src/share/vm/runtime/deoptimization.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7420
793204f5528a
child 7890
bf41eee321e5
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/method.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #if defined AD_MD_HPP
    70 # include AD_MD_HPP
    71 #elif defined TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #elif defined TARGET_ARCH_MODEL_x86_64
    74 # include "adfiles/ad_x86_64.hpp"
    75 #elif defined TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #elif defined TARGET_ARCH_MODEL_zero
    78 # include "adfiles/ad_zero.hpp"
    79 #elif defined TARGET_ARCH_MODEL_ppc_64
    80 # include "adfiles/ad_ppc_64.hpp"
    81 #endif
    82 #endif // COMPILER2
    84 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    86 bool DeoptimizationMarker::_is_active = false;
    88 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    89                                          int  caller_adjustment,
    90                                          int  caller_actual_parameters,
    91                                          int  number_of_frames,
    92                                          intptr_t* frame_sizes,
    93                                          address* frame_pcs,
    94                                          BasicType return_type) {
    95   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    96   _caller_adjustment         = caller_adjustment;
    97   _caller_actual_parameters  = caller_actual_parameters;
    98   _number_of_frames          = number_of_frames;
    99   _frame_sizes               = frame_sizes;
   100   _frame_pcs                 = frame_pcs;
   101   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
   102   _return_type               = return_type;
   103   _initial_info              = 0;
   104   // PD (x86 only)
   105   _counter_temp              = 0;
   106   _unpack_kind               = 0;
   107   _sender_sp_temp            = 0;
   109   _total_frame_sizes         = size_of_frames();
   110 }
   113 Deoptimization::UnrollBlock::~UnrollBlock() {
   114   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
   115   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
   116   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
   117 }
   120 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   121   assert(register_number < RegisterMap::reg_count, "checking register number");
   122   return &_register_block[register_number * 2];
   123 }
   127 int Deoptimization::UnrollBlock::size_of_frames() const {
   128   // Acount first for the adjustment of the initial frame
   129   int result = _caller_adjustment;
   130   for (int index = 0; index < number_of_frames(); index++) {
   131     result += frame_sizes()[index];
   132   }
   133   return result;
   134 }
   137 void Deoptimization::UnrollBlock::print() {
   138   ttyLocker ttyl;
   139   tty->print_cr("UnrollBlock");
   140   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   141   tty->print(   "  frame_sizes: ");
   142   for (int index = 0; index < number_of_frames(); index++) {
   143     tty->print("%d ", frame_sizes()[index]);
   144   }
   145   tty->cr();
   146 }
   149 // In order to make fetch_unroll_info work properly with escape
   150 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   151 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   152 // of previously eliminated objects occurs in realloc_objects, which is
   153 // called from the method fetch_unroll_info_helper below.
   154 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   155   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   156   // but makes the entry a little slower. There is however a little dance we have to
   157   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   159   // fetch_unroll_info() is called at the beginning of the deoptimization
   160   // handler. Note this fact before we start generating temporary frames
   161   // that can confuse an asynchronous stack walker. This counter is
   162   // decremented at the end of unpack_frames().
   163   thread->inc_in_deopt_handler();
   165   return fetch_unroll_info_helper(thread);
   166 JRT_END
   169 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   170 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   172   // Note: there is a safepoint safety issue here. No matter whether we enter
   173   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   174   // the vframeArray is created.
   175   //
   177   // Allocate our special deoptimization ResourceMark
   178   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   179   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   180   thread->set_deopt_mark(dmark);
   182   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   183   RegisterMap map(thread, true);
   184   RegisterMap dummy_map(thread, false);
   185   // Now get the deoptee with a valid map
   186   frame deoptee = stub_frame.sender(&map);
   187   // Set the deoptee nmethod
   188   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   189   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   191   if (VerifyStack) {
   192     thread->validate_frame_layout();
   193   }
   195   // Create a growable array of VFrames where each VFrame represents an inlined
   196   // Java frame.  This storage is allocated with the usual system arena.
   197   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   198   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   199   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   200   while (!vf->is_top()) {
   201     assert(vf->is_compiled_frame(), "Wrong frame type");
   202     chunk->push(compiledVFrame::cast(vf));
   203     vf = vf->sender();
   204   }
   205   assert(vf->is_compiled_frame(), "Wrong frame type");
   206   chunk->push(compiledVFrame::cast(vf));
   208   bool realloc_failures = false;
   210 #ifdef COMPILER2
   211   // Reallocate the non-escaping objects and restore their fields. Then
   212   // relock objects if synchronization on them was eliminated.
   213   if (DoEscapeAnalysis || EliminateNestedLocks) {
   214     if (EliminateAllocations) {
   215       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   216       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   218       // The flag return_oop() indicates call sites which return oop
   219       // in compiled code. Such sites include java method calls,
   220       // runtime calls (for example, used to allocate new objects/arrays
   221       // on slow code path) and any other calls generated in compiled code.
   222       // It is not guaranteed that we can get such information here only
   223       // by analyzing bytecode in deoptimized frames. This is why this flag
   224       // is set during method compilation (see Compile::Process_OopMap_Node()).
   225       // If the previous frame was popped, we don't have a result.
   226       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
   227       Handle return_value;
   228       if (save_oop_result) {
   229         // Reallocation may trigger GC. If deoptimization happened on return from
   230         // call which returns oop we need to save it since it is not in oopmap.
   231         oop result = deoptee.saved_oop_result(&map);
   232         assert(result == NULL || result->is_oop(), "must be oop");
   233         return_value = Handle(thread, result);
   234         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   235         if (TraceDeoptimization) {
   236           ttyLocker ttyl;
   237           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
   238         }
   239       }
   240       if (objects != NULL) {
   241         JRT_BLOCK
   242           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
   243         JRT_END
   244         reassign_fields(&deoptee, &map, objects, realloc_failures);
   245 #ifndef PRODUCT
   246         if (TraceDeoptimization) {
   247           ttyLocker ttyl;
   248           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   249           print_objects(objects, realloc_failures);
   250         }
   251 #endif
   252       }
   253       if (save_oop_result) {
   254         // Restore result.
   255         deoptee.set_saved_oop_result(&map, return_value());
   256       }
   257     }
   258     if (EliminateLocks) {
   259 #ifndef PRODUCT
   260       bool first = true;
   261 #endif
   262       for (int i = 0; i < chunk->length(); i++) {
   263         compiledVFrame* cvf = chunk->at(i);
   264         assert (cvf->scope() != NULL,"expect only compiled java frames");
   265         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   266         if (monitors->is_nonempty()) {
   267           relock_objects(monitors, thread, realloc_failures);
   268 #ifndef PRODUCT
   269           if (TraceDeoptimization) {
   270             ttyLocker ttyl;
   271             for (int j = 0; j < monitors->length(); j++) {
   272               MonitorInfo* mi = monitors->at(j);
   273               if (mi->eliminated()) {
   274                 if (first) {
   275                   first = false;
   276                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   277                 }
   278                 if (mi->owner_is_scalar_replaced()) {
   279                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
   280                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
   281                 } else {
   282                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
   283                 }
   284               }
   285             }
   286           }
   287 #endif
   288         }
   289       }
   290     }
   291   }
   292 #endif // COMPILER2
   293   // Ensure that no safepoint is taken after pointers have been stored
   294   // in fields of rematerialized objects.  If a safepoint occurs from here on
   295   // out the java state residing in the vframeArray will be missed.
   296   No_Safepoint_Verifier no_safepoint;
   298   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
   299 #ifdef COMPILER2
   300   if (realloc_failures) {
   301     pop_frames_failed_reallocs(thread, array);
   302   }
   303 #endif
   305   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
   306   thread->set_vframe_array_head(array);
   308   // Now that the vframeArray has been created if we have any deferred local writes
   309   // added by jvmti then we can free up that structure as the data is now in the
   310   // vframeArray
   312   if (thread->deferred_locals() != NULL) {
   313     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   314     int i = 0;
   315     do {
   316       // Because of inlining we could have multiple vframes for a single frame
   317       // and several of the vframes could have deferred writes. Find them all.
   318       if (list->at(i)->id() == array->original().id()) {
   319         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   320         list->remove_at(i);
   321         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   322         delete dlv;
   323       } else {
   324         i++;
   325       }
   326     } while ( i < list->length() );
   327     if (list->length() == 0) {
   328       thread->set_deferred_locals(NULL);
   329       // free the list and elements back to C heap.
   330       delete list;
   331     }
   333   }
   335 #ifndef SHARK
   336   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   337   CodeBlob* cb = stub_frame.cb();
   338   // Verify we have the right vframeArray
   339   assert(cb->frame_size() >= 0, "Unexpected frame size");
   340   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   342   // If the deopt call site is a MethodHandle invoke call site we have
   343   // to adjust the unpack_sp.
   344   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   345   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   346     unpack_sp = deoptee.unextended_sp();
   348 #ifdef ASSERT
   349   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   350 #endif
   351 #else
   352   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   353 #endif // !SHARK
   355   // This is a guarantee instead of an assert because if vframe doesn't match
   356   // we will unpack the wrong deoptimized frame and wind up in strange places
   357   // where it will be very difficult to figure out what went wrong. Better
   358   // to die an early death here than some very obscure death later when the
   359   // trail is cold.
   360   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   361   // in that it will fail to detect a problem when there is one. This needs
   362   // more work in tiger timeframe.
   363   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   365   int number_of_frames = array->frames();
   367   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   368   // virtual activation, which is the reverse of the elements in the vframes array.
   369   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
   370   // +1 because we always have an interpreter return address for the final slot.
   371   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
   372   int popframe_extra_args = 0;
   373   // Create an interpreter return address for the stub to use as its return
   374   // address so the skeletal frames are perfectly walkable
   375   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   377   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   378   // activation be put back on the expression stack of the caller for reexecution
   379   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   380     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   381   }
   383   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   384   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   385   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   386   //
   387   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   388   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   390   // It's possible that the number of paramters at the call site is
   391   // different than number of arguments in the callee when method
   392   // handles are used.  If the caller is interpreted get the real
   393   // value so that the proper amount of space can be added to it's
   394   // frame.
   395   bool caller_was_method_handle = false;
   396   if (deopt_sender.is_interpreted_frame()) {
   397     methodHandle method = deopt_sender.interpreter_frame_method();
   398     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
   399     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
   400       // Method handle invokes may involve fairly arbitrary chains of
   401       // calls so it's impossible to know how much actual space the
   402       // caller has for locals.
   403       caller_was_method_handle = true;
   404     }
   405   }
   407   //
   408   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   409   // frame_sizes/frame_pcs[1] next oldest frame (int)
   410   // frame_sizes/frame_pcs[n] youngest frame (int)
   411   //
   412   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   413   // owns the space for the return address to it's caller).  Confusing ain't it.
   414   //
   415   // The vframe array can address vframes with indices running from
   416   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   417   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   418   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   419   // so things look a little strange in this loop.
   420   //
   421   int callee_parameters = 0;
   422   int callee_locals = 0;
   423   for (int index = 0; index < array->frames(); index++ ) {
   424     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   425     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   426     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   427     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   428                                                                                                     callee_locals,
   429                                                                                                     index == 0,
   430                                                                                                     popframe_extra_args);
   431     // This pc doesn't have to be perfect just good enough to identify the frame
   432     // as interpreted so the skeleton frame will be walkable
   433     // The correct pc will be set when the skeleton frame is completely filled out
   434     // The final pc we store in the loop is wrong and will be overwritten below
   435     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   437     callee_parameters = array->element(index)->method()->size_of_parameters();
   438     callee_locals = array->element(index)->method()->max_locals();
   439     popframe_extra_args = 0;
   440   }
   442   // Compute whether the root vframe returns a float or double value.
   443   BasicType return_type;
   444   {
   445     HandleMark hm;
   446     methodHandle method(thread, array->element(0)->method());
   447     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   448     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   449   }
   451   // Compute information for handling adapters and adjusting the frame size of the caller.
   452   int caller_adjustment = 0;
   454   // Compute the amount the oldest interpreter frame will have to adjust
   455   // its caller's stack by. If the caller is a compiled frame then
   456   // we pretend that the callee has no parameters so that the
   457   // extension counts for the full amount of locals and not just
   458   // locals-parms. This is because without a c2i adapter the parm
   459   // area as created by the compiled frame will not be usable by
   460   // the interpreter. (Depending on the calling convention there
   461   // may not even be enough space).
   463   // QQQ I'd rather see this pushed down into last_frame_adjust
   464   // and have it take the sender (aka caller).
   466   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
   467     caller_adjustment = last_frame_adjust(0, callee_locals);
   468   } else if (callee_locals > callee_parameters) {
   469     // The caller frame may need extending to accommodate
   470     // non-parameter locals of the first unpacked interpreted frame.
   471     // Compute that adjustment.
   472     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   473   }
   475   // If the sender is deoptimized the we must retrieve the address of the handler
   476   // since the frame will "magically" show the original pc before the deopt
   477   // and we'd undo the deopt.
   479   frame_pcs[0] = deopt_sender.raw_pc();
   481 #ifndef SHARK
   482   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   483 #endif // SHARK
   485   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   486                                       caller_adjustment * BytesPerWord,
   487                                       caller_was_method_handle ? 0 : callee_parameters,
   488                                       number_of_frames,
   489                                       frame_sizes,
   490                                       frame_pcs,
   491                                       return_type);
   492   // On some platforms, we need a way to pass some platform dependent
   493   // information to the unpacking code so the skeletal frames come out
   494   // correct (initial fp value, unextended sp, ...)
   495   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
   497   if (array->frames() > 1) {
   498     if (VerifyStack && TraceDeoptimization) {
   499       ttyLocker ttyl;
   500       tty->print_cr("Deoptimizing method containing inlining");
   501     }
   502   }
   504   array->set_unroll_block(info);
   505   return info;
   506 }
   508 // Called to cleanup deoptimization data structures in normal case
   509 // after unpacking to stack and when stack overflow error occurs
   510 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   511                                         vframeArray *array) {
   513   // Get array if coming from exception
   514   if (array == NULL) {
   515     array = thread->vframe_array_head();
   516   }
   517   thread->set_vframe_array_head(NULL);
   519   // Free the previous UnrollBlock
   520   vframeArray* old_array = thread->vframe_array_last();
   521   thread->set_vframe_array_last(array);
   523   if (old_array != NULL) {
   524     UnrollBlock* old_info = old_array->unroll_block();
   525     old_array->set_unroll_block(NULL);
   526     delete old_info;
   527     delete old_array;
   528   }
   530   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   531   // inside the vframeArray (StackValueCollections)
   533   delete thread->deopt_mark();
   534   thread->set_deopt_mark(NULL);
   535   thread->set_deopt_nmethod(NULL);
   538   if (JvmtiExport::can_pop_frame()) {
   539 #ifndef CC_INTERP
   540     // Regardless of whether we entered this routine with the pending
   541     // popframe condition bit set, we should always clear it now
   542     thread->clear_popframe_condition();
   543 #else
   544     // C++ interpeter will clear has_pending_popframe when it enters
   545     // with method_resume. For deopt_resume2 we clear it now.
   546     if (thread->popframe_forcing_deopt_reexecution())
   547         thread->clear_popframe_condition();
   548 #endif /* CC_INTERP */
   549   }
   551   // unpack_frames() is called at the end of the deoptimization handler
   552   // and (in C2) at the end of the uncommon trap handler. Note this fact
   553   // so that an asynchronous stack walker can work again. This counter is
   554   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   555   // the beginning of uncommon_trap().
   556   thread->dec_in_deopt_handler();
   557 }
   560 // Return BasicType of value being returned
   561 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   563   // We are already active int he special DeoptResourceMark any ResourceObj's we
   564   // allocate will be freed at the end of the routine.
   566   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   567   // but makes the entry a little slower. There is however a little dance we have to
   568   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   569   ResetNoHandleMark rnhm; // No-op in release/product versions
   570   HandleMark hm;
   572   frame stub_frame = thread->last_frame();
   574   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   575   // must point to the vframeArray for the unpack frame.
   576   vframeArray* array = thread->vframe_array_head();
   578 #ifndef PRODUCT
   579   if (TraceDeoptimization) {
   580     ttyLocker ttyl;
   581     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   582   }
   583 #endif
   584   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
   585               stub_frame.pc(), stub_frame.sp(), exec_mode);
   587   UnrollBlock* info = array->unroll_block();
   589   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   590   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
   592   BasicType bt = info->return_type();
   594   // If we have an exception pending, claim that the return type is an oop
   595   // so the deopt_blob does not overwrite the exception_oop.
   597   if (exec_mode == Unpack_exception)
   598     bt = T_OBJECT;
   600   // Cleanup thread deopt data
   601   cleanup_deopt_info(thread, array);
   603 #ifndef PRODUCT
   604   if (VerifyStack) {
   605     ResourceMark res_mark;
   607     thread->validate_frame_layout();
   609     // Verify that the just-unpacked frames match the interpreter's
   610     // notions of expression stack and locals
   611     vframeArray* cur_array = thread->vframe_array_last();
   612     RegisterMap rm(thread, false);
   613     rm.set_include_argument_oops(false);
   614     bool is_top_frame = true;
   615     int callee_size_of_parameters = 0;
   616     int callee_max_locals = 0;
   617     for (int i = 0; i < cur_array->frames(); i++) {
   618       vframeArrayElement* el = cur_array->element(i);
   619       frame* iframe = el->iframe();
   620       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   622       // Get the oop map for this bci
   623       InterpreterOopMap mask;
   624       int cur_invoke_parameter_size = 0;
   625       bool try_next_mask = false;
   626       int next_mask_expression_stack_size = -1;
   627       int top_frame_expression_stack_adjustment = 0;
   628       methodHandle mh(thread, iframe->interpreter_frame_method());
   629       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   630       BytecodeStream str(mh);
   631       str.set_start(iframe->interpreter_frame_bci());
   632       int max_bci = mh->code_size();
   633       // Get to the next bytecode if possible
   634       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   635       // Check to see if we can grab the number of outgoing arguments
   636       // at an uncommon trap for an invoke (where the compiler
   637       // generates debug info before the invoke has executed)
   638       Bytecodes::Code cur_code = str.next();
   639       if (cur_code == Bytecodes::_invokevirtual   ||
   640           cur_code == Bytecodes::_invokespecial   ||
   641           cur_code == Bytecodes::_invokestatic    ||
   642           cur_code == Bytecodes::_invokeinterface ||
   643           cur_code == Bytecodes::_invokedynamic) {
   644         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   645         Symbol* signature = invoke.signature();
   646         ArgumentSizeComputer asc(signature);
   647         cur_invoke_parameter_size = asc.size();
   648         if (invoke.has_receiver()) {
   649           // Add in receiver
   650           ++cur_invoke_parameter_size;
   651         }
   652         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
   653           callee_size_of_parameters++;
   654         }
   655       }
   656       if (str.bci() < max_bci) {
   657         Bytecodes::Code bc = str.next();
   658         if (bc >= 0) {
   659           // The interpreter oop map generator reports results before
   660           // the current bytecode has executed except in the case of
   661           // calls. It seems to be hard to tell whether the compiler
   662           // has emitted debug information matching the "state before"
   663           // a given bytecode or the state after, so we try both
   664           switch (cur_code) {
   665             case Bytecodes::_invokevirtual:
   666             case Bytecodes::_invokespecial:
   667             case Bytecodes::_invokestatic:
   668             case Bytecodes::_invokeinterface:
   669             case Bytecodes::_invokedynamic:
   670             case Bytecodes::_athrow:
   671               break;
   672             default: {
   673               InterpreterOopMap next_mask;
   674               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   675               next_mask_expression_stack_size = next_mask.expression_stack_size();
   676               // Need to subtract off the size of the result type of
   677               // the bytecode because this is not described in the
   678               // debug info but returned to the interpreter in the TOS
   679               // caching register
   680               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   681               if (bytecode_result_type != T_ILLEGAL) {
   682                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   683               }
   684               assert(top_frame_expression_stack_adjustment >= 0, "");
   685               try_next_mask = true;
   686               break;
   687             }
   688           }
   689         }
   690       }
   692       // Verify stack depth and oops in frame
   693       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   694       if (!(
   695             /* SPARC */
   696             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   697             /* x86 */
   698             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   699             (try_next_mask &&
   700              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   701                                                                     top_frame_expression_stack_adjustment))) ||
   702             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   703             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
   704              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   705             )) {
   706         ttyLocker ttyl;
   708         // Print out some information that will help us debug the problem
   709         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   710         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   711         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   712                       iframe->interpreter_frame_expression_stack_size());
   713         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   714         tty->print_cr("  try_next_mask = %d", try_next_mask);
   715         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   716         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   717         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   718         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   719         tty->print_cr("  exec_mode = %d", exec_mode);
   720         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   721         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   722         tty->print_cr("  Interpreted frames:");
   723         for (int k = 0; k < cur_array->frames(); k++) {
   724           vframeArrayElement* el = cur_array->element(k);
   725           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   726         }
   727         cur_array->print_on_2(tty);
   728         guarantee(false, "wrong number of expression stack elements during deopt");
   729       }
   730       VerifyOopClosure verify;
   731       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
   732       callee_size_of_parameters = mh->size_of_parameters();
   733       callee_max_locals = mh->max_locals();
   734       is_top_frame = false;
   735     }
   736   }
   737 #endif /* !PRODUCT */
   740   return bt;
   741 JRT_END
   744 int Deoptimization::deoptimize_dependents() {
   745   Threads::deoptimized_wrt_marked_nmethods();
   746   return 0;
   747 }
   750 #ifdef COMPILER2
   751 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   752   Handle pending_exception(thread->pending_exception());
   753   const char* exception_file = thread->exception_file();
   754   int exception_line = thread->exception_line();
   755   thread->clear_pending_exception();
   757   bool failures = false;
   759   for (int i = 0; i < objects->length(); i++) {
   760     assert(objects->at(i)->is_object(), "invalid debug information");
   761     ObjectValue* sv = (ObjectValue*) objects->at(i);
   763     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   764     oop obj = NULL;
   766     if (k->oop_is_instance()) {
   767       InstanceKlass* ik = InstanceKlass::cast(k());
   768       obj = ik->allocate_instance(THREAD);
   769     } else if (k->oop_is_typeArray()) {
   770       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   771       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   772       int len = sv->field_size() / type2size[ak->element_type()];
   773       obj = ak->allocate(len, THREAD);
   774     } else if (k->oop_is_objArray()) {
   775       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
   776       obj = ak->allocate(sv->field_size(), THREAD);
   777     }
   779     if (obj == NULL) {
   780       failures = true;
   781     }
   783     assert(sv->value().is_null(), "redundant reallocation");
   784     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
   785     CLEAR_PENDING_EXCEPTION;
   786     sv->set_value(obj);
   787   }
   789   if (failures) {
   790     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
   791   } else if (pending_exception.not_null()) {
   792     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   793   }
   795   return failures;
   796 }
   798 // This assumes that the fields are stored in ObjectValue in the same order
   799 // they are yielded by do_nonstatic_fields.
   800 class FieldReassigner: public FieldClosure {
   801   frame* _fr;
   802   RegisterMap* _reg_map;
   803   ObjectValue* _sv;
   804   InstanceKlass* _ik;
   805   oop _obj;
   807   int _i;
   808 public:
   809   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   810     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   812   int i() const { return _i; }
   815   void do_field(fieldDescriptor* fd) {
   816     intptr_t val;
   817     StackValue* value =
   818       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   819     int offset = fd->offset();
   820     switch (fd->field_type()) {
   821     case T_OBJECT: case T_ARRAY:
   822       assert(value->type() == T_OBJECT, "Agreement.");
   823       _obj->obj_field_put(offset, value->get_obj()());
   824       break;
   826     case T_LONG: case T_DOUBLE: {
   827       assert(value->type() == T_INT, "Agreement.");
   828       StackValue* low =
   829         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   830 #ifdef _LP64
   831       jlong res = (jlong)low->get_int();
   832 #else
   833 #ifdef SPARC
   834       // For SPARC we have to swap high and low words.
   835       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   836 #else
   837       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   838 #endif //SPARC
   839 #endif
   840       _obj->long_field_put(offset, res);
   841       break;
   842     }
   843     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   844     case T_INT: case T_FLOAT: // 4 bytes.
   845       assert(value->type() == T_INT, "Agreement.");
   846       val = value->get_int();
   847       _obj->int_field_put(offset, (jint)*((jint*)&val));
   848       break;
   850     case T_SHORT: case T_CHAR: // 2 bytes
   851       assert(value->type() == T_INT, "Agreement.");
   852       val = value->get_int();
   853       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   854       break;
   856     case T_BOOLEAN: case T_BYTE: // 1 byte
   857       assert(value->type() == T_INT, "Agreement.");
   858       val = value->get_int();
   859       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   860       break;
   862     default:
   863       ShouldNotReachHere();
   864     }
   865     _i++;
   866   }
   867 };
   869 // restore elements of an eliminated type array
   870 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   871   int index = 0;
   872   intptr_t val;
   874   for (int i = 0; i < sv->field_size(); i++) {
   875     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   876     switch(type) {
   877     case T_LONG: case T_DOUBLE: {
   878       assert(value->type() == T_INT, "Agreement.");
   879       StackValue* low =
   880         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   881 #ifdef _LP64
   882       jlong res = (jlong)low->get_int();
   883 #else
   884 #ifdef SPARC
   885       // For SPARC we have to swap high and low words.
   886       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   887 #else
   888       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   889 #endif //SPARC
   890 #endif
   891       obj->long_at_put(index, res);
   892       break;
   893     }
   895     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   896     case T_INT: case T_FLOAT: // 4 bytes.
   897       assert(value->type() == T_INT, "Agreement.");
   898       val = value->get_int();
   899       obj->int_at_put(index, (jint)*((jint*)&val));
   900       break;
   902     case T_SHORT: case T_CHAR: // 2 bytes
   903       assert(value->type() == T_INT, "Agreement.");
   904       val = value->get_int();
   905       obj->short_at_put(index, (jshort)*((jint*)&val));
   906       break;
   908     case T_BOOLEAN: case T_BYTE: // 1 byte
   909       assert(value->type() == T_INT, "Agreement.");
   910       val = value->get_int();
   911       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   912       break;
   914       default:
   915         ShouldNotReachHere();
   916     }
   917     index++;
   918   }
   919 }
   922 // restore fields of an eliminated object array
   923 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   924   for (int i = 0; i < sv->field_size(); i++) {
   925     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   926     assert(value->type() == T_OBJECT, "object element expected");
   927     obj->obj_at_put(i, value->get_obj()());
   928   }
   929 }
   932 // restore fields of all eliminated objects and arrays
   933 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
   934   for (int i = 0; i < objects->length(); i++) {
   935     ObjectValue* sv = (ObjectValue*) objects->at(i);
   936     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   937     Handle obj = sv->value();
   938     assert(obj.not_null() || realloc_failures, "reallocation was missed");
   939     if (obj.is_null()) {
   940       continue;
   941     }
   943     if (k->oop_is_instance()) {
   944       InstanceKlass* ik = InstanceKlass::cast(k());
   945       FieldReassigner reassign(fr, reg_map, sv, obj());
   946       ik->do_nonstatic_fields(&reassign);
   947     } else if (k->oop_is_typeArray()) {
   948       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   949       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   950     } else if (k->oop_is_objArray()) {
   951       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   952     }
   953   }
   954 }
   957 // relock objects for which synchronization was eliminated
   958 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
   959   for (int i = 0; i < monitors->length(); i++) {
   960     MonitorInfo* mon_info = monitors->at(i);
   961     if (mon_info->eliminated()) {
   962       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
   963       if (!mon_info->owner_is_scalar_replaced()) {
   964         Handle obj = Handle(mon_info->owner());
   965         markOop mark = obj->mark();
   966         if (UseBiasedLocking && mark->has_bias_pattern()) {
   967           // New allocated objects may have the mark set to anonymously biased.
   968           // Also the deoptimized method may called methods with synchronization
   969           // where the thread-local object is bias locked to the current thread.
   970           assert(mark->is_biased_anonymously() ||
   971                  mark->biased_locker() == thread, "should be locked to current thread");
   972           // Reset mark word to unbiased prototype.
   973           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   974           obj->set_mark(unbiased_prototype);
   975         }
   976         BasicLock* lock = mon_info->lock();
   977         ObjectSynchronizer::slow_enter(obj, lock, thread);
   978         assert(mon_info->owner()->is_locked(), "object must be locked now");
   979       }
   980     }
   981   }
   982 }
   985 #ifndef PRODUCT
   986 // print information about reallocated objects
   987 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
   988   fieldDescriptor fd;
   990   for (int i = 0; i < objects->length(); i++) {
   991     ObjectValue* sv = (ObjectValue*) objects->at(i);
   992     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   993     Handle obj = sv->value();
   995     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
   996     k->print_value();
   997     assert(obj.not_null() || realloc_failures, "reallocation was missed");
   998     if (obj.is_null()) {
   999       tty->print(" allocation failed");
  1000     } else {
  1001       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
  1003     tty->cr();
  1005     if (Verbose && !obj.is_null()) {
  1006       k->oop_print_on(obj(), tty);
  1010 #endif
  1011 #endif // COMPILER2
  1013 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
  1014   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
  1016 #ifndef PRODUCT
  1017   if (TraceDeoptimization) {
  1018     ttyLocker ttyl;
  1019     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
  1020     fr.print_on(tty);
  1021     tty->print_cr("     Virtual frames (innermost first):");
  1022     for (int index = 0; index < chunk->length(); index++) {
  1023       compiledVFrame* vf = chunk->at(index);
  1024       tty->print("       %2d - ", index);
  1025       vf->print_value();
  1026       int bci = chunk->at(index)->raw_bci();
  1027       const char* code_name;
  1028       if (bci == SynchronizationEntryBCI) {
  1029         code_name = "sync entry";
  1030       } else {
  1031         Bytecodes::Code code = vf->method()->code_at(bci);
  1032         code_name = Bytecodes::name(code);
  1034       tty->print(" - %s", code_name);
  1035       tty->print_cr(" @ bci %d ", bci);
  1036       if (Verbose) {
  1037         vf->print();
  1038         tty->cr();
  1042 #endif
  1044   // Register map for next frame (used for stack crawl).  We capture
  1045   // the state of the deopt'ing frame's caller.  Thus if we need to
  1046   // stuff a C2I adapter we can properly fill in the callee-save
  1047   // register locations.
  1048   frame caller = fr.sender(reg_map);
  1049   int frame_size = caller.sp() - fr.sp();
  1051   frame sender = caller;
  1053   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1054   // the vframeArray containing the unpacking information is allocated in the C heap.
  1055   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1056   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
  1058   // Compare the vframeArray to the collected vframes
  1059   assert(array->structural_compare(thread, chunk), "just checking");
  1061 #ifndef PRODUCT
  1062   if (TraceDeoptimization) {
  1063     ttyLocker ttyl;
  1064     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1066 #endif // PRODUCT
  1068   return array;
  1071 #ifdef COMPILER2
  1072 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
  1073   // Reallocation of some scalar replaced objects failed. Record
  1074   // that we need to pop all the interpreter frames for the
  1075   // deoptimized compiled frame.
  1076   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
  1077   thread->set_frames_to_pop_failed_realloc(array->frames());
  1078   // Unlock all monitors here otherwise the interpreter will see a
  1079   // mix of locked and unlocked monitors (because of failed
  1080   // reallocations of synchronized objects) and be confused.
  1081   for (int i = 0; i < array->frames(); i++) {
  1082     MonitorChunk* monitors = array->element(i)->monitors();
  1083     if (monitors != NULL) {
  1084       for (int j = 0; j < monitors->number_of_monitors(); j++) {
  1085         BasicObjectLock* src = monitors->at(j);
  1086         if (src->obj() != NULL) {
  1087           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
  1090       array->element(i)->free_monitors(thread);
  1091 #ifdef ASSERT
  1092       array->element(i)->set_removed_monitors();
  1093 #endif
  1097 #endif
  1099 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1100   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1101   for (int i = 0; i < monitors->length(); i++) {
  1102     MonitorInfo* mon_info = monitors->at(i);
  1103     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1104       objects_to_revoke->append(Handle(mon_info->owner()));
  1110 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1111   if (!UseBiasedLocking) {
  1112     return;
  1115   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1117   // Unfortunately we don't have a RegisterMap available in most of
  1118   // the places we want to call this routine so we need to walk the
  1119   // stack again to update the register map.
  1120   if (map == NULL || !map->update_map()) {
  1121     StackFrameStream sfs(thread, true);
  1122     bool found = false;
  1123     while (!found && !sfs.is_done()) {
  1124       frame* cur = sfs.current();
  1125       sfs.next();
  1126       found = cur->id() == fr.id();
  1128     assert(found, "frame to be deoptimized not found on target thread's stack");
  1129     map = sfs.register_map();
  1132   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1133   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1134   // Revoke monitors' biases in all scopes
  1135   while (!cvf->is_top()) {
  1136     collect_monitors(cvf, objects_to_revoke);
  1137     cvf = compiledVFrame::cast(cvf->sender());
  1139   collect_monitors(cvf, objects_to_revoke);
  1141   if (SafepointSynchronize::is_at_safepoint()) {
  1142     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1143   } else {
  1144     BiasedLocking::revoke(objects_to_revoke);
  1149 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1150   if (!UseBiasedLocking) {
  1151     return;
  1154   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1155   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1156   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1157     if (jt->has_last_Java_frame()) {
  1158       StackFrameStream sfs(jt, true);
  1159       while (!sfs.is_done()) {
  1160         frame* cur = sfs.current();
  1161         if (cb->contains(cur->pc())) {
  1162           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1163           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1164           // Revoke monitors' biases in all scopes
  1165           while (!cvf->is_top()) {
  1166             collect_monitors(cvf, objects_to_revoke);
  1167             cvf = compiledVFrame::cast(cvf->sender());
  1169           collect_monitors(cvf, objects_to_revoke);
  1171         sfs.next();
  1175   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1179 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1180   assert(fr.can_be_deoptimized(), "checking frame type");
  1182   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1184   // Patch the nmethod so that when execution returns to it we will
  1185   // deopt the execution state and return to the interpreter.
  1186   fr.deoptimize(thread);
  1189 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1190   // Deoptimize only if the frame comes from compile code.
  1191   // Do not deoptimize the frame which is already patched
  1192   // during the execution of the loops below.
  1193   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1194     return;
  1196   ResourceMark rm;
  1197   DeoptimizationMarker dm;
  1198   if (UseBiasedLocking) {
  1199     revoke_biases_of_monitors(thread, fr, map);
  1201   deoptimize_single_frame(thread, fr);
  1206 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1207   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1208          "can only deoptimize other thread at a safepoint");
  1209   // Compute frame and register map based on thread and sp.
  1210   RegisterMap reg_map(thread, UseBiasedLocking);
  1211   frame fr = thread->last_frame();
  1212   while (fr.id() != id) {
  1213     fr = fr.sender(&reg_map);
  1215   deoptimize(thread, fr, &reg_map);
  1219 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1220   if (thread == Thread::current()) {
  1221     Deoptimization::deoptimize_frame_internal(thread, id);
  1222   } else {
  1223     VM_DeoptimizeFrame deopt(thread, id);
  1224     VMThread::execute(&deopt);
  1229 // JVMTI PopFrame support
  1230 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1232   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1234 JRT_END
  1237 #if defined(COMPILER2) || defined(SHARK)
  1238 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1239   // in case of an unresolved klass entry, load the class.
  1240   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1241     Klass* tk = constant_pool->klass_at(index, CHECK);
  1242     return;
  1245   if (!constant_pool->tag_at(index).is_symbol()) return;
  1247   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
  1248   Symbol*  symbol  = constant_pool->symbol_at(index);
  1250   // class name?
  1251   if (symbol->byte_at(0) != '(') {
  1252     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1253     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1254     return;
  1257   // then it must be a signature!
  1258   ResourceMark rm(THREAD);
  1259   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1260     if (ss.is_object()) {
  1261       Symbol* class_name = ss.as_symbol(CHECK);
  1262       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1263       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1269 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1270   EXCEPTION_MARK;
  1271   load_class_by_index(constant_pool, index, THREAD);
  1272   if (HAS_PENDING_EXCEPTION) {
  1273     // Exception happened during classloading. We ignore the exception here, since it
  1274     // is going to be rethrown since the current activation is going to be deoptimized and
  1275     // the interpreter will re-execute the bytecode.
  1276     CLEAR_PENDING_EXCEPTION;
  1277     // Class loading called java code which may have caused a stack
  1278     // overflow. If the exception was thrown right before the return
  1279     // to the runtime the stack is no longer guarded. Reguard the
  1280     // stack otherwise if we return to the uncommon trap blob and the
  1281     // stack bang causes a stack overflow we crash.
  1282     assert(THREAD->is_Java_thread(), "only a java thread can be here");
  1283     JavaThread* thread = (JavaThread*)THREAD;
  1284     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
  1285     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
  1286     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
  1290 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1291   HandleMark hm;
  1293   // uncommon_trap() is called at the beginning of the uncommon trap
  1294   // handler. Note this fact before we start generating temporary frames
  1295   // that can confuse an asynchronous stack walker. This counter is
  1296   // decremented at the end of unpack_frames().
  1297   thread->inc_in_deopt_handler();
  1299   // We need to update the map if we have biased locking.
  1300   RegisterMap reg_map(thread, UseBiasedLocking);
  1301   frame stub_frame = thread->last_frame();
  1302   frame fr = stub_frame.sender(&reg_map);
  1303   // Make sure the calling nmethod is not getting deoptimized and removed
  1304   // before we are done with it.
  1305   nmethodLocker nl(fr.pc());
  1307   // Log a message
  1308   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
  1309               trap_request, fr.pc());
  1312     ResourceMark rm;
  1314     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1315     revoke_biases_of_monitors(thread, fr, &reg_map);
  1317     DeoptReason reason = trap_request_reason(trap_request);
  1318     DeoptAction action = trap_request_action(trap_request);
  1319     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1321     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1322     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1324     nmethod* nm = cvf->code();
  1326     ScopeDesc*      trap_scope  = cvf->scope();
  1327     methodHandle    trap_method = trap_scope->method();
  1328     int             trap_bci    = trap_scope->bci();
  1329     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1331     // Record this event in the histogram.
  1332     gather_statistics(reason, action, trap_bc);
  1334     // Ensure that we can record deopt. history:
  1335     // Need MDO to record RTM code generation state.
  1336     bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
  1338     MethodData* trap_mdo =
  1339       get_method_data(thread, trap_method, create_if_missing);
  1341     // Log a message
  1342     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
  1343                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
  1344                               trap_method->name_and_sig_as_C_string(), trap_bci);
  1346     // Print a bunch of diagnostics, if requested.
  1347     if (TraceDeoptimization || LogCompilation) {
  1348       ResourceMark rm;
  1349       ttyLocker ttyl;
  1350       char buf[100];
  1351       if (xtty != NULL) {
  1352         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1353                          os::current_thread_id(),
  1354                          format_trap_request(buf, sizeof(buf), trap_request));
  1355         nm->log_identity(xtty);
  1357       Symbol* class_name = NULL;
  1358       bool unresolved = false;
  1359       if (unloaded_class_index >= 0) {
  1360         constantPoolHandle constants (THREAD, trap_method->constants());
  1361         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1362           class_name = constants->klass_name_at(unloaded_class_index);
  1363           unresolved = true;
  1364           if (xtty != NULL)
  1365             xtty->print(" unresolved='1'");
  1366         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1367           class_name = constants->symbol_at(unloaded_class_index);
  1369         if (xtty != NULL)
  1370           xtty->name(class_name);
  1372       if (xtty != NULL && trap_mdo != NULL) {
  1373         // Dump the relevant MDO state.
  1374         // This is the deopt count for the current reason, any previous
  1375         // reasons or recompiles seen at this point.
  1376         int dcnt = trap_mdo->trap_count(reason);
  1377         if (dcnt != 0)
  1378           xtty->print(" count='%d'", dcnt);
  1379         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1380         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1381         if (dos != 0) {
  1382           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1383           if (trap_state_is_recompiled(dos)) {
  1384             int recnt2 = trap_mdo->overflow_recompile_count();
  1385             if (recnt2 != 0)
  1386               xtty->print(" recompiles2='%d'", recnt2);
  1390       if (xtty != NULL) {
  1391         xtty->stamp();
  1392         xtty->end_head();
  1394       if (TraceDeoptimization) {  // make noise on the tty
  1395         tty->print("Uncommon trap occurred in");
  1396         nm->method()->print_short_name(tty);
  1397         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
  1398                    fr.pc(),
  1399                    os::current_thread_id(),
  1400                    trap_reason_name(reason),
  1401                    trap_action_name(action),
  1402                    unloaded_class_index);
  1403         if (class_name != NULL) {
  1404           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1405           class_name->print_symbol_on(tty);
  1407         tty->cr();
  1409       if (xtty != NULL) {
  1410         // Log the precise location of the trap.
  1411         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1412           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1413           xtty->method(sd->method());
  1414           xtty->end_elem();
  1415           if (sd->is_top())  break;
  1417         xtty->tail("uncommon_trap");
  1420     // (End diagnostic printout.)
  1422     // Load class if necessary
  1423     if (unloaded_class_index >= 0) {
  1424       constantPoolHandle constants(THREAD, trap_method->constants());
  1425       load_class_by_index(constants, unloaded_class_index);
  1428     // Flush the nmethod if necessary and desirable.
  1429     //
  1430     // We need to avoid situations where we are re-flushing the nmethod
  1431     // because of a hot deoptimization site.  Repeated flushes at the same
  1432     // point need to be detected by the compiler and avoided.  If the compiler
  1433     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1434     // module must take measures to avoid an infinite cycle of recompilation
  1435     // and deoptimization.  There are several such measures:
  1436     //
  1437     //   1. If a recompilation is ordered a second time at some site X
  1438     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1439     //   to give the interpreter time to exercise the method more thoroughly.
  1440     //   If this happens, the method's overflow_recompile_count is incremented.
  1441     //
  1442     //   2. If the compiler fails to reduce the deoptimization rate, then
  1443     //   the method's overflow_recompile_count will begin to exceed the set
  1444     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1445     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1446     //   to the interpreter.  This is a performance hit for hot methods,
  1447     //   but is better than a disastrous infinite cycle of recompilations.
  1448     //   (Actually, only the method containing the site X is abandoned.)
  1449     //
  1450     //   3. In parallel with the previous measures, if the total number of
  1451     //   recompilations of a method exceeds the much larger set limit
  1452     //   PerMethodRecompilationCutoff, the method is abandoned.
  1453     //   This should only happen if the method is very large and has
  1454     //   many "lukewarm" deoptimizations.  The code which enforces this
  1455     //   limit is elsewhere (class nmethod, class Method).
  1456     //
  1457     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1458     // to recompile at each bytecode independently of the per-BCI cutoff.
  1459     //
  1460     // The decision to update code is up to the compiler, and is encoded
  1461     // in the Action_xxx code.  If the compiler requests Action_none
  1462     // no trap state is changed, no compiled code is changed, and the
  1463     // computation suffers along in the interpreter.
  1464     //
  1465     // The other action codes specify various tactics for decompilation
  1466     // and recompilation.  Action_maybe_recompile is the loosest, and
  1467     // allows the compiled code to stay around until enough traps are seen,
  1468     // and until the compiler gets around to recompiling the trapping method.
  1469     //
  1470     // The other actions cause immediate removal of the present code.
  1472     bool update_trap_state = true;
  1473     bool make_not_entrant = false;
  1474     bool make_not_compilable = false;
  1475     bool reprofile = false;
  1476     switch (action) {
  1477     case Action_none:
  1478       // Keep the old code.
  1479       update_trap_state = false;
  1480       break;
  1481     case Action_maybe_recompile:
  1482       // Do not need to invalidate the present code, but we can
  1483       // initiate another
  1484       // Start compiler without (necessarily) invalidating the nmethod.
  1485       // The system will tolerate the old code, but new code should be
  1486       // generated when possible.
  1487       break;
  1488     case Action_reinterpret:
  1489       // Go back into the interpreter for a while, and then consider
  1490       // recompiling form scratch.
  1491       make_not_entrant = true;
  1492       // Reset invocation counter for outer most method.
  1493       // This will allow the interpreter to exercise the bytecodes
  1494       // for a while before recompiling.
  1495       // By contrast, Action_make_not_entrant is immediate.
  1496       //
  1497       // Note that the compiler will track null_check, null_assert,
  1498       // range_check, and class_check events and log them as if they
  1499       // had been traps taken from compiled code.  This will update
  1500       // the MDO trap history so that the next compilation will
  1501       // properly detect hot trap sites.
  1502       reprofile = true;
  1503       break;
  1504     case Action_make_not_entrant:
  1505       // Request immediate recompilation, and get rid of the old code.
  1506       // Make them not entrant, so next time they are called they get
  1507       // recompiled.  Unloaded classes are loaded now so recompile before next
  1508       // time they are called.  Same for uninitialized.  The interpreter will
  1509       // link the missing class, if any.
  1510       make_not_entrant = true;
  1511       break;
  1512     case Action_make_not_compilable:
  1513       // Give up on compiling this method at all.
  1514       make_not_entrant = true;
  1515       make_not_compilable = true;
  1516       break;
  1517     default:
  1518       ShouldNotReachHere();
  1521     // Setting +ProfileTraps fixes the following, on all platforms:
  1522     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1523     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1524     // recompile relies on a MethodData* to record heroic opt failures.
  1526     // Whether the interpreter is producing MDO data or not, we also need
  1527     // to use the MDO to detect hot deoptimization points and control
  1528     // aggressive optimization.
  1529     bool inc_recompile_count = false;
  1530     ProfileData* pdata = NULL;
  1531     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
  1532       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
  1533       uint this_trap_count = 0;
  1534       bool maybe_prior_trap = false;
  1535       bool maybe_prior_recompile = false;
  1536       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1537                                    nm->method(),
  1538                                    //outputs:
  1539                                    this_trap_count,
  1540                                    maybe_prior_trap,
  1541                                    maybe_prior_recompile);
  1542       // Because the interpreter also counts null, div0, range, and class
  1543       // checks, these traps from compiled code are double-counted.
  1544       // This is harmless; it just means that the PerXTrapLimit values
  1545       // are in effect a little smaller than they look.
  1547       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1548       if (per_bc_reason != Reason_none) {
  1549         // Now take action based on the partially known per-BCI history.
  1550         if (maybe_prior_trap
  1551             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1552           // If there are too many traps at this BCI, force a recompile.
  1553           // This will allow the compiler to see the limit overflow, and
  1554           // take corrective action, if possible.  The compiler generally
  1555           // does not use the exact PerBytecodeTrapLimit value, but instead
  1556           // changes its tactics if it sees any traps at all.  This provides
  1557           // a little hysteresis, delaying a recompile until a trap happens
  1558           // several times.
  1559           //
  1560           // Actually, since there is only one bit of counter per BCI,
  1561           // the possible per-BCI counts are {0,1,(per-method count)}.
  1562           // This produces accurate results if in fact there is only
  1563           // one hot trap site, but begins to get fuzzy if there are
  1564           // many sites.  For example, if there are ten sites each
  1565           // trapping two or more times, they each get the blame for
  1566           // all of their traps.
  1567           make_not_entrant = true;
  1570         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1571         if (make_not_entrant && maybe_prior_recompile) {
  1572           // More than one recompile at this point.
  1573           inc_recompile_count = maybe_prior_trap;
  1575       } else {
  1576         // For reasons which are not recorded per-bytecode, we simply
  1577         // force recompiles unconditionally.
  1578         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1579         make_not_entrant = true;
  1582       // Go back to the compiler if there are too many traps in this method.
  1583       if (this_trap_count >= per_method_trap_limit(reason)) {
  1584         // If there are too many traps in this method, force a recompile.
  1585         // This will allow the compiler to see the limit overflow, and
  1586         // take corrective action, if possible.
  1587         // (This condition is an unlikely backstop only, because the
  1588         // PerBytecodeTrapLimit is more likely to take effect first,
  1589         // if it is applicable.)
  1590         make_not_entrant = true;
  1593       // Here's more hysteresis:  If there has been a recompile at
  1594       // this trap point already, run the method in the interpreter
  1595       // for a while to exercise it more thoroughly.
  1596       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1597         reprofile = true;
  1602     // Take requested actions on the method:
  1604     // Recompile
  1605     if (make_not_entrant) {
  1606       if (!nm->make_not_entrant()) {
  1607         return; // the call did not change nmethod's state
  1610       if (pdata != NULL) {
  1611         // Record the recompilation event, if any.
  1612         int tstate0 = pdata->trap_state();
  1613         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1614         if (tstate1 != tstate0)
  1615           pdata->set_trap_state(tstate1);
  1618 #if INCLUDE_RTM_OPT
  1619       // Restart collecting RTM locking abort statistic if the method
  1620       // is recompiled for a reason other than RTM state change.
  1621       // Assume that in new recompiled code the statistic could be different,
  1622       // for example, due to different inlining.
  1623       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
  1624           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
  1625         trap_mdo->atomic_set_rtm_state(ProfileRTM);
  1627 #endif
  1630     if (inc_recompile_count) {
  1631       trap_mdo->inc_overflow_recompile_count();
  1632       if ((uint)trap_mdo->overflow_recompile_count() >
  1633           (uint)PerBytecodeRecompilationCutoff) {
  1634         // Give up on the method containing the bad BCI.
  1635         if (trap_method() == nm->method()) {
  1636           make_not_compilable = true;
  1637         } else {
  1638           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
  1639           // But give grace to the enclosing nm->method().
  1644     // Reprofile
  1645     if (reprofile) {
  1646       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1649     // Give up compiling
  1650     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1651       assert(make_not_entrant, "consistent");
  1652       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1655   } // Free marked resources
  1658 JRT_END
  1660 MethodData*
  1661 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1662                                 bool create_if_missing) {
  1663   Thread* THREAD = thread;
  1664   MethodData* mdo = m()->method_data();
  1665   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1666     // Build an MDO.  Ignore errors like OutOfMemory;
  1667     // that simply means we won't have an MDO to update.
  1668     Method::build_interpreter_method_data(m, THREAD);
  1669     if (HAS_PENDING_EXCEPTION) {
  1670       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1671       CLEAR_PENDING_EXCEPTION;
  1673     mdo = m()->method_data();
  1675   return mdo;
  1678 ProfileData*
  1679 Deoptimization::query_update_method_data(MethodData* trap_mdo,
  1680                                          int trap_bci,
  1681                                          Deoptimization::DeoptReason reason,
  1682                                          Method* compiled_method,
  1683                                          //outputs:
  1684                                          uint& ret_this_trap_count,
  1685                                          bool& ret_maybe_prior_trap,
  1686                                          bool& ret_maybe_prior_recompile) {
  1687   uint prior_trap_count = trap_mdo->trap_count(reason);
  1688   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1690   // If the runtime cannot find a place to store trap history,
  1691   // it is estimated based on the general condition of the method.
  1692   // If the method has ever been recompiled, or has ever incurred
  1693   // a trap with the present reason , then this BCI is assumed
  1694   // (pessimistically) to be the culprit.
  1695   bool maybe_prior_trap      = (prior_trap_count != 0);
  1696   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1697   ProfileData* pdata = NULL;
  1700   // For reasons which are recorded per bytecode, we check per-BCI data.
  1701   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1702   if (per_bc_reason != Reason_none) {
  1703     // Find the profile data for this BCI.  If there isn't one,
  1704     // try to allocate one from the MDO's set of spares.
  1705     // This will let us detect a repeated trap at this point.
  1706     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
  1708     if (pdata != NULL) {
  1709       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
  1710         if (LogCompilation && xtty != NULL) {
  1711           ttyLocker ttyl;
  1712           // no more room for speculative traps in this MDO
  1713           xtty->elem("speculative_traps_oom");
  1716       // Query the trap state of this profile datum.
  1717       int tstate0 = pdata->trap_state();
  1718       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1719         maybe_prior_trap = false;
  1720       if (!trap_state_is_recompiled(tstate0))
  1721         maybe_prior_recompile = false;
  1723       // Update the trap state of this profile datum.
  1724       int tstate1 = tstate0;
  1725       // Record the reason.
  1726       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1727       // Store the updated state on the MDO, for next time.
  1728       if (tstate1 != tstate0)
  1729         pdata->set_trap_state(tstate1);
  1730     } else {
  1731       if (LogCompilation && xtty != NULL) {
  1732         ttyLocker ttyl;
  1733         // Missing MDP?  Leave a small complaint in the log.
  1734         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1739   // Return results:
  1740   ret_this_trap_count = this_trap_count;
  1741   ret_maybe_prior_trap = maybe_prior_trap;
  1742   ret_maybe_prior_recompile = maybe_prior_recompile;
  1743   return pdata;
  1746 void
  1747 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1748   ResourceMark rm;
  1749   // Ignored outputs:
  1750   uint ignore_this_trap_count;
  1751   bool ignore_maybe_prior_trap;
  1752   bool ignore_maybe_prior_recompile;
  1753   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
  1754   query_update_method_data(trap_mdo, trap_bci,
  1755                            (DeoptReason)reason,
  1756                            NULL,
  1757                            ignore_this_trap_count,
  1758                            ignore_maybe_prior_trap,
  1759                            ignore_maybe_prior_recompile);
  1762 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1764   // Still in Java no safepoints
  1766     // This enters VM and may safepoint
  1767     uncommon_trap_inner(thread, trap_request);
  1769   return fetch_unroll_info_helper(thread);
  1772 // Local derived constants.
  1773 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1774 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1775 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1777 //---------------------------trap_state_reason---------------------------------
  1778 Deoptimization::DeoptReason
  1779 Deoptimization::trap_state_reason(int trap_state) {
  1780   // This assert provides the link between the width of DataLayout::trap_bits
  1781   // and the encoding of "recorded" reasons.  It ensures there are enough
  1782   // bits to store all needed reasons in the per-BCI MDO profile.
  1783   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1784   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1785   trap_state -= recompile_bit;
  1786   if (trap_state == DS_REASON_MASK) {
  1787     return Reason_many;
  1788   } else {
  1789     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1790     return (DeoptReason)trap_state;
  1793 //-------------------------trap_state_has_reason-------------------------------
  1794 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1795   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1796   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1797   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1798   trap_state -= recompile_bit;
  1799   if (trap_state == DS_REASON_MASK) {
  1800     return -1;  // true, unspecifically (bottom of state lattice)
  1801   } else if (trap_state == reason) {
  1802     return 1;   // true, definitely
  1803   } else if (trap_state == 0) {
  1804     return 0;   // false, definitely (top of state lattice)
  1805   } else {
  1806     return 0;   // false, definitely
  1809 //-------------------------trap_state_add_reason-------------------------------
  1810 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1811   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1812   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1813   trap_state -= recompile_bit;
  1814   if (trap_state == DS_REASON_MASK) {
  1815     return trap_state + recompile_bit;     // already at state lattice bottom
  1816   } else if (trap_state == reason) {
  1817     return trap_state + recompile_bit;     // the condition is already true
  1818   } else if (trap_state == 0) {
  1819     return reason + recompile_bit;          // no condition has yet been true
  1820   } else {
  1821     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1824 //-----------------------trap_state_is_recompiled------------------------------
  1825 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1826   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1828 //-----------------------trap_state_set_recompiled-----------------------------
  1829 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1830   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1831   else    return trap_state & ~DS_RECOMPILE_BIT;
  1833 //---------------------------format_trap_state---------------------------------
  1834 // This is used for debugging and diagnostics, including LogFile output.
  1835 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1836                                               int trap_state) {
  1837   DeoptReason reason      = trap_state_reason(trap_state);
  1838   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1839   // Re-encode the state from its decoded components.
  1840   int decoded_state = 0;
  1841   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1842     decoded_state = trap_state_add_reason(decoded_state, reason);
  1843   if (recomp_flag)
  1844     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1845   // If the state re-encodes properly, format it symbolically.
  1846   // Because this routine is used for debugging and diagnostics,
  1847   // be robust even if the state is a strange value.
  1848   size_t len;
  1849   if (decoded_state != trap_state) {
  1850     // Random buggy state that doesn't decode??
  1851     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1852   } else {
  1853     len = jio_snprintf(buf, buflen, "%s%s",
  1854                        trap_reason_name(reason),
  1855                        recomp_flag ? " recompiled" : "");
  1857   if (len >= buflen)
  1858     buf[buflen-1] = '\0';
  1859   return buf;
  1863 //--------------------------------statics--------------------------------------
  1864 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1865   = Deoptimization::Action_reinterpret;
  1866 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1867   // Note:  Keep this in sync. with enum DeoptReason.
  1868   "none",
  1869   "null_check",
  1870   "null_assert",
  1871   "range_check",
  1872   "class_check",
  1873   "array_check",
  1874   "intrinsic",
  1875   "bimorphic",
  1876   "unloaded",
  1877   "uninitialized",
  1878   "unreached",
  1879   "unhandled",
  1880   "constraint",
  1881   "div0_check",
  1882   "age",
  1883   "predicate",
  1884   "loop_limit_check",
  1885   "speculate_class_check",
  1886   "rtm_state_change",
  1887   "unstable_if"
  1888 };
  1889 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1890   // Note:  Keep this in sync. with enum DeoptAction.
  1891   "none",
  1892   "maybe_recompile",
  1893   "reinterpret",
  1894   "make_not_entrant",
  1895   "make_not_compilable"
  1896 };
  1898 const char* Deoptimization::trap_reason_name(int reason) {
  1899   if (reason == Reason_many)  return "many";
  1900   if ((uint)reason < Reason_LIMIT)
  1901     return _trap_reason_name[reason];
  1902   static char buf[20];
  1903   sprintf(buf, "reason%d", reason);
  1904   return buf;
  1906 const char* Deoptimization::trap_action_name(int action) {
  1907   if ((uint)action < Action_LIMIT)
  1908     return _trap_action_name[action];
  1909   static char buf[20];
  1910   sprintf(buf, "action%d", action);
  1911   return buf;
  1914 // This is used for debugging and diagnostics, including LogFile output.
  1915 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1916                                                 int trap_request) {
  1917   jint unloaded_class_index = trap_request_index(trap_request);
  1918   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1919   const char* action = trap_action_name(trap_request_action(trap_request));
  1920   size_t len;
  1921   if (unloaded_class_index < 0) {
  1922     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1923                        reason, action);
  1924   } else {
  1925     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1926                        reason, action, unloaded_class_index);
  1928   if (len >= buflen)
  1929     buf[buflen-1] = '\0';
  1930   return buf;
  1933 juint Deoptimization::_deoptimization_hist
  1934         [Deoptimization::Reason_LIMIT]
  1935     [1 + Deoptimization::Action_LIMIT]
  1936         [Deoptimization::BC_CASE_LIMIT]
  1937   = {0};
  1939 enum {
  1940   LSB_BITS = 8,
  1941   LSB_MASK = right_n_bits(LSB_BITS)
  1942 };
  1944 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1945                                        Bytecodes::Code bc) {
  1946   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1947   assert(action >= 0 && action < Action_LIMIT, "oob");
  1948   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1949   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1950   juint* cases = _deoptimization_hist[reason][1+action];
  1951   juint* bc_counter_addr = NULL;
  1952   juint  bc_counter      = 0;
  1953   // Look for an unused counter, or an exact match to this BC.
  1954   if (bc != Bytecodes::_illegal) {
  1955     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1956       juint* counter_addr = &cases[bc_case];
  1957       juint  counter = *counter_addr;
  1958       if ((counter == 0 && bc_counter_addr == NULL)
  1959           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1960         // this counter is either free or is already devoted to this BC
  1961         bc_counter_addr = counter_addr;
  1962         bc_counter = counter | bc;
  1966   if (bc_counter_addr == NULL) {
  1967     // Overflow, or no given bytecode.
  1968     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1969     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1971   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1974 jint Deoptimization::total_deoptimization_count() {
  1975   return _deoptimization_hist[Reason_none][0][0];
  1978 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1979   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1980   return _deoptimization_hist[reason][0][0];
  1983 void Deoptimization::print_statistics() {
  1984   juint total = total_deoptimization_count();
  1985   juint account = total;
  1986   if (total != 0) {
  1987     ttyLocker ttyl;
  1988     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1989     tty->print_cr("Deoptimization traps recorded:");
  1990     #define PRINT_STAT_LINE(name, r) \
  1991       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1992     PRINT_STAT_LINE("total", total);
  1993     // For each non-zero entry in the histogram, print the reason,
  1994     // the action, and (if specifically known) the type of bytecode.
  1995     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1996       for (int action = 0; action < Action_LIMIT; action++) {
  1997         juint* cases = _deoptimization_hist[reason][1+action];
  1998         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1999           juint counter = cases[bc_case];
  2000           if (counter != 0) {
  2001             char name[1*K];
  2002             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  2003             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  2004               bc = Bytecodes::_illegal;
  2005             sprintf(name, "%s/%s/%s",
  2006                     trap_reason_name(reason),
  2007                     trap_action_name(action),
  2008                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  2009             juint r = counter >> LSB_BITS;
  2010             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  2011             account -= r;
  2016     if (account != 0) {
  2017       PRINT_STAT_LINE("unaccounted", account);
  2019     #undef PRINT_STAT_LINE
  2020     if (xtty != NULL)  xtty->tail("statistics");
  2023 #else // COMPILER2 || SHARK
  2026 // Stubs for C1 only system.
  2027 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  2028   return false;
  2031 const char* Deoptimization::trap_reason_name(int reason) {
  2032   return "unknown";
  2035 void Deoptimization::print_statistics() {
  2036   // no output
  2039 void
  2040 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  2041   // no udpate
  2044 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  2045   return 0;
  2048 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  2049                                        Bytecodes::Code bc) {
  2050   // no update
  2053 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  2054                                               int trap_state) {
  2055   jio_snprintf(buf, buflen, "#%d", trap_state);
  2056   return buf;
  2059 #endif // COMPILER2 || SHARK

mercurial