src/share/vm/runtime/deoptimization.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7420
793204f5528a
child 7890
bf41eee321e5
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

duke@435 1 /*
dlong@7598 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "code/debugInfoRec.hpp"
stefank@2314 28 #include "code/nmethod.hpp"
stefank@2314 29 #include "code/pcDesc.hpp"
stefank@2314 30 #include "code/scopeDesc.hpp"
stefank@2314 31 #include "interpreter/bytecode.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "interpreter/oopMapCache.hpp"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "memory/oopFactory.hpp"
stefank@2314 36 #include "memory/resourceArea.hpp"
coleenp@4037 37 #include "oops/method.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/jvmtiThreadState.hpp"
stefank@2314 40 #include "runtime/biasedLocking.hpp"
stefank@2314 41 #include "runtime/compilationPolicy.hpp"
stefank@2314 42 #include "runtime/deoptimization.hpp"
stefank@2314 43 #include "runtime/interfaceSupport.hpp"
stefank@2314 44 #include "runtime/sharedRuntime.hpp"
stefank@2314 45 #include "runtime/signature.hpp"
stefank@2314 46 #include "runtime/stubRoutines.hpp"
stefank@2314 47 #include "runtime/thread.hpp"
stefank@2314 48 #include "runtime/vframe.hpp"
stefank@2314 49 #include "runtime/vframeArray.hpp"
stefank@2314 50 #include "runtime/vframe_hp.hpp"
stefank@2314 51 #include "utilities/events.hpp"
stefank@2314 52 #include "utilities/xmlstream.hpp"
stefank@2314 53 #ifdef TARGET_ARCH_x86
stefank@2314 54 # include "vmreg_x86.inline.hpp"
stefank@2314 55 #endif
stefank@2314 56 #ifdef TARGET_ARCH_sparc
stefank@2314 57 # include "vmreg_sparc.inline.hpp"
stefank@2314 58 #endif
stefank@2314 59 #ifdef TARGET_ARCH_zero
stefank@2314 60 # include "vmreg_zero.inline.hpp"
stefank@2314 61 #endif
bobv@2508 62 #ifdef TARGET_ARCH_arm
bobv@2508 63 # include "vmreg_arm.inline.hpp"
bobv@2508 64 #endif
bobv@2508 65 #ifdef TARGET_ARCH_ppc
bobv@2508 66 # include "vmreg_ppc.inline.hpp"
bobv@2508 67 #endif
stefank@2314 68 #ifdef COMPILER2
dlong@7598 69 #if defined AD_MD_HPP
dlong@7598 70 # include AD_MD_HPP
dlong@7598 71 #elif defined TARGET_ARCH_MODEL_x86_32
stefank@2314 72 # include "adfiles/ad_x86_32.hpp"
dlong@7598 73 #elif defined TARGET_ARCH_MODEL_x86_64
stefank@2314 74 # include "adfiles/ad_x86_64.hpp"
dlong@7598 75 #elif defined TARGET_ARCH_MODEL_sparc
stefank@2314 76 # include "adfiles/ad_sparc.hpp"
dlong@7598 77 #elif defined TARGET_ARCH_MODEL_zero
stefank@2314 78 # include "adfiles/ad_zero.hpp"
dlong@7598 79 #elif defined TARGET_ARCH_MODEL_ppc_64
goetz@6441 80 # include "adfiles/ad_ppc_64.hpp"
stefank@2314 81 #endif
goetz@6441 82 #endif // COMPILER2
duke@435 83
drchase@6680 84 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 85
duke@435 86 bool DeoptimizationMarker::_is_active = false;
duke@435 87
duke@435 88 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame,
duke@435 89 int caller_adjustment,
never@2901 90 int caller_actual_parameters,
duke@435 91 int number_of_frames,
duke@435 92 intptr_t* frame_sizes,
duke@435 93 address* frame_pcs,
duke@435 94 BasicType return_type) {
duke@435 95 _size_of_deoptimized_frame = size_of_deoptimized_frame;
duke@435 96 _caller_adjustment = caller_adjustment;
never@2901 97 _caller_actual_parameters = caller_actual_parameters;
duke@435 98 _number_of_frames = number_of_frames;
duke@435 99 _frame_sizes = frame_sizes;
duke@435 100 _frame_pcs = frame_pcs;
zgu@3900 101 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
duke@435 102 _return_type = return_type;
bdelsart@3130 103 _initial_info = 0;
duke@435 104 // PD (x86 only)
duke@435 105 _counter_temp = 0;
duke@435 106 _unpack_kind = 0;
duke@435 107 _sender_sp_temp = 0;
duke@435 108
duke@435 109 _total_frame_sizes = size_of_frames();
duke@435 110 }
duke@435 111
duke@435 112
duke@435 113 Deoptimization::UnrollBlock::~UnrollBlock() {
zgu@3900 114 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
zgu@3900 115 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
zgu@3900 116 FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
duke@435 117 }
duke@435 118
duke@435 119
duke@435 120 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
duke@435 121 assert(register_number < RegisterMap::reg_count, "checking register number");
duke@435 122 return &_register_block[register_number * 2];
duke@435 123 }
duke@435 124
duke@435 125
duke@435 126
duke@435 127 int Deoptimization::UnrollBlock::size_of_frames() const {
duke@435 128 // Acount first for the adjustment of the initial frame
duke@435 129 int result = _caller_adjustment;
duke@435 130 for (int index = 0; index < number_of_frames(); index++) {
duke@435 131 result += frame_sizes()[index];
duke@435 132 }
duke@435 133 return result;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 void Deoptimization::UnrollBlock::print() {
duke@435 138 ttyLocker ttyl;
duke@435 139 tty->print_cr("UnrollBlock");
duke@435 140 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
duke@435 141 tty->print( " frame_sizes: ");
duke@435 142 for (int index = 0; index < number_of_frames(); index++) {
duke@435 143 tty->print("%d ", frame_sizes()[index]);
duke@435 144 }
duke@435 145 tty->cr();
duke@435 146 }
duke@435 147
duke@435 148
duke@435 149 // In order to make fetch_unroll_info work properly with escape
duke@435 150 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
duke@435 151 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
duke@435 152 // of previously eliminated objects occurs in realloc_objects, which is
duke@435 153 // called from the method fetch_unroll_info_helper below.
duke@435 154 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
duke@435 155 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 156 // but makes the entry a little slower. There is however a little dance we have to
duke@435 157 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 158
duke@435 159 // fetch_unroll_info() is called at the beginning of the deoptimization
duke@435 160 // handler. Note this fact before we start generating temporary frames
duke@435 161 // that can confuse an asynchronous stack walker. This counter is
duke@435 162 // decremented at the end of unpack_frames().
duke@435 163 thread->inc_in_deopt_handler();
duke@435 164
duke@435 165 return fetch_unroll_info_helper(thread);
duke@435 166 JRT_END
duke@435 167
duke@435 168
duke@435 169 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
duke@435 170 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
duke@435 171
duke@435 172 // Note: there is a safepoint safety issue here. No matter whether we enter
duke@435 173 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
duke@435 174 // the vframeArray is created.
duke@435 175 //
duke@435 176
duke@435 177 // Allocate our special deoptimization ResourceMark
duke@435 178 DeoptResourceMark* dmark = new DeoptResourceMark(thread);
duke@435 179 assert(thread->deopt_mark() == NULL, "Pending deopt!");
duke@435 180 thread->set_deopt_mark(dmark);
duke@435 181
duke@435 182 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
duke@435 183 RegisterMap map(thread, true);
duke@435 184 RegisterMap dummy_map(thread, false);
duke@435 185 // Now get the deoptee with a valid map
duke@435 186 frame deoptee = stub_frame.sender(&map);
iveresov@2169 187 // Set the deoptee nmethod
iveresov@2169 188 assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
iveresov@2169 189 thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
duke@435 190
never@2868 191 if (VerifyStack) {
never@2868 192 thread->validate_frame_layout();
never@2868 193 }
never@2868 194
duke@435 195 // Create a growable array of VFrames where each VFrame represents an inlined
duke@435 196 // Java frame. This storage is allocated with the usual system arena.
duke@435 197 assert(deoptee.is_compiled_frame(), "Wrong frame type");
duke@435 198 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
duke@435 199 vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
duke@435 200 while (!vf->is_top()) {
duke@435 201 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 202 chunk->push(compiledVFrame::cast(vf));
duke@435 203 vf = vf->sender();
duke@435 204 }
duke@435 205 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 206 chunk->push(compiledVFrame::cast(vf));
duke@435 207
roland@7419 208 bool realloc_failures = false;
roland@7419 209
duke@435 210 #ifdef COMPILER2
duke@435 211 // Reallocate the non-escaping objects and restore their fields. Then
duke@435 212 // relock objects if synchronization on them was eliminated.
kvn@3406 213 if (DoEscapeAnalysis || EliminateNestedLocks) {
kvn@479 214 if (EliminateAllocations) {
kvn@518 215 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
kvn@479 216 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
kvn@1688 217
kvn@1688 218 // The flag return_oop() indicates call sites which return oop
kvn@1688 219 // in compiled code. Such sites include java method calls,
kvn@1688 220 // runtime calls (for example, used to allocate new objects/arrays
kvn@1688 221 // on slow code path) and any other calls generated in compiled code.
kvn@1688 222 // It is not guaranteed that we can get such information here only
kvn@1688 223 // by analyzing bytecode in deoptimized frames. This is why this flag
kvn@1688 224 // is set during method compilation (see Compile::Process_OopMap_Node()).
roland@7168 225 // If the previous frame was popped, we don't have a result.
roland@7168 226 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
kvn@1688 227 Handle return_value;
kvn@1688 228 if (save_oop_result) {
kvn@1688 229 // Reallocation may trigger GC. If deoptimization happened on return from
kvn@1688 230 // call which returns oop we need to save it since it is not in oopmap.
kvn@1688 231 oop result = deoptee.saved_oop_result(&map);
kvn@1688 232 assert(result == NULL || result->is_oop(), "must be oop");
kvn@1688 233 return_value = Handle(thread, result);
kvn@1688 234 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
kvn@1688 235 if (TraceDeoptimization) {
vlivanov@4154 236 ttyLocker ttyl;
hseigel@5784 237 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
kvn@1688 238 }
kvn@1688 239 }
kvn@479 240 if (objects != NULL) {
kvn@479 241 JRT_BLOCK
roland@7419 242 realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
kvn@479 243 JRT_END
roland@7419 244 reassign_fields(&deoptee, &map, objects, realloc_failures);
roland@7420 245 #ifndef PRODUCT
roland@7420 246 if (TraceDeoptimization) {
roland@7420 247 ttyLocker ttyl;
roland@7420 248 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
roland@7420 249 print_objects(objects, realloc_failures);
roland@7420 250 }
roland@7420 251 #endif
duke@435 252 }
kvn@1688 253 if (save_oop_result) {
kvn@1688 254 // Restore result.
kvn@1688 255 deoptee.set_saved_oop_result(&map, return_value());
kvn@479 256 }
kvn@479 257 }
kvn@479 258 if (EliminateLocks) {
kvn@518 259 #ifndef PRODUCT
kvn@518 260 bool first = true;
kvn@518 261 #endif
kvn@479 262 for (int i = 0; i < chunk->length(); i++) {
kvn@518 263 compiledVFrame* cvf = chunk->at(i);
kvn@518 264 assert (cvf->scope() != NULL,"expect only compiled java frames");
kvn@518 265 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
kvn@518 266 if (monitors->is_nonempty()) {
roland@7419 267 relock_objects(monitors, thread, realloc_failures);
kvn@479 268 #ifndef PRODUCT
kvn@479 269 if (TraceDeoptimization) {
kvn@479 270 ttyLocker ttyl;
kvn@479 271 for (int j = 0; j < monitors->length(); j++) {
kvn@518 272 MonitorInfo* mi = monitors->at(j);
kvn@518 273 if (mi->eliminated()) {
kvn@518 274 if (first) {
kvn@518 275 first = false;
kvn@518 276 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@518 277 }
roland@7419 278 if (mi->owner_is_scalar_replaced()) {
roland@7419 279 Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
roland@7419 280 tty->print_cr(" failed reallocation for klass %s", k->external_name());
roland@7419 281 } else {
roland@7419 282 tty->print_cr(" object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
roland@7419 283 }
kvn@479 284 }
duke@435 285 }
duke@435 286 }
kvn@479 287 #endif
duke@435 288 }
duke@435 289 }
duke@435 290 }
duke@435 291 }
duke@435 292 #endif // COMPILER2
duke@435 293 // Ensure that no safepoint is taken after pointers have been stored
duke@435 294 // in fields of rematerialized objects. If a safepoint occurs from here on
duke@435 295 // out the java state residing in the vframeArray will be missed.
duke@435 296 No_Safepoint_Verifier no_safepoint;
duke@435 297
roland@7419 298 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
roland@7419 299 #ifdef COMPILER2
roland@7419 300 if (realloc_failures) {
roland@7419 301 pop_frames_failed_reallocs(thread, array);
roland@7419 302 }
roland@7419 303 #endif
duke@435 304
roland@7419 305 assert(thread->vframe_array_head() == NULL, "Pending deopt!");
duke@435 306 thread->set_vframe_array_head(array);
duke@435 307
duke@435 308 // Now that the vframeArray has been created if we have any deferred local writes
duke@435 309 // added by jvmti then we can free up that structure as the data is now in the
duke@435 310 // vframeArray
duke@435 311
duke@435 312 if (thread->deferred_locals() != NULL) {
duke@435 313 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
duke@435 314 int i = 0;
duke@435 315 do {
duke@435 316 // Because of inlining we could have multiple vframes for a single frame
duke@435 317 // and several of the vframes could have deferred writes. Find them all.
duke@435 318 if (list->at(i)->id() == array->original().id()) {
duke@435 319 jvmtiDeferredLocalVariableSet* dlv = list->at(i);
duke@435 320 list->remove_at(i);
duke@435 321 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
duke@435 322 delete dlv;
duke@435 323 } else {
duke@435 324 i++;
duke@435 325 }
duke@435 326 } while ( i < list->length() );
duke@435 327 if (list->length() == 0) {
duke@435 328 thread->set_deferred_locals(NULL);
duke@435 329 // free the list and elements back to C heap.
duke@435 330 delete list;
duke@435 331 }
duke@435 332
duke@435 333 }
duke@435 334
twisti@2047 335 #ifndef SHARK
duke@435 336 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
duke@435 337 CodeBlob* cb = stub_frame.cb();
duke@435 338 // Verify we have the right vframeArray
duke@435 339 assert(cb->frame_size() >= 0, "Unexpected frame size");
duke@435 340 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
duke@435 341
twisti@1639 342 // If the deopt call site is a MethodHandle invoke call site we have
twisti@1639 343 // to adjust the unpack_sp.
twisti@1639 344 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
twisti@1639 345 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
twisti@1639 346 unpack_sp = deoptee.unextended_sp();
twisti@1639 347
duke@435 348 #ifdef ASSERT
duke@435 349 assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
duke@435 350 #endif
twisti@2047 351 #else
twisti@2047 352 intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
twisti@2047 353 #endif // !SHARK
twisti@2047 354
duke@435 355 // This is a guarantee instead of an assert because if vframe doesn't match
duke@435 356 // we will unpack the wrong deoptimized frame and wind up in strange places
duke@435 357 // where it will be very difficult to figure out what went wrong. Better
duke@435 358 // to die an early death here than some very obscure death later when the
duke@435 359 // trail is cold.
duke@435 360 // Note: on ia64 this guarantee can be fooled by frames with no memory stack
duke@435 361 // in that it will fail to detect a problem when there is one. This needs
duke@435 362 // more work in tiger timeframe.
duke@435 363 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
duke@435 364
duke@435 365 int number_of_frames = array->frames();
duke@435 366
duke@435 367 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost
duke@435 368 // virtual activation, which is the reverse of the elements in the vframes array.
zgu@3900 369 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
duke@435 370 // +1 because we always have an interpreter return address for the final slot.
zgu@3900 371 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
duke@435 372 int popframe_extra_args = 0;
duke@435 373 // Create an interpreter return address for the stub to use as its return
duke@435 374 // address so the skeletal frames are perfectly walkable
duke@435 375 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
duke@435 376
duke@435 377 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
duke@435 378 // activation be put back on the expression stack of the caller for reexecution
duke@435 379 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
duke@435 380 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
duke@435 381 }
duke@435 382
never@2901 383 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
never@2901 384 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
never@2901 385 // than simply use array->sender.pc(). This requires us to walk the current set of frames
never@2901 386 //
never@2901 387 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
never@2901 388 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller
never@2901 389
never@2901 390 // It's possible that the number of paramters at the call site is
never@2901 391 // different than number of arguments in the callee when method
never@2901 392 // handles are used. If the caller is interpreted get the real
never@2901 393 // value so that the proper amount of space can be added to it's
never@2901 394 // frame.
twisti@3238 395 bool caller_was_method_handle = false;
never@2901 396 if (deopt_sender.is_interpreted_frame()) {
never@2901 397 methodHandle method = deopt_sender.interpreter_frame_method();
twisti@3251 398 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
twisti@3969 399 if (cur.is_invokedynamic() || cur.is_invokehandle()) {
twisti@3238 400 // Method handle invokes may involve fairly arbitrary chains of
twisti@3238 401 // calls so it's impossible to know how much actual space the
twisti@3238 402 // caller has for locals.
twisti@3238 403 caller_was_method_handle = true;
twisti@3238 404 }
never@2901 405 }
never@2901 406
duke@435 407 //
duke@435 408 // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
duke@435 409 // frame_sizes/frame_pcs[1] next oldest frame (int)
duke@435 410 // frame_sizes/frame_pcs[n] youngest frame (int)
duke@435 411 //
duke@435 412 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
duke@435 413 // owns the space for the return address to it's caller). Confusing ain't it.
duke@435 414 //
duke@435 415 // The vframe array can address vframes with indices running from
duke@435 416 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame.
duke@435 417 // When we create the skeletal frames we need the oldest frame to be in the zero slot
duke@435 418 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
duke@435 419 // so things look a little strange in this loop.
duke@435 420 //
twisti@3238 421 int callee_parameters = 0;
twisti@3238 422 int callee_locals = 0;
duke@435 423 for (int index = 0; index < array->frames(); index++ ) {
duke@435 424 // frame[number_of_frames - 1 ] = on_stack_size(youngest)
duke@435 425 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
duke@435 426 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
roland@6723 427 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
duke@435 428 callee_locals,
duke@435 429 index == 0,
duke@435 430 popframe_extra_args);
duke@435 431 // This pc doesn't have to be perfect just good enough to identify the frame
duke@435 432 // as interpreted so the skeleton frame will be walkable
duke@435 433 // The correct pc will be set when the skeleton frame is completely filled out
duke@435 434 // The final pc we store in the loop is wrong and will be overwritten below
duke@435 435 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
duke@435 436
duke@435 437 callee_parameters = array->element(index)->method()->size_of_parameters();
duke@435 438 callee_locals = array->element(index)->method()->max_locals();
duke@435 439 popframe_extra_args = 0;
duke@435 440 }
duke@435 441
duke@435 442 // Compute whether the root vframe returns a float or double value.
duke@435 443 BasicType return_type;
duke@435 444 {
duke@435 445 HandleMark hm;
duke@435 446 methodHandle method(thread, array->element(0)->method());
never@2462 447 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
coleenp@2497 448 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
duke@435 449 }
duke@435 450
duke@435 451 // Compute information for handling adapters and adjusting the frame size of the caller.
duke@435 452 int caller_adjustment = 0;
duke@435 453
duke@435 454 // Compute the amount the oldest interpreter frame will have to adjust
duke@435 455 // its caller's stack by. If the caller is a compiled frame then
duke@435 456 // we pretend that the callee has no parameters so that the
duke@435 457 // extension counts for the full amount of locals and not just
duke@435 458 // locals-parms. This is because without a c2i adapter the parm
duke@435 459 // area as created by the compiled frame will not be usable by
duke@435 460 // the interpreter. (Depending on the calling convention there
duke@435 461 // may not even be enough space).
duke@435 462
duke@435 463 // QQQ I'd rather see this pushed down into last_frame_adjust
duke@435 464 // and have it take the sender (aka caller).
duke@435 465
twisti@3238 466 if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
duke@435 467 caller_adjustment = last_frame_adjust(0, callee_locals);
twisti@3238 468 } else if (callee_locals > callee_parameters) {
duke@435 469 // The caller frame may need extending to accommodate
duke@435 470 // non-parameter locals of the first unpacked interpreted frame.
duke@435 471 // Compute that adjustment.
twisti@3238 472 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
duke@435 473 }
duke@435 474
duke@435 475 // If the sender is deoptimized the we must retrieve the address of the handler
duke@435 476 // since the frame will "magically" show the original pc before the deopt
duke@435 477 // and we'd undo the deopt.
duke@435 478
duke@435 479 frame_pcs[0] = deopt_sender.raw_pc();
duke@435 480
twisti@2047 481 #ifndef SHARK
duke@435 482 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
twisti@2047 483 #endif // SHARK
duke@435 484
duke@435 485 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
duke@435 486 caller_adjustment * BytesPerWord,
twisti@3238 487 caller_was_method_handle ? 0 : callee_parameters,
duke@435 488 number_of_frames,
duke@435 489 frame_sizes,
duke@435 490 frame_pcs,
duke@435 491 return_type);
bdelsart@3130 492 // On some platforms, we need a way to pass some platform dependent
bdelsart@3130 493 // information to the unpacking code so the skeletal frames come out
bdelsart@3130 494 // correct (initial fp value, unextended sp, ...)
bdelsart@3130 495 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
duke@435 496
duke@435 497 if (array->frames() > 1) {
duke@435 498 if (VerifyStack && TraceDeoptimization) {
vlivanov@4154 499 ttyLocker ttyl;
duke@435 500 tty->print_cr("Deoptimizing method containing inlining");
duke@435 501 }
duke@435 502 }
duke@435 503
duke@435 504 array->set_unroll_block(info);
duke@435 505 return info;
duke@435 506 }
duke@435 507
duke@435 508 // Called to cleanup deoptimization data structures in normal case
duke@435 509 // after unpacking to stack and when stack overflow error occurs
duke@435 510 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
duke@435 511 vframeArray *array) {
duke@435 512
duke@435 513 // Get array if coming from exception
duke@435 514 if (array == NULL) {
duke@435 515 array = thread->vframe_array_head();
duke@435 516 }
duke@435 517 thread->set_vframe_array_head(NULL);
duke@435 518
duke@435 519 // Free the previous UnrollBlock
duke@435 520 vframeArray* old_array = thread->vframe_array_last();
duke@435 521 thread->set_vframe_array_last(array);
duke@435 522
duke@435 523 if (old_array != NULL) {
duke@435 524 UnrollBlock* old_info = old_array->unroll_block();
duke@435 525 old_array->set_unroll_block(NULL);
duke@435 526 delete old_info;
duke@435 527 delete old_array;
duke@435 528 }
duke@435 529
duke@435 530 // Deallocate any resource creating in this routine and any ResourceObjs allocated
duke@435 531 // inside the vframeArray (StackValueCollections)
duke@435 532
duke@435 533 delete thread->deopt_mark();
duke@435 534 thread->set_deopt_mark(NULL);
iveresov@2169 535 thread->set_deopt_nmethod(NULL);
duke@435 536
duke@435 537
duke@435 538 if (JvmtiExport::can_pop_frame()) {
duke@435 539 #ifndef CC_INTERP
duke@435 540 // Regardless of whether we entered this routine with the pending
duke@435 541 // popframe condition bit set, we should always clear it now
duke@435 542 thread->clear_popframe_condition();
duke@435 543 #else
duke@435 544 // C++ interpeter will clear has_pending_popframe when it enters
duke@435 545 // with method_resume. For deopt_resume2 we clear it now.
duke@435 546 if (thread->popframe_forcing_deopt_reexecution())
duke@435 547 thread->clear_popframe_condition();
duke@435 548 #endif /* CC_INTERP */
duke@435 549 }
duke@435 550
duke@435 551 // unpack_frames() is called at the end of the deoptimization handler
duke@435 552 // and (in C2) at the end of the uncommon trap handler. Note this fact
duke@435 553 // so that an asynchronous stack walker can work again. This counter is
duke@435 554 // incremented at the beginning of fetch_unroll_info() and (in C2) at
duke@435 555 // the beginning of uncommon_trap().
duke@435 556 thread->dec_in_deopt_handler();
duke@435 557 }
duke@435 558
duke@435 559
duke@435 560 // Return BasicType of value being returned
duke@435 561 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
duke@435 562
duke@435 563 // We are already active int he special DeoptResourceMark any ResourceObj's we
duke@435 564 // allocate will be freed at the end of the routine.
duke@435 565
duke@435 566 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 567 // but makes the entry a little slower. There is however a little dance we have to
duke@435 568 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 569 ResetNoHandleMark rnhm; // No-op in release/product versions
duke@435 570 HandleMark hm;
duke@435 571
duke@435 572 frame stub_frame = thread->last_frame();
duke@435 573
duke@435 574 // Since the frame to unpack is the top frame of this thread, the vframe_array_head
duke@435 575 // must point to the vframeArray for the unpack frame.
duke@435 576 vframeArray* array = thread->vframe_array_head();
duke@435 577
duke@435 578 #ifndef PRODUCT
duke@435 579 if (TraceDeoptimization) {
vlivanov@4154 580 ttyLocker ttyl;
duke@435 581 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
duke@435 582 }
duke@435 583 #endif
never@3499 584 Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
never@3499 585 stub_frame.pc(), stub_frame.sp(), exec_mode);
duke@435 586
duke@435 587 UnrollBlock* info = array->unroll_block();
duke@435 588
duke@435 589 // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
never@2901 590 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
duke@435 591
duke@435 592 BasicType bt = info->return_type();
duke@435 593
duke@435 594 // If we have an exception pending, claim that the return type is an oop
duke@435 595 // so the deopt_blob does not overwrite the exception_oop.
duke@435 596
duke@435 597 if (exec_mode == Unpack_exception)
duke@435 598 bt = T_OBJECT;
duke@435 599
duke@435 600 // Cleanup thread deopt data
duke@435 601 cleanup_deopt_info(thread, array);
duke@435 602
duke@435 603 #ifndef PRODUCT
duke@435 604 if (VerifyStack) {
duke@435 605 ResourceMark res_mark;
duke@435 606
never@2868 607 thread->validate_frame_layout();
never@2868 608
duke@435 609 // Verify that the just-unpacked frames match the interpreter's
duke@435 610 // notions of expression stack and locals
duke@435 611 vframeArray* cur_array = thread->vframe_array_last();
duke@435 612 RegisterMap rm(thread, false);
duke@435 613 rm.set_include_argument_oops(false);
duke@435 614 bool is_top_frame = true;
duke@435 615 int callee_size_of_parameters = 0;
duke@435 616 int callee_max_locals = 0;
duke@435 617 for (int i = 0; i < cur_array->frames(); i++) {
duke@435 618 vframeArrayElement* el = cur_array->element(i);
duke@435 619 frame* iframe = el->iframe();
duke@435 620 guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
duke@435 621
duke@435 622 // Get the oop map for this bci
duke@435 623 InterpreterOopMap mask;
duke@435 624 int cur_invoke_parameter_size = 0;
duke@435 625 bool try_next_mask = false;
duke@435 626 int next_mask_expression_stack_size = -1;
duke@435 627 int top_frame_expression_stack_adjustment = 0;
duke@435 628 methodHandle mh(thread, iframe->interpreter_frame_method());
duke@435 629 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
duke@435 630 BytecodeStream str(mh);
duke@435 631 str.set_start(iframe->interpreter_frame_bci());
duke@435 632 int max_bci = mh->code_size();
duke@435 633 // Get to the next bytecode if possible
duke@435 634 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
duke@435 635 // Check to see if we can grab the number of outgoing arguments
duke@435 636 // at an uncommon trap for an invoke (where the compiler
duke@435 637 // generates debug info before the invoke has executed)
duke@435 638 Bytecodes::Code cur_code = str.next();
roland@5222 639 if (cur_code == Bytecodes::_invokevirtual ||
roland@5222 640 cur_code == Bytecodes::_invokespecial ||
roland@5222 641 cur_code == Bytecodes::_invokestatic ||
roland@5222 642 cur_code == Bytecodes::_invokeinterface ||
roland@5222 643 cur_code == Bytecodes::_invokedynamic) {
never@2462 644 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
coleenp@2497 645 Symbol* signature = invoke.signature();
duke@435 646 ArgumentSizeComputer asc(signature);
duke@435 647 cur_invoke_parameter_size = asc.size();
roland@5222 648 if (invoke.has_receiver()) {
duke@435 649 // Add in receiver
duke@435 650 ++cur_invoke_parameter_size;
duke@435 651 }
roland@5222 652 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
roland@5222 653 callee_size_of_parameters++;
roland@5222 654 }
duke@435 655 }
duke@435 656 if (str.bci() < max_bci) {
duke@435 657 Bytecodes::Code bc = str.next();
duke@435 658 if (bc >= 0) {
duke@435 659 // The interpreter oop map generator reports results before
duke@435 660 // the current bytecode has executed except in the case of
duke@435 661 // calls. It seems to be hard to tell whether the compiler
duke@435 662 // has emitted debug information matching the "state before"
duke@435 663 // a given bytecode or the state after, so we try both
duke@435 664 switch (cur_code) {
duke@435 665 case Bytecodes::_invokevirtual:
duke@435 666 case Bytecodes::_invokespecial:
duke@435 667 case Bytecodes::_invokestatic:
duke@435 668 case Bytecodes::_invokeinterface:
roland@5222 669 case Bytecodes::_invokedynamic:
duke@435 670 case Bytecodes::_athrow:
duke@435 671 break;
duke@435 672 default: {
duke@435 673 InterpreterOopMap next_mask;
duke@435 674 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
duke@435 675 next_mask_expression_stack_size = next_mask.expression_stack_size();
duke@435 676 // Need to subtract off the size of the result type of
duke@435 677 // the bytecode because this is not described in the
duke@435 678 // debug info but returned to the interpreter in the TOS
duke@435 679 // caching register
duke@435 680 BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
duke@435 681 if (bytecode_result_type != T_ILLEGAL) {
duke@435 682 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
duke@435 683 }
duke@435 684 assert(top_frame_expression_stack_adjustment >= 0, "");
duke@435 685 try_next_mask = true;
duke@435 686 break;
duke@435 687 }
duke@435 688 }
duke@435 689 }
duke@435 690 }
duke@435 691
duke@435 692 // Verify stack depth and oops in frame
duke@435 693 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
duke@435 694 if (!(
duke@435 695 /* SPARC */
duke@435 696 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
duke@435 697 /* x86 */
duke@435 698 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
duke@435 699 (try_next_mask &&
duke@435 700 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
duke@435 701 top_frame_expression_stack_adjustment))) ||
duke@435 702 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
kvn@6957 703 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
duke@435 704 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
duke@435 705 )) {
duke@435 706 ttyLocker ttyl;
duke@435 707
duke@435 708 // Print out some information that will help us debug the problem
duke@435 709 tty->print_cr("Wrong number of expression stack elements during deoptimization");
duke@435 710 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
duke@435 711 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements",
duke@435 712 iframe->interpreter_frame_expression_stack_size());
duke@435 713 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
duke@435 714 tty->print_cr(" try_next_mask = %d", try_next_mask);
duke@435 715 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
duke@435 716 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters);
duke@435 717 tty->print_cr(" callee_max_locals = %d", callee_max_locals);
duke@435 718 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
duke@435 719 tty->print_cr(" exec_mode = %d", exec_mode);
duke@435 720 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
duke@435 721 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
duke@435 722 tty->print_cr(" Interpreted frames:");
duke@435 723 for (int k = 0; k < cur_array->frames(); k++) {
duke@435 724 vframeArrayElement* el = cur_array->element(k);
duke@435 725 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
duke@435 726 }
duke@435 727 cur_array->print_on_2(tty);
duke@435 728 guarantee(false, "wrong number of expression stack elements during deopt");
duke@435 729 }
duke@435 730 VerifyOopClosure verify;
stefank@4298 731 iframe->oops_interpreted_do(&verify, NULL, &rm, false);
duke@435 732 callee_size_of_parameters = mh->size_of_parameters();
duke@435 733 callee_max_locals = mh->max_locals();
duke@435 734 is_top_frame = false;
duke@435 735 }
duke@435 736 }
duke@435 737 #endif /* !PRODUCT */
duke@435 738
duke@435 739
duke@435 740 return bt;
duke@435 741 JRT_END
duke@435 742
duke@435 743
duke@435 744 int Deoptimization::deoptimize_dependents() {
duke@435 745 Threads::deoptimized_wrt_marked_nmethods();
duke@435 746 return 0;
duke@435 747 }
duke@435 748
duke@435 749
duke@435 750 #ifdef COMPILER2
duke@435 751 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
duke@435 752 Handle pending_exception(thread->pending_exception());
duke@435 753 const char* exception_file = thread->exception_file();
duke@435 754 int exception_line = thread->exception_line();
duke@435 755 thread->clear_pending_exception();
duke@435 756
roland@7419 757 bool failures = false;
roland@7419 758
duke@435 759 for (int i = 0; i < objects->length(); i++) {
duke@435 760 assert(objects->at(i)->is_object(), "invalid debug information");
duke@435 761 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 762
coleenp@4037 763 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 764 oop obj = NULL;
duke@435 765
duke@435 766 if (k->oop_is_instance()) {
coleenp@4037 767 InstanceKlass* ik = InstanceKlass::cast(k());
roland@7419 768 obj = ik->allocate_instance(THREAD);
duke@435 769 } else if (k->oop_is_typeArray()) {
coleenp@4142 770 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
duke@435 771 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
duke@435 772 int len = sv->field_size() / type2size[ak->element_type()];
roland@7419 773 obj = ak->allocate(len, THREAD);
duke@435 774 } else if (k->oop_is_objArray()) {
coleenp@4142 775 ObjArrayKlass* ak = ObjArrayKlass::cast(k());
roland@7419 776 obj = ak->allocate(sv->field_size(), THREAD);
duke@435 777 }
duke@435 778
roland@7419 779 if (obj == NULL) {
roland@7419 780 failures = true;
roland@7419 781 }
roland@7419 782
duke@435 783 assert(sv->value().is_null(), "redundant reallocation");
roland@7419 784 assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
roland@7419 785 CLEAR_PENDING_EXCEPTION;
duke@435 786 sv->set_value(obj);
duke@435 787 }
duke@435 788
roland@7419 789 if (failures) {
roland@7419 790 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
roland@7419 791 } else if (pending_exception.not_null()) {
duke@435 792 thread->set_pending_exception(pending_exception(), exception_file, exception_line);
duke@435 793 }
duke@435 794
roland@7419 795 return failures;
duke@435 796 }
duke@435 797
duke@435 798 // This assumes that the fields are stored in ObjectValue in the same order
duke@435 799 // they are yielded by do_nonstatic_fields.
duke@435 800 class FieldReassigner: public FieldClosure {
duke@435 801 frame* _fr;
duke@435 802 RegisterMap* _reg_map;
duke@435 803 ObjectValue* _sv;
coleenp@4037 804 InstanceKlass* _ik;
duke@435 805 oop _obj;
duke@435 806
duke@435 807 int _i;
duke@435 808 public:
duke@435 809 FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
duke@435 810 _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
duke@435 811
duke@435 812 int i() const { return _i; }
duke@435 813
duke@435 814
duke@435 815 void do_field(fieldDescriptor* fd) {
kvn@479 816 intptr_t val;
duke@435 817 StackValue* value =
duke@435 818 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
duke@435 819 int offset = fd->offset();
duke@435 820 switch (fd->field_type()) {
duke@435 821 case T_OBJECT: case T_ARRAY:
duke@435 822 assert(value->type() == T_OBJECT, "Agreement.");
duke@435 823 _obj->obj_field_put(offset, value->get_obj()());
duke@435 824 break;
duke@435 825
duke@435 826 case T_LONG: case T_DOUBLE: {
duke@435 827 assert(value->type() == T_INT, "Agreement.");
duke@435 828 StackValue* low =
duke@435 829 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
kvn@479 830 #ifdef _LP64
kvn@479 831 jlong res = (jlong)low->get_int();
kvn@479 832 #else
kvn@479 833 #ifdef SPARC
kvn@479 834 // For SPARC we have to swap high and low words.
kvn@479 835 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 836 #else
duke@435 837 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 838 #endif //SPARC
kvn@479 839 #endif
duke@435 840 _obj->long_field_put(offset, res);
duke@435 841 break;
duke@435 842 }
kvn@479 843 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
duke@435 844 case T_INT: case T_FLOAT: // 4 bytes.
duke@435 845 assert(value->type() == T_INT, "Agreement.");
kvn@479 846 val = value->get_int();
kvn@479 847 _obj->int_field_put(offset, (jint)*((jint*)&val));
duke@435 848 break;
duke@435 849
duke@435 850 case T_SHORT: case T_CHAR: // 2 bytes
duke@435 851 assert(value->type() == T_INT, "Agreement.");
kvn@479 852 val = value->get_int();
kvn@479 853 _obj->short_field_put(offset, (jshort)*((jint*)&val));
duke@435 854 break;
duke@435 855
kvn@479 856 case T_BOOLEAN: case T_BYTE: // 1 byte
duke@435 857 assert(value->type() == T_INT, "Agreement.");
kvn@479 858 val = value->get_int();
kvn@479 859 _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
duke@435 860 break;
duke@435 861
duke@435 862 default:
duke@435 863 ShouldNotReachHere();
duke@435 864 }
duke@435 865 _i++;
duke@435 866 }
duke@435 867 };
duke@435 868
duke@435 869 // restore elements of an eliminated type array
duke@435 870 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
duke@435 871 int index = 0;
kvn@479 872 intptr_t val;
duke@435 873
duke@435 874 for (int i = 0; i < sv->field_size(); i++) {
duke@435 875 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 876 switch(type) {
kvn@479 877 case T_LONG: case T_DOUBLE: {
kvn@479 878 assert(value->type() == T_INT, "Agreement.");
kvn@479 879 StackValue* low =
kvn@479 880 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
kvn@479 881 #ifdef _LP64
kvn@479 882 jlong res = (jlong)low->get_int();
kvn@479 883 #else
kvn@479 884 #ifdef SPARC
kvn@479 885 // For SPARC we have to swap high and low words.
kvn@479 886 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 887 #else
kvn@479 888 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 889 #endif //SPARC
kvn@479 890 #endif
kvn@479 891 obj->long_at_put(index, res);
kvn@479 892 break;
kvn@479 893 }
kvn@479 894
kvn@479 895 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
kvn@479 896 case T_INT: case T_FLOAT: // 4 bytes.
kvn@479 897 assert(value->type() == T_INT, "Agreement.");
kvn@479 898 val = value->get_int();
kvn@479 899 obj->int_at_put(index, (jint)*((jint*)&val));
kvn@479 900 break;
kvn@479 901
kvn@479 902 case T_SHORT: case T_CHAR: // 2 bytes
kvn@479 903 assert(value->type() == T_INT, "Agreement.");
kvn@479 904 val = value->get_int();
kvn@479 905 obj->short_at_put(index, (jshort)*((jint*)&val));
kvn@479 906 break;
kvn@479 907
kvn@479 908 case T_BOOLEAN: case T_BYTE: // 1 byte
kvn@479 909 assert(value->type() == T_INT, "Agreement.");
kvn@479 910 val = value->get_int();
kvn@479 911 obj->bool_at_put(index, (jboolean)*((jint*)&val));
kvn@479 912 break;
kvn@479 913
duke@435 914 default:
duke@435 915 ShouldNotReachHere();
duke@435 916 }
duke@435 917 index++;
duke@435 918 }
duke@435 919 }
duke@435 920
duke@435 921
duke@435 922 // restore fields of an eliminated object array
duke@435 923 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
duke@435 924 for (int i = 0; i < sv->field_size(); i++) {
duke@435 925 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 926 assert(value->type() == T_OBJECT, "object element expected");
duke@435 927 obj->obj_at_put(i, value->get_obj()());
duke@435 928 }
duke@435 929 }
duke@435 930
duke@435 931
duke@435 932 // restore fields of all eliminated objects and arrays
roland@7419 933 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
duke@435 934 for (int i = 0; i < objects->length(); i++) {
duke@435 935 ObjectValue* sv = (ObjectValue*) objects->at(i);
coleenp@4037 936 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 937 Handle obj = sv->value();
roland@7419 938 assert(obj.not_null() || realloc_failures, "reallocation was missed");
roland@7419 939 if (obj.is_null()) {
roland@7419 940 continue;
roland@7419 941 }
duke@435 942
duke@435 943 if (k->oop_is_instance()) {
coleenp@4037 944 InstanceKlass* ik = InstanceKlass::cast(k());
duke@435 945 FieldReassigner reassign(fr, reg_map, sv, obj());
duke@435 946 ik->do_nonstatic_fields(&reassign);
duke@435 947 } else if (k->oop_is_typeArray()) {
coleenp@4142 948 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
duke@435 949 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
duke@435 950 } else if (k->oop_is_objArray()) {
duke@435 951 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
duke@435 952 }
duke@435 953 }
duke@435 954 }
duke@435 955
duke@435 956
duke@435 957 // relock objects for which synchronization was eliminated
roland@7419 958 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
duke@435 959 for (int i = 0; i < monitors->length(); i++) {
kvn@518 960 MonitorInfo* mon_info = monitors->at(i);
kvn@518 961 if (mon_info->eliminated()) {
roland@7419 962 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
roland@7419 963 if (!mon_info->owner_is_scalar_replaced()) {
roland@7419 964 Handle obj = Handle(mon_info->owner());
roland@7419 965 markOop mark = obj->mark();
roland@7419 966 if (UseBiasedLocking && mark->has_bias_pattern()) {
roland@7419 967 // New allocated objects may have the mark set to anonymously biased.
roland@7419 968 // Also the deoptimized method may called methods with synchronization
roland@7419 969 // where the thread-local object is bias locked to the current thread.
roland@7419 970 assert(mark->is_biased_anonymously() ||
roland@7419 971 mark->biased_locker() == thread, "should be locked to current thread");
roland@7419 972 // Reset mark word to unbiased prototype.
roland@7419 973 markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
roland@7419 974 obj->set_mark(unbiased_prototype);
roland@7419 975 }
roland@7419 976 BasicLock* lock = mon_info->lock();
roland@7419 977 ObjectSynchronizer::slow_enter(obj, lock, thread);
roland@7419 978 assert(mon_info->owner()->is_locked(), "object must be locked now");
kvn@518 979 }
duke@435 980 }
duke@435 981 }
duke@435 982 }
duke@435 983
duke@435 984
duke@435 985 #ifndef PRODUCT
duke@435 986 // print information about reallocated objects
roland@7419 987 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
duke@435 988 fieldDescriptor fd;
duke@435 989
duke@435 990 for (int i = 0; i < objects->length(); i++) {
duke@435 991 ObjectValue* sv = (ObjectValue*) objects->at(i);
coleenp@4037 992 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 993 Handle obj = sv->value();
duke@435 994
hseigel@5784 995 tty->print(" object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
coleenp@4037 996 k->print_value();
roland@7419 997 assert(obj.not_null() || realloc_failures, "reallocation was missed");
roland@7419 998 if (obj.is_null()) {
roland@7419 999 tty->print(" allocation failed");
roland@7419 1000 } else {
roland@7419 1001 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
roland@7419 1002 }
duke@435 1003 tty->cr();
duke@435 1004
roland@7419 1005 if (Verbose && !obj.is_null()) {
duke@435 1006 k->oop_print_on(obj(), tty);
duke@435 1007 }
duke@435 1008 }
duke@435 1009 }
duke@435 1010 #endif
duke@435 1011 #endif // COMPILER2
duke@435 1012
roland@7419 1013 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
never@3499 1014 Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
duke@435 1015
duke@435 1016 #ifndef PRODUCT
duke@435 1017 if (TraceDeoptimization) {
duke@435 1018 ttyLocker ttyl;
duke@435 1019 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
duke@435 1020 fr.print_on(tty);
duke@435 1021 tty->print_cr(" Virtual frames (innermost first):");
duke@435 1022 for (int index = 0; index < chunk->length(); index++) {
duke@435 1023 compiledVFrame* vf = chunk->at(index);
duke@435 1024 tty->print(" %2d - ", index);
duke@435 1025 vf->print_value();
duke@435 1026 int bci = chunk->at(index)->raw_bci();
duke@435 1027 const char* code_name;
duke@435 1028 if (bci == SynchronizationEntryBCI) {
duke@435 1029 code_name = "sync entry";
duke@435 1030 } else {
never@2462 1031 Bytecodes::Code code = vf->method()->code_at(bci);
duke@435 1032 code_name = Bytecodes::name(code);
duke@435 1033 }
duke@435 1034 tty->print(" - %s", code_name);
duke@435 1035 tty->print_cr(" @ bci %d ", bci);
duke@435 1036 if (Verbose) {
duke@435 1037 vf->print();
duke@435 1038 tty->cr();
duke@435 1039 }
duke@435 1040 }
duke@435 1041 }
duke@435 1042 #endif
duke@435 1043
duke@435 1044 // Register map for next frame (used for stack crawl). We capture
duke@435 1045 // the state of the deopt'ing frame's caller. Thus if we need to
duke@435 1046 // stuff a C2I adapter we can properly fill in the callee-save
duke@435 1047 // register locations.
duke@435 1048 frame caller = fr.sender(reg_map);
duke@435 1049 int frame_size = caller.sp() - fr.sp();
duke@435 1050
duke@435 1051 frame sender = caller;
duke@435 1052
duke@435 1053 // Since the Java thread being deoptimized will eventually adjust it's own stack,
duke@435 1054 // the vframeArray containing the unpacking information is allocated in the C heap.
duke@435 1055 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
roland@7419 1056 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
duke@435 1057
duke@435 1058 // Compare the vframeArray to the collected vframes
duke@435 1059 assert(array->structural_compare(thread, chunk), "just checking");
duke@435 1060
duke@435 1061 #ifndef PRODUCT
duke@435 1062 if (TraceDeoptimization) {
duke@435 1063 ttyLocker ttyl;
duke@435 1064 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, array);
duke@435 1065 }
duke@435 1066 #endif // PRODUCT
duke@435 1067
duke@435 1068 return array;
duke@435 1069 }
duke@435 1070
roland@7419 1071 #ifdef COMPILER2
roland@7419 1072 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
roland@7419 1073 // Reallocation of some scalar replaced objects failed. Record
roland@7419 1074 // that we need to pop all the interpreter frames for the
roland@7419 1075 // deoptimized compiled frame.
roland@7419 1076 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
roland@7419 1077 thread->set_frames_to_pop_failed_realloc(array->frames());
roland@7419 1078 // Unlock all monitors here otherwise the interpreter will see a
roland@7419 1079 // mix of locked and unlocked monitors (because of failed
roland@7419 1080 // reallocations of synchronized objects) and be confused.
roland@7419 1081 for (int i = 0; i < array->frames(); i++) {
roland@7419 1082 MonitorChunk* monitors = array->element(i)->monitors();
roland@7419 1083 if (monitors != NULL) {
roland@7419 1084 for (int j = 0; j < monitors->number_of_monitors(); j++) {
roland@7419 1085 BasicObjectLock* src = monitors->at(j);
roland@7419 1086 if (src->obj() != NULL) {
roland@7419 1087 ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
roland@7419 1088 }
roland@7419 1089 }
roland@7419 1090 array->element(i)->free_monitors(thread);
roland@7419 1091 #ifdef ASSERT
roland@7419 1092 array->element(i)->set_removed_monitors();
roland@7419 1093 #endif
roland@7419 1094 }
roland@7419 1095 }
roland@7419 1096 }
roland@7419 1097 #endif
duke@435 1098
duke@435 1099 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
duke@435 1100 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
duke@435 1101 for (int i = 0; i < monitors->length(); i++) {
duke@435 1102 MonitorInfo* mon_info = monitors->at(i);
kvn@1253 1103 if (!mon_info->eliminated() && mon_info->owner() != NULL) {
duke@435 1104 objects_to_revoke->append(Handle(mon_info->owner()));
duke@435 1105 }
duke@435 1106 }
duke@435 1107 }
duke@435 1108
duke@435 1109
duke@435 1110 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
duke@435 1111 if (!UseBiasedLocking) {
duke@435 1112 return;
duke@435 1113 }
duke@435 1114
duke@435 1115 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1116
duke@435 1117 // Unfortunately we don't have a RegisterMap available in most of
duke@435 1118 // the places we want to call this routine so we need to walk the
duke@435 1119 // stack again to update the register map.
duke@435 1120 if (map == NULL || !map->update_map()) {
duke@435 1121 StackFrameStream sfs(thread, true);
duke@435 1122 bool found = false;
duke@435 1123 while (!found && !sfs.is_done()) {
duke@435 1124 frame* cur = sfs.current();
duke@435 1125 sfs.next();
duke@435 1126 found = cur->id() == fr.id();
duke@435 1127 }
duke@435 1128 assert(found, "frame to be deoptimized not found on target thread's stack");
duke@435 1129 map = sfs.register_map();
duke@435 1130 }
duke@435 1131
duke@435 1132 vframe* vf = vframe::new_vframe(&fr, map, thread);
duke@435 1133 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1134 // Revoke monitors' biases in all scopes
duke@435 1135 while (!cvf->is_top()) {
duke@435 1136 collect_monitors(cvf, objects_to_revoke);
duke@435 1137 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1138 }
duke@435 1139 collect_monitors(cvf, objects_to_revoke);
duke@435 1140
duke@435 1141 if (SafepointSynchronize::is_at_safepoint()) {
duke@435 1142 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1143 } else {
duke@435 1144 BiasedLocking::revoke(objects_to_revoke);
duke@435 1145 }
duke@435 1146 }
duke@435 1147
duke@435 1148
duke@435 1149 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
duke@435 1150 if (!UseBiasedLocking) {
duke@435 1151 return;
duke@435 1152 }
duke@435 1153
duke@435 1154 assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
duke@435 1155 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1156 for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
duke@435 1157 if (jt->has_last_Java_frame()) {
duke@435 1158 StackFrameStream sfs(jt, true);
duke@435 1159 while (!sfs.is_done()) {
duke@435 1160 frame* cur = sfs.current();
duke@435 1161 if (cb->contains(cur->pc())) {
duke@435 1162 vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
duke@435 1163 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1164 // Revoke monitors' biases in all scopes
duke@435 1165 while (!cvf->is_top()) {
duke@435 1166 collect_monitors(cvf, objects_to_revoke);
duke@435 1167 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1168 }
duke@435 1169 collect_monitors(cvf, objects_to_revoke);
duke@435 1170 }
duke@435 1171 sfs.next();
duke@435 1172 }
duke@435 1173 }
duke@435 1174 }
duke@435 1175 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1176 }
duke@435 1177
duke@435 1178
duke@435 1179 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
duke@435 1180 assert(fr.can_be_deoptimized(), "checking frame type");
duke@435 1181
duke@435 1182 gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
duke@435 1183
duke@435 1184 // Patch the nmethod so that when execution returns to it we will
duke@435 1185 // deopt the execution state and return to the interpreter.
duke@435 1186 fr.deoptimize(thread);
duke@435 1187 }
duke@435 1188
duke@435 1189 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
duke@435 1190 // Deoptimize only if the frame comes from compile code.
duke@435 1191 // Do not deoptimize the frame which is already patched
duke@435 1192 // during the execution of the loops below.
duke@435 1193 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
duke@435 1194 return;
duke@435 1195 }
duke@435 1196 ResourceMark rm;
duke@435 1197 DeoptimizationMarker dm;
duke@435 1198 if (UseBiasedLocking) {
duke@435 1199 revoke_biases_of_monitors(thread, fr, map);
duke@435 1200 }
duke@435 1201 deoptimize_single_frame(thread, fr);
duke@435 1202
duke@435 1203 }
duke@435 1204
duke@435 1205
never@2260 1206 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
never@2260 1207 assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
never@2260 1208 "can only deoptimize other thread at a safepoint");
duke@435 1209 // Compute frame and register map based on thread and sp.
duke@435 1210 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1211 frame fr = thread->last_frame();
duke@435 1212 while (fr.id() != id) {
duke@435 1213 fr = fr.sender(&reg_map);
duke@435 1214 }
duke@435 1215 deoptimize(thread, fr, &reg_map);
duke@435 1216 }
duke@435 1217
duke@435 1218
never@2260 1219 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
never@2260 1220 if (thread == Thread::current()) {
never@2260 1221 Deoptimization::deoptimize_frame_internal(thread, id);
never@2260 1222 } else {
never@2260 1223 VM_DeoptimizeFrame deopt(thread, id);
never@2260 1224 VMThread::execute(&deopt);
never@2260 1225 }
never@2260 1226 }
never@2260 1227
never@2260 1228
duke@435 1229 // JVMTI PopFrame support
duke@435 1230 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
duke@435 1231 {
duke@435 1232 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
duke@435 1233 }
duke@435 1234 JRT_END
duke@435 1235
duke@435 1236
twisti@2047 1237 #if defined(COMPILER2) || defined(SHARK)
duke@435 1238 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
duke@435 1239 // in case of an unresolved klass entry, load the class.
duke@435 1240 if (constant_pool->tag_at(index).is_unresolved_klass()) {
coleenp@4037 1241 Klass* tk = constant_pool->klass_at(index, CHECK);
duke@435 1242 return;
duke@435 1243 }
duke@435 1244
duke@435 1245 if (!constant_pool->tag_at(index).is_symbol()) return;
duke@435 1246
coleenp@4251 1247 Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
coleenp@2497 1248 Symbol* symbol = constant_pool->symbol_at(index);
duke@435 1249
duke@435 1250 // class name?
duke@435 1251 if (symbol->byte_at(0) != '(') {
coleenp@4251 1252 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
duke@435 1253 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
duke@435 1254 return;
duke@435 1255 }
duke@435 1256
duke@435 1257 // then it must be a signature!
coleenp@2497 1258 ResourceMark rm(THREAD);
duke@435 1259 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
duke@435 1260 if (ss.is_object()) {
coleenp@2497 1261 Symbol* class_name = ss.as_symbol(CHECK);
coleenp@4251 1262 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
duke@435 1263 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
duke@435 1264 }
duke@435 1265 }
duke@435 1266 }
duke@435 1267
duke@435 1268
duke@435 1269 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
duke@435 1270 EXCEPTION_MARK;
duke@435 1271 load_class_by_index(constant_pool, index, THREAD);
duke@435 1272 if (HAS_PENDING_EXCEPTION) {
duke@435 1273 // Exception happened during classloading. We ignore the exception here, since it
roland@6215 1274 // is going to be rethrown since the current activation is going to be deoptimized and
duke@435 1275 // the interpreter will re-execute the bytecode.
duke@435 1276 CLEAR_PENDING_EXCEPTION;
roland@6215 1277 // Class loading called java code which may have caused a stack
roland@6215 1278 // overflow. If the exception was thrown right before the return
roland@6215 1279 // to the runtime the stack is no longer guarded. Reguard the
roland@6215 1280 // stack otherwise if we return to the uncommon trap blob and the
roland@6215 1281 // stack bang causes a stack overflow we crash.
roland@6215 1282 assert(THREAD->is_Java_thread(), "only a java thread can be here");
roland@6215 1283 JavaThread* thread = (JavaThread*)THREAD;
roland@6215 1284 bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
roland@6215 1285 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
roland@6215 1286 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
duke@435 1287 }
duke@435 1288 }
duke@435 1289
duke@435 1290 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
duke@435 1291 HandleMark hm;
duke@435 1292
duke@435 1293 // uncommon_trap() is called at the beginning of the uncommon trap
duke@435 1294 // handler. Note this fact before we start generating temporary frames
duke@435 1295 // that can confuse an asynchronous stack walker. This counter is
duke@435 1296 // decremented at the end of unpack_frames().
duke@435 1297 thread->inc_in_deopt_handler();
duke@435 1298
duke@435 1299 // We need to update the map if we have biased locking.
duke@435 1300 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1301 frame stub_frame = thread->last_frame();
duke@435 1302 frame fr = stub_frame.sender(&reg_map);
duke@435 1303 // Make sure the calling nmethod is not getting deoptimized and removed
duke@435 1304 // before we are done with it.
duke@435 1305 nmethodLocker nl(fr.pc());
duke@435 1306
never@3499 1307 // Log a message
vlivanov@4312 1308 Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
vlivanov@4312 1309 trap_request, fr.pc());
never@3499 1310
duke@435 1311 {
duke@435 1312 ResourceMark rm;
duke@435 1313
duke@435 1314 // Revoke biases of any monitors in the frame to ensure we can migrate them
duke@435 1315 revoke_biases_of_monitors(thread, fr, &reg_map);
duke@435 1316
duke@435 1317 DeoptReason reason = trap_request_reason(trap_request);
duke@435 1318 DeoptAction action = trap_request_action(trap_request);
duke@435 1319 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
duke@435 1320
duke@435 1321 vframe* vf = vframe::new_vframe(&fr, &reg_map, thread);
duke@435 1322 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1323
duke@435 1324 nmethod* nm = cvf->code();
duke@435 1325
duke@435 1326 ScopeDesc* trap_scope = cvf->scope();
duke@435 1327 methodHandle trap_method = trap_scope->method();
duke@435 1328 int trap_bci = trap_scope->bci();
never@2462 1329 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci);
duke@435 1330
duke@435 1331 // Record this event in the histogram.
duke@435 1332 gather_statistics(reason, action, trap_bc);
duke@435 1333
duke@435 1334 // Ensure that we can record deopt. history:
kvn@6429 1335 // Need MDO to record RTM code generation state.
kvn@6429 1336 bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
duke@435 1337
coleenp@4037 1338 MethodData* trap_mdo =
coleenp@4037 1339 get_method_data(thread, trap_method, create_if_missing);
duke@435 1340
vlivanov@4312 1341 // Log a message
vlivanov@4312 1342 Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
vlivanov@4312 1343 trap_reason_name(reason), trap_action_name(action), fr.pc(),
vlivanov@4312 1344 trap_method->name_and_sig_as_C_string(), trap_bci);
vlivanov@4312 1345
duke@435 1346 // Print a bunch of diagnostics, if requested.
duke@435 1347 if (TraceDeoptimization || LogCompilation) {
duke@435 1348 ResourceMark rm;
duke@435 1349 ttyLocker ttyl;
duke@435 1350 char buf[100];
duke@435 1351 if (xtty != NULL) {
duke@435 1352 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
duke@435 1353 os::current_thread_id(),
duke@435 1354 format_trap_request(buf, sizeof(buf), trap_request));
duke@435 1355 nm->log_identity(xtty);
duke@435 1356 }
coleenp@2497 1357 Symbol* class_name = NULL;
duke@435 1358 bool unresolved = false;
duke@435 1359 if (unloaded_class_index >= 0) {
duke@435 1360 constantPoolHandle constants (THREAD, trap_method->constants());
duke@435 1361 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
coleenp@2497 1362 class_name = constants->klass_name_at(unloaded_class_index);
duke@435 1363 unresolved = true;
duke@435 1364 if (xtty != NULL)
duke@435 1365 xtty->print(" unresolved='1'");
duke@435 1366 } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
coleenp@2497 1367 class_name = constants->symbol_at(unloaded_class_index);
duke@435 1368 }
duke@435 1369 if (xtty != NULL)
duke@435 1370 xtty->name(class_name);
duke@435 1371 }
coleenp@4037 1372 if (xtty != NULL && trap_mdo != NULL) {
duke@435 1373 // Dump the relevant MDO state.
duke@435 1374 // This is the deopt count for the current reason, any previous
duke@435 1375 // reasons or recompiles seen at this point.
duke@435 1376 int dcnt = trap_mdo->trap_count(reason);
duke@435 1377 if (dcnt != 0)
duke@435 1378 xtty->print(" count='%d'", dcnt);
duke@435 1379 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
duke@435 1380 int dos = (pdata == NULL)? 0: pdata->trap_state();
duke@435 1381 if (dos != 0) {
duke@435 1382 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
duke@435 1383 if (trap_state_is_recompiled(dos)) {
duke@435 1384 int recnt2 = trap_mdo->overflow_recompile_count();
duke@435 1385 if (recnt2 != 0)
duke@435 1386 xtty->print(" recompiles2='%d'", recnt2);
duke@435 1387 }
duke@435 1388 }
duke@435 1389 }
duke@435 1390 if (xtty != NULL) {
duke@435 1391 xtty->stamp();
duke@435 1392 xtty->end_head();
duke@435 1393 }
duke@435 1394 if (TraceDeoptimization) { // make noise on the tty
duke@435 1395 tty->print("Uncommon trap occurred in");
duke@435 1396 nm->method()->print_short_name(tty);
vlivanov@4154 1397 tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
duke@435 1398 fr.pc(),
vlivanov@4154 1399 os::current_thread_id(),
duke@435 1400 trap_reason_name(reason),
duke@435 1401 trap_action_name(action),
duke@435 1402 unloaded_class_index);
coleenp@2497 1403 if (class_name != NULL) {
duke@435 1404 tty->print(unresolved ? " unresolved class: " : " symbol: ");
duke@435 1405 class_name->print_symbol_on(tty);
duke@435 1406 }
duke@435 1407 tty->cr();
duke@435 1408 }
duke@435 1409 if (xtty != NULL) {
duke@435 1410 // Log the precise location of the trap.
duke@435 1411 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
duke@435 1412 xtty->begin_elem("jvms bci='%d'", sd->bci());
duke@435 1413 xtty->method(sd->method());
duke@435 1414 xtty->end_elem();
duke@435 1415 if (sd->is_top()) break;
duke@435 1416 }
duke@435 1417 xtty->tail("uncommon_trap");
duke@435 1418 }
duke@435 1419 }
duke@435 1420 // (End diagnostic printout.)
duke@435 1421
duke@435 1422 // Load class if necessary
duke@435 1423 if (unloaded_class_index >= 0) {
duke@435 1424 constantPoolHandle constants(THREAD, trap_method->constants());
duke@435 1425 load_class_by_index(constants, unloaded_class_index);
duke@435 1426 }
duke@435 1427
duke@435 1428 // Flush the nmethod if necessary and desirable.
duke@435 1429 //
duke@435 1430 // We need to avoid situations where we are re-flushing the nmethod
duke@435 1431 // because of a hot deoptimization site. Repeated flushes at the same
duke@435 1432 // point need to be detected by the compiler and avoided. If the compiler
duke@435 1433 // cannot avoid them (or has a bug and "refuses" to avoid them), this
duke@435 1434 // module must take measures to avoid an infinite cycle of recompilation
duke@435 1435 // and deoptimization. There are several such measures:
duke@435 1436 //
duke@435 1437 // 1. If a recompilation is ordered a second time at some site X
duke@435 1438 // and for the same reason R, the action is adjusted to 'reinterpret',
duke@435 1439 // to give the interpreter time to exercise the method more thoroughly.
duke@435 1440 // If this happens, the method's overflow_recompile_count is incremented.
duke@435 1441 //
duke@435 1442 // 2. If the compiler fails to reduce the deoptimization rate, then
duke@435 1443 // the method's overflow_recompile_count will begin to exceed the set
duke@435 1444 // limit PerBytecodeRecompilationCutoff. If this happens, the action
duke@435 1445 // is adjusted to 'make_not_compilable', and the method is abandoned
duke@435 1446 // to the interpreter. This is a performance hit for hot methods,
duke@435 1447 // but is better than a disastrous infinite cycle of recompilations.
duke@435 1448 // (Actually, only the method containing the site X is abandoned.)
duke@435 1449 //
duke@435 1450 // 3. In parallel with the previous measures, if the total number of
duke@435 1451 // recompilations of a method exceeds the much larger set limit
duke@435 1452 // PerMethodRecompilationCutoff, the method is abandoned.
duke@435 1453 // This should only happen if the method is very large and has
duke@435 1454 // many "lukewarm" deoptimizations. The code which enforces this
coleenp@4037 1455 // limit is elsewhere (class nmethod, class Method).
duke@435 1456 //
duke@435 1457 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
duke@435 1458 // to recompile at each bytecode independently of the per-BCI cutoff.
duke@435 1459 //
duke@435 1460 // The decision to update code is up to the compiler, and is encoded
duke@435 1461 // in the Action_xxx code. If the compiler requests Action_none
duke@435 1462 // no trap state is changed, no compiled code is changed, and the
duke@435 1463 // computation suffers along in the interpreter.
duke@435 1464 //
duke@435 1465 // The other action codes specify various tactics for decompilation
duke@435 1466 // and recompilation. Action_maybe_recompile is the loosest, and
duke@435 1467 // allows the compiled code to stay around until enough traps are seen,
duke@435 1468 // and until the compiler gets around to recompiling the trapping method.
duke@435 1469 //
duke@435 1470 // The other actions cause immediate removal of the present code.
duke@435 1471
duke@435 1472 bool update_trap_state = true;
duke@435 1473 bool make_not_entrant = false;
duke@435 1474 bool make_not_compilable = false;
iveresov@2138 1475 bool reprofile = false;
duke@435 1476 switch (action) {
duke@435 1477 case Action_none:
duke@435 1478 // Keep the old code.
duke@435 1479 update_trap_state = false;
duke@435 1480 break;
duke@435 1481 case Action_maybe_recompile:
duke@435 1482 // Do not need to invalidate the present code, but we can
duke@435 1483 // initiate another
duke@435 1484 // Start compiler without (necessarily) invalidating the nmethod.
duke@435 1485 // The system will tolerate the old code, but new code should be
duke@435 1486 // generated when possible.
duke@435 1487 break;
duke@435 1488 case Action_reinterpret:
duke@435 1489 // Go back into the interpreter for a while, and then consider
duke@435 1490 // recompiling form scratch.
duke@435 1491 make_not_entrant = true;
duke@435 1492 // Reset invocation counter for outer most method.
duke@435 1493 // This will allow the interpreter to exercise the bytecodes
duke@435 1494 // for a while before recompiling.
duke@435 1495 // By contrast, Action_make_not_entrant is immediate.
duke@435 1496 //
duke@435 1497 // Note that the compiler will track null_check, null_assert,
duke@435 1498 // range_check, and class_check events and log them as if they
duke@435 1499 // had been traps taken from compiled code. This will update
duke@435 1500 // the MDO trap history so that the next compilation will
duke@435 1501 // properly detect hot trap sites.
iveresov@2138 1502 reprofile = true;
duke@435 1503 break;
duke@435 1504 case Action_make_not_entrant:
duke@435 1505 // Request immediate recompilation, and get rid of the old code.
duke@435 1506 // Make them not entrant, so next time they are called they get
duke@435 1507 // recompiled. Unloaded classes are loaded now so recompile before next
duke@435 1508 // time they are called. Same for uninitialized. The interpreter will
duke@435 1509 // link the missing class, if any.
duke@435 1510 make_not_entrant = true;
duke@435 1511 break;
duke@435 1512 case Action_make_not_compilable:
duke@435 1513 // Give up on compiling this method at all.
duke@435 1514 make_not_entrant = true;
duke@435 1515 make_not_compilable = true;
duke@435 1516 break;
duke@435 1517 default:
duke@435 1518 ShouldNotReachHere();
duke@435 1519 }
duke@435 1520
duke@435 1521 // Setting +ProfileTraps fixes the following, on all platforms:
duke@435 1522 // 4852688: ProfileInterpreter is off by default for ia64. The result is
duke@435 1523 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
coleenp@4037 1524 // recompile relies on a MethodData* to record heroic opt failures.
duke@435 1525
duke@435 1526 // Whether the interpreter is producing MDO data or not, we also need
duke@435 1527 // to use the MDO to detect hot deoptimization points and control
duke@435 1528 // aggressive optimization.
kvn@1641 1529 bool inc_recompile_count = false;
kvn@1641 1530 ProfileData* pdata = NULL;
coleenp@4037 1531 if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
coleenp@4037 1532 assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
duke@435 1533 uint this_trap_count = 0;
duke@435 1534 bool maybe_prior_trap = false;
duke@435 1535 bool maybe_prior_recompile = false;
kvn@1641 1536 pdata = query_update_method_data(trap_mdo, trap_bci, reason,
roland@6377 1537 nm->method(),
duke@435 1538 //outputs:
duke@435 1539 this_trap_count,
duke@435 1540 maybe_prior_trap,
duke@435 1541 maybe_prior_recompile);
duke@435 1542 // Because the interpreter also counts null, div0, range, and class
duke@435 1543 // checks, these traps from compiled code are double-counted.
duke@435 1544 // This is harmless; it just means that the PerXTrapLimit values
duke@435 1545 // are in effect a little smaller than they look.
duke@435 1546
duke@435 1547 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1548 if (per_bc_reason != Reason_none) {
duke@435 1549 // Now take action based on the partially known per-BCI history.
duke@435 1550 if (maybe_prior_trap
duke@435 1551 && this_trap_count >= (uint)PerBytecodeTrapLimit) {
duke@435 1552 // If there are too many traps at this BCI, force a recompile.
duke@435 1553 // This will allow the compiler to see the limit overflow, and
duke@435 1554 // take corrective action, if possible. The compiler generally
duke@435 1555 // does not use the exact PerBytecodeTrapLimit value, but instead
duke@435 1556 // changes its tactics if it sees any traps at all. This provides
duke@435 1557 // a little hysteresis, delaying a recompile until a trap happens
duke@435 1558 // several times.
duke@435 1559 //
duke@435 1560 // Actually, since there is only one bit of counter per BCI,
duke@435 1561 // the possible per-BCI counts are {0,1,(per-method count)}.
duke@435 1562 // This produces accurate results if in fact there is only
duke@435 1563 // one hot trap site, but begins to get fuzzy if there are
duke@435 1564 // many sites. For example, if there are ten sites each
duke@435 1565 // trapping two or more times, they each get the blame for
duke@435 1566 // all of their traps.
duke@435 1567 make_not_entrant = true;
duke@435 1568 }
duke@435 1569
duke@435 1570 // Detect repeated recompilation at the same BCI, and enforce a limit.
duke@435 1571 if (make_not_entrant && maybe_prior_recompile) {
duke@435 1572 // More than one recompile at this point.
kvn@1641 1573 inc_recompile_count = maybe_prior_trap;
duke@435 1574 }
duke@435 1575 } else {
duke@435 1576 // For reasons which are not recorded per-bytecode, we simply
duke@435 1577 // force recompiles unconditionally.
duke@435 1578 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
duke@435 1579 make_not_entrant = true;
duke@435 1580 }
duke@435 1581
duke@435 1582 // Go back to the compiler if there are too many traps in this method.
roland@6377 1583 if (this_trap_count >= per_method_trap_limit(reason)) {
duke@435 1584 // If there are too many traps in this method, force a recompile.
duke@435 1585 // This will allow the compiler to see the limit overflow, and
duke@435 1586 // take corrective action, if possible.
duke@435 1587 // (This condition is an unlikely backstop only, because the
duke@435 1588 // PerBytecodeTrapLimit is more likely to take effect first,
duke@435 1589 // if it is applicable.)
duke@435 1590 make_not_entrant = true;
duke@435 1591 }
duke@435 1592
duke@435 1593 // Here's more hysteresis: If there has been a recompile at
duke@435 1594 // this trap point already, run the method in the interpreter
duke@435 1595 // for a while to exercise it more thoroughly.
duke@435 1596 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
iveresov@2138 1597 reprofile = true;
duke@435 1598 }
duke@435 1599
kvn@1641 1600 }
kvn@1641 1601
kvn@1641 1602 // Take requested actions on the method:
kvn@1641 1603
kvn@1641 1604 // Recompile
kvn@1641 1605 if (make_not_entrant) {
kvn@1641 1606 if (!nm->make_not_entrant()) {
kvn@1641 1607 return; // the call did not change nmethod's state
kvn@1641 1608 }
kvn@1641 1609
kvn@1641 1610 if (pdata != NULL) {
duke@435 1611 // Record the recompilation event, if any.
duke@435 1612 int tstate0 = pdata->trap_state();
duke@435 1613 int tstate1 = trap_state_set_recompiled(tstate0, true);
duke@435 1614 if (tstate1 != tstate0)
duke@435 1615 pdata->set_trap_state(tstate1);
duke@435 1616 }
kvn@6429 1617
kvn@6429 1618 #if INCLUDE_RTM_OPT
kvn@6429 1619 // Restart collecting RTM locking abort statistic if the method
kvn@6429 1620 // is recompiled for a reason other than RTM state change.
kvn@6429 1621 // Assume that in new recompiled code the statistic could be different,
kvn@6429 1622 // for example, due to different inlining.
kvn@6429 1623 if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
kvn@6429 1624 UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
kvn@6429 1625 trap_mdo->atomic_set_rtm_state(ProfileRTM);
kvn@6429 1626 }
kvn@6429 1627 #endif
duke@435 1628 }
duke@435 1629
kvn@1641 1630 if (inc_recompile_count) {
kvn@1641 1631 trap_mdo->inc_overflow_recompile_count();
kvn@1641 1632 if ((uint)trap_mdo->overflow_recompile_count() >
kvn@1641 1633 (uint)PerBytecodeRecompilationCutoff) {
kvn@1641 1634 // Give up on the method containing the bad BCI.
kvn@1641 1635 if (trap_method() == nm->method()) {
kvn@1641 1636 make_not_compilable = true;
kvn@1641 1637 } else {
vlivanov@4539 1638 trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
kvn@1641 1639 // But give grace to the enclosing nm->method().
kvn@1641 1640 }
kvn@1641 1641 }
kvn@1641 1642 }
duke@435 1643
iveresov@2138 1644 // Reprofile
iveresov@2138 1645 if (reprofile) {
iveresov@2138 1646 CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
duke@435 1647 }
duke@435 1648
duke@435 1649 // Give up compiling
iveresov@2138 1650 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
duke@435 1651 assert(make_not_entrant, "consistent");
iveresov@2138 1652 nm->method()->set_not_compilable(CompLevel_full_optimization);
duke@435 1653 }
duke@435 1654
duke@435 1655 } // Free marked resources
duke@435 1656
duke@435 1657 }
duke@435 1658 JRT_END
duke@435 1659
coleenp@4037 1660 MethodData*
duke@435 1661 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
duke@435 1662 bool create_if_missing) {
duke@435 1663 Thread* THREAD = thread;
coleenp@4037 1664 MethodData* mdo = m()->method_data();
duke@435 1665 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
duke@435 1666 // Build an MDO. Ignore errors like OutOfMemory;
duke@435 1667 // that simply means we won't have an MDO to update.
coleenp@4037 1668 Method::build_interpreter_method_data(m, THREAD);
duke@435 1669 if (HAS_PENDING_EXCEPTION) {
duke@435 1670 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
duke@435 1671 CLEAR_PENDING_EXCEPTION;
duke@435 1672 }
duke@435 1673 mdo = m()->method_data();
duke@435 1674 }
duke@435 1675 return mdo;
duke@435 1676 }
duke@435 1677
duke@435 1678 ProfileData*
coleenp@4037 1679 Deoptimization::query_update_method_data(MethodData* trap_mdo,
duke@435 1680 int trap_bci,
duke@435 1681 Deoptimization::DeoptReason reason,
roland@6377 1682 Method* compiled_method,
duke@435 1683 //outputs:
duke@435 1684 uint& ret_this_trap_count,
duke@435 1685 bool& ret_maybe_prior_trap,
duke@435 1686 bool& ret_maybe_prior_recompile) {
duke@435 1687 uint prior_trap_count = trap_mdo->trap_count(reason);
duke@435 1688 uint this_trap_count = trap_mdo->inc_trap_count(reason);
duke@435 1689
duke@435 1690 // If the runtime cannot find a place to store trap history,
duke@435 1691 // it is estimated based on the general condition of the method.
duke@435 1692 // If the method has ever been recompiled, or has ever incurred
duke@435 1693 // a trap with the present reason , then this BCI is assumed
duke@435 1694 // (pessimistically) to be the culprit.
duke@435 1695 bool maybe_prior_trap = (prior_trap_count != 0);
duke@435 1696 bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
duke@435 1697 ProfileData* pdata = NULL;
duke@435 1698
duke@435 1699
duke@435 1700 // For reasons which are recorded per bytecode, we check per-BCI data.
duke@435 1701 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1702 if (per_bc_reason != Reason_none) {
duke@435 1703 // Find the profile data for this BCI. If there isn't one,
duke@435 1704 // try to allocate one from the MDO's set of spares.
duke@435 1705 // This will let us detect a repeated trap at this point.
roland@6377 1706 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
duke@435 1707
duke@435 1708 if (pdata != NULL) {
roland@6377 1709 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
roland@6377 1710 if (LogCompilation && xtty != NULL) {
roland@6377 1711 ttyLocker ttyl;
roland@6377 1712 // no more room for speculative traps in this MDO
roland@6377 1713 xtty->elem("speculative_traps_oom");
roland@6377 1714 }
roland@6377 1715 }
duke@435 1716 // Query the trap state of this profile datum.
duke@435 1717 int tstate0 = pdata->trap_state();
duke@435 1718 if (!trap_state_has_reason(tstate0, per_bc_reason))
duke@435 1719 maybe_prior_trap = false;
duke@435 1720 if (!trap_state_is_recompiled(tstate0))
duke@435 1721 maybe_prior_recompile = false;
duke@435 1722
duke@435 1723 // Update the trap state of this profile datum.
duke@435 1724 int tstate1 = tstate0;
duke@435 1725 // Record the reason.
duke@435 1726 tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
duke@435 1727 // Store the updated state on the MDO, for next time.
duke@435 1728 if (tstate1 != tstate0)
duke@435 1729 pdata->set_trap_state(tstate1);
duke@435 1730 } else {
kvn@1641 1731 if (LogCompilation && xtty != NULL) {
kvn@1641 1732 ttyLocker ttyl;
duke@435 1733 // Missing MDP? Leave a small complaint in the log.
duke@435 1734 xtty->elem("missing_mdp bci='%d'", trap_bci);
kvn@1641 1735 }
duke@435 1736 }
duke@435 1737 }
duke@435 1738
duke@435 1739 // Return results:
duke@435 1740 ret_this_trap_count = this_trap_count;
duke@435 1741 ret_maybe_prior_trap = maybe_prior_trap;
duke@435 1742 ret_maybe_prior_recompile = maybe_prior_recompile;
duke@435 1743 return pdata;
duke@435 1744 }
duke@435 1745
duke@435 1746 void
coleenp@4037 1747 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
duke@435 1748 ResourceMark rm;
duke@435 1749 // Ignored outputs:
duke@435 1750 uint ignore_this_trap_count;
duke@435 1751 bool ignore_maybe_prior_trap;
duke@435 1752 bool ignore_maybe_prior_recompile;
roland@6377 1753 assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
duke@435 1754 query_update_method_data(trap_mdo, trap_bci,
duke@435 1755 (DeoptReason)reason,
roland@6377 1756 NULL,
duke@435 1757 ignore_this_trap_count,
duke@435 1758 ignore_maybe_prior_trap,
duke@435 1759 ignore_maybe_prior_recompile);
duke@435 1760 }
duke@435 1761
duke@435 1762 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
duke@435 1763
duke@435 1764 // Still in Java no safepoints
duke@435 1765 {
duke@435 1766 // This enters VM and may safepoint
duke@435 1767 uncommon_trap_inner(thread, trap_request);
duke@435 1768 }
duke@435 1769 return fetch_unroll_info_helper(thread);
duke@435 1770 }
duke@435 1771
duke@435 1772 // Local derived constants.
duke@435 1773 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
duke@435 1774 const int DS_REASON_MASK = DataLayout::trap_mask >> 1;
duke@435 1775 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
duke@435 1776
duke@435 1777 //---------------------------trap_state_reason---------------------------------
duke@435 1778 Deoptimization::DeoptReason
duke@435 1779 Deoptimization::trap_state_reason(int trap_state) {
duke@435 1780 // This assert provides the link between the width of DataLayout::trap_bits
duke@435 1781 // and the encoding of "recorded" reasons. It ensures there are enough
duke@435 1782 // bits to store all needed reasons in the per-BCI MDO profile.
duke@435 1783 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1784 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1785 trap_state -= recompile_bit;
duke@435 1786 if (trap_state == DS_REASON_MASK) {
duke@435 1787 return Reason_many;
duke@435 1788 } else {
duke@435 1789 assert((int)Reason_none == 0, "state=0 => Reason_none");
duke@435 1790 return (DeoptReason)trap_state;
duke@435 1791 }
duke@435 1792 }
duke@435 1793 //-------------------------trap_state_has_reason-------------------------------
duke@435 1794 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1795 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
duke@435 1796 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1797 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1798 trap_state -= recompile_bit;
duke@435 1799 if (trap_state == DS_REASON_MASK) {
duke@435 1800 return -1; // true, unspecifically (bottom of state lattice)
duke@435 1801 } else if (trap_state == reason) {
duke@435 1802 return 1; // true, definitely
duke@435 1803 } else if (trap_state == 0) {
duke@435 1804 return 0; // false, definitely (top of state lattice)
duke@435 1805 } else {
duke@435 1806 return 0; // false, definitely
duke@435 1807 }
duke@435 1808 }
duke@435 1809 //-------------------------trap_state_add_reason-------------------------------
duke@435 1810 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
duke@435 1811 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
duke@435 1812 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1813 trap_state -= recompile_bit;
duke@435 1814 if (trap_state == DS_REASON_MASK) {
duke@435 1815 return trap_state + recompile_bit; // already at state lattice bottom
duke@435 1816 } else if (trap_state == reason) {
duke@435 1817 return trap_state + recompile_bit; // the condition is already true
duke@435 1818 } else if (trap_state == 0) {
duke@435 1819 return reason + recompile_bit; // no condition has yet been true
duke@435 1820 } else {
duke@435 1821 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom
duke@435 1822 }
duke@435 1823 }
duke@435 1824 //-----------------------trap_state_is_recompiled------------------------------
duke@435 1825 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1826 return (trap_state & DS_RECOMPILE_BIT) != 0;
duke@435 1827 }
duke@435 1828 //-----------------------trap_state_set_recompiled-----------------------------
duke@435 1829 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
duke@435 1830 if (z) return trap_state | DS_RECOMPILE_BIT;
duke@435 1831 else return trap_state & ~DS_RECOMPILE_BIT;
duke@435 1832 }
duke@435 1833 //---------------------------format_trap_state---------------------------------
vlivanov@5725 1834 // This is used for debugging and diagnostics, including LogFile output.
duke@435 1835 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1836 int trap_state) {
duke@435 1837 DeoptReason reason = trap_state_reason(trap_state);
duke@435 1838 bool recomp_flag = trap_state_is_recompiled(trap_state);
duke@435 1839 // Re-encode the state from its decoded components.
duke@435 1840 int decoded_state = 0;
duke@435 1841 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
duke@435 1842 decoded_state = trap_state_add_reason(decoded_state, reason);
duke@435 1843 if (recomp_flag)
duke@435 1844 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
duke@435 1845 // If the state re-encodes properly, format it symbolically.
duke@435 1846 // Because this routine is used for debugging and diagnostics,
duke@435 1847 // be robust even if the state is a strange value.
duke@435 1848 size_t len;
duke@435 1849 if (decoded_state != trap_state) {
duke@435 1850 // Random buggy state that doesn't decode??
duke@435 1851 len = jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1852 } else {
duke@435 1853 len = jio_snprintf(buf, buflen, "%s%s",
duke@435 1854 trap_reason_name(reason),
duke@435 1855 recomp_flag ? " recompiled" : "");
duke@435 1856 }
duke@435 1857 if (len >= buflen)
duke@435 1858 buf[buflen-1] = '\0';
duke@435 1859 return buf;
duke@435 1860 }
duke@435 1861
duke@435 1862
duke@435 1863 //--------------------------------statics--------------------------------------
duke@435 1864 Deoptimization::DeoptAction Deoptimization::_unloaded_action
duke@435 1865 = Deoptimization::Action_reinterpret;
duke@435 1866 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
duke@435 1867 // Note: Keep this in sync. with enum DeoptReason.
duke@435 1868 "none",
duke@435 1869 "null_check",
duke@435 1870 "null_assert",
duke@435 1871 "range_check",
duke@435 1872 "class_check",
duke@435 1873 "array_check",
duke@435 1874 "intrinsic",
kvn@1641 1875 "bimorphic",
duke@435 1876 "unloaded",
duke@435 1877 "uninitialized",
duke@435 1878 "unreached",
duke@435 1879 "unhandled",
duke@435 1880 "constraint",
duke@435 1881 "div0_check",
cfang@1607 1882 "age",
kvn@2877 1883 "predicate",
roland@6377 1884 "loop_limit_check",
kvn@6429 1885 "speculate_class_check",
rbackman@7153 1886 "rtm_state_change",
rbackman@7153 1887 "unstable_if"
duke@435 1888 };
duke@435 1889 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
duke@435 1890 // Note: Keep this in sync. with enum DeoptAction.
duke@435 1891 "none",
duke@435 1892 "maybe_recompile",
duke@435 1893 "reinterpret",
duke@435 1894 "make_not_entrant",
duke@435 1895 "make_not_compilable"
duke@435 1896 };
duke@435 1897
duke@435 1898 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1899 if (reason == Reason_many) return "many";
duke@435 1900 if ((uint)reason < Reason_LIMIT)
duke@435 1901 return _trap_reason_name[reason];
duke@435 1902 static char buf[20];
duke@435 1903 sprintf(buf, "reason%d", reason);
duke@435 1904 return buf;
duke@435 1905 }
duke@435 1906 const char* Deoptimization::trap_action_name(int action) {
duke@435 1907 if ((uint)action < Action_LIMIT)
duke@435 1908 return _trap_action_name[action];
duke@435 1909 static char buf[20];
duke@435 1910 sprintf(buf, "action%d", action);
duke@435 1911 return buf;
duke@435 1912 }
duke@435 1913
vlivanov@5725 1914 // This is used for debugging and diagnostics, including LogFile output.
duke@435 1915 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
duke@435 1916 int trap_request) {
duke@435 1917 jint unloaded_class_index = trap_request_index(trap_request);
duke@435 1918 const char* reason = trap_reason_name(trap_request_reason(trap_request));
duke@435 1919 const char* action = trap_action_name(trap_request_action(trap_request));
duke@435 1920 size_t len;
duke@435 1921 if (unloaded_class_index < 0) {
duke@435 1922 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
duke@435 1923 reason, action);
duke@435 1924 } else {
duke@435 1925 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
duke@435 1926 reason, action, unloaded_class_index);
duke@435 1927 }
duke@435 1928 if (len >= buflen)
duke@435 1929 buf[buflen-1] = '\0';
duke@435 1930 return buf;
duke@435 1931 }
duke@435 1932
duke@435 1933 juint Deoptimization::_deoptimization_hist
duke@435 1934 [Deoptimization::Reason_LIMIT]
duke@435 1935 [1 + Deoptimization::Action_LIMIT]
duke@435 1936 [Deoptimization::BC_CASE_LIMIT]
duke@435 1937 = {0};
duke@435 1938
duke@435 1939 enum {
duke@435 1940 LSB_BITS = 8,
duke@435 1941 LSB_MASK = right_n_bits(LSB_BITS)
duke@435 1942 };
duke@435 1943
duke@435 1944 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1945 Bytecodes::Code bc) {
duke@435 1946 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1947 assert(action >= 0 && action < Action_LIMIT, "oob");
duke@435 1948 _deoptimization_hist[Reason_none][0][0] += 1; // total
duke@435 1949 _deoptimization_hist[reason][0][0] += 1; // per-reason total
duke@435 1950 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1951 juint* bc_counter_addr = NULL;
duke@435 1952 juint bc_counter = 0;
duke@435 1953 // Look for an unused counter, or an exact match to this BC.
duke@435 1954 if (bc != Bytecodes::_illegal) {
duke@435 1955 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1956 juint* counter_addr = &cases[bc_case];
duke@435 1957 juint counter = *counter_addr;
duke@435 1958 if ((counter == 0 && bc_counter_addr == NULL)
duke@435 1959 || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
duke@435 1960 // this counter is either free or is already devoted to this BC
duke@435 1961 bc_counter_addr = counter_addr;
duke@435 1962 bc_counter = counter | bc;
duke@435 1963 }
duke@435 1964 }
duke@435 1965 }
duke@435 1966 if (bc_counter_addr == NULL) {
duke@435 1967 // Overflow, or no given bytecode.
duke@435 1968 bc_counter_addr = &cases[BC_CASE_LIMIT-1];
duke@435 1969 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB
duke@435 1970 }
duke@435 1971 *bc_counter_addr = bc_counter + (1 << LSB_BITS);
duke@435 1972 }
duke@435 1973
duke@435 1974 jint Deoptimization::total_deoptimization_count() {
duke@435 1975 return _deoptimization_hist[Reason_none][0][0];
duke@435 1976 }
duke@435 1977
duke@435 1978 jint Deoptimization::deoptimization_count(DeoptReason reason) {
duke@435 1979 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1980 return _deoptimization_hist[reason][0][0];
duke@435 1981 }
duke@435 1982
duke@435 1983 void Deoptimization::print_statistics() {
duke@435 1984 juint total = total_deoptimization_count();
duke@435 1985 juint account = total;
duke@435 1986 if (total != 0) {
duke@435 1987 ttyLocker ttyl;
duke@435 1988 if (xtty != NULL) xtty->head("statistics type='deoptimization'");
duke@435 1989 tty->print_cr("Deoptimization traps recorded:");
duke@435 1990 #define PRINT_STAT_LINE(name, r) \
duke@435 1991 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
duke@435 1992 PRINT_STAT_LINE("total", total);
duke@435 1993 // For each non-zero entry in the histogram, print the reason,
duke@435 1994 // the action, and (if specifically known) the type of bytecode.
duke@435 1995 for (int reason = 0; reason < Reason_LIMIT; reason++) {
duke@435 1996 for (int action = 0; action < Action_LIMIT; action++) {
duke@435 1997 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1998 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1999 juint counter = cases[bc_case];
duke@435 2000 if (counter != 0) {
duke@435 2001 char name[1*K];
duke@435 2002 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
duke@435 2003 if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
duke@435 2004 bc = Bytecodes::_illegal;
duke@435 2005 sprintf(name, "%s/%s/%s",
duke@435 2006 trap_reason_name(reason),
duke@435 2007 trap_action_name(action),
duke@435 2008 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
duke@435 2009 juint r = counter >> LSB_BITS;
duke@435 2010 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
duke@435 2011 account -= r;
duke@435 2012 }
duke@435 2013 }
duke@435 2014 }
duke@435 2015 }
duke@435 2016 if (account != 0) {
duke@435 2017 PRINT_STAT_LINE("unaccounted", account);
duke@435 2018 }
duke@435 2019 #undef PRINT_STAT_LINE
duke@435 2020 if (xtty != NULL) xtty->tail("statistics");
duke@435 2021 }
duke@435 2022 }
twisti@2047 2023 #else // COMPILER2 || SHARK
duke@435 2024
duke@435 2025
duke@435 2026 // Stubs for C1 only system.
duke@435 2027 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 2028 return false;
duke@435 2029 }
duke@435 2030
duke@435 2031 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 2032 return "unknown";
duke@435 2033 }
duke@435 2034
duke@435 2035 void Deoptimization::print_statistics() {
duke@435 2036 // no output
duke@435 2037 }
duke@435 2038
duke@435 2039 void
coleenp@4037 2040 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
duke@435 2041 // no udpate
duke@435 2042 }
duke@435 2043
duke@435 2044 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 2045 return 0;
duke@435 2046 }
duke@435 2047
duke@435 2048 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 2049 Bytecodes::Code bc) {
duke@435 2050 // no update
duke@435 2051 }
duke@435 2052
duke@435 2053 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 2054 int trap_state) {
duke@435 2055 jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 2056 return buf;
duke@435 2057 }
duke@435 2058
twisti@2047 2059 #endif // COMPILER2 || SHARK

mercurial