) save += unpack_cost(1);
duke@435 737
duke@435 738 return save;
duke@435 739 }
duke@435 740
duke@435 741 //------------------------------costs---------------------------
duke@435 742 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
duke@435 743 int SuperWord::pack_cost(int ct) { return ct; }
duke@435 744 int SuperWord::unpack_cost(int ct) { return ct; }
duke@435 745
duke@435 746 //------------------------------combine_packs---------------------------
duke@435 747 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 748 void SuperWord::combine_packs() {
duke@435 749 bool changed;
duke@435 750 do {
duke@435 751 changed = false;
duke@435 752 for (int i = 0; i < _packset.length(); i++) {
duke@435 753 Node_List* p1 = _packset.at(i);
duke@435 754 if (p1 == NULL) continue;
duke@435 755 for (int j = 0; j < _packset.length(); j++) {
duke@435 756 Node_List* p2 = _packset.at(j);
duke@435 757 if (p2 == NULL) continue;
duke@435 758 if (p1->at(p1->size()-1) == p2->at(0)) {
duke@435 759 for (uint k = 1; k < p2->size(); k++) {
duke@435 760 p1->push(p2->at(k));
duke@435 761 }
duke@435 762 _packset.at_put(j, NULL);
duke@435 763 changed = true;
duke@435 764 }
duke@435 765 }
duke@435 766 }
duke@435 767 } while (changed);
duke@435 768
duke@435 769 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 770 Node_List* p1 = _packset.at(i);
duke@435 771 if (p1 == NULL) {
duke@435 772 _packset.remove_at(i);
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776 #ifndef PRODUCT
duke@435 777 if (TraceSuperWord) {
duke@435 778 tty->print_cr("\nAfter combine_packs");
duke@435 779 print_packset();
duke@435 780 }
duke@435 781 #endif
duke@435 782 }
duke@435 783
duke@435 784 //-----------------------------construct_my_pack_map--------------------------
duke@435 785 // Construct the map from nodes to packs. Only valid after the
duke@435 786 // point where a node is only in one pack (after combine_packs).
duke@435 787 void SuperWord::construct_my_pack_map() {
duke@435 788 Node_List* rslt = NULL;
duke@435 789 for (int i = 0; i < _packset.length(); i++) {
duke@435 790 Node_List* p = _packset.at(i);
duke@435 791 for (uint j = 0; j < p->size(); j++) {
duke@435 792 Node* s = p->at(j);
duke@435 793 assert(my_pack(s) == NULL, "only in one pack");
duke@435 794 set_my_pack(s, p);
duke@435 795 }
duke@435 796 }
duke@435 797 }
duke@435 798
duke@435 799 //------------------------------filter_packs---------------------------
duke@435 800 // Remove packs that are not implemented or not profitable.
duke@435 801 void SuperWord::filter_packs() {
duke@435 802
duke@435 803 // Remove packs that are not implemented
duke@435 804 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 805 Node_List* pk = _packset.at(i);
duke@435 806 bool impl = implemented(pk);
duke@435 807 if (!impl) {
duke@435 808 #ifndef PRODUCT
duke@435 809 if (TraceSuperWord && Verbose) {
duke@435 810 tty->print_cr("Unimplemented");
duke@435 811 pk->at(0)->dump();
duke@435 812 }
duke@435 813 #endif
duke@435 814 remove_pack_at(i);
duke@435 815 }
duke@435 816 }
duke@435 817
duke@435 818 // Remove packs that are not profitable
duke@435 819 bool changed;
duke@435 820 do {
duke@435 821 changed = false;
duke@435 822 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 823 Node_List* pk = _packset.at(i);
duke@435 824 bool prof = profitable(pk);
duke@435 825 if (!prof) {
duke@435 826 #ifndef PRODUCT
duke@435 827 if (TraceSuperWord && Verbose) {
duke@435 828 tty->print_cr("Unprofitable");
duke@435 829 pk->at(0)->dump();
duke@435 830 }
duke@435 831 #endif
duke@435 832 remove_pack_at(i);
duke@435 833 changed = true;
duke@435 834 }
duke@435 835 }
duke@435 836 } while (changed);
duke@435 837
duke@435 838 #ifndef PRODUCT
duke@435 839 if (TraceSuperWord) {
duke@435 840 tty->print_cr("\nAfter filter_packs");
duke@435 841 print_packset();
duke@435 842 tty->cr();
duke@435 843 }
duke@435 844 #endif
duke@435 845 }
duke@435 846
duke@435 847 //------------------------------implemented---------------------------
duke@435 848 // Can code be generated for pack p?
duke@435 849 bool SuperWord::implemented(Node_List* p) {
duke@435 850 Node* p0 = p->at(0);
duke@435 851 int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
duke@435 852 return vopc > 0 && Matcher::has_match_rule(vopc);
duke@435 853 }
duke@435 854
duke@435 855 //------------------------------profitable---------------------------
duke@435 856 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 857 bool SuperWord::profitable(Node_List* p) {
duke@435 858 Node* p0 = p->at(0);
duke@435 859 uint start, end;
duke@435 860 vector_opd_range(p0, &start, &end);
duke@435 861
duke@435 862 // Return false if some input is not vector and inside block
duke@435 863 for (uint i = start; i < end; i++) {
duke@435 864 if (!is_vector_use(p0, i)) {
duke@435 865 // For now, return false if not scalar promotion case (inputs are the same.)
duke@435 866 // Later, implement PackNode and allow differring, non-vector inputs
duke@435 867 // (maybe just the ones from outside the block.)
duke@435 868 Node* p0_def = p0->in(i);
duke@435 869 for (uint j = 1; j < p->size(); j++) {
duke@435 870 Node* use = p->at(j);
duke@435 871 Node* def = use->in(i);
duke@435 872 if (p0_def != def)
duke@435 873 return false;
duke@435 874 }
duke@435 875 }
duke@435 876 }
duke@435 877 if (!p0->is_Store()) {
duke@435 878 // For now, return false if not all uses are vector.
duke@435 879 // Later, implement ExtractNode and allow non-vector uses (maybe
duke@435 880 // just the ones outside the block.)
duke@435 881 for (uint i = 0; i < p->size(); i++) {
duke@435 882 Node* def = p->at(i);
duke@435 883 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 884 Node* use = def->fast_out(j);
duke@435 885 for (uint k = 0; k < use->req(); k++) {
duke@435 886 Node* n = use->in(k);
duke@435 887 if (def == n) {
duke@435 888 if (!is_vector_use(use, k)) {
duke@435 889 return false;
duke@435 890 }
duke@435 891 }
duke@435 892 }
duke@435 893 }
duke@435 894 }
duke@435 895 }
duke@435 896 return true;
duke@435 897 }
duke@435 898
duke@435 899 //------------------------------schedule---------------------------
duke@435 900 // Adjust the memory graph for the packed operations
duke@435 901 void SuperWord::schedule() {
duke@435 902
duke@435 903 // Co-locate in the memory graph the members of each memory pack
duke@435 904 for (int i = 0; i < _packset.length(); i++) {
duke@435 905 co_locate_pack(_packset.at(i));
duke@435 906 }
duke@435 907 }
duke@435 908
duke@435 909 //------------------------------co_locate_pack---------------------------
duke@435 910 // Within a pack, move stores down to the last executed store,
duke@435 911 // and move loads up to the first executed load.
duke@435 912 void SuperWord::co_locate_pack(Node_List* pk) {
duke@435 913 if (pk->at(0)->is_Store()) {
duke@435 914 // Push Stores down towards last executed pack member
duke@435 915 MemNode* first = executed_first(pk)->as_Mem();
duke@435 916 MemNode* last = executed_last(pk)->as_Mem();
duke@435 917 MemNode* insert_pt = last;
duke@435 918 MemNode* current = last->in(MemNode::Memory)->as_Mem();
duke@435 919 while (true) {
duke@435 920 assert(in_bb(current), "stay in block");
duke@435 921 Node* my_mem = current->in(MemNode::Memory);
duke@435 922 if (in_pack(current, pk)) {
duke@435 923 // Forward users of my memory state to my input memory state
duke@435 924 _igvn.hash_delete(current);
duke@435 925 _igvn.hash_delete(my_mem);
duke@435 926 for (DUIterator i = current->outs(); current->has_out(i); i++) {
duke@435 927 Node* use = current->out(i);
duke@435 928 if (use->is_Mem()) {
duke@435 929 assert(use->in(MemNode::Memory) == current, "must be");
duke@435 930 _igvn.hash_delete(use);
duke@435 931 use->set_req(MemNode::Memory, my_mem);
duke@435 932 _igvn._worklist.push(use);
duke@435 933 --i; // deleted this edge; rescan position
duke@435 934 }
duke@435 935 }
duke@435 936 // put current immediately before insert_pt
duke@435 937 current->set_req(MemNode::Memory, insert_pt->in(MemNode::Memory));
duke@435 938 _igvn.hash_delete(insert_pt);
duke@435 939 insert_pt->set_req(MemNode::Memory, current);
duke@435 940 _igvn._worklist.push(insert_pt);
duke@435 941 _igvn._worklist.push(current);
duke@435 942 insert_pt = current;
duke@435 943 }
duke@435 944 if (current == first) break;
duke@435 945 current = my_mem->as_Mem();
duke@435 946 }
duke@435 947 } else if (pk->at(0)->is_Load()) {
duke@435 948 // Pull Loads up towards first executed pack member
duke@435 949 LoadNode* first = executed_first(pk)->as_Load();
duke@435 950 Node* first_mem = first->in(MemNode::Memory);
duke@435 951 _igvn.hash_delete(first_mem);
duke@435 952 // Give each load same memory state as first
duke@435 953 for (uint i = 0; i < pk->size(); i++) {
duke@435 954 LoadNode* ld = pk->at(i)->as_Load();
duke@435 955 _igvn.hash_delete(ld);
duke@435 956 ld->set_req(MemNode::Memory, first_mem);
duke@435 957 _igvn._worklist.push(ld);
duke@435 958 }
duke@435 959 }
duke@435 960 }
duke@435 961
duke@435 962 //------------------------------output---------------------------
duke@435 963 // Convert packs into vector node operations
duke@435 964 void SuperWord::output() {
duke@435 965 if (_packset.length() == 0) return;
duke@435 966
duke@435 967 // MUST ENSURE main loop's initial value is properly aligned:
duke@435 968 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
duke@435 969
duke@435 970 align_initial_loop_index(align_to_ref());
duke@435 971
duke@435 972 // Insert extract (unpack) operations for scalar uses
duke@435 973 for (int i = 0; i < _packset.length(); i++) {
duke@435 974 insert_extracts(_packset.at(i));
duke@435 975 }
duke@435 976
duke@435 977 for (int i = 0; i < _block.length(); i++) {
duke@435 978 Node* n = _block.at(i);
duke@435 979 Node_List* p = my_pack(n);
duke@435 980 if (p && n == executed_last(p)) {
duke@435 981 uint vlen = p->size();
duke@435 982 Node* vn = NULL;
duke@435 983 Node* low_adr = p->at(0);
duke@435 984 Node* first = executed_first(p);
duke@435 985 if (n->is_Load()) {
duke@435 986 int opc = n->Opcode();
duke@435 987 Node* ctl = n->in(MemNode::Control);
duke@435 988 Node* mem = first->in(MemNode::Memory);
duke@435 989 Node* adr = low_adr->in(MemNode::Address);
duke@435 990 const TypePtr* atyp = n->adr_type();
duke@435 991 vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
duke@435 992
duke@435 993 } else if (n->is_Store()) {
duke@435 994 // Promote value to be stored to vector
duke@435 995 VectorNode* val = vector_opd(p, MemNode::ValueIn);
duke@435 996
duke@435 997 int opc = n->Opcode();
duke@435 998 Node* ctl = n->in(MemNode::Control);
duke@435 999 Node* mem = first->in(MemNode::Memory);
duke@435 1000 Node* adr = low_adr->in(MemNode::Address);
duke@435 1001 const TypePtr* atyp = n->adr_type();
duke@435 1002 vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
duke@435 1003
duke@435 1004 } else if (n->req() == 3) {
duke@435 1005 // Promote operands to vector
duke@435 1006 Node* in1 = vector_opd(p, 1);
duke@435 1007 Node* in2 = vector_opd(p, 2);
duke@435 1008 vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
duke@435 1009
duke@435 1010 } else {
duke@435 1011 ShouldNotReachHere();
duke@435 1012 }
duke@435 1013
duke@435 1014 _phase->_igvn.register_new_node_with_optimizer(vn);
duke@435 1015 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
duke@435 1016 for (uint j = 0; j < p->size(); j++) {
duke@435 1017 Node* pm = p->at(j);
duke@435 1018 _igvn.hash_delete(pm);
duke@435 1019 _igvn.subsume_node(pm, vn);
duke@435 1020 }
duke@435 1021 _igvn._worklist.push(vn);
duke@435 1022 }
duke@435 1023 }
duke@435 1024 }
duke@435 1025
duke@435 1026 //------------------------------vector_opd---------------------------
duke@435 1027 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
duke@435 1028 VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
duke@435 1029 Node* p0 = p->at(0);
duke@435 1030 uint vlen = p->size();
duke@435 1031 Node* opd = p0->in(opd_idx);
duke@435 1032
duke@435 1033 bool same_opd = true;
duke@435 1034 for (uint i = 1; i < vlen; i++) {
duke@435 1035 Node* pi = p->at(i);
duke@435 1036 Node* in = pi->in(opd_idx);
duke@435 1037 if (opd != in) {
duke@435 1038 same_opd = false;
duke@435 1039 break;
duke@435 1040 }
duke@435 1041 }
duke@435 1042
duke@435 1043 if (same_opd) {
duke@435 1044 if (opd->is_Vector()) {
duke@435 1045 return (VectorNode*)opd; // input is matching vector
duke@435 1046 }
duke@435 1047 // Convert scalar input to vector. Use p0's type because it's container
duke@435 1048 // maybe smaller than the operand's container.
duke@435 1049 const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
duke@435 1050 const Type* p0_t = velt_type(p0);
duke@435 1051 if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
duke@435 1052 VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
duke@435 1053
duke@435 1054 _phase->_igvn.register_new_node_with_optimizer(vn);
duke@435 1055 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
duke@435 1056 return vn;
duke@435 1057 }
duke@435 1058
duke@435 1059 // Insert pack operation
duke@435 1060 const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
duke@435 1061 PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
duke@435 1062
duke@435 1063 for (uint i = 1; i < vlen; i++) {
duke@435 1064 Node* pi = p->at(i);
duke@435 1065 Node* in = pi->in(opd_idx);
duke@435 1066 assert(my_pack(in) == NULL, "Should already have been unpacked");
duke@435 1067 assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
duke@435 1068 pk->add_opd(in);
duke@435 1069 }
duke@435 1070 _phase->_igvn.register_new_node_with_optimizer(pk);
duke@435 1071 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
duke@435 1072 return pk;
duke@435 1073 }
duke@435 1074
duke@435 1075 //------------------------------insert_extracts---------------------------
duke@435 1076 // If a use of pack p is not a vector use, then replace the
duke@435 1077 // use with an extract operation.
duke@435 1078 void SuperWord::insert_extracts(Node_List* p) {
duke@435 1079 if (p->at(0)->is_Store()) return;
duke@435 1080 assert(_n_idx_list.is_empty(), "empty (node,index) list");
duke@435 1081
duke@435 1082 // Inspect each use of each pack member. For each use that is
duke@435 1083 // not a vector use, replace the use with an extract operation.
duke@435 1084
duke@435 1085 for (uint i = 0; i < p->size(); i++) {
duke@435 1086 Node* def = p->at(i);
duke@435 1087 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1088 Node* use = def->fast_out(j);
duke@435 1089 for (uint k = 0; k < use->req(); k++) {
duke@435 1090 Node* n = use->in(k);
duke@435 1091 if (def == n) {
duke@435 1092 if (!is_vector_use(use, k)) {
duke@435 1093 _n_idx_list.push(use, k);
duke@435 1094 }
duke@435 1095 }
duke@435 1096 }
duke@435 1097 }
duke@435 1098 }
duke@435 1099
duke@435 1100 while (_n_idx_list.is_nonempty()) {
duke@435 1101 Node* use = _n_idx_list.node();
duke@435 1102 int idx = _n_idx_list.index();
duke@435 1103 _n_idx_list.pop();
duke@435 1104 Node* def = use->in(idx);
duke@435 1105
duke@435 1106 // Insert extract operation
duke@435 1107 _igvn.hash_delete(def);
duke@435 1108 _igvn.hash_delete(use);
duke@435 1109 int def_pos = alignment(def) / data_size(def);
duke@435 1110 const Type* def_t = velt_type(def);
duke@435 1111
duke@435 1112 Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
duke@435 1113 _phase->_igvn.register_new_node_with_optimizer(ex);
duke@435 1114 _phase->set_ctrl(ex, _phase->get_ctrl(def));
duke@435 1115 use->set_req(idx, ex);
duke@435 1116 _igvn._worklist.push(def);
duke@435 1117 _igvn._worklist.push(use);
duke@435 1118
duke@435 1119 bb_insert_after(ex, bb_idx(def));
duke@435 1120 set_velt_type(ex, def_t);
duke@435 1121 }
duke@435 1122 }
duke@435 1123
duke@435 1124 //------------------------------is_vector_use---------------------------
duke@435 1125 // Is use->in(u_idx) a vector use?
duke@435 1126 bool SuperWord::is_vector_use(Node* use, int u_idx) {
duke@435 1127 Node_List* u_pk = my_pack(use);
duke@435 1128 if (u_pk == NULL) return false;
duke@435 1129 Node* def = use->in(u_idx);
duke@435 1130 Node_List* d_pk = my_pack(def);
duke@435 1131 if (d_pk == NULL) {
duke@435 1132 // check for scalar promotion
duke@435 1133 Node* n = u_pk->at(0)->in(u_idx);
duke@435 1134 for (uint i = 1; i < u_pk->size(); i++) {
duke@435 1135 if (u_pk->at(i)->in(u_idx) != n) return false;
duke@435 1136 }
duke@435 1137 return true;
duke@435 1138 }
duke@435 1139 if (u_pk->size() != d_pk->size())
duke@435 1140 return false;
duke@435 1141 for (uint i = 0; i < u_pk->size(); i++) {
duke@435 1142 Node* ui = u_pk->at(i);
duke@435 1143 Node* di = d_pk->at(i);
duke@435 1144 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
duke@435 1145 return false;
duke@435 1146 }
duke@435 1147 return true;
duke@435 1148 }
duke@435 1149
duke@435 1150 //------------------------------construct_bb---------------------------
duke@435 1151 // Construct reverse postorder list of block members
duke@435 1152 void SuperWord::construct_bb() {
duke@435 1153 Node* entry = bb();
duke@435 1154
duke@435 1155 assert(_stk.length() == 0, "stk is empty");
duke@435 1156 assert(_block.length() == 0, "block is empty");
duke@435 1157 assert(_data_entry.length() == 0, "data_entry is empty");
duke@435 1158 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
duke@435 1159 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
duke@435 1160
duke@435 1161 // Find non-control nodes with no inputs from within block,
duke@435 1162 // create a temporary map from node _idx to bb_idx for use
duke@435 1163 // by the visited and post_visited sets,
duke@435 1164 // and count number of nodes in block.
duke@435 1165 int bb_ct = 0;
duke@435 1166 for (uint i = 0; i < lpt()->_body.size(); i++ ) {
duke@435 1167 Node *n = lpt()->_body.at(i);
duke@435 1168 set_bb_idx(n, i); // Create a temporary map
duke@435 1169 if (in_bb(n)) {
duke@435 1170 bb_ct++;
duke@435 1171 if (!n->is_CFG()) {
duke@435 1172 bool found = false;
duke@435 1173 for (uint j = 0; j < n->req(); j++) {
duke@435 1174 Node* def = n->in(j);
duke@435 1175 if (def && in_bb(def)) {
duke@435 1176 found = true;
duke@435 1177 break;
duke@435 1178 }
duke@435 1179 }
duke@435 1180 if (!found) {
duke@435 1181 assert(n != entry, "can't be entry");
duke@435 1182 _data_entry.push(n);
duke@435 1183 }
duke@435 1184 }
duke@435 1185 }
duke@435 1186 }
duke@435 1187
duke@435 1188 // Find memory slices (head and tail)
duke@435 1189 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
duke@435 1190 Node *n = lp()->fast_out(i);
duke@435 1191 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
duke@435 1192 Node* n_tail = n->in(LoopNode::LoopBackControl);
duke@435 1193 _mem_slice_head.push(n);
duke@435 1194 _mem_slice_tail.push(n_tail);
duke@435 1195 }
duke@435 1196 }
duke@435 1197
duke@435 1198 // Create an RPO list of nodes in block
duke@435 1199
duke@435 1200 visited_clear();
duke@435 1201 post_visited_clear();
duke@435 1202
duke@435 1203 // Push all non-control nodes with no inputs from within block, then control entry
duke@435 1204 for (int j = 0; j < _data_entry.length(); j++) {
duke@435 1205 Node* n = _data_entry.at(j);
duke@435 1206 visited_set(n);
duke@435 1207 _stk.push(n);
duke@435 1208 }
duke@435 1209 visited_set(entry);
duke@435 1210 _stk.push(entry);
duke@435 1211
duke@435 1212 // Do a depth first walk over out edges
duke@435 1213 int rpo_idx = bb_ct - 1;
duke@435 1214 int size;
duke@435 1215 while ((size = _stk.length()) > 0) {
duke@435 1216 Node* n = _stk.top(); // Leave node on stack
duke@435 1217 if (!visited_test_set(n)) {
duke@435 1218 // forward arc in graph
duke@435 1219 } else if (!post_visited_test(n)) {
duke@435 1220 // cross or back arc
duke@435 1221 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1222 Node *use = n->fast_out(i);
duke@435 1223 if (in_bb(use) && !visited_test(use) &&
duke@435 1224 // Don't go around backedge
duke@435 1225 (!use->is_Phi() || n == entry)) {
duke@435 1226 _stk.push(use);
duke@435 1227 }
duke@435 1228 }
duke@435 1229 if (_stk.length() == size) {
duke@435 1230 // There were no additional uses, post visit node now
duke@435 1231 _stk.pop(); // Remove node from stack
duke@435 1232 assert(rpo_idx >= 0, "");
duke@435 1233 _block.at_put_grow(rpo_idx, n);
duke@435 1234 rpo_idx--;
duke@435 1235 post_visited_set(n);
duke@435 1236 assert(rpo_idx >= 0 || _stk.is_empty(), "");
duke@435 1237 }
duke@435 1238 } else {
duke@435 1239 _stk.pop(); // Remove post-visited node from stack
duke@435 1240 }
duke@435 1241 }
duke@435 1242
duke@435 1243 // Create real map of block indices for nodes
duke@435 1244 for (int j = 0; j < _block.length(); j++) {
duke@435 1245 Node* n = _block.at(j);
duke@435 1246 set_bb_idx(n, j);
duke@435 1247 }
duke@435 1248
duke@435 1249 initialize_bb(); // Ensure extra info is allocated.
duke@435 1250
duke@435 1251 #ifndef PRODUCT
duke@435 1252 if (TraceSuperWord) {
duke@435 1253 print_bb();
duke@435 1254 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
duke@435 1255 for (int m = 0; m < _data_entry.length(); m++) {
duke@435 1256 tty->print("%3d ", m);
duke@435 1257 _data_entry.at(m)->dump();
duke@435 1258 }
duke@435 1259 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
duke@435 1260 for (int m = 0; m < _mem_slice_head.length(); m++) {
duke@435 1261 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
duke@435 1262 tty->print(" "); _mem_slice_tail.at(m)->dump();
duke@435 1263 }
duke@435 1264 }
duke@435 1265 #endif
duke@435 1266 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
duke@435 1267 }
duke@435 1268
duke@435 1269 //------------------------------initialize_bb---------------------------
duke@435 1270 // Initialize per node info
duke@435 1271 void SuperWord::initialize_bb() {
duke@435 1272 Node* last = _block.at(_block.length() - 1);
duke@435 1273 grow_node_info(bb_idx(last));
duke@435 1274 }
duke@435 1275
duke@435 1276 //------------------------------bb_insert_after---------------------------
duke@435 1277 // Insert n into block after pos
duke@435 1278 void SuperWord::bb_insert_after(Node* n, int pos) {
duke@435 1279 int n_pos = pos + 1;
duke@435 1280 // Make room
duke@435 1281 for (int i = _block.length() - 1; i >= n_pos; i--) {
duke@435 1282 _block.at_put_grow(i+1, _block.at(i));
duke@435 1283 }
duke@435 1284 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
duke@435 1285 _node_info.at_put_grow(j+1, _node_info.at(j));
duke@435 1286 }
duke@435 1287 // Set value
duke@435 1288 _block.at_put_grow(n_pos, n);
duke@435 1289 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
duke@435 1290 // Adjust map from node->_idx to _block index
duke@435 1291 for (int i = n_pos; i < _block.length(); i++) {
duke@435 1292 set_bb_idx(_block.at(i), i);
duke@435 1293 }
duke@435 1294 }
duke@435 1295
duke@435 1296 //------------------------------compute_max_depth---------------------------
duke@435 1297 // Compute max depth for expressions from beginning of block
duke@435 1298 // Use to prune search paths during test for independence.
duke@435 1299 void SuperWord::compute_max_depth() {
duke@435 1300 int ct = 0;
duke@435 1301 bool again;
duke@435 1302 do {
duke@435 1303 again = false;
duke@435 1304 for (int i = 0; i < _block.length(); i++) {
duke@435 1305 Node* n = _block.at(i);
duke@435 1306 if (!n->is_Phi()) {
duke@435 1307 int d_orig = depth(n);
duke@435 1308 int d_in = 0;
duke@435 1309 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
duke@435 1310 Node* pred = preds.current();
duke@435 1311 if (in_bb(pred)) {
duke@435 1312 d_in = MAX2(d_in, depth(pred));
duke@435 1313 }
duke@435 1314 }
duke@435 1315 if (d_in + 1 != d_orig) {
duke@435 1316 set_depth(n, d_in + 1);
duke@435 1317 again = true;
duke@435 1318 }
duke@435 1319 }
duke@435 1320 }
duke@435 1321 ct++;
duke@435 1322 } while (again);
duke@435 1323 #ifndef PRODUCT
duke@435 1324 if (TraceSuperWord && Verbose)
duke@435 1325 tty->print_cr("compute_max_depth iterated: %d times", ct);
duke@435 1326 #endif
duke@435 1327 }
duke@435 1328
duke@435 1329 //-------------------------compute_vector_element_type-----------------------
duke@435 1330 // Compute necessary vector element type for expressions
duke@435 1331 // This propagates backwards a narrower integer type when the
duke@435 1332 // upper bits of the value are not needed.
duke@435 1333 // Example: char a,b,c; a = b + c;
duke@435 1334 // Normally the type of the add is integer, but for packed character
duke@435 1335 // operations the type of the add needs to be char.
duke@435 1336 void SuperWord::compute_vector_element_type() {
duke@435 1337 #ifndef PRODUCT
duke@435 1338 if (TraceSuperWord && Verbose)
duke@435 1339 tty->print_cr("\ncompute_velt_type:");
duke@435 1340 #endif
duke@435 1341
duke@435 1342 // Initial type
duke@435 1343 for (int i = 0; i < _block.length(); i++) {
duke@435 1344 Node* n = _block.at(i);
duke@435 1345 const Type* t = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
duke@435 1346 : _igvn.type(n);
duke@435 1347 const Type* vt = container_type(t);
duke@435 1348 set_velt_type(n, vt);
duke@435 1349 }
duke@435 1350
duke@435 1351 // Propagate narrowed type backwards through operations
duke@435 1352 // that don't depend on higher order bits
duke@435 1353 for (int i = _block.length() - 1; i >= 0; i--) {
duke@435 1354 Node* n = _block.at(i);
duke@435 1355 // Only integer types need be examined
duke@435 1356 if (n->bottom_type()->isa_int()) {
duke@435 1357 uint start, end;
duke@435 1358 vector_opd_range(n, &start, &end);
duke@435 1359 const Type* vt = velt_type(n);
duke@435 1360
duke@435 1361 for (uint j = start; j < end; j++) {
duke@435 1362 Node* in = n->in(j);
duke@435 1363 // Don't propagate through a type conversion
duke@435 1364 if (n->bottom_type() != in->bottom_type())
duke@435 1365 continue;
duke@435 1366 switch(in->Opcode()) {
duke@435 1367 case Op_AddI: case Op_AddL:
duke@435 1368 case Op_SubI: case Op_SubL:
duke@435 1369 case Op_MulI: case Op_MulL:
duke@435 1370 case Op_AndI: case Op_AndL:
duke@435 1371 case Op_OrI: case Op_OrL:
duke@435 1372 case Op_XorI: case Op_XorL:
duke@435 1373 case Op_LShiftI: case Op_LShiftL:
duke@435 1374 case Op_CMoveI: case Op_CMoveL:
duke@435 1375 if (in_bb(in)) {
duke@435 1376 bool same_type = true;
duke@435 1377 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
duke@435 1378 Node *use = in->fast_out(k);
duke@435 1379 if (!in_bb(use) || velt_type(use) != vt) {
duke@435 1380 same_type = false;
duke@435 1381 break;
duke@435 1382 }
duke@435 1383 }
duke@435 1384 if (same_type) {
duke@435 1385 set_velt_type(in, vt);
duke@435 1386 }
duke@435 1387 }
duke@435 1388 }
duke@435 1389 }
duke@435 1390 }
duke@435 1391 }
duke@435 1392 #ifndef PRODUCT
duke@435 1393 if (TraceSuperWord && Verbose) {
duke@435 1394 for (int i = 0; i < _block.length(); i++) {
duke@435 1395 Node* n = _block.at(i);
duke@435 1396 velt_type(n)->dump();
duke@435 1397 tty->print("\t");
duke@435 1398 n->dump();
duke@435 1399 }
duke@435 1400 }
duke@435 1401 #endif
duke@435 1402 }
duke@435 1403
duke@435 1404 //------------------------------memory_alignment---------------------------
duke@435 1405 // Alignment within a vector memory reference
duke@435 1406 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
duke@435 1407 SWPointer p(s, this);
duke@435 1408 if (!p.valid()) {
duke@435 1409 return bottom_align;
duke@435 1410 }
duke@435 1411 int offset = p.offset_in_bytes();
duke@435 1412 offset += iv_adjust_in_bytes;
duke@435 1413 int off_rem = offset % vector_width_in_bytes();
duke@435 1414 int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
duke@435 1415 return off_mod;
duke@435 1416 }
duke@435 1417
duke@435 1418 //---------------------------container_type---------------------------
duke@435 1419 // Smallest type containing range of values
duke@435 1420 const Type* SuperWord::container_type(const Type* t) {
duke@435 1421 if (t->isa_aryptr()) {
duke@435 1422 t = t->is_aryptr()->elem();
duke@435 1423 }
duke@435 1424 if (t->basic_type() == T_INT) {
duke@435 1425 if (t->higher_equal(TypeInt::BOOL)) return TypeInt::BOOL;
duke@435 1426 if (t->higher_equal(TypeInt::BYTE)) return TypeInt::BYTE;
duke@435 1427 if (t->higher_equal(TypeInt::CHAR)) return TypeInt::CHAR;
duke@435 1428 if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
duke@435 1429 return TypeInt::INT;
duke@435 1430 }
duke@435 1431 return t;
duke@435 1432 }
duke@435 1433
duke@435 1434 //-------------------------vector_opd_range-----------------------
duke@435 1435 // (Start, end] half-open range defining which operands are vector
duke@435 1436 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
duke@435 1437 switch (n->Opcode()) {
duke@435 1438 case Op_LoadB: case Op_LoadC:
duke@435 1439 case Op_LoadI: case Op_LoadL:
duke@435 1440 case Op_LoadF: case Op_LoadD:
duke@435 1441 case Op_LoadP:
duke@435 1442 *start = 0;
duke@435 1443 *end = 0;
duke@435 1444 return;
duke@435 1445 case Op_StoreB: case Op_StoreC:
duke@435 1446 case Op_StoreI: case Op_StoreL:
duke@435 1447 case Op_StoreF: case Op_StoreD:
duke@435 1448 case Op_StoreP:
duke@435 1449 *start = MemNode::ValueIn;
duke@435 1450 *end = *start + 1;
duke@435 1451 return;
duke@435 1452 case Op_LShiftI: case Op_LShiftL:
duke@435 1453 *start = 1;
duke@435 1454 *end = 2;
duke@435 1455 return;
duke@435 1456 case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD:
duke@435 1457 *start = 2;
duke@435 1458 *end = n->req();
duke@435 1459 return;
duke@435 1460 }
duke@435 1461 *start = 1;
duke@435 1462 *end = n->req(); // default is all operands
duke@435 1463 }
duke@435 1464
duke@435 1465 //------------------------------in_packset---------------------------
duke@435 1466 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 1467 bool SuperWord::in_packset(Node* s1, Node* s2) {
duke@435 1468 for (int i = 0; i < _packset.length(); i++) {
duke@435 1469 Node_List* p = _packset.at(i);
duke@435 1470 assert(p->size() == 2, "must be");
duke@435 1471 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
duke@435 1472 return true;
duke@435 1473 }
duke@435 1474 }
duke@435 1475 return false;
duke@435 1476 }
duke@435 1477
duke@435 1478 //------------------------------in_pack---------------------------
duke@435 1479 // Is s in pack p?
duke@435 1480 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
duke@435 1481 for (uint i = 0; i < p->size(); i++) {
duke@435 1482 if (p->at(i) == s) {
duke@435 1483 return p;
duke@435 1484 }
duke@435 1485 }
duke@435 1486 return NULL;
duke@435 1487 }
duke@435 1488
duke@435 1489 //------------------------------remove_pack_at---------------------------
duke@435 1490 // Remove the pack at position pos in the packset
duke@435 1491 void SuperWord::remove_pack_at(int pos) {
duke@435 1492 Node_List* p = _packset.at(pos);
duke@435 1493 for (uint i = 0; i < p->size(); i++) {
duke@435 1494 Node* s = p->at(i);
duke@435 1495 set_my_pack(s, NULL);
duke@435 1496 }
duke@435 1497 _packset.remove_at(pos);
duke@435 1498 }
duke@435 1499
duke@435 1500 //------------------------------executed_first---------------------------
duke@435 1501 // Return the node executed first in pack p. Uses the RPO block list
duke@435 1502 // to determine order.
duke@435 1503 Node* SuperWord::executed_first(Node_List* p) {
duke@435 1504 Node* n = p->at(0);
duke@435 1505 int n_rpo = bb_idx(n);
duke@435 1506 for (uint i = 1; i < p->size(); i++) {
duke@435 1507 Node* s = p->at(i);
duke@435 1508 int s_rpo = bb_idx(s);
duke@435 1509 if (s_rpo < n_rpo) {
duke@435 1510 n = s;
duke@435 1511 n_rpo = s_rpo;
duke@435 1512 }
duke@435 1513 }
duke@435 1514 return n;
duke@435 1515 }
duke@435 1516
duke@435 1517 //------------------------------executed_last---------------------------
duke@435 1518 // Return the node executed last in pack p.
duke@435 1519 Node* SuperWord::executed_last(Node_List* p) {
duke@435 1520 Node* n = p->at(0);
duke@435 1521 int n_rpo = bb_idx(n);
duke@435 1522 for (uint i = 1; i < p->size(); i++) {
duke@435 1523 Node* s = p->at(i);
duke@435 1524 int s_rpo = bb_idx(s);
duke@435 1525 if (s_rpo > n_rpo) {
duke@435 1526 n = s;
duke@435 1527 n_rpo = s_rpo;
duke@435 1528 }
duke@435 1529 }
duke@435 1530 return n;
duke@435 1531 }
duke@435 1532
duke@435 1533 //----------------------------align_initial_loop_index---------------------------
duke@435 1534 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 1535 // to align_to_ref will be a position zero in the vector.
duke@435 1536 // (iv + k) mod vector_align == 0
duke@435 1537 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
duke@435 1538 CountedLoopNode *main_head = lp()->as_CountedLoop();
duke@435 1539 assert(main_head->is_main_loop(), "");
duke@435 1540 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
duke@435 1541 assert(pre_end != NULL, "");
duke@435 1542 Node *pre_opaq1 = pre_end->limit();
duke@435 1543 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
duke@435 1544 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1545 Node *pre_limit = pre_opaq->in(1);
duke@435 1546
duke@435 1547 // Where we put new limit calculations
duke@435 1548 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1549
duke@435 1550 // Ensure the original loop limit is available from the
duke@435 1551 // pre-loop Opaque1 node.
duke@435 1552 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 1553 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
duke@435 1554
duke@435 1555 SWPointer align_to_ref_p(align_to_ref, this);
duke@435 1556
duke@435 1557 // Let l0 == original pre_limit, l == new pre_limit, V == v_align
duke@435 1558 //
duke@435 1559 // For stride > 0
duke@435 1560 // Need l such that l > l0 && (l+k)%V == 0
duke@435 1561 // Find n such that l = (l0 + n)
duke@435 1562 // (l0 + n + k) % V == 0
duke@435 1563 // n = [V - (l0 + k)%V]%V
duke@435 1564 // new limit = l0 + [V - (l0 + k)%V]%V
duke@435 1565 // For stride < 0
duke@435 1566 // Need l such that l < l0 && (l+k)%V == 0
duke@435 1567 // Find n such that l = (l0 - n)
duke@435 1568 // (l0 - n + k) % V == 0
duke@435 1569 // n = (l0 + k)%V
duke@435 1570 // new limit = l0 - (l0 + k)%V
duke@435 1571
duke@435 1572 int elt_size = align_to_ref_p.memory_size();
duke@435 1573 int v_align = vector_width_in_bytes() / elt_size;
duke@435 1574 int k = align_to_ref_p.offset_in_bytes() / elt_size;
duke@435 1575
duke@435 1576 Node *kn = _igvn.intcon(k);
duke@435 1577 Node *limk = new (_phase->C, 3) AddINode(pre_limit, kn);
duke@435 1578 _phase->_igvn.register_new_node_with_optimizer(limk);
duke@435 1579 _phase->set_ctrl(limk, pre_ctrl);
duke@435 1580 if (align_to_ref_p.invar() != NULL) {
duke@435 1581 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
duke@435 1582 Node* aref = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
duke@435 1583 _phase->_igvn.register_new_node_with_optimizer(aref);
duke@435 1584 _phase->set_ctrl(aref, pre_ctrl);
duke@435 1585 if (!align_to_ref_p.negate_invar()) {
duke@435 1586 limk = new (_phase->C, 3) AddINode(limk, aref);
duke@435 1587 } else {
duke@435 1588 limk = new (_phase->C, 3) SubINode(limk, aref);
duke@435 1589 }
duke@435 1590 _phase->_igvn.register_new_node_with_optimizer(limk);
duke@435 1591 _phase->set_ctrl(limk, pre_ctrl);
duke@435 1592 }
duke@435 1593 Node* va_msk = _igvn.intcon(v_align - 1);
duke@435 1594 Node* n = new (_phase->C, 3) AndINode(limk, va_msk);
duke@435 1595 _phase->_igvn.register_new_node_with_optimizer(n);
duke@435 1596 _phase->set_ctrl(n, pre_ctrl);
duke@435 1597 Node* newlim;
duke@435 1598 if (iv_stride() > 0) {
duke@435 1599 Node* va = _igvn.intcon(v_align);
duke@435 1600 Node* adj = new (_phase->C, 3) SubINode(va, n);
duke@435 1601 _phase->_igvn.register_new_node_with_optimizer(adj);
duke@435 1602 _phase->set_ctrl(adj, pre_ctrl);
duke@435 1603 Node* adj2 = new (_phase->C, 3) AndINode(adj, va_msk);
duke@435 1604 _phase->_igvn.register_new_node_with_optimizer(adj2);
duke@435 1605 _phase->set_ctrl(adj2, pre_ctrl);
duke@435 1606 newlim = new (_phase->C, 3) AddINode(pre_limit, adj2);
duke@435 1607 } else {
duke@435 1608 newlim = new (_phase->C, 3) SubINode(pre_limit, n);
duke@435 1609 }
duke@435 1610 _phase->_igvn.register_new_node_with_optimizer(newlim);
duke@435 1611 _phase->set_ctrl(newlim, pre_ctrl);
duke@435 1612 Node* constrained =
duke@435 1613 (iv_stride() > 0) ? (Node*) new (_phase->C,3) MinINode(newlim, orig_limit)
duke@435 1614 : (Node*) new (_phase->C,3) MaxINode(newlim, orig_limit);
duke@435 1615 _phase->_igvn.register_new_node_with_optimizer(constrained);
duke@435 1616 _phase->set_ctrl(constrained, pre_ctrl);
duke@435 1617 _igvn.hash_delete(pre_opaq);
duke@435 1618 pre_opaq->set_req(1, constrained);
duke@435 1619 }
duke@435 1620
duke@435 1621 //----------------------------get_pre_loop_end---------------------------
duke@435 1622 // Find pre loop end from main loop. Returns null if none.
duke@435 1623 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
duke@435 1624 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1625 if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
duke@435 1626 Node *iffm = ctrl->in(0);
duke@435 1627 if (!iffm->is_If()) return NULL;
duke@435 1628 Node *p_f = iffm->in(0);
duke@435 1629 if (!p_f->is_IfFalse()) return NULL;
duke@435 1630 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
duke@435 1631 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 1632 if (!pre_end->loopnode()->is_pre_loop()) return NULL;
duke@435 1633 return pre_end;
duke@435 1634 }
duke@435 1635
duke@435 1636
duke@435 1637 //------------------------------init---------------------------
duke@435 1638 void SuperWord::init() {
duke@435 1639 _dg.init();
duke@435 1640 _packset.clear();
duke@435 1641 _disjoint_ptrs.clear();
duke@435 1642 _block.clear();
duke@435 1643 _data_entry.clear();
duke@435 1644 _mem_slice_head.clear();
duke@435 1645 _mem_slice_tail.clear();
duke@435 1646 _node_info.clear();
duke@435 1647 _align_to_ref = NULL;
duke@435 1648 _lpt = NULL;
duke@435 1649 _lp = NULL;
duke@435 1650 _bb = NULL;
duke@435 1651 _iv = NULL;
duke@435 1652 }
duke@435 1653
duke@435 1654 //------------------------------print_packset---------------------------
duke@435 1655 void SuperWord::print_packset() {
duke@435 1656 #ifndef PRODUCT
duke@435 1657 tty->print_cr("packset");
duke@435 1658 for (int i = 0; i < _packset.length(); i++) {
duke@435 1659 tty->print_cr("Pack: %d", i);
duke@435 1660 Node_List* p = _packset.at(i);
duke@435 1661 print_pack(p);
duke@435 1662 }
duke@435 1663 #endif
duke@435 1664 }
duke@435 1665
duke@435 1666 //------------------------------print_pack---------------------------
duke@435 1667 void SuperWord::print_pack(Node_List* p) {
duke@435 1668 for (uint i = 0; i < p->size(); i++) {
duke@435 1669 print_stmt(p->at(i));
duke@435 1670 }
duke@435 1671 }
duke@435 1672
duke@435 1673 //------------------------------print_bb---------------------------
duke@435 1674 void SuperWord::print_bb() {
duke@435 1675 #ifndef PRODUCT
duke@435 1676 tty->print_cr("\nBlock");
duke@435 1677 for (int i = 0; i < _block.length(); i++) {
duke@435 1678 Node* n = _block.at(i);
duke@435 1679 tty->print("%d ", i);
duke@435 1680 if (n) {
duke@435 1681 n->dump();
duke@435 1682 }
duke@435 1683 }
duke@435 1684 #endif
duke@435 1685 }
duke@435 1686
duke@435 1687 //------------------------------print_stmt---------------------------
duke@435 1688 void SuperWord::print_stmt(Node* s) {
duke@435 1689 #ifndef PRODUCT
duke@435 1690 tty->print(" align: %d \t", alignment(s));
duke@435 1691 s->dump();
duke@435 1692 #endif
duke@435 1693 }
duke@435 1694
duke@435 1695 //------------------------------blank---------------------------
duke@435 1696 char* SuperWord::blank(uint depth) {
duke@435 1697 static char blanks[101];
duke@435 1698 assert(depth < 101, "too deep");
duke@435 1699 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
duke@435 1700 blanks[depth] = '\0';
duke@435 1701 return blanks;
duke@435 1702 }
duke@435 1703
duke@435 1704
duke@435 1705 //==============================SWPointer===========================
duke@435 1706
duke@435 1707 //----------------------------SWPointer------------------------
duke@435 1708 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
duke@435 1709 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
duke@435 1710 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
duke@435 1711
duke@435 1712 Node* adr = mem->in(MemNode::Address);
duke@435 1713 if (!adr->is_AddP()) {
duke@435 1714 assert(!valid(), "too complex");
duke@435 1715 return;
duke@435 1716 }
duke@435 1717 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
duke@435 1718 Node* base = adr->in(AddPNode::Base);
duke@435 1719 for (int i = 0; i < 3; i++) {
duke@435 1720 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
duke@435 1721 assert(!valid(), "too complex");
duke@435 1722 return;
duke@435 1723 }
duke@435 1724 adr = adr->in(AddPNode::Address);
duke@435 1725 if (base == adr || !adr->is_AddP()) {
duke@435 1726 break; // stop looking at addp's
duke@435 1727 }
duke@435 1728 }
duke@435 1729 _base = base;
duke@435 1730 _adr = adr;
duke@435 1731 assert(valid(), "Usable");
duke@435 1732 }
duke@435 1733
duke@435 1734 // Following is used to create a temporary object during
duke@435 1735 // the pattern match of an address expression.
duke@435 1736 SWPointer::SWPointer(SWPointer* p) :
duke@435 1737 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
duke@435 1738 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
duke@435 1739
duke@435 1740 //------------------------scaled_iv_plus_offset--------------------
duke@435 1741 // Match: k*iv + offset
duke@435 1742 // where: k is a constant that maybe zero, and
duke@435 1743 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
duke@435 1744 bool SWPointer::scaled_iv_plus_offset(Node* n) {
duke@435 1745 if (scaled_iv(n)) {
duke@435 1746 return true;
duke@435 1747 }
duke@435 1748 if (offset_plus_k(n)) {
duke@435 1749 return true;
duke@435 1750 }
duke@435 1751 int opc = n->Opcode();
duke@435 1752 if (opc == Op_AddI) {
duke@435 1753 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
duke@435 1754 return true;
duke@435 1755 }
duke@435 1756 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 1757 return true;
duke@435 1758 }
duke@435 1759 } else if (opc == Op_SubI) {
duke@435 1760 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
duke@435 1761 return true;
duke@435 1762 }
duke@435 1763 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 1764 _scale *= -1;
duke@435 1765 return true;
duke@435 1766 }
duke@435 1767 }
duke@435 1768 return false;
duke@435 1769 }
duke@435 1770
duke@435 1771 //----------------------------scaled_iv------------------------
duke@435 1772 // Match: k*iv where k is a constant that's not zero
duke@435 1773 bool SWPointer::scaled_iv(Node* n) {
duke@435 1774 if (_scale != 0) {
duke@435 1775 return false; // already found a scale
duke@435 1776 }
duke@435 1777 if (n == iv()) {
duke@435 1778 _scale = 1;
duke@435 1779 return true;
duke@435 1780 }
duke@435 1781 int opc = n->Opcode();
duke@435 1782 if (opc == Op_MulI) {
duke@435 1783 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 1784 _scale = n->in(2)->get_int();
duke@435 1785 return true;
duke@435 1786 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
duke@435 1787 _scale = n->in(1)->get_int();
duke@435 1788 return true;
duke@435 1789 }
duke@435 1790 } else if (opc == Op_LShiftI) {
duke@435 1791 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 1792 _scale = 1 << n->in(2)->get_int();
duke@435 1793 return true;
duke@435 1794 }
duke@435 1795 } else if (opc == Op_ConvI2L) {
duke@435 1796 if (scaled_iv_plus_offset(n->in(1))) {
duke@435 1797 return true;
duke@435 1798 }
duke@435 1799 } else if (opc == Op_LShiftL) {
duke@435 1800 if (!has_iv() && _invar == NULL) {
duke@435 1801 // Need to preserve the current _offset value, so
duke@435 1802 // create a temporary object for this expression subtree.
duke@435 1803 // Hacky, so should re-engineer the address pattern match.
duke@435 1804 SWPointer tmp(this);
duke@435 1805 if (tmp.scaled_iv_plus_offset(n->in(1))) {
duke@435 1806 if (tmp._invar == NULL) {
duke@435 1807 int mult = 1 << n->in(2)->get_int();
duke@435 1808 _scale = tmp._scale * mult;
duke@435 1809 _offset += tmp._offset * mult;
duke@435 1810 return true;
duke@435 1811 }
duke@435 1812 }
duke@435 1813 }
duke@435 1814 }
duke@435 1815 return false;
duke@435 1816 }
duke@435 1817
duke@435 1818 //----------------------------offset_plus_k------------------------
duke@435 1819 // Match: offset is (k [+/- invariant])
duke@435 1820 // where k maybe zero and invariant is optional, but not both.
duke@435 1821 bool SWPointer::offset_plus_k(Node* n, bool negate) {
duke@435 1822 int opc = n->Opcode();
duke@435 1823 if (opc == Op_ConI) {
duke@435 1824 _offset += negate ? -(n->get_int()) : n->get_int();
duke@435 1825 return true;
duke@435 1826 } else if (opc == Op_ConL) {
duke@435 1827 // Okay if value fits into an int
duke@435 1828 const TypeLong* t = n->find_long_type();
duke@435 1829 if (t->higher_equal(TypeLong::INT)) {
duke@435 1830 jlong loff = n->get_long();
duke@435 1831 jint off = (jint)loff;
duke@435 1832 _offset += negate ? -off : loff;
duke@435 1833 return true;
duke@435 1834 }
duke@435 1835 return false;
duke@435 1836 }
duke@435 1837 if (_invar != NULL) return false; // already have an invariant
duke@435 1838 if (opc == Op_AddI) {
duke@435 1839 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 1840 _negate_invar = negate;
duke@435 1841 _invar = n->in(1);
duke@435 1842 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 1843 return true;
duke@435 1844 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 1845 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 1846 _negate_invar = negate;
duke@435 1847 _invar = n->in(2);
duke@435 1848 return true;
duke@435 1849 }
duke@435 1850 }
duke@435 1851 if (opc == Op_SubI) {
duke@435 1852 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 1853 _negate_invar = negate;
duke@435 1854 _invar = n->in(1);
duke@435 1855 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 1856 return true;
duke@435 1857 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 1858 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 1859 _negate_invar = !negate;
duke@435 1860 _invar = n->in(2);
duke@435 1861 return true;
duke@435 1862 }
duke@435 1863 }
duke@435 1864 if (invariant(n)) {
duke@435 1865 _negate_invar = negate;
duke@435 1866 _invar = n;
duke@435 1867 return true;
duke@435 1868 }
duke@435 1869 return false;
duke@435 1870 }
duke@435 1871
duke@435 1872 //----------------------------print------------------------
duke@435 1873 void SWPointer::print() {
duke@435 1874 #ifndef PRODUCT
duke@435 1875 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
duke@435 1876 _base != NULL ? _base->_idx : 0,
duke@435 1877 _adr != NULL ? _adr->_idx : 0,
duke@435 1878 _scale, _offset,
duke@435 1879 _negate_invar?'-':'+',
duke@435 1880 _invar != NULL ? _invar->_idx : 0);
duke@435 1881 #endif
duke@435 1882 }
duke@435 1883
duke@435 1884 // ========================= OrderedPair =====================
duke@435 1885
duke@435 1886 const OrderedPair OrderedPair::initial;
duke@435 1887
duke@435 1888 // ========================= SWNodeInfo =====================
duke@435 1889
duke@435 1890 const SWNodeInfo SWNodeInfo::initial;
duke@435 1891
duke@435 1892
duke@435 1893 // ============================ DepGraph ===========================
duke@435 1894
duke@435 1895 //------------------------------make_node---------------------------
duke@435 1896 // Make a new dependence graph node for an ideal node.
duke@435 1897 DepMem* DepGraph::make_node(Node* node) {
duke@435 1898 DepMem* m = new (_arena) DepMem(node);
duke@435 1899 if (node != NULL) {
duke@435 1900 assert(_map.at_grow(node->_idx) == NULL, "one init only");
duke@435 1901 _map.at_put_grow(node->_idx, m);
duke@435 1902 }
duke@435 1903 return m;
duke@435 1904 }
duke@435 1905
duke@435 1906 //------------------------------make_edge---------------------------
duke@435 1907 // Make a new dependence graph edge from dpred -> dsucc
duke@435 1908 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
duke@435 1909 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
duke@435 1910 dpred->set_out_head(e);
duke@435 1911 dsucc->set_in_head(e);
duke@435 1912 return e;
duke@435 1913 }
duke@435 1914
duke@435 1915 // ========================== DepMem ========================
duke@435 1916
duke@435 1917 //------------------------------in_cnt---------------------------
duke@435 1918 int DepMem::in_cnt() {
duke@435 1919 int ct = 0;
duke@435 1920 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
duke@435 1921 return ct;
duke@435 1922 }
duke@435 1923
duke@435 1924 //------------------------------out_cnt---------------------------
duke@435 1925 int DepMem::out_cnt() {
duke@435 1926 int ct = 0;
duke@435 1927 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
duke@435 1928 return ct;
duke@435 1929 }
duke@435 1930
duke@435 1931 //------------------------------print-----------------------------
duke@435 1932 void DepMem::print() {
duke@435 1933 #ifndef PRODUCT
duke@435 1934 tty->print(" DepNode %d (", _node->_idx);
duke@435 1935 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
duke@435 1936 Node* pred = p->pred()->node();
duke@435 1937 tty->print(" %d", pred != NULL ? pred->_idx : 0);
duke@435 1938 }
duke@435 1939 tty->print(") [");
duke@435 1940 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
duke@435 1941 Node* succ = s->succ()->node();
duke@435 1942 tty->print(" %d", succ != NULL ? succ->_idx : 0);
duke@435 1943 }
duke@435 1944 tty->print_cr(" ]");
duke@435 1945 #endif
duke@435 1946 }
duke@435 1947
duke@435 1948 // =========================== DepEdge =========================
duke@435 1949
duke@435 1950 //------------------------------DepPreds---------------------------
duke@435 1951 void DepEdge::print() {
duke@435 1952 #ifndef PRODUCT
duke@435 1953 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
duke@435 1954 #endif
duke@435 1955 }
duke@435 1956
duke@435 1957 // =========================== DepPreds =========================
duke@435 1958 // Iterator over predecessor edges in the dependence graph.
duke@435 1959
duke@435 1960 //------------------------------DepPreds---------------------------
duke@435 1961 DepPreds::DepPreds(Node* n, DepGraph& dg) {
duke@435 1962 _n = n;
duke@435 1963 _done = false;
duke@435 1964 if (_n->is_Store() || _n->is_Load()) {
duke@435 1965 _next_idx = MemNode::Address;
duke@435 1966 _end_idx = n->req();
duke@435 1967 _dep_next = dg.dep(_n)->in_head();
duke@435 1968 } else if (_n->is_Mem()) {
duke@435 1969 _next_idx = 0;
duke@435 1970 _end_idx = 0;
duke@435 1971 _dep_next = dg.dep(_n)->in_head();
duke@435 1972 } else {
duke@435 1973 _next_idx = 1;
duke@435 1974 _end_idx = _n->req();
duke@435 1975 _dep_next = NULL;
duke@435 1976 }
duke@435 1977 next();
duke@435 1978 }
duke@435 1979
duke@435 1980 //------------------------------next---------------------------
duke@435 1981 void DepPreds::next() {
duke@435 1982 if (_dep_next != NULL) {
duke@435 1983 _current = _dep_next->pred()->node();
duke@435 1984 _dep_next = _dep_next->next_in();
duke@435 1985 } else if (_next_idx < _end_idx) {
duke@435 1986 _current = _n->in(_next_idx++);
duke@435 1987 } else {
duke@435 1988 _done = true;
duke@435 1989 }
duke@435 1990 }
duke@435 1991
duke@435 1992 // =========================== DepSuccs =========================
duke@435 1993 // Iterator over successor edges in the dependence graph.
duke@435 1994
duke@435 1995 //------------------------------DepSuccs---------------------------
duke@435 1996 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
duke@435 1997 _n = n;
duke@435 1998 _done = false;
duke@435 1999 if (_n->is_Load()) {
duke@435 2000 _next_idx = 0;
duke@435 2001 _end_idx = _n->outcnt();
duke@435 2002 _dep_next = dg.dep(_n)->out_head();
duke@435 2003 } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
duke@435 2004 _next_idx = 0;
duke@435 2005 _end_idx = 0;
duke@435 2006 _dep_next = dg.dep(_n)->out_head();
duke@435 2007 } else {
duke@435 2008 _next_idx = 0;
duke@435 2009 _end_idx = _n->outcnt();
duke@435 2010 _dep_next = NULL;
duke@435 2011 }
duke@435 2012 next();
duke@435 2013 }
duke@435 2014
duke@435 2015 //-------------------------------next---------------------------
duke@435 2016 void DepSuccs::next() {
duke@435 2017 if (_dep_next != NULL) {
duke@435 2018 _current = _dep_next->succ()->node();
duke@435 2019 _dep_next = _dep_next->next_out();
duke@435 2020 } else if (_next_idx < _end_idx) {
duke@435 2021 _current = _n->raw_out(_next_idx++);
duke@435 2022 } else {
duke@435 2023 _done = true;
duke@435 2024 }
duke@435 2025 }

mercurial