src/share/vm/opto/compile.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7385
9e69e8d1c900
child 7789
eb8b5cc64669
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

duke@435 1 /*
dlong@7598 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
kvn@6217 28 #include "ci/ciReplay.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "code/exceptionHandlerTable.hpp"
stefank@2314 31 #include "code/nmethod.hpp"
stefank@2314 32 #include "compiler/compileLog.hpp"
twisti@4318 33 #include "compiler/disassembler.hpp"
stefank@2314 34 #include "compiler/oopMap.hpp"
stefank@2314 35 #include "opto/addnode.hpp"
stefank@2314 36 #include "opto/block.hpp"
stefank@2314 37 #include "opto/c2compiler.hpp"
stefank@2314 38 #include "opto/callGenerator.hpp"
stefank@2314 39 #include "opto/callnode.hpp"
stefank@2314 40 #include "opto/cfgnode.hpp"
stefank@2314 41 #include "opto/chaitin.hpp"
stefank@2314 42 #include "opto/compile.hpp"
stefank@2314 43 #include "opto/connode.hpp"
stefank@2314 44 #include "opto/divnode.hpp"
stefank@2314 45 #include "opto/escape.hpp"
stefank@2314 46 #include "opto/idealGraphPrinter.hpp"
stefank@2314 47 #include "opto/loopnode.hpp"
stefank@2314 48 #include "opto/machnode.hpp"
stefank@2314 49 #include "opto/macro.hpp"
stefank@2314 50 #include "opto/matcher.hpp"
rbackman@5927 51 #include "opto/mathexactnode.hpp"
stefank@2314 52 #include "opto/memnode.hpp"
stefank@2314 53 #include "opto/mulnode.hpp"
stefank@2314 54 #include "opto/node.hpp"
stefank@2314 55 #include "opto/opcodes.hpp"
stefank@2314 56 #include "opto/output.hpp"
stefank@2314 57 #include "opto/parse.hpp"
stefank@2314 58 #include "opto/phaseX.hpp"
stefank@2314 59 #include "opto/rootnode.hpp"
stefank@2314 60 #include "opto/runtime.hpp"
stefank@2314 61 #include "opto/stringopts.hpp"
stefank@2314 62 #include "opto/type.hpp"
stefank@2314 63 #include "opto/vectornode.hpp"
stefank@2314 64 #include "runtime/arguments.hpp"
stefank@2314 65 #include "runtime/signature.hpp"
stefank@2314 66 #include "runtime/stubRoutines.hpp"
stefank@2314 67 #include "runtime/timer.hpp"
sla@5237 68 #include "trace/tracing.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
dlong@7598 70 #if defined AD_MD_HPP
dlong@7598 71 # include AD_MD_HPP
dlong@7598 72 #elif defined TARGET_ARCH_MODEL_x86_32
stefank@2314 73 # include "adfiles/ad_x86_32.hpp"
dlong@7598 74 #elif defined TARGET_ARCH_MODEL_x86_64
stefank@2314 75 # include "adfiles/ad_x86_64.hpp"
dlong@7598 76 #elif defined TARGET_ARCH_MODEL_sparc
stefank@2314 77 # include "adfiles/ad_sparc.hpp"
dlong@7598 78 #elif defined TARGET_ARCH_MODEL_zero
stefank@2314 79 # include "adfiles/ad_zero.hpp"
dlong@7598 80 #elif defined TARGET_ARCH_MODEL_ppc_64
goetz@6441 81 # include "adfiles/ad_ppc_64.hpp"
bobv@2508 82 #endif
duke@435 83
twisti@2350 84
twisti@2350 85 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 86 // Constant table base node singleton.
twisti@2350 87 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 88 if (_mach_constant_base_node == NULL) {
twisti@2350 89 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 90 _mach_constant_base_node->add_req(C->root());
twisti@2350 91 }
twisti@2350 92 return _mach_constant_base_node;
twisti@2350 93 }
twisti@2350 94
twisti@2350 95
duke@435 96 /// Support for intrinsics.
duke@435 97
duke@435 98 // Return the index at which m must be inserted (or already exists).
duke@435 99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 101 #ifdef ASSERT
duke@435 102 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 103 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 104 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 105 assert(cg1->method() != cg2->method()
duke@435 106 ? cg1->method() < cg2->method()
duke@435 107 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 108 "compiler intrinsics list must stay sorted");
duke@435 109 }
duke@435 110 #endif
duke@435 111 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 112 int lo = 0, hi = _intrinsics->length()-1;
duke@435 113 while (lo <= hi) {
duke@435 114 int mid = (uint)(hi + lo) / 2;
duke@435 115 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 116 if (m < mid_m) {
duke@435 117 hi = mid-1;
duke@435 118 } else if (m > mid_m) {
duke@435 119 lo = mid+1;
duke@435 120 } else {
duke@435 121 // look at minor sort key
duke@435 122 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 123 if (is_virtual < mid_virt) {
duke@435 124 hi = mid-1;
duke@435 125 } else if (is_virtual > mid_virt) {
duke@435 126 lo = mid+1;
duke@435 127 } else {
duke@435 128 return mid; // exact match
duke@435 129 }
duke@435 130 }
duke@435 131 }
duke@435 132 return lo; // inexact match
duke@435 133 }
duke@435 134
duke@435 135 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 136 if (_intrinsics == NULL) {
roland@4409 137 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
duke@435 138 }
duke@435 139 // This code is stolen from ciObjectFactory::insert.
duke@435 140 // Really, GrowableArray should have methods for
duke@435 141 // insert_at, remove_at, and binary_search.
duke@435 142 int len = _intrinsics->length();
duke@435 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 144 if (index == len) {
duke@435 145 _intrinsics->append(cg);
duke@435 146 } else {
duke@435 147 #ifdef ASSERT
duke@435 148 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 149 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 150 #endif
duke@435 151 _intrinsics->append(_intrinsics->at(len-1));
duke@435 152 int pos;
duke@435 153 for (pos = len-2; pos >= index; pos--) {
duke@435 154 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 155 }
duke@435 156 _intrinsics->at_put(index, cg);
duke@435 157 }
duke@435 158 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 159 }
duke@435 160
duke@435 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 162 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 163 if (_intrinsics != NULL) {
duke@435 164 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 165 if (index < _intrinsics->length()
duke@435 166 && _intrinsics->at(index)->method() == m
duke@435 167 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 168 return _intrinsics->at(index);
duke@435 169 }
duke@435 170 }
duke@435 171 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 172 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 173 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 174 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 175 if (cg != NULL) {
duke@435 176 // Save it for next time:
duke@435 177 register_intrinsic(cg);
duke@435 178 return cg;
duke@435 179 } else {
duke@435 180 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 181 }
duke@435 182 }
duke@435 183 return NULL;
duke@435 184 }
duke@435 185
duke@435 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 187 // in library_call.cpp.
duke@435 188
duke@435 189
duke@435 190 #ifndef PRODUCT
duke@435 191 // statistics gathering...
duke@435 192
duke@435 193 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 195
duke@435 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 197 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 198 int oflags = _intrinsic_hist_flags[id];
duke@435 199 assert(flags != 0, "what happened?");
duke@435 200 if (is_virtual) {
duke@435 201 flags |= _intrinsic_virtual;
duke@435 202 }
duke@435 203 bool changed = (flags != oflags);
duke@435 204 if ((flags & _intrinsic_worked) != 0) {
duke@435 205 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 206 if (count == 1) {
duke@435 207 changed = true; // first time
duke@435 208 }
duke@435 209 // increment the overall count also:
duke@435 210 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 211 }
duke@435 212 if (changed) {
duke@435 213 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 214 // Something changed about the intrinsic's virtuality.
duke@435 215 if ((flags & _intrinsic_virtual) != 0) {
duke@435 216 // This is the first use of this intrinsic as a virtual call.
duke@435 217 if (oflags != 0) {
duke@435 218 // We already saw it as a non-virtual, so note both cases.
duke@435 219 flags |= _intrinsic_both;
duke@435 220 }
duke@435 221 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 222 // This is the first use of this intrinsic as a non-virtual
duke@435 223 flags |= _intrinsic_both;
duke@435 224 }
duke@435 225 }
duke@435 226 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 227 }
duke@435 228 // update the overall flags also:
duke@435 229 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 230 return changed;
duke@435 231 }
duke@435 232
duke@435 233 static char* format_flags(int flags, char* buf) {
duke@435 234 buf[0] = 0;
duke@435 235 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 236 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 237 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 238 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 239 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 240 if (buf[0] == 0) strcat(buf, ",");
duke@435 241 assert(buf[0] == ',', "must be");
duke@435 242 return &buf[1];
duke@435 243 }
duke@435 244
duke@435 245 void Compile::print_intrinsic_statistics() {
duke@435 246 char flagsbuf[100];
duke@435 247 ttyLocker ttyl;
duke@435 248 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 249 tty->print_cr("Compiler intrinsic usage:");
duke@435 250 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 251 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 252 #define PRINT_STAT_LINE(name, c, f) \
duke@435 253 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 254 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 255 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 256 int flags = _intrinsic_hist_flags[id];
duke@435 257 juint count = _intrinsic_hist_count[id];
duke@435 258 if ((flags | count) != 0) {
duke@435 259 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 260 }
duke@435 261 }
duke@435 262 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 263 if (xtty != NULL) xtty->tail("statistics");
duke@435 264 }
duke@435 265
duke@435 266 void Compile::print_statistics() {
duke@435 267 { ttyLocker ttyl;
duke@435 268 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 269 Parse::print_statistics();
duke@435 270 PhaseCCP::print_statistics();
duke@435 271 PhaseRegAlloc::print_statistics();
duke@435 272 Scheduling::print_statistics();
duke@435 273 PhasePeephole::print_statistics();
duke@435 274 PhaseIdealLoop::print_statistics();
duke@435 275 if (xtty != NULL) xtty->tail("statistics");
duke@435 276 }
duke@435 277 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 278 // put this under its own <statistics> element.
duke@435 279 print_intrinsic_statistics();
duke@435 280 }
duke@435 281 }
duke@435 282 #endif //PRODUCT
duke@435 283
duke@435 284 // Support for bundling info
duke@435 285 Bundle* Compile::node_bundling(const Node *n) {
duke@435 286 assert(valid_bundle_info(n), "oob");
duke@435 287 return &_node_bundling_base[n->_idx];
duke@435 288 }
duke@435 289
duke@435 290 bool Compile::valid_bundle_info(const Node *n) {
duke@435 291 return (_node_bundling_limit > n->_idx);
duke@435 292 }
duke@435 293
duke@435 294
never@1515 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 296 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 297 Node* use = n->last_out(i);
never@1515 298 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 299 uint uses_found = 0;
never@1515 300 for (uint j = 0; j < use->len(); j++) {
never@1515 301 if (use->in(j) == n) {
never@1515 302 if (j < use->req())
never@1515 303 use->set_req(j, nn);
never@1515 304 else
never@1515 305 use->set_prec(j, nn);
never@1515 306 uses_found++;
never@1515 307 }
never@1515 308 }
never@1515 309 if (is_in_table) {
never@1515 310 // reinsert into table
never@1515 311 initial_gvn()->hash_find_insert(use);
never@1515 312 }
never@1515 313 record_for_igvn(use);
never@1515 314 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 315 }
never@1515 316 }
never@1515 317
never@1515 318
bharadwaj@4315 319 static inline bool not_a_node(const Node* n) {
bharadwaj@4315 320 if (n == NULL) return true;
bharadwaj@4315 321 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
bharadwaj@4315 322 if (*(address*)n == badAddress) return true; // kill by Node::destruct
bharadwaj@4315 323 return false;
bharadwaj@4315 324 }
never@1515 325
duke@435 326 // Identify all nodes that are reachable from below, useful.
duke@435 327 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 328 // recursive traversal is slower.
duke@435 329 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 330 int estimated_worklist_size = unique();
duke@435 331 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 332
duke@435 333 // Initialize worklist
duke@435 334 if (root() != NULL) { useful.push(root()); }
duke@435 335 // If 'top' is cached, declare it useful to preserve cached node
duke@435 336 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 337
duke@435 338 // Push all useful nodes onto the list, breadthfirst
duke@435 339 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 340 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 341 Node *n = useful.at(next);
duke@435 342 uint max = n->len();
duke@435 343 for( uint i = 0; i < max; ++i ) {
duke@435 344 Node *m = n->in(i);
bharadwaj@4315 345 if (not_a_node(m)) continue;
duke@435 346 useful.push(m);
duke@435 347 }
duke@435 348 }
duke@435 349 }
duke@435 350
bharadwaj@4315 351 // Update dead_node_list with any missing dead nodes using useful
bharadwaj@4315 352 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
bharadwaj@4315 353 void Compile::update_dead_node_list(Unique_Node_List &useful) {
bharadwaj@4315 354 uint max_idx = unique();
bharadwaj@4315 355 VectorSet& useful_node_set = useful.member_set();
bharadwaj@4315 356
bharadwaj@4315 357 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
bharadwaj@4315 358 // If node with index node_idx is not in useful set,
bharadwaj@4315 359 // mark it as dead in dead node list.
bharadwaj@4315 360 if (! useful_node_set.test(node_idx) ) {
bharadwaj@4315 361 record_dead_node(node_idx);
bharadwaj@4315 362 }
bharadwaj@4315 363 }
bharadwaj@4315 364 }
bharadwaj@4315 365
roland@4409 366 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
roland@4409 367 int shift = 0;
roland@4409 368 for (int i = 0; i < inlines->length(); i++) {
roland@4409 369 CallGenerator* cg = inlines->at(i);
roland@4409 370 CallNode* call = cg->call_node();
roland@4409 371 if (shift > 0) {
roland@4409 372 inlines->at_put(i-shift, cg);
roland@4409 373 }
roland@4409 374 if (!useful.member(call)) {
roland@4409 375 shift++;
roland@4409 376 }
roland@4409 377 }
roland@4409 378 inlines->trunc_to(inlines->length()-shift);
roland@4409 379 }
roland@4409 380
duke@435 381 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 382 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 383 uint next = 0;
kvn@3260 384 while (next < useful.size()) {
duke@435 385 Node *n = useful.at(next++);
roland@7041 386 if (n->is_SafePoint()) {
roland@7041 387 // We're done with a parsing phase. Replaced nodes are not valid
roland@7041 388 // beyond that point.
roland@7041 389 n->as_SafePoint()->delete_replaced_nodes();
roland@7041 390 }
duke@435 391 // Use raw traversal of out edges since this code removes out edges
duke@435 392 int max = n->outcnt();
kvn@3260 393 for (int j = 0; j < max; ++j) {
duke@435 394 Node* child = n->raw_out(j);
kvn@3260 395 if (! useful.member(child)) {
kvn@3260 396 assert(!child->is_top() || child != top(),
kvn@3260 397 "If top is cached in Compile object it is in useful list");
duke@435 398 // Only need to remove this out-edge to the useless node
duke@435 399 n->raw_del_out(j);
duke@435 400 --j;
duke@435 401 --max;
duke@435 402 }
duke@435 403 }
duke@435 404 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 405 record_for_igvn(n->unique_out());
kvn@3260 406 }
kvn@3260 407 }
kvn@3260 408 // Remove useless macro and predicate opaq nodes
kvn@3260 409 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 410 Node* n = C->macro_node(i);
kvn@3260 411 if (!useful.member(n)) {
kvn@3260 412 remove_macro_node(n);
duke@435 413 }
duke@435 414 }
roland@4589 415 // Remove useless expensive node
roland@4589 416 for (int i = C->expensive_count()-1; i >= 0; i--) {
roland@4589 417 Node* n = C->expensive_node(i);
roland@4589 418 if (!useful.member(n)) {
roland@4589 419 remove_expensive_node(n);
roland@4589 420 }
roland@4589 421 }
roland@4409 422 // clean up the late inline lists
roland@4409 423 remove_useless_late_inlines(&_string_late_inlines, useful);
kvn@5110 424 remove_useless_late_inlines(&_boxing_late_inlines, useful);
roland@4409 425 remove_useless_late_inlines(&_late_inlines, useful);
duke@435 426 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 427 }
duke@435 428
duke@435 429 //------------------------------frame_size_in_words-----------------------------
duke@435 430 // frame_slots in units of words
duke@435 431 int Compile::frame_size_in_words() const {
duke@435 432 // shift is 0 in LP32 and 1 in LP64
duke@435 433 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 434 int words = _frame_slots >> shift;
duke@435 435 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 436 return words;
duke@435 437 }
duke@435 438
roland@6723 439 // To bang the stack of this compiled method we use the stack size
roland@6723 440 // that the interpreter would need in case of a deoptimization. This
roland@6723 441 // removes the need to bang the stack in the deoptimization blob which
roland@6723 442 // in turn simplifies stack overflow handling.
roland@6723 443 int Compile::bang_size_in_bytes() const {
roland@6723 444 return MAX2(_interpreter_frame_size, frame_size_in_bytes());
roland@6723 445 }
roland@6723 446
duke@435 447 // ============================================================================
duke@435 448 //------------------------------CompileWrapper---------------------------------
duke@435 449 class CompileWrapper : public StackObj {
duke@435 450 Compile *const _compile;
duke@435 451 public:
duke@435 452 CompileWrapper(Compile* compile);
duke@435 453
duke@435 454 ~CompileWrapper();
duke@435 455 };
duke@435 456
duke@435 457 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 458 // the Compile* pointer is stored in the current ciEnv:
duke@435 459 ciEnv* env = compile->env();
duke@435 460 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 461 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 462 env->set_compiler_data(compile);
duke@435 463 assert(compile == Compile::current(), "sanity");
duke@435 464
duke@435 465 compile->set_type_dict(NULL);
duke@435 466 compile->set_type_hwm(NULL);
duke@435 467 compile->set_type_last_size(0);
duke@435 468 compile->set_last_tf(NULL, NULL);
duke@435 469 compile->set_indexSet_arena(NULL);
duke@435 470 compile->set_indexSet_free_block_list(NULL);
duke@435 471 compile->init_type_arena();
duke@435 472 Type::Initialize(compile);
duke@435 473 _compile->set_scratch_buffer_blob(NULL);
duke@435 474 _compile->begin_method();
duke@435 475 }
duke@435 476 CompileWrapper::~CompileWrapper() {
duke@435 477 _compile->end_method();
duke@435 478 if (_compile->scratch_buffer_blob() != NULL)
duke@435 479 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 480 _compile->env()->set_compiler_data(NULL);
duke@435 481 }
duke@435 482
duke@435 483
duke@435 484 //----------------------------print_compile_messages---------------------------
duke@435 485 void Compile::print_compile_messages() {
duke@435 486 #ifndef PRODUCT
duke@435 487 // Check if recompiling
duke@435 488 if (_subsume_loads == false && PrintOpto) {
duke@435 489 // Recompiling without allowing machine instructions to subsume loads
duke@435 490 tty->print_cr("*********************************************************");
duke@435 491 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 492 tty->print_cr("*********************************************************");
duke@435 493 }
kvn@473 494 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 495 // Recompiling without escape analysis
kvn@473 496 tty->print_cr("*********************************************************");
kvn@473 497 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 498 tty->print_cr("*********************************************************");
kvn@473 499 }
kvn@5110 500 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
kvn@5110 501 // Recompiling without boxing elimination
kvn@5110 502 tty->print_cr("*********************************************************");
kvn@5110 503 tty->print_cr("** Bailout: Recompile without boxing elimination **");
kvn@5110 504 tty->print_cr("*********************************************************");
kvn@5110 505 }
duke@435 506 if (env()->break_at_compile()) {
twisti@1040 507 // Open the debugger when compiling this method.
duke@435 508 tty->print("### Breaking when compiling: ");
duke@435 509 method()->print_short_name();
duke@435 510 tty->cr();
duke@435 511 BREAKPOINT;
duke@435 512 }
duke@435 513
duke@435 514 if( PrintOpto ) {
duke@435 515 if (is_osr_compilation()) {
duke@435 516 tty->print("[OSR]%3d", _compile_id);
duke@435 517 } else {
duke@435 518 tty->print("%3d", _compile_id);
duke@435 519 }
duke@435 520 }
duke@435 521 #endif
duke@435 522 }
duke@435 523
duke@435 524
kvn@2414 525 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 526 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 527 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 528 // If there is already a scratch buffer blob allocated and the
kvn@2414 529 // constant section is big enough, use it. Otherwise free the
kvn@2414 530 // current and allocate a new one.
kvn@2414 531 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 532 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 533 // Use the current blob.
kvn@2414 534 } else {
kvn@2414 535 if (blob != NULL) {
kvn@2414 536 BufferBlob::free(blob);
kvn@2414 537 }
duke@435 538
kvn@2414 539 ResourceMark rm;
kvn@2414 540 _scratch_const_size = const_size;
kvn@2414 541 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 542 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 543 // Record the buffer blob for next time.
kvn@2414 544 set_scratch_buffer_blob(blob);
kvn@2414 545 // Have we run out of code space?
kvn@2414 546 if (scratch_buffer_blob() == NULL) {
kvn@2414 547 // Let CompilerBroker disable further compilations.
kvn@2414 548 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 549 return;
kvn@2414 550 }
kvn@598 551 }
duke@435 552
duke@435 553 // Initialize the relocation buffers
twisti@2103 554 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 555 set_scratch_locs_memory(locs_buf);
duke@435 556 }
duke@435 557
duke@435 558
duke@435 559 //-----------------------scratch_emit_size-------------------------------------
duke@435 560 // Helper function that computes size by emitting code
duke@435 561 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 562 // Start scratch_emit_size section.
twisti@2350 563 set_in_scratch_emit_size(true);
twisti@2350 564
duke@435 565 // Emit into a trash buffer and count bytes emitted.
duke@435 566 // This is a pretty expensive way to compute a size,
duke@435 567 // but it works well enough if seldom used.
duke@435 568 // All common fixed-size instructions are given a size
duke@435 569 // method by the AD file.
duke@435 570 // Note that the scratch buffer blob and locs memory are
duke@435 571 // allocated at the beginning of the compile task, and
duke@435 572 // may be shared by several calls to scratch_emit_size.
duke@435 573 // The allocation of the scratch buffer blob is particularly
duke@435 574 // expensive, since it has to grab the code cache lock.
duke@435 575 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 576 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 577 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 578 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 579 address blob_begin = blob->content_begin();
duke@435 580 address blob_end = (address)locs_buf;
twisti@2103 581 assert(blob->content_contains(blob_end), "sanity");
duke@435 582 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 583 buf.initialize_consts_size(_scratch_const_size);
duke@435 584 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 585 assert(locs_buf != NULL, "sanity");
twisti@2350 586 int lsize = MAX_locs_size / 3;
twisti@2350 587 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 588 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 589 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 590
twisti@2350 591 // Do the emission.
kvn@3037 592
kvn@3037 593 Label fakeL; // Fake label for branch instructions.
kvn@3051 594 Label* saveL = NULL;
kvn@3051 595 uint save_bnum = 0;
kvn@3051 596 bool is_branch = n->is_MachBranch();
kvn@3037 597 if (is_branch) {
kvn@3037 598 MacroAssembler masm(&buf);
kvn@3037 599 masm.bind(fakeL);
kvn@3051 600 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 601 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 602 }
duke@435 603 n->emit(buf, this->regalloc());
kvn@3051 604 if (is_branch) // Restore label.
kvn@3051 605 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 606
twisti@2350 607 // End scratch_emit_size section.
twisti@2350 608 set_in_scratch_emit_size(false);
twisti@2350 609
twisti@2103 610 return buf.insts_size();
duke@435 611 }
duke@435 612
duke@435 613
duke@435 614 // ============================================================================
duke@435 615 //------------------------------Compile standard-------------------------------
duke@435 616 debug_only( int Compile::_debug_idx = 100000; )
duke@435 617
duke@435 618 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 619 // the continuation bci for on stack replacement.
duke@435 620
duke@435 621
kvn@5110 622 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
kvn@5110 623 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
duke@435 624 : Phase(Compiler),
duke@435 625 _env(ci_env),
duke@435 626 _log(ci_env->log()),
duke@435 627 _compile_id(ci_env->compile_id()),
duke@435 628 _save_argument_registers(false),
duke@435 629 _stub_name(NULL),
duke@435 630 _stub_function(NULL),
duke@435 631 _stub_entry_point(NULL),
duke@435 632 _method(target),
duke@435 633 _entry_bci(osr_bci),
duke@435 634 _initial_gvn(NULL),
duke@435 635 _for_igvn(NULL),
duke@435 636 _warm_calls(NULL),
duke@435 637 _subsume_loads(subsume_loads),
kvn@473 638 _do_escape_analysis(do_escape_analysis),
kvn@5110 639 _eliminate_boxing(eliminate_boxing),
duke@435 640 _failure_reason(NULL),
duke@435 641 _code_buffer("Compile::Fill_buffer"),
duke@435 642 _orig_pc_slot(0),
duke@435 643 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 644 _has_method_handle_invokes(false),
twisti@2350 645 _mach_constant_base_node(NULL),
duke@435 646 _node_bundling_limit(0),
duke@435 647 _node_bundling_base(NULL),
kvn@1294 648 _java_calls(0),
kvn@1294 649 _inner_loops(0),
twisti@2350 650 _scratch_const_size(-1),
twisti@2350 651 _in_scratch_emit_size(false),
bharadwaj@4315 652 _dead_node_list(comp_arena()),
bharadwaj@4315 653 _dead_node_count(0),
duke@435 654 #ifndef PRODUCT
duke@435 655 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
goetz@6488 656 _in_dump_cnt(0),
duke@435 657 _printer(IdealGraphPrinter::printer()),
duke@435 658 #endif
roland@4357 659 _congraph(NULL),
zgu@7074 660 _comp_arena(mtCompiler),
zgu@7074 661 _node_arena(mtCompiler),
zgu@7074 662 _old_arena(mtCompiler),
zgu@7074 663 _Compile_types(mtCompiler),
kvn@6217 664 _replay_inline_data(NULL),
roland@4409 665 _late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 666 _string_late_inlines(comp_arena(), 2, 0, NULL),
kvn@5110 667 _boxing_late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 668 _late_inlines_pos(0),
roland@4409 669 _number_of_mh_late_inlines(0),
roland@4409 670 _inlining_progress(false),
roland@4409 671 _inlining_incrementally(false),
roland@4357 672 _print_inlining_list(NULL),
roland@5981 673 _print_inlining_idx(0),
vlivanov@7385 674 _interpreter_frame_size(0),
vlivanov@7385 675 _max_node_limit(MaxNodeLimit) {
duke@435 676 C = this;
duke@435 677
duke@435 678 CompileWrapper cw(this);
duke@435 679 #ifndef PRODUCT
duke@435 680 if (TimeCompiler2) {
duke@435 681 tty->print(" ");
duke@435 682 target->holder()->name()->print();
duke@435 683 tty->print(".");
duke@435 684 target->print_short_name();
duke@435 685 tty->print(" ");
duke@435 686 }
duke@435 687 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 688 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 689 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 690 if (!print_opto_assembly) {
jrose@535 691 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 692 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 693 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 694 print_opto_assembly = true;
jrose@535 695 }
jrose@535 696 }
jrose@535 697 set_print_assembly(print_opto_assembly);
never@802 698 set_parsed_irreducible_loop(false);
kvn@6217 699
kvn@6217 700 if (method()->has_option("ReplayInline")) {
kvn@6217 701 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
kvn@6217 702 }
duke@435 703 #endif
kvn@5763 704 set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
kvn@5763 705 set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
kvn@6657 706 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
duke@435 707
kvn@6429 708 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
duke@435 709 // Make sure the method being compiled gets its own MDO,
duke@435 710 // so we can at least track the decompile_count().
kvn@6429 711 // Need MDO to record RTM code generation state.
iveresov@2349 712 method()->ensure_method_data();
duke@435 713 }
duke@435 714
duke@435 715 Init(::AliasLevel);
duke@435 716
duke@435 717
duke@435 718 print_compile_messages();
duke@435 719
shade@6314 720 _ilt = InlineTree::build_inline_tree_root();
duke@435 721
duke@435 722 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 723 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 724
duke@435 725 #define MINIMUM_NODE_HASH 1023
duke@435 726 // Node list that Iterative GVN will start with
duke@435 727 Unique_Node_List for_igvn(comp_arena());
duke@435 728 set_for_igvn(&for_igvn);
duke@435 729
duke@435 730 // GVN that will be run immediately on new nodes
duke@435 731 uint estimated_size = method()->code_size()*4+64;
duke@435 732 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 733 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 734 set_initial_gvn(&gvn);
duke@435 735
kvn@5763 736 if (print_inlining() || print_intrinsics()) {
roland@4357 737 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
roland@4357 738 }
duke@435 739 { // Scope for timing the parser
duke@435 740 TracePhase t3("parse", &_t_parser, true);
duke@435 741
duke@435 742 // Put top into the hash table ASAP.
duke@435 743 initial_gvn()->transform_no_reclaim(top());
duke@435 744
duke@435 745 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 746 CallGenerator* cg = NULL;
duke@435 747 if (is_osr_compilation()) {
duke@435 748 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 749 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 750 init_tf(TypeFunc::make(domain, range));
kvn@4115 751 StartNode* s = new (this) StartOSRNode(root(), domain);
duke@435 752 initial_gvn()->set_type_bottom(s);
duke@435 753 init_start(s);
duke@435 754 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 755 } else {
duke@435 756 // Normal case.
duke@435 757 init_tf(TypeFunc::make(method()));
kvn@4115 758 StartNode* s = new (this) StartNode(root(), tf()->domain());
duke@435 759 initial_gvn()->set_type_bottom(s);
duke@435 760 init_start(s);
johnc@2781 761 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 762 // With java.lang.ref.reference.get() we must go through the
johnc@2781 763 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 764 // method of the compile - so that, if necessary, the value in
johnc@2781 765 // the referent field of the reference object gets recorded by
johnc@2781 766 // the pre-barrier code.
johnc@2781 767 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 768 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 769 // result in the referent being marked live and the reference
johnc@2781 770 // object removed from the list of discovered references during
johnc@2781 771 // reference processing.
johnc@2781 772 cg = find_intrinsic(method(), false);
johnc@2781 773 }
johnc@2781 774 if (cg == NULL) {
johnc@2781 775 float past_uses = method()->interpreter_invocation_count();
johnc@2781 776 float expected_uses = past_uses;
johnc@2781 777 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 778 }
duke@435 779 }
duke@435 780 if (failing()) return;
duke@435 781 if (cg == NULL) {
duke@435 782 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 783 return;
duke@435 784 }
duke@435 785 JVMState* jvms = build_start_state(start(), tf());
roland@7041 786 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 787 record_method_not_compilable("method parse failed");
duke@435 788 return;
duke@435 789 }
duke@435 790 GraphKit kit(jvms);
duke@435 791
duke@435 792 if (!kit.stopped()) {
duke@435 793 // Accept return values, and transfer control we know not where.
duke@435 794 // This is done by a special, unique ReturnNode bound to root.
duke@435 795 return_values(kit.jvms());
duke@435 796 }
duke@435 797
duke@435 798 if (kit.has_exceptions()) {
duke@435 799 // Any exceptions that escape from this call must be rethrown
duke@435 800 // to whatever caller is dynamically above us on the stack.
duke@435 801 // This is done by a special, unique RethrowNode bound to root.
duke@435 802 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 803 }
duke@435 804
roland@4409 805 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
roland@4409 806
roland@4409 807 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
roland@4409 808 inline_string_calls(true);
never@1515 809 }
roland@4409 810
roland@4409 811 if (failing()) return;
never@1515 812
sla@5237 813 print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
never@802 814
duke@435 815 // Remove clutter produced by parsing.
duke@435 816 if (!failing()) {
duke@435 817 ResourceMark rm;
duke@435 818 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 819 }
duke@435 820 }
duke@435 821
duke@435 822 // Note: Large methods are capped off in do_one_bytecode().
duke@435 823 if (failing()) return;
duke@435 824
duke@435 825 // After parsing, node notes are no longer automagic.
duke@435 826 // They must be propagated by register_new_node_with_optimizer(),
duke@435 827 // clone(), or the like.
duke@435 828 set_default_node_notes(NULL);
duke@435 829
duke@435 830 for (;;) {
duke@435 831 int successes = Inline_Warm();
duke@435 832 if (failing()) return;
duke@435 833 if (successes == 0) break;
duke@435 834 }
duke@435 835
duke@435 836 // Drain the list.
duke@435 837 Finish_Warm();
duke@435 838 #ifndef PRODUCT
duke@435 839 if (_printer) {
duke@435 840 _printer->print_inlining(this);
duke@435 841 }
duke@435 842 #endif
duke@435 843
duke@435 844 if (failing()) return;
duke@435 845 NOT_PRODUCT( verify_graph_edges(); )
duke@435 846
duke@435 847 // Now optimize
duke@435 848 Optimize();
duke@435 849 if (failing()) return;
duke@435 850 NOT_PRODUCT( verify_graph_edges(); )
duke@435 851
duke@435 852 #ifndef PRODUCT
duke@435 853 if (PrintIdeal) {
duke@435 854 ttyLocker ttyl; // keep the following output all in one block
duke@435 855 // This output goes directly to the tty, not the compiler log.
duke@435 856 // To enable tools to match it up with the compilation activity,
duke@435 857 // be sure to tag this tty output with the compile ID.
duke@435 858 if (xtty != NULL) {
duke@435 859 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 860 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 861 "");
duke@435 862 }
duke@435 863 root()->dump(9999);
duke@435 864 if (xtty != NULL) {
duke@435 865 xtty->tail("ideal");
duke@435 866 }
duke@435 867 }
duke@435 868 #endif
duke@435 869
iveresov@6070 870 NOT_PRODUCT( verify_barriers(); )
kvn@6217 871
kvn@6217 872 // Dump compilation data to replay it.
kvn@6217 873 if (method()->has_option("DumpReplay")) {
kvn@6217 874 env()->dump_replay_data(_compile_id);
kvn@6217 875 }
kvn@6217 876 if (method()->has_option("DumpInline") && (ilt() != NULL)) {
kvn@6217 877 env()->dump_inline_data(_compile_id);
kvn@6217 878 }
kvn@6217 879
duke@435 880 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 881 // for the original deopt pc.
duke@435 882
duke@435 883 _orig_pc_slot = fixed_slots();
duke@435 884 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 885 set_fixed_slots(next_slot);
duke@435 886
goetz@6490 887 // Compute when to use implicit null checks. Used by matching trap based
goetz@6490 888 // nodes and NullCheck optimization.
goetz@6490 889 set_allowed_deopt_reasons();
goetz@6490 890
duke@435 891 // Now generate code
duke@435 892 Code_Gen();
duke@435 893 if (failing()) return;
duke@435 894
duke@435 895 // Check if we want to skip execution of all compiled code.
duke@435 896 {
duke@435 897 #ifndef PRODUCT
duke@435 898 if (OptoNoExecute) {
duke@435 899 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 900 return;
duke@435 901 }
duke@435 902 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 903 #endif
duke@435 904
duke@435 905 if (is_osr_compilation()) {
duke@435 906 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 907 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 908 } else {
duke@435 909 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 910 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 911 }
duke@435 912
duke@435 913 env()->register_method(_method, _entry_bci,
duke@435 914 &_code_offsets,
duke@435 915 _orig_pc_slot_offset_in_bytes,
duke@435 916 code_buffer(),
duke@435 917 frame_size_in_words(), _oop_map_set,
duke@435 918 &_handler_table, &_inc_table,
duke@435 919 compiler,
duke@435 920 env()->comp_level(),
kvn@4103 921 has_unsafe_access(),
kvn@6429 922 SharedRuntime::is_wide_vector(max_vector_size()),
kvn@6429 923 rtm_state()
duke@435 924 );
vlivanov@4154 925
vlivanov@4154 926 if (log() != NULL) // Print code cache state into compiler log
vlivanov@4154 927 log()->code_cache_state();
duke@435 928 }
duke@435 929 }
duke@435 930
duke@435 931 //------------------------------Compile----------------------------------------
duke@435 932 // Compile a runtime stub
duke@435 933 Compile::Compile( ciEnv* ci_env,
duke@435 934 TypeFunc_generator generator,
duke@435 935 address stub_function,
duke@435 936 const char *stub_name,
duke@435 937 int is_fancy_jump,
duke@435 938 bool pass_tls,
duke@435 939 bool save_arg_registers,
duke@435 940 bool return_pc )
duke@435 941 : Phase(Compiler),
duke@435 942 _env(ci_env),
duke@435 943 _log(ci_env->log()),
neliasso@4730 944 _compile_id(0),
duke@435 945 _save_argument_registers(save_arg_registers),
duke@435 946 _method(NULL),
duke@435 947 _stub_name(stub_name),
duke@435 948 _stub_function(stub_function),
duke@435 949 _stub_entry_point(NULL),
duke@435 950 _entry_bci(InvocationEntryBci),
duke@435 951 _initial_gvn(NULL),
duke@435 952 _for_igvn(NULL),
duke@435 953 _warm_calls(NULL),
duke@435 954 _orig_pc_slot(0),
duke@435 955 _orig_pc_slot_offset_in_bytes(0),
duke@435 956 _subsume_loads(true),
kvn@473 957 _do_escape_analysis(false),
kvn@5110 958 _eliminate_boxing(false),
duke@435 959 _failure_reason(NULL),
duke@435 960 _code_buffer("Compile::Fill_buffer"),
twisti@1700 961 _has_method_handle_invokes(false),
twisti@2350 962 _mach_constant_base_node(NULL),
duke@435 963 _node_bundling_limit(0),
duke@435 964 _node_bundling_base(NULL),
kvn@1294 965 _java_calls(0),
kvn@1294 966 _inner_loops(0),
duke@435 967 #ifndef PRODUCT
duke@435 968 _trace_opto_output(TraceOptoOutput),
goetz@6488 969 _in_dump_cnt(0),
duke@435 970 _printer(NULL),
duke@435 971 #endif
zgu@7074 972 _comp_arena(mtCompiler),
zgu@7074 973 _node_arena(mtCompiler),
zgu@7074 974 _old_arena(mtCompiler),
zgu@7074 975 _Compile_types(mtCompiler),
bharadwaj@4315 976 _dead_node_list(comp_arena()),
bharadwaj@4315 977 _dead_node_count(0),
roland@4357 978 _congraph(NULL),
kvn@6217 979 _replay_inline_data(NULL),
roland@4409 980 _number_of_mh_late_inlines(0),
roland@4409 981 _inlining_progress(false),
roland@4409 982 _inlining_incrementally(false),
roland@4357 983 _print_inlining_list(NULL),
roland@5981 984 _print_inlining_idx(0),
roland@6723 985 _allowed_reasons(0),
vlivanov@7385 986 _interpreter_frame_size(0),
vlivanov@7385 987 _max_node_limit(MaxNodeLimit) {
duke@435 988 C = this;
duke@435 989
duke@435 990 #ifndef PRODUCT
duke@435 991 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 992 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 993 set_print_assembly(PrintFrameConverterAssembly);
never@802 994 set_parsed_irreducible_loop(false);
duke@435 995 #endif
kvn@6657 996 set_has_irreducible_loop(false); // no loops
kvn@6657 997
duke@435 998 CompileWrapper cw(this);
duke@435 999 Init(/*AliasLevel=*/ 0);
duke@435 1000 init_tf((*generator)());
duke@435 1001
duke@435 1002 {
duke@435 1003 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 1004 Unique_Node_List for_igvn(comp_arena());
duke@435 1005 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 1006 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 1007 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 1008 gvn.transform_no_reclaim(top());
duke@435 1009
duke@435 1010 GraphKit kit;
duke@435 1011 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 1012 }
duke@435 1013
duke@435 1014 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1015 Code_Gen();
duke@435 1016 if (failing()) return;
duke@435 1017
duke@435 1018
duke@435 1019 // Entry point will be accessed using compile->stub_entry_point();
duke@435 1020 if (code_buffer() == NULL) {
duke@435 1021 Matcher::soft_match_failure();
duke@435 1022 } else {
duke@435 1023 if (PrintAssembly && (WizardMode || Verbose))
duke@435 1024 tty->print_cr("### Stub::%s", stub_name);
duke@435 1025
duke@435 1026 if (!failing()) {
duke@435 1027 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 1028
duke@435 1029 // Make the NMethod
duke@435 1030 // For now we mark the frame as never safe for profile stackwalking
duke@435 1031 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 1032 code_buffer(),
duke@435 1033 CodeOffsets::frame_never_safe,
duke@435 1034 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 1035 frame_size_in_words(),
duke@435 1036 _oop_map_set,
duke@435 1037 save_arg_registers);
duke@435 1038 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 1039
duke@435 1040 _stub_entry_point = rs->entry_point();
duke@435 1041 }
duke@435 1042 }
duke@435 1043 }
duke@435 1044
duke@435 1045 //------------------------------Init-------------------------------------------
duke@435 1046 // Prepare for a single compilation
duke@435 1047 void Compile::Init(int aliaslevel) {
duke@435 1048 _unique = 0;
duke@435 1049 _regalloc = NULL;
duke@435 1050
duke@435 1051 _tf = NULL; // filled in later
duke@435 1052 _top = NULL; // cached later
duke@435 1053 _matcher = NULL; // filled in later
duke@435 1054 _cfg = NULL; // filled in later
duke@435 1055
duke@435 1056 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 1057
duke@435 1058 _node_note_array = NULL;
duke@435 1059 _default_node_notes = NULL;
duke@435 1060
duke@435 1061 _immutable_memory = NULL; // filled in at first inquiry
duke@435 1062
duke@435 1063 // Globally visible Nodes
duke@435 1064 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 1065 set_cached_top_node(NULL);
kvn@4115 1066 set_root(new (this) RootNode());
duke@435 1067 // Now that you have a Root to point to, create the real TOP
kvn@4115 1068 set_cached_top_node( new (this) ConNode(Type::TOP) );
duke@435 1069 set_recent_alloc(NULL, NULL);
duke@435 1070
duke@435 1071 // Create Debug Information Recorder to record scopes, oopmaps, etc.
coleenp@4037 1072 env()->set_oop_recorder(new OopRecorder(env()->arena()));
duke@435 1073 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 1074 env()->set_dependencies(new Dependencies(env()));
duke@435 1075
duke@435 1076 _fixed_slots = 0;
duke@435 1077 set_has_split_ifs(false);
duke@435 1078 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 1079 set_has_stringbuilder(false);
kvn@5110 1080 set_has_boxed_value(false);
duke@435 1081 _trap_can_recompile = false; // no traps emitted yet
duke@435 1082 _major_progress = true; // start out assuming good things will happen
duke@435 1083 set_has_unsafe_access(false);
kvn@4103 1084 set_max_vector_size(0);
duke@435 1085 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 1086 set_decompile_count(0);
duke@435 1087
rasbold@853 1088 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 1089 set_num_loop_opts(LoopOptsCount);
iveresov@2138 1090 set_do_inlining(Inline);
iveresov@2138 1091 set_max_inline_size(MaxInlineSize);
iveresov@2138 1092 set_freq_inline_size(FreqInlineSize);
iveresov@2138 1093 set_do_scheduling(OptoScheduling);
iveresov@2138 1094 set_do_count_invocations(false);
iveresov@2138 1095 set_do_method_data_update(false);
kvn@6429 1096 set_rtm_state(NoRTM); // No RTM lock eliding by default
vlivanov@7385 1097 method_has_option_value("MaxNodeLimit", _max_node_limit);
kvn@6429 1098 #if INCLUDE_RTM_OPT
kvn@6429 1099 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
kvn@6429 1100 int rtm_state = method()->method_data()->rtm_state();
kvn@6429 1101 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
kvn@6429 1102 // Don't generate RTM lock eliding code.
kvn@6429 1103 set_rtm_state(NoRTM);
kvn@6429 1104 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
kvn@6429 1105 // Generate RTM lock eliding code without abort ratio calculation code.
kvn@6429 1106 set_rtm_state(UseRTM);
kvn@6429 1107 } else if (UseRTMDeopt) {
kvn@6429 1108 // Generate RTM lock eliding code and include abort ratio calculation
kvn@6429 1109 // code if UseRTMDeopt is on.
kvn@6429 1110 set_rtm_state(ProfileRTM);
kvn@6429 1111 }
kvn@6429 1112 }
kvn@6429 1113 #endif
duke@435 1114 if (debug_info()->recording_non_safepoints()) {
duke@435 1115 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 1116 (comp_arena(), 8, 0, NULL));
duke@435 1117 set_default_node_notes(Node_Notes::make(this));
duke@435 1118 }
duke@435 1119
duke@435 1120 // // -- Initialize types before each compile --
duke@435 1121 // // Update cached type information
duke@435 1122 // if( _method && _method->constants() )
duke@435 1123 // Type::update_loaded_types(_method, _method->constants());
duke@435 1124
duke@435 1125 // Init alias_type map.
kvn@473 1126 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 1127 aliaslevel = 2; // No unique types without escape analysis
duke@435 1128 _AliasLevel = aliaslevel;
duke@435 1129 const int grow_ats = 16;
duke@435 1130 _max_alias_types = grow_ats;
duke@435 1131 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 1132 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 1133 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1134 {
duke@435 1135 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1136 }
duke@435 1137 // Initialize the first few types.
duke@435 1138 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1139 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1140 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1141 _num_alias_types = AliasIdxRaw+1;
duke@435 1142 // Zero out the alias type cache.
duke@435 1143 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1144 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1145 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1146
duke@435 1147 _intrinsics = NULL;
kvn@2040 1148 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1149 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
roland@4589 1150 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1151 register_library_intrinsics();
duke@435 1152 }
duke@435 1153
duke@435 1154 //---------------------------init_start----------------------------------------
duke@435 1155 // Install the StartNode on this compile object.
duke@435 1156 void Compile::init_start(StartNode* s) {
duke@435 1157 if (failing())
duke@435 1158 return; // already failing
duke@435 1159 assert(s == start(), "");
duke@435 1160 }
duke@435 1161
duke@435 1162 StartNode* Compile::start() const {
duke@435 1163 assert(!failing(), "");
duke@435 1164 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1165 Node* start = root()->fast_out(i);
duke@435 1166 if( start->is_Start() )
duke@435 1167 return start->as_Start();
duke@435 1168 }
kvn@6657 1169 fatal("Did not find Start node!");
duke@435 1170 return NULL;
duke@435 1171 }
duke@435 1172
duke@435 1173 //-------------------------------immutable_memory-------------------------------------
duke@435 1174 // Access immutable memory
duke@435 1175 Node* Compile::immutable_memory() {
duke@435 1176 if (_immutable_memory != NULL) {
duke@435 1177 return _immutable_memory;
duke@435 1178 }
duke@435 1179 StartNode* s = start();
duke@435 1180 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1181 Node *p = s->fast_out(i);
duke@435 1182 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1183 _immutable_memory = p;
duke@435 1184 return _immutable_memory;
duke@435 1185 }
duke@435 1186 }
duke@435 1187 ShouldNotReachHere();
duke@435 1188 return NULL;
duke@435 1189 }
duke@435 1190
duke@435 1191 //----------------------set_cached_top_node------------------------------------
duke@435 1192 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1193 void Compile::set_cached_top_node(Node* tn) {
duke@435 1194 if (tn != NULL) verify_top(tn);
duke@435 1195 Node* old_top = _top;
duke@435 1196 _top = tn;
duke@435 1197 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1198 // their _out arrays.
duke@435 1199 if (_top != NULL) _top->setup_is_top();
duke@435 1200 if (old_top != NULL) old_top->setup_is_top();
duke@435 1201 assert(_top == NULL || top()->is_top(), "");
duke@435 1202 }
duke@435 1203
bharadwaj@4315 1204 #ifdef ASSERT
bharadwaj@4315 1205 uint Compile::count_live_nodes_by_graph_walk() {
bharadwaj@4315 1206 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1207 // Get useful node list by walking the graph.
bharadwaj@4315 1208 identify_useful_nodes(useful);
bharadwaj@4315 1209 return useful.size();
bharadwaj@4315 1210 }
bharadwaj@4315 1211
bharadwaj@4315 1212 void Compile::print_missing_nodes() {
bharadwaj@4315 1213
bharadwaj@4315 1214 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
bharadwaj@4315 1215 if ((_log == NULL) && (! PrintIdealNodeCount)) {
bharadwaj@4315 1216 return;
bharadwaj@4315 1217 }
bharadwaj@4315 1218
bharadwaj@4315 1219 // This is an expensive function. It is executed only when the user
bharadwaj@4315 1220 // specifies VerifyIdealNodeCount option or otherwise knows the
bharadwaj@4315 1221 // additional work that needs to be done to identify reachable nodes
bharadwaj@4315 1222 // by walking the flow graph and find the missing ones using
bharadwaj@4315 1223 // _dead_node_list.
bharadwaj@4315 1224
bharadwaj@4315 1225 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1226 // Get useful node list by walking the graph.
bharadwaj@4315 1227 identify_useful_nodes(useful);
bharadwaj@4315 1228
bharadwaj@4315 1229 uint l_nodes = C->live_nodes();
bharadwaj@4315 1230 uint l_nodes_by_walk = useful.size();
bharadwaj@4315 1231
bharadwaj@4315 1232 if (l_nodes != l_nodes_by_walk) {
bharadwaj@4315 1233 if (_log != NULL) {
bharadwaj@4315 1234 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
bharadwaj@4315 1235 _log->stamp();
bharadwaj@4315 1236 _log->end_head();
bharadwaj@4315 1237 }
bharadwaj@4315 1238 VectorSet& useful_member_set = useful.member_set();
bharadwaj@4315 1239 int last_idx = l_nodes_by_walk;
bharadwaj@4315 1240 for (int i = 0; i < last_idx; i++) {
bharadwaj@4315 1241 if (useful_member_set.test(i)) {
bharadwaj@4315 1242 if (_dead_node_list.test(i)) {
bharadwaj@4315 1243 if (_log != NULL) {
bharadwaj@4315 1244 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
bharadwaj@4315 1245 }
bharadwaj@4315 1246 if (PrintIdealNodeCount) {
bharadwaj@4315 1247 // Print the log message to tty
bharadwaj@4315 1248 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
bharadwaj@4315 1249 useful.at(i)->dump();
bharadwaj@4315 1250 }
bharadwaj@4315 1251 }
bharadwaj@4315 1252 }
bharadwaj@4315 1253 else if (! _dead_node_list.test(i)) {
bharadwaj@4315 1254 if (_log != NULL) {
bharadwaj@4315 1255 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1256 }
bharadwaj@4315 1257 if (PrintIdealNodeCount) {
bharadwaj@4315 1258 // Print the log message to tty
bharadwaj@4315 1259 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1260 }
bharadwaj@4315 1261 }
bharadwaj@4315 1262 }
bharadwaj@4315 1263 if (_log != NULL) {
bharadwaj@4315 1264 _log->tail("mismatched_nodes");
bharadwaj@4315 1265 }
bharadwaj@4315 1266 }
bharadwaj@4315 1267 }
bharadwaj@4315 1268 #endif
bharadwaj@4315 1269
duke@435 1270 #ifndef PRODUCT
duke@435 1271 void Compile::verify_top(Node* tn) const {
duke@435 1272 if (tn != NULL) {
duke@435 1273 assert(tn->is_Con(), "top node must be a constant");
duke@435 1274 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1275 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1276 }
duke@435 1277 }
duke@435 1278 #endif
duke@435 1279
duke@435 1280
duke@435 1281 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1282
duke@435 1283 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1284 guarantee(arr != NULL, "");
duke@435 1285 int num_blocks = arr->length();
duke@435 1286 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1287 int num_notes = grow_by * _node_notes_block_size;
duke@435 1288 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1289 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1290 while (num_notes > 0) {
duke@435 1291 arr->append(notes);
duke@435 1292 notes += _node_notes_block_size;
duke@435 1293 num_notes -= _node_notes_block_size;
duke@435 1294 }
duke@435 1295 assert(num_notes == 0, "exact multiple, please");
duke@435 1296 }
duke@435 1297
duke@435 1298 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1299 if (source == NULL || dest == NULL) return false;
duke@435 1300
duke@435 1301 if (dest->is_Con())
duke@435 1302 return false; // Do not push debug info onto constants.
duke@435 1303
duke@435 1304 #ifdef ASSERT
duke@435 1305 // Leave a bread crumb trail pointing to the original node:
duke@435 1306 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1307 dest->set_debug_orig(source);
duke@435 1308 }
duke@435 1309 #endif
duke@435 1310
duke@435 1311 if (node_note_array() == NULL)
duke@435 1312 return false; // Not collecting any notes now.
duke@435 1313
duke@435 1314 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1315 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1316 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1317 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1318 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1319 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1320 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1321 }
duke@435 1322
duke@435 1323 Node_Notes merged_notes = (*source_notes);
duke@435 1324 // The order of operations here ensures that dest notes will win...
duke@435 1325 merged_notes.update_from(dest_notes);
duke@435 1326 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1327 }
duke@435 1328
duke@435 1329
duke@435 1330 //--------------------------allow_range_check_smearing-------------------------
duke@435 1331 // Gating condition for coalescing similar range checks.
duke@435 1332 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1333 // single covering check that is at least as strong as any of them.
duke@435 1334 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1335 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1336 // on the optimization.
duke@435 1337 bool Compile::allow_range_check_smearing() const {
duke@435 1338 // If this method has already thrown a range-check,
duke@435 1339 // assume it was because we already tried range smearing
duke@435 1340 // and it failed.
duke@435 1341 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1342 return !already_trapped;
duke@435 1343 }
duke@435 1344
duke@435 1345
duke@435 1346 //------------------------------flatten_alias_type-----------------------------
duke@435 1347 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1348 int offset = tj->offset();
duke@435 1349 TypePtr::PTR ptr = tj->ptr();
duke@435 1350
kvn@682 1351 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1352 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1353 tj->is_oopptr()->is_known_instance();
kvn@682 1354
duke@435 1355 // Process weird unsafe references.
duke@435 1356 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1357 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1358 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1359 tj = TypeOopPtr::BOTTOM;
duke@435 1360 ptr = tj->ptr();
duke@435 1361 offset = tj->offset();
duke@435 1362 }
duke@435 1363
duke@435 1364 // Array pointers need some flattening
duke@435 1365 const TypeAryPtr *ta = tj->isa_aryptr();
vlivanov@5658 1366 if (ta && ta->is_stable()) {
vlivanov@5658 1367 // Erase stability property for alias analysis.
vlivanov@5658 1368 tj = ta = ta->cast_to_stable(false);
vlivanov@5658 1369 }
kvn@682 1370 if( ta && is_known_inst ) {
kvn@682 1371 if ( offset != Type::OffsetBot &&
kvn@682 1372 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1373 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1374 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1375 }
kvn@682 1376 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1377 // For arrays indexed by constant indices, we flatten the alias
duke@435 1378 // space to include all of the array body. Only the header, klass
duke@435 1379 // and array length can be accessed un-aliased.
duke@435 1380 if( offset != Type::OffsetBot ) {
coleenp@4037 1381 if( ta->const_oop() ) { // MethodData* or Method*
duke@435 1382 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1383 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1384 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1385 // range is OK as-is.
duke@435 1386 tj = ta = TypeAryPtr::RANGE;
duke@435 1387 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1388 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1389 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1390 ptr = TypePtr::BotPTR;
duke@435 1391 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1392 tj = TypeInstPtr::MARK;
duke@435 1393 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1394 ptr = TypePtr::BotPTR;
duke@435 1395 } else { // Random constant offset into array body
duke@435 1396 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1397 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1398 }
duke@435 1399 }
duke@435 1400 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1401 if (ta->size() != TypeInt::POS) {
duke@435 1402 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1403 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1404 }
duke@435 1405 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1406 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1407 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1408 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1409 }
duke@435 1410 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1411 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1412 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1413 }
duke@435 1414 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1415 // cannot be distinguished by bytecode alone.
duke@435 1416 if (ta->elem() == TypeInt::BOOL) {
duke@435 1417 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1418 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1419 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1420 }
duke@435 1421 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1422 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1423 // Also, make sure exact and non-exact variants alias the same.
roland@5991 1424 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
kvn@2986 1425 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1426 }
duke@435 1427 }
duke@435 1428
duke@435 1429 // Oop pointers need some flattening
duke@435 1430 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1431 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1432 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1433 if( ptr == TypePtr::Constant ) {
never@2658 1434 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1435 offset < k->size_helper() * wordSize) {
never@2658 1436 // No constant oop pointers (such as Strings); they alias with
never@2658 1437 // unknown strings.
never@2658 1438 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1439 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1440 }
kvn@682 1441 } else if( is_known_inst ) {
kvn@598 1442 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1443 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1444 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1445 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1446 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1447 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1448 }
roland@5991 1449 if (to->speculative() != NULL) {
roland@5991 1450 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
roland@5991 1451 }
duke@435 1452 // Canonicalize the holder of this field
coleenp@548 1453 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1454 // First handle header references such as a LoadKlassNode, even if the
duke@435 1455 // object's klass is unloaded at compile time (4965979).
kvn@682 1456 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1457 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1458 }
duke@435 1459 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1460 // Static fields are in the space above the normal instance
never@2658 1461 // fields in the java.lang.Class instance.
never@2658 1462 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1463 to = NULL;
never@2658 1464 tj = TypeOopPtr::BOTTOM;
never@2658 1465 offset = tj->offset();
never@2658 1466 }
duke@435 1467 } else {
duke@435 1468 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1469 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1470 if( is_known_inst ) {
kvn@682 1471 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1472 } else {
kvn@682 1473 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1474 }
duke@435 1475 }
duke@435 1476 }
duke@435 1477 }
duke@435 1478
duke@435 1479 // Klass pointers to object array klasses need some flattening
duke@435 1480 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1481 if( tk ) {
duke@435 1482 // If we are referencing a field within a Klass, we need
duke@435 1483 // to assume the worst case of an Object. Both exact and
never@3389 1484 // inexact types must flatten to the same alias class so
never@3389 1485 // use NotNull as the PTR.
duke@435 1486 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1487
never@3389 1488 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
duke@435 1489 TypeKlassPtr::OBJECT->klass(),
duke@435 1490 offset);
duke@435 1491 }
duke@435 1492
duke@435 1493 ciKlass* klass = tk->klass();
duke@435 1494 if( klass->is_obj_array_klass() ) {
duke@435 1495 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1496 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1497 k = TypeInstPtr::BOTTOM->klass();
duke@435 1498 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1499 }
duke@435 1500
duke@435 1501 // Check for precise loads from the primary supertype array and force them
duke@435 1502 // to the supertype cache alias index. Check for generic array loads from
duke@435 1503 // the primary supertype array and also force them to the supertype cache
duke@435 1504 // alias index. Since the same load can reach both, we need to merge
duke@435 1505 // these 2 disparate memories into the same alias class. Since the
duke@435 1506 // primary supertype array is read-only, there's no chance of confusion
duke@435 1507 // where we bypass an array load and an array store.
stefank@3391 1508 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
never@3389 1509 if (offset == Type::OffsetBot ||
never@3389 1510 (offset >= primary_supers_offset &&
never@3389 1511 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
stefank@3391 1512 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
stefank@3391 1513 offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1514 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1515 }
duke@435 1516 }
duke@435 1517
duke@435 1518 // Flatten all Raw pointers together.
duke@435 1519 if (tj->base() == Type::RawPtr)
duke@435 1520 tj = TypeRawPtr::BOTTOM;
duke@435 1521
duke@435 1522 if (tj->base() == Type::AnyPtr)
duke@435 1523 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1524
duke@435 1525 // Flatten all to bottom for now
duke@435 1526 switch( _AliasLevel ) {
duke@435 1527 case 0:
duke@435 1528 tj = TypePtr::BOTTOM;
duke@435 1529 break;
duke@435 1530 case 1: // Flatten to: oop, static, field or array
duke@435 1531 switch (tj->base()) {
duke@435 1532 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1533 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1534 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1535 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1536 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1537 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1538 default: ShouldNotReachHere();
duke@435 1539 }
duke@435 1540 break;
twisti@1040 1541 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1542 case 3: // No collapsing at level 3; keep all splits
duke@435 1543 break;
duke@435 1544 default:
duke@435 1545 Unimplemented();
duke@435 1546 }
duke@435 1547
duke@435 1548 offset = tj->offset();
duke@435 1549 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1550
duke@435 1551 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1552 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1553 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1554 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1555 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1556 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1557 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1558 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1559 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1560 tj->ptr() != TypePtr::AnyNull &&
duke@435 1561 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1562 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1563 // tj->base() == Type::RawPtr ||
duke@435 1564 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1565
duke@435 1566 return tj;
duke@435 1567 }
duke@435 1568
duke@435 1569 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1570 _index = i;
duke@435 1571 _adr_type = at;
duke@435 1572 _field = NULL;
vlivanov@5658 1573 _element = NULL;
duke@435 1574 _is_rewritable = true; // default
duke@435 1575 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1576 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1577 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1578 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1579 } else {
duke@435 1580 _general_index = 0;
duke@435 1581 }
duke@435 1582 }
duke@435 1583
duke@435 1584 //---------------------------------print_on------------------------------------
duke@435 1585 #ifndef PRODUCT
duke@435 1586 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1587 if (index() < 10)
duke@435 1588 st->print("@ <%d> ", index());
duke@435 1589 else st->print("@ <%d>", index());
duke@435 1590 st->print(is_rewritable() ? " " : " RO");
duke@435 1591 int offset = adr_type()->offset();
duke@435 1592 if (offset == Type::OffsetBot)
duke@435 1593 st->print(" +any");
duke@435 1594 else st->print(" +%-3d", offset);
duke@435 1595 st->print(" in ");
duke@435 1596 adr_type()->dump_on(st);
duke@435 1597 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1598 if (field() != NULL && tjp) {
duke@435 1599 if (tjp->klass() != field()->holder() ||
duke@435 1600 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1601 st->print(" != ");
duke@435 1602 field()->print();
duke@435 1603 st->print(" ***");
duke@435 1604 }
duke@435 1605 }
duke@435 1606 }
duke@435 1607
duke@435 1608 void print_alias_types() {
duke@435 1609 Compile* C = Compile::current();
duke@435 1610 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1611 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1612 C->alias_type(idx)->print_on(tty);
duke@435 1613 tty->cr();
duke@435 1614 }
duke@435 1615 }
duke@435 1616 #endif
duke@435 1617
duke@435 1618
duke@435 1619 //----------------------------probe_alias_cache--------------------------------
duke@435 1620 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1621 intptr_t key = (intptr_t) adr_type;
duke@435 1622 key ^= key >> logAliasCacheSize;
duke@435 1623 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1624 }
duke@435 1625
duke@435 1626
duke@435 1627 //-----------------------------grow_alias_types--------------------------------
duke@435 1628 void Compile::grow_alias_types() {
duke@435 1629 const int old_ats = _max_alias_types; // how many before?
duke@435 1630 const int new_ats = old_ats; // how many more?
duke@435 1631 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1632 _max_alias_types = grow_ats;
duke@435 1633 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1634 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1635 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1636 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1637 }
duke@435 1638
duke@435 1639
duke@435 1640 //--------------------------------find_alias_type------------------------------
never@2658 1641 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1642 if (_AliasLevel == 0)
duke@435 1643 return alias_type(AliasIdxBot);
duke@435 1644
duke@435 1645 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1646 if (ace->_adr_type == adr_type) {
duke@435 1647 return alias_type(ace->_index);
duke@435 1648 }
duke@435 1649
duke@435 1650 // Handle special cases.
duke@435 1651 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1652 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1653
duke@435 1654 // Do it the slow way.
duke@435 1655 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1656
duke@435 1657 #ifdef ASSERT
duke@435 1658 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1659 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1660 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1661 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1662 // Scalarizable allocations have exact klass always.
kvn@682 1663 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1664 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1665 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1666 }
duke@435 1667 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1668 #endif
duke@435 1669
duke@435 1670 int idx = AliasIdxTop;
duke@435 1671 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1672 if (alias_type(i)->adr_type() == flat) {
duke@435 1673 idx = i;
duke@435 1674 break;
duke@435 1675 }
duke@435 1676 }
duke@435 1677
duke@435 1678 if (idx == AliasIdxTop) {
duke@435 1679 if (no_create) return NULL;
duke@435 1680 // Grow the array if necessary.
duke@435 1681 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1682 // Add a new alias type.
duke@435 1683 idx = _num_alias_types++;
duke@435 1684 _alias_types[idx]->Init(idx, flat);
duke@435 1685 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1686 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1687 if (flat->isa_instptr()) {
duke@435 1688 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1689 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1690 alias_type(idx)->set_rewritable(false);
duke@435 1691 }
vlivanov@5658 1692 if (flat->isa_aryptr()) {
vlivanov@5658 1693 #ifdef ASSERT
vlivanov@5658 1694 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
vlivanov@5658 1695 // (T_BYTE has the weakest alignment and size restrictions...)
vlivanov@5658 1696 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
vlivanov@5658 1697 #endif
vlivanov@5658 1698 if (flat->offset() == TypePtr::OffsetBot) {
vlivanov@5658 1699 alias_type(idx)->set_element(flat->is_aryptr()->elem());
vlivanov@5658 1700 }
vlivanov@5658 1701 }
duke@435 1702 if (flat->isa_klassptr()) {
stefank@3391 1703 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
duke@435 1704 alias_type(idx)->set_rewritable(false);
stefank@3391 1705 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
duke@435 1706 alias_type(idx)->set_rewritable(false);
stefank@3391 1707 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
duke@435 1708 alias_type(idx)->set_rewritable(false);
stefank@3391 1709 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
duke@435 1710 alias_type(idx)->set_rewritable(false);
duke@435 1711 }
duke@435 1712 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1713 // but the base pointer type is not distinctive enough to identify
duke@435 1714 // references into JavaThread.)
duke@435 1715
never@2658 1716 // Check for final fields.
duke@435 1717 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1718 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1719 ciField* field;
never@2658 1720 if (tinst->const_oop() != NULL &&
never@2658 1721 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1722 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1723 // static field
never@2658 1724 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1725 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1726 } else {
never@2658 1727 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1728 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1729 }
never@2658 1730 assert(field == NULL ||
never@2658 1731 original_field == NULL ||
never@2658 1732 (field->holder() == original_field->holder() &&
never@2658 1733 field->offset() == original_field->offset() &&
never@2658 1734 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1735 // Set field() and is_rewritable() attributes.
duke@435 1736 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1737 }
duke@435 1738 }
duke@435 1739
duke@435 1740 // Fill the cache for next time.
duke@435 1741 ace->_adr_type = adr_type;
duke@435 1742 ace->_index = idx;
duke@435 1743 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1744
duke@435 1745 // Might as well try to fill the cache for the flattened version, too.
duke@435 1746 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1747 if (face->_adr_type == NULL) {
duke@435 1748 face->_adr_type = flat;
duke@435 1749 face->_index = idx;
duke@435 1750 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1751 }
duke@435 1752
duke@435 1753 return alias_type(idx);
duke@435 1754 }
duke@435 1755
duke@435 1756
duke@435 1757 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1758 const TypeOopPtr* t;
duke@435 1759 if (field->is_static())
never@2658 1760 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1761 else
duke@435 1762 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1763 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
vlivanov@5658 1764 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1765 return atp;
duke@435 1766 }
duke@435 1767
duke@435 1768
duke@435 1769 //------------------------------have_alias_type--------------------------------
duke@435 1770 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1771 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1772 if (ace->_adr_type == adr_type) {
duke@435 1773 return true;
duke@435 1774 }
duke@435 1775
duke@435 1776 // Handle special cases.
duke@435 1777 if (adr_type == NULL) return true;
duke@435 1778 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1779
never@2658 1780 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1781 }
duke@435 1782
duke@435 1783 //-----------------------------must_alias--------------------------------------
duke@435 1784 // True if all values of the given address type are in the given alias category.
duke@435 1785 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1786 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1787 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1788 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1789 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1790
duke@435 1791 // the only remaining possible overlap is identity
duke@435 1792 int adr_idx = get_alias_index(adr_type);
duke@435 1793 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1794 assert(adr_idx == alias_idx ||
duke@435 1795 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1796 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1797 "should not be testing for overlap with an unsafe pointer");
duke@435 1798 return adr_idx == alias_idx;
duke@435 1799 }
duke@435 1800
duke@435 1801 //------------------------------can_alias--------------------------------------
duke@435 1802 // True if any values of the given address type are in the given alias category.
duke@435 1803 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1804 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1805 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1806 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1807 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1808
duke@435 1809 // the only remaining possible overlap is identity
duke@435 1810 int adr_idx = get_alias_index(adr_type);
duke@435 1811 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1812 return adr_idx == alias_idx;
duke@435 1813 }
duke@435 1814
duke@435 1815
duke@435 1816
duke@435 1817 //---------------------------pop_warm_call-------------------------------------
duke@435 1818 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1819 WarmCallInfo* wci = _warm_calls;
duke@435 1820 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1821 return wci;
duke@435 1822 }
duke@435 1823
duke@435 1824 //----------------------------Inline_Warm--------------------------------------
duke@435 1825 int Compile::Inline_Warm() {
duke@435 1826 // If there is room, try to inline some more warm call sites.
duke@435 1827 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1828 if (!InlineWarmCalls) return 0;
duke@435 1829
duke@435 1830 int calls_made_hot = 0;
duke@435 1831 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1832 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1833 int amount_grown = 0;
duke@435 1834 WarmCallInfo* call;
duke@435 1835 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1836 int est_size = (int)call->size();
duke@435 1837 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1838 // This one won't fit anyway. Get rid of it.
duke@435 1839 call->make_cold();
duke@435 1840 continue;
duke@435 1841 }
duke@435 1842 call->make_hot();
duke@435 1843 calls_made_hot++;
duke@435 1844 amount_grown += est_size;
duke@435 1845 amount_to_grow -= est_size;
duke@435 1846 }
duke@435 1847
duke@435 1848 if (calls_made_hot > 0) set_major_progress();
duke@435 1849 return calls_made_hot;
duke@435 1850 }
duke@435 1851
duke@435 1852
duke@435 1853 //----------------------------Finish_Warm--------------------------------------
duke@435 1854 void Compile::Finish_Warm() {
duke@435 1855 if (!InlineWarmCalls) return;
duke@435 1856 if (failing()) return;
duke@435 1857 if (warm_calls() == NULL) return;
duke@435 1858
duke@435 1859 // Clean up loose ends, if we are out of space for inlining.
duke@435 1860 WarmCallInfo* call;
duke@435 1861 while ((call = pop_warm_call()) != NULL) {
duke@435 1862 call->make_cold();
duke@435 1863 }
duke@435 1864 }
duke@435 1865
cfang@1607 1866 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1867 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1868 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1869 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1870 if (predicate_count()==0) return;
cfang@1607 1871 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1872 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1873 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1874 igvn.replace_node(n, n->in(1));
cfang@1607 1875 }
cfang@1607 1876 assert(predicate_count()==0, "should be clean!");
cfang@1607 1877 }
duke@435 1878
roland@4409 1879 // StringOpts and late inlining of string methods
roland@4409 1880 void Compile::inline_string_calls(bool parse_time) {
roland@4409 1881 {
roland@4409 1882 // remove useless nodes to make the usage analysis simpler
roland@4409 1883 ResourceMark rm;
roland@4409 1884 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1885 }
roland@4409 1886
roland@4409 1887 {
roland@4409 1888 ResourceMark rm;
sla@5237 1889 print_method(PHASE_BEFORE_STRINGOPTS, 3);
roland@4409 1890 PhaseStringOpts pso(initial_gvn(), for_igvn());
sla@5237 1891 print_method(PHASE_AFTER_STRINGOPTS, 3);
roland@4409 1892 }
roland@4409 1893
roland@4409 1894 // now inline anything that we skipped the first time around
roland@4409 1895 if (!parse_time) {
roland@4409 1896 _late_inlines_pos = _late_inlines.length();
roland@4409 1897 }
roland@4409 1898
roland@4409 1899 while (_string_late_inlines.length() > 0) {
roland@4409 1900 CallGenerator* cg = _string_late_inlines.pop();
roland@4409 1901 cg->do_late_inline();
roland@4409 1902 if (failing()) return;
roland@4409 1903 }
roland@4409 1904 _string_late_inlines.trunc_to(0);
roland@4409 1905 }
roland@4409 1906
kvn@5110 1907 // Late inlining of boxing methods
kvn@5110 1908 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
kvn@5110 1909 if (_boxing_late_inlines.length() > 0) {
kvn@5110 1910 assert(has_boxed_value(), "inconsistent");
kvn@5110 1911
kvn@5110 1912 PhaseGVN* gvn = initial_gvn();
kvn@5110 1913 set_inlining_incrementally(true);
kvn@5110 1914
kvn@5110 1915 assert( igvn._worklist.size() == 0, "should be done with igvn" );
kvn@5110 1916 for_igvn()->clear();
kvn@5110 1917 gvn->replace_with(&igvn);
kvn@5110 1918
roland@7041 1919 _late_inlines_pos = _late_inlines.length();
roland@7041 1920
kvn@5110 1921 while (_boxing_late_inlines.length() > 0) {
kvn@5110 1922 CallGenerator* cg = _boxing_late_inlines.pop();
kvn@5110 1923 cg->do_late_inline();
kvn@5110 1924 if (failing()) return;
kvn@5110 1925 }
kvn@5110 1926 _boxing_late_inlines.trunc_to(0);
kvn@5110 1927
kvn@5110 1928 {
kvn@5110 1929 ResourceMark rm;
kvn@5110 1930 PhaseRemoveUseless pru(gvn, for_igvn());
kvn@5110 1931 }
kvn@5110 1932
kvn@5110 1933 igvn = PhaseIterGVN(gvn);
kvn@5110 1934 igvn.optimize();
kvn@5110 1935
kvn@5110 1936 set_inlining_progress(false);
kvn@5110 1937 set_inlining_incrementally(false);
kvn@5110 1938 }
kvn@5110 1939 }
kvn@5110 1940
roland@4409 1941 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
roland@4409 1942 assert(IncrementalInline, "incremental inlining should be on");
roland@4409 1943 PhaseGVN* gvn = initial_gvn();
roland@4409 1944
roland@4409 1945 set_inlining_progress(false);
roland@4409 1946 for_igvn()->clear();
roland@4409 1947 gvn->replace_with(&igvn);
roland@4409 1948
roland@4409 1949 int i = 0;
roland@4409 1950
roland@4409 1951 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
roland@4409 1952 CallGenerator* cg = _late_inlines.at(i);
roland@4409 1953 _late_inlines_pos = i+1;
roland@4409 1954 cg->do_late_inline();
roland@4409 1955 if (failing()) return;
roland@4409 1956 }
roland@4409 1957 int j = 0;
roland@4409 1958 for (; i < _late_inlines.length(); i++, j++) {
roland@4409 1959 _late_inlines.at_put(j, _late_inlines.at(i));
roland@4409 1960 }
roland@4409 1961 _late_inlines.trunc_to(j);
roland@4409 1962
roland@4409 1963 {
roland@4409 1964 ResourceMark rm;
kvn@5110 1965 PhaseRemoveUseless pru(gvn, for_igvn());
roland@4409 1966 }
roland@4409 1967
roland@4409 1968 igvn = PhaseIterGVN(gvn);
roland@4409 1969 }
roland@4409 1970
roland@4409 1971 // Perform incremental inlining until bound on number of live nodes is reached
roland@4409 1972 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
roland@4409 1973 PhaseGVN* gvn = initial_gvn();
roland@4409 1974
roland@4409 1975 set_inlining_incrementally(true);
roland@4409 1976 set_inlining_progress(true);
roland@4409 1977 uint low_live_nodes = 0;
roland@4409 1978
roland@4409 1979 while(inlining_progress() && _late_inlines.length() > 0) {
roland@4409 1980
roland@4409 1981 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1982 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
roland@4409 1983 // PhaseIdealLoop is expensive so we only try it once we are
roland@7041 1984 // out of live nodes and we only try it again if the previous
roland@7041 1985 // helped got the number of nodes down significantly
roland@4409 1986 PhaseIdealLoop ideal_loop( igvn, false, true );
roland@4409 1987 if (failing()) return;
roland@4409 1988 low_live_nodes = live_nodes();
roland@4409 1989 _major_progress = true;
roland@4409 1990 }
roland@4409 1991
roland@4409 1992 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1993 break;
roland@4409 1994 }
roland@4409 1995 }
roland@4409 1996
roland@4409 1997 inline_incrementally_one(igvn);
roland@4409 1998
roland@4409 1999 if (failing()) return;
roland@4409 2000
roland@4409 2001 igvn.optimize();
roland@4409 2002
roland@4409 2003 if (failing()) return;
roland@4409 2004 }
roland@4409 2005
roland@4409 2006 assert( igvn._worklist.size() == 0, "should be done with igvn" );
roland@4409 2007
roland@4409 2008 if (_string_late_inlines.length() > 0) {
roland@4409 2009 assert(has_stringbuilder(), "inconsistent");
roland@4409 2010 for_igvn()->clear();
roland@4409 2011 initial_gvn()->replace_with(&igvn);
roland@4409 2012
roland@4409 2013 inline_string_calls(false);
roland@4409 2014
roland@4409 2015 if (failing()) return;
roland@4409 2016
roland@4409 2017 {
roland@4409 2018 ResourceMark rm;
roland@4409 2019 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 2020 }
roland@4409 2021
roland@4409 2022 igvn = PhaseIterGVN(gvn);
roland@4409 2023
roland@4409 2024 igvn.optimize();
roland@4409 2025 }
roland@4409 2026
roland@4409 2027 set_inlining_incrementally(false);
roland@4409 2028 }
roland@4409 2029
roland@4409 2030
duke@435 2031 //------------------------------Optimize---------------------------------------
duke@435 2032 // Given a graph, optimize it.
duke@435 2033 void Compile::Optimize() {
duke@435 2034 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 2035
duke@435 2036 #ifndef PRODUCT
duke@435 2037 if (env()->break_at_compile()) {
duke@435 2038 BREAKPOINT;
duke@435 2039 }
duke@435 2040
duke@435 2041 #endif
duke@435 2042
duke@435 2043 ResourceMark rm;
duke@435 2044 int loop_opts_cnt;
duke@435 2045
duke@435 2046 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2047
sla@5237 2048 print_method(PHASE_AFTER_PARSING);
duke@435 2049
duke@435 2050 {
duke@435 2051 // Iterative Global Value Numbering, including ideal transforms
duke@435 2052 // Initialize IterGVN with types and values from parse-time GVN
duke@435 2053 PhaseIterGVN igvn(initial_gvn());
duke@435 2054 {
duke@435 2055 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 2056 igvn.optimize();
duke@435 2057 }
duke@435 2058
sla@5237 2059 print_method(PHASE_ITER_GVN1, 2);
duke@435 2060
duke@435 2061 if (failing()) return;
duke@435 2062
kvn@5110 2063 {
kvn@5110 2064 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2065 inline_incrementally(igvn);
kvn@5110 2066 }
roland@4409 2067
sla@5237 2068 print_method(PHASE_INCREMENTAL_INLINE, 2);
roland@4409 2069
roland@4409 2070 if (failing()) return;
roland@4409 2071
kvn@5110 2072 if (eliminate_boxing()) {
kvn@5110 2073 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2074 // Inline valueOf() methods now.
kvn@5110 2075 inline_boxing_calls(igvn);
kvn@5110 2076
roland@7041 2077 if (AlwaysIncrementalInline) {
roland@7041 2078 inline_incrementally(igvn);
roland@7041 2079 }
roland@7041 2080
sla@5237 2081 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
kvn@5110 2082
kvn@5110 2083 if (failing()) return;
kvn@5110 2084 }
kvn@5110 2085
roland@5991 2086 // Remove the speculative part of types and clean up the graph from
roland@5991 2087 // the extra CastPP nodes whose only purpose is to carry them. Do
roland@5991 2088 // that early so that optimizations are not disrupted by the extra
roland@5991 2089 // CastPP nodes.
roland@5991 2090 remove_speculative_types(igvn);
roland@5991 2091
roland@4589 2092 // No more new expensive nodes will be added to the list from here
roland@4589 2093 // so keep only the actual candidates for optimizations.
roland@4589 2094 cleanup_expensive_nodes(igvn);
roland@4589 2095
kvn@1989 2096 // Perform escape analysis
kvn@1989 2097 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 2098 if (has_loops()) {
kvn@3260 2099 // Cleanup graph (remove dead nodes).
kvn@3260 2100 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 2101 PhaseIdealLoop ideal_loop( igvn, false, true );
sla@5237 2102 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
kvn@3260 2103 if (failing()) return;
kvn@3260 2104 }
kvn@1989 2105 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 2106
kvn@1989 2107 if (failing()) return;
kvn@1989 2108
kvn@3311 2109 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 2110 igvn.optimize();
sla@5237 2111 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
kvn@1989 2112
kvn@1989 2113 if (failing()) return;
kvn@1989 2114
kvn@3311 2115 if (congraph() != NULL && macro_count() > 0) {
kvn@3651 2116 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
kvn@3311 2117 PhaseMacroExpand mexp(igvn);
kvn@3311 2118 mexp.eliminate_macro_nodes();
kvn@3311 2119 igvn.set_delay_transform(false);
kvn@3311 2120
kvn@3311 2121 igvn.optimize();
sla@5237 2122 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
kvn@3311 2123
kvn@3311 2124 if (failing()) return;
kvn@3311 2125 }
kvn@1989 2126 }
kvn@1989 2127
duke@435 2128 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2129 // peeling, unrolling, etc.
duke@435 2130
duke@435 2131 // Set loop opts counter
duke@435 2132 loop_opts_cnt = num_loop_opts();
duke@435 2133 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 2134 {
duke@435 2135 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 2136 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 2137 loop_opts_cnt--;
sla@5237 2138 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
duke@435 2139 if (failing()) return;
duke@435 2140 }
duke@435 2141 // Loop opts pass if partial peeling occurred in previous pass
duke@435 2142 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 2143 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 2144 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2145 loop_opts_cnt--;
sla@5237 2146 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
duke@435 2147 if (failing()) return;
duke@435 2148 }
duke@435 2149 // Loop opts pass for loop-unrolling before CCP
duke@435 2150 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2151 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 2152 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2153 loop_opts_cnt--;
sla@5237 2154 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
duke@435 2155 }
never@1356 2156 if (!failing()) {
never@1356 2157 // Verify that last round of loop opts produced a valid graph
never@1356 2158 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2159 PhaseIdealLoop::verify(igvn);
never@1356 2160 }
duke@435 2161 }
duke@435 2162 if (failing()) return;
duke@435 2163
duke@435 2164 // Conditional Constant Propagation;
duke@435 2165 PhaseCCP ccp( &igvn );
duke@435 2166 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 2167 {
duke@435 2168 TracePhase t2("ccp", &_t_ccp, true);
duke@435 2169 ccp.do_transform();
duke@435 2170 }
sla@5237 2171 print_method(PHASE_CPP1, 2);
duke@435 2172
duke@435 2173 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 2174
duke@435 2175 // Iterative Global Value Numbering, including ideal transforms
duke@435 2176 {
duke@435 2177 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 2178 igvn = ccp;
duke@435 2179 igvn.optimize();
duke@435 2180 }
duke@435 2181
sla@5237 2182 print_method(PHASE_ITER_GVN2, 2);
duke@435 2183
duke@435 2184 if (failing()) return;
duke@435 2185
duke@435 2186 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2187 // peeling, unrolling, etc.
duke@435 2188 if(loop_opts_cnt > 0) {
duke@435 2189 debug_only( int cnt = 0; );
duke@435 2190 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2191 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 2192 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 2193 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 2194 loop_opts_cnt--;
sla@5237 2195 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
duke@435 2196 if (failing()) return;
duke@435 2197 }
duke@435 2198 }
never@1356 2199
never@1356 2200 {
never@1356 2201 // Verify that all previous optimizations produced a valid graph
never@1356 2202 // at least to this point, even if no loop optimizations were done.
never@1356 2203 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2204 PhaseIdealLoop::verify(igvn);
never@1356 2205 }
never@1356 2206
duke@435 2207 {
duke@435 2208 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 2209 PhaseMacroExpand mex(igvn);
duke@435 2210 if (mex.expand_macro_nodes()) {
duke@435 2211 assert(failing(), "must bail out w/ explicit message");
duke@435 2212 return;
duke@435 2213 }
duke@435 2214 }
duke@435 2215
duke@435 2216 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 2217
kvn@4448 2218 dump_inlining();
duke@435 2219 // A method with only infinite loops has no edges entering loops from root
duke@435 2220 {
duke@435 2221 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 2222 if (final_graph_reshaping()) {
duke@435 2223 assert(failing(), "must bail out w/ explicit message");
duke@435 2224 return;
duke@435 2225 }
duke@435 2226 }
duke@435 2227
sla@5237 2228 print_method(PHASE_OPTIMIZE_FINISHED, 2);
duke@435 2229 }
duke@435 2230
duke@435 2231
duke@435 2232 //------------------------------Code_Gen---------------------------------------
duke@435 2233 // Given a graph, generate code for it
duke@435 2234 void Compile::Code_Gen() {
adlertz@5539 2235 if (failing()) {
adlertz@5539 2236 return;
adlertz@5539 2237 }
duke@435 2238
duke@435 2239 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 2240 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 2241 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 2242 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 2243 // set a bit in reclaimed memory.
duke@435 2244
duke@435 2245 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2246 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2247 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2248
adlertz@5539 2249 Matcher matcher;
adlertz@5539 2250 _matcher = &matcher;
duke@435 2251 {
duke@435 2252 TracePhase t2("matcher", &_t_matcher, true);
adlertz@5539 2253 matcher.match();
duke@435 2254 }
duke@435 2255 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2256 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2257 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2258
duke@435 2259 // If you have too many nodes, or if matching has failed, bail out
duke@435 2260 check_node_count(0, "out of nodes matching instructions");
adlertz@5539 2261 if (failing()) {
adlertz@5539 2262 return;
adlertz@5539 2263 }
duke@435 2264
duke@435 2265 // Build a proper-looking CFG
adlertz@5539 2266 PhaseCFG cfg(node_arena(), root(), matcher);
duke@435 2267 _cfg = &cfg;
duke@435 2268 {
duke@435 2269 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
adlertz@5539 2270 bool success = cfg.do_global_code_motion();
adlertz@5539 2271 if (!success) {
adlertz@5539 2272 return;
adlertz@5539 2273 }
adlertz@5539 2274
adlertz@5539 2275 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
duke@435 2276 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2277 debug_only( cfg.verify(); )
duke@435 2278 }
adlertz@5539 2279
adlertz@5539 2280 PhaseChaitin regalloc(unique(), cfg, matcher);
duke@435 2281 _regalloc = &regalloc;
duke@435 2282 {
duke@435 2283 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 2284 // Perform register allocation. After Chaitin, use-def chains are
duke@435 2285 // no longer accurate (at spill code) and so must be ignored.
duke@435 2286 // Node->LRG->reg mappings are still accurate.
duke@435 2287 _regalloc->Register_Allocate();
duke@435 2288
duke@435 2289 // Bail out if the allocator builds too many nodes
neliasso@4949 2290 if (failing()) {
neliasso@4949 2291 return;
neliasso@4949 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 // Prior to register allocation we kept empty basic blocks in case the
duke@435 2296 // the allocator needed a place to spill. After register allocation we
duke@435 2297 // are not adding any new instructions. If any basic block is empty, we
duke@435 2298 // can now safely remove it.
duke@435 2299 {
rasbold@853 2300 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
adlertz@5539 2301 cfg.remove_empty_blocks();
rasbold@853 2302 if (do_freq_based_layout()) {
rasbold@853 2303 PhaseBlockLayout layout(cfg);
rasbold@853 2304 } else {
rasbold@853 2305 cfg.set_loop_alignment();
rasbold@853 2306 }
rasbold@853 2307 cfg.fixup_flow();
duke@435 2308 }
duke@435 2309
duke@435 2310 // Apply peephole optimizations
duke@435 2311 if( OptoPeephole ) {
duke@435 2312 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 2313 PhasePeephole peep( _regalloc, cfg);
duke@435 2314 peep.do_transform();
duke@435 2315 }
duke@435 2316
goetz@6478 2317 // Do late expand if CPU requires this.
goetz@6478 2318 if (Matcher::require_postalloc_expand) {
goetz@6478 2319 NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
goetz@6478 2320 cfg.postalloc_expand(_regalloc);
goetz@6478 2321 }
goetz@6478 2322
duke@435 2323 // Convert Nodes to instruction bits in a buffer
duke@435 2324 {
duke@435 2325 // %%%% workspace merge brought two timers together for one job
duke@435 2326 TracePhase t2a("output", &_t_output, true);
duke@435 2327 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 2328 Output();
duke@435 2329 }
duke@435 2330
sla@5237 2331 print_method(PHASE_FINAL_CODE);
duke@435 2332
duke@435 2333 // He's dead, Jim.
duke@435 2334 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 2335 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 2336 }
duke@435 2337
duke@435 2338
duke@435 2339 //------------------------------dump_asm---------------------------------------
duke@435 2340 // Dump formatted assembly
duke@435 2341 #ifndef PRODUCT
duke@435 2342 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 2343 bool cut_short = false;
duke@435 2344 tty->print_cr("#");
duke@435 2345 tty->print("# "); _tf->dump(); tty->cr();
duke@435 2346 tty->print_cr("#");
duke@435 2347
duke@435 2348 // For all blocks
duke@435 2349 int pc = 0x0; // Program counter
duke@435 2350 char starts_bundle = ' ';
duke@435 2351 _regalloc->dump_frame();
duke@435 2352
duke@435 2353 Node *n = NULL;
adlertz@5539 2354 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 2355 if (VMThread::should_terminate()) {
adlertz@5539 2356 cut_short = true;
adlertz@5539 2357 break;
adlertz@5539 2358 }
adlertz@5539 2359 Block* block = _cfg->get_block(i);
adlertz@5539 2360 if (block->is_connector() && !Verbose) {
adlertz@5539 2361 continue;
adlertz@5539 2362 }
adlertz@5635 2363 n = block->head();
adlertz@5539 2364 if (pcs && n->_idx < pc_limit) {
duke@435 2365 tty->print("%3.3x ", pcs[n->_idx]);
adlertz@5539 2366 } else {
duke@435 2367 tty->print(" ");
adlertz@5539 2368 }
adlertz@5539 2369 block->dump_head(_cfg);
adlertz@5539 2370 if (block->is_connector()) {
duke@435 2371 tty->print_cr(" # Empty connector block");
adlertz@5539 2372 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 2373 tty->print_cr(" # Block is sole successor of call");
duke@435 2374 }
duke@435 2375
duke@435 2376 // For all instructions
duke@435 2377 Node *delay = NULL;
adlertz@5635 2378 for (uint j = 0; j < block->number_of_nodes(); j++) {
adlertz@5539 2379 if (VMThread::should_terminate()) {
adlertz@5539 2380 cut_short = true;
adlertz@5539 2381 break;
adlertz@5539 2382 }
adlertz@5635 2383 n = block->get_node(j);
duke@435 2384 if (valid_bundle_info(n)) {
adlertz@5539 2385 Bundle* bundle = node_bundling(n);
duke@435 2386 if (bundle->used_in_unconditional_delay()) {
duke@435 2387 delay = n;
duke@435 2388 continue;
duke@435 2389 }
adlertz@5539 2390 if (bundle->starts_bundle()) {
duke@435 2391 starts_bundle = '+';
adlertz@5539 2392 }
duke@435 2393 }
duke@435 2394
adlertz@5539 2395 if (WizardMode) {
adlertz@5539 2396 n->dump();
adlertz@5539 2397 }
coleenp@548 2398
duke@435 2399 if( !n->is_Region() && // Dont print in the Assembly
duke@435 2400 !n->is_Phi() && // a few noisely useless nodes
duke@435 2401 !n->is_Proj() &&
duke@435 2402 !n->is_MachTemp() &&
kvn@1535 2403 !n->is_SafePointScalarObject() &&
duke@435 2404 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 2405 !n->is_MergeMem() && // Not very interesting
duke@435 2406 !n->is_top() && // Debug info table constants
duke@435 2407 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 2408 ) {
duke@435 2409 if (pcs && n->_idx < pc_limit)
duke@435 2410 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2411 else
duke@435 2412 tty->print(" ");
duke@435 2413 tty->print(" %c ", starts_bundle);
duke@435 2414 starts_bundle = ' ';
duke@435 2415 tty->print("\t");
duke@435 2416 n->format(_regalloc, tty);
duke@435 2417 tty->cr();
duke@435 2418 }
duke@435 2419
duke@435 2420 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2421 // then back up and print it
duke@435 2422 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2423 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2424 if (WizardMode) delay->dump();
coleenp@548 2425
duke@435 2426 if (node_bundling(delay)->starts_bundle())
duke@435 2427 starts_bundle = '+';
duke@435 2428 if (pcs && n->_idx < pc_limit)
duke@435 2429 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2430 else
duke@435 2431 tty->print(" ");
duke@435 2432 tty->print(" %c ", starts_bundle);
duke@435 2433 starts_bundle = ' ';
duke@435 2434 tty->print("\t");
duke@435 2435 delay->format(_regalloc, tty);
drchase@6680 2436 tty->cr();
duke@435 2437 delay = NULL;
duke@435 2438 }
duke@435 2439
duke@435 2440 // Dump the exception table as well
duke@435 2441 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2442 // Print the exception table for this offset
duke@435 2443 _handler_table.print_subtable_for(pc);
duke@435 2444 }
duke@435 2445 }
duke@435 2446
duke@435 2447 if (pcs && n->_idx < pc_limit)
duke@435 2448 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2449 else
drchase@6680 2450 tty->cr();
duke@435 2451
duke@435 2452 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2453
duke@435 2454 } // End of per-block dump
drchase@6680 2455 tty->cr();
duke@435 2456
duke@435 2457 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2458 }
duke@435 2459 #endif
duke@435 2460
duke@435 2461 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2462 // This class defines counters to help identify when a method
duke@435 2463 // may/must be executed using hardware with only 24-bit precision.
duke@435 2464 struct Final_Reshape_Counts : public StackObj {
duke@435 2465 int _call_count; // count non-inlined 'common' calls
duke@435 2466 int _float_count; // count float ops requiring 24-bit precision
duke@435 2467 int _double_count; // count double ops requiring more precision
duke@435 2468 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2469 int _inner_loop_count; // count loops which need alignment
duke@435 2470 VectorSet _visited; // Visitation flags
duke@435 2471 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2472
duke@435 2473 Final_Reshape_Counts() :
kvn@1294 2474 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2475 _java_call_count(0), _inner_loop_count(0),
duke@435 2476 _visited( Thread::current()->resource_area() ) { }
duke@435 2477
duke@435 2478 void inc_call_count () { _call_count ++; }
duke@435 2479 void inc_float_count () { _float_count ++; }
duke@435 2480 void inc_double_count() { _double_count++; }
duke@435 2481 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2482 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2483
duke@435 2484 int get_call_count () const { return _call_count ; }
duke@435 2485 int get_float_count () const { return _float_count ; }
duke@435 2486 int get_double_count() const { return _double_count; }
duke@435 2487 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2488 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2489 };
duke@435 2490
mikael@4889 2491 #ifdef ASSERT
duke@435 2492 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2493 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2494 // Make sure the offset goes inside the instance layout.
coleenp@548 2495 return k->contains_field_offset(tp->offset());
duke@435 2496 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2497 }
mikael@4889 2498 #endif
duke@435 2499
never@2780 2500 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2501 // precedence edges.
bharadwaj@4315 2502 void Compile::eliminate_redundant_card_marks(Node* n) {
never@2780 2503 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2504 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2505 // There are multiple users of the same address so it might be
never@2780 2506 // possible to eliminate some of the StoreCMs
never@2780 2507 Node* mem = n->in(MemNode::Memory);
never@2780 2508 Node* adr = n->in(MemNode::Address);
never@2780 2509 Node* val = n->in(MemNode::ValueIn);
never@2780 2510 Node* prev = n;
never@2780 2511 bool done = false;
never@2780 2512 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2513 // long as it's a chain of single users then the optimization is
never@2780 2514 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2515 // cloning copies down the other paths.
never@2780 2516 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2517 if (adr == mem->in(MemNode::Address) &&
never@2780 2518 val == mem->in(MemNode::ValueIn)) {
never@2780 2519 // redundant StoreCM
never@2780 2520 if (mem->req() > MemNode::OopStore) {
never@2780 2521 // Hasn't been processed by this code yet.
never@2780 2522 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2523 } else {
never@2780 2524 // Already converted to precedence edge
never@2780 2525 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2526 // Accumulate any precedence edges
never@2780 2527 if (mem->in(i) != NULL) {
never@2780 2528 n->add_prec(mem->in(i));
never@2780 2529 }
never@2780 2530 }
never@2780 2531 // Everything above this point has been processed.
never@2780 2532 done = true;
never@2780 2533 }
never@2780 2534 // Eliminate the previous StoreCM
never@2780 2535 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2536 assert(mem->outcnt() == 0, "should be dead");
bharadwaj@4315 2537 mem->disconnect_inputs(NULL, this);
never@2780 2538 } else {
never@2780 2539 prev = mem;
never@2780 2540 }
never@2780 2541 mem = prev->in(MemNode::Memory);
never@2780 2542 }
never@2780 2543 }
never@2780 2544 }
never@2780 2545
duke@435 2546 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2547 // Implement items 1-5 from final_graph_reshaping below.
bharadwaj@4315 2548 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
duke@435 2549
kvn@603 2550 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2551 uint nop = n->Opcode();
duke@435 2552
duke@435 2553 // Check for 2-input instruction with "last use" on right input.
duke@435 2554 // Swap to left input. Implements item (2).
duke@435 2555 if( n->req() == 3 && // two-input instruction
duke@435 2556 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2557 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2558 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2559 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2560 // Check for commutative opcode
duke@435 2561 switch( nop ) {
duke@435 2562 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2563 case Op_MaxI: case Op_MinI:
duke@435 2564 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2565 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2566 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2567 // Move "last use" input to left by swapping inputs
duke@435 2568 n->swap_edges(1, 2);
duke@435 2569 break;
duke@435 2570 }
duke@435 2571 default:
duke@435 2572 break;
duke@435 2573 }
duke@435 2574 }
duke@435 2575
kvn@1964 2576 #ifdef ASSERT
kvn@1964 2577 if( n->is_Mem() ) {
bharadwaj@4315 2578 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2579 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2580 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2581 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2582 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2583 "raw memory operations should have control edge");
kvn@1964 2584 }
kvn@1964 2585 #endif
duke@435 2586 // Count FPU ops and common calls, implements item (3)
duke@435 2587 switch( nop ) {
duke@435 2588 // Count all float operations that may use FPU
duke@435 2589 case Op_AddF:
duke@435 2590 case Op_SubF:
duke@435 2591 case Op_MulF:
duke@435 2592 case Op_DivF:
duke@435 2593 case Op_NegF:
duke@435 2594 case Op_ModF:
duke@435 2595 case Op_ConvI2F:
duke@435 2596 case Op_ConF:
duke@435 2597 case Op_CmpF:
duke@435 2598 case Op_CmpF3:
duke@435 2599 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2600 frc.inc_float_count();
duke@435 2601 break;
duke@435 2602
duke@435 2603 case Op_ConvF2D:
duke@435 2604 case Op_ConvD2F:
kvn@1294 2605 frc.inc_float_count();
kvn@1294 2606 frc.inc_double_count();
duke@435 2607 break;
duke@435 2608
duke@435 2609 // Count all double operations that may use FPU
duke@435 2610 case Op_AddD:
duke@435 2611 case Op_SubD:
duke@435 2612 case Op_MulD:
duke@435 2613 case Op_DivD:
duke@435 2614 case Op_NegD:
duke@435 2615 case Op_ModD:
duke@435 2616 case Op_ConvI2D:
duke@435 2617 case Op_ConvD2I:
duke@435 2618 // case Op_ConvL2D: // handled by leaf call
duke@435 2619 // case Op_ConvD2L: // handled by leaf call
duke@435 2620 case Op_ConD:
duke@435 2621 case Op_CmpD:
duke@435 2622 case Op_CmpD3:
kvn@1294 2623 frc.inc_double_count();
duke@435 2624 break;
duke@435 2625 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2626 case Op_Opaque2: // Remove Opaque Nodes before matching
kvn@6429 2627 case Op_Opaque3:
bharadwaj@4315 2628 n->subsume_by(n->in(1), this);
duke@435 2629 break;
duke@435 2630 case Op_CallStaticJava:
duke@435 2631 case Op_CallJava:
duke@435 2632 case Op_CallDynamicJava:
kvn@1294 2633 frc.inc_java_call_count(); // Count java call site;
duke@435 2634 case Op_CallRuntime:
duke@435 2635 case Op_CallLeaf:
duke@435 2636 case Op_CallLeafNoFP: {
duke@435 2637 assert( n->is_Call(), "" );
duke@435 2638 CallNode *call = n->as_Call();
duke@435 2639 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2640 // Do not count uncommon runtime calls:
duke@435 2641 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2642 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2643 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2644 frc.inc_call_count(); // Count the call site
duke@435 2645 } else { // See if uncommon argument is shared
duke@435 2646 Node *n = call->in(TypeFunc::Parms);
duke@435 2647 int nop = n->Opcode();
duke@435 2648 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2649 if( n->outcnt() > 1 &&
duke@435 2650 !n->is_Proj() &&
duke@435 2651 nop != Op_CreateEx &&
duke@435 2652 nop != Op_CheckCastPP &&
kvn@766 2653 nop != Op_DecodeN &&
roland@4159 2654 nop != Op_DecodeNKlass &&
duke@435 2655 !n->is_Mem() ) {
duke@435 2656 Node *x = n->clone();
duke@435 2657 call->set_req( TypeFunc::Parms, x );
duke@435 2658 }
duke@435 2659 }
duke@435 2660 break;
duke@435 2661 }
duke@435 2662
duke@435 2663 case Op_StoreD:
duke@435 2664 case Op_LoadD:
duke@435 2665 case Op_LoadD_unaligned:
kvn@1294 2666 frc.inc_double_count();
duke@435 2667 goto handle_mem;
duke@435 2668 case Op_StoreF:
duke@435 2669 case Op_LoadF:
kvn@1294 2670 frc.inc_float_count();
duke@435 2671 goto handle_mem;
duke@435 2672
never@2780 2673 case Op_StoreCM:
never@2780 2674 {
never@2780 2675 // Convert OopStore dependence into precedence edge
never@2780 2676 Node* prec = n->in(MemNode::OopStore);
never@2780 2677 n->del_req(MemNode::OopStore);
never@2780 2678 n->add_prec(prec);
never@2780 2679 eliminate_redundant_card_marks(n);
never@2780 2680 }
never@2780 2681
never@2780 2682 // fall through
never@2780 2683
duke@435 2684 case Op_StoreB:
duke@435 2685 case Op_StoreC:
duke@435 2686 case Op_StorePConditional:
duke@435 2687 case Op_StoreI:
duke@435 2688 case Op_StoreL:
kvn@855 2689 case Op_StoreIConditional:
duke@435 2690 case Op_StoreLConditional:
duke@435 2691 case Op_CompareAndSwapI:
duke@435 2692 case Op_CompareAndSwapL:
duke@435 2693 case Op_CompareAndSwapP:
coleenp@548 2694 case Op_CompareAndSwapN:
roland@4106 2695 case Op_GetAndAddI:
roland@4106 2696 case Op_GetAndAddL:
roland@4106 2697 case Op_GetAndSetI:
roland@4106 2698 case Op_GetAndSetL:
roland@4106 2699 case Op_GetAndSetP:
roland@4106 2700 case Op_GetAndSetN:
duke@435 2701 case Op_StoreP:
coleenp@548 2702 case Op_StoreN:
roland@4159 2703 case Op_StoreNKlass:
duke@435 2704 case Op_LoadB:
twisti@1059 2705 case Op_LoadUB:
twisti@993 2706 case Op_LoadUS:
duke@435 2707 case Op_LoadI:
duke@435 2708 case Op_LoadKlass:
kvn@599 2709 case Op_LoadNKlass:
duke@435 2710 case Op_LoadL:
duke@435 2711 case Op_LoadL_unaligned:
duke@435 2712 case Op_LoadPLocked:
duke@435 2713 case Op_LoadP:
coleenp@548 2714 case Op_LoadN:
duke@435 2715 case Op_LoadRange:
duke@435 2716 case Op_LoadS: {
duke@435 2717 handle_mem:
duke@435 2718 #ifdef ASSERT
duke@435 2719 if( VerifyOptoOopOffsets ) {
duke@435 2720 assert( n->is_Mem(), "" );
duke@435 2721 MemNode *mem = (MemNode*)n;
duke@435 2722 // Check to see if address types have grounded out somehow.
duke@435 2723 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2724 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2725 }
duke@435 2726 #endif
duke@435 2727 break;
duke@435 2728 }
duke@435 2729
duke@435 2730 case Op_AddP: { // Assert sane base pointers
kvn@617 2731 Node *addp = n->in(AddPNode::Address);
duke@435 2732 assert( !addp->is_AddP() ||
duke@435 2733 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2734 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2735 "Base pointers must match" );
kvn@617 2736 #ifdef _LP64
ehelin@5694 2737 if ((UseCompressedOops || UseCompressedClassPointers) &&
kvn@617 2738 addp->Opcode() == Op_ConP &&
kvn@617 2739 addp == n->in(AddPNode::Base) &&
kvn@617 2740 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2741 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2742 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2743 // instructions (4) then load 64-bits constant (7).
kvn@617 2744 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2745 const Type* t = addp->bottom_type();
roland@4159 2746 if (t->isa_oopptr() || t->isa_klassptr()) {
kvn@617 2747 Node* nn = NULL;
kvn@617 2748
roland@4159 2749 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
roland@4159 2750
kvn@617 2751 // Look for existing ConN node of the same exact type.
bharadwaj@4315 2752 Node* r = root();
kvn@617 2753 uint cnt = r->outcnt();
kvn@617 2754 for (uint i = 0; i < cnt; i++) {
kvn@617 2755 Node* m = r->raw_out(i);
roland@4159 2756 if (m!= NULL && m->Opcode() == op &&
kvn@656 2757 m->bottom_type()->make_ptr() == t) {
kvn@617 2758 nn = m;
kvn@617 2759 break;
kvn@617 2760 }
kvn@617 2761 }
kvn@617 2762 if (nn != NULL) {
kvn@617 2763 // Decode a narrow oop to match address
kvn@617 2764 // [R12 + narrow_oop_reg<<3 + offset]
roland@4159 2765 if (t->isa_oopptr()) {
bharadwaj@4315 2766 nn = new (this) DecodeNNode(nn, t);
roland@4159 2767 } else {
bharadwaj@4315 2768 nn = new (this) DecodeNKlassNode(nn, t);
roland@4159 2769 }
kvn@617 2770 n->set_req(AddPNode::Base, nn);
kvn@617 2771 n->set_req(AddPNode::Address, nn);
kvn@617 2772 if (addp->outcnt() == 0) {
bharadwaj@4315 2773 addp->disconnect_inputs(NULL, this);
kvn@617 2774 }
kvn@617 2775 }
kvn@617 2776 }
kvn@617 2777 }
kvn@617 2778 #endif
duke@435 2779 break;
duke@435 2780 }
duke@435 2781
kvn@599 2782 #ifdef _LP64
kvn@803 2783 case Op_CastPP:
kvn@1930 2784 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2785 Node* in1 = n->in(1);
kvn@803 2786 const Type* t = n->bottom_type();
kvn@803 2787 Node* new_in1 = in1->clone();
kvn@803 2788 new_in1->as_DecodeN()->set_type(t);
kvn@803 2789
kvn@1930 2790 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2791 //
kvn@803 2792 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2793 // and Matcher can fold a DecodeN node into address by using
kvn@803 2794 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2795 //
kvn@803 2796 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2797 // NullCheck narrow_oop_reg
kvn@803 2798 //
kvn@803 2799 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2800 // use it to do implicit NULL check in address:
kvn@803 2801 //
kvn@803 2802 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2803 // [base_reg + offset]
kvn@803 2804 // NullCheck base_reg
kvn@803 2805 //
twisti@1040 2806 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2807 // to keep the information to which NULL check the new DecodeN node
kvn@803 2808 // corresponds to use it as value in implicit_null_check().
kvn@803 2809 //
kvn@803 2810 new_in1->set_req(0, n->in(0));
kvn@803 2811 }
kvn@803 2812
bharadwaj@4315 2813 n->subsume_by(new_in1, this);
kvn@803 2814 if (in1->outcnt() == 0) {
bharadwaj@4315 2815 in1->disconnect_inputs(NULL, this);
kvn@803 2816 }
kvn@803 2817 }
kvn@803 2818 break;
kvn@803 2819
kvn@599 2820 case Op_CmpP:
kvn@603 2821 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2822 // other TypePtr related Ideal optimizations (for example, ptr nullness).
roland@4159 2823 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
kvn@766 2824 Node* in1 = n->in(1);
kvn@766 2825 Node* in2 = n->in(2);
roland@4159 2826 if (!in1->is_DecodeNarrowPtr()) {
kvn@766 2827 in2 = in1;
kvn@766 2828 in1 = n->in(2);
kvn@766 2829 }
roland@4159 2830 assert(in1->is_DecodeNarrowPtr(), "sanity");
kvn@766 2831
kvn@766 2832 Node* new_in2 = NULL;
roland@4159 2833 if (in2->is_DecodeNarrowPtr()) {
roland@4159 2834 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
kvn@766 2835 new_in2 = in2->in(1);
kvn@766 2836 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2837 const Type* t = in2->bottom_type();
kvn@1930 2838 if (t == TypePtr::NULL_PTR) {
roland@4159 2839 assert(in1->is_DecodeN(), "compare klass to null?");
kvn@1930 2840 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2841 // oops implicit null check is not generated.
kvn@1930 2842 // This will allow to generate normal oop implicit null check.
kvn@1930 2843 if (Matcher::gen_narrow_oop_implicit_null_checks())
bharadwaj@4315 2844 new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
kvn@803 2845 //
kvn@803 2846 // This transformation together with CastPP transformation above
kvn@803 2847 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2848 //
kvn@803 2849 // The original code after Optimize()
kvn@803 2850 //
kvn@803 2851 // LoadN memory, narrow_oop_reg
kvn@803 2852 // decode narrow_oop_reg, base_reg
kvn@803 2853 // CmpP base_reg, NULL
kvn@803 2854 // CastPP base_reg // NotNull
kvn@803 2855 // Load [base_reg + offset], val_reg
kvn@803 2856 //
kvn@803 2857 // after these transformations will be
kvn@803 2858 //
kvn@803 2859 // LoadN memory, narrow_oop_reg
kvn@803 2860 // CmpN narrow_oop_reg, NULL
kvn@803 2861 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2862 // Load [base_reg + offset], val_reg
kvn@803 2863 //
kvn@803 2864 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2865 // since narrow oops can be used in debug info now (see the code in
kvn@803 2866 // final_graph_reshaping_walk()).
kvn@803 2867 //
kvn@803 2868 // At the end the code will be matched to
kvn@803 2869 // on x86:
kvn@803 2870 //
kvn@803 2871 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2872 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2873 // NullCheck narrow_oop_reg
kvn@803 2874 //
kvn@803 2875 // and on sparc:
kvn@803 2876 //
kvn@803 2877 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2878 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2879 // Load [base_reg + offset], val_reg
kvn@803 2880 // NullCheck base_reg
kvn@803 2881 //
kvn@599 2882 } else if (t->isa_oopptr()) {
bharadwaj@4315 2883 new_in2 = ConNode::make(this, t->make_narrowoop());
roland@4159 2884 } else if (t->isa_klassptr()) {
bharadwaj@4315 2885 new_in2 = ConNode::make(this, t->make_narrowklass());
kvn@599 2886 }
kvn@599 2887 }
kvn@766 2888 if (new_in2 != NULL) {
bharadwaj@4315 2889 Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
bharadwaj@4315 2890 n->subsume_by(cmpN, this);
kvn@766 2891 if (in1->outcnt() == 0) {
bharadwaj@4315 2892 in1->disconnect_inputs(NULL, this);
kvn@766 2893 }
kvn@766 2894 if (in2->outcnt() == 0) {
bharadwaj@4315 2895 in2->disconnect_inputs(NULL, this);
kvn@766 2896 }
kvn@599 2897 }
kvn@599 2898 }
kvn@728 2899 break;
kvn@803 2900
kvn@803 2901 case Op_DecodeN:
roland@4159 2902 case Op_DecodeNKlass:
roland@4159 2903 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
kvn@1930 2904 // DecodeN could be pinned when it can't be fold into
kvn@927 2905 // an address expression, see the code for Op_CastPP above.
roland@4159 2906 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
kvn@803 2907 break;
kvn@803 2908
roland@4159 2909 case Op_EncodeP:
roland@4159 2910 case Op_EncodePKlass: {
kvn@803 2911 Node* in1 = n->in(1);
roland@4159 2912 if (in1->is_DecodeNarrowPtr()) {
bharadwaj@4315 2913 n->subsume_by(in1->in(1), this);
kvn@803 2914 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2915 const Type* t = in1->bottom_type();
kvn@803 2916 if (t == TypePtr::NULL_PTR) {
roland@4159 2917 assert(t->isa_oopptr(), "null klass?");
bharadwaj@4315 2918 n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
kvn@803 2919 } else if (t->isa_oopptr()) {
bharadwaj@4315 2920 n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
roland@4159 2921 } else if (t->isa_klassptr()) {
bharadwaj@4315 2922 n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
kvn@803 2923 }
kvn@803 2924 }
kvn@803 2925 if (in1->outcnt() == 0) {
bharadwaj@4315 2926 in1->disconnect_inputs(NULL, this);
kvn@803 2927 }
kvn@803 2928 break;
kvn@803 2929 }
kvn@803 2930
never@1515 2931 case Op_Proj: {
never@1515 2932 if (OptimizeStringConcat) {
never@1515 2933 ProjNode* p = n->as_Proj();
never@1515 2934 if (p->_is_io_use) {
never@1515 2935 // Separate projections were used for the exception path which
never@1515 2936 // are normally removed by a late inline. If it wasn't inlined
never@1515 2937 // then they will hang around and should just be replaced with
never@1515 2938 // the original one.
never@1515 2939 Node* proj = NULL;
never@1515 2940 // Replace with just one
never@1515 2941 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2942 Node *use = i.get();
never@1515 2943 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2944 proj = use;
never@1515 2945 break;
never@1515 2946 }
never@1515 2947 }
kvn@3396 2948 assert(proj != NULL, "must be found");
bharadwaj@4315 2949 p->subsume_by(proj, this);
never@1515 2950 }
never@1515 2951 }
never@1515 2952 break;
never@1515 2953 }
never@1515 2954
kvn@803 2955 case Op_Phi:
roland@4159 2956 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
kvn@803 2957 // The EncodeP optimization may create Phi with the same edges
kvn@803 2958 // for all paths. It is not handled well by Register Allocator.
kvn@803 2959 Node* unique_in = n->in(1);
kvn@803 2960 assert(unique_in != NULL, "");
kvn@803 2961 uint cnt = n->req();
kvn@803 2962 for (uint i = 2; i < cnt; i++) {
kvn@803 2963 Node* m = n->in(i);
kvn@803 2964 assert(m != NULL, "");
kvn@803 2965 if (unique_in != m)
kvn@803 2966 unique_in = NULL;
kvn@803 2967 }
kvn@803 2968 if (unique_in != NULL) {
bharadwaj@4315 2969 n->subsume_by(unique_in, this);
kvn@803 2970 }
kvn@803 2971 }
kvn@803 2972 break;
kvn@803 2973
kvn@599 2974 #endif
kvn@599 2975
duke@435 2976 case Op_ModI:
duke@435 2977 if (UseDivMod) {
duke@435 2978 // Check if a%b and a/b both exist
duke@435 2979 Node* d = n->find_similar(Op_DivI);
duke@435 2980 if (d) {
duke@435 2981 // Replace them with a fused divmod if supported
duke@435 2982 if (Matcher::has_match_rule(Op_DivModI)) {
bharadwaj@4315 2983 DivModINode* divmod = DivModINode::make(this, n);
bharadwaj@4315 2984 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2985 n->subsume_by(divmod->mod_proj(), this);
duke@435 2986 } else {
duke@435 2987 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2988 Node* mult = new (this) MulINode(d, d->in(2));
bharadwaj@4315 2989 Node* sub = new (this) SubINode(d->in(1), mult);
bharadwaj@4315 2990 n->subsume_by(sub, this);
duke@435 2991 }
duke@435 2992 }
duke@435 2993 }
duke@435 2994 break;
duke@435 2995
duke@435 2996 case Op_ModL:
duke@435 2997 if (UseDivMod) {
duke@435 2998 // Check if a%b and a/b both exist
duke@435 2999 Node* d = n->find_similar(Op_DivL);
duke@435 3000 if (d) {
duke@435 3001 // Replace them with a fused divmod if supported
duke@435 3002 if (Matcher::has_match_rule(Op_DivModL)) {
bharadwaj@4315 3003 DivModLNode* divmod = DivModLNode::make(this, n);
bharadwaj@4315 3004 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 3005 n->subsume_by(divmod->mod_proj(), this);
duke@435 3006 } else {
duke@435 3007 // replace a%b with a-((a/b)*b)
bharadwaj@4315 3008 Node* mult = new (this) MulLNode(d, d->in(2));
bharadwaj@4315 3009 Node* sub = new (this) SubLNode(d->in(1), mult);
bharadwaj@4315 3010 n->subsume_by(sub, this);
duke@435 3011 }
duke@435 3012 }
duke@435 3013 }
duke@435 3014 break;
duke@435 3015
kvn@3882 3016 case Op_LoadVector:
kvn@3882 3017 case Op_StoreVector:
duke@435 3018 break;
duke@435 3019
duke@435 3020 case Op_PackB:
duke@435 3021 case Op_PackS:
duke@435 3022 case Op_PackI:
duke@435 3023 case Op_PackF:
duke@435 3024 case Op_PackL:
duke@435 3025 case Op_PackD:
duke@435 3026 if (n->req()-1 > 2) {
duke@435 3027 // Replace many operand PackNodes with a binary tree for matching
duke@435 3028 PackNode* p = (PackNode*) n;
bharadwaj@4315 3029 Node* btp = p->binary_tree_pack(this, 1, n->req());
bharadwaj@4315 3030 n->subsume_by(btp, this);
duke@435 3031 }
duke@435 3032 break;
kvn@1294 3033 case Op_Loop:
kvn@1294 3034 case Op_CountedLoop:
kvn@1294 3035 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 3036 frc.inc_inner_loop_count();
kvn@1294 3037 }
kvn@1294 3038 break;
roland@2683 3039 case Op_LShiftI:
roland@2683 3040 case Op_RShiftI:
roland@2683 3041 case Op_URShiftI:
roland@2683 3042 case Op_LShiftL:
roland@2683 3043 case Op_RShiftL:
roland@2683 3044 case Op_URShiftL:
roland@2683 3045 if (Matcher::need_masked_shift_count) {
roland@2683 3046 // The cpu's shift instructions don't restrict the count to the
roland@2683 3047 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 3048 Node* in2 = n->in(2);
roland@2683 3049 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 3050 const TypeInt* t = in2->find_int_type();
roland@2683 3051 if (t != NULL && t->is_con()) {
roland@2683 3052 juint shift = t->get_con();
roland@2683 3053 if (shift > mask) { // Unsigned cmp
bharadwaj@4315 3054 n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
roland@2683 3055 }
roland@2683 3056 } else {
roland@2683 3057 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
bharadwaj@4315 3058 Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
roland@2683 3059 n->set_req(2, shift);
roland@2683 3060 }
roland@2683 3061 }
roland@2683 3062 if (in2->outcnt() == 0) { // Remove dead node
bharadwaj@4315 3063 in2->disconnect_inputs(NULL, this);
roland@2683 3064 }
roland@2683 3065 }
roland@2683 3066 break;
roland@4694 3067 case Op_MemBarStoreStore:
kvn@5110 3068 case Op_MemBarRelease:
roland@4694 3069 // Break the link with AllocateNode: it is no longer useful and
roland@4694 3070 // confuses register allocation.
roland@4694 3071 if (n->req() > MemBarNode::Precedent) {
roland@4694 3072 n->set_req(MemBarNode::Precedent, top());
roland@4694 3073 }
roland@4694 3074 break;
duke@435 3075 default:
duke@435 3076 assert( !n->is_Call(), "" );
duke@435 3077 assert( !n->is_Mem(), "" );
duke@435 3078 break;
duke@435 3079 }
never@562 3080
never@562 3081 // Collect CFG split points
never@562 3082 if (n->is_MultiBranch())
kvn@1294 3083 frc._tests.push(n);
duke@435 3084 }
duke@435 3085
duke@435 3086 //------------------------------final_graph_reshaping_walk---------------------
duke@435 3087 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 3088 // requires that the walk visits a node's inputs before visiting the node.
bharadwaj@4315 3089 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 3090 ResourceArea *area = Thread::current()->resource_area();
kvn@766 3091 Unique_Node_List sfpt(area);
kvn@766 3092
kvn@1294 3093 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 3094 uint cnt = root->req();
duke@435 3095 Node *n = root;
duke@435 3096 uint i = 0;
duke@435 3097 while (true) {
duke@435 3098 if (i < cnt) {
duke@435 3099 // Place all non-visited non-null inputs onto stack
duke@435 3100 Node* m = n->in(i);
duke@435 3101 ++i;
kvn@1294 3102 if (m != NULL && !frc._visited.test_set(m->_idx)) {
roland@6723 3103 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
roland@6723 3104 // compute worst case interpreter size in case of a deoptimization
roland@6723 3105 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
roland@6723 3106
kvn@766 3107 sfpt.push(m);
roland@6723 3108 }
duke@435 3109 cnt = m->req();
duke@435 3110 nstack.push(n, i); // put on stack parent and next input's index
duke@435 3111 n = m;
duke@435 3112 i = 0;
duke@435 3113 }
duke@435 3114 } else {
duke@435 3115 // Now do post-visit work
kvn@1294 3116 final_graph_reshaping_impl( n, frc );
duke@435 3117 if (nstack.is_empty())
duke@435 3118 break; // finished
duke@435 3119 n = nstack.node(); // Get node from stack
duke@435 3120 cnt = n->req();
duke@435 3121 i = nstack.index();
duke@435 3122 nstack.pop(); // Shift to the next node on stack
duke@435 3123 }
duke@435 3124 }
kvn@766 3125
kvn@1930 3126 // Skip next transformation if compressed oops are not used.
roland@4159 3127 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
ehelin@5694 3128 (!UseCompressedOops && !UseCompressedClassPointers))
kvn@1930 3129 return;
kvn@1930 3130
roland@4159 3131 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
kvn@766 3132 // It could be done for an uncommon traps or any safepoints/calls
roland@4159 3133 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
kvn@766 3134 while (sfpt.size() > 0) {
kvn@766 3135 n = sfpt.pop();
kvn@766 3136 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 3137 assert(jvms != NULL, "sanity");
kvn@766 3138 int start = jvms->debug_start();
kvn@766 3139 int end = n->req();
kvn@766 3140 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 3141 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 3142 for (int j = start; j < end; j++) {
kvn@766 3143 Node* in = n->in(j);
roland@4159 3144 if (in->is_DecodeNarrowPtr()) {
kvn@766 3145 bool safe_to_skip = true;
kvn@766 3146 if (!is_uncommon ) {
kvn@766 3147 // Is it safe to skip?
kvn@766 3148 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 3149 Node* u = in->raw_out(i);
kvn@766 3150 if (!u->is_SafePoint() ||
kvn@766 3151 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 3152 safe_to_skip = false;
kvn@766 3153 }
kvn@766 3154 }
kvn@766 3155 }
kvn@766 3156 if (safe_to_skip) {
kvn@766 3157 n->set_req(j, in->in(1));
kvn@766 3158 }
kvn@766 3159 if (in->outcnt() == 0) {
bharadwaj@4315 3160 in->disconnect_inputs(NULL, this);
kvn@766 3161 }
kvn@766 3162 }
kvn@766 3163 }
kvn@766 3164 }
duke@435 3165 }
duke@435 3166
duke@435 3167 //------------------------------final_graph_reshaping--------------------------
duke@435 3168 // Final Graph Reshaping.
duke@435 3169 //
duke@435 3170 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 3171 // and not commoned up and forced early. Must come after regular
duke@435 3172 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 3173 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 3174 // Remove Opaque nodes.
duke@435 3175 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 3176 // Intel update-in-place two-address operations and better register usage
duke@435 3177 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 3178 // calls canonicalizing them back.
duke@435 3179 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 3180 // and call sites. On Intel, we can get correct rounding either by
duke@435 3181 // forcing singles to memory (requires extra stores and loads after each
duke@435 3182 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 3183 // clearing the mode bit around call sites). The mode bit is only used
duke@435 3184 // if the relative frequency of single FP ops to calls is low enough.
duke@435 3185 // This is a key transform for SPEC mpeg_audio.
duke@435 3186 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 3187 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 3188 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 3189 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 3190 // Detection is by looking for IfNodes where only 1 projection is
duke@435 3191 // reachable from below or CatchNodes missing some targets.
duke@435 3192 // (5) Assert for insane oop offsets in debug mode.
duke@435 3193
duke@435 3194 bool Compile::final_graph_reshaping() {
duke@435 3195 // an infinite loop may have been eliminated by the optimizer,
duke@435 3196 // in which case the graph will be empty.
duke@435 3197 if (root()->req() == 1) {
duke@435 3198 record_method_not_compilable("trivial infinite loop");
duke@435 3199 return true;
duke@435 3200 }
duke@435 3201
roland@4589 3202 // Expensive nodes have their control input set to prevent the GVN
roland@4589 3203 // from freely commoning them. There's no GVN beyond this point so
roland@4589 3204 // no need to keep the control input. We want the expensive nodes to
roland@4589 3205 // be freely moved to the least frequent code path by gcm.
roland@4589 3206 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
roland@4589 3207 for (int i = 0; i < expensive_count(); i++) {
roland@4589 3208 _expensive_nodes->at(i)->set_req(0, NULL);
roland@4589 3209 }
roland@4589 3210
kvn@1294 3211 Final_Reshape_Counts frc;
duke@435 3212
duke@435 3213 // Visit everybody reachable!
duke@435 3214 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 3215 Node_Stack nstack(unique() >> 1);
kvn@1294 3216 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 3217
duke@435 3218 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 3219 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 3220 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 3221 // Get number of CFG targets.
duke@435 3222 // Note that PCTables include exception targets after calls.
never@562 3223 uint required_outcnt = n->required_outcnt();
never@562 3224 if (n->outcnt() != required_outcnt) {
duke@435 3225 // Check for a few special cases. Rethrow Nodes never take the
duke@435 3226 // 'fall-thru' path, so expected kids is 1 less.
duke@435 3227 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 3228 if (n->in(0)->in(0)->is_Call()) {
duke@435 3229 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 3230 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 3231 required_outcnt--; // Rethrow always has 1 less kid
duke@435 3232 } else if (call->req() > TypeFunc::Parms &&
duke@435 3233 call->is_CallDynamicJava()) {
duke@435 3234 // Check for null receiver. In such case, the optimizer has
duke@435 3235 // detected that the virtual call will always result in a null
duke@435 3236 // pointer exception. The fall-through projection of this CatchNode
duke@435 3237 // will not be populated.
duke@435 3238 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 3239 if (arg0->is_Type() &&
duke@435 3240 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 3241 required_outcnt--;
duke@435 3242 }
duke@435 3243 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 3244 call->req() > TypeFunc::Parms+1 &&
duke@435 3245 call->is_CallStaticJava()) {
duke@435 3246 // Check for negative array length. In such case, the optimizer has
duke@435 3247 // detected that the allocation attempt will always result in an
duke@435 3248 // exception. There is no fall-through projection of this CatchNode .
duke@435 3249 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 3250 if (arg1->is_Type() &&
duke@435 3251 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 3252 required_outcnt--;
duke@435 3253 }
duke@435 3254 }
duke@435 3255 }
duke@435 3256 }
never@562 3257 // Recheck with a better notion of 'required_outcnt'
never@562 3258 if (n->outcnt() != required_outcnt) {
duke@435 3259 record_method_not_compilable("malformed control flow");
duke@435 3260 return true; // Not all targets reachable!
duke@435 3261 }
duke@435 3262 }
duke@435 3263 // Check that I actually visited all kids. Unreached kids
duke@435 3264 // must be infinite loops.
duke@435 3265 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 3266 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 3267 record_method_not_compilable("infinite loop");
duke@435 3268 return true; // Found unvisited kid; must be unreach
duke@435 3269 }
duke@435 3270 }
duke@435 3271
duke@435 3272 // If original bytecodes contained a mixture of floats and doubles
duke@435 3273 // check if the optimizer has made it homogenous, item (3).
never@1364 3274 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 3275 frc.get_float_count() > 32 &&
kvn@1294 3276 frc.get_double_count() == 0 &&
kvn@1294 3277 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 3278 set_24_bit_selection_and_mode( false, true );
duke@435 3279 }
duke@435 3280
kvn@1294 3281 set_java_calls(frc.get_java_call_count());
kvn@1294 3282 set_inner_loops(frc.get_inner_loop_count());
duke@435 3283
duke@435 3284 // No infinite loops, no reason to bail out.
duke@435 3285 return false;
duke@435 3286 }
duke@435 3287
duke@435 3288 //-----------------------------too_many_traps----------------------------------
duke@435 3289 // Report if there are too many traps at the current method and bci.
duke@435 3290 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 3291 bool Compile::too_many_traps(ciMethod* method,
duke@435 3292 int bci,
duke@435 3293 Deoptimization::DeoptReason reason) {
duke@435 3294 ciMethodData* md = method->method_data();
duke@435 3295 if (md->is_empty()) {
duke@435 3296 // Assume the trap has not occurred, or that it occurred only
duke@435 3297 // because of a transient condition during start-up in the interpreter.
duke@435 3298 return false;
duke@435 3299 }
roland@6377 3300 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
roland@6377 3301 if (md->has_trap_at(bci, m, reason) != 0) {
duke@435 3302 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 3303 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3304 // assume the worst.
duke@435 3305 if (log())
duke@435 3306 log()->elem("observe trap='%s' count='%d'",
duke@435 3307 Deoptimization::trap_reason_name(reason),
duke@435 3308 md->trap_count(reason));
duke@435 3309 return true;
duke@435 3310 } else {
duke@435 3311 // Ignore method/bci and see if there have been too many globally.
duke@435 3312 return too_many_traps(reason, md);
duke@435 3313 }
duke@435 3314 }
duke@435 3315
duke@435 3316 // Less-accurate variant which does not require a method and bci.
duke@435 3317 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 3318 ciMethodData* logmd) {
roland@6377 3319 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
duke@435 3320 // Too many traps globally.
duke@435 3321 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 3322 if (log()) {
duke@435 3323 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 3324 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 3325 Deoptimization::trap_reason_name(reason),
duke@435 3326 mcount, trap_count(reason));
duke@435 3327 }
duke@435 3328 return true;
duke@435 3329 } else {
duke@435 3330 // The coast is clear.
duke@435 3331 return false;
duke@435 3332 }
duke@435 3333 }
duke@435 3334
duke@435 3335 //--------------------------too_many_recompiles--------------------------------
duke@435 3336 // Report if there are too many recompiles at the current method and bci.
duke@435 3337 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 3338 // Is not eager to return true, since this will cause the compiler to use
duke@435 3339 // Action_none for a trap point, to avoid too many recompilations.
duke@435 3340 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 3341 int bci,
duke@435 3342 Deoptimization::DeoptReason reason) {
duke@435 3343 ciMethodData* md = method->method_data();
duke@435 3344 if (md->is_empty()) {
duke@435 3345 // Assume the trap has not occurred, or that it occurred only
duke@435 3346 // because of a transient condition during start-up in the interpreter.
duke@435 3347 return false;
duke@435 3348 }
duke@435 3349 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 3350 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 3351 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 3352 Deoptimization::DeoptReason per_bc_reason
duke@435 3353 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
roland@6377 3354 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
duke@435 3355 if ((per_bc_reason == Deoptimization::Reason_none
roland@6377 3356 || md->has_trap_at(bci, m, reason) != 0)
duke@435 3357 // The trap frequency measure we care about is the recompile count:
roland@6377 3358 && md->trap_recompiled_at(bci, m)
duke@435 3359 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 3360 // Do not emit a trap here if it has already caused recompilations.
duke@435 3361 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3362 // assume the worst.
duke@435 3363 if (log())
duke@435 3364 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 3365 Deoptimization::trap_reason_name(reason),
duke@435 3366 md->trap_count(reason),
duke@435 3367 md->overflow_recompile_count());
duke@435 3368 return true;
duke@435 3369 } else if (trap_count(reason) != 0
duke@435 3370 && decompile_count() >= m_cutoff) {
duke@435 3371 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 3372 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 3373 if (log())
duke@435 3374 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 3375 Deoptimization::trap_reason_name(reason),
duke@435 3376 md->trap_count(reason), trap_count(reason),
duke@435 3377 md->decompile_count(), decompile_count());
duke@435 3378 return true;
duke@435 3379 } else {
duke@435 3380 // The coast is clear.
duke@435 3381 return false;
duke@435 3382 }
duke@435 3383 }
duke@435 3384
goetz@6490 3385 // Compute when not to trap. Used by matching trap based nodes and
goetz@6490 3386 // NullCheck optimization.
goetz@6490 3387 void Compile::set_allowed_deopt_reasons() {
goetz@6490 3388 _allowed_reasons = 0;
goetz@6490 3389 if (is_method_compilation()) {
goetz@6490 3390 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
goetz@6490 3391 assert(rs < BitsPerInt, "recode bit map");
goetz@6490 3392 if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
goetz@6490 3393 _allowed_reasons |= nth_bit(rs);
goetz@6490 3394 }
goetz@6490 3395 }
goetz@6490 3396 }
goetz@6490 3397 }
duke@435 3398
duke@435 3399 #ifndef PRODUCT
duke@435 3400 //------------------------------verify_graph_edges---------------------------
duke@435 3401 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 3402 // between Use-Def edges and Def-Use edges in the graph.
duke@435 3403 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 3404 if (VerifyGraphEdges) {
duke@435 3405 ResourceArea *area = Thread::current()->resource_area();
duke@435 3406 Unique_Node_List visited(area);
duke@435 3407 // Call recursive graph walk to check edges
duke@435 3408 _root->verify_edges(visited);
duke@435 3409 if (no_dead_code) {
duke@435 3410 // Now make sure that no visited node is used by an unvisited node.
duke@435 3411 bool dead_nodes = 0;
duke@435 3412 Unique_Node_List checked(area);
duke@435 3413 while (visited.size() > 0) {
duke@435 3414 Node* n = visited.pop();
duke@435 3415 checked.push(n);
duke@435 3416 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 3417 Node* use = n->raw_out(i);
duke@435 3418 if (checked.member(use)) continue; // already checked
duke@435 3419 if (visited.member(use)) continue; // already in the graph
duke@435 3420 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 3421 // At this point, we have found a dead node which is DU-reachable.
duke@435 3422 if (dead_nodes++ == 0)
duke@435 3423 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 3424 use->dump(2);
duke@435 3425 tty->print_cr("---");
duke@435 3426 checked.push(use); // No repeats; pretend it is now checked.
duke@435 3427 }
duke@435 3428 }
duke@435 3429 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 3430 }
duke@435 3431 }
duke@435 3432 }
iveresov@6070 3433
iveresov@6070 3434 // Verify GC barriers consistency
iveresov@6070 3435 // Currently supported:
iveresov@6070 3436 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
iveresov@6070 3437 void Compile::verify_barriers() {
iveresov@6070 3438 if (UseG1GC) {
iveresov@6070 3439 // Verify G1 pre-barriers
iveresov@6070 3440 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
iveresov@6070 3441
iveresov@6070 3442 ResourceArea *area = Thread::current()->resource_area();
iveresov@6070 3443 Unique_Node_List visited(area);
iveresov@6070 3444 Node_List worklist(area);
iveresov@6070 3445 // We're going to walk control flow backwards starting from the Root
iveresov@6070 3446 worklist.push(_root);
iveresov@6070 3447 while (worklist.size() > 0) {
iveresov@6070 3448 Node* x = worklist.pop();
iveresov@6070 3449 if (x == NULL || x == top()) continue;
iveresov@6070 3450 if (visited.member(x)) {
iveresov@6070 3451 continue;
iveresov@6070 3452 } else {
iveresov@6070 3453 visited.push(x);
iveresov@6070 3454 }
iveresov@6070 3455
iveresov@6070 3456 if (x->is_Region()) {
iveresov@6070 3457 for (uint i = 1; i < x->req(); i++) {
iveresov@6070 3458 worklist.push(x->in(i));
iveresov@6070 3459 }
iveresov@6070 3460 } else {
iveresov@6070 3461 worklist.push(x->in(0));
iveresov@6070 3462 // We are looking for the pattern:
iveresov@6070 3463 // /->ThreadLocal
iveresov@6070 3464 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
iveresov@6070 3465 // \->ConI(0)
iveresov@6070 3466 // We want to verify that the If and the LoadB have the same control
iveresov@6070 3467 // See GraphKit::g1_write_barrier_pre()
iveresov@6070 3468 if (x->is_If()) {
iveresov@6070 3469 IfNode *iff = x->as_If();
iveresov@6070 3470 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
iveresov@6070 3471 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
iveresov@6070 3472 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
iveresov@6070 3473 && cmp->in(1)->is_Load()) {
iveresov@6070 3474 LoadNode* load = cmp->in(1)->as_Load();
iveresov@6070 3475 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
iveresov@6070 3476 && load->in(2)->in(3)->is_Con()
iveresov@6070 3477 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
iveresov@6070 3478
iveresov@6070 3479 Node* if_ctrl = iff->in(0);
iveresov@6070 3480 Node* load_ctrl = load->in(0);
iveresov@6070 3481
iveresov@6070 3482 if (if_ctrl != load_ctrl) {
iveresov@6070 3483 // Skip possible CProj->NeverBranch in infinite loops
iveresov@6070 3484 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
iveresov@6070 3485 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
iveresov@6070 3486 if_ctrl = if_ctrl->in(0)->in(0);
iveresov@6070 3487 }
iveresov@6070 3488 }
iveresov@6070 3489 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
iveresov@6070 3490 }
iveresov@6070 3491 }
iveresov@6070 3492 }
iveresov@6070 3493 }
iveresov@6070 3494 }
iveresov@6070 3495 }
iveresov@6070 3496 }
iveresov@6070 3497 }
iveresov@6070 3498
duke@435 3499 #endif
duke@435 3500
duke@435 3501 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 3502 // This is required because there is not quite a 1-1 relation between the
duke@435 3503 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 3504 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 3505 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 3506 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 3507 // by the logic in C2Compiler.
duke@435 3508 void Compile::record_failure(const char* reason) {
duke@435 3509 if (log() != NULL) {
duke@435 3510 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 3511 }
duke@435 3512 if (_failure_reason == NULL) {
duke@435 3513 // Record the first failure reason.
duke@435 3514 _failure_reason = reason;
duke@435 3515 }
sla@5237 3516
sla@5237 3517 EventCompilerFailure event;
sla@5237 3518 if (event.should_commit()) {
sla@5237 3519 event.set_compileID(Compile::compile_id());
sla@5237 3520 event.set_failure(reason);
sla@5237 3521 event.commit();
sla@5237 3522 }
sla@5237 3523
never@657 3524 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
sla@5237 3525 C->print_method(PHASE_FAILURE);
never@657 3526 }
duke@435 3527 _root = NULL; // flush the graph, too
duke@435 3528 }
duke@435 3529
duke@435 3530 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
bharadwaj@4315 3531 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
bharadwaj@4315 3532 _phase_name(name), _dolog(dolog)
duke@435 3533 {
duke@435 3534 if (dolog) {
duke@435 3535 C = Compile::current();
duke@435 3536 _log = C->log();
duke@435 3537 } else {
duke@435 3538 C = NULL;
duke@435 3539 _log = NULL;
duke@435 3540 }
duke@435 3541 if (_log != NULL) {
bharadwaj@4315 3542 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3543 _log->stamp();
duke@435 3544 _log->end_head();
duke@435 3545 }
duke@435 3546 }
duke@435 3547
duke@435 3548 Compile::TracePhase::~TracePhase() {
bharadwaj@4315 3549
bharadwaj@4315 3550 C = Compile::current();
bharadwaj@4315 3551 if (_dolog) {
bharadwaj@4315 3552 _log = C->log();
bharadwaj@4315 3553 } else {
bharadwaj@4315 3554 _log = NULL;
bharadwaj@4315 3555 }
bharadwaj@4315 3556
bharadwaj@4315 3557 #ifdef ASSERT
bharadwaj@4315 3558 if (PrintIdealNodeCount) {
bharadwaj@4315 3559 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
bharadwaj@4315 3560 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
bharadwaj@4315 3561 }
bharadwaj@4315 3562
bharadwaj@4315 3563 if (VerifyIdealNodeCount) {
bharadwaj@4315 3564 Compile::current()->print_missing_nodes();
bharadwaj@4315 3565 }
bharadwaj@4315 3566 #endif
bharadwaj@4315 3567
duke@435 3568 if (_log != NULL) {
bharadwaj@4315 3569 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3570 }
duke@435 3571 }
twisti@2350 3572
twisti@2350 3573 //=============================================================================
twisti@2350 3574 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3575 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3576 if (type() != other.type() ) return false;
twisti@2350 3577 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3578 // For floating point values we compare the bit pattern.
twisti@2350 3579 switch (type()) {
coleenp@4037 3580 case T_FLOAT: return (_v._value.i == other._v._value.i);
twisti@2350 3581 case T_LONG:
coleenp@4037 3582 case T_DOUBLE: return (_v._value.j == other._v._value.j);
twisti@2350 3583 case T_OBJECT:
coleenp@4037 3584 case T_ADDRESS: return (_v._value.l == other._v._value.l);
coleenp@4037 3585 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
kvn@4199 3586 case T_METADATA: return (_v._metadata == other._v._metadata);
twisti@2350 3587 default: ShouldNotReachHere();
twisti@2350 3588 }
twisti@2350 3589 return false;
twisti@2350 3590 }
twisti@2350 3591
twisti@2350 3592 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3593 switch (t) {
twisti@2350 3594 case T_LONG: return sizeof(jlong );
twisti@2350 3595 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3596 case T_DOUBLE: return sizeof(jdouble);
coleenp@4037 3597 case T_METADATA: return sizeof(Metadata*);
twisti@2350 3598 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3599 // need an internal word relocation.
twisti@2350 3600 case T_VOID:
twisti@2350 3601 case T_ADDRESS:
twisti@2350 3602 case T_OBJECT: return sizeof(jobject);
twisti@2350 3603 }
twisti@2350 3604
twisti@2350 3605 ShouldNotReachHere();
twisti@2350 3606 return -1;
twisti@2350 3607 }
twisti@2350 3608
twisti@3310 3609 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3610 // sort descending
twisti@3310 3611 if (a->freq() > b->freq()) return -1;
twisti@3310 3612 if (a->freq() < b->freq()) return 1;
twisti@3310 3613 return 0;
twisti@3310 3614 }
twisti@3310 3615
twisti@2350 3616 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3617 // First, sort the array by frequencies.
twisti@3310 3618 _constants.sort(qsort_comparator);
twisti@3310 3619
twisti@3310 3620 #ifdef ASSERT
twisti@3310 3621 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3622 // array (they have a negative frequency).
twisti@3310 3623 bool found_void = false;
twisti@3310 3624 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3625 Constant con = _constants.at(i);
twisti@3310 3626 if (con.type() == T_VOID)
twisti@3310 3627 found_void = true; // jump-tables
twisti@3310 3628 else
twisti@3310 3629 assert(!found_void, "wrong sorting");
twisti@3310 3630 }
twisti@3310 3631 #endif
twisti@3310 3632
twisti@3310 3633 int offset = 0;
twisti@3310 3634 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3635 Constant* con = _constants.adr_at(i);
twisti@3310 3636
twisti@3310 3637 // Align offset for type.
twisti@3310 3638 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3639 offset = align_size_up(offset, typesize);
twisti@3310 3640 con->set_offset(offset); // set constant's offset
twisti@3310 3641
twisti@3310 3642 if (con->type() == T_VOID) {
twisti@3310 3643 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3644 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3645 } else {
twisti@3310 3646 offset = offset + typesize;
twisti@2350 3647 }
twisti@2350 3648 }
twisti@2350 3649
twisti@2350 3650 // Align size up to the next section start (which is insts; see
twisti@2350 3651 // CodeBuffer::align_at_start).
twisti@2350 3652 assert(_size == -1, "already set?");
twisti@3310 3653 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3654 }
twisti@2350 3655
twisti@2350 3656 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3657 MacroAssembler _masm(&cb);
twisti@3310 3658 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3659 Constant con = _constants.at(i);
twisti@3310 3660 address constant_addr;
twisti@3310 3661 switch (con.type()) {
twisti@3310 3662 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3663 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3664 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3665 case T_OBJECT: {
twisti@3310 3666 jobject obj = con.get_jobject();
twisti@3310 3667 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3668 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3669 break;
twisti@3310 3670 }
twisti@3310 3671 case T_ADDRESS: {
twisti@3310 3672 address addr = (address) con.get_jobject();
twisti@3310 3673 constant_addr = _masm.address_constant(addr);
twisti@3310 3674 break;
twisti@3310 3675 }
twisti@3310 3676 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3677 // need an internal word relocation.
twisti@3310 3678 case T_VOID: {
twisti@3310 3679 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3680 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3681 // filled in later in fill_jump_table.
twisti@3310 3682 address dummy = (address) n;
twisti@3310 3683 constant_addr = _masm.address_constant(dummy);
twisti@3310 3684 // Expand jump-table
twisti@3310 3685 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3686 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3687 assert(temp_addr, "consts section too small");
twisti@2350 3688 }
twisti@3310 3689 break;
twisti@2350 3690 }
coleenp@4037 3691 case T_METADATA: {
coleenp@4037 3692 Metadata* obj = con.get_metadata();
coleenp@4037 3693 int metadata_index = _masm.oop_recorder()->find_index(obj);
coleenp@4037 3694 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
coleenp@4037 3695 break;
coleenp@4037 3696 }
twisti@3310 3697 default: ShouldNotReachHere();
twisti@3310 3698 }
twisti@3310 3699 assert(constant_addr, "consts section too small");
drchase@6680 3700 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
drchase@6680 3701 err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
twisti@2350 3702 }
twisti@2350 3703 }
twisti@2350 3704
twisti@2350 3705 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3706 int idx = _constants.find(con);
twisti@2350 3707 assert(idx != -1, "constant must be in constant table");
twisti@2350 3708 int offset = _constants.at(idx).offset();
twisti@2350 3709 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3710 return offset;
twisti@2350 3711 }
twisti@2350 3712
twisti@2350 3713 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3714 if (con.can_be_reused()) {
twisti@2350 3715 int idx = _constants.find(con);
twisti@2350 3716 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3717 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3718 return;
twisti@2350 3719 }
twisti@2350 3720 }
twisti@2350 3721 (void) _constants.append(con);
twisti@2350 3722 }
twisti@2350 3723
twisti@3310 3724 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
adlertz@5509 3725 Block* b = Compile::current()->cfg()->get_block_for_node(n);
twisti@3310 3726 Constant con(type, value, b->_freq);
twisti@2350 3727 add(con);
twisti@2350 3728 return con;
twisti@2350 3729 }
twisti@2350 3730
coleenp@4037 3731 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
coleenp@4037 3732 Constant con(metadata);
coleenp@4037 3733 add(con);
coleenp@4037 3734 return con;
coleenp@4037 3735 }
coleenp@4037 3736
twisti@3310 3737 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3738 jvalue value;
twisti@2350 3739 BasicType type = oper->type()->basic_type();
twisti@2350 3740 switch (type) {
twisti@2350 3741 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3742 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3743 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3744 case T_OBJECT:
twisti@2350 3745 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
coleenp@4037 3746 case T_METADATA: return add((Metadata*)oper->constant()); break;
coleenp@4037 3747 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
twisti@2350 3748 }
twisti@3310 3749 return add(n, type, value);
twisti@2350 3750 }
twisti@2350 3751
twisti@3310 3752 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3753 jvalue value;
twisti@2350 3754 // We can use the node pointer here to identify the right jump-table
twisti@2350 3755 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3756 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3757 // MachNode pointers do not change anymore).
twisti@2350 3758 value.l = (jobject) n;
twisti@3310 3759 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3760 add(con);
twisti@2350 3761 return con;
twisti@2350 3762 }
twisti@2350 3763
twisti@2350 3764 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3765 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3766 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3767
twisti@2350 3768 assert(labels.is_nonempty(), "must be");
kvn@3971 3769 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3770
twisti@2350 3771 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3772 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3773 // to get the plain offset into the constant table.
twisti@2350 3774 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3775
twisti@2350 3776 MacroAssembler _masm(&cb);
twisti@2350 3777 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3778
twisti@3310 3779 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3780 address* constant_addr = &jump_table_base[i];
drchase@6680 3781 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
twisti@2350 3782 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3783 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3784 }
twisti@2350 3785 }
roland@4357 3786
roland@4357 3787 void Compile::dump_inlining() {
kvn@5763 3788 if (print_inlining() || print_intrinsics()) {
roland@4409 3789 // Print inlining message for candidates that we couldn't inline
roland@4409 3790 // for lack of space or non constant receiver
roland@4409 3791 for (int i = 0; i < _late_inlines.length(); i++) {
roland@4409 3792 CallGenerator* cg = _late_inlines.at(i);
roland@4409 3793 cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
roland@4409 3794 }
roland@4409 3795 Unique_Node_List useful;
roland@4409 3796 useful.push(root());
roland@4409 3797 for (uint next = 0; next < useful.size(); ++next) {
roland@4409 3798 Node* n = useful.at(next);
roland@4409 3799 if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
roland@4409 3800 CallNode* call = n->as_Call();
roland@4409 3801 CallGenerator* cg = call->generator();
roland@4409 3802 cg->print_inlining_late("receiver not constant");
roland@4409 3803 }
roland@4409 3804 uint max = n->len();
roland@4409 3805 for ( uint i = 0; i < max; ++i ) {
roland@4409 3806 Node *m = n->in(i);
roland@4409 3807 if ( m == NULL ) continue;
roland@4409 3808 useful.push(m);
roland@4409 3809 }
roland@4409 3810 }
roland@4357 3811 for (int i = 0; i < _print_inlining_list->length(); i++) {
drchase@6680 3812 tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
roland@4357 3813 }
roland@4357 3814 }
roland@4357 3815 }
roland@4589 3816
kvn@6217 3817 // Dump inlining replay data to the stream.
kvn@6217 3818 // Don't change thread state and acquire any locks.
kvn@6217 3819 void Compile::dump_inline_data(outputStream* out) {
kvn@6217 3820 InlineTree* inl_tree = ilt();
kvn@6217 3821 if (inl_tree != NULL) {
kvn@6217 3822 out->print(" inline %d", inl_tree->count());
kvn@6217 3823 inl_tree->dump_replay_data(out);
kvn@6217 3824 }
kvn@6217 3825 }
kvn@6217 3826
roland@4589 3827 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
roland@4589 3828 if (n1->Opcode() < n2->Opcode()) return -1;
roland@4589 3829 else if (n1->Opcode() > n2->Opcode()) return 1;
roland@4589 3830
roland@4589 3831 assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
roland@4589 3832 for (uint i = 1; i < n1->req(); i++) {
roland@4589 3833 if (n1->in(i) < n2->in(i)) return -1;
roland@4589 3834 else if (n1->in(i) > n2->in(i)) return 1;
roland@4589 3835 }
roland@4589 3836
roland@4589 3837 return 0;
roland@4589 3838 }
roland@4589 3839
roland@4589 3840 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
roland@4589 3841 Node* n1 = *n1p;
roland@4589 3842 Node* n2 = *n2p;
roland@4589 3843
roland@4589 3844 return cmp_expensive_nodes(n1, n2);
roland@4589 3845 }
roland@4589 3846
roland@4589 3847 void Compile::sort_expensive_nodes() {
roland@4589 3848 if (!expensive_nodes_sorted()) {
roland@4589 3849 _expensive_nodes->sort(cmp_expensive_nodes);
roland@4589 3850 }
roland@4589 3851 }
roland@4589 3852
roland@4589 3853 bool Compile::expensive_nodes_sorted() const {
roland@4589 3854 for (int i = 1; i < _expensive_nodes->length(); i++) {
roland@4589 3855 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
roland@4589 3856 return false;
roland@4589 3857 }
roland@4589 3858 }
roland@4589 3859 return true;
roland@4589 3860 }
roland@4589 3861
roland@4589 3862 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3863 if (_expensive_nodes->length() == 0) {
roland@4589 3864 return false;
roland@4589 3865 }
roland@4589 3866
roland@4589 3867 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3868
roland@4589 3869 // Take this opportunity to remove dead nodes from the list
roland@4589 3870 int j = 0;
roland@4589 3871 for (int i = 0; i < _expensive_nodes->length(); i++) {
roland@4589 3872 Node* n = _expensive_nodes->at(i);
roland@4589 3873 if (!n->is_unreachable(igvn)) {
roland@4589 3874 assert(n->is_expensive(), "should be expensive");
roland@4589 3875 _expensive_nodes->at_put(j, n);
roland@4589 3876 j++;
roland@4589 3877 }
roland@4589 3878 }
roland@4589 3879 _expensive_nodes->trunc_to(j);
roland@4589 3880
roland@4589 3881 // Then sort the list so that similar nodes are next to each other
roland@4589 3882 // and check for at least two nodes of identical kind with same data
roland@4589 3883 // inputs.
roland@4589 3884 sort_expensive_nodes();
roland@4589 3885
roland@4589 3886 for (int i = 0; i < _expensive_nodes->length()-1; i++) {
roland@4589 3887 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
roland@4589 3888 return true;
roland@4589 3889 }
roland@4589 3890 }
roland@4589 3891
roland@4589 3892 return false;
roland@4589 3893 }
roland@4589 3894
roland@4589 3895 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3896 if (_expensive_nodes->length() == 0) {
roland@4589 3897 return;
roland@4589 3898 }
roland@4589 3899
roland@4589 3900 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3901
roland@4589 3902 // Sort to bring similar nodes next to each other and clear the
roland@4589 3903 // control input of nodes for which there's only a single copy.
roland@4589 3904 sort_expensive_nodes();
roland@4589 3905
roland@4589 3906 int j = 0;
roland@4589 3907 int identical = 0;
roland@4589 3908 int i = 0;
roland@4589 3909 for (; i < _expensive_nodes->length()-1; i++) {
roland@4589 3910 assert(j <= i, "can't write beyond current index");
roland@4589 3911 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
roland@4589 3912 identical++;
roland@4589 3913 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3914 continue;
roland@4589 3915 }
roland@4589 3916 if (identical > 0) {
roland@4589 3917 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3918 identical = 0;
roland@4589 3919 } else {
roland@4589 3920 Node* n = _expensive_nodes->at(i);
roland@4589 3921 igvn.hash_delete(n);
roland@4589 3922 n->set_req(0, NULL);
roland@4589 3923 igvn.hash_insert(n);
roland@4589 3924 }
roland@4589 3925 }
roland@4589 3926 if (identical > 0) {
roland@4589 3927 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3928 } else if (_expensive_nodes->length() >= 1) {
roland@4589 3929 Node* n = _expensive_nodes->at(i);
roland@4589 3930 igvn.hash_delete(n);
roland@4589 3931 n->set_req(0, NULL);
roland@4589 3932 igvn.hash_insert(n);
roland@4589 3933 }
roland@4589 3934 _expensive_nodes->trunc_to(j);
roland@4589 3935 }
roland@4589 3936
roland@4589 3937 void Compile::add_expensive_node(Node * n) {
roland@4589 3938 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
roland@4589 3939 assert(n->is_expensive(), "expensive nodes with non-null control here only");
roland@4589 3940 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
roland@4589 3941 if (OptimizeExpensiveOps) {
roland@4589 3942 _expensive_nodes->append(n);
roland@4589 3943 } else {
roland@4589 3944 // Clear control input and let IGVN optimize expensive nodes if
roland@4589 3945 // OptimizeExpensiveOps is off.
roland@4589 3946 n->set_req(0, NULL);
roland@4589 3947 }
roland@4589 3948 }
shade@4691 3949
roland@5991 3950 /**
roland@5991 3951 * Remove the speculative part of types and clean up the graph
roland@5991 3952 */
roland@5991 3953 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
roland@5991 3954 if (UseTypeSpeculation) {
roland@5991 3955 Unique_Node_List worklist;
roland@5991 3956 worklist.push(root());
roland@5991 3957 int modified = 0;
roland@5991 3958 // Go over all type nodes that carry a speculative type, drop the
roland@5991 3959 // speculative part of the type and enqueue the node for an igvn
roland@5991 3960 // which may optimize it out.
roland@5991 3961 for (uint next = 0; next < worklist.size(); ++next) {
roland@5991 3962 Node *n = worklist.at(next);
roland@6313 3963 if (n->is_Type()) {
roland@5991 3964 TypeNode* tn = n->as_Type();
roland@6313 3965 const Type* t = tn->type();
roland@6313 3966 const Type* t_no_spec = t->remove_speculative();
roland@6313 3967 if (t_no_spec != t) {
roland@6313 3968 bool in_hash = igvn.hash_delete(n);
roland@6313 3969 assert(in_hash, "node should be in igvn hash table");
roland@6313 3970 tn->set_type(t_no_spec);
roland@6313 3971 igvn.hash_insert(n);
roland@6313 3972 igvn._worklist.push(n); // give it a chance to go away
roland@6313 3973 modified++;
roland@6313 3974 }
roland@5991 3975 }
roland@5991 3976 uint max = n->len();
roland@5991 3977 for( uint i = 0; i < max; ++i ) {
roland@5991 3978 Node *m = n->in(i);
roland@5991 3979 if (not_a_node(m)) continue;
roland@5991 3980 worklist.push(m);
roland@5991 3981 }
roland@5991 3982 }
roland@5991 3983 // Drop the speculative part of all types in the igvn's type table
roland@5991 3984 igvn.remove_speculative_types();
roland@5991 3985 if (modified > 0) {
roland@5991 3986 igvn.optimize();
roland@5991 3987 }
roland@6313 3988 #ifdef ASSERT
roland@6313 3989 // Verify that after the IGVN is over no speculative type has resurfaced
roland@6313 3990 worklist.clear();
roland@6313 3991 worklist.push(root());
roland@6313 3992 for (uint next = 0; next < worklist.size(); ++next) {
roland@6313 3993 Node *n = worklist.at(next);
anoll@6638 3994 const Type* t = igvn.type_or_null(n);
anoll@6638 3995 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
roland@6313 3996 if (n->is_Type()) {
roland@6313 3997 t = n->as_Type()->type();
roland@6313 3998 assert(t == t->remove_speculative(), "no more speculative types");
roland@6313 3999 }
roland@6313 4000 uint max = n->len();
roland@6313 4001 for( uint i = 0; i < max; ++i ) {
roland@6313 4002 Node *m = n->in(i);
roland@6313 4003 if (not_a_node(m)) continue;
roland@6313 4004 worklist.push(m);
roland@6313 4005 }
roland@6313 4006 }
roland@6313 4007 igvn.check_no_speculative_types();
roland@6313 4008 #endif
roland@5991 4009 }
roland@5991 4010 }
roland@5991 4011
shade@4691 4012 // Auxiliary method to support randomized stressing/fuzzing.
shade@4691 4013 //
shade@4691 4014 // This method can be called the arbitrary number of times, with current count
shade@4691 4015 // as the argument. The logic allows selecting a single candidate from the
shade@4691 4016 // running list of candidates as follows:
shade@4691 4017 // int count = 0;
shade@4691 4018 // Cand* selected = null;
shade@4691 4019 // while(cand = cand->next()) {
shade@4691 4020 // if (randomized_select(++count)) {
shade@4691 4021 // selected = cand;
shade@4691 4022 // }
shade@4691 4023 // }
shade@4691 4024 //
shade@4691 4025 // Including count equalizes the chances any candidate is "selected".
shade@4691 4026 // This is useful when we don't have the complete list of candidates to choose
shade@4691 4027 // from uniformly. In this case, we need to adjust the randomicity of the
shade@4691 4028 // selection, or else we will end up biasing the selection towards the latter
shade@4691 4029 // candidates.
shade@4691 4030 //
shade@4691 4031 // Quick back-envelope calculation shows that for the list of n candidates
shade@4691 4032 // the equal probability for the candidate to persist as "best" can be
shade@4691 4033 // achieved by replacing it with "next" k-th candidate with the probability
shade@4691 4034 // of 1/k. It can be easily shown that by the end of the run, the
shade@4691 4035 // probability for any candidate is converged to 1/n, thus giving the
shade@4691 4036 // uniform distribution among all the candidates.
shade@4691 4037 //
shade@4691 4038 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
shade@4691 4039 #define RANDOMIZED_DOMAIN_POW 29
shade@4691 4040 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
shade@4691 4041 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
shade@4691 4042 bool Compile::randomized_select(int count) {
shade@4691 4043 assert(count > 0, "only positive");
shade@4691 4044 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
shade@4691 4045 }

mercurial