src/share/vm/runtime/deoptimization.cpp

Thu, 27 Jan 2011 16:11:27 -0800

author
coleenp
date
Thu, 27 Jan 2011 16:11:27 -0800
changeset 2497
3582bf76420e
parent 2462
8012aa3ccede
child 2508
b92c45f2bc75
permissions
-rw-r--r--

6990754: Use native memory and reference counting to implement SymbolTable
Summary: move symbols from permgen into C heap and reference count them
Reviewed-by: never, acorn, jmasa, stefank

duke@435 1 /*
never@2462 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "code/debugInfoRec.hpp"
stefank@2314 28 #include "code/nmethod.hpp"
stefank@2314 29 #include "code/pcDesc.hpp"
stefank@2314 30 #include "code/scopeDesc.hpp"
stefank@2314 31 #include "interpreter/bytecode.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "interpreter/oopMapCache.hpp"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "memory/oopFactory.hpp"
stefank@2314 36 #include "memory/resourceArea.hpp"
stefank@2314 37 #include "oops/methodOop.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/jvmtiThreadState.hpp"
stefank@2314 40 #include "runtime/biasedLocking.hpp"
stefank@2314 41 #include "runtime/compilationPolicy.hpp"
stefank@2314 42 #include "runtime/deoptimization.hpp"
stefank@2314 43 #include "runtime/interfaceSupport.hpp"
stefank@2314 44 #include "runtime/sharedRuntime.hpp"
stefank@2314 45 #include "runtime/signature.hpp"
stefank@2314 46 #include "runtime/stubRoutines.hpp"
stefank@2314 47 #include "runtime/thread.hpp"
stefank@2314 48 #include "runtime/vframe.hpp"
stefank@2314 49 #include "runtime/vframeArray.hpp"
stefank@2314 50 #include "runtime/vframe_hp.hpp"
stefank@2314 51 #include "utilities/events.hpp"
stefank@2314 52 #include "utilities/xmlstream.hpp"
stefank@2314 53 #ifdef TARGET_ARCH_x86
stefank@2314 54 # include "vmreg_x86.inline.hpp"
stefank@2314 55 #endif
stefank@2314 56 #ifdef TARGET_ARCH_sparc
stefank@2314 57 # include "vmreg_sparc.inline.hpp"
stefank@2314 58 #endif
stefank@2314 59 #ifdef TARGET_ARCH_zero
stefank@2314 60 # include "vmreg_zero.inline.hpp"
stefank@2314 61 #endif
stefank@2314 62 #ifdef COMPILER2
stefank@2314 63 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 64 # include "adfiles/ad_x86_32.hpp"
stefank@2314 65 #endif
stefank@2314 66 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 67 # include "adfiles/ad_x86_64.hpp"
stefank@2314 68 #endif
stefank@2314 69 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 70 # include "adfiles/ad_sparc.hpp"
stefank@2314 71 #endif
stefank@2314 72 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 73 # include "adfiles/ad_zero.hpp"
stefank@2314 74 #endif
stefank@2314 75 #endif
duke@435 76
duke@435 77 bool DeoptimizationMarker::_is_active = false;
duke@435 78
duke@435 79 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame,
duke@435 80 int caller_adjustment,
duke@435 81 int number_of_frames,
duke@435 82 intptr_t* frame_sizes,
duke@435 83 address* frame_pcs,
duke@435 84 BasicType return_type) {
duke@435 85 _size_of_deoptimized_frame = size_of_deoptimized_frame;
duke@435 86 _caller_adjustment = caller_adjustment;
duke@435 87 _number_of_frames = number_of_frames;
duke@435 88 _frame_sizes = frame_sizes;
duke@435 89 _frame_pcs = frame_pcs;
duke@435 90 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
duke@435 91 _return_type = return_type;
duke@435 92 // PD (x86 only)
duke@435 93 _counter_temp = 0;
duke@435 94 _initial_fp = 0;
duke@435 95 _unpack_kind = 0;
duke@435 96 _sender_sp_temp = 0;
duke@435 97
duke@435 98 _total_frame_sizes = size_of_frames();
duke@435 99 }
duke@435 100
duke@435 101
duke@435 102 Deoptimization::UnrollBlock::~UnrollBlock() {
duke@435 103 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
duke@435 104 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
duke@435 105 FREE_C_HEAP_ARRAY(intptr_t, _register_block);
duke@435 106 }
duke@435 107
duke@435 108
duke@435 109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
duke@435 110 assert(register_number < RegisterMap::reg_count, "checking register number");
duke@435 111 return &_register_block[register_number * 2];
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115
duke@435 116 int Deoptimization::UnrollBlock::size_of_frames() const {
duke@435 117 // Acount first for the adjustment of the initial frame
duke@435 118 int result = _caller_adjustment;
duke@435 119 for (int index = 0; index < number_of_frames(); index++) {
duke@435 120 result += frame_sizes()[index];
duke@435 121 }
duke@435 122 return result;
duke@435 123 }
duke@435 124
duke@435 125
duke@435 126 void Deoptimization::UnrollBlock::print() {
duke@435 127 ttyLocker ttyl;
duke@435 128 tty->print_cr("UnrollBlock");
duke@435 129 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
duke@435 130 tty->print( " frame_sizes: ");
duke@435 131 for (int index = 0; index < number_of_frames(); index++) {
duke@435 132 tty->print("%d ", frame_sizes()[index]);
duke@435 133 }
duke@435 134 tty->cr();
duke@435 135 }
duke@435 136
duke@435 137
duke@435 138 // In order to make fetch_unroll_info work properly with escape
duke@435 139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
duke@435 140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
duke@435 141 // of previously eliminated objects occurs in realloc_objects, which is
duke@435 142 // called from the method fetch_unroll_info_helper below.
duke@435 143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
duke@435 144 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 145 // but makes the entry a little slower. There is however a little dance we have to
duke@435 146 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 147
duke@435 148 // fetch_unroll_info() is called at the beginning of the deoptimization
duke@435 149 // handler. Note this fact before we start generating temporary frames
duke@435 150 // that can confuse an asynchronous stack walker. This counter is
duke@435 151 // decremented at the end of unpack_frames().
duke@435 152 thread->inc_in_deopt_handler();
duke@435 153
duke@435 154 return fetch_unroll_info_helper(thread);
duke@435 155 JRT_END
duke@435 156
duke@435 157
duke@435 158 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
duke@435 159 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
duke@435 160
duke@435 161 // Note: there is a safepoint safety issue here. No matter whether we enter
duke@435 162 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
duke@435 163 // the vframeArray is created.
duke@435 164 //
duke@435 165
duke@435 166 // Allocate our special deoptimization ResourceMark
duke@435 167 DeoptResourceMark* dmark = new DeoptResourceMark(thread);
duke@435 168 assert(thread->deopt_mark() == NULL, "Pending deopt!");
duke@435 169 thread->set_deopt_mark(dmark);
duke@435 170
duke@435 171 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
duke@435 172 RegisterMap map(thread, true);
duke@435 173 RegisterMap dummy_map(thread, false);
duke@435 174 // Now get the deoptee with a valid map
duke@435 175 frame deoptee = stub_frame.sender(&map);
iveresov@2169 176 // Set the deoptee nmethod
iveresov@2169 177 assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
iveresov@2169 178 thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
duke@435 179
duke@435 180 // Create a growable array of VFrames where each VFrame represents an inlined
duke@435 181 // Java frame. This storage is allocated with the usual system arena.
duke@435 182 assert(deoptee.is_compiled_frame(), "Wrong frame type");
duke@435 183 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
duke@435 184 vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
duke@435 185 while (!vf->is_top()) {
duke@435 186 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 187 chunk->push(compiledVFrame::cast(vf));
duke@435 188 vf = vf->sender();
duke@435 189 }
duke@435 190 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 191 chunk->push(compiledVFrame::cast(vf));
duke@435 192
duke@435 193 #ifdef COMPILER2
duke@435 194 // Reallocate the non-escaping objects and restore their fields. Then
duke@435 195 // relock objects if synchronization on them was eliminated.
kvn@479 196 if (DoEscapeAnalysis) {
kvn@479 197 if (EliminateAllocations) {
kvn@518 198 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
kvn@479 199 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
kvn@1688 200
kvn@1688 201 // The flag return_oop() indicates call sites which return oop
kvn@1688 202 // in compiled code. Such sites include java method calls,
kvn@1688 203 // runtime calls (for example, used to allocate new objects/arrays
kvn@1688 204 // on slow code path) and any other calls generated in compiled code.
kvn@1688 205 // It is not guaranteed that we can get such information here only
kvn@1688 206 // by analyzing bytecode in deoptimized frames. This is why this flag
kvn@1688 207 // is set during method compilation (see Compile::Process_OopMap_Node()).
kvn@1688 208 bool save_oop_result = chunk->at(0)->scope()->return_oop();
kvn@1688 209 Handle return_value;
kvn@1688 210 if (save_oop_result) {
kvn@1688 211 // Reallocation may trigger GC. If deoptimization happened on return from
kvn@1688 212 // call which returns oop we need to save it since it is not in oopmap.
kvn@1688 213 oop result = deoptee.saved_oop_result(&map);
kvn@1688 214 assert(result == NULL || result->is_oop(), "must be oop");
kvn@1688 215 return_value = Handle(thread, result);
kvn@1688 216 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
kvn@1688 217 if (TraceDeoptimization) {
kvn@1688 218 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
kvn@1688 219 }
kvn@1688 220 }
kvn@479 221 bool reallocated = false;
kvn@479 222 if (objects != NULL) {
kvn@479 223 JRT_BLOCK
kvn@479 224 reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
kvn@479 225 JRT_END
duke@435 226 }
kvn@479 227 if (reallocated) {
kvn@479 228 reassign_fields(&deoptee, &map, objects);
duke@435 229 #ifndef PRODUCT
duke@435 230 if (TraceDeoptimization) {
duke@435 231 ttyLocker ttyl;
kvn@479 232 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@479 233 print_objects(objects);
kvn@1688 234 }
kvn@1688 235 #endif
kvn@479 236 }
kvn@1688 237 if (save_oop_result) {
kvn@1688 238 // Restore result.
kvn@1688 239 deoptee.set_saved_oop_result(&map, return_value());
kvn@479 240 }
kvn@479 241 }
kvn@479 242 if (EliminateLocks) {
kvn@518 243 #ifndef PRODUCT
kvn@518 244 bool first = true;
kvn@518 245 #endif
kvn@479 246 for (int i = 0; i < chunk->length(); i++) {
kvn@518 247 compiledVFrame* cvf = chunk->at(i);
kvn@518 248 assert (cvf->scope() != NULL,"expect only compiled java frames");
kvn@518 249 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
kvn@518 250 if (monitors->is_nonempty()) {
kvn@518 251 relock_objects(monitors, thread);
kvn@479 252 #ifndef PRODUCT
kvn@479 253 if (TraceDeoptimization) {
kvn@479 254 ttyLocker ttyl;
kvn@479 255 for (int j = 0; j < monitors->length(); j++) {
kvn@518 256 MonitorInfo* mi = monitors->at(j);
kvn@518 257 if (mi->eliminated()) {
kvn@518 258 if (first) {
kvn@518 259 first = false;
kvn@518 260 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@518 261 }
kvn@518 262 tty->print_cr(" object <" INTPTR_FORMAT "> locked", mi->owner());
kvn@479 263 }
duke@435 264 }
duke@435 265 }
kvn@479 266 #endif
duke@435 267 }
duke@435 268 }
duke@435 269 }
duke@435 270 }
duke@435 271 #endif // COMPILER2
duke@435 272 // Ensure that no safepoint is taken after pointers have been stored
duke@435 273 // in fields of rematerialized objects. If a safepoint occurs from here on
duke@435 274 // out the java state residing in the vframeArray will be missed.
duke@435 275 No_Safepoint_Verifier no_safepoint;
duke@435 276
duke@435 277 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
duke@435 278
duke@435 279 assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
duke@435 280 thread->set_vframe_array_head(array);
duke@435 281
duke@435 282 // Now that the vframeArray has been created if we have any deferred local writes
duke@435 283 // added by jvmti then we can free up that structure as the data is now in the
duke@435 284 // vframeArray
duke@435 285
duke@435 286 if (thread->deferred_locals() != NULL) {
duke@435 287 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
duke@435 288 int i = 0;
duke@435 289 do {
duke@435 290 // Because of inlining we could have multiple vframes for a single frame
duke@435 291 // and several of the vframes could have deferred writes. Find them all.
duke@435 292 if (list->at(i)->id() == array->original().id()) {
duke@435 293 jvmtiDeferredLocalVariableSet* dlv = list->at(i);
duke@435 294 list->remove_at(i);
duke@435 295 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
duke@435 296 delete dlv;
duke@435 297 } else {
duke@435 298 i++;
duke@435 299 }
duke@435 300 } while ( i < list->length() );
duke@435 301 if (list->length() == 0) {
duke@435 302 thread->set_deferred_locals(NULL);
duke@435 303 // free the list and elements back to C heap.
duke@435 304 delete list;
duke@435 305 }
duke@435 306
duke@435 307 }
duke@435 308
twisti@2047 309 #ifndef SHARK
duke@435 310 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
duke@435 311 CodeBlob* cb = stub_frame.cb();
duke@435 312 // Verify we have the right vframeArray
duke@435 313 assert(cb->frame_size() >= 0, "Unexpected frame size");
duke@435 314 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
duke@435 315
twisti@1639 316 // If the deopt call site is a MethodHandle invoke call site we have
twisti@1639 317 // to adjust the unpack_sp.
twisti@1639 318 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
twisti@1639 319 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
twisti@1639 320 unpack_sp = deoptee.unextended_sp();
twisti@1639 321
duke@435 322 #ifdef ASSERT
duke@435 323 assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
duke@435 324 Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
duke@435 325 #endif
twisti@2047 326 #else
twisti@2047 327 intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
twisti@2047 328 #endif // !SHARK
twisti@2047 329
duke@435 330 // This is a guarantee instead of an assert because if vframe doesn't match
duke@435 331 // we will unpack the wrong deoptimized frame and wind up in strange places
duke@435 332 // where it will be very difficult to figure out what went wrong. Better
duke@435 333 // to die an early death here than some very obscure death later when the
duke@435 334 // trail is cold.
duke@435 335 // Note: on ia64 this guarantee can be fooled by frames with no memory stack
duke@435 336 // in that it will fail to detect a problem when there is one. This needs
duke@435 337 // more work in tiger timeframe.
duke@435 338 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
duke@435 339
duke@435 340 int number_of_frames = array->frames();
duke@435 341
duke@435 342 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost
duke@435 343 // virtual activation, which is the reverse of the elements in the vframes array.
duke@435 344 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
duke@435 345 // +1 because we always have an interpreter return address for the final slot.
duke@435 346 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
duke@435 347 int callee_parameters = 0;
duke@435 348 int callee_locals = 0;
duke@435 349 int popframe_extra_args = 0;
duke@435 350 // Create an interpreter return address for the stub to use as its return
duke@435 351 // address so the skeletal frames are perfectly walkable
duke@435 352 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
duke@435 353
duke@435 354 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
duke@435 355 // activation be put back on the expression stack of the caller for reexecution
duke@435 356 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
duke@435 357 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
duke@435 358 }
duke@435 359
duke@435 360 //
duke@435 361 // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
duke@435 362 // frame_sizes/frame_pcs[1] next oldest frame (int)
duke@435 363 // frame_sizes/frame_pcs[n] youngest frame (int)
duke@435 364 //
duke@435 365 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
duke@435 366 // owns the space for the return address to it's caller). Confusing ain't it.
duke@435 367 //
duke@435 368 // The vframe array can address vframes with indices running from
duke@435 369 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame.
duke@435 370 // When we create the skeletal frames we need the oldest frame to be in the zero slot
duke@435 371 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
duke@435 372 // so things look a little strange in this loop.
duke@435 373 //
duke@435 374 for (int index = 0; index < array->frames(); index++ ) {
duke@435 375 // frame[number_of_frames - 1 ] = on_stack_size(youngest)
duke@435 376 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
duke@435 377 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
duke@435 378 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
duke@435 379 callee_locals,
duke@435 380 index == 0,
duke@435 381 popframe_extra_args);
duke@435 382 // This pc doesn't have to be perfect just good enough to identify the frame
duke@435 383 // as interpreted so the skeleton frame will be walkable
duke@435 384 // The correct pc will be set when the skeleton frame is completely filled out
duke@435 385 // The final pc we store in the loop is wrong and will be overwritten below
duke@435 386 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
duke@435 387
duke@435 388 callee_parameters = array->element(index)->method()->size_of_parameters();
duke@435 389 callee_locals = array->element(index)->method()->max_locals();
duke@435 390 popframe_extra_args = 0;
duke@435 391 }
duke@435 392
duke@435 393 // Compute whether the root vframe returns a float or double value.
duke@435 394 BasicType return_type;
duke@435 395 {
duke@435 396 HandleMark hm;
duke@435 397 methodHandle method(thread, array->element(0)->method());
never@2462 398 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
coleenp@2497 399 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
duke@435 400 }
duke@435 401
duke@435 402 // Compute information for handling adapters and adjusting the frame size of the caller.
duke@435 403 int caller_adjustment = 0;
duke@435 404
duke@435 405 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
duke@435 406 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
duke@435 407 // than simply use array->sender.pc(). This requires us to walk the current set of frames
duke@435 408 //
duke@435 409 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
duke@435 410 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller
duke@435 411
duke@435 412 // Compute the amount the oldest interpreter frame will have to adjust
duke@435 413 // its caller's stack by. If the caller is a compiled frame then
duke@435 414 // we pretend that the callee has no parameters so that the
duke@435 415 // extension counts for the full amount of locals and not just
duke@435 416 // locals-parms. This is because without a c2i adapter the parm
duke@435 417 // area as created by the compiled frame will not be usable by
duke@435 418 // the interpreter. (Depending on the calling convention there
duke@435 419 // may not even be enough space).
duke@435 420
duke@435 421 // QQQ I'd rather see this pushed down into last_frame_adjust
duke@435 422 // and have it take the sender (aka caller).
duke@435 423
duke@435 424 if (deopt_sender.is_compiled_frame()) {
duke@435 425 caller_adjustment = last_frame_adjust(0, callee_locals);
duke@435 426 } else if (callee_locals > callee_parameters) {
duke@435 427 // The caller frame may need extending to accommodate
duke@435 428 // non-parameter locals of the first unpacked interpreted frame.
duke@435 429 // Compute that adjustment.
duke@435 430 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
duke@435 431 }
duke@435 432
duke@435 433
duke@435 434 // If the sender is deoptimized the we must retrieve the address of the handler
duke@435 435 // since the frame will "magically" show the original pc before the deopt
duke@435 436 // and we'd undo the deopt.
duke@435 437
duke@435 438 frame_pcs[0] = deopt_sender.raw_pc();
duke@435 439
twisti@2047 440 #ifndef SHARK
duke@435 441 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
twisti@2047 442 #endif // SHARK
duke@435 443
duke@435 444 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
duke@435 445 caller_adjustment * BytesPerWord,
duke@435 446 number_of_frames,
duke@435 447 frame_sizes,
duke@435 448 frame_pcs,
duke@435 449 return_type);
duke@435 450 #if defined(IA32) || defined(AMD64)
duke@435 451 // We need a way to pass fp to the unpacking code so the skeletal frames
duke@435 452 // come out correct. This is only needed for x86 because of c2 using ebp
duke@435 453 // as an allocatable register. So this update is useless (and harmless)
duke@435 454 // on the other platforms. It would be nice to do this in a different
duke@435 455 // way but even the old style deoptimization had a problem with deriving
duke@435 456 // this value. NEEDS_CLEANUP
duke@435 457 // Note: now that c1 is using c2's deopt blob we must do this on all
duke@435 458 // x86 based platforms
duke@435 459 intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
duke@435 460 *fp_addr = array->sender().fp(); // was adapter_caller
duke@435 461 #endif /* IA32 || AMD64 */
duke@435 462
duke@435 463 if (array->frames() > 1) {
duke@435 464 if (VerifyStack && TraceDeoptimization) {
duke@435 465 tty->print_cr("Deoptimizing method containing inlining");
duke@435 466 }
duke@435 467 }
duke@435 468
duke@435 469 array->set_unroll_block(info);
duke@435 470 return info;
duke@435 471 }
duke@435 472
duke@435 473 // Called to cleanup deoptimization data structures in normal case
duke@435 474 // after unpacking to stack and when stack overflow error occurs
duke@435 475 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
duke@435 476 vframeArray *array) {
duke@435 477
duke@435 478 // Get array if coming from exception
duke@435 479 if (array == NULL) {
duke@435 480 array = thread->vframe_array_head();
duke@435 481 }
duke@435 482 thread->set_vframe_array_head(NULL);
duke@435 483
duke@435 484 // Free the previous UnrollBlock
duke@435 485 vframeArray* old_array = thread->vframe_array_last();
duke@435 486 thread->set_vframe_array_last(array);
duke@435 487
duke@435 488 if (old_array != NULL) {
duke@435 489 UnrollBlock* old_info = old_array->unroll_block();
duke@435 490 old_array->set_unroll_block(NULL);
duke@435 491 delete old_info;
duke@435 492 delete old_array;
duke@435 493 }
duke@435 494
duke@435 495 // Deallocate any resource creating in this routine and any ResourceObjs allocated
duke@435 496 // inside the vframeArray (StackValueCollections)
duke@435 497
duke@435 498 delete thread->deopt_mark();
duke@435 499 thread->set_deopt_mark(NULL);
iveresov@2169 500 thread->set_deopt_nmethod(NULL);
duke@435 501
duke@435 502
duke@435 503 if (JvmtiExport::can_pop_frame()) {
duke@435 504 #ifndef CC_INTERP
duke@435 505 // Regardless of whether we entered this routine with the pending
duke@435 506 // popframe condition bit set, we should always clear it now
duke@435 507 thread->clear_popframe_condition();
duke@435 508 #else
duke@435 509 // C++ interpeter will clear has_pending_popframe when it enters
duke@435 510 // with method_resume. For deopt_resume2 we clear it now.
duke@435 511 if (thread->popframe_forcing_deopt_reexecution())
duke@435 512 thread->clear_popframe_condition();
duke@435 513 #endif /* CC_INTERP */
duke@435 514 }
duke@435 515
duke@435 516 // unpack_frames() is called at the end of the deoptimization handler
duke@435 517 // and (in C2) at the end of the uncommon trap handler. Note this fact
duke@435 518 // so that an asynchronous stack walker can work again. This counter is
duke@435 519 // incremented at the beginning of fetch_unroll_info() and (in C2) at
duke@435 520 // the beginning of uncommon_trap().
duke@435 521 thread->dec_in_deopt_handler();
duke@435 522 }
duke@435 523
duke@435 524
duke@435 525 // Return BasicType of value being returned
duke@435 526 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
duke@435 527
duke@435 528 // We are already active int he special DeoptResourceMark any ResourceObj's we
duke@435 529 // allocate will be freed at the end of the routine.
duke@435 530
duke@435 531 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 532 // but makes the entry a little slower. There is however a little dance we have to
duke@435 533 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 534 ResetNoHandleMark rnhm; // No-op in release/product versions
duke@435 535 HandleMark hm;
duke@435 536
duke@435 537 frame stub_frame = thread->last_frame();
duke@435 538
duke@435 539 // Since the frame to unpack is the top frame of this thread, the vframe_array_head
duke@435 540 // must point to the vframeArray for the unpack frame.
duke@435 541 vframeArray* array = thread->vframe_array_head();
duke@435 542
duke@435 543 #ifndef PRODUCT
duke@435 544 if (TraceDeoptimization) {
duke@435 545 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
duke@435 546 }
duke@435 547 #endif
duke@435 548
duke@435 549 UnrollBlock* info = array->unroll_block();
duke@435 550
duke@435 551 // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
duke@435 552 array->unpack_to_stack(stub_frame, exec_mode);
duke@435 553
duke@435 554 BasicType bt = info->return_type();
duke@435 555
duke@435 556 // If we have an exception pending, claim that the return type is an oop
duke@435 557 // so the deopt_blob does not overwrite the exception_oop.
duke@435 558
duke@435 559 if (exec_mode == Unpack_exception)
duke@435 560 bt = T_OBJECT;
duke@435 561
duke@435 562 // Cleanup thread deopt data
duke@435 563 cleanup_deopt_info(thread, array);
duke@435 564
duke@435 565 #ifndef PRODUCT
duke@435 566 if (VerifyStack) {
duke@435 567 ResourceMark res_mark;
duke@435 568
duke@435 569 // Verify that the just-unpacked frames match the interpreter's
duke@435 570 // notions of expression stack and locals
duke@435 571 vframeArray* cur_array = thread->vframe_array_last();
duke@435 572 RegisterMap rm(thread, false);
duke@435 573 rm.set_include_argument_oops(false);
duke@435 574 bool is_top_frame = true;
duke@435 575 int callee_size_of_parameters = 0;
duke@435 576 int callee_max_locals = 0;
duke@435 577 for (int i = 0; i < cur_array->frames(); i++) {
duke@435 578 vframeArrayElement* el = cur_array->element(i);
duke@435 579 frame* iframe = el->iframe();
duke@435 580 guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
duke@435 581
duke@435 582 // Get the oop map for this bci
duke@435 583 InterpreterOopMap mask;
duke@435 584 int cur_invoke_parameter_size = 0;
duke@435 585 bool try_next_mask = false;
duke@435 586 int next_mask_expression_stack_size = -1;
duke@435 587 int top_frame_expression_stack_adjustment = 0;
duke@435 588 methodHandle mh(thread, iframe->interpreter_frame_method());
duke@435 589 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
duke@435 590 BytecodeStream str(mh);
duke@435 591 str.set_start(iframe->interpreter_frame_bci());
duke@435 592 int max_bci = mh->code_size();
duke@435 593 // Get to the next bytecode if possible
duke@435 594 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
duke@435 595 // Check to see if we can grab the number of outgoing arguments
duke@435 596 // at an uncommon trap for an invoke (where the compiler
duke@435 597 // generates debug info before the invoke has executed)
duke@435 598 Bytecodes::Code cur_code = str.next();
duke@435 599 if (cur_code == Bytecodes::_invokevirtual ||
duke@435 600 cur_code == Bytecodes::_invokespecial ||
duke@435 601 cur_code == Bytecodes::_invokestatic ||
duke@435 602 cur_code == Bytecodes::_invokeinterface) {
never@2462 603 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
coleenp@2497 604 Symbol* signature = invoke.signature();
duke@435 605 ArgumentSizeComputer asc(signature);
duke@435 606 cur_invoke_parameter_size = asc.size();
duke@435 607 if (cur_code != Bytecodes::_invokestatic) {
duke@435 608 // Add in receiver
duke@435 609 ++cur_invoke_parameter_size;
duke@435 610 }
duke@435 611 }
duke@435 612 if (str.bci() < max_bci) {
duke@435 613 Bytecodes::Code bc = str.next();
duke@435 614 if (bc >= 0) {
duke@435 615 // The interpreter oop map generator reports results before
duke@435 616 // the current bytecode has executed except in the case of
duke@435 617 // calls. It seems to be hard to tell whether the compiler
duke@435 618 // has emitted debug information matching the "state before"
duke@435 619 // a given bytecode or the state after, so we try both
duke@435 620 switch (cur_code) {
duke@435 621 case Bytecodes::_invokevirtual:
duke@435 622 case Bytecodes::_invokespecial:
duke@435 623 case Bytecodes::_invokestatic:
duke@435 624 case Bytecodes::_invokeinterface:
duke@435 625 case Bytecodes::_athrow:
duke@435 626 break;
duke@435 627 default: {
duke@435 628 InterpreterOopMap next_mask;
duke@435 629 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
duke@435 630 next_mask_expression_stack_size = next_mask.expression_stack_size();
duke@435 631 // Need to subtract off the size of the result type of
duke@435 632 // the bytecode because this is not described in the
duke@435 633 // debug info but returned to the interpreter in the TOS
duke@435 634 // caching register
duke@435 635 BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
duke@435 636 if (bytecode_result_type != T_ILLEGAL) {
duke@435 637 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
duke@435 638 }
duke@435 639 assert(top_frame_expression_stack_adjustment >= 0, "");
duke@435 640 try_next_mask = true;
duke@435 641 break;
duke@435 642 }
duke@435 643 }
duke@435 644 }
duke@435 645 }
duke@435 646
duke@435 647 // Verify stack depth and oops in frame
duke@435 648 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
duke@435 649 if (!(
duke@435 650 /* SPARC */
duke@435 651 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
duke@435 652 /* x86 */
duke@435 653 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
duke@435 654 (try_next_mask &&
duke@435 655 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
duke@435 656 top_frame_expression_stack_adjustment))) ||
duke@435 657 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
duke@435 658 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
duke@435 659 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
duke@435 660 )) {
duke@435 661 ttyLocker ttyl;
duke@435 662
duke@435 663 // Print out some information that will help us debug the problem
duke@435 664 tty->print_cr("Wrong number of expression stack elements during deoptimization");
duke@435 665 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
duke@435 666 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements",
duke@435 667 iframe->interpreter_frame_expression_stack_size());
duke@435 668 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
duke@435 669 tty->print_cr(" try_next_mask = %d", try_next_mask);
duke@435 670 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
duke@435 671 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters);
duke@435 672 tty->print_cr(" callee_max_locals = %d", callee_max_locals);
duke@435 673 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
duke@435 674 tty->print_cr(" exec_mode = %d", exec_mode);
duke@435 675 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
duke@435 676 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
duke@435 677 tty->print_cr(" Interpreted frames:");
duke@435 678 for (int k = 0; k < cur_array->frames(); k++) {
duke@435 679 vframeArrayElement* el = cur_array->element(k);
duke@435 680 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
duke@435 681 }
duke@435 682 cur_array->print_on_2(tty);
duke@435 683 guarantee(false, "wrong number of expression stack elements during deopt");
duke@435 684 }
duke@435 685 VerifyOopClosure verify;
duke@435 686 iframe->oops_interpreted_do(&verify, &rm, false);
duke@435 687 callee_size_of_parameters = mh->size_of_parameters();
duke@435 688 callee_max_locals = mh->max_locals();
duke@435 689 is_top_frame = false;
duke@435 690 }
duke@435 691 }
duke@435 692 #endif /* !PRODUCT */
duke@435 693
duke@435 694
duke@435 695 return bt;
duke@435 696 JRT_END
duke@435 697
duke@435 698
duke@435 699 int Deoptimization::deoptimize_dependents() {
duke@435 700 Threads::deoptimized_wrt_marked_nmethods();
duke@435 701 return 0;
duke@435 702 }
duke@435 703
duke@435 704
duke@435 705 #ifdef COMPILER2
duke@435 706 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
duke@435 707 Handle pending_exception(thread->pending_exception());
duke@435 708 const char* exception_file = thread->exception_file();
duke@435 709 int exception_line = thread->exception_line();
duke@435 710 thread->clear_pending_exception();
duke@435 711
duke@435 712 for (int i = 0; i < objects->length(); i++) {
duke@435 713 assert(objects->at(i)->is_object(), "invalid debug information");
duke@435 714 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 715
duke@435 716 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 717 oop obj = NULL;
duke@435 718
duke@435 719 if (k->oop_is_instance()) {
duke@435 720 instanceKlass* ik = instanceKlass::cast(k());
duke@435 721 obj = ik->allocate_instance(CHECK_(false));
duke@435 722 } else if (k->oop_is_typeArray()) {
duke@435 723 typeArrayKlass* ak = typeArrayKlass::cast(k());
duke@435 724 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
duke@435 725 int len = sv->field_size() / type2size[ak->element_type()];
duke@435 726 obj = ak->allocate(len, CHECK_(false));
duke@435 727 } else if (k->oop_is_objArray()) {
duke@435 728 objArrayKlass* ak = objArrayKlass::cast(k());
duke@435 729 obj = ak->allocate(sv->field_size(), CHECK_(false));
duke@435 730 }
duke@435 731
duke@435 732 assert(obj != NULL, "allocation failed");
duke@435 733 assert(sv->value().is_null(), "redundant reallocation");
duke@435 734 sv->set_value(obj);
duke@435 735 }
duke@435 736
duke@435 737 if (pending_exception.not_null()) {
duke@435 738 thread->set_pending_exception(pending_exception(), exception_file, exception_line);
duke@435 739 }
duke@435 740
duke@435 741 return true;
duke@435 742 }
duke@435 743
duke@435 744 // This assumes that the fields are stored in ObjectValue in the same order
duke@435 745 // they are yielded by do_nonstatic_fields.
duke@435 746 class FieldReassigner: public FieldClosure {
duke@435 747 frame* _fr;
duke@435 748 RegisterMap* _reg_map;
duke@435 749 ObjectValue* _sv;
duke@435 750 instanceKlass* _ik;
duke@435 751 oop _obj;
duke@435 752
duke@435 753 int _i;
duke@435 754 public:
duke@435 755 FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
duke@435 756 _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
duke@435 757
duke@435 758 int i() const { return _i; }
duke@435 759
duke@435 760
duke@435 761 void do_field(fieldDescriptor* fd) {
kvn@479 762 intptr_t val;
duke@435 763 StackValue* value =
duke@435 764 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
duke@435 765 int offset = fd->offset();
duke@435 766 switch (fd->field_type()) {
duke@435 767 case T_OBJECT: case T_ARRAY:
duke@435 768 assert(value->type() == T_OBJECT, "Agreement.");
duke@435 769 _obj->obj_field_put(offset, value->get_obj()());
duke@435 770 break;
duke@435 771
duke@435 772 case T_LONG: case T_DOUBLE: {
duke@435 773 assert(value->type() == T_INT, "Agreement.");
duke@435 774 StackValue* low =
duke@435 775 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
kvn@479 776 #ifdef _LP64
kvn@479 777 jlong res = (jlong)low->get_int();
kvn@479 778 #else
kvn@479 779 #ifdef SPARC
kvn@479 780 // For SPARC we have to swap high and low words.
kvn@479 781 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 782 #else
duke@435 783 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 784 #endif //SPARC
kvn@479 785 #endif
duke@435 786 _obj->long_field_put(offset, res);
duke@435 787 break;
duke@435 788 }
kvn@479 789 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
duke@435 790 case T_INT: case T_FLOAT: // 4 bytes.
duke@435 791 assert(value->type() == T_INT, "Agreement.");
kvn@479 792 val = value->get_int();
kvn@479 793 _obj->int_field_put(offset, (jint)*((jint*)&val));
duke@435 794 break;
duke@435 795
duke@435 796 case T_SHORT: case T_CHAR: // 2 bytes
duke@435 797 assert(value->type() == T_INT, "Agreement.");
kvn@479 798 val = value->get_int();
kvn@479 799 _obj->short_field_put(offset, (jshort)*((jint*)&val));
duke@435 800 break;
duke@435 801
kvn@479 802 case T_BOOLEAN: case T_BYTE: // 1 byte
duke@435 803 assert(value->type() == T_INT, "Agreement.");
kvn@479 804 val = value->get_int();
kvn@479 805 _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
duke@435 806 break;
duke@435 807
duke@435 808 default:
duke@435 809 ShouldNotReachHere();
duke@435 810 }
duke@435 811 _i++;
duke@435 812 }
duke@435 813 };
duke@435 814
duke@435 815 // restore elements of an eliminated type array
duke@435 816 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
duke@435 817 int index = 0;
kvn@479 818 intptr_t val;
duke@435 819
duke@435 820 for (int i = 0; i < sv->field_size(); i++) {
duke@435 821 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 822 switch(type) {
kvn@479 823 case T_LONG: case T_DOUBLE: {
kvn@479 824 assert(value->type() == T_INT, "Agreement.");
kvn@479 825 StackValue* low =
kvn@479 826 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
kvn@479 827 #ifdef _LP64
kvn@479 828 jlong res = (jlong)low->get_int();
kvn@479 829 #else
kvn@479 830 #ifdef SPARC
kvn@479 831 // For SPARC we have to swap high and low words.
kvn@479 832 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 833 #else
kvn@479 834 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 835 #endif //SPARC
kvn@479 836 #endif
kvn@479 837 obj->long_at_put(index, res);
kvn@479 838 break;
kvn@479 839 }
kvn@479 840
kvn@479 841 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
kvn@479 842 case T_INT: case T_FLOAT: // 4 bytes.
kvn@479 843 assert(value->type() == T_INT, "Agreement.");
kvn@479 844 val = value->get_int();
kvn@479 845 obj->int_at_put(index, (jint)*((jint*)&val));
kvn@479 846 break;
kvn@479 847
kvn@479 848 case T_SHORT: case T_CHAR: // 2 bytes
kvn@479 849 assert(value->type() == T_INT, "Agreement.");
kvn@479 850 val = value->get_int();
kvn@479 851 obj->short_at_put(index, (jshort)*((jint*)&val));
kvn@479 852 break;
kvn@479 853
kvn@479 854 case T_BOOLEAN: case T_BYTE: // 1 byte
kvn@479 855 assert(value->type() == T_INT, "Agreement.");
kvn@479 856 val = value->get_int();
kvn@479 857 obj->bool_at_put(index, (jboolean)*((jint*)&val));
kvn@479 858 break;
kvn@479 859
duke@435 860 default:
duke@435 861 ShouldNotReachHere();
duke@435 862 }
duke@435 863 index++;
duke@435 864 }
duke@435 865 }
duke@435 866
duke@435 867
duke@435 868 // restore fields of an eliminated object array
duke@435 869 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
duke@435 870 for (int i = 0; i < sv->field_size(); i++) {
duke@435 871 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 872 assert(value->type() == T_OBJECT, "object element expected");
duke@435 873 obj->obj_at_put(i, value->get_obj()());
duke@435 874 }
duke@435 875 }
duke@435 876
duke@435 877
duke@435 878 // restore fields of all eliminated objects and arrays
duke@435 879 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
duke@435 880 for (int i = 0; i < objects->length(); i++) {
duke@435 881 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 882 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 883 Handle obj = sv->value();
duke@435 884 assert(obj.not_null(), "reallocation was missed");
duke@435 885
duke@435 886 if (k->oop_is_instance()) {
duke@435 887 instanceKlass* ik = instanceKlass::cast(k());
duke@435 888 FieldReassigner reassign(fr, reg_map, sv, obj());
duke@435 889 ik->do_nonstatic_fields(&reassign);
duke@435 890 } else if (k->oop_is_typeArray()) {
duke@435 891 typeArrayKlass* ak = typeArrayKlass::cast(k());
duke@435 892 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
duke@435 893 } else if (k->oop_is_objArray()) {
duke@435 894 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
duke@435 895 }
duke@435 896 }
duke@435 897 }
duke@435 898
duke@435 899
duke@435 900 // relock objects for which synchronization was eliminated
kvn@518 901 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
duke@435 902 for (int i = 0; i < monitors->length(); i++) {
kvn@518 903 MonitorInfo* mon_info = monitors->at(i);
kvn@518 904 if (mon_info->eliminated()) {
kvn@518 905 assert(mon_info->owner() != NULL, "reallocation was missed");
kvn@518 906 Handle obj = Handle(mon_info->owner());
kvn@518 907 markOop mark = obj->mark();
kvn@518 908 if (UseBiasedLocking && mark->has_bias_pattern()) {
kvn@518 909 // New allocated objects may have the mark set to anonymously biased.
kvn@518 910 // Also the deoptimized method may called methods with synchronization
kvn@518 911 // where the thread-local object is bias locked to the current thread.
kvn@518 912 assert(mark->is_biased_anonymously() ||
kvn@518 913 mark->biased_locker() == thread, "should be locked to current thread");
kvn@518 914 // Reset mark word to unbiased prototype.
kvn@518 915 markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
kvn@518 916 obj->set_mark(unbiased_prototype);
kvn@518 917 }
kvn@518 918 BasicLock* lock = mon_info->lock();
kvn@518 919 ObjectSynchronizer::slow_enter(obj, lock, thread);
duke@435 920 }
kvn@518 921 assert(mon_info->owner()->is_locked(), "object must be locked now");
duke@435 922 }
duke@435 923 }
duke@435 924
duke@435 925
duke@435 926 #ifndef PRODUCT
duke@435 927 // print information about reallocated objects
duke@435 928 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
duke@435 929 fieldDescriptor fd;
duke@435 930
duke@435 931 for (int i = 0; i < objects->length(); i++) {
duke@435 932 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 933 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 934 Handle obj = sv->value();
duke@435 935
duke@435 936 tty->print(" object <" INTPTR_FORMAT "> of type ", sv->value()());
duke@435 937 k->as_klassOop()->print_value();
duke@435 938 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
duke@435 939 tty->cr();
duke@435 940
duke@435 941 if (Verbose) {
duke@435 942 k->oop_print_on(obj(), tty);
duke@435 943 }
duke@435 944 }
duke@435 945 }
duke@435 946 #endif
duke@435 947 #endif // COMPILER2
duke@435 948
duke@435 949 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
duke@435 950
duke@435 951 #ifndef PRODUCT
duke@435 952 if (TraceDeoptimization) {
duke@435 953 ttyLocker ttyl;
duke@435 954 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
duke@435 955 fr.print_on(tty);
duke@435 956 tty->print_cr(" Virtual frames (innermost first):");
duke@435 957 for (int index = 0; index < chunk->length(); index++) {
duke@435 958 compiledVFrame* vf = chunk->at(index);
duke@435 959 tty->print(" %2d - ", index);
duke@435 960 vf->print_value();
duke@435 961 int bci = chunk->at(index)->raw_bci();
duke@435 962 const char* code_name;
duke@435 963 if (bci == SynchronizationEntryBCI) {
duke@435 964 code_name = "sync entry";
duke@435 965 } else {
never@2462 966 Bytecodes::Code code = vf->method()->code_at(bci);
duke@435 967 code_name = Bytecodes::name(code);
duke@435 968 }
duke@435 969 tty->print(" - %s", code_name);
duke@435 970 tty->print_cr(" @ bci %d ", bci);
duke@435 971 if (Verbose) {
duke@435 972 vf->print();
duke@435 973 tty->cr();
duke@435 974 }
duke@435 975 }
duke@435 976 }
duke@435 977 #endif
duke@435 978
duke@435 979 // Register map for next frame (used for stack crawl). We capture
duke@435 980 // the state of the deopt'ing frame's caller. Thus if we need to
duke@435 981 // stuff a C2I adapter we can properly fill in the callee-save
duke@435 982 // register locations.
duke@435 983 frame caller = fr.sender(reg_map);
duke@435 984 int frame_size = caller.sp() - fr.sp();
duke@435 985
duke@435 986 frame sender = caller;
duke@435 987
duke@435 988 // Since the Java thread being deoptimized will eventually adjust it's own stack,
duke@435 989 // the vframeArray containing the unpacking information is allocated in the C heap.
duke@435 990 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
duke@435 991 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
duke@435 992
duke@435 993 // Compare the vframeArray to the collected vframes
duke@435 994 assert(array->structural_compare(thread, chunk), "just checking");
duke@435 995 Events::log("# vframes = %d", (intptr_t)chunk->length());
duke@435 996
duke@435 997 #ifndef PRODUCT
duke@435 998 if (TraceDeoptimization) {
duke@435 999 ttyLocker ttyl;
duke@435 1000 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, array);
duke@435 1001 }
duke@435 1002 #endif // PRODUCT
duke@435 1003
duke@435 1004 return array;
duke@435 1005 }
duke@435 1006
duke@435 1007
duke@435 1008 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
duke@435 1009 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
duke@435 1010 for (int i = 0; i < monitors->length(); i++) {
duke@435 1011 MonitorInfo* mon_info = monitors->at(i);
kvn@1253 1012 if (!mon_info->eliminated() && mon_info->owner() != NULL) {
duke@435 1013 objects_to_revoke->append(Handle(mon_info->owner()));
duke@435 1014 }
duke@435 1015 }
duke@435 1016 }
duke@435 1017
duke@435 1018
duke@435 1019 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
duke@435 1020 if (!UseBiasedLocking) {
duke@435 1021 return;
duke@435 1022 }
duke@435 1023
duke@435 1024 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1025
duke@435 1026 // Unfortunately we don't have a RegisterMap available in most of
duke@435 1027 // the places we want to call this routine so we need to walk the
duke@435 1028 // stack again to update the register map.
duke@435 1029 if (map == NULL || !map->update_map()) {
duke@435 1030 StackFrameStream sfs(thread, true);
duke@435 1031 bool found = false;
duke@435 1032 while (!found && !sfs.is_done()) {
duke@435 1033 frame* cur = sfs.current();
duke@435 1034 sfs.next();
duke@435 1035 found = cur->id() == fr.id();
duke@435 1036 }
duke@435 1037 assert(found, "frame to be deoptimized not found on target thread's stack");
duke@435 1038 map = sfs.register_map();
duke@435 1039 }
duke@435 1040
duke@435 1041 vframe* vf = vframe::new_vframe(&fr, map, thread);
duke@435 1042 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1043 // Revoke monitors' biases in all scopes
duke@435 1044 while (!cvf->is_top()) {
duke@435 1045 collect_monitors(cvf, objects_to_revoke);
duke@435 1046 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1047 }
duke@435 1048 collect_monitors(cvf, objects_to_revoke);
duke@435 1049
duke@435 1050 if (SafepointSynchronize::is_at_safepoint()) {
duke@435 1051 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1052 } else {
duke@435 1053 BiasedLocking::revoke(objects_to_revoke);
duke@435 1054 }
duke@435 1055 }
duke@435 1056
duke@435 1057
duke@435 1058 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
duke@435 1059 if (!UseBiasedLocking) {
duke@435 1060 return;
duke@435 1061 }
duke@435 1062
duke@435 1063 assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
duke@435 1064 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1065 for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
duke@435 1066 if (jt->has_last_Java_frame()) {
duke@435 1067 StackFrameStream sfs(jt, true);
duke@435 1068 while (!sfs.is_done()) {
duke@435 1069 frame* cur = sfs.current();
duke@435 1070 if (cb->contains(cur->pc())) {
duke@435 1071 vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
duke@435 1072 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1073 // Revoke monitors' biases in all scopes
duke@435 1074 while (!cvf->is_top()) {
duke@435 1075 collect_monitors(cvf, objects_to_revoke);
duke@435 1076 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1077 }
duke@435 1078 collect_monitors(cvf, objects_to_revoke);
duke@435 1079 }
duke@435 1080 sfs.next();
duke@435 1081 }
duke@435 1082 }
duke@435 1083 }
duke@435 1084 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1085 }
duke@435 1086
duke@435 1087
duke@435 1088 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
duke@435 1089 assert(fr.can_be_deoptimized(), "checking frame type");
duke@435 1090
duke@435 1091 gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
duke@435 1092
duke@435 1093 EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
duke@435 1094
duke@435 1095 // Patch the nmethod so that when execution returns to it we will
duke@435 1096 // deopt the execution state and return to the interpreter.
duke@435 1097 fr.deoptimize(thread);
duke@435 1098 }
duke@435 1099
duke@435 1100 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
duke@435 1101 // Deoptimize only if the frame comes from compile code.
duke@435 1102 // Do not deoptimize the frame which is already patched
duke@435 1103 // during the execution of the loops below.
duke@435 1104 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
duke@435 1105 return;
duke@435 1106 }
duke@435 1107 ResourceMark rm;
duke@435 1108 DeoptimizationMarker dm;
duke@435 1109 if (UseBiasedLocking) {
duke@435 1110 revoke_biases_of_monitors(thread, fr, map);
duke@435 1111 }
duke@435 1112 deoptimize_single_frame(thread, fr);
duke@435 1113
duke@435 1114 }
duke@435 1115
duke@435 1116
never@2260 1117 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
never@2260 1118 assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
never@2260 1119 "can only deoptimize other thread at a safepoint");
duke@435 1120 // Compute frame and register map based on thread and sp.
duke@435 1121 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1122 frame fr = thread->last_frame();
duke@435 1123 while (fr.id() != id) {
duke@435 1124 fr = fr.sender(&reg_map);
duke@435 1125 }
duke@435 1126 deoptimize(thread, fr, &reg_map);
duke@435 1127 }
duke@435 1128
duke@435 1129
never@2260 1130 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
never@2260 1131 if (thread == Thread::current()) {
never@2260 1132 Deoptimization::deoptimize_frame_internal(thread, id);
never@2260 1133 } else {
never@2260 1134 VM_DeoptimizeFrame deopt(thread, id);
never@2260 1135 VMThread::execute(&deopt);
never@2260 1136 }
never@2260 1137 }
never@2260 1138
never@2260 1139
duke@435 1140 // JVMTI PopFrame support
duke@435 1141 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
duke@435 1142 {
duke@435 1143 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
duke@435 1144 }
duke@435 1145 JRT_END
duke@435 1146
duke@435 1147
twisti@2047 1148 #if defined(COMPILER2) || defined(SHARK)
duke@435 1149 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
duke@435 1150 // in case of an unresolved klass entry, load the class.
duke@435 1151 if (constant_pool->tag_at(index).is_unresolved_klass()) {
duke@435 1152 klassOop tk = constant_pool->klass_at(index, CHECK);
duke@435 1153 return;
duke@435 1154 }
duke@435 1155
duke@435 1156 if (!constant_pool->tag_at(index).is_symbol()) return;
duke@435 1157
duke@435 1158 Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
coleenp@2497 1159 Symbol* symbol = constant_pool->symbol_at(index);
duke@435 1160
duke@435 1161 // class name?
duke@435 1162 if (symbol->byte_at(0) != '(') {
duke@435 1163 Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
duke@435 1164 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
duke@435 1165 return;
duke@435 1166 }
duke@435 1167
duke@435 1168 // then it must be a signature!
coleenp@2497 1169 ResourceMark rm(THREAD);
duke@435 1170 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
duke@435 1171 if (ss.is_object()) {
coleenp@2497 1172 Symbol* class_name = ss.as_symbol(CHECK);
duke@435 1173 Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
duke@435 1174 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
duke@435 1175 }
duke@435 1176 }
duke@435 1177 }
duke@435 1178
duke@435 1179
duke@435 1180 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
duke@435 1181 EXCEPTION_MARK;
duke@435 1182 load_class_by_index(constant_pool, index, THREAD);
duke@435 1183 if (HAS_PENDING_EXCEPTION) {
duke@435 1184 // Exception happened during classloading. We ignore the exception here, since it
duke@435 1185 // is going to be rethrown since the current activation is going to be deoptimzied and
duke@435 1186 // the interpreter will re-execute the bytecode.
duke@435 1187 CLEAR_PENDING_EXCEPTION;
duke@435 1188 }
duke@435 1189 }
duke@435 1190
duke@435 1191 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
duke@435 1192 HandleMark hm;
duke@435 1193
duke@435 1194 // uncommon_trap() is called at the beginning of the uncommon trap
duke@435 1195 // handler. Note this fact before we start generating temporary frames
duke@435 1196 // that can confuse an asynchronous stack walker. This counter is
duke@435 1197 // decremented at the end of unpack_frames().
duke@435 1198 thread->inc_in_deopt_handler();
duke@435 1199
duke@435 1200 // We need to update the map if we have biased locking.
duke@435 1201 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1202 frame stub_frame = thread->last_frame();
duke@435 1203 frame fr = stub_frame.sender(&reg_map);
duke@435 1204 // Make sure the calling nmethod is not getting deoptimized and removed
duke@435 1205 // before we are done with it.
duke@435 1206 nmethodLocker nl(fr.pc());
duke@435 1207
duke@435 1208 {
duke@435 1209 ResourceMark rm;
duke@435 1210
duke@435 1211 // Revoke biases of any monitors in the frame to ensure we can migrate them
duke@435 1212 revoke_biases_of_monitors(thread, fr, &reg_map);
duke@435 1213
duke@435 1214 DeoptReason reason = trap_request_reason(trap_request);
duke@435 1215 DeoptAction action = trap_request_action(trap_request);
duke@435 1216 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
duke@435 1217
duke@435 1218 Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
duke@435 1219 vframe* vf = vframe::new_vframe(&fr, &reg_map, thread);
duke@435 1220 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1221
duke@435 1222 nmethod* nm = cvf->code();
duke@435 1223
duke@435 1224 ScopeDesc* trap_scope = cvf->scope();
duke@435 1225 methodHandle trap_method = trap_scope->method();
duke@435 1226 int trap_bci = trap_scope->bci();
never@2462 1227 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci);
duke@435 1228
duke@435 1229 // Record this event in the histogram.
duke@435 1230 gather_statistics(reason, action, trap_bc);
duke@435 1231
duke@435 1232 // Ensure that we can record deopt. history:
duke@435 1233 bool create_if_missing = ProfileTraps;
duke@435 1234
duke@435 1235 methodDataHandle trap_mdo
duke@435 1236 (THREAD, get_method_data(thread, trap_method, create_if_missing));
duke@435 1237
duke@435 1238 // Print a bunch of diagnostics, if requested.
duke@435 1239 if (TraceDeoptimization || LogCompilation) {
duke@435 1240 ResourceMark rm;
duke@435 1241 ttyLocker ttyl;
duke@435 1242 char buf[100];
duke@435 1243 if (xtty != NULL) {
duke@435 1244 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
duke@435 1245 os::current_thread_id(),
duke@435 1246 format_trap_request(buf, sizeof(buf), trap_request));
duke@435 1247 nm->log_identity(xtty);
duke@435 1248 }
coleenp@2497 1249 Symbol* class_name = NULL;
duke@435 1250 bool unresolved = false;
duke@435 1251 if (unloaded_class_index >= 0) {
duke@435 1252 constantPoolHandle constants (THREAD, trap_method->constants());
duke@435 1253 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
coleenp@2497 1254 class_name = constants->klass_name_at(unloaded_class_index);
duke@435 1255 unresolved = true;
duke@435 1256 if (xtty != NULL)
duke@435 1257 xtty->print(" unresolved='1'");
duke@435 1258 } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
coleenp@2497 1259 class_name = constants->symbol_at(unloaded_class_index);
duke@435 1260 }
duke@435 1261 if (xtty != NULL)
duke@435 1262 xtty->name(class_name);
duke@435 1263 }
duke@435 1264 if (xtty != NULL && trap_mdo.not_null()) {
duke@435 1265 // Dump the relevant MDO state.
duke@435 1266 // This is the deopt count for the current reason, any previous
duke@435 1267 // reasons or recompiles seen at this point.
duke@435 1268 int dcnt = trap_mdo->trap_count(reason);
duke@435 1269 if (dcnt != 0)
duke@435 1270 xtty->print(" count='%d'", dcnt);
duke@435 1271 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
duke@435 1272 int dos = (pdata == NULL)? 0: pdata->trap_state();
duke@435 1273 if (dos != 0) {
duke@435 1274 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
duke@435 1275 if (trap_state_is_recompiled(dos)) {
duke@435 1276 int recnt2 = trap_mdo->overflow_recompile_count();
duke@435 1277 if (recnt2 != 0)
duke@435 1278 xtty->print(" recompiles2='%d'", recnt2);
duke@435 1279 }
duke@435 1280 }
duke@435 1281 }
duke@435 1282 if (xtty != NULL) {
duke@435 1283 xtty->stamp();
duke@435 1284 xtty->end_head();
duke@435 1285 }
duke@435 1286 if (TraceDeoptimization) { // make noise on the tty
duke@435 1287 tty->print("Uncommon trap occurred in");
duke@435 1288 nm->method()->print_short_name(tty);
duke@435 1289 tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
duke@435 1290 fr.pc(),
duke@435 1291 (int) os::current_thread_id(),
duke@435 1292 trap_reason_name(reason),
duke@435 1293 trap_action_name(action),
duke@435 1294 unloaded_class_index);
coleenp@2497 1295 if (class_name != NULL) {
duke@435 1296 tty->print(unresolved ? " unresolved class: " : " symbol: ");
duke@435 1297 class_name->print_symbol_on(tty);
duke@435 1298 }
duke@435 1299 tty->cr();
duke@435 1300 }
duke@435 1301 if (xtty != NULL) {
duke@435 1302 // Log the precise location of the trap.
duke@435 1303 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
duke@435 1304 xtty->begin_elem("jvms bci='%d'", sd->bci());
duke@435 1305 xtty->method(sd->method());
duke@435 1306 xtty->end_elem();
duke@435 1307 if (sd->is_top()) break;
duke@435 1308 }
duke@435 1309 xtty->tail("uncommon_trap");
duke@435 1310 }
duke@435 1311 }
duke@435 1312 // (End diagnostic printout.)
duke@435 1313
duke@435 1314 // Load class if necessary
duke@435 1315 if (unloaded_class_index >= 0) {
duke@435 1316 constantPoolHandle constants(THREAD, trap_method->constants());
duke@435 1317 load_class_by_index(constants, unloaded_class_index);
duke@435 1318 }
duke@435 1319
duke@435 1320 // Flush the nmethod if necessary and desirable.
duke@435 1321 //
duke@435 1322 // We need to avoid situations where we are re-flushing the nmethod
duke@435 1323 // because of a hot deoptimization site. Repeated flushes at the same
duke@435 1324 // point need to be detected by the compiler and avoided. If the compiler
duke@435 1325 // cannot avoid them (or has a bug and "refuses" to avoid them), this
duke@435 1326 // module must take measures to avoid an infinite cycle of recompilation
duke@435 1327 // and deoptimization. There are several such measures:
duke@435 1328 //
duke@435 1329 // 1. If a recompilation is ordered a second time at some site X
duke@435 1330 // and for the same reason R, the action is adjusted to 'reinterpret',
duke@435 1331 // to give the interpreter time to exercise the method more thoroughly.
duke@435 1332 // If this happens, the method's overflow_recompile_count is incremented.
duke@435 1333 //
duke@435 1334 // 2. If the compiler fails to reduce the deoptimization rate, then
duke@435 1335 // the method's overflow_recompile_count will begin to exceed the set
duke@435 1336 // limit PerBytecodeRecompilationCutoff. If this happens, the action
duke@435 1337 // is adjusted to 'make_not_compilable', and the method is abandoned
duke@435 1338 // to the interpreter. This is a performance hit for hot methods,
duke@435 1339 // but is better than a disastrous infinite cycle of recompilations.
duke@435 1340 // (Actually, only the method containing the site X is abandoned.)
duke@435 1341 //
duke@435 1342 // 3. In parallel with the previous measures, if the total number of
duke@435 1343 // recompilations of a method exceeds the much larger set limit
duke@435 1344 // PerMethodRecompilationCutoff, the method is abandoned.
duke@435 1345 // This should only happen if the method is very large and has
duke@435 1346 // many "lukewarm" deoptimizations. The code which enforces this
duke@435 1347 // limit is elsewhere (class nmethod, class methodOopDesc).
duke@435 1348 //
duke@435 1349 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
duke@435 1350 // to recompile at each bytecode independently of the per-BCI cutoff.
duke@435 1351 //
duke@435 1352 // The decision to update code is up to the compiler, and is encoded
duke@435 1353 // in the Action_xxx code. If the compiler requests Action_none
duke@435 1354 // no trap state is changed, no compiled code is changed, and the
duke@435 1355 // computation suffers along in the interpreter.
duke@435 1356 //
duke@435 1357 // The other action codes specify various tactics for decompilation
duke@435 1358 // and recompilation. Action_maybe_recompile is the loosest, and
duke@435 1359 // allows the compiled code to stay around until enough traps are seen,
duke@435 1360 // and until the compiler gets around to recompiling the trapping method.
duke@435 1361 //
duke@435 1362 // The other actions cause immediate removal of the present code.
duke@435 1363
duke@435 1364 bool update_trap_state = true;
duke@435 1365 bool make_not_entrant = false;
duke@435 1366 bool make_not_compilable = false;
iveresov@2138 1367 bool reprofile = false;
duke@435 1368 switch (action) {
duke@435 1369 case Action_none:
duke@435 1370 // Keep the old code.
duke@435 1371 update_trap_state = false;
duke@435 1372 break;
duke@435 1373 case Action_maybe_recompile:
duke@435 1374 // Do not need to invalidate the present code, but we can
duke@435 1375 // initiate another
duke@435 1376 // Start compiler without (necessarily) invalidating the nmethod.
duke@435 1377 // The system will tolerate the old code, but new code should be
duke@435 1378 // generated when possible.
duke@435 1379 break;
duke@435 1380 case Action_reinterpret:
duke@435 1381 // Go back into the interpreter for a while, and then consider
duke@435 1382 // recompiling form scratch.
duke@435 1383 make_not_entrant = true;
duke@435 1384 // Reset invocation counter for outer most method.
duke@435 1385 // This will allow the interpreter to exercise the bytecodes
duke@435 1386 // for a while before recompiling.
duke@435 1387 // By contrast, Action_make_not_entrant is immediate.
duke@435 1388 //
duke@435 1389 // Note that the compiler will track null_check, null_assert,
duke@435 1390 // range_check, and class_check events and log them as if they
duke@435 1391 // had been traps taken from compiled code. This will update
duke@435 1392 // the MDO trap history so that the next compilation will
duke@435 1393 // properly detect hot trap sites.
iveresov@2138 1394 reprofile = true;
duke@435 1395 break;
duke@435 1396 case Action_make_not_entrant:
duke@435 1397 // Request immediate recompilation, and get rid of the old code.
duke@435 1398 // Make them not entrant, so next time they are called they get
duke@435 1399 // recompiled. Unloaded classes are loaded now so recompile before next
duke@435 1400 // time they are called. Same for uninitialized. The interpreter will
duke@435 1401 // link the missing class, if any.
duke@435 1402 make_not_entrant = true;
duke@435 1403 break;
duke@435 1404 case Action_make_not_compilable:
duke@435 1405 // Give up on compiling this method at all.
duke@435 1406 make_not_entrant = true;
duke@435 1407 make_not_compilable = true;
duke@435 1408 break;
duke@435 1409 default:
duke@435 1410 ShouldNotReachHere();
duke@435 1411 }
duke@435 1412
duke@435 1413 // Setting +ProfileTraps fixes the following, on all platforms:
duke@435 1414 // 4852688: ProfileInterpreter is off by default for ia64. The result is
duke@435 1415 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
duke@435 1416 // recompile relies on a methodDataOop to record heroic opt failures.
duke@435 1417
duke@435 1418 // Whether the interpreter is producing MDO data or not, we also need
duke@435 1419 // to use the MDO to detect hot deoptimization points and control
duke@435 1420 // aggressive optimization.
kvn@1641 1421 bool inc_recompile_count = false;
kvn@1641 1422 ProfileData* pdata = NULL;
duke@435 1423 if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
duke@435 1424 assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
duke@435 1425 uint this_trap_count = 0;
duke@435 1426 bool maybe_prior_trap = false;
duke@435 1427 bool maybe_prior_recompile = false;
kvn@1641 1428 pdata = query_update_method_data(trap_mdo, trap_bci, reason,
duke@435 1429 //outputs:
duke@435 1430 this_trap_count,
duke@435 1431 maybe_prior_trap,
duke@435 1432 maybe_prior_recompile);
duke@435 1433 // Because the interpreter also counts null, div0, range, and class
duke@435 1434 // checks, these traps from compiled code are double-counted.
duke@435 1435 // This is harmless; it just means that the PerXTrapLimit values
duke@435 1436 // are in effect a little smaller than they look.
duke@435 1437
duke@435 1438 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1439 if (per_bc_reason != Reason_none) {
duke@435 1440 // Now take action based on the partially known per-BCI history.
duke@435 1441 if (maybe_prior_trap
duke@435 1442 && this_trap_count >= (uint)PerBytecodeTrapLimit) {
duke@435 1443 // If there are too many traps at this BCI, force a recompile.
duke@435 1444 // This will allow the compiler to see the limit overflow, and
duke@435 1445 // take corrective action, if possible. The compiler generally
duke@435 1446 // does not use the exact PerBytecodeTrapLimit value, but instead
duke@435 1447 // changes its tactics if it sees any traps at all. This provides
duke@435 1448 // a little hysteresis, delaying a recompile until a trap happens
duke@435 1449 // several times.
duke@435 1450 //
duke@435 1451 // Actually, since there is only one bit of counter per BCI,
duke@435 1452 // the possible per-BCI counts are {0,1,(per-method count)}.
duke@435 1453 // This produces accurate results if in fact there is only
duke@435 1454 // one hot trap site, but begins to get fuzzy if there are
duke@435 1455 // many sites. For example, if there are ten sites each
duke@435 1456 // trapping two or more times, they each get the blame for
duke@435 1457 // all of their traps.
duke@435 1458 make_not_entrant = true;
duke@435 1459 }
duke@435 1460
duke@435 1461 // Detect repeated recompilation at the same BCI, and enforce a limit.
duke@435 1462 if (make_not_entrant && maybe_prior_recompile) {
duke@435 1463 // More than one recompile at this point.
kvn@1641 1464 inc_recompile_count = maybe_prior_trap;
duke@435 1465 }
duke@435 1466 } else {
duke@435 1467 // For reasons which are not recorded per-bytecode, we simply
duke@435 1468 // force recompiles unconditionally.
duke@435 1469 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
duke@435 1470 make_not_entrant = true;
duke@435 1471 }
duke@435 1472
duke@435 1473 // Go back to the compiler if there are too many traps in this method.
duke@435 1474 if (this_trap_count >= (uint)PerMethodTrapLimit) {
duke@435 1475 // If there are too many traps in this method, force a recompile.
duke@435 1476 // This will allow the compiler to see the limit overflow, and
duke@435 1477 // take corrective action, if possible.
duke@435 1478 // (This condition is an unlikely backstop only, because the
duke@435 1479 // PerBytecodeTrapLimit is more likely to take effect first,
duke@435 1480 // if it is applicable.)
duke@435 1481 make_not_entrant = true;
duke@435 1482 }
duke@435 1483
duke@435 1484 // Here's more hysteresis: If there has been a recompile at
duke@435 1485 // this trap point already, run the method in the interpreter
duke@435 1486 // for a while to exercise it more thoroughly.
duke@435 1487 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
iveresov@2138 1488 reprofile = true;
duke@435 1489 }
duke@435 1490
kvn@1641 1491 }
kvn@1641 1492
kvn@1641 1493 // Take requested actions on the method:
kvn@1641 1494
kvn@1641 1495 // Recompile
kvn@1641 1496 if (make_not_entrant) {
kvn@1641 1497 if (!nm->make_not_entrant()) {
kvn@1641 1498 return; // the call did not change nmethod's state
kvn@1641 1499 }
kvn@1641 1500
kvn@1641 1501 if (pdata != NULL) {
duke@435 1502 // Record the recompilation event, if any.
duke@435 1503 int tstate0 = pdata->trap_state();
duke@435 1504 int tstate1 = trap_state_set_recompiled(tstate0, true);
duke@435 1505 if (tstate1 != tstate0)
duke@435 1506 pdata->set_trap_state(tstate1);
duke@435 1507 }
duke@435 1508 }
duke@435 1509
kvn@1641 1510 if (inc_recompile_count) {
kvn@1641 1511 trap_mdo->inc_overflow_recompile_count();
kvn@1641 1512 if ((uint)trap_mdo->overflow_recompile_count() >
kvn@1641 1513 (uint)PerBytecodeRecompilationCutoff) {
kvn@1641 1514 // Give up on the method containing the bad BCI.
kvn@1641 1515 if (trap_method() == nm->method()) {
kvn@1641 1516 make_not_compilable = true;
kvn@1641 1517 } else {
iveresov@2138 1518 trap_method->set_not_compilable(CompLevel_full_optimization);
kvn@1641 1519 // But give grace to the enclosing nm->method().
kvn@1641 1520 }
kvn@1641 1521 }
kvn@1641 1522 }
duke@435 1523
iveresov@2138 1524 // Reprofile
iveresov@2138 1525 if (reprofile) {
iveresov@2138 1526 CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
duke@435 1527 }
duke@435 1528
duke@435 1529 // Give up compiling
iveresov@2138 1530 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
duke@435 1531 assert(make_not_entrant, "consistent");
iveresov@2138 1532 nm->method()->set_not_compilable(CompLevel_full_optimization);
duke@435 1533 }
duke@435 1534
duke@435 1535 } // Free marked resources
duke@435 1536
duke@435 1537 }
duke@435 1538 JRT_END
duke@435 1539
duke@435 1540 methodDataOop
duke@435 1541 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
duke@435 1542 bool create_if_missing) {
duke@435 1543 Thread* THREAD = thread;
duke@435 1544 methodDataOop mdo = m()->method_data();
duke@435 1545 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
duke@435 1546 // Build an MDO. Ignore errors like OutOfMemory;
duke@435 1547 // that simply means we won't have an MDO to update.
duke@435 1548 methodOopDesc::build_interpreter_method_data(m, THREAD);
duke@435 1549 if (HAS_PENDING_EXCEPTION) {
duke@435 1550 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
duke@435 1551 CLEAR_PENDING_EXCEPTION;
duke@435 1552 }
duke@435 1553 mdo = m()->method_data();
duke@435 1554 }
duke@435 1555 return mdo;
duke@435 1556 }
duke@435 1557
duke@435 1558 ProfileData*
duke@435 1559 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
duke@435 1560 int trap_bci,
duke@435 1561 Deoptimization::DeoptReason reason,
duke@435 1562 //outputs:
duke@435 1563 uint& ret_this_trap_count,
duke@435 1564 bool& ret_maybe_prior_trap,
duke@435 1565 bool& ret_maybe_prior_recompile) {
duke@435 1566 uint prior_trap_count = trap_mdo->trap_count(reason);
duke@435 1567 uint this_trap_count = trap_mdo->inc_trap_count(reason);
duke@435 1568
duke@435 1569 // If the runtime cannot find a place to store trap history,
duke@435 1570 // it is estimated based on the general condition of the method.
duke@435 1571 // If the method has ever been recompiled, or has ever incurred
duke@435 1572 // a trap with the present reason , then this BCI is assumed
duke@435 1573 // (pessimistically) to be the culprit.
duke@435 1574 bool maybe_prior_trap = (prior_trap_count != 0);
duke@435 1575 bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
duke@435 1576 ProfileData* pdata = NULL;
duke@435 1577
duke@435 1578
duke@435 1579 // For reasons which are recorded per bytecode, we check per-BCI data.
duke@435 1580 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1581 if (per_bc_reason != Reason_none) {
duke@435 1582 // Find the profile data for this BCI. If there isn't one,
duke@435 1583 // try to allocate one from the MDO's set of spares.
duke@435 1584 // This will let us detect a repeated trap at this point.
duke@435 1585 pdata = trap_mdo->allocate_bci_to_data(trap_bci);
duke@435 1586
duke@435 1587 if (pdata != NULL) {
duke@435 1588 // Query the trap state of this profile datum.
duke@435 1589 int tstate0 = pdata->trap_state();
duke@435 1590 if (!trap_state_has_reason(tstate0, per_bc_reason))
duke@435 1591 maybe_prior_trap = false;
duke@435 1592 if (!trap_state_is_recompiled(tstate0))
duke@435 1593 maybe_prior_recompile = false;
duke@435 1594
duke@435 1595 // Update the trap state of this profile datum.
duke@435 1596 int tstate1 = tstate0;
duke@435 1597 // Record the reason.
duke@435 1598 tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
duke@435 1599 // Store the updated state on the MDO, for next time.
duke@435 1600 if (tstate1 != tstate0)
duke@435 1601 pdata->set_trap_state(tstate1);
duke@435 1602 } else {
kvn@1641 1603 if (LogCompilation && xtty != NULL) {
kvn@1641 1604 ttyLocker ttyl;
duke@435 1605 // Missing MDP? Leave a small complaint in the log.
duke@435 1606 xtty->elem("missing_mdp bci='%d'", trap_bci);
kvn@1641 1607 }
duke@435 1608 }
duke@435 1609 }
duke@435 1610
duke@435 1611 // Return results:
duke@435 1612 ret_this_trap_count = this_trap_count;
duke@435 1613 ret_maybe_prior_trap = maybe_prior_trap;
duke@435 1614 ret_maybe_prior_recompile = maybe_prior_recompile;
duke@435 1615 return pdata;
duke@435 1616 }
duke@435 1617
duke@435 1618 void
duke@435 1619 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
duke@435 1620 ResourceMark rm;
duke@435 1621 // Ignored outputs:
duke@435 1622 uint ignore_this_trap_count;
duke@435 1623 bool ignore_maybe_prior_trap;
duke@435 1624 bool ignore_maybe_prior_recompile;
duke@435 1625 query_update_method_data(trap_mdo, trap_bci,
duke@435 1626 (DeoptReason)reason,
duke@435 1627 ignore_this_trap_count,
duke@435 1628 ignore_maybe_prior_trap,
duke@435 1629 ignore_maybe_prior_recompile);
duke@435 1630 }
duke@435 1631
duke@435 1632 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
duke@435 1633
duke@435 1634 // Still in Java no safepoints
duke@435 1635 {
duke@435 1636 // This enters VM and may safepoint
duke@435 1637 uncommon_trap_inner(thread, trap_request);
duke@435 1638 }
duke@435 1639 return fetch_unroll_info_helper(thread);
duke@435 1640 }
duke@435 1641
duke@435 1642 // Local derived constants.
duke@435 1643 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
duke@435 1644 const int DS_REASON_MASK = DataLayout::trap_mask >> 1;
duke@435 1645 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
duke@435 1646
duke@435 1647 //---------------------------trap_state_reason---------------------------------
duke@435 1648 Deoptimization::DeoptReason
duke@435 1649 Deoptimization::trap_state_reason(int trap_state) {
duke@435 1650 // This assert provides the link between the width of DataLayout::trap_bits
duke@435 1651 // and the encoding of "recorded" reasons. It ensures there are enough
duke@435 1652 // bits to store all needed reasons in the per-BCI MDO profile.
duke@435 1653 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1654 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1655 trap_state -= recompile_bit;
duke@435 1656 if (trap_state == DS_REASON_MASK) {
duke@435 1657 return Reason_many;
duke@435 1658 } else {
duke@435 1659 assert((int)Reason_none == 0, "state=0 => Reason_none");
duke@435 1660 return (DeoptReason)trap_state;
duke@435 1661 }
duke@435 1662 }
duke@435 1663 //-------------------------trap_state_has_reason-------------------------------
duke@435 1664 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1665 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
duke@435 1666 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1667 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1668 trap_state -= recompile_bit;
duke@435 1669 if (trap_state == DS_REASON_MASK) {
duke@435 1670 return -1; // true, unspecifically (bottom of state lattice)
duke@435 1671 } else if (trap_state == reason) {
duke@435 1672 return 1; // true, definitely
duke@435 1673 } else if (trap_state == 0) {
duke@435 1674 return 0; // false, definitely (top of state lattice)
duke@435 1675 } else {
duke@435 1676 return 0; // false, definitely
duke@435 1677 }
duke@435 1678 }
duke@435 1679 //-------------------------trap_state_add_reason-------------------------------
duke@435 1680 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
duke@435 1681 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
duke@435 1682 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1683 trap_state -= recompile_bit;
duke@435 1684 if (trap_state == DS_REASON_MASK) {
duke@435 1685 return trap_state + recompile_bit; // already at state lattice bottom
duke@435 1686 } else if (trap_state == reason) {
duke@435 1687 return trap_state + recompile_bit; // the condition is already true
duke@435 1688 } else if (trap_state == 0) {
duke@435 1689 return reason + recompile_bit; // no condition has yet been true
duke@435 1690 } else {
duke@435 1691 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom
duke@435 1692 }
duke@435 1693 }
duke@435 1694 //-----------------------trap_state_is_recompiled------------------------------
duke@435 1695 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1696 return (trap_state & DS_RECOMPILE_BIT) != 0;
duke@435 1697 }
duke@435 1698 //-----------------------trap_state_set_recompiled-----------------------------
duke@435 1699 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
duke@435 1700 if (z) return trap_state | DS_RECOMPILE_BIT;
duke@435 1701 else return trap_state & ~DS_RECOMPILE_BIT;
duke@435 1702 }
duke@435 1703 //---------------------------format_trap_state---------------------------------
duke@435 1704 // This is used for debugging and diagnostics, including hotspot.log output.
duke@435 1705 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1706 int trap_state) {
duke@435 1707 DeoptReason reason = trap_state_reason(trap_state);
duke@435 1708 bool recomp_flag = trap_state_is_recompiled(trap_state);
duke@435 1709 // Re-encode the state from its decoded components.
duke@435 1710 int decoded_state = 0;
duke@435 1711 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
duke@435 1712 decoded_state = trap_state_add_reason(decoded_state, reason);
duke@435 1713 if (recomp_flag)
duke@435 1714 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
duke@435 1715 // If the state re-encodes properly, format it symbolically.
duke@435 1716 // Because this routine is used for debugging and diagnostics,
duke@435 1717 // be robust even if the state is a strange value.
duke@435 1718 size_t len;
duke@435 1719 if (decoded_state != trap_state) {
duke@435 1720 // Random buggy state that doesn't decode??
duke@435 1721 len = jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1722 } else {
duke@435 1723 len = jio_snprintf(buf, buflen, "%s%s",
duke@435 1724 trap_reason_name(reason),
duke@435 1725 recomp_flag ? " recompiled" : "");
duke@435 1726 }
duke@435 1727 if (len >= buflen)
duke@435 1728 buf[buflen-1] = '\0';
duke@435 1729 return buf;
duke@435 1730 }
duke@435 1731
duke@435 1732
duke@435 1733 //--------------------------------statics--------------------------------------
duke@435 1734 Deoptimization::DeoptAction Deoptimization::_unloaded_action
duke@435 1735 = Deoptimization::Action_reinterpret;
duke@435 1736 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
duke@435 1737 // Note: Keep this in sync. with enum DeoptReason.
duke@435 1738 "none",
duke@435 1739 "null_check",
duke@435 1740 "null_assert",
duke@435 1741 "range_check",
duke@435 1742 "class_check",
duke@435 1743 "array_check",
duke@435 1744 "intrinsic",
kvn@1641 1745 "bimorphic",
duke@435 1746 "unloaded",
duke@435 1747 "uninitialized",
duke@435 1748 "unreached",
duke@435 1749 "unhandled",
duke@435 1750 "constraint",
duke@435 1751 "div0_check",
cfang@1607 1752 "age",
cfang@1607 1753 "predicate"
duke@435 1754 };
duke@435 1755 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
duke@435 1756 // Note: Keep this in sync. with enum DeoptAction.
duke@435 1757 "none",
duke@435 1758 "maybe_recompile",
duke@435 1759 "reinterpret",
duke@435 1760 "make_not_entrant",
duke@435 1761 "make_not_compilable"
duke@435 1762 };
duke@435 1763
duke@435 1764 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1765 if (reason == Reason_many) return "many";
duke@435 1766 if ((uint)reason < Reason_LIMIT)
duke@435 1767 return _trap_reason_name[reason];
duke@435 1768 static char buf[20];
duke@435 1769 sprintf(buf, "reason%d", reason);
duke@435 1770 return buf;
duke@435 1771 }
duke@435 1772 const char* Deoptimization::trap_action_name(int action) {
duke@435 1773 if ((uint)action < Action_LIMIT)
duke@435 1774 return _trap_action_name[action];
duke@435 1775 static char buf[20];
duke@435 1776 sprintf(buf, "action%d", action);
duke@435 1777 return buf;
duke@435 1778 }
duke@435 1779
duke@435 1780 // This is used for debugging and diagnostics, including hotspot.log output.
duke@435 1781 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
duke@435 1782 int trap_request) {
duke@435 1783 jint unloaded_class_index = trap_request_index(trap_request);
duke@435 1784 const char* reason = trap_reason_name(trap_request_reason(trap_request));
duke@435 1785 const char* action = trap_action_name(trap_request_action(trap_request));
duke@435 1786 size_t len;
duke@435 1787 if (unloaded_class_index < 0) {
duke@435 1788 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
duke@435 1789 reason, action);
duke@435 1790 } else {
duke@435 1791 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
duke@435 1792 reason, action, unloaded_class_index);
duke@435 1793 }
duke@435 1794 if (len >= buflen)
duke@435 1795 buf[buflen-1] = '\0';
duke@435 1796 return buf;
duke@435 1797 }
duke@435 1798
duke@435 1799 juint Deoptimization::_deoptimization_hist
duke@435 1800 [Deoptimization::Reason_LIMIT]
duke@435 1801 [1 + Deoptimization::Action_LIMIT]
duke@435 1802 [Deoptimization::BC_CASE_LIMIT]
duke@435 1803 = {0};
duke@435 1804
duke@435 1805 enum {
duke@435 1806 LSB_BITS = 8,
duke@435 1807 LSB_MASK = right_n_bits(LSB_BITS)
duke@435 1808 };
duke@435 1809
duke@435 1810 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1811 Bytecodes::Code bc) {
duke@435 1812 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1813 assert(action >= 0 && action < Action_LIMIT, "oob");
duke@435 1814 _deoptimization_hist[Reason_none][0][0] += 1; // total
duke@435 1815 _deoptimization_hist[reason][0][0] += 1; // per-reason total
duke@435 1816 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1817 juint* bc_counter_addr = NULL;
duke@435 1818 juint bc_counter = 0;
duke@435 1819 // Look for an unused counter, or an exact match to this BC.
duke@435 1820 if (bc != Bytecodes::_illegal) {
duke@435 1821 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1822 juint* counter_addr = &cases[bc_case];
duke@435 1823 juint counter = *counter_addr;
duke@435 1824 if ((counter == 0 && bc_counter_addr == NULL)
duke@435 1825 || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
duke@435 1826 // this counter is either free or is already devoted to this BC
duke@435 1827 bc_counter_addr = counter_addr;
duke@435 1828 bc_counter = counter | bc;
duke@435 1829 }
duke@435 1830 }
duke@435 1831 }
duke@435 1832 if (bc_counter_addr == NULL) {
duke@435 1833 // Overflow, or no given bytecode.
duke@435 1834 bc_counter_addr = &cases[BC_CASE_LIMIT-1];
duke@435 1835 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB
duke@435 1836 }
duke@435 1837 *bc_counter_addr = bc_counter + (1 << LSB_BITS);
duke@435 1838 }
duke@435 1839
duke@435 1840 jint Deoptimization::total_deoptimization_count() {
duke@435 1841 return _deoptimization_hist[Reason_none][0][0];
duke@435 1842 }
duke@435 1843
duke@435 1844 jint Deoptimization::deoptimization_count(DeoptReason reason) {
duke@435 1845 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1846 return _deoptimization_hist[reason][0][0];
duke@435 1847 }
duke@435 1848
duke@435 1849 void Deoptimization::print_statistics() {
duke@435 1850 juint total = total_deoptimization_count();
duke@435 1851 juint account = total;
duke@435 1852 if (total != 0) {
duke@435 1853 ttyLocker ttyl;
duke@435 1854 if (xtty != NULL) xtty->head("statistics type='deoptimization'");
duke@435 1855 tty->print_cr("Deoptimization traps recorded:");
duke@435 1856 #define PRINT_STAT_LINE(name, r) \
duke@435 1857 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
duke@435 1858 PRINT_STAT_LINE("total", total);
duke@435 1859 // For each non-zero entry in the histogram, print the reason,
duke@435 1860 // the action, and (if specifically known) the type of bytecode.
duke@435 1861 for (int reason = 0; reason < Reason_LIMIT; reason++) {
duke@435 1862 for (int action = 0; action < Action_LIMIT; action++) {
duke@435 1863 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1864 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1865 juint counter = cases[bc_case];
duke@435 1866 if (counter != 0) {
duke@435 1867 char name[1*K];
duke@435 1868 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
duke@435 1869 if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
duke@435 1870 bc = Bytecodes::_illegal;
duke@435 1871 sprintf(name, "%s/%s/%s",
duke@435 1872 trap_reason_name(reason),
duke@435 1873 trap_action_name(action),
duke@435 1874 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
duke@435 1875 juint r = counter >> LSB_BITS;
duke@435 1876 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
duke@435 1877 account -= r;
duke@435 1878 }
duke@435 1879 }
duke@435 1880 }
duke@435 1881 }
duke@435 1882 if (account != 0) {
duke@435 1883 PRINT_STAT_LINE("unaccounted", account);
duke@435 1884 }
duke@435 1885 #undef PRINT_STAT_LINE
duke@435 1886 if (xtty != NULL) xtty->tail("statistics");
duke@435 1887 }
duke@435 1888 }
twisti@2047 1889 #else // COMPILER2 || SHARK
duke@435 1890
duke@435 1891
duke@435 1892 // Stubs for C1 only system.
duke@435 1893 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1894 return false;
duke@435 1895 }
duke@435 1896
duke@435 1897 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1898 return "unknown";
duke@435 1899 }
duke@435 1900
duke@435 1901 void Deoptimization::print_statistics() {
duke@435 1902 // no output
duke@435 1903 }
duke@435 1904
duke@435 1905 void
duke@435 1906 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
duke@435 1907 // no udpate
duke@435 1908 }
duke@435 1909
duke@435 1910 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1911 return 0;
duke@435 1912 }
duke@435 1913
duke@435 1914 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1915 Bytecodes::Code bc) {
duke@435 1916 // no update
duke@435 1917 }
duke@435 1918
duke@435 1919 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1920 int trap_state) {
duke@435 1921 jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1922 return buf;
duke@435 1923 }
duke@435 1924
twisti@2047 1925 #endif // COMPILER2 || SHARK

mercurial