src/share/vm/runtime/deoptimization.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 479
52fed2ec0afb
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_deoptimization.cpp.incl"
duke@435 27
duke@435 28 bool DeoptimizationMarker::_is_active = false;
duke@435 29
duke@435 30 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame,
duke@435 31 int caller_adjustment,
duke@435 32 int number_of_frames,
duke@435 33 intptr_t* frame_sizes,
duke@435 34 address* frame_pcs,
duke@435 35 BasicType return_type) {
duke@435 36 _size_of_deoptimized_frame = size_of_deoptimized_frame;
duke@435 37 _caller_adjustment = caller_adjustment;
duke@435 38 _number_of_frames = number_of_frames;
duke@435 39 _frame_sizes = frame_sizes;
duke@435 40 _frame_pcs = frame_pcs;
duke@435 41 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
duke@435 42 _return_type = return_type;
duke@435 43 // PD (x86 only)
duke@435 44 _counter_temp = 0;
duke@435 45 _initial_fp = 0;
duke@435 46 _unpack_kind = 0;
duke@435 47 _sender_sp_temp = 0;
duke@435 48
duke@435 49 _total_frame_sizes = size_of_frames();
duke@435 50 }
duke@435 51
duke@435 52
duke@435 53 Deoptimization::UnrollBlock::~UnrollBlock() {
duke@435 54 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
duke@435 55 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
duke@435 56 FREE_C_HEAP_ARRAY(intptr_t, _register_block);
duke@435 57 }
duke@435 58
duke@435 59
duke@435 60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
duke@435 61 assert(register_number < RegisterMap::reg_count, "checking register number");
duke@435 62 return &_register_block[register_number * 2];
duke@435 63 }
duke@435 64
duke@435 65
duke@435 66
duke@435 67 int Deoptimization::UnrollBlock::size_of_frames() const {
duke@435 68 // Acount first for the adjustment of the initial frame
duke@435 69 int result = _caller_adjustment;
duke@435 70 for (int index = 0; index < number_of_frames(); index++) {
duke@435 71 result += frame_sizes()[index];
duke@435 72 }
duke@435 73 return result;
duke@435 74 }
duke@435 75
duke@435 76
duke@435 77 void Deoptimization::UnrollBlock::print() {
duke@435 78 ttyLocker ttyl;
duke@435 79 tty->print_cr("UnrollBlock");
duke@435 80 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
duke@435 81 tty->print( " frame_sizes: ");
duke@435 82 for (int index = 0; index < number_of_frames(); index++) {
duke@435 83 tty->print("%d ", frame_sizes()[index]);
duke@435 84 }
duke@435 85 tty->cr();
duke@435 86 }
duke@435 87
duke@435 88
duke@435 89 // In order to make fetch_unroll_info work properly with escape
duke@435 90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
duke@435 91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
duke@435 92 // of previously eliminated objects occurs in realloc_objects, which is
duke@435 93 // called from the method fetch_unroll_info_helper below.
duke@435 94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
duke@435 95 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 96 // but makes the entry a little slower. There is however a little dance we have to
duke@435 97 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 98
duke@435 99 // fetch_unroll_info() is called at the beginning of the deoptimization
duke@435 100 // handler. Note this fact before we start generating temporary frames
duke@435 101 // that can confuse an asynchronous stack walker. This counter is
duke@435 102 // decremented at the end of unpack_frames().
duke@435 103 thread->inc_in_deopt_handler();
duke@435 104
duke@435 105 return fetch_unroll_info_helper(thread);
duke@435 106 JRT_END
duke@435 107
duke@435 108
duke@435 109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
duke@435 110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
duke@435 111
duke@435 112 // Note: there is a safepoint safety issue here. No matter whether we enter
duke@435 113 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
duke@435 114 // the vframeArray is created.
duke@435 115 //
duke@435 116
duke@435 117 // Allocate our special deoptimization ResourceMark
duke@435 118 DeoptResourceMark* dmark = new DeoptResourceMark(thread);
duke@435 119 assert(thread->deopt_mark() == NULL, "Pending deopt!");
duke@435 120 thread->set_deopt_mark(dmark);
duke@435 121
duke@435 122 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
duke@435 123 RegisterMap map(thread, true);
duke@435 124 RegisterMap dummy_map(thread, false);
duke@435 125 // Now get the deoptee with a valid map
duke@435 126 frame deoptee = stub_frame.sender(&map);
duke@435 127
duke@435 128 // Create a growable array of VFrames where each VFrame represents an inlined
duke@435 129 // Java frame. This storage is allocated with the usual system arena.
duke@435 130 assert(deoptee.is_compiled_frame(), "Wrong frame type");
duke@435 131 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
duke@435 132 vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
duke@435 133 while (!vf->is_top()) {
duke@435 134 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 135 chunk->push(compiledVFrame::cast(vf));
duke@435 136 vf = vf->sender();
duke@435 137 }
duke@435 138 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 139 chunk->push(compiledVFrame::cast(vf));
duke@435 140
duke@435 141 #ifdef COMPILER2
duke@435 142 // Reallocate the non-escaping objects and restore their fields. Then
duke@435 143 // relock objects if synchronization on them was eliminated.
duke@435 144 if (DoEscapeAnalysis && EliminateAllocations) {
duke@435 145 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
duke@435 146 bool reallocated = false;
duke@435 147 if (objects != NULL) {
duke@435 148 JRT_BLOCK
duke@435 149 reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
duke@435 150 JRT_END
duke@435 151 }
duke@435 152 if (reallocated) {
duke@435 153 reassign_fields(&deoptee, &map, objects);
duke@435 154 #ifndef PRODUCT
duke@435 155 if (TraceDeoptimization) {
duke@435 156 ttyLocker ttyl;
duke@435 157 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
duke@435 158 print_objects(objects);
duke@435 159 }
duke@435 160 #endif
duke@435 161 }
duke@435 162 for (int i = 0; i < chunk->length(); i++) {
duke@435 163 GrowableArray<MonitorValue*>* monitors = chunk->at(i)->scope()->monitors();
duke@435 164 if (monitors != NULL) {
duke@435 165 relock_objects(&deoptee, &map, monitors);
duke@435 166 #ifndef PRODUCT
duke@435 167 if (TraceDeoptimization) {
duke@435 168 ttyLocker ttyl;
duke@435 169 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
duke@435 170 for (int j = 0; i < monitors->length(); i++) {
duke@435 171 MonitorValue* mv = monitors->at(i);
duke@435 172 if (mv->eliminated()) {
duke@435 173 StackValue* owner = StackValue::create_stack_value(&deoptee, &map, mv->owner());
duke@435 174 tty->print_cr(" object <" INTPTR_FORMAT "> locked", owner->get_obj()());
duke@435 175 }
duke@435 176 }
duke@435 177 }
duke@435 178 #endif
duke@435 179 }
duke@435 180 }
duke@435 181 }
duke@435 182 #endif // COMPILER2
duke@435 183 // Ensure that no safepoint is taken after pointers have been stored
duke@435 184 // in fields of rematerialized objects. If a safepoint occurs from here on
duke@435 185 // out the java state residing in the vframeArray will be missed.
duke@435 186 No_Safepoint_Verifier no_safepoint;
duke@435 187
duke@435 188 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
duke@435 189
duke@435 190 assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
duke@435 191 thread->set_vframe_array_head(array);
duke@435 192
duke@435 193 // Now that the vframeArray has been created if we have any deferred local writes
duke@435 194 // added by jvmti then we can free up that structure as the data is now in the
duke@435 195 // vframeArray
duke@435 196
duke@435 197 if (thread->deferred_locals() != NULL) {
duke@435 198 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
duke@435 199 int i = 0;
duke@435 200 do {
duke@435 201 // Because of inlining we could have multiple vframes for a single frame
duke@435 202 // and several of the vframes could have deferred writes. Find them all.
duke@435 203 if (list->at(i)->id() == array->original().id()) {
duke@435 204 jvmtiDeferredLocalVariableSet* dlv = list->at(i);
duke@435 205 list->remove_at(i);
duke@435 206 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
duke@435 207 delete dlv;
duke@435 208 } else {
duke@435 209 i++;
duke@435 210 }
duke@435 211 } while ( i < list->length() );
duke@435 212 if (list->length() == 0) {
duke@435 213 thread->set_deferred_locals(NULL);
duke@435 214 // free the list and elements back to C heap.
duke@435 215 delete list;
duke@435 216 }
duke@435 217
duke@435 218 }
duke@435 219
duke@435 220 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
duke@435 221 CodeBlob* cb = stub_frame.cb();
duke@435 222 // Verify we have the right vframeArray
duke@435 223 assert(cb->frame_size() >= 0, "Unexpected frame size");
duke@435 224 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
duke@435 225
duke@435 226 #ifdef ASSERT
duke@435 227 assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
duke@435 228 Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
duke@435 229 #endif
duke@435 230 // This is a guarantee instead of an assert because if vframe doesn't match
duke@435 231 // we will unpack the wrong deoptimized frame and wind up in strange places
duke@435 232 // where it will be very difficult to figure out what went wrong. Better
duke@435 233 // to die an early death here than some very obscure death later when the
duke@435 234 // trail is cold.
duke@435 235 // Note: on ia64 this guarantee can be fooled by frames with no memory stack
duke@435 236 // in that it will fail to detect a problem when there is one. This needs
duke@435 237 // more work in tiger timeframe.
duke@435 238 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
duke@435 239
duke@435 240 int number_of_frames = array->frames();
duke@435 241
duke@435 242 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost
duke@435 243 // virtual activation, which is the reverse of the elements in the vframes array.
duke@435 244 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
duke@435 245 // +1 because we always have an interpreter return address for the final slot.
duke@435 246 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
duke@435 247 int callee_parameters = 0;
duke@435 248 int callee_locals = 0;
duke@435 249 int popframe_extra_args = 0;
duke@435 250 // Create an interpreter return address for the stub to use as its return
duke@435 251 // address so the skeletal frames are perfectly walkable
duke@435 252 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
duke@435 253
duke@435 254 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
duke@435 255 // activation be put back on the expression stack of the caller for reexecution
duke@435 256 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
duke@435 257 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
duke@435 258 }
duke@435 259
duke@435 260 //
duke@435 261 // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
duke@435 262 // frame_sizes/frame_pcs[1] next oldest frame (int)
duke@435 263 // frame_sizes/frame_pcs[n] youngest frame (int)
duke@435 264 //
duke@435 265 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
duke@435 266 // owns the space for the return address to it's caller). Confusing ain't it.
duke@435 267 //
duke@435 268 // The vframe array can address vframes with indices running from
duke@435 269 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame.
duke@435 270 // When we create the skeletal frames we need the oldest frame to be in the zero slot
duke@435 271 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
duke@435 272 // so things look a little strange in this loop.
duke@435 273 //
duke@435 274 for (int index = 0; index < array->frames(); index++ ) {
duke@435 275 // frame[number_of_frames - 1 ] = on_stack_size(youngest)
duke@435 276 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
duke@435 277 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
duke@435 278 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
duke@435 279 callee_locals,
duke@435 280 index == 0,
duke@435 281 popframe_extra_args);
duke@435 282 // This pc doesn't have to be perfect just good enough to identify the frame
duke@435 283 // as interpreted so the skeleton frame will be walkable
duke@435 284 // The correct pc will be set when the skeleton frame is completely filled out
duke@435 285 // The final pc we store in the loop is wrong and will be overwritten below
duke@435 286 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
duke@435 287
duke@435 288 callee_parameters = array->element(index)->method()->size_of_parameters();
duke@435 289 callee_locals = array->element(index)->method()->max_locals();
duke@435 290 popframe_extra_args = 0;
duke@435 291 }
duke@435 292
duke@435 293 // Compute whether the root vframe returns a float or double value.
duke@435 294 BasicType return_type;
duke@435 295 {
duke@435 296 HandleMark hm;
duke@435 297 methodHandle method(thread, array->element(0)->method());
duke@435 298 Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
duke@435 299 return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
duke@435 300 }
duke@435 301
duke@435 302 // Compute information for handling adapters and adjusting the frame size of the caller.
duke@435 303 int caller_adjustment = 0;
duke@435 304
duke@435 305 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
duke@435 306 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
duke@435 307 // than simply use array->sender.pc(). This requires us to walk the current set of frames
duke@435 308 //
duke@435 309 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
duke@435 310 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller
duke@435 311
duke@435 312 // Compute the amount the oldest interpreter frame will have to adjust
duke@435 313 // its caller's stack by. If the caller is a compiled frame then
duke@435 314 // we pretend that the callee has no parameters so that the
duke@435 315 // extension counts for the full amount of locals and not just
duke@435 316 // locals-parms. This is because without a c2i adapter the parm
duke@435 317 // area as created by the compiled frame will not be usable by
duke@435 318 // the interpreter. (Depending on the calling convention there
duke@435 319 // may not even be enough space).
duke@435 320
duke@435 321 // QQQ I'd rather see this pushed down into last_frame_adjust
duke@435 322 // and have it take the sender (aka caller).
duke@435 323
duke@435 324 if (deopt_sender.is_compiled_frame()) {
duke@435 325 caller_adjustment = last_frame_adjust(0, callee_locals);
duke@435 326 } else if (callee_locals > callee_parameters) {
duke@435 327 // The caller frame may need extending to accommodate
duke@435 328 // non-parameter locals of the first unpacked interpreted frame.
duke@435 329 // Compute that adjustment.
duke@435 330 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
duke@435 331 }
duke@435 332
duke@435 333
duke@435 334 // If the sender is deoptimized the we must retrieve the address of the handler
duke@435 335 // since the frame will "magically" show the original pc before the deopt
duke@435 336 // and we'd undo the deopt.
duke@435 337
duke@435 338 frame_pcs[0] = deopt_sender.raw_pc();
duke@435 339
duke@435 340 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
duke@435 341
duke@435 342 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
duke@435 343 caller_adjustment * BytesPerWord,
duke@435 344 number_of_frames,
duke@435 345 frame_sizes,
duke@435 346 frame_pcs,
duke@435 347 return_type);
duke@435 348 #if defined(IA32) || defined(AMD64)
duke@435 349 // We need a way to pass fp to the unpacking code so the skeletal frames
duke@435 350 // come out correct. This is only needed for x86 because of c2 using ebp
duke@435 351 // as an allocatable register. So this update is useless (and harmless)
duke@435 352 // on the other platforms. It would be nice to do this in a different
duke@435 353 // way but even the old style deoptimization had a problem with deriving
duke@435 354 // this value. NEEDS_CLEANUP
duke@435 355 // Note: now that c1 is using c2's deopt blob we must do this on all
duke@435 356 // x86 based platforms
duke@435 357 intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
duke@435 358 *fp_addr = array->sender().fp(); // was adapter_caller
duke@435 359 #endif /* IA32 || AMD64 */
duke@435 360
duke@435 361 if (array->frames() > 1) {
duke@435 362 if (VerifyStack && TraceDeoptimization) {
duke@435 363 tty->print_cr("Deoptimizing method containing inlining");
duke@435 364 }
duke@435 365 }
duke@435 366
duke@435 367 array->set_unroll_block(info);
duke@435 368 return info;
duke@435 369 }
duke@435 370
duke@435 371 // Called to cleanup deoptimization data structures in normal case
duke@435 372 // after unpacking to stack and when stack overflow error occurs
duke@435 373 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
duke@435 374 vframeArray *array) {
duke@435 375
duke@435 376 // Get array if coming from exception
duke@435 377 if (array == NULL) {
duke@435 378 array = thread->vframe_array_head();
duke@435 379 }
duke@435 380 thread->set_vframe_array_head(NULL);
duke@435 381
duke@435 382 // Free the previous UnrollBlock
duke@435 383 vframeArray* old_array = thread->vframe_array_last();
duke@435 384 thread->set_vframe_array_last(array);
duke@435 385
duke@435 386 if (old_array != NULL) {
duke@435 387 UnrollBlock* old_info = old_array->unroll_block();
duke@435 388 old_array->set_unroll_block(NULL);
duke@435 389 delete old_info;
duke@435 390 delete old_array;
duke@435 391 }
duke@435 392
duke@435 393 // Deallocate any resource creating in this routine and any ResourceObjs allocated
duke@435 394 // inside the vframeArray (StackValueCollections)
duke@435 395
duke@435 396 delete thread->deopt_mark();
duke@435 397 thread->set_deopt_mark(NULL);
duke@435 398
duke@435 399
duke@435 400 if (JvmtiExport::can_pop_frame()) {
duke@435 401 #ifndef CC_INTERP
duke@435 402 // Regardless of whether we entered this routine with the pending
duke@435 403 // popframe condition bit set, we should always clear it now
duke@435 404 thread->clear_popframe_condition();
duke@435 405 #else
duke@435 406 // C++ interpeter will clear has_pending_popframe when it enters
duke@435 407 // with method_resume. For deopt_resume2 we clear it now.
duke@435 408 if (thread->popframe_forcing_deopt_reexecution())
duke@435 409 thread->clear_popframe_condition();
duke@435 410 #endif /* CC_INTERP */
duke@435 411 }
duke@435 412
duke@435 413 // unpack_frames() is called at the end of the deoptimization handler
duke@435 414 // and (in C2) at the end of the uncommon trap handler. Note this fact
duke@435 415 // so that an asynchronous stack walker can work again. This counter is
duke@435 416 // incremented at the beginning of fetch_unroll_info() and (in C2) at
duke@435 417 // the beginning of uncommon_trap().
duke@435 418 thread->dec_in_deopt_handler();
duke@435 419 }
duke@435 420
duke@435 421
duke@435 422 // Return BasicType of value being returned
duke@435 423 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
duke@435 424
duke@435 425 // We are already active int he special DeoptResourceMark any ResourceObj's we
duke@435 426 // allocate will be freed at the end of the routine.
duke@435 427
duke@435 428 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 429 // but makes the entry a little slower. There is however a little dance we have to
duke@435 430 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 431 ResetNoHandleMark rnhm; // No-op in release/product versions
duke@435 432 HandleMark hm;
duke@435 433
duke@435 434 frame stub_frame = thread->last_frame();
duke@435 435
duke@435 436 // Since the frame to unpack is the top frame of this thread, the vframe_array_head
duke@435 437 // must point to the vframeArray for the unpack frame.
duke@435 438 vframeArray* array = thread->vframe_array_head();
duke@435 439
duke@435 440 #ifndef PRODUCT
duke@435 441 if (TraceDeoptimization) {
duke@435 442 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
duke@435 443 }
duke@435 444 #endif
duke@435 445
duke@435 446 UnrollBlock* info = array->unroll_block();
duke@435 447
duke@435 448 // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
duke@435 449 array->unpack_to_stack(stub_frame, exec_mode);
duke@435 450
duke@435 451 BasicType bt = info->return_type();
duke@435 452
duke@435 453 // If we have an exception pending, claim that the return type is an oop
duke@435 454 // so the deopt_blob does not overwrite the exception_oop.
duke@435 455
duke@435 456 if (exec_mode == Unpack_exception)
duke@435 457 bt = T_OBJECT;
duke@435 458
duke@435 459 // Cleanup thread deopt data
duke@435 460 cleanup_deopt_info(thread, array);
duke@435 461
duke@435 462 #ifndef PRODUCT
duke@435 463 if (VerifyStack) {
duke@435 464 ResourceMark res_mark;
duke@435 465
duke@435 466 // Verify that the just-unpacked frames match the interpreter's
duke@435 467 // notions of expression stack and locals
duke@435 468 vframeArray* cur_array = thread->vframe_array_last();
duke@435 469 RegisterMap rm(thread, false);
duke@435 470 rm.set_include_argument_oops(false);
duke@435 471 bool is_top_frame = true;
duke@435 472 int callee_size_of_parameters = 0;
duke@435 473 int callee_max_locals = 0;
duke@435 474 for (int i = 0; i < cur_array->frames(); i++) {
duke@435 475 vframeArrayElement* el = cur_array->element(i);
duke@435 476 frame* iframe = el->iframe();
duke@435 477 guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
duke@435 478
duke@435 479 // Get the oop map for this bci
duke@435 480 InterpreterOopMap mask;
duke@435 481 int cur_invoke_parameter_size = 0;
duke@435 482 bool try_next_mask = false;
duke@435 483 int next_mask_expression_stack_size = -1;
duke@435 484 int top_frame_expression_stack_adjustment = 0;
duke@435 485 methodHandle mh(thread, iframe->interpreter_frame_method());
duke@435 486 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
duke@435 487 BytecodeStream str(mh);
duke@435 488 str.set_start(iframe->interpreter_frame_bci());
duke@435 489 int max_bci = mh->code_size();
duke@435 490 // Get to the next bytecode if possible
duke@435 491 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
duke@435 492 // Check to see if we can grab the number of outgoing arguments
duke@435 493 // at an uncommon trap for an invoke (where the compiler
duke@435 494 // generates debug info before the invoke has executed)
duke@435 495 Bytecodes::Code cur_code = str.next();
duke@435 496 if (cur_code == Bytecodes::_invokevirtual ||
duke@435 497 cur_code == Bytecodes::_invokespecial ||
duke@435 498 cur_code == Bytecodes::_invokestatic ||
duke@435 499 cur_code == Bytecodes::_invokeinterface) {
duke@435 500 Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
duke@435 501 symbolHandle signature(thread, invoke->signature());
duke@435 502 ArgumentSizeComputer asc(signature);
duke@435 503 cur_invoke_parameter_size = asc.size();
duke@435 504 if (cur_code != Bytecodes::_invokestatic) {
duke@435 505 // Add in receiver
duke@435 506 ++cur_invoke_parameter_size;
duke@435 507 }
duke@435 508 }
duke@435 509 if (str.bci() < max_bci) {
duke@435 510 Bytecodes::Code bc = str.next();
duke@435 511 if (bc >= 0) {
duke@435 512 // The interpreter oop map generator reports results before
duke@435 513 // the current bytecode has executed except in the case of
duke@435 514 // calls. It seems to be hard to tell whether the compiler
duke@435 515 // has emitted debug information matching the "state before"
duke@435 516 // a given bytecode or the state after, so we try both
duke@435 517 switch (cur_code) {
duke@435 518 case Bytecodes::_invokevirtual:
duke@435 519 case Bytecodes::_invokespecial:
duke@435 520 case Bytecodes::_invokestatic:
duke@435 521 case Bytecodes::_invokeinterface:
duke@435 522 case Bytecodes::_athrow:
duke@435 523 break;
duke@435 524 default: {
duke@435 525 InterpreterOopMap next_mask;
duke@435 526 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
duke@435 527 next_mask_expression_stack_size = next_mask.expression_stack_size();
duke@435 528 // Need to subtract off the size of the result type of
duke@435 529 // the bytecode because this is not described in the
duke@435 530 // debug info but returned to the interpreter in the TOS
duke@435 531 // caching register
duke@435 532 BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
duke@435 533 if (bytecode_result_type != T_ILLEGAL) {
duke@435 534 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
duke@435 535 }
duke@435 536 assert(top_frame_expression_stack_adjustment >= 0, "");
duke@435 537 try_next_mask = true;
duke@435 538 break;
duke@435 539 }
duke@435 540 }
duke@435 541 }
duke@435 542 }
duke@435 543
duke@435 544 // Verify stack depth and oops in frame
duke@435 545 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
duke@435 546 if (!(
duke@435 547 /* SPARC */
duke@435 548 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
duke@435 549 /* x86 */
duke@435 550 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
duke@435 551 (try_next_mask &&
duke@435 552 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
duke@435 553 top_frame_expression_stack_adjustment))) ||
duke@435 554 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
duke@435 555 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
duke@435 556 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
duke@435 557 )) {
duke@435 558 ttyLocker ttyl;
duke@435 559
duke@435 560 // Print out some information that will help us debug the problem
duke@435 561 tty->print_cr("Wrong number of expression stack elements during deoptimization");
duke@435 562 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
duke@435 563 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements",
duke@435 564 iframe->interpreter_frame_expression_stack_size());
duke@435 565 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
duke@435 566 tty->print_cr(" try_next_mask = %d", try_next_mask);
duke@435 567 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
duke@435 568 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters);
duke@435 569 tty->print_cr(" callee_max_locals = %d", callee_max_locals);
duke@435 570 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
duke@435 571 tty->print_cr(" exec_mode = %d", exec_mode);
duke@435 572 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
duke@435 573 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
duke@435 574 tty->print_cr(" Interpreted frames:");
duke@435 575 for (int k = 0; k < cur_array->frames(); k++) {
duke@435 576 vframeArrayElement* el = cur_array->element(k);
duke@435 577 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
duke@435 578 }
duke@435 579 cur_array->print_on_2(tty);
duke@435 580 guarantee(false, "wrong number of expression stack elements during deopt");
duke@435 581 }
duke@435 582 VerifyOopClosure verify;
duke@435 583 iframe->oops_interpreted_do(&verify, &rm, false);
duke@435 584 callee_size_of_parameters = mh->size_of_parameters();
duke@435 585 callee_max_locals = mh->max_locals();
duke@435 586 is_top_frame = false;
duke@435 587 }
duke@435 588 }
duke@435 589 #endif /* !PRODUCT */
duke@435 590
duke@435 591
duke@435 592 return bt;
duke@435 593 JRT_END
duke@435 594
duke@435 595
duke@435 596 int Deoptimization::deoptimize_dependents() {
duke@435 597 Threads::deoptimized_wrt_marked_nmethods();
duke@435 598 return 0;
duke@435 599 }
duke@435 600
duke@435 601
duke@435 602 #ifdef COMPILER2
duke@435 603 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
duke@435 604 Handle pending_exception(thread->pending_exception());
duke@435 605 const char* exception_file = thread->exception_file();
duke@435 606 int exception_line = thread->exception_line();
duke@435 607 thread->clear_pending_exception();
duke@435 608
duke@435 609 for (int i = 0; i < objects->length(); i++) {
duke@435 610 assert(objects->at(i)->is_object(), "invalid debug information");
duke@435 611 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 612
duke@435 613 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 614 oop obj = NULL;
duke@435 615
duke@435 616 if (k->oop_is_instance()) {
duke@435 617 instanceKlass* ik = instanceKlass::cast(k());
duke@435 618 obj = ik->allocate_instance(CHECK_(false));
duke@435 619 } else if (k->oop_is_typeArray()) {
duke@435 620 typeArrayKlass* ak = typeArrayKlass::cast(k());
duke@435 621 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
duke@435 622 int len = sv->field_size() / type2size[ak->element_type()];
duke@435 623 obj = ak->allocate(len, CHECK_(false));
duke@435 624 } else if (k->oop_is_objArray()) {
duke@435 625 objArrayKlass* ak = objArrayKlass::cast(k());
duke@435 626 obj = ak->allocate(sv->field_size(), CHECK_(false));
duke@435 627 }
duke@435 628
duke@435 629 assert(obj != NULL, "allocation failed");
duke@435 630 assert(sv->value().is_null(), "redundant reallocation");
duke@435 631 sv->set_value(obj);
duke@435 632 }
duke@435 633
duke@435 634 if (pending_exception.not_null()) {
duke@435 635 thread->set_pending_exception(pending_exception(), exception_file, exception_line);
duke@435 636 }
duke@435 637
duke@435 638 return true;
duke@435 639 }
duke@435 640
duke@435 641 // This assumes that the fields are stored in ObjectValue in the same order
duke@435 642 // they are yielded by do_nonstatic_fields.
duke@435 643 class FieldReassigner: public FieldClosure {
duke@435 644 frame* _fr;
duke@435 645 RegisterMap* _reg_map;
duke@435 646 ObjectValue* _sv;
duke@435 647 instanceKlass* _ik;
duke@435 648 oop _obj;
duke@435 649
duke@435 650 int _i;
duke@435 651 public:
duke@435 652 FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
duke@435 653 _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
duke@435 654
duke@435 655 int i() const { return _i; }
duke@435 656
duke@435 657
duke@435 658 void do_field(fieldDescriptor* fd) {
duke@435 659 StackValue* value =
duke@435 660 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
duke@435 661 int offset = fd->offset();
duke@435 662 switch (fd->field_type()) {
duke@435 663 case T_OBJECT: case T_ARRAY:
duke@435 664 assert(value->type() == T_OBJECT, "Agreement.");
duke@435 665 _obj->obj_field_put(offset, value->get_obj()());
duke@435 666 break;
duke@435 667
duke@435 668 case T_LONG: case T_DOUBLE: {
duke@435 669 assert(value->type() == T_INT, "Agreement.");
duke@435 670 StackValue* low =
duke@435 671 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
duke@435 672 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
duke@435 673 _obj->long_field_put(offset, res);
duke@435 674 break;
duke@435 675 }
duke@435 676
duke@435 677 case T_INT: case T_FLOAT: // 4 bytes.
duke@435 678 assert(value->type() == T_INT, "Agreement.");
duke@435 679 _obj->int_field_put(offset, (jint)value->get_int());
duke@435 680 break;
duke@435 681
duke@435 682 case T_SHORT: case T_CHAR: // 2 bytes
duke@435 683 assert(value->type() == T_INT, "Agreement.");
duke@435 684 _obj->short_field_put(offset, (jshort)value->get_int());
duke@435 685 break;
duke@435 686
duke@435 687 case T_BOOLEAN: // 1 byte
duke@435 688 assert(value->type() == T_INT, "Agreement.");
duke@435 689 _obj->bool_field_put(offset, (jboolean)value->get_int());
duke@435 690 break;
duke@435 691
duke@435 692 default:
duke@435 693 ShouldNotReachHere();
duke@435 694 }
duke@435 695 _i++;
duke@435 696 }
duke@435 697 };
duke@435 698
duke@435 699 // restore elements of an eliminated type array
duke@435 700 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
duke@435 701 StackValue* low;
duke@435 702 jlong lval;
duke@435 703 int index = 0;
duke@435 704
duke@435 705 for (int i = 0; i < sv->field_size(); i++) {
duke@435 706 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 707 switch(type) {
duke@435 708 case T_BOOLEAN: obj->bool_at_put (index, (jboolean) value->get_int()); break;
duke@435 709 case T_BYTE: obj->byte_at_put (index, (jbyte) value->get_int()); break;
duke@435 710 case T_CHAR: obj->char_at_put (index, (jchar) value->get_int()); break;
duke@435 711 case T_SHORT: obj->short_at_put(index, (jshort) value->get_int()); break;
duke@435 712 case T_INT: obj->int_at_put (index, (jint) value->get_int()); break;
duke@435 713 case T_FLOAT: obj->float_at_put(index, (jfloat) value->get_int()); break;
duke@435 714 case T_LONG:
duke@435 715 case T_DOUBLE:
duke@435 716 low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
duke@435 717 lval = jlong_from((jint)value->get_int(), (jint)low->get_int());
duke@435 718 sv->value()->long_field_put(index, lval);
duke@435 719 break;
duke@435 720 default:
duke@435 721 ShouldNotReachHere();
duke@435 722 }
duke@435 723 index++;
duke@435 724 }
duke@435 725 }
duke@435 726
duke@435 727
duke@435 728 // restore fields of an eliminated object array
duke@435 729 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
duke@435 730 for (int i = 0; i < sv->field_size(); i++) {
duke@435 731 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 732 assert(value->type() == T_OBJECT, "object element expected");
duke@435 733 obj->obj_at_put(i, value->get_obj()());
duke@435 734 }
duke@435 735 }
duke@435 736
duke@435 737
duke@435 738 // restore fields of all eliminated objects and arrays
duke@435 739 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
duke@435 740 for (int i = 0; i < objects->length(); i++) {
duke@435 741 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 742 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 743 Handle obj = sv->value();
duke@435 744 assert(obj.not_null(), "reallocation was missed");
duke@435 745
duke@435 746 if (k->oop_is_instance()) {
duke@435 747 instanceKlass* ik = instanceKlass::cast(k());
duke@435 748 FieldReassigner reassign(fr, reg_map, sv, obj());
duke@435 749 ik->do_nonstatic_fields(&reassign);
duke@435 750 } else if (k->oop_is_typeArray()) {
duke@435 751 typeArrayKlass* ak = typeArrayKlass::cast(k());
duke@435 752 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
duke@435 753 } else if (k->oop_is_objArray()) {
duke@435 754 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
duke@435 755 }
duke@435 756 }
duke@435 757 }
duke@435 758
duke@435 759
duke@435 760 // relock objects for which synchronization was eliminated
duke@435 761 void Deoptimization::relock_objects(frame* fr, RegisterMap* reg_map, GrowableArray<MonitorValue*>* monitors) {
duke@435 762 for (int i = 0; i < monitors->length(); i++) {
duke@435 763 MonitorValue* mv = monitors->at(i);
duke@435 764 StackValue* owner = StackValue::create_stack_value(fr, reg_map, mv->owner());
duke@435 765 if (mv->eliminated()) {
duke@435 766 Handle obj = owner->get_obj();
duke@435 767 assert(obj.not_null(), "reallocation was missed");
duke@435 768 BasicLock* lock = StackValue::resolve_monitor_lock(fr, mv->basic_lock());
duke@435 769 lock->set_displaced_header(obj->mark());
duke@435 770 obj->set_mark((markOop) lock);
duke@435 771 }
duke@435 772 assert(owner->get_obj()->is_locked(), "object must be locked now");
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776
duke@435 777 #ifndef PRODUCT
duke@435 778 // print information about reallocated objects
duke@435 779 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
duke@435 780 fieldDescriptor fd;
duke@435 781
duke@435 782 for (int i = 0; i < objects->length(); i++) {
duke@435 783 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 784 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 785 Handle obj = sv->value();
duke@435 786
duke@435 787 tty->print(" object <" INTPTR_FORMAT "> of type ", sv->value()());
duke@435 788 k->as_klassOop()->print_value();
duke@435 789 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
duke@435 790 tty->cr();
duke@435 791
duke@435 792 if (Verbose) {
duke@435 793 k->oop_print_on(obj(), tty);
duke@435 794 }
duke@435 795 }
duke@435 796 }
duke@435 797 #endif
duke@435 798 #endif // COMPILER2
duke@435 799
duke@435 800 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
duke@435 801
duke@435 802 #ifndef PRODUCT
duke@435 803 if (TraceDeoptimization) {
duke@435 804 ttyLocker ttyl;
duke@435 805 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
duke@435 806 fr.print_on(tty);
duke@435 807 tty->print_cr(" Virtual frames (innermost first):");
duke@435 808 for (int index = 0; index < chunk->length(); index++) {
duke@435 809 compiledVFrame* vf = chunk->at(index);
duke@435 810 tty->print(" %2d - ", index);
duke@435 811 vf->print_value();
duke@435 812 int bci = chunk->at(index)->raw_bci();
duke@435 813 const char* code_name;
duke@435 814 if (bci == SynchronizationEntryBCI) {
duke@435 815 code_name = "sync entry";
duke@435 816 } else {
duke@435 817 Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
duke@435 818 code_name = Bytecodes::name(code);
duke@435 819 }
duke@435 820 tty->print(" - %s", code_name);
duke@435 821 tty->print_cr(" @ bci %d ", bci);
duke@435 822 if (Verbose) {
duke@435 823 vf->print();
duke@435 824 tty->cr();
duke@435 825 }
duke@435 826 }
duke@435 827 }
duke@435 828 #endif
duke@435 829
duke@435 830 // Register map for next frame (used for stack crawl). We capture
duke@435 831 // the state of the deopt'ing frame's caller. Thus if we need to
duke@435 832 // stuff a C2I adapter we can properly fill in the callee-save
duke@435 833 // register locations.
duke@435 834 frame caller = fr.sender(reg_map);
duke@435 835 int frame_size = caller.sp() - fr.sp();
duke@435 836
duke@435 837 frame sender = caller;
duke@435 838
duke@435 839 // Since the Java thread being deoptimized will eventually adjust it's own stack,
duke@435 840 // the vframeArray containing the unpacking information is allocated in the C heap.
duke@435 841 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
duke@435 842 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
duke@435 843
duke@435 844 // Compare the vframeArray to the collected vframes
duke@435 845 assert(array->structural_compare(thread, chunk), "just checking");
duke@435 846 Events::log("# vframes = %d", (intptr_t)chunk->length());
duke@435 847
duke@435 848 #ifndef PRODUCT
duke@435 849 if (TraceDeoptimization) {
duke@435 850 ttyLocker ttyl;
duke@435 851 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, array);
duke@435 852 if (Verbose) {
duke@435 853 int count = 0;
duke@435 854 // this used to leak deoptimizedVFrame like it was going out of style!!!
duke@435 855 for (int index = 0; index < array->frames(); index++ ) {
duke@435 856 vframeArrayElement* e = array->element(index);
duke@435 857 e->print(tty);
duke@435 858
duke@435 859 /*
duke@435 860 No printing yet.
duke@435 861 array->vframe_at(index)->print_activation(count++);
duke@435 862 // better as...
duke@435 863 array->print_activation_for(index, count++);
duke@435 864 */
duke@435 865 }
duke@435 866 }
duke@435 867 }
duke@435 868 #endif // PRODUCT
duke@435 869
duke@435 870 return array;
duke@435 871 }
duke@435 872
duke@435 873
duke@435 874 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
duke@435 875 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
duke@435 876 for (int i = 0; i < monitors->length(); i++) {
duke@435 877 MonitorInfo* mon_info = monitors->at(i);
duke@435 878 if (mon_info->owner() != NULL) {
duke@435 879 objects_to_revoke->append(Handle(mon_info->owner()));
duke@435 880 }
duke@435 881 }
duke@435 882 }
duke@435 883
duke@435 884
duke@435 885 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
duke@435 886 if (!UseBiasedLocking) {
duke@435 887 return;
duke@435 888 }
duke@435 889
duke@435 890 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 891
duke@435 892 // Unfortunately we don't have a RegisterMap available in most of
duke@435 893 // the places we want to call this routine so we need to walk the
duke@435 894 // stack again to update the register map.
duke@435 895 if (map == NULL || !map->update_map()) {
duke@435 896 StackFrameStream sfs(thread, true);
duke@435 897 bool found = false;
duke@435 898 while (!found && !sfs.is_done()) {
duke@435 899 frame* cur = sfs.current();
duke@435 900 sfs.next();
duke@435 901 found = cur->id() == fr.id();
duke@435 902 }
duke@435 903 assert(found, "frame to be deoptimized not found on target thread's stack");
duke@435 904 map = sfs.register_map();
duke@435 905 }
duke@435 906
duke@435 907 vframe* vf = vframe::new_vframe(&fr, map, thread);
duke@435 908 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 909 // Revoke monitors' biases in all scopes
duke@435 910 while (!cvf->is_top()) {
duke@435 911 collect_monitors(cvf, objects_to_revoke);
duke@435 912 cvf = compiledVFrame::cast(cvf->sender());
duke@435 913 }
duke@435 914 collect_monitors(cvf, objects_to_revoke);
duke@435 915
duke@435 916 if (SafepointSynchronize::is_at_safepoint()) {
duke@435 917 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 918 } else {
duke@435 919 BiasedLocking::revoke(objects_to_revoke);
duke@435 920 }
duke@435 921 }
duke@435 922
duke@435 923
duke@435 924 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
duke@435 925 if (!UseBiasedLocking) {
duke@435 926 return;
duke@435 927 }
duke@435 928
duke@435 929 assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
duke@435 930 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 931 for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
duke@435 932 if (jt->has_last_Java_frame()) {
duke@435 933 StackFrameStream sfs(jt, true);
duke@435 934 while (!sfs.is_done()) {
duke@435 935 frame* cur = sfs.current();
duke@435 936 if (cb->contains(cur->pc())) {
duke@435 937 vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
duke@435 938 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 939 // Revoke monitors' biases in all scopes
duke@435 940 while (!cvf->is_top()) {
duke@435 941 collect_monitors(cvf, objects_to_revoke);
duke@435 942 cvf = compiledVFrame::cast(cvf->sender());
duke@435 943 }
duke@435 944 collect_monitors(cvf, objects_to_revoke);
duke@435 945 }
duke@435 946 sfs.next();
duke@435 947 }
duke@435 948 }
duke@435 949 }
duke@435 950 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 951 }
duke@435 952
duke@435 953
duke@435 954 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
duke@435 955 assert(fr.can_be_deoptimized(), "checking frame type");
duke@435 956
duke@435 957 gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
duke@435 958
duke@435 959 EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
duke@435 960
duke@435 961 // Patch the nmethod so that when execution returns to it we will
duke@435 962 // deopt the execution state and return to the interpreter.
duke@435 963 fr.deoptimize(thread);
duke@435 964 }
duke@435 965
duke@435 966 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
duke@435 967 // Deoptimize only if the frame comes from compile code.
duke@435 968 // Do not deoptimize the frame which is already patched
duke@435 969 // during the execution of the loops below.
duke@435 970 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
duke@435 971 return;
duke@435 972 }
duke@435 973 ResourceMark rm;
duke@435 974 DeoptimizationMarker dm;
duke@435 975 if (UseBiasedLocking) {
duke@435 976 revoke_biases_of_monitors(thread, fr, map);
duke@435 977 }
duke@435 978 deoptimize_single_frame(thread, fr);
duke@435 979
duke@435 980 }
duke@435 981
duke@435 982
duke@435 983 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
duke@435 984 // Compute frame and register map based on thread and sp.
duke@435 985 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 986 frame fr = thread->last_frame();
duke@435 987 while (fr.id() != id) {
duke@435 988 fr = fr.sender(&reg_map);
duke@435 989 }
duke@435 990 deoptimize(thread, fr, &reg_map);
duke@435 991 }
duke@435 992
duke@435 993
duke@435 994 // JVMTI PopFrame support
duke@435 995 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
duke@435 996 {
duke@435 997 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
duke@435 998 }
duke@435 999 JRT_END
duke@435 1000
duke@435 1001
duke@435 1002 #ifdef COMPILER2
duke@435 1003 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
duke@435 1004 // in case of an unresolved klass entry, load the class.
duke@435 1005 if (constant_pool->tag_at(index).is_unresolved_klass()) {
duke@435 1006 klassOop tk = constant_pool->klass_at(index, CHECK);
duke@435 1007 return;
duke@435 1008 }
duke@435 1009
duke@435 1010 if (!constant_pool->tag_at(index).is_symbol()) return;
duke@435 1011
duke@435 1012 Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
duke@435 1013 symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
duke@435 1014
duke@435 1015 // class name?
duke@435 1016 if (symbol->byte_at(0) != '(') {
duke@435 1017 Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
duke@435 1018 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
duke@435 1019 return;
duke@435 1020 }
duke@435 1021
duke@435 1022 // then it must be a signature!
duke@435 1023 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
duke@435 1024 if (ss.is_object()) {
duke@435 1025 symbolOop s = ss.as_symbol(CHECK);
duke@435 1026 symbolHandle class_name (THREAD, s);
duke@435 1027 Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
duke@435 1028 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
duke@435 1029 }
duke@435 1030 }
duke@435 1031 }
duke@435 1032
duke@435 1033
duke@435 1034 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
duke@435 1035 EXCEPTION_MARK;
duke@435 1036 load_class_by_index(constant_pool, index, THREAD);
duke@435 1037 if (HAS_PENDING_EXCEPTION) {
duke@435 1038 // Exception happened during classloading. We ignore the exception here, since it
duke@435 1039 // is going to be rethrown since the current activation is going to be deoptimzied and
duke@435 1040 // the interpreter will re-execute the bytecode.
duke@435 1041 CLEAR_PENDING_EXCEPTION;
duke@435 1042 }
duke@435 1043 }
duke@435 1044
duke@435 1045 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
duke@435 1046 HandleMark hm;
duke@435 1047
duke@435 1048 // uncommon_trap() is called at the beginning of the uncommon trap
duke@435 1049 // handler. Note this fact before we start generating temporary frames
duke@435 1050 // that can confuse an asynchronous stack walker. This counter is
duke@435 1051 // decremented at the end of unpack_frames().
duke@435 1052 thread->inc_in_deopt_handler();
duke@435 1053
duke@435 1054 // We need to update the map if we have biased locking.
duke@435 1055 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1056 frame stub_frame = thread->last_frame();
duke@435 1057 frame fr = stub_frame.sender(&reg_map);
duke@435 1058 // Make sure the calling nmethod is not getting deoptimized and removed
duke@435 1059 // before we are done with it.
duke@435 1060 nmethodLocker nl(fr.pc());
duke@435 1061
duke@435 1062 {
duke@435 1063 ResourceMark rm;
duke@435 1064
duke@435 1065 // Revoke biases of any monitors in the frame to ensure we can migrate them
duke@435 1066 revoke_biases_of_monitors(thread, fr, &reg_map);
duke@435 1067
duke@435 1068 DeoptReason reason = trap_request_reason(trap_request);
duke@435 1069 DeoptAction action = trap_request_action(trap_request);
duke@435 1070 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
duke@435 1071
duke@435 1072 Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
duke@435 1073 vframe* vf = vframe::new_vframe(&fr, &reg_map, thread);
duke@435 1074 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1075
duke@435 1076 nmethod* nm = cvf->code();
duke@435 1077
duke@435 1078 ScopeDesc* trap_scope = cvf->scope();
duke@435 1079 methodHandle trap_method = trap_scope->method();
duke@435 1080 int trap_bci = trap_scope->bci();
duke@435 1081 Bytecodes::Code trap_bc = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
duke@435 1082
duke@435 1083 // Record this event in the histogram.
duke@435 1084 gather_statistics(reason, action, trap_bc);
duke@435 1085
duke@435 1086 // Ensure that we can record deopt. history:
duke@435 1087 bool create_if_missing = ProfileTraps;
duke@435 1088
duke@435 1089 methodDataHandle trap_mdo
duke@435 1090 (THREAD, get_method_data(thread, trap_method, create_if_missing));
duke@435 1091
duke@435 1092 // Print a bunch of diagnostics, if requested.
duke@435 1093 if (TraceDeoptimization || LogCompilation) {
duke@435 1094 ResourceMark rm;
duke@435 1095 ttyLocker ttyl;
duke@435 1096 char buf[100];
duke@435 1097 if (xtty != NULL) {
duke@435 1098 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
duke@435 1099 os::current_thread_id(),
duke@435 1100 format_trap_request(buf, sizeof(buf), trap_request));
duke@435 1101 nm->log_identity(xtty);
duke@435 1102 }
duke@435 1103 symbolHandle class_name;
duke@435 1104 bool unresolved = false;
duke@435 1105 if (unloaded_class_index >= 0) {
duke@435 1106 constantPoolHandle constants (THREAD, trap_method->constants());
duke@435 1107 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
duke@435 1108 class_name = symbolHandle(THREAD,
duke@435 1109 constants->klass_name_at(unloaded_class_index));
duke@435 1110 unresolved = true;
duke@435 1111 if (xtty != NULL)
duke@435 1112 xtty->print(" unresolved='1'");
duke@435 1113 } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
duke@435 1114 class_name = symbolHandle(THREAD,
duke@435 1115 constants->symbol_at(unloaded_class_index));
duke@435 1116 }
duke@435 1117 if (xtty != NULL)
duke@435 1118 xtty->name(class_name);
duke@435 1119 }
duke@435 1120 if (xtty != NULL && trap_mdo.not_null()) {
duke@435 1121 // Dump the relevant MDO state.
duke@435 1122 // This is the deopt count for the current reason, any previous
duke@435 1123 // reasons or recompiles seen at this point.
duke@435 1124 int dcnt = trap_mdo->trap_count(reason);
duke@435 1125 if (dcnt != 0)
duke@435 1126 xtty->print(" count='%d'", dcnt);
duke@435 1127 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
duke@435 1128 int dos = (pdata == NULL)? 0: pdata->trap_state();
duke@435 1129 if (dos != 0) {
duke@435 1130 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
duke@435 1131 if (trap_state_is_recompiled(dos)) {
duke@435 1132 int recnt2 = trap_mdo->overflow_recompile_count();
duke@435 1133 if (recnt2 != 0)
duke@435 1134 xtty->print(" recompiles2='%d'", recnt2);
duke@435 1135 }
duke@435 1136 }
duke@435 1137 }
duke@435 1138 if (xtty != NULL) {
duke@435 1139 xtty->stamp();
duke@435 1140 xtty->end_head();
duke@435 1141 }
duke@435 1142 if (TraceDeoptimization) { // make noise on the tty
duke@435 1143 tty->print("Uncommon trap occurred in");
duke@435 1144 nm->method()->print_short_name(tty);
duke@435 1145 tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
duke@435 1146 fr.pc(),
duke@435 1147 (int) os::current_thread_id(),
duke@435 1148 trap_reason_name(reason),
duke@435 1149 trap_action_name(action),
duke@435 1150 unloaded_class_index);
duke@435 1151 if (class_name.not_null()) {
duke@435 1152 tty->print(unresolved ? " unresolved class: " : " symbol: ");
duke@435 1153 class_name->print_symbol_on(tty);
duke@435 1154 }
duke@435 1155 tty->cr();
duke@435 1156 }
duke@435 1157 if (xtty != NULL) {
duke@435 1158 // Log the precise location of the trap.
duke@435 1159 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
duke@435 1160 xtty->begin_elem("jvms bci='%d'", sd->bci());
duke@435 1161 xtty->method(sd->method());
duke@435 1162 xtty->end_elem();
duke@435 1163 if (sd->is_top()) break;
duke@435 1164 }
duke@435 1165 xtty->tail("uncommon_trap");
duke@435 1166 }
duke@435 1167 }
duke@435 1168 // (End diagnostic printout.)
duke@435 1169
duke@435 1170 // Load class if necessary
duke@435 1171 if (unloaded_class_index >= 0) {
duke@435 1172 constantPoolHandle constants(THREAD, trap_method->constants());
duke@435 1173 load_class_by_index(constants, unloaded_class_index);
duke@435 1174 }
duke@435 1175
duke@435 1176 // Flush the nmethod if necessary and desirable.
duke@435 1177 //
duke@435 1178 // We need to avoid situations where we are re-flushing the nmethod
duke@435 1179 // because of a hot deoptimization site. Repeated flushes at the same
duke@435 1180 // point need to be detected by the compiler and avoided. If the compiler
duke@435 1181 // cannot avoid them (or has a bug and "refuses" to avoid them), this
duke@435 1182 // module must take measures to avoid an infinite cycle of recompilation
duke@435 1183 // and deoptimization. There are several such measures:
duke@435 1184 //
duke@435 1185 // 1. If a recompilation is ordered a second time at some site X
duke@435 1186 // and for the same reason R, the action is adjusted to 'reinterpret',
duke@435 1187 // to give the interpreter time to exercise the method more thoroughly.
duke@435 1188 // If this happens, the method's overflow_recompile_count is incremented.
duke@435 1189 //
duke@435 1190 // 2. If the compiler fails to reduce the deoptimization rate, then
duke@435 1191 // the method's overflow_recompile_count will begin to exceed the set
duke@435 1192 // limit PerBytecodeRecompilationCutoff. If this happens, the action
duke@435 1193 // is adjusted to 'make_not_compilable', and the method is abandoned
duke@435 1194 // to the interpreter. This is a performance hit for hot methods,
duke@435 1195 // but is better than a disastrous infinite cycle of recompilations.
duke@435 1196 // (Actually, only the method containing the site X is abandoned.)
duke@435 1197 //
duke@435 1198 // 3. In parallel with the previous measures, if the total number of
duke@435 1199 // recompilations of a method exceeds the much larger set limit
duke@435 1200 // PerMethodRecompilationCutoff, the method is abandoned.
duke@435 1201 // This should only happen if the method is very large and has
duke@435 1202 // many "lukewarm" deoptimizations. The code which enforces this
duke@435 1203 // limit is elsewhere (class nmethod, class methodOopDesc).
duke@435 1204 //
duke@435 1205 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
duke@435 1206 // to recompile at each bytecode independently of the per-BCI cutoff.
duke@435 1207 //
duke@435 1208 // The decision to update code is up to the compiler, and is encoded
duke@435 1209 // in the Action_xxx code. If the compiler requests Action_none
duke@435 1210 // no trap state is changed, no compiled code is changed, and the
duke@435 1211 // computation suffers along in the interpreter.
duke@435 1212 //
duke@435 1213 // The other action codes specify various tactics for decompilation
duke@435 1214 // and recompilation. Action_maybe_recompile is the loosest, and
duke@435 1215 // allows the compiled code to stay around until enough traps are seen,
duke@435 1216 // and until the compiler gets around to recompiling the trapping method.
duke@435 1217 //
duke@435 1218 // The other actions cause immediate removal of the present code.
duke@435 1219
duke@435 1220 bool update_trap_state = true;
duke@435 1221 bool make_not_entrant = false;
duke@435 1222 bool make_not_compilable = false;
duke@435 1223 bool reset_counters = false;
duke@435 1224 switch (action) {
duke@435 1225 case Action_none:
duke@435 1226 // Keep the old code.
duke@435 1227 update_trap_state = false;
duke@435 1228 break;
duke@435 1229 case Action_maybe_recompile:
duke@435 1230 // Do not need to invalidate the present code, but we can
duke@435 1231 // initiate another
duke@435 1232 // Start compiler without (necessarily) invalidating the nmethod.
duke@435 1233 // The system will tolerate the old code, but new code should be
duke@435 1234 // generated when possible.
duke@435 1235 break;
duke@435 1236 case Action_reinterpret:
duke@435 1237 // Go back into the interpreter for a while, and then consider
duke@435 1238 // recompiling form scratch.
duke@435 1239 make_not_entrant = true;
duke@435 1240 // Reset invocation counter for outer most method.
duke@435 1241 // This will allow the interpreter to exercise the bytecodes
duke@435 1242 // for a while before recompiling.
duke@435 1243 // By contrast, Action_make_not_entrant is immediate.
duke@435 1244 //
duke@435 1245 // Note that the compiler will track null_check, null_assert,
duke@435 1246 // range_check, and class_check events and log them as if they
duke@435 1247 // had been traps taken from compiled code. This will update
duke@435 1248 // the MDO trap history so that the next compilation will
duke@435 1249 // properly detect hot trap sites.
duke@435 1250 reset_counters = true;
duke@435 1251 break;
duke@435 1252 case Action_make_not_entrant:
duke@435 1253 // Request immediate recompilation, and get rid of the old code.
duke@435 1254 // Make them not entrant, so next time they are called they get
duke@435 1255 // recompiled. Unloaded classes are loaded now so recompile before next
duke@435 1256 // time they are called. Same for uninitialized. The interpreter will
duke@435 1257 // link the missing class, if any.
duke@435 1258 make_not_entrant = true;
duke@435 1259 break;
duke@435 1260 case Action_make_not_compilable:
duke@435 1261 // Give up on compiling this method at all.
duke@435 1262 make_not_entrant = true;
duke@435 1263 make_not_compilable = true;
duke@435 1264 break;
duke@435 1265 default:
duke@435 1266 ShouldNotReachHere();
duke@435 1267 }
duke@435 1268
duke@435 1269 // Setting +ProfileTraps fixes the following, on all platforms:
duke@435 1270 // 4852688: ProfileInterpreter is off by default for ia64. The result is
duke@435 1271 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
duke@435 1272 // recompile relies on a methodDataOop to record heroic opt failures.
duke@435 1273
duke@435 1274 // Whether the interpreter is producing MDO data or not, we also need
duke@435 1275 // to use the MDO to detect hot deoptimization points and control
duke@435 1276 // aggressive optimization.
duke@435 1277 if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
duke@435 1278 assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
duke@435 1279 uint this_trap_count = 0;
duke@435 1280 bool maybe_prior_trap = false;
duke@435 1281 bool maybe_prior_recompile = false;
duke@435 1282 ProfileData* pdata
duke@435 1283 = query_update_method_data(trap_mdo, trap_bci, reason,
duke@435 1284 //outputs:
duke@435 1285 this_trap_count,
duke@435 1286 maybe_prior_trap,
duke@435 1287 maybe_prior_recompile);
duke@435 1288 // Because the interpreter also counts null, div0, range, and class
duke@435 1289 // checks, these traps from compiled code are double-counted.
duke@435 1290 // This is harmless; it just means that the PerXTrapLimit values
duke@435 1291 // are in effect a little smaller than they look.
duke@435 1292
duke@435 1293 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1294 if (per_bc_reason != Reason_none) {
duke@435 1295 // Now take action based on the partially known per-BCI history.
duke@435 1296 if (maybe_prior_trap
duke@435 1297 && this_trap_count >= (uint)PerBytecodeTrapLimit) {
duke@435 1298 // If there are too many traps at this BCI, force a recompile.
duke@435 1299 // This will allow the compiler to see the limit overflow, and
duke@435 1300 // take corrective action, if possible. The compiler generally
duke@435 1301 // does not use the exact PerBytecodeTrapLimit value, but instead
duke@435 1302 // changes its tactics if it sees any traps at all. This provides
duke@435 1303 // a little hysteresis, delaying a recompile until a trap happens
duke@435 1304 // several times.
duke@435 1305 //
duke@435 1306 // Actually, since there is only one bit of counter per BCI,
duke@435 1307 // the possible per-BCI counts are {0,1,(per-method count)}.
duke@435 1308 // This produces accurate results if in fact there is only
duke@435 1309 // one hot trap site, but begins to get fuzzy if there are
duke@435 1310 // many sites. For example, if there are ten sites each
duke@435 1311 // trapping two or more times, they each get the blame for
duke@435 1312 // all of their traps.
duke@435 1313 make_not_entrant = true;
duke@435 1314 }
duke@435 1315
duke@435 1316 // Detect repeated recompilation at the same BCI, and enforce a limit.
duke@435 1317 if (make_not_entrant && maybe_prior_recompile) {
duke@435 1318 // More than one recompile at this point.
duke@435 1319 trap_mdo->inc_overflow_recompile_count();
duke@435 1320 if (maybe_prior_trap
duke@435 1321 && ((uint)trap_mdo->overflow_recompile_count()
duke@435 1322 > (uint)PerBytecodeRecompilationCutoff)) {
duke@435 1323 // Give up on the method containing the bad BCI.
duke@435 1324 if (trap_method() == nm->method()) {
duke@435 1325 make_not_compilable = true;
duke@435 1326 } else {
duke@435 1327 trap_method->set_not_compilable();
duke@435 1328 // But give grace to the enclosing nm->method().
duke@435 1329 }
duke@435 1330 }
duke@435 1331 }
duke@435 1332 } else {
duke@435 1333 // For reasons which are not recorded per-bytecode, we simply
duke@435 1334 // force recompiles unconditionally.
duke@435 1335 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
duke@435 1336 make_not_entrant = true;
duke@435 1337 }
duke@435 1338
duke@435 1339 // Go back to the compiler if there are too many traps in this method.
duke@435 1340 if (this_trap_count >= (uint)PerMethodTrapLimit) {
duke@435 1341 // If there are too many traps in this method, force a recompile.
duke@435 1342 // This will allow the compiler to see the limit overflow, and
duke@435 1343 // take corrective action, if possible.
duke@435 1344 // (This condition is an unlikely backstop only, because the
duke@435 1345 // PerBytecodeTrapLimit is more likely to take effect first,
duke@435 1346 // if it is applicable.)
duke@435 1347 make_not_entrant = true;
duke@435 1348 }
duke@435 1349
duke@435 1350 // Here's more hysteresis: If there has been a recompile at
duke@435 1351 // this trap point already, run the method in the interpreter
duke@435 1352 // for a while to exercise it more thoroughly.
duke@435 1353 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
duke@435 1354 reset_counters = true;
duke@435 1355 }
duke@435 1356
duke@435 1357 if (make_not_entrant && pdata != NULL) {
duke@435 1358 // Record the recompilation event, if any.
duke@435 1359 int tstate0 = pdata->trap_state();
duke@435 1360 int tstate1 = trap_state_set_recompiled(tstate0, true);
duke@435 1361 if (tstate1 != tstate0)
duke@435 1362 pdata->set_trap_state(tstate1);
duke@435 1363 }
duke@435 1364 }
duke@435 1365
duke@435 1366 // Take requested actions on the method:
duke@435 1367
duke@435 1368 // Reset invocation counters
duke@435 1369 if (reset_counters) {
duke@435 1370 if (nm->is_osr_method())
duke@435 1371 reset_invocation_counter(trap_scope, CompileThreshold);
duke@435 1372 else
duke@435 1373 reset_invocation_counter(trap_scope);
duke@435 1374 }
duke@435 1375
duke@435 1376 // Recompile
duke@435 1377 if (make_not_entrant) {
duke@435 1378 nm->make_not_entrant();
duke@435 1379 }
duke@435 1380
duke@435 1381 // Give up compiling
duke@435 1382 if (make_not_compilable) {
duke@435 1383 assert(make_not_entrant, "consistent");
duke@435 1384 nm->method()->set_not_compilable();
duke@435 1385 }
duke@435 1386
duke@435 1387 } // Free marked resources
duke@435 1388
duke@435 1389 }
duke@435 1390 JRT_END
duke@435 1391
duke@435 1392 methodDataOop
duke@435 1393 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
duke@435 1394 bool create_if_missing) {
duke@435 1395 Thread* THREAD = thread;
duke@435 1396 methodDataOop mdo = m()->method_data();
duke@435 1397 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
duke@435 1398 // Build an MDO. Ignore errors like OutOfMemory;
duke@435 1399 // that simply means we won't have an MDO to update.
duke@435 1400 methodOopDesc::build_interpreter_method_data(m, THREAD);
duke@435 1401 if (HAS_PENDING_EXCEPTION) {
duke@435 1402 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
duke@435 1403 CLEAR_PENDING_EXCEPTION;
duke@435 1404 }
duke@435 1405 mdo = m()->method_data();
duke@435 1406 }
duke@435 1407 return mdo;
duke@435 1408 }
duke@435 1409
duke@435 1410 ProfileData*
duke@435 1411 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
duke@435 1412 int trap_bci,
duke@435 1413 Deoptimization::DeoptReason reason,
duke@435 1414 //outputs:
duke@435 1415 uint& ret_this_trap_count,
duke@435 1416 bool& ret_maybe_prior_trap,
duke@435 1417 bool& ret_maybe_prior_recompile) {
duke@435 1418 uint prior_trap_count = trap_mdo->trap_count(reason);
duke@435 1419 uint this_trap_count = trap_mdo->inc_trap_count(reason);
duke@435 1420
duke@435 1421 // If the runtime cannot find a place to store trap history,
duke@435 1422 // it is estimated based on the general condition of the method.
duke@435 1423 // If the method has ever been recompiled, or has ever incurred
duke@435 1424 // a trap with the present reason , then this BCI is assumed
duke@435 1425 // (pessimistically) to be the culprit.
duke@435 1426 bool maybe_prior_trap = (prior_trap_count != 0);
duke@435 1427 bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
duke@435 1428 ProfileData* pdata = NULL;
duke@435 1429
duke@435 1430
duke@435 1431 // For reasons which are recorded per bytecode, we check per-BCI data.
duke@435 1432 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1433 if (per_bc_reason != Reason_none) {
duke@435 1434 // Find the profile data for this BCI. If there isn't one,
duke@435 1435 // try to allocate one from the MDO's set of spares.
duke@435 1436 // This will let us detect a repeated trap at this point.
duke@435 1437 pdata = trap_mdo->allocate_bci_to_data(trap_bci);
duke@435 1438
duke@435 1439 if (pdata != NULL) {
duke@435 1440 // Query the trap state of this profile datum.
duke@435 1441 int tstate0 = pdata->trap_state();
duke@435 1442 if (!trap_state_has_reason(tstate0, per_bc_reason))
duke@435 1443 maybe_prior_trap = false;
duke@435 1444 if (!trap_state_is_recompiled(tstate0))
duke@435 1445 maybe_prior_recompile = false;
duke@435 1446
duke@435 1447 // Update the trap state of this profile datum.
duke@435 1448 int tstate1 = tstate0;
duke@435 1449 // Record the reason.
duke@435 1450 tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
duke@435 1451 // Store the updated state on the MDO, for next time.
duke@435 1452 if (tstate1 != tstate0)
duke@435 1453 pdata->set_trap_state(tstate1);
duke@435 1454 } else {
duke@435 1455 if (LogCompilation && xtty != NULL)
duke@435 1456 // Missing MDP? Leave a small complaint in the log.
duke@435 1457 xtty->elem("missing_mdp bci='%d'", trap_bci);
duke@435 1458 }
duke@435 1459 }
duke@435 1460
duke@435 1461 // Return results:
duke@435 1462 ret_this_trap_count = this_trap_count;
duke@435 1463 ret_maybe_prior_trap = maybe_prior_trap;
duke@435 1464 ret_maybe_prior_recompile = maybe_prior_recompile;
duke@435 1465 return pdata;
duke@435 1466 }
duke@435 1467
duke@435 1468 void
duke@435 1469 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
duke@435 1470 ResourceMark rm;
duke@435 1471 // Ignored outputs:
duke@435 1472 uint ignore_this_trap_count;
duke@435 1473 bool ignore_maybe_prior_trap;
duke@435 1474 bool ignore_maybe_prior_recompile;
duke@435 1475 query_update_method_data(trap_mdo, trap_bci,
duke@435 1476 (DeoptReason)reason,
duke@435 1477 ignore_this_trap_count,
duke@435 1478 ignore_maybe_prior_trap,
duke@435 1479 ignore_maybe_prior_recompile);
duke@435 1480 }
duke@435 1481
duke@435 1482 void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
duke@435 1483 ScopeDesc* sd = trap_scope;
duke@435 1484 for (; !sd->is_top(); sd = sd->sender()) {
duke@435 1485 // Reset ICs of inlined methods, since they can trigger compilations also.
duke@435 1486 sd->method()->invocation_counter()->reset();
duke@435 1487 }
duke@435 1488 InvocationCounter* c = sd->method()->invocation_counter();
duke@435 1489 if (top_count != _no_count) {
duke@435 1490 // It was an OSR method, so bump the count higher.
duke@435 1491 c->set(c->state(), top_count);
duke@435 1492 } else {
duke@435 1493 c->reset();
duke@435 1494 }
duke@435 1495 sd->method()->backedge_counter()->reset();
duke@435 1496 }
duke@435 1497
duke@435 1498 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
duke@435 1499
duke@435 1500 // Still in Java no safepoints
duke@435 1501 {
duke@435 1502 // This enters VM and may safepoint
duke@435 1503 uncommon_trap_inner(thread, trap_request);
duke@435 1504 }
duke@435 1505 return fetch_unroll_info_helper(thread);
duke@435 1506 }
duke@435 1507
duke@435 1508 // Local derived constants.
duke@435 1509 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
duke@435 1510 const int DS_REASON_MASK = DataLayout::trap_mask >> 1;
duke@435 1511 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
duke@435 1512
duke@435 1513 //---------------------------trap_state_reason---------------------------------
duke@435 1514 Deoptimization::DeoptReason
duke@435 1515 Deoptimization::trap_state_reason(int trap_state) {
duke@435 1516 // This assert provides the link between the width of DataLayout::trap_bits
duke@435 1517 // and the encoding of "recorded" reasons. It ensures there are enough
duke@435 1518 // bits to store all needed reasons in the per-BCI MDO profile.
duke@435 1519 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1520 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1521 trap_state -= recompile_bit;
duke@435 1522 if (trap_state == DS_REASON_MASK) {
duke@435 1523 return Reason_many;
duke@435 1524 } else {
duke@435 1525 assert((int)Reason_none == 0, "state=0 => Reason_none");
duke@435 1526 return (DeoptReason)trap_state;
duke@435 1527 }
duke@435 1528 }
duke@435 1529 //-------------------------trap_state_has_reason-------------------------------
duke@435 1530 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1531 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
duke@435 1532 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1533 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1534 trap_state -= recompile_bit;
duke@435 1535 if (trap_state == DS_REASON_MASK) {
duke@435 1536 return -1; // true, unspecifically (bottom of state lattice)
duke@435 1537 } else if (trap_state == reason) {
duke@435 1538 return 1; // true, definitely
duke@435 1539 } else if (trap_state == 0) {
duke@435 1540 return 0; // false, definitely (top of state lattice)
duke@435 1541 } else {
duke@435 1542 return 0; // false, definitely
duke@435 1543 }
duke@435 1544 }
duke@435 1545 //-------------------------trap_state_add_reason-------------------------------
duke@435 1546 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
duke@435 1547 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
duke@435 1548 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1549 trap_state -= recompile_bit;
duke@435 1550 if (trap_state == DS_REASON_MASK) {
duke@435 1551 return trap_state + recompile_bit; // already at state lattice bottom
duke@435 1552 } else if (trap_state == reason) {
duke@435 1553 return trap_state + recompile_bit; // the condition is already true
duke@435 1554 } else if (trap_state == 0) {
duke@435 1555 return reason + recompile_bit; // no condition has yet been true
duke@435 1556 } else {
duke@435 1557 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom
duke@435 1558 }
duke@435 1559 }
duke@435 1560 //-----------------------trap_state_is_recompiled------------------------------
duke@435 1561 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1562 return (trap_state & DS_RECOMPILE_BIT) != 0;
duke@435 1563 }
duke@435 1564 //-----------------------trap_state_set_recompiled-----------------------------
duke@435 1565 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
duke@435 1566 if (z) return trap_state | DS_RECOMPILE_BIT;
duke@435 1567 else return trap_state & ~DS_RECOMPILE_BIT;
duke@435 1568 }
duke@435 1569 //---------------------------format_trap_state---------------------------------
duke@435 1570 // This is used for debugging and diagnostics, including hotspot.log output.
duke@435 1571 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1572 int trap_state) {
duke@435 1573 DeoptReason reason = trap_state_reason(trap_state);
duke@435 1574 bool recomp_flag = trap_state_is_recompiled(trap_state);
duke@435 1575 // Re-encode the state from its decoded components.
duke@435 1576 int decoded_state = 0;
duke@435 1577 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
duke@435 1578 decoded_state = trap_state_add_reason(decoded_state, reason);
duke@435 1579 if (recomp_flag)
duke@435 1580 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
duke@435 1581 // If the state re-encodes properly, format it symbolically.
duke@435 1582 // Because this routine is used for debugging and diagnostics,
duke@435 1583 // be robust even if the state is a strange value.
duke@435 1584 size_t len;
duke@435 1585 if (decoded_state != trap_state) {
duke@435 1586 // Random buggy state that doesn't decode??
duke@435 1587 len = jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1588 } else {
duke@435 1589 len = jio_snprintf(buf, buflen, "%s%s",
duke@435 1590 trap_reason_name(reason),
duke@435 1591 recomp_flag ? " recompiled" : "");
duke@435 1592 }
duke@435 1593 if (len >= buflen)
duke@435 1594 buf[buflen-1] = '\0';
duke@435 1595 return buf;
duke@435 1596 }
duke@435 1597
duke@435 1598
duke@435 1599 //--------------------------------statics--------------------------------------
duke@435 1600 Deoptimization::DeoptAction Deoptimization::_unloaded_action
duke@435 1601 = Deoptimization::Action_reinterpret;
duke@435 1602 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
duke@435 1603 // Note: Keep this in sync. with enum DeoptReason.
duke@435 1604 "none",
duke@435 1605 "null_check",
duke@435 1606 "null_assert",
duke@435 1607 "range_check",
duke@435 1608 "class_check",
duke@435 1609 "array_check",
duke@435 1610 "intrinsic",
duke@435 1611 "unloaded",
duke@435 1612 "uninitialized",
duke@435 1613 "unreached",
duke@435 1614 "unhandled",
duke@435 1615 "constraint",
duke@435 1616 "div0_check",
duke@435 1617 "age"
duke@435 1618 };
duke@435 1619 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
duke@435 1620 // Note: Keep this in sync. with enum DeoptAction.
duke@435 1621 "none",
duke@435 1622 "maybe_recompile",
duke@435 1623 "reinterpret",
duke@435 1624 "make_not_entrant",
duke@435 1625 "make_not_compilable"
duke@435 1626 };
duke@435 1627
duke@435 1628 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1629 if (reason == Reason_many) return "many";
duke@435 1630 if ((uint)reason < Reason_LIMIT)
duke@435 1631 return _trap_reason_name[reason];
duke@435 1632 static char buf[20];
duke@435 1633 sprintf(buf, "reason%d", reason);
duke@435 1634 return buf;
duke@435 1635 }
duke@435 1636 const char* Deoptimization::trap_action_name(int action) {
duke@435 1637 if ((uint)action < Action_LIMIT)
duke@435 1638 return _trap_action_name[action];
duke@435 1639 static char buf[20];
duke@435 1640 sprintf(buf, "action%d", action);
duke@435 1641 return buf;
duke@435 1642 }
duke@435 1643
duke@435 1644 // This is used for debugging and diagnostics, including hotspot.log output.
duke@435 1645 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
duke@435 1646 int trap_request) {
duke@435 1647 jint unloaded_class_index = trap_request_index(trap_request);
duke@435 1648 const char* reason = trap_reason_name(trap_request_reason(trap_request));
duke@435 1649 const char* action = trap_action_name(trap_request_action(trap_request));
duke@435 1650 size_t len;
duke@435 1651 if (unloaded_class_index < 0) {
duke@435 1652 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
duke@435 1653 reason, action);
duke@435 1654 } else {
duke@435 1655 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
duke@435 1656 reason, action, unloaded_class_index);
duke@435 1657 }
duke@435 1658 if (len >= buflen)
duke@435 1659 buf[buflen-1] = '\0';
duke@435 1660 return buf;
duke@435 1661 }
duke@435 1662
duke@435 1663 juint Deoptimization::_deoptimization_hist
duke@435 1664 [Deoptimization::Reason_LIMIT]
duke@435 1665 [1 + Deoptimization::Action_LIMIT]
duke@435 1666 [Deoptimization::BC_CASE_LIMIT]
duke@435 1667 = {0};
duke@435 1668
duke@435 1669 enum {
duke@435 1670 LSB_BITS = 8,
duke@435 1671 LSB_MASK = right_n_bits(LSB_BITS)
duke@435 1672 };
duke@435 1673
duke@435 1674 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1675 Bytecodes::Code bc) {
duke@435 1676 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1677 assert(action >= 0 && action < Action_LIMIT, "oob");
duke@435 1678 _deoptimization_hist[Reason_none][0][0] += 1; // total
duke@435 1679 _deoptimization_hist[reason][0][0] += 1; // per-reason total
duke@435 1680 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1681 juint* bc_counter_addr = NULL;
duke@435 1682 juint bc_counter = 0;
duke@435 1683 // Look for an unused counter, or an exact match to this BC.
duke@435 1684 if (bc != Bytecodes::_illegal) {
duke@435 1685 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1686 juint* counter_addr = &cases[bc_case];
duke@435 1687 juint counter = *counter_addr;
duke@435 1688 if ((counter == 0 && bc_counter_addr == NULL)
duke@435 1689 || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
duke@435 1690 // this counter is either free or is already devoted to this BC
duke@435 1691 bc_counter_addr = counter_addr;
duke@435 1692 bc_counter = counter | bc;
duke@435 1693 }
duke@435 1694 }
duke@435 1695 }
duke@435 1696 if (bc_counter_addr == NULL) {
duke@435 1697 // Overflow, or no given bytecode.
duke@435 1698 bc_counter_addr = &cases[BC_CASE_LIMIT-1];
duke@435 1699 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB
duke@435 1700 }
duke@435 1701 *bc_counter_addr = bc_counter + (1 << LSB_BITS);
duke@435 1702 }
duke@435 1703
duke@435 1704 jint Deoptimization::total_deoptimization_count() {
duke@435 1705 return _deoptimization_hist[Reason_none][0][0];
duke@435 1706 }
duke@435 1707
duke@435 1708 jint Deoptimization::deoptimization_count(DeoptReason reason) {
duke@435 1709 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1710 return _deoptimization_hist[reason][0][0];
duke@435 1711 }
duke@435 1712
duke@435 1713 void Deoptimization::print_statistics() {
duke@435 1714 juint total = total_deoptimization_count();
duke@435 1715 juint account = total;
duke@435 1716 if (total != 0) {
duke@435 1717 ttyLocker ttyl;
duke@435 1718 if (xtty != NULL) xtty->head("statistics type='deoptimization'");
duke@435 1719 tty->print_cr("Deoptimization traps recorded:");
duke@435 1720 #define PRINT_STAT_LINE(name, r) \
duke@435 1721 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
duke@435 1722 PRINT_STAT_LINE("total", total);
duke@435 1723 // For each non-zero entry in the histogram, print the reason,
duke@435 1724 // the action, and (if specifically known) the type of bytecode.
duke@435 1725 for (int reason = 0; reason < Reason_LIMIT; reason++) {
duke@435 1726 for (int action = 0; action < Action_LIMIT; action++) {
duke@435 1727 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1728 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1729 juint counter = cases[bc_case];
duke@435 1730 if (counter != 0) {
duke@435 1731 char name[1*K];
duke@435 1732 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
duke@435 1733 if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
duke@435 1734 bc = Bytecodes::_illegal;
duke@435 1735 sprintf(name, "%s/%s/%s",
duke@435 1736 trap_reason_name(reason),
duke@435 1737 trap_action_name(action),
duke@435 1738 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
duke@435 1739 juint r = counter >> LSB_BITS;
duke@435 1740 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
duke@435 1741 account -= r;
duke@435 1742 }
duke@435 1743 }
duke@435 1744 }
duke@435 1745 }
duke@435 1746 if (account != 0) {
duke@435 1747 PRINT_STAT_LINE("unaccounted", account);
duke@435 1748 }
duke@435 1749 #undef PRINT_STAT_LINE
duke@435 1750 if (xtty != NULL) xtty->tail("statistics");
duke@435 1751 }
duke@435 1752 }
duke@435 1753 #else // COMPILER2
duke@435 1754
duke@435 1755
duke@435 1756 // Stubs for C1 only system.
duke@435 1757 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1758 return false;
duke@435 1759 }
duke@435 1760
duke@435 1761 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1762 return "unknown";
duke@435 1763 }
duke@435 1764
duke@435 1765 void Deoptimization::print_statistics() {
duke@435 1766 // no output
duke@435 1767 }
duke@435 1768
duke@435 1769 void
duke@435 1770 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
duke@435 1771 // no udpate
duke@435 1772 }
duke@435 1773
duke@435 1774 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1775 return 0;
duke@435 1776 }
duke@435 1777
duke@435 1778 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1779 Bytecodes::Code bc) {
duke@435 1780 // no update
duke@435 1781 }
duke@435 1782
duke@435 1783 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1784 int trap_state) {
duke@435 1785 jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1786 return buf;
duke@435 1787 }
duke@435 1788
duke@435 1789 #endif // COMPILER2

mercurial