src/share/vm/opto/compile.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 7041
411e30e5fbb8
child 7385
9e69e8d1c900
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
kvn@6217 28 #include "ci/ciReplay.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "code/exceptionHandlerTable.hpp"
stefank@2314 31 #include "code/nmethod.hpp"
stefank@2314 32 #include "compiler/compileLog.hpp"
twisti@4318 33 #include "compiler/disassembler.hpp"
stefank@2314 34 #include "compiler/oopMap.hpp"
stefank@2314 35 #include "opto/addnode.hpp"
stefank@2314 36 #include "opto/block.hpp"
stefank@2314 37 #include "opto/c2compiler.hpp"
stefank@2314 38 #include "opto/callGenerator.hpp"
stefank@2314 39 #include "opto/callnode.hpp"
stefank@2314 40 #include "opto/cfgnode.hpp"
stefank@2314 41 #include "opto/chaitin.hpp"
stefank@2314 42 #include "opto/compile.hpp"
stefank@2314 43 #include "opto/connode.hpp"
stefank@2314 44 #include "opto/divnode.hpp"
stefank@2314 45 #include "opto/escape.hpp"
stefank@2314 46 #include "opto/idealGraphPrinter.hpp"
stefank@2314 47 #include "opto/loopnode.hpp"
stefank@2314 48 #include "opto/machnode.hpp"
stefank@2314 49 #include "opto/macro.hpp"
stefank@2314 50 #include "opto/matcher.hpp"
rbackman@5927 51 #include "opto/mathexactnode.hpp"
stefank@2314 52 #include "opto/memnode.hpp"
stefank@2314 53 #include "opto/mulnode.hpp"
stefank@2314 54 #include "opto/node.hpp"
stefank@2314 55 #include "opto/opcodes.hpp"
stefank@2314 56 #include "opto/output.hpp"
stefank@2314 57 #include "opto/parse.hpp"
stefank@2314 58 #include "opto/phaseX.hpp"
stefank@2314 59 #include "opto/rootnode.hpp"
stefank@2314 60 #include "opto/runtime.hpp"
stefank@2314 61 #include "opto/stringopts.hpp"
stefank@2314 62 #include "opto/type.hpp"
stefank@2314 63 #include "opto/vectornode.hpp"
stefank@2314 64 #include "runtime/arguments.hpp"
stefank@2314 65 #include "runtime/signature.hpp"
stefank@2314 66 #include "runtime/stubRoutines.hpp"
stefank@2314 67 #include "runtime/timer.hpp"
sla@5237 68 #include "trace/tracing.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 71 # include "adfiles/ad_x86_32.hpp"
stefank@2314 72 #endif
stefank@2314 73 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 74 # include "adfiles/ad_x86_64.hpp"
stefank@2314 75 #endif
stefank@2314 76 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 77 # include "adfiles/ad_sparc.hpp"
stefank@2314 78 #endif
stefank@2314 79 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 80 # include "adfiles/ad_zero.hpp"
stefank@2314 81 #endif
bobv@2508 82 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 83 # include "adfiles/ad_arm.hpp"
bobv@2508 84 #endif
goetz@6441 85 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 86 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 87 #endif
goetz@6441 88 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 89 # include "adfiles/ad_ppc_64.hpp"
bobv@2508 90 #endif
duke@435 91
twisti@2350 92
twisti@2350 93 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 94 // Constant table base node singleton.
twisti@2350 95 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 96 if (_mach_constant_base_node == NULL) {
twisti@2350 97 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 98 _mach_constant_base_node->add_req(C->root());
twisti@2350 99 }
twisti@2350 100 return _mach_constant_base_node;
twisti@2350 101 }
twisti@2350 102
twisti@2350 103
duke@435 104 /// Support for intrinsics.
duke@435 105
duke@435 106 // Return the index at which m must be inserted (or already exists).
duke@435 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 108 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 109 #ifdef ASSERT
duke@435 110 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 111 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 112 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 113 assert(cg1->method() != cg2->method()
duke@435 114 ? cg1->method() < cg2->method()
duke@435 115 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 116 "compiler intrinsics list must stay sorted");
duke@435 117 }
duke@435 118 #endif
duke@435 119 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 120 int lo = 0, hi = _intrinsics->length()-1;
duke@435 121 while (lo <= hi) {
duke@435 122 int mid = (uint)(hi + lo) / 2;
duke@435 123 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 124 if (m < mid_m) {
duke@435 125 hi = mid-1;
duke@435 126 } else if (m > mid_m) {
duke@435 127 lo = mid+1;
duke@435 128 } else {
duke@435 129 // look at minor sort key
duke@435 130 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 131 if (is_virtual < mid_virt) {
duke@435 132 hi = mid-1;
duke@435 133 } else if (is_virtual > mid_virt) {
duke@435 134 lo = mid+1;
duke@435 135 } else {
duke@435 136 return mid; // exact match
duke@435 137 }
duke@435 138 }
duke@435 139 }
duke@435 140 return lo; // inexact match
duke@435 141 }
duke@435 142
duke@435 143 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 144 if (_intrinsics == NULL) {
roland@4409 145 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
duke@435 146 }
duke@435 147 // This code is stolen from ciObjectFactory::insert.
duke@435 148 // Really, GrowableArray should have methods for
duke@435 149 // insert_at, remove_at, and binary_search.
duke@435 150 int len = _intrinsics->length();
duke@435 151 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 152 if (index == len) {
duke@435 153 _intrinsics->append(cg);
duke@435 154 } else {
duke@435 155 #ifdef ASSERT
duke@435 156 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 157 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 158 #endif
duke@435 159 _intrinsics->append(_intrinsics->at(len-1));
duke@435 160 int pos;
duke@435 161 for (pos = len-2; pos >= index; pos--) {
duke@435 162 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 163 }
duke@435 164 _intrinsics->at_put(index, cg);
duke@435 165 }
duke@435 166 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 167 }
duke@435 168
duke@435 169 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 170 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 171 if (_intrinsics != NULL) {
duke@435 172 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 173 if (index < _intrinsics->length()
duke@435 174 && _intrinsics->at(index)->method() == m
duke@435 175 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 176 return _intrinsics->at(index);
duke@435 177 }
duke@435 178 }
duke@435 179 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 180 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 181 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 182 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 183 if (cg != NULL) {
duke@435 184 // Save it for next time:
duke@435 185 register_intrinsic(cg);
duke@435 186 return cg;
duke@435 187 } else {
duke@435 188 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 189 }
duke@435 190 }
duke@435 191 return NULL;
duke@435 192 }
duke@435 193
duke@435 194 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 195 // in library_call.cpp.
duke@435 196
duke@435 197
duke@435 198 #ifndef PRODUCT
duke@435 199 // statistics gathering...
duke@435 200
duke@435 201 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 202 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 203
duke@435 204 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 205 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 206 int oflags = _intrinsic_hist_flags[id];
duke@435 207 assert(flags != 0, "what happened?");
duke@435 208 if (is_virtual) {
duke@435 209 flags |= _intrinsic_virtual;
duke@435 210 }
duke@435 211 bool changed = (flags != oflags);
duke@435 212 if ((flags & _intrinsic_worked) != 0) {
duke@435 213 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 214 if (count == 1) {
duke@435 215 changed = true; // first time
duke@435 216 }
duke@435 217 // increment the overall count also:
duke@435 218 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 219 }
duke@435 220 if (changed) {
duke@435 221 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 222 // Something changed about the intrinsic's virtuality.
duke@435 223 if ((flags & _intrinsic_virtual) != 0) {
duke@435 224 // This is the first use of this intrinsic as a virtual call.
duke@435 225 if (oflags != 0) {
duke@435 226 // We already saw it as a non-virtual, so note both cases.
duke@435 227 flags |= _intrinsic_both;
duke@435 228 }
duke@435 229 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 230 // This is the first use of this intrinsic as a non-virtual
duke@435 231 flags |= _intrinsic_both;
duke@435 232 }
duke@435 233 }
duke@435 234 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 235 }
duke@435 236 // update the overall flags also:
duke@435 237 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 238 return changed;
duke@435 239 }
duke@435 240
duke@435 241 static char* format_flags(int flags, char* buf) {
duke@435 242 buf[0] = 0;
duke@435 243 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 244 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 245 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 246 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 247 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 248 if (buf[0] == 0) strcat(buf, ",");
duke@435 249 assert(buf[0] == ',', "must be");
duke@435 250 return &buf[1];
duke@435 251 }
duke@435 252
duke@435 253 void Compile::print_intrinsic_statistics() {
duke@435 254 char flagsbuf[100];
duke@435 255 ttyLocker ttyl;
duke@435 256 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 257 tty->print_cr("Compiler intrinsic usage:");
duke@435 258 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 259 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 260 #define PRINT_STAT_LINE(name, c, f) \
duke@435 261 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 262 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 263 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 264 int flags = _intrinsic_hist_flags[id];
duke@435 265 juint count = _intrinsic_hist_count[id];
duke@435 266 if ((flags | count) != 0) {
duke@435 267 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 268 }
duke@435 269 }
duke@435 270 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 271 if (xtty != NULL) xtty->tail("statistics");
duke@435 272 }
duke@435 273
duke@435 274 void Compile::print_statistics() {
duke@435 275 { ttyLocker ttyl;
duke@435 276 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 277 Parse::print_statistics();
duke@435 278 PhaseCCP::print_statistics();
duke@435 279 PhaseRegAlloc::print_statistics();
duke@435 280 Scheduling::print_statistics();
duke@435 281 PhasePeephole::print_statistics();
duke@435 282 PhaseIdealLoop::print_statistics();
duke@435 283 if (xtty != NULL) xtty->tail("statistics");
duke@435 284 }
duke@435 285 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 286 // put this under its own <statistics> element.
duke@435 287 print_intrinsic_statistics();
duke@435 288 }
duke@435 289 }
duke@435 290 #endif //PRODUCT
duke@435 291
duke@435 292 // Support for bundling info
duke@435 293 Bundle* Compile::node_bundling(const Node *n) {
duke@435 294 assert(valid_bundle_info(n), "oob");
duke@435 295 return &_node_bundling_base[n->_idx];
duke@435 296 }
duke@435 297
duke@435 298 bool Compile::valid_bundle_info(const Node *n) {
duke@435 299 return (_node_bundling_limit > n->_idx);
duke@435 300 }
duke@435 301
duke@435 302
never@1515 303 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 304 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 305 Node* use = n->last_out(i);
never@1515 306 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 307 uint uses_found = 0;
never@1515 308 for (uint j = 0; j < use->len(); j++) {
never@1515 309 if (use->in(j) == n) {
never@1515 310 if (j < use->req())
never@1515 311 use->set_req(j, nn);
never@1515 312 else
never@1515 313 use->set_prec(j, nn);
never@1515 314 uses_found++;
never@1515 315 }
never@1515 316 }
never@1515 317 if (is_in_table) {
never@1515 318 // reinsert into table
never@1515 319 initial_gvn()->hash_find_insert(use);
never@1515 320 }
never@1515 321 record_for_igvn(use);
never@1515 322 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 323 }
never@1515 324 }
never@1515 325
never@1515 326
bharadwaj@4315 327 static inline bool not_a_node(const Node* n) {
bharadwaj@4315 328 if (n == NULL) return true;
bharadwaj@4315 329 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
bharadwaj@4315 330 if (*(address*)n == badAddress) return true; // kill by Node::destruct
bharadwaj@4315 331 return false;
bharadwaj@4315 332 }
never@1515 333
duke@435 334 // Identify all nodes that are reachable from below, useful.
duke@435 335 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 336 // recursive traversal is slower.
duke@435 337 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 338 int estimated_worklist_size = unique();
duke@435 339 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 340
duke@435 341 // Initialize worklist
duke@435 342 if (root() != NULL) { useful.push(root()); }
duke@435 343 // If 'top' is cached, declare it useful to preserve cached node
duke@435 344 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 345
duke@435 346 // Push all useful nodes onto the list, breadthfirst
duke@435 347 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 348 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 349 Node *n = useful.at(next);
duke@435 350 uint max = n->len();
duke@435 351 for( uint i = 0; i < max; ++i ) {
duke@435 352 Node *m = n->in(i);
bharadwaj@4315 353 if (not_a_node(m)) continue;
duke@435 354 useful.push(m);
duke@435 355 }
duke@435 356 }
duke@435 357 }
duke@435 358
bharadwaj@4315 359 // Update dead_node_list with any missing dead nodes using useful
bharadwaj@4315 360 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
bharadwaj@4315 361 void Compile::update_dead_node_list(Unique_Node_List &useful) {
bharadwaj@4315 362 uint max_idx = unique();
bharadwaj@4315 363 VectorSet& useful_node_set = useful.member_set();
bharadwaj@4315 364
bharadwaj@4315 365 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
bharadwaj@4315 366 // If node with index node_idx is not in useful set,
bharadwaj@4315 367 // mark it as dead in dead node list.
bharadwaj@4315 368 if (! useful_node_set.test(node_idx) ) {
bharadwaj@4315 369 record_dead_node(node_idx);
bharadwaj@4315 370 }
bharadwaj@4315 371 }
bharadwaj@4315 372 }
bharadwaj@4315 373
roland@4409 374 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
roland@4409 375 int shift = 0;
roland@4409 376 for (int i = 0; i < inlines->length(); i++) {
roland@4409 377 CallGenerator* cg = inlines->at(i);
roland@4409 378 CallNode* call = cg->call_node();
roland@4409 379 if (shift > 0) {
roland@4409 380 inlines->at_put(i-shift, cg);
roland@4409 381 }
roland@4409 382 if (!useful.member(call)) {
roland@4409 383 shift++;
roland@4409 384 }
roland@4409 385 }
roland@4409 386 inlines->trunc_to(inlines->length()-shift);
roland@4409 387 }
roland@4409 388
duke@435 389 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 390 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 391 uint next = 0;
kvn@3260 392 while (next < useful.size()) {
duke@435 393 Node *n = useful.at(next++);
roland@7041 394 if (n->is_SafePoint()) {
roland@7041 395 // We're done with a parsing phase. Replaced nodes are not valid
roland@7041 396 // beyond that point.
roland@7041 397 n->as_SafePoint()->delete_replaced_nodes();
roland@7041 398 }
duke@435 399 // Use raw traversal of out edges since this code removes out edges
duke@435 400 int max = n->outcnt();
kvn@3260 401 for (int j = 0; j < max; ++j) {
duke@435 402 Node* child = n->raw_out(j);
kvn@3260 403 if (! useful.member(child)) {
kvn@3260 404 assert(!child->is_top() || child != top(),
kvn@3260 405 "If top is cached in Compile object it is in useful list");
duke@435 406 // Only need to remove this out-edge to the useless node
duke@435 407 n->raw_del_out(j);
duke@435 408 --j;
duke@435 409 --max;
duke@435 410 }
duke@435 411 }
duke@435 412 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 413 record_for_igvn(n->unique_out());
kvn@3260 414 }
kvn@3260 415 }
kvn@3260 416 // Remove useless macro and predicate opaq nodes
kvn@3260 417 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 418 Node* n = C->macro_node(i);
kvn@3260 419 if (!useful.member(n)) {
kvn@3260 420 remove_macro_node(n);
duke@435 421 }
duke@435 422 }
roland@4589 423 // Remove useless expensive node
roland@4589 424 for (int i = C->expensive_count()-1; i >= 0; i--) {
roland@4589 425 Node* n = C->expensive_node(i);
roland@4589 426 if (!useful.member(n)) {
roland@4589 427 remove_expensive_node(n);
roland@4589 428 }
roland@4589 429 }
roland@4409 430 // clean up the late inline lists
roland@4409 431 remove_useless_late_inlines(&_string_late_inlines, useful);
kvn@5110 432 remove_useless_late_inlines(&_boxing_late_inlines, useful);
roland@4409 433 remove_useless_late_inlines(&_late_inlines, useful);
duke@435 434 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 435 }
duke@435 436
duke@435 437 //------------------------------frame_size_in_words-----------------------------
duke@435 438 // frame_slots in units of words
duke@435 439 int Compile::frame_size_in_words() const {
duke@435 440 // shift is 0 in LP32 and 1 in LP64
duke@435 441 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 442 int words = _frame_slots >> shift;
duke@435 443 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 444 return words;
duke@435 445 }
duke@435 446
roland@6723 447 // To bang the stack of this compiled method we use the stack size
roland@6723 448 // that the interpreter would need in case of a deoptimization. This
roland@6723 449 // removes the need to bang the stack in the deoptimization blob which
roland@6723 450 // in turn simplifies stack overflow handling.
roland@6723 451 int Compile::bang_size_in_bytes() const {
roland@6723 452 return MAX2(_interpreter_frame_size, frame_size_in_bytes());
roland@6723 453 }
roland@6723 454
duke@435 455 // ============================================================================
duke@435 456 //------------------------------CompileWrapper---------------------------------
duke@435 457 class CompileWrapper : public StackObj {
duke@435 458 Compile *const _compile;
duke@435 459 public:
duke@435 460 CompileWrapper(Compile* compile);
duke@435 461
duke@435 462 ~CompileWrapper();
duke@435 463 };
duke@435 464
duke@435 465 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 466 // the Compile* pointer is stored in the current ciEnv:
duke@435 467 ciEnv* env = compile->env();
duke@435 468 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 469 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 470 env->set_compiler_data(compile);
duke@435 471 assert(compile == Compile::current(), "sanity");
duke@435 472
duke@435 473 compile->set_type_dict(NULL);
duke@435 474 compile->set_type_hwm(NULL);
duke@435 475 compile->set_type_last_size(0);
duke@435 476 compile->set_last_tf(NULL, NULL);
duke@435 477 compile->set_indexSet_arena(NULL);
duke@435 478 compile->set_indexSet_free_block_list(NULL);
duke@435 479 compile->init_type_arena();
duke@435 480 Type::Initialize(compile);
duke@435 481 _compile->set_scratch_buffer_blob(NULL);
duke@435 482 _compile->begin_method();
duke@435 483 }
duke@435 484 CompileWrapper::~CompileWrapper() {
duke@435 485 _compile->end_method();
duke@435 486 if (_compile->scratch_buffer_blob() != NULL)
duke@435 487 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 488 _compile->env()->set_compiler_data(NULL);
duke@435 489 }
duke@435 490
duke@435 491
duke@435 492 //----------------------------print_compile_messages---------------------------
duke@435 493 void Compile::print_compile_messages() {
duke@435 494 #ifndef PRODUCT
duke@435 495 // Check if recompiling
duke@435 496 if (_subsume_loads == false && PrintOpto) {
duke@435 497 // Recompiling without allowing machine instructions to subsume loads
duke@435 498 tty->print_cr("*********************************************************");
duke@435 499 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 500 tty->print_cr("*********************************************************");
duke@435 501 }
kvn@473 502 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 503 // Recompiling without escape analysis
kvn@473 504 tty->print_cr("*********************************************************");
kvn@473 505 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 506 tty->print_cr("*********************************************************");
kvn@473 507 }
kvn@5110 508 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
kvn@5110 509 // Recompiling without boxing elimination
kvn@5110 510 tty->print_cr("*********************************************************");
kvn@5110 511 tty->print_cr("** Bailout: Recompile without boxing elimination **");
kvn@5110 512 tty->print_cr("*********************************************************");
kvn@5110 513 }
duke@435 514 if (env()->break_at_compile()) {
twisti@1040 515 // Open the debugger when compiling this method.
duke@435 516 tty->print("### Breaking when compiling: ");
duke@435 517 method()->print_short_name();
duke@435 518 tty->cr();
duke@435 519 BREAKPOINT;
duke@435 520 }
duke@435 521
duke@435 522 if( PrintOpto ) {
duke@435 523 if (is_osr_compilation()) {
duke@435 524 tty->print("[OSR]%3d", _compile_id);
duke@435 525 } else {
duke@435 526 tty->print("%3d", _compile_id);
duke@435 527 }
duke@435 528 }
duke@435 529 #endif
duke@435 530 }
duke@435 531
duke@435 532
kvn@2414 533 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 534 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 535 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 536 // If there is already a scratch buffer blob allocated and the
kvn@2414 537 // constant section is big enough, use it. Otherwise free the
kvn@2414 538 // current and allocate a new one.
kvn@2414 539 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 540 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 541 // Use the current blob.
kvn@2414 542 } else {
kvn@2414 543 if (blob != NULL) {
kvn@2414 544 BufferBlob::free(blob);
kvn@2414 545 }
duke@435 546
kvn@2414 547 ResourceMark rm;
kvn@2414 548 _scratch_const_size = const_size;
kvn@2414 549 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 550 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 551 // Record the buffer blob for next time.
kvn@2414 552 set_scratch_buffer_blob(blob);
kvn@2414 553 // Have we run out of code space?
kvn@2414 554 if (scratch_buffer_blob() == NULL) {
kvn@2414 555 // Let CompilerBroker disable further compilations.
kvn@2414 556 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 557 return;
kvn@2414 558 }
kvn@598 559 }
duke@435 560
duke@435 561 // Initialize the relocation buffers
twisti@2103 562 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 563 set_scratch_locs_memory(locs_buf);
duke@435 564 }
duke@435 565
duke@435 566
duke@435 567 //-----------------------scratch_emit_size-------------------------------------
duke@435 568 // Helper function that computes size by emitting code
duke@435 569 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 570 // Start scratch_emit_size section.
twisti@2350 571 set_in_scratch_emit_size(true);
twisti@2350 572
duke@435 573 // Emit into a trash buffer and count bytes emitted.
duke@435 574 // This is a pretty expensive way to compute a size,
duke@435 575 // but it works well enough if seldom used.
duke@435 576 // All common fixed-size instructions are given a size
duke@435 577 // method by the AD file.
duke@435 578 // Note that the scratch buffer blob and locs memory are
duke@435 579 // allocated at the beginning of the compile task, and
duke@435 580 // may be shared by several calls to scratch_emit_size.
duke@435 581 // The allocation of the scratch buffer blob is particularly
duke@435 582 // expensive, since it has to grab the code cache lock.
duke@435 583 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 584 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 585 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 586 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 587 address blob_begin = blob->content_begin();
duke@435 588 address blob_end = (address)locs_buf;
twisti@2103 589 assert(blob->content_contains(blob_end), "sanity");
duke@435 590 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 591 buf.initialize_consts_size(_scratch_const_size);
duke@435 592 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 593 assert(locs_buf != NULL, "sanity");
twisti@2350 594 int lsize = MAX_locs_size / 3;
twisti@2350 595 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 596 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 597 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 598
twisti@2350 599 // Do the emission.
kvn@3037 600
kvn@3037 601 Label fakeL; // Fake label for branch instructions.
kvn@3051 602 Label* saveL = NULL;
kvn@3051 603 uint save_bnum = 0;
kvn@3051 604 bool is_branch = n->is_MachBranch();
kvn@3037 605 if (is_branch) {
kvn@3037 606 MacroAssembler masm(&buf);
kvn@3037 607 masm.bind(fakeL);
kvn@3051 608 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 609 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 610 }
duke@435 611 n->emit(buf, this->regalloc());
kvn@3051 612 if (is_branch) // Restore label.
kvn@3051 613 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 614
twisti@2350 615 // End scratch_emit_size section.
twisti@2350 616 set_in_scratch_emit_size(false);
twisti@2350 617
twisti@2103 618 return buf.insts_size();
duke@435 619 }
duke@435 620
duke@435 621
duke@435 622 // ============================================================================
duke@435 623 //------------------------------Compile standard-------------------------------
duke@435 624 debug_only( int Compile::_debug_idx = 100000; )
duke@435 625
duke@435 626 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 627 // the continuation bci for on stack replacement.
duke@435 628
duke@435 629
kvn@5110 630 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
kvn@5110 631 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
duke@435 632 : Phase(Compiler),
duke@435 633 _env(ci_env),
duke@435 634 _log(ci_env->log()),
duke@435 635 _compile_id(ci_env->compile_id()),
duke@435 636 _save_argument_registers(false),
duke@435 637 _stub_name(NULL),
duke@435 638 _stub_function(NULL),
duke@435 639 _stub_entry_point(NULL),
duke@435 640 _method(target),
duke@435 641 _entry_bci(osr_bci),
duke@435 642 _initial_gvn(NULL),
duke@435 643 _for_igvn(NULL),
duke@435 644 _warm_calls(NULL),
duke@435 645 _subsume_loads(subsume_loads),
kvn@473 646 _do_escape_analysis(do_escape_analysis),
kvn@5110 647 _eliminate_boxing(eliminate_boxing),
duke@435 648 _failure_reason(NULL),
duke@435 649 _code_buffer("Compile::Fill_buffer"),
duke@435 650 _orig_pc_slot(0),
duke@435 651 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 652 _has_method_handle_invokes(false),
twisti@2350 653 _mach_constant_base_node(NULL),
duke@435 654 _node_bundling_limit(0),
duke@435 655 _node_bundling_base(NULL),
kvn@1294 656 _java_calls(0),
kvn@1294 657 _inner_loops(0),
twisti@2350 658 _scratch_const_size(-1),
twisti@2350 659 _in_scratch_emit_size(false),
bharadwaj@4315 660 _dead_node_list(comp_arena()),
bharadwaj@4315 661 _dead_node_count(0),
duke@435 662 #ifndef PRODUCT
duke@435 663 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
goetz@6488 664 _in_dump_cnt(0),
duke@435 665 _printer(IdealGraphPrinter::printer()),
duke@435 666 #endif
roland@4357 667 _congraph(NULL),
zgu@7074 668 _comp_arena(mtCompiler),
zgu@7074 669 _node_arena(mtCompiler),
zgu@7074 670 _old_arena(mtCompiler),
zgu@7074 671 _Compile_types(mtCompiler),
kvn@6217 672 _replay_inline_data(NULL),
roland@4409 673 _late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 674 _string_late_inlines(comp_arena(), 2, 0, NULL),
kvn@5110 675 _boxing_late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 676 _late_inlines_pos(0),
roland@4409 677 _number_of_mh_late_inlines(0),
roland@4409 678 _inlining_progress(false),
roland@4409 679 _inlining_incrementally(false),
roland@4357 680 _print_inlining_list(NULL),
roland@5981 681 _print_inlining_idx(0),
roland@6723 682 _interpreter_frame_size(0) {
duke@435 683 C = this;
duke@435 684
duke@435 685 CompileWrapper cw(this);
duke@435 686 #ifndef PRODUCT
duke@435 687 if (TimeCompiler2) {
duke@435 688 tty->print(" ");
duke@435 689 target->holder()->name()->print();
duke@435 690 tty->print(".");
duke@435 691 target->print_short_name();
duke@435 692 tty->print(" ");
duke@435 693 }
duke@435 694 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 695 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 696 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 697 if (!print_opto_assembly) {
jrose@535 698 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 699 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 700 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 701 print_opto_assembly = true;
jrose@535 702 }
jrose@535 703 }
jrose@535 704 set_print_assembly(print_opto_assembly);
never@802 705 set_parsed_irreducible_loop(false);
kvn@6217 706
kvn@6217 707 if (method()->has_option("ReplayInline")) {
kvn@6217 708 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
kvn@6217 709 }
duke@435 710 #endif
kvn@5763 711 set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
kvn@5763 712 set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
kvn@6657 713 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
duke@435 714
kvn@6429 715 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
duke@435 716 // Make sure the method being compiled gets its own MDO,
duke@435 717 // so we can at least track the decompile_count().
kvn@6429 718 // Need MDO to record RTM code generation state.
iveresov@2349 719 method()->ensure_method_data();
duke@435 720 }
duke@435 721
duke@435 722 Init(::AliasLevel);
duke@435 723
duke@435 724
duke@435 725 print_compile_messages();
duke@435 726
shade@6314 727 _ilt = InlineTree::build_inline_tree_root();
duke@435 728
duke@435 729 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 730 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 731
duke@435 732 #define MINIMUM_NODE_HASH 1023
duke@435 733 // Node list that Iterative GVN will start with
duke@435 734 Unique_Node_List for_igvn(comp_arena());
duke@435 735 set_for_igvn(&for_igvn);
duke@435 736
duke@435 737 // GVN that will be run immediately on new nodes
duke@435 738 uint estimated_size = method()->code_size()*4+64;
duke@435 739 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 740 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 741 set_initial_gvn(&gvn);
duke@435 742
kvn@5763 743 if (print_inlining() || print_intrinsics()) {
roland@4357 744 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
roland@4357 745 }
duke@435 746 { // Scope for timing the parser
duke@435 747 TracePhase t3("parse", &_t_parser, true);
duke@435 748
duke@435 749 // Put top into the hash table ASAP.
duke@435 750 initial_gvn()->transform_no_reclaim(top());
duke@435 751
duke@435 752 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 753 CallGenerator* cg = NULL;
duke@435 754 if (is_osr_compilation()) {
duke@435 755 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 756 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 757 init_tf(TypeFunc::make(domain, range));
kvn@4115 758 StartNode* s = new (this) StartOSRNode(root(), domain);
duke@435 759 initial_gvn()->set_type_bottom(s);
duke@435 760 init_start(s);
duke@435 761 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 762 } else {
duke@435 763 // Normal case.
duke@435 764 init_tf(TypeFunc::make(method()));
kvn@4115 765 StartNode* s = new (this) StartNode(root(), tf()->domain());
duke@435 766 initial_gvn()->set_type_bottom(s);
duke@435 767 init_start(s);
johnc@2781 768 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 769 // With java.lang.ref.reference.get() we must go through the
johnc@2781 770 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 771 // method of the compile - so that, if necessary, the value in
johnc@2781 772 // the referent field of the reference object gets recorded by
johnc@2781 773 // the pre-barrier code.
johnc@2781 774 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 775 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 776 // result in the referent being marked live and the reference
johnc@2781 777 // object removed from the list of discovered references during
johnc@2781 778 // reference processing.
johnc@2781 779 cg = find_intrinsic(method(), false);
johnc@2781 780 }
johnc@2781 781 if (cg == NULL) {
johnc@2781 782 float past_uses = method()->interpreter_invocation_count();
johnc@2781 783 float expected_uses = past_uses;
johnc@2781 784 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 785 }
duke@435 786 }
duke@435 787 if (failing()) return;
duke@435 788 if (cg == NULL) {
duke@435 789 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 790 return;
duke@435 791 }
duke@435 792 JVMState* jvms = build_start_state(start(), tf());
roland@7041 793 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 794 record_method_not_compilable("method parse failed");
duke@435 795 return;
duke@435 796 }
duke@435 797 GraphKit kit(jvms);
duke@435 798
duke@435 799 if (!kit.stopped()) {
duke@435 800 // Accept return values, and transfer control we know not where.
duke@435 801 // This is done by a special, unique ReturnNode bound to root.
duke@435 802 return_values(kit.jvms());
duke@435 803 }
duke@435 804
duke@435 805 if (kit.has_exceptions()) {
duke@435 806 // Any exceptions that escape from this call must be rethrown
duke@435 807 // to whatever caller is dynamically above us on the stack.
duke@435 808 // This is done by a special, unique RethrowNode bound to root.
duke@435 809 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 810 }
duke@435 811
roland@4409 812 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
roland@4409 813
roland@4409 814 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
roland@4409 815 inline_string_calls(true);
never@1515 816 }
roland@4409 817
roland@4409 818 if (failing()) return;
never@1515 819
sla@5237 820 print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
never@802 821
duke@435 822 // Remove clutter produced by parsing.
duke@435 823 if (!failing()) {
duke@435 824 ResourceMark rm;
duke@435 825 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 826 }
duke@435 827 }
duke@435 828
duke@435 829 // Note: Large methods are capped off in do_one_bytecode().
duke@435 830 if (failing()) return;
duke@435 831
duke@435 832 // After parsing, node notes are no longer automagic.
duke@435 833 // They must be propagated by register_new_node_with_optimizer(),
duke@435 834 // clone(), or the like.
duke@435 835 set_default_node_notes(NULL);
duke@435 836
duke@435 837 for (;;) {
duke@435 838 int successes = Inline_Warm();
duke@435 839 if (failing()) return;
duke@435 840 if (successes == 0) break;
duke@435 841 }
duke@435 842
duke@435 843 // Drain the list.
duke@435 844 Finish_Warm();
duke@435 845 #ifndef PRODUCT
duke@435 846 if (_printer) {
duke@435 847 _printer->print_inlining(this);
duke@435 848 }
duke@435 849 #endif
duke@435 850
duke@435 851 if (failing()) return;
duke@435 852 NOT_PRODUCT( verify_graph_edges(); )
duke@435 853
duke@435 854 // Now optimize
duke@435 855 Optimize();
duke@435 856 if (failing()) return;
duke@435 857 NOT_PRODUCT( verify_graph_edges(); )
duke@435 858
duke@435 859 #ifndef PRODUCT
duke@435 860 if (PrintIdeal) {
duke@435 861 ttyLocker ttyl; // keep the following output all in one block
duke@435 862 // This output goes directly to the tty, not the compiler log.
duke@435 863 // To enable tools to match it up with the compilation activity,
duke@435 864 // be sure to tag this tty output with the compile ID.
duke@435 865 if (xtty != NULL) {
duke@435 866 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 867 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 868 "");
duke@435 869 }
duke@435 870 root()->dump(9999);
duke@435 871 if (xtty != NULL) {
duke@435 872 xtty->tail("ideal");
duke@435 873 }
duke@435 874 }
duke@435 875 #endif
duke@435 876
iveresov@6070 877 NOT_PRODUCT( verify_barriers(); )
kvn@6217 878
kvn@6217 879 // Dump compilation data to replay it.
kvn@6217 880 if (method()->has_option("DumpReplay")) {
kvn@6217 881 env()->dump_replay_data(_compile_id);
kvn@6217 882 }
kvn@6217 883 if (method()->has_option("DumpInline") && (ilt() != NULL)) {
kvn@6217 884 env()->dump_inline_data(_compile_id);
kvn@6217 885 }
kvn@6217 886
duke@435 887 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 888 // for the original deopt pc.
duke@435 889
duke@435 890 _orig_pc_slot = fixed_slots();
duke@435 891 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 892 set_fixed_slots(next_slot);
duke@435 893
goetz@6490 894 // Compute when to use implicit null checks. Used by matching trap based
goetz@6490 895 // nodes and NullCheck optimization.
goetz@6490 896 set_allowed_deopt_reasons();
goetz@6490 897
duke@435 898 // Now generate code
duke@435 899 Code_Gen();
duke@435 900 if (failing()) return;
duke@435 901
duke@435 902 // Check if we want to skip execution of all compiled code.
duke@435 903 {
duke@435 904 #ifndef PRODUCT
duke@435 905 if (OptoNoExecute) {
duke@435 906 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 907 return;
duke@435 908 }
duke@435 909 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 910 #endif
duke@435 911
duke@435 912 if (is_osr_compilation()) {
duke@435 913 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 914 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 915 } else {
duke@435 916 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 917 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 918 }
duke@435 919
duke@435 920 env()->register_method(_method, _entry_bci,
duke@435 921 &_code_offsets,
duke@435 922 _orig_pc_slot_offset_in_bytes,
duke@435 923 code_buffer(),
duke@435 924 frame_size_in_words(), _oop_map_set,
duke@435 925 &_handler_table, &_inc_table,
duke@435 926 compiler,
duke@435 927 env()->comp_level(),
kvn@4103 928 has_unsafe_access(),
kvn@6429 929 SharedRuntime::is_wide_vector(max_vector_size()),
kvn@6429 930 rtm_state()
duke@435 931 );
vlivanov@4154 932
vlivanov@4154 933 if (log() != NULL) // Print code cache state into compiler log
vlivanov@4154 934 log()->code_cache_state();
duke@435 935 }
duke@435 936 }
duke@435 937
duke@435 938 //------------------------------Compile----------------------------------------
duke@435 939 // Compile a runtime stub
duke@435 940 Compile::Compile( ciEnv* ci_env,
duke@435 941 TypeFunc_generator generator,
duke@435 942 address stub_function,
duke@435 943 const char *stub_name,
duke@435 944 int is_fancy_jump,
duke@435 945 bool pass_tls,
duke@435 946 bool save_arg_registers,
duke@435 947 bool return_pc )
duke@435 948 : Phase(Compiler),
duke@435 949 _env(ci_env),
duke@435 950 _log(ci_env->log()),
neliasso@4730 951 _compile_id(0),
duke@435 952 _save_argument_registers(save_arg_registers),
duke@435 953 _method(NULL),
duke@435 954 _stub_name(stub_name),
duke@435 955 _stub_function(stub_function),
duke@435 956 _stub_entry_point(NULL),
duke@435 957 _entry_bci(InvocationEntryBci),
duke@435 958 _initial_gvn(NULL),
duke@435 959 _for_igvn(NULL),
duke@435 960 _warm_calls(NULL),
duke@435 961 _orig_pc_slot(0),
duke@435 962 _orig_pc_slot_offset_in_bytes(0),
duke@435 963 _subsume_loads(true),
kvn@473 964 _do_escape_analysis(false),
kvn@5110 965 _eliminate_boxing(false),
duke@435 966 _failure_reason(NULL),
duke@435 967 _code_buffer("Compile::Fill_buffer"),
twisti@1700 968 _has_method_handle_invokes(false),
twisti@2350 969 _mach_constant_base_node(NULL),
duke@435 970 _node_bundling_limit(0),
duke@435 971 _node_bundling_base(NULL),
kvn@1294 972 _java_calls(0),
kvn@1294 973 _inner_loops(0),
duke@435 974 #ifndef PRODUCT
duke@435 975 _trace_opto_output(TraceOptoOutput),
goetz@6488 976 _in_dump_cnt(0),
duke@435 977 _printer(NULL),
duke@435 978 #endif
zgu@7074 979 _comp_arena(mtCompiler),
zgu@7074 980 _node_arena(mtCompiler),
zgu@7074 981 _old_arena(mtCompiler),
zgu@7074 982 _Compile_types(mtCompiler),
bharadwaj@4315 983 _dead_node_list(comp_arena()),
bharadwaj@4315 984 _dead_node_count(0),
roland@4357 985 _congraph(NULL),
kvn@6217 986 _replay_inline_data(NULL),
roland@4409 987 _number_of_mh_late_inlines(0),
roland@4409 988 _inlining_progress(false),
roland@4409 989 _inlining_incrementally(false),
roland@4357 990 _print_inlining_list(NULL),
roland@5981 991 _print_inlining_idx(0),
roland@6723 992 _allowed_reasons(0),
roland@6723 993 _interpreter_frame_size(0) {
duke@435 994 C = this;
duke@435 995
duke@435 996 #ifndef PRODUCT
duke@435 997 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 998 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 999 set_print_assembly(PrintFrameConverterAssembly);
never@802 1000 set_parsed_irreducible_loop(false);
duke@435 1001 #endif
kvn@6657 1002 set_has_irreducible_loop(false); // no loops
kvn@6657 1003
duke@435 1004 CompileWrapper cw(this);
duke@435 1005 Init(/*AliasLevel=*/ 0);
duke@435 1006 init_tf((*generator)());
duke@435 1007
duke@435 1008 {
duke@435 1009 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 1010 Unique_Node_List for_igvn(comp_arena());
duke@435 1011 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 1012 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 1013 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 1014 gvn.transform_no_reclaim(top());
duke@435 1015
duke@435 1016 GraphKit kit;
duke@435 1017 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 1018 }
duke@435 1019
duke@435 1020 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1021 Code_Gen();
duke@435 1022 if (failing()) return;
duke@435 1023
duke@435 1024
duke@435 1025 // Entry point will be accessed using compile->stub_entry_point();
duke@435 1026 if (code_buffer() == NULL) {
duke@435 1027 Matcher::soft_match_failure();
duke@435 1028 } else {
duke@435 1029 if (PrintAssembly && (WizardMode || Verbose))
duke@435 1030 tty->print_cr("### Stub::%s", stub_name);
duke@435 1031
duke@435 1032 if (!failing()) {
duke@435 1033 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 1034
duke@435 1035 // Make the NMethod
duke@435 1036 // For now we mark the frame as never safe for profile stackwalking
duke@435 1037 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 1038 code_buffer(),
duke@435 1039 CodeOffsets::frame_never_safe,
duke@435 1040 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 1041 frame_size_in_words(),
duke@435 1042 _oop_map_set,
duke@435 1043 save_arg_registers);
duke@435 1044 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 1045
duke@435 1046 _stub_entry_point = rs->entry_point();
duke@435 1047 }
duke@435 1048 }
duke@435 1049 }
duke@435 1050
duke@435 1051 //------------------------------Init-------------------------------------------
duke@435 1052 // Prepare for a single compilation
duke@435 1053 void Compile::Init(int aliaslevel) {
duke@435 1054 _unique = 0;
duke@435 1055 _regalloc = NULL;
duke@435 1056
duke@435 1057 _tf = NULL; // filled in later
duke@435 1058 _top = NULL; // cached later
duke@435 1059 _matcher = NULL; // filled in later
duke@435 1060 _cfg = NULL; // filled in later
duke@435 1061
duke@435 1062 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 1063
duke@435 1064 _node_note_array = NULL;
duke@435 1065 _default_node_notes = NULL;
duke@435 1066
duke@435 1067 _immutable_memory = NULL; // filled in at first inquiry
duke@435 1068
duke@435 1069 // Globally visible Nodes
duke@435 1070 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 1071 set_cached_top_node(NULL);
kvn@4115 1072 set_root(new (this) RootNode());
duke@435 1073 // Now that you have a Root to point to, create the real TOP
kvn@4115 1074 set_cached_top_node( new (this) ConNode(Type::TOP) );
duke@435 1075 set_recent_alloc(NULL, NULL);
duke@435 1076
duke@435 1077 // Create Debug Information Recorder to record scopes, oopmaps, etc.
coleenp@4037 1078 env()->set_oop_recorder(new OopRecorder(env()->arena()));
duke@435 1079 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 1080 env()->set_dependencies(new Dependencies(env()));
duke@435 1081
duke@435 1082 _fixed_slots = 0;
duke@435 1083 set_has_split_ifs(false);
duke@435 1084 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 1085 set_has_stringbuilder(false);
kvn@5110 1086 set_has_boxed_value(false);
duke@435 1087 _trap_can_recompile = false; // no traps emitted yet
duke@435 1088 _major_progress = true; // start out assuming good things will happen
duke@435 1089 set_has_unsafe_access(false);
kvn@4103 1090 set_max_vector_size(0);
duke@435 1091 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 1092 set_decompile_count(0);
duke@435 1093
rasbold@853 1094 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 1095 set_num_loop_opts(LoopOptsCount);
iveresov@2138 1096 set_do_inlining(Inline);
iveresov@2138 1097 set_max_inline_size(MaxInlineSize);
iveresov@2138 1098 set_freq_inline_size(FreqInlineSize);
iveresov@2138 1099 set_do_scheduling(OptoScheduling);
iveresov@2138 1100 set_do_count_invocations(false);
iveresov@2138 1101 set_do_method_data_update(false);
kvn@6429 1102 set_rtm_state(NoRTM); // No RTM lock eliding by default
kvn@6429 1103 #if INCLUDE_RTM_OPT
kvn@6429 1104 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
kvn@6429 1105 int rtm_state = method()->method_data()->rtm_state();
kvn@6429 1106 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
kvn@6429 1107 // Don't generate RTM lock eliding code.
kvn@6429 1108 set_rtm_state(NoRTM);
kvn@6429 1109 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
kvn@6429 1110 // Generate RTM lock eliding code without abort ratio calculation code.
kvn@6429 1111 set_rtm_state(UseRTM);
kvn@6429 1112 } else if (UseRTMDeopt) {
kvn@6429 1113 // Generate RTM lock eliding code and include abort ratio calculation
kvn@6429 1114 // code if UseRTMDeopt is on.
kvn@6429 1115 set_rtm_state(ProfileRTM);
kvn@6429 1116 }
kvn@6429 1117 }
kvn@6429 1118 #endif
duke@435 1119 if (debug_info()->recording_non_safepoints()) {
duke@435 1120 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 1121 (comp_arena(), 8, 0, NULL));
duke@435 1122 set_default_node_notes(Node_Notes::make(this));
duke@435 1123 }
duke@435 1124
duke@435 1125 // // -- Initialize types before each compile --
duke@435 1126 // // Update cached type information
duke@435 1127 // if( _method && _method->constants() )
duke@435 1128 // Type::update_loaded_types(_method, _method->constants());
duke@435 1129
duke@435 1130 // Init alias_type map.
kvn@473 1131 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 1132 aliaslevel = 2; // No unique types without escape analysis
duke@435 1133 _AliasLevel = aliaslevel;
duke@435 1134 const int grow_ats = 16;
duke@435 1135 _max_alias_types = grow_ats;
duke@435 1136 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 1137 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 1138 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1139 {
duke@435 1140 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1141 }
duke@435 1142 // Initialize the first few types.
duke@435 1143 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1144 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1145 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1146 _num_alias_types = AliasIdxRaw+1;
duke@435 1147 // Zero out the alias type cache.
duke@435 1148 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1149 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1150 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1151
duke@435 1152 _intrinsics = NULL;
kvn@2040 1153 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1154 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
roland@4589 1155 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1156 register_library_intrinsics();
duke@435 1157 }
duke@435 1158
duke@435 1159 //---------------------------init_start----------------------------------------
duke@435 1160 // Install the StartNode on this compile object.
duke@435 1161 void Compile::init_start(StartNode* s) {
duke@435 1162 if (failing())
duke@435 1163 return; // already failing
duke@435 1164 assert(s == start(), "");
duke@435 1165 }
duke@435 1166
duke@435 1167 StartNode* Compile::start() const {
duke@435 1168 assert(!failing(), "");
duke@435 1169 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1170 Node* start = root()->fast_out(i);
duke@435 1171 if( start->is_Start() )
duke@435 1172 return start->as_Start();
duke@435 1173 }
kvn@6657 1174 fatal("Did not find Start node!");
duke@435 1175 return NULL;
duke@435 1176 }
duke@435 1177
duke@435 1178 //-------------------------------immutable_memory-------------------------------------
duke@435 1179 // Access immutable memory
duke@435 1180 Node* Compile::immutable_memory() {
duke@435 1181 if (_immutable_memory != NULL) {
duke@435 1182 return _immutable_memory;
duke@435 1183 }
duke@435 1184 StartNode* s = start();
duke@435 1185 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1186 Node *p = s->fast_out(i);
duke@435 1187 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1188 _immutable_memory = p;
duke@435 1189 return _immutable_memory;
duke@435 1190 }
duke@435 1191 }
duke@435 1192 ShouldNotReachHere();
duke@435 1193 return NULL;
duke@435 1194 }
duke@435 1195
duke@435 1196 //----------------------set_cached_top_node------------------------------------
duke@435 1197 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1198 void Compile::set_cached_top_node(Node* tn) {
duke@435 1199 if (tn != NULL) verify_top(tn);
duke@435 1200 Node* old_top = _top;
duke@435 1201 _top = tn;
duke@435 1202 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1203 // their _out arrays.
duke@435 1204 if (_top != NULL) _top->setup_is_top();
duke@435 1205 if (old_top != NULL) old_top->setup_is_top();
duke@435 1206 assert(_top == NULL || top()->is_top(), "");
duke@435 1207 }
duke@435 1208
bharadwaj@4315 1209 #ifdef ASSERT
bharadwaj@4315 1210 uint Compile::count_live_nodes_by_graph_walk() {
bharadwaj@4315 1211 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1212 // Get useful node list by walking the graph.
bharadwaj@4315 1213 identify_useful_nodes(useful);
bharadwaj@4315 1214 return useful.size();
bharadwaj@4315 1215 }
bharadwaj@4315 1216
bharadwaj@4315 1217 void Compile::print_missing_nodes() {
bharadwaj@4315 1218
bharadwaj@4315 1219 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
bharadwaj@4315 1220 if ((_log == NULL) && (! PrintIdealNodeCount)) {
bharadwaj@4315 1221 return;
bharadwaj@4315 1222 }
bharadwaj@4315 1223
bharadwaj@4315 1224 // This is an expensive function. It is executed only when the user
bharadwaj@4315 1225 // specifies VerifyIdealNodeCount option or otherwise knows the
bharadwaj@4315 1226 // additional work that needs to be done to identify reachable nodes
bharadwaj@4315 1227 // by walking the flow graph and find the missing ones using
bharadwaj@4315 1228 // _dead_node_list.
bharadwaj@4315 1229
bharadwaj@4315 1230 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1231 // Get useful node list by walking the graph.
bharadwaj@4315 1232 identify_useful_nodes(useful);
bharadwaj@4315 1233
bharadwaj@4315 1234 uint l_nodes = C->live_nodes();
bharadwaj@4315 1235 uint l_nodes_by_walk = useful.size();
bharadwaj@4315 1236
bharadwaj@4315 1237 if (l_nodes != l_nodes_by_walk) {
bharadwaj@4315 1238 if (_log != NULL) {
bharadwaj@4315 1239 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
bharadwaj@4315 1240 _log->stamp();
bharadwaj@4315 1241 _log->end_head();
bharadwaj@4315 1242 }
bharadwaj@4315 1243 VectorSet& useful_member_set = useful.member_set();
bharadwaj@4315 1244 int last_idx = l_nodes_by_walk;
bharadwaj@4315 1245 for (int i = 0; i < last_idx; i++) {
bharadwaj@4315 1246 if (useful_member_set.test(i)) {
bharadwaj@4315 1247 if (_dead_node_list.test(i)) {
bharadwaj@4315 1248 if (_log != NULL) {
bharadwaj@4315 1249 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
bharadwaj@4315 1250 }
bharadwaj@4315 1251 if (PrintIdealNodeCount) {
bharadwaj@4315 1252 // Print the log message to tty
bharadwaj@4315 1253 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
bharadwaj@4315 1254 useful.at(i)->dump();
bharadwaj@4315 1255 }
bharadwaj@4315 1256 }
bharadwaj@4315 1257 }
bharadwaj@4315 1258 else if (! _dead_node_list.test(i)) {
bharadwaj@4315 1259 if (_log != NULL) {
bharadwaj@4315 1260 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1261 }
bharadwaj@4315 1262 if (PrintIdealNodeCount) {
bharadwaj@4315 1263 // Print the log message to tty
bharadwaj@4315 1264 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1265 }
bharadwaj@4315 1266 }
bharadwaj@4315 1267 }
bharadwaj@4315 1268 if (_log != NULL) {
bharadwaj@4315 1269 _log->tail("mismatched_nodes");
bharadwaj@4315 1270 }
bharadwaj@4315 1271 }
bharadwaj@4315 1272 }
bharadwaj@4315 1273 #endif
bharadwaj@4315 1274
duke@435 1275 #ifndef PRODUCT
duke@435 1276 void Compile::verify_top(Node* tn) const {
duke@435 1277 if (tn != NULL) {
duke@435 1278 assert(tn->is_Con(), "top node must be a constant");
duke@435 1279 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1280 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1281 }
duke@435 1282 }
duke@435 1283 #endif
duke@435 1284
duke@435 1285
duke@435 1286 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1287
duke@435 1288 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1289 guarantee(arr != NULL, "");
duke@435 1290 int num_blocks = arr->length();
duke@435 1291 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1292 int num_notes = grow_by * _node_notes_block_size;
duke@435 1293 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1294 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1295 while (num_notes > 0) {
duke@435 1296 arr->append(notes);
duke@435 1297 notes += _node_notes_block_size;
duke@435 1298 num_notes -= _node_notes_block_size;
duke@435 1299 }
duke@435 1300 assert(num_notes == 0, "exact multiple, please");
duke@435 1301 }
duke@435 1302
duke@435 1303 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1304 if (source == NULL || dest == NULL) return false;
duke@435 1305
duke@435 1306 if (dest->is_Con())
duke@435 1307 return false; // Do not push debug info onto constants.
duke@435 1308
duke@435 1309 #ifdef ASSERT
duke@435 1310 // Leave a bread crumb trail pointing to the original node:
duke@435 1311 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1312 dest->set_debug_orig(source);
duke@435 1313 }
duke@435 1314 #endif
duke@435 1315
duke@435 1316 if (node_note_array() == NULL)
duke@435 1317 return false; // Not collecting any notes now.
duke@435 1318
duke@435 1319 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1320 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1321 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1322 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1323 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1324 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1325 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1326 }
duke@435 1327
duke@435 1328 Node_Notes merged_notes = (*source_notes);
duke@435 1329 // The order of operations here ensures that dest notes will win...
duke@435 1330 merged_notes.update_from(dest_notes);
duke@435 1331 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1332 }
duke@435 1333
duke@435 1334
duke@435 1335 //--------------------------allow_range_check_smearing-------------------------
duke@435 1336 // Gating condition for coalescing similar range checks.
duke@435 1337 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1338 // single covering check that is at least as strong as any of them.
duke@435 1339 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1340 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1341 // on the optimization.
duke@435 1342 bool Compile::allow_range_check_smearing() const {
duke@435 1343 // If this method has already thrown a range-check,
duke@435 1344 // assume it was because we already tried range smearing
duke@435 1345 // and it failed.
duke@435 1346 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1347 return !already_trapped;
duke@435 1348 }
duke@435 1349
duke@435 1350
duke@435 1351 //------------------------------flatten_alias_type-----------------------------
duke@435 1352 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1353 int offset = tj->offset();
duke@435 1354 TypePtr::PTR ptr = tj->ptr();
duke@435 1355
kvn@682 1356 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1357 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1358 tj->is_oopptr()->is_known_instance();
kvn@682 1359
duke@435 1360 // Process weird unsafe references.
duke@435 1361 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1362 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1363 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1364 tj = TypeOopPtr::BOTTOM;
duke@435 1365 ptr = tj->ptr();
duke@435 1366 offset = tj->offset();
duke@435 1367 }
duke@435 1368
duke@435 1369 // Array pointers need some flattening
duke@435 1370 const TypeAryPtr *ta = tj->isa_aryptr();
vlivanov@5658 1371 if (ta && ta->is_stable()) {
vlivanov@5658 1372 // Erase stability property for alias analysis.
vlivanov@5658 1373 tj = ta = ta->cast_to_stable(false);
vlivanov@5658 1374 }
kvn@682 1375 if( ta && is_known_inst ) {
kvn@682 1376 if ( offset != Type::OffsetBot &&
kvn@682 1377 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1378 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1379 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1380 }
kvn@682 1381 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1382 // For arrays indexed by constant indices, we flatten the alias
duke@435 1383 // space to include all of the array body. Only the header, klass
duke@435 1384 // and array length can be accessed un-aliased.
duke@435 1385 if( offset != Type::OffsetBot ) {
coleenp@4037 1386 if( ta->const_oop() ) { // MethodData* or Method*
duke@435 1387 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1388 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1389 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1390 // range is OK as-is.
duke@435 1391 tj = ta = TypeAryPtr::RANGE;
duke@435 1392 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1393 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1394 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1395 ptr = TypePtr::BotPTR;
duke@435 1396 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1397 tj = TypeInstPtr::MARK;
duke@435 1398 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1399 ptr = TypePtr::BotPTR;
duke@435 1400 } else { // Random constant offset into array body
duke@435 1401 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1402 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1403 }
duke@435 1404 }
duke@435 1405 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1406 if (ta->size() != TypeInt::POS) {
duke@435 1407 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1408 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1409 }
duke@435 1410 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1411 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1412 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1413 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1414 }
duke@435 1415 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1416 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1417 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1418 }
duke@435 1419 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1420 // cannot be distinguished by bytecode alone.
duke@435 1421 if (ta->elem() == TypeInt::BOOL) {
duke@435 1422 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1423 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1424 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1425 }
duke@435 1426 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1427 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1428 // Also, make sure exact and non-exact variants alias the same.
roland@5991 1429 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
kvn@2986 1430 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1431 }
duke@435 1432 }
duke@435 1433
duke@435 1434 // Oop pointers need some flattening
duke@435 1435 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1436 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1437 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1438 if( ptr == TypePtr::Constant ) {
never@2658 1439 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1440 offset < k->size_helper() * wordSize) {
never@2658 1441 // No constant oop pointers (such as Strings); they alias with
never@2658 1442 // unknown strings.
never@2658 1443 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1444 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1445 }
kvn@682 1446 } else if( is_known_inst ) {
kvn@598 1447 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1448 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1449 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1450 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1451 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1452 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1453 }
roland@5991 1454 if (to->speculative() != NULL) {
roland@5991 1455 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
roland@5991 1456 }
duke@435 1457 // Canonicalize the holder of this field
coleenp@548 1458 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1459 // First handle header references such as a LoadKlassNode, even if the
duke@435 1460 // object's klass is unloaded at compile time (4965979).
kvn@682 1461 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1462 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1463 }
duke@435 1464 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1465 // Static fields are in the space above the normal instance
never@2658 1466 // fields in the java.lang.Class instance.
never@2658 1467 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1468 to = NULL;
never@2658 1469 tj = TypeOopPtr::BOTTOM;
never@2658 1470 offset = tj->offset();
never@2658 1471 }
duke@435 1472 } else {
duke@435 1473 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1474 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1475 if( is_known_inst ) {
kvn@682 1476 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1477 } else {
kvn@682 1478 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1479 }
duke@435 1480 }
duke@435 1481 }
duke@435 1482 }
duke@435 1483
duke@435 1484 // Klass pointers to object array klasses need some flattening
duke@435 1485 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1486 if( tk ) {
duke@435 1487 // If we are referencing a field within a Klass, we need
duke@435 1488 // to assume the worst case of an Object. Both exact and
never@3389 1489 // inexact types must flatten to the same alias class so
never@3389 1490 // use NotNull as the PTR.
duke@435 1491 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1492
never@3389 1493 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
duke@435 1494 TypeKlassPtr::OBJECT->klass(),
duke@435 1495 offset);
duke@435 1496 }
duke@435 1497
duke@435 1498 ciKlass* klass = tk->klass();
duke@435 1499 if( klass->is_obj_array_klass() ) {
duke@435 1500 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1501 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1502 k = TypeInstPtr::BOTTOM->klass();
duke@435 1503 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1504 }
duke@435 1505
duke@435 1506 // Check for precise loads from the primary supertype array and force them
duke@435 1507 // to the supertype cache alias index. Check for generic array loads from
duke@435 1508 // the primary supertype array and also force them to the supertype cache
duke@435 1509 // alias index. Since the same load can reach both, we need to merge
duke@435 1510 // these 2 disparate memories into the same alias class. Since the
duke@435 1511 // primary supertype array is read-only, there's no chance of confusion
duke@435 1512 // where we bypass an array load and an array store.
stefank@3391 1513 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
never@3389 1514 if (offset == Type::OffsetBot ||
never@3389 1515 (offset >= primary_supers_offset &&
never@3389 1516 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
stefank@3391 1517 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
stefank@3391 1518 offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1519 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1520 }
duke@435 1521 }
duke@435 1522
duke@435 1523 // Flatten all Raw pointers together.
duke@435 1524 if (tj->base() == Type::RawPtr)
duke@435 1525 tj = TypeRawPtr::BOTTOM;
duke@435 1526
duke@435 1527 if (tj->base() == Type::AnyPtr)
duke@435 1528 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1529
duke@435 1530 // Flatten all to bottom for now
duke@435 1531 switch( _AliasLevel ) {
duke@435 1532 case 0:
duke@435 1533 tj = TypePtr::BOTTOM;
duke@435 1534 break;
duke@435 1535 case 1: // Flatten to: oop, static, field or array
duke@435 1536 switch (tj->base()) {
duke@435 1537 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1538 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1539 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1540 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1541 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1542 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1543 default: ShouldNotReachHere();
duke@435 1544 }
duke@435 1545 break;
twisti@1040 1546 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1547 case 3: // No collapsing at level 3; keep all splits
duke@435 1548 break;
duke@435 1549 default:
duke@435 1550 Unimplemented();
duke@435 1551 }
duke@435 1552
duke@435 1553 offset = tj->offset();
duke@435 1554 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1555
duke@435 1556 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1557 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1558 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1559 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1560 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1561 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1562 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1563 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1564 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1565 tj->ptr() != TypePtr::AnyNull &&
duke@435 1566 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1567 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1568 // tj->base() == Type::RawPtr ||
duke@435 1569 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1570
duke@435 1571 return tj;
duke@435 1572 }
duke@435 1573
duke@435 1574 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1575 _index = i;
duke@435 1576 _adr_type = at;
duke@435 1577 _field = NULL;
vlivanov@5658 1578 _element = NULL;
duke@435 1579 _is_rewritable = true; // default
duke@435 1580 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1581 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1582 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1583 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1584 } else {
duke@435 1585 _general_index = 0;
duke@435 1586 }
duke@435 1587 }
duke@435 1588
duke@435 1589 //---------------------------------print_on------------------------------------
duke@435 1590 #ifndef PRODUCT
duke@435 1591 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1592 if (index() < 10)
duke@435 1593 st->print("@ <%d> ", index());
duke@435 1594 else st->print("@ <%d>", index());
duke@435 1595 st->print(is_rewritable() ? " " : " RO");
duke@435 1596 int offset = adr_type()->offset();
duke@435 1597 if (offset == Type::OffsetBot)
duke@435 1598 st->print(" +any");
duke@435 1599 else st->print(" +%-3d", offset);
duke@435 1600 st->print(" in ");
duke@435 1601 adr_type()->dump_on(st);
duke@435 1602 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1603 if (field() != NULL && tjp) {
duke@435 1604 if (tjp->klass() != field()->holder() ||
duke@435 1605 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1606 st->print(" != ");
duke@435 1607 field()->print();
duke@435 1608 st->print(" ***");
duke@435 1609 }
duke@435 1610 }
duke@435 1611 }
duke@435 1612
duke@435 1613 void print_alias_types() {
duke@435 1614 Compile* C = Compile::current();
duke@435 1615 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1616 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1617 C->alias_type(idx)->print_on(tty);
duke@435 1618 tty->cr();
duke@435 1619 }
duke@435 1620 }
duke@435 1621 #endif
duke@435 1622
duke@435 1623
duke@435 1624 //----------------------------probe_alias_cache--------------------------------
duke@435 1625 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1626 intptr_t key = (intptr_t) adr_type;
duke@435 1627 key ^= key >> logAliasCacheSize;
duke@435 1628 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1629 }
duke@435 1630
duke@435 1631
duke@435 1632 //-----------------------------grow_alias_types--------------------------------
duke@435 1633 void Compile::grow_alias_types() {
duke@435 1634 const int old_ats = _max_alias_types; // how many before?
duke@435 1635 const int new_ats = old_ats; // how many more?
duke@435 1636 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1637 _max_alias_types = grow_ats;
duke@435 1638 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1639 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1640 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1641 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1642 }
duke@435 1643
duke@435 1644
duke@435 1645 //--------------------------------find_alias_type------------------------------
never@2658 1646 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1647 if (_AliasLevel == 0)
duke@435 1648 return alias_type(AliasIdxBot);
duke@435 1649
duke@435 1650 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1651 if (ace->_adr_type == adr_type) {
duke@435 1652 return alias_type(ace->_index);
duke@435 1653 }
duke@435 1654
duke@435 1655 // Handle special cases.
duke@435 1656 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1657 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1658
duke@435 1659 // Do it the slow way.
duke@435 1660 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1661
duke@435 1662 #ifdef ASSERT
duke@435 1663 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1664 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1665 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1666 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1667 // Scalarizable allocations have exact klass always.
kvn@682 1668 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1669 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1670 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1671 }
duke@435 1672 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1673 #endif
duke@435 1674
duke@435 1675 int idx = AliasIdxTop;
duke@435 1676 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1677 if (alias_type(i)->adr_type() == flat) {
duke@435 1678 idx = i;
duke@435 1679 break;
duke@435 1680 }
duke@435 1681 }
duke@435 1682
duke@435 1683 if (idx == AliasIdxTop) {
duke@435 1684 if (no_create) return NULL;
duke@435 1685 // Grow the array if necessary.
duke@435 1686 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1687 // Add a new alias type.
duke@435 1688 idx = _num_alias_types++;
duke@435 1689 _alias_types[idx]->Init(idx, flat);
duke@435 1690 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1691 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1692 if (flat->isa_instptr()) {
duke@435 1693 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1694 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1695 alias_type(idx)->set_rewritable(false);
duke@435 1696 }
vlivanov@5658 1697 if (flat->isa_aryptr()) {
vlivanov@5658 1698 #ifdef ASSERT
vlivanov@5658 1699 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
vlivanov@5658 1700 // (T_BYTE has the weakest alignment and size restrictions...)
vlivanov@5658 1701 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
vlivanov@5658 1702 #endif
vlivanov@5658 1703 if (flat->offset() == TypePtr::OffsetBot) {
vlivanov@5658 1704 alias_type(idx)->set_element(flat->is_aryptr()->elem());
vlivanov@5658 1705 }
vlivanov@5658 1706 }
duke@435 1707 if (flat->isa_klassptr()) {
stefank@3391 1708 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
duke@435 1709 alias_type(idx)->set_rewritable(false);
stefank@3391 1710 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
duke@435 1711 alias_type(idx)->set_rewritable(false);
stefank@3391 1712 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
duke@435 1713 alias_type(idx)->set_rewritable(false);
stefank@3391 1714 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
duke@435 1715 alias_type(idx)->set_rewritable(false);
duke@435 1716 }
duke@435 1717 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1718 // but the base pointer type is not distinctive enough to identify
duke@435 1719 // references into JavaThread.)
duke@435 1720
never@2658 1721 // Check for final fields.
duke@435 1722 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1723 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1724 ciField* field;
never@2658 1725 if (tinst->const_oop() != NULL &&
never@2658 1726 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1727 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1728 // static field
never@2658 1729 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1730 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1731 } else {
never@2658 1732 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1733 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1734 }
never@2658 1735 assert(field == NULL ||
never@2658 1736 original_field == NULL ||
never@2658 1737 (field->holder() == original_field->holder() &&
never@2658 1738 field->offset() == original_field->offset() &&
never@2658 1739 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1740 // Set field() and is_rewritable() attributes.
duke@435 1741 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1742 }
duke@435 1743 }
duke@435 1744
duke@435 1745 // Fill the cache for next time.
duke@435 1746 ace->_adr_type = adr_type;
duke@435 1747 ace->_index = idx;
duke@435 1748 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1749
duke@435 1750 // Might as well try to fill the cache for the flattened version, too.
duke@435 1751 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1752 if (face->_adr_type == NULL) {
duke@435 1753 face->_adr_type = flat;
duke@435 1754 face->_index = idx;
duke@435 1755 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1756 }
duke@435 1757
duke@435 1758 return alias_type(idx);
duke@435 1759 }
duke@435 1760
duke@435 1761
duke@435 1762 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1763 const TypeOopPtr* t;
duke@435 1764 if (field->is_static())
never@2658 1765 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1766 else
duke@435 1767 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1768 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
vlivanov@5658 1769 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1770 return atp;
duke@435 1771 }
duke@435 1772
duke@435 1773
duke@435 1774 //------------------------------have_alias_type--------------------------------
duke@435 1775 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1776 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1777 if (ace->_adr_type == adr_type) {
duke@435 1778 return true;
duke@435 1779 }
duke@435 1780
duke@435 1781 // Handle special cases.
duke@435 1782 if (adr_type == NULL) return true;
duke@435 1783 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1784
never@2658 1785 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1786 }
duke@435 1787
duke@435 1788 //-----------------------------must_alias--------------------------------------
duke@435 1789 // True if all values of the given address type are in the given alias category.
duke@435 1790 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1791 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1792 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1793 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1794 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1795
duke@435 1796 // the only remaining possible overlap is identity
duke@435 1797 int adr_idx = get_alias_index(adr_type);
duke@435 1798 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1799 assert(adr_idx == alias_idx ||
duke@435 1800 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1801 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1802 "should not be testing for overlap with an unsafe pointer");
duke@435 1803 return adr_idx == alias_idx;
duke@435 1804 }
duke@435 1805
duke@435 1806 //------------------------------can_alias--------------------------------------
duke@435 1807 // True if any values of the given address type are in the given alias category.
duke@435 1808 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1809 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1810 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1811 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1812 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1813
duke@435 1814 // the only remaining possible overlap is identity
duke@435 1815 int adr_idx = get_alias_index(adr_type);
duke@435 1816 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1817 return adr_idx == alias_idx;
duke@435 1818 }
duke@435 1819
duke@435 1820
duke@435 1821
duke@435 1822 //---------------------------pop_warm_call-------------------------------------
duke@435 1823 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1824 WarmCallInfo* wci = _warm_calls;
duke@435 1825 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1826 return wci;
duke@435 1827 }
duke@435 1828
duke@435 1829 //----------------------------Inline_Warm--------------------------------------
duke@435 1830 int Compile::Inline_Warm() {
duke@435 1831 // If there is room, try to inline some more warm call sites.
duke@435 1832 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1833 if (!InlineWarmCalls) return 0;
duke@435 1834
duke@435 1835 int calls_made_hot = 0;
duke@435 1836 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1837 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1838 int amount_grown = 0;
duke@435 1839 WarmCallInfo* call;
duke@435 1840 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1841 int est_size = (int)call->size();
duke@435 1842 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1843 // This one won't fit anyway. Get rid of it.
duke@435 1844 call->make_cold();
duke@435 1845 continue;
duke@435 1846 }
duke@435 1847 call->make_hot();
duke@435 1848 calls_made_hot++;
duke@435 1849 amount_grown += est_size;
duke@435 1850 amount_to_grow -= est_size;
duke@435 1851 }
duke@435 1852
duke@435 1853 if (calls_made_hot > 0) set_major_progress();
duke@435 1854 return calls_made_hot;
duke@435 1855 }
duke@435 1856
duke@435 1857
duke@435 1858 //----------------------------Finish_Warm--------------------------------------
duke@435 1859 void Compile::Finish_Warm() {
duke@435 1860 if (!InlineWarmCalls) return;
duke@435 1861 if (failing()) return;
duke@435 1862 if (warm_calls() == NULL) return;
duke@435 1863
duke@435 1864 // Clean up loose ends, if we are out of space for inlining.
duke@435 1865 WarmCallInfo* call;
duke@435 1866 while ((call = pop_warm_call()) != NULL) {
duke@435 1867 call->make_cold();
duke@435 1868 }
duke@435 1869 }
duke@435 1870
cfang@1607 1871 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1872 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1873 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1874 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1875 if (predicate_count()==0) return;
cfang@1607 1876 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1877 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1878 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1879 igvn.replace_node(n, n->in(1));
cfang@1607 1880 }
cfang@1607 1881 assert(predicate_count()==0, "should be clean!");
cfang@1607 1882 }
duke@435 1883
roland@4409 1884 // StringOpts and late inlining of string methods
roland@4409 1885 void Compile::inline_string_calls(bool parse_time) {
roland@4409 1886 {
roland@4409 1887 // remove useless nodes to make the usage analysis simpler
roland@4409 1888 ResourceMark rm;
roland@4409 1889 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1890 }
roland@4409 1891
roland@4409 1892 {
roland@4409 1893 ResourceMark rm;
sla@5237 1894 print_method(PHASE_BEFORE_STRINGOPTS, 3);
roland@4409 1895 PhaseStringOpts pso(initial_gvn(), for_igvn());
sla@5237 1896 print_method(PHASE_AFTER_STRINGOPTS, 3);
roland@4409 1897 }
roland@4409 1898
roland@4409 1899 // now inline anything that we skipped the first time around
roland@4409 1900 if (!parse_time) {
roland@4409 1901 _late_inlines_pos = _late_inlines.length();
roland@4409 1902 }
roland@4409 1903
roland@4409 1904 while (_string_late_inlines.length() > 0) {
roland@4409 1905 CallGenerator* cg = _string_late_inlines.pop();
roland@4409 1906 cg->do_late_inline();
roland@4409 1907 if (failing()) return;
roland@4409 1908 }
roland@4409 1909 _string_late_inlines.trunc_to(0);
roland@4409 1910 }
roland@4409 1911
kvn@5110 1912 // Late inlining of boxing methods
kvn@5110 1913 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
kvn@5110 1914 if (_boxing_late_inlines.length() > 0) {
kvn@5110 1915 assert(has_boxed_value(), "inconsistent");
kvn@5110 1916
kvn@5110 1917 PhaseGVN* gvn = initial_gvn();
kvn@5110 1918 set_inlining_incrementally(true);
kvn@5110 1919
kvn@5110 1920 assert( igvn._worklist.size() == 0, "should be done with igvn" );
kvn@5110 1921 for_igvn()->clear();
kvn@5110 1922 gvn->replace_with(&igvn);
kvn@5110 1923
roland@7041 1924 _late_inlines_pos = _late_inlines.length();
roland@7041 1925
kvn@5110 1926 while (_boxing_late_inlines.length() > 0) {
kvn@5110 1927 CallGenerator* cg = _boxing_late_inlines.pop();
kvn@5110 1928 cg->do_late_inline();
kvn@5110 1929 if (failing()) return;
kvn@5110 1930 }
kvn@5110 1931 _boxing_late_inlines.trunc_to(0);
kvn@5110 1932
kvn@5110 1933 {
kvn@5110 1934 ResourceMark rm;
kvn@5110 1935 PhaseRemoveUseless pru(gvn, for_igvn());
kvn@5110 1936 }
kvn@5110 1937
kvn@5110 1938 igvn = PhaseIterGVN(gvn);
kvn@5110 1939 igvn.optimize();
kvn@5110 1940
kvn@5110 1941 set_inlining_progress(false);
kvn@5110 1942 set_inlining_incrementally(false);
kvn@5110 1943 }
kvn@5110 1944 }
kvn@5110 1945
roland@4409 1946 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
roland@4409 1947 assert(IncrementalInline, "incremental inlining should be on");
roland@4409 1948 PhaseGVN* gvn = initial_gvn();
roland@4409 1949
roland@4409 1950 set_inlining_progress(false);
roland@4409 1951 for_igvn()->clear();
roland@4409 1952 gvn->replace_with(&igvn);
roland@4409 1953
roland@4409 1954 int i = 0;
roland@4409 1955
roland@4409 1956 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
roland@4409 1957 CallGenerator* cg = _late_inlines.at(i);
roland@4409 1958 _late_inlines_pos = i+1;
roland@4409 1959 cg->do_late_inline();
roland@4409 1960 if (failing()) return;
roland@4409 1961 }
roland@4409 1962 int j = 0;
roland@4409 1963 for (; i < _late_inlines.length(); i++, j++) {
roland@4409 1964 _late_inlines.at_put(j, _late_inlines.at(i));
roland@4409 1965 }
roland@4409 1966 _late_inlines.trunc_to(j);
roland@4409 1967
roland@4409 1968 {
roland@4409 1969 ResourceMark rm;
kvn@5110 1970 PhaseRemoveUseless pru(gvn, for_igvn());
roland@4409 1971 }
roland@4409 1972
roland@4409 1973 igvn = PhaseIterGVN(gvn);
roland@4409 1974 }
roland@4409 1975
roland@4409 1976 // Perform incremental inlining until bound on number of live nodes is reached
roland@4409 1977 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
roland@4409 1978 PhaseGVN* gvn = initial_gvn();
roland@4409 1979
roland@4409 1980 set_inlining_incrementally(true);
roland@4409 1981 set_inlining_progress(true);
roland@4409 1982 uint low_live_nodes = 0;
roland@4409 1983
roland@4409 1984 while(inlining_progress() && _late_inlines.length() > 0) {
roland@4409 1985
roland@4409 1986 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1987 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
roland@4409 1988 // PhaseIdealLoop is expensive so we only try it once we are
roland@7041 1989 // out of live nodes and we only try it again if the previous
roland@7041 1990 // helped got the number of nodes down significantly
roland@4409 1991 PhaseIdealLoop ideal_loop( igvn, false, true );
roland@4409 1992 if (failing()) return;
roland@4409 1993 low_live_nodes = live_nodes();
roland@4409 1994 _major_progress = true;
roland@4409 1995 }
roland@4409 1996
roland@4409 1997 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1998 break;
roland@4409 1999 }
roland@4409 2000 }
roland@4409 2001
roland@4409 2002 inline_incrementally_one(igvn);
roland@4409 2003
roland@4409 2004 if (failing()) return;
roland@4409 2005
roland@4409 2006 igvn.optimize();
roland@4409 2007
roland@4409 2008 if (failing()) return;
roland@4409 2009 }
roland@4409 2010
roland@4409 2011 assert( igvn._worklist.size() == 0, "should be done with igvn" );
roland@4409 2012
roland@4409 2013 if (_string_late_inlines.length() > 0) {
roland@4409 2014 assert(has_stringbuilder(), "inconsistent");
roland@4409 2015 for_igvn()->clear();
roland@4409 2016 initial_gvn()->replace_with(&igvn);
roland@4409 2017
roland@4409 2018 inline_string_calls(false);
roland@4409 2019
roland@4409 2020 if (failing()) return;
roland@4409 2021
roland@4409 2022 {
roland@4409 2023 ResourceMark rm;
roland@4409 2024 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 2025 }
roland@4409 2026
roland@4409 2027 igvn = PhaseIterGVN(gvn);
roland@4409 2028
roland@4409 2029 igvn.optimize();
roland@4409 2030 }
roland@4409 2031
roland@4409 2032 set_inlining_incrementally(false);
roland@4409 2033 }
roland@4409 2034
roland@4409 2035
duke@435 2036 //------------------------------Optimize---------------------------------------
duke@435 2037 // Given a graph, optimize it.
duke@435 2038 void Compile::Optimize() {
duke@435 2039 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 2040
duke@435 2041 #ifndef PRODUCT
duke@435 2042 if (env()->break_at_compile()) {
duke@435 2043 BREAKPOINT;
duke@435 2044 }
duke@435 2045
duke@435 2046 #endif
duke@435 2047
duke@435 2048 ResourceMark rm;
duke@435 2049 int loop_opts_cnt;
duke@435 2050
duke@435 2051 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2052
sla@5237 2053 print_method(PHASE_AFTER_PARSING);
duke@435 2054
duke@435 2055 {
duke@435 2056 // Iterative Global Value Numbering, including ideal transforms
duke@435 2057 // Initialize IterGVN with types and values from parse-time GVN
duke@435 2058 PhaseIterGVN igvn(initial_gvn());
duke@435 2059 {
duke@435 2060 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 2061 igvn.optimize();
duke@435 2062 }
duke@435 2063
sla@5237 2064 print_method(PHASE_ITER_GVN1, 2);
duke@435 2065
duke@435 2066 if (failing()) return;
duke@435 2067
kvn@5110 2068 {
kvn@5110 2069 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2070 inline_incrementally(igvn);
kvn@5110 2071 }
roland@4409 2072
sla@5237 2073 print_method(PHASE_INCREMENTAL_INLINE, 2);
roland@4409 2074
roland@4409 2075 if (failing()) return;
roland@4409 2076
kvn@5110 2077 if (eliminate_boxing()) {
kvn@5110 2078 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2079 // Inline valueOf() methods now.
kvn@5110 2080 inline_boxing_calls(igvn);
kvn@5110 2081
roland@7041 2082 if (AlwaysIncrementalInline) {
roland@7041 2083 inline_incrementally(igvn);
roland@7041 2084 }
roland@7041 2085
sla@5237 2086 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
kvn@5110 2087
kvn@5110 2088 if (failing()) return;
kvn@5110 2089 }
kvn@5110 2090
roland@5991 2091 // Remove the speculative part of types and clean up the graph from
roland@5991 2092 // the extra CastPP nodes whose only purpose is to carry them. Do
roland@5991 2093 // that early so that optimizations are not disrupted by the extra
roland@5991 2094 // CastPP nodes.
roland@5991 2095 remove_speculative_types(igvn);
roland@5991 2096
roland@4589 2097 // No more new expensive nodes will be added to the list from here
roland@4589 2098 // so keep only the actual candidates for optimizations.
roland@4589 2099 cleanup_expensive_nodes(igvn);
roland@4589 2100
kvn@1989 2101 // Perform escape analysis
kvn@1989 2102 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 2103 if (has_loops()) {
kvn@3260 2104 // Cleanup graph (remove dead nodes).
kvn@3260 2105 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 2106 PhaseIdealLoop ideal_loop( igvn, false, true );
sla@5237 2107 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
kvn@3260 2108 if (failing()) return;
kvn@3260 2109 }
kvn@1989 2110 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 2111
kvn@1989 2112 if (failing()) return;
kvn@1989 2113
kvn@3311 2114 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 2115 igvn.optimize();
sla@5237 2116 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
kvn@1989 2117
kvn@1989 2118 if (failing()) return;
kvn@1989 2119
kvn@3311 2120 if (congraph() != NULL && macro_count() > 0) {
kvn@3651 2121 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
kvn@3311 2122 PhaseMacroExpand mexp(igvn);
kvn@3311 2123 mexp.eliminate_macro_nodes();
kvn@3311 2124 igvn.set_delay_transform(false);
kvn@3311 2125
kvn@3311 2126 igvn.optimize();
sla@5237 2127 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
kvn@3311 2128
kvn@3311 2129 if (failing()) return;
kvn@3311 2130 }
kvn@1989 2131 }
kvn@1989 2132
duke@435 2133 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2134 // peeling, unrolling, etc.
duke@435 2135
duke@435 2136 // Set loop opts counter
duke@435 2137 loop_opts_cnt = num_loop_opts();
duke@435 2138 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 2139 {
duke@435 2140 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 2141 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 2142 loop_opts_cnt--;
sla@5237 2143 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
duke@435 2144 if (failing()) return;
duke@435 2145 }
duke@435 2146 // Loop opts pass if partial peeling occurred in previous pass
duke@435 2147 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 2148 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 2149 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2150 loop_opts_cnt--;
sla@5237 2151 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
duke@435 2152 if (failing()) return;
duke@435 2153 }
duke@435 2154 // Loop opts pass for loop-unrolling before CCP
duke@435 2155 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2156 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 2157 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2158 loop_opts_cnt--;
sla@5237 2159 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
duke@435 2160 }
never@1356 2161 if (!failing()) {
never@1356 2162 // Verify that last round of loop opts produced a valid graph
never@1356 2163 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2164 PhaseIdealLoop::verify(igvn);
never@1356 2165 }
duke@435 2166 }
duke@435 2167 if (failing()) return;
duke@435 2168
duke@435 2169 // Conditional Constant Propagation;
duke@435 2170 PhaseCCP ccp( &igvn );
duke@435 2171 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 2172 {
duke@435 2173 TracePhase t2("ccp", &_t_ccp, true);
duke@435 2174 ccp.do_transform();
duke@435 2175 }
sla@5237 2176 print_method(PHASE_CPP1, 2);
duke@435 2177
duke@435 2178 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 2179
duke@435 2180 // Iterative Global Value Numbering, including ideal transforms
duke@435 2181 {
duke@435 2182 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 2183 igvn = ccp;
duke@435 2184 igvn.optimize();
duke@435 2185 }
duke@435 2186
sla@5237 2187 print_method(PHASE_ITER_GVN2, 2);
duke@435 2188
duke@435 2189 if (failing()) return;
duke@435 2190
duke@435 2191 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2192 // peeling, unrolling, etc.
duke@435 2193 if(loop_opts_cnt > 0) {
duke@435 2194 debug_only( int cnt = 0; );
duke@435 2195 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2196 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 2197 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 2198 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 2199 loop_opts_cnt--;
sla@5237 2200 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
duke@435 2201 if (failing()) return;
duke@435 2202 }
duke@435 2203 }
never@1356 2204
never@1356 2205 {
never@1356 2206 // Verify that all previous optimizations produced a valid graph
never@1356 2207 // at least to this point, even if no loop optimizations were done.
never@1356 2208 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2209 PhaseIdealLoop::verify(igvn);
never@1356 2210 }
never@1356 2211
duke@435 2212 {
duke@435 2213 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 2214 PhaseMacroExpand mex(igvn);
duke@435 2215 if (mex.expand_macro_nodes()) {
duke@435 2216 assert(failing(), "must bail out w/ explicit message");
duke@435 2217 return;
duke@435 2218 }
duke@435 2219 }
duke@435 2220
duke@435 2221 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 2222
kvn@4448 2223 dump_inlining();
duke@435 2224 // A method with only infinite loops has no edges entering loops from root
duke@435 2225 {
duke@435 2226 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 2227 if (final_graph_reshaping()) {
duke@435 2228 assert(failing(), "must bail out w/ explicit message");
duke@435 2229 return;
duke@435 2230 }
duke@435 2231 }
duke@435 2232
sla@5237 2233 print_method(PHASE_OPTIMIZE_FINISHED, 2);
duke@435 2234 }
duke@435 2235
duke@435 2236
duke@435 2237 //------------------------------Code_Gen---------------------------------------
duke@435 2238 // Given a graph, generate code for it
duke@435 2239 void Compile::Code_Gen() {
adlertz@5539 2240 if (failing()) {
adlertz@5539 2241 return;
adlertz@5539 2242 }
duke@435 2243
duke@435 2244 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 2245 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 2246 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 2247 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 2248 // set a bit in reclaimed memory.
duke@435 2249
duke@435 2250 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2251 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2252 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2253
adlertz@5539 2254 Matcher matcher;
adlertz@5539 2255 _matcher = &matcher;
duke@435 2256 {
duke@435 2257 TracePhase t2("matcher", &_t_matcher, true);
adlertz@5539 2258 matcher.match();
duke@435 2259 }
duke@435 2260 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2261 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2262 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2263
duke@435 2264 // If you have too many nodes, or if matching has failed, bail out
duke@435 2265 check_node_count(0, "out of nodes matching instructions");
adlertz@5539 2266 if (failing()) {
adlertz@5539 2267 return;
adlertz@5539 2268 }
duke@435 2269
duke@435 2270 // Build a proper-looking CFG
adlertz@5539 2271 PhaseCFG cfg(node_arena(), root(), matcher);
duke@435 2272 _cfg = &cfg;
duke@435 2273 {
duke@435 2274 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
adlertz@5539 2275 bool success = cfg.do_global_code_motion();
adlertz@5539 2276 if (!success) {
adlertz@5539 2277 return;
adlertz@5539 2278 }
adlertz@5539 2279
adlertz@5539 2280 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
duke@435 2281 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2282 debug_only( cfg.verify(); )
duke@435 2283 }
adlertz@5539 2284
adlertz@5539 2285 PhaseChaitin regalloc(unique(), cfg, matcher);
duke@435 2286 _regalloc = &regalloc;
duke@435 2287 {
duke@435 2288 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 2289 // Perform register allocation. After Chaitin, use-def chains are
duke@435 2290 // no longer accurate (at spill code) and so must be ignored.
duke@435 2291 // Node->LRG->reg mappings are still accurate.
duke@435 2292 _regalloc->Register_Allocate();
duke@435 2293
duke@435 2294 // Bail out if the allocator builds too many nodes
neliasso@4949 2295 if (failing()) {
neliasso@4949 2296 return;
neliasso@4949 2297 }
duke@435 2298 }
duke@435 2299
duke@435 2300 // Prior to register allocation we kept empty basic blocks in case the
duke@435 2301 // the allocator needed a place to spill. After register allocation we
duke@435 2302 // are not adding any new instructions. If any basic block is empty, we
duke@435 2303 // can now safely remove it.
duke@435 2304 {
rasbold@853 2305 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
adlertz@5539 2306 cfg.remove_empty_blocks();
rasbold@853 2307 if (do_freq_based_layout()) {
rasbold@853 2308 PhaseBlockLayout layout(cfg);
rasbold@853 2309 } else {
rasbold@853 2310 cfg.set_loop_alignment();
rasbold@853 2311 }
rasbold@853 2312 cfg.fixup_flow();
duke@435 2313 }
duke@435 2314
duke@435 2315 // Apply peephole optimizations
duke@435 2316 if( OptoPeephole ) {
duke@435 2317 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 2318 PhasePeephole peep( _regalloc, cfg);
duke@435 2319 peep.do_transform();
duke@435 2320 }
duke@435 2321
goetz@6478 2322 // Do late expand if CPU requires this.
goetz@6478 2323 if (Matcher::require_postalloc_expand) {
goetz@6478 2324 NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
goetz@6478 2325 cfg.postalloc_expand(_regalloc);
goetz@6478 2326 }
goetz@6478 2327
duke@435 2328 // Convert Nodes to instruction bits in a buffer
duke@435 2329 {
duke@435 2330 // %%%% workspace merge brought two timers together for one job
duke@435 2331 TracePhase t2a("output", &_t_output, true);
duke@435 2332 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 2333 Output();
duke@435 2334 }
duke@435 2335
sla@5237 2336 print_method(PHASE_FINAL_CODE);
duke@435 2337
duke@435 2338 // He's dead, Jim.
duke@435 2339 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 2340 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 2341 }
duke@435 2342
duke@435 2343
duke@435 2344 //------------------------------dump_asm---------------------------------------
duke@435 2345 // Dump formatted assembly
duke@435 2346 #ifndef PRODUCT
duke@435 2347 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 2348 bool cut_short = false;
duke@435 2349 tty->print_cr("#");
duke@435 2350 tty->print("# "); _tf->dump(); tty->cr();
duke@435 2351 tty->print_cr("#");
duke@435 2352
duke@435 2353 // For all blocks
duke@435 2354 int pc = 0x0; // Program counter
duke@435 2355 char starts_bundle = ' ';
duke@435 2356 _regalloc->dump_frame();
duke@435 2357
duke@435 2358 Node *n = NULL;
adlertz@5539 2359 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 2360 if (VMThread::should_terminate()) {
adlertz@5539 2361 cut_short = true;
adlertz@5539 2362 break;
adlertz@5539 2363 }
adlertz@5539 2364 Block* block = _cfg->get_block(i);
adlertz@5539 2365 if (block->is_connector() && !Verbose) {
adlertz@5539 2366 continue;
adlertz@5539 2367 }
adlertz@5635 2368 n = block->head();
adlertz@5539 2369 if (pcs && n->_idx < pc_limit) {
duke@435 2370 tty->print("%3.3x ", pcs[n->_idx]);
adlertz@5539 2371 } else {
duke@435 2372 tty->print(" ");
adlertz@5539 2373 }
adlertz@5539 2374 block->dump_head(_cfg);
adlertz@5539 2375 if (block->is_connector()) {
duke@435 2376 tty->print_cr(" # Empty connector block");
adlertz@5539 2377 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 2378 tty->print_cr(" # Block is sole successor of call");
duke@435 2379 }
duke@435 2380
duke@435 2381 // For all instructions
duke@435 2382 Node *delay = NULL;
adlertz@5635 2383 for (uint j = 0; j < block->number_of_nodes(); j++) {
adlertz@5539 2384 if (VMThread::should_terminate()) {
adlertz@5539 2385 cut_short = true;
adlertz@5539 2386 break;
adlertz@5539 2387 }
adlertz@5635 2388 n = block->get_node(j);
duke@435 2389 if (valid_bundle_info(n)) {
adlertz@5539 2390 Bundle* bundle = node_bundling(n);
duke@435 2391 if (bundle->used_in_unconditional_delay()) {
duke@435 2392 delay = n;
duke@435 2393 continue;
duke@435 2394 }
adlertz@5539 2395 if (bundle->starts_bundle()) {
duke@435 2396 starts_bundle = '+';
adlertz@5539 2397 }
duke@435 2398 }
duke@435 2399
adlertz@5539 2400 if (WizardMode) {
adlertz@5539 2401 n->dump();
adlertz@5539 2402 }
coleenp@548 2403
duke@435 2404 if( !n->is_Region() && // Dont print in the Assembly
duke@435 2405 !n->is_Phi() && // a few noisely useless nodes
duke@435 2406 !n->is_Proj() &&
duke@435 2407 !n->is_MachTemp() &&
kvn@1535 2408 !n->is_SafePointScalarObject() &&
duke@435 2409 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 2410 !n->is_MergeMem() && // Not very interesting
duke@435 2411 !n->is_top() && // Debug info table constants
duke@435 2412 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 2413 ) {
duke@435 2414 if (pcs && n->_idx < pc_limit)
duke@435 2415 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2416 else
duke@435 2417 tty->print(" ");
duke@435 2418 tty->print(" %c ", starts_bundle);
duke@435 2419 starts_bundle = ' ';
duke@435 2420 tty->print("\t");
duke@435 2421 n->format(_regalloc, tty);
duke@435 2422 tty->cr();
duke@435 2423 }
duke@435 2424
duke@435 2425 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2426 // then back up and print it
duke@435 2427 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2428 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2429 if (WizardMode) delay->dump();
coleenp@548 2430
duke@435 2431 if (node_bundling(delay)->starts_bundle())
duke@435 2432 starts_bundle = '+';
duke@435 2433 if (pcs && n->_idx < pc_limit)
duke@435 2434 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2435 else
duke@435 2436 tty->print(" ");
duke@435 2437 tty->print(" %c ", starts_bundle);
duke@435 2438 starts_bundle = ' ';
duke@435 2439 tty->print("\t");
duke@435 2440 delay->format(_regalloc, tty);
drchase@6680 2441 tty->cr();
duke@435 2442 delay = NULL;
duke@435 2443 }
duke@435 2444
duke@435 2445 // Dump the exception table as well
duke@435 2446 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2447 // Print the exception table for this offset
duke@435 2448 _handler_table.print_subtable_for(pc);
duke@435 2449 }
duke@435 2450 }
duke@435 2451
duke@435 2452 if (pcs && n->_idx < pc_limit)
duke@435 2453 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2454 else
drchase@6680 2455 tty->cr();
duke@435 2456
duke@435 2457 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2458
duke@435 2459 } // End of per-block dump
drchase@6680 2460 tty->cr();
duke@435 2461
duke@435 2462 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2463 }
duke@435 2464 #endif
duke@435 2465
duke@435 2466 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2467 // This class defines counters to help identify when a method
duke@435 2468 // may/must be executed using hardware with only 24-bit precision.
duke@435 2469 struct Final_Reshape_Counts : public StackObj {
duke@435 2470 int _call_count; // count non-inlined 'common' calls
duke@435 2471 int _float_count; // count float ops requiring 24-bit precision
duke@435 2472 int _double_count; // count double ops requiring more precision
duke@435 2473 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2474 int _inner_loop_count; // count loops which need alignment
duke@435 2475 VectorSet _visited; // Visitation flags
duke@435 2476 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2477
duke@435 2478 Final_Reshape_Counts() :
kvn@1294 2479 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2480 _java_call_count(0), _inner_loop_count(0),
duke@435 2481 _visited( Thread::current()->resource_area() ) { }
duke@435 2482
duke@435 2483 void inc_call_count () { _call_count ++; }
duke@435 2484 void inc_float_count () { _float_count ++; }
duke@435 2485 void inc_double_count() { _double_count++; }
duke@435 2486 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2487 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2488
duke@435 2489 int get_call_count () const { return _call_count ; }
duke@435 2490 int get_float_count () const { return _float_count ; }
duke@435 2491 int get_double_count() const { return _double_count; }
duke@435 2492 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2493 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2494 };
duke@435 2495
mikael@4889 2496 #ifdef ASSERT
duke@435 2497 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2498 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2499 // Make sure the offset goes inside the instance layout.
coleenp@548 2500 return k->contains_field_offset(tp->offset());
duke@435 2501 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2502 }
mikael@4889 2503 #endif
duke@435 2504
never@2780 2505 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2506 // precedence edges.
bharadwaj@4315 2507 void Compile::eliminate_redundant_card_marks(Node* n) {
never@2780 2508 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2509 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2510 // There are multiple users of the same address so it might be
never@2780 2511 // possible to eliminate some of the StoreCMs
never@2780 2512 Node* mem = n->in(MemNode::Memory);
never@2780 2513 Node* adr = n->in(MemNode::Address);
never@2780 2514 Node* val = n->in(MemNode::ValueIn);
never@2780 2515 Node* prev = n;
never@2780 2516 bool done = false;
never@2780 2517 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2518 // long as it's a chain of single users then the optimization is
never@2780 2519 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2520 // cloning copies down the other paths.
never@2780 2521 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2522 if (adr == mem->in(MemNode::Address) &&
never@2780 2523 val == mem->in(MemNode::ValueIn)) {
never@2780 2524 // redundant StoreCM
never@2780 2525 if (mem->req() > MemNode::OopStore) {
never@2780 2526 // Hasn't been processed by this code yet.
never@2780 2527 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2528 } else {
never@2780 2529 // Already converted to precedence edge
never@2780 2530 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2531 // Accumulate any precedence edges
never@2780 2532 if (mem->in(i) != NULL) {
never@2780 2533 n->add_prec(mem->in(i));
never@2780 2534 }
never@2780 2535 }
never@2780 2536 // Everything above this point has been processed.
never@2780 2537 done = true;
never@2780 2538 }
never@2780 2539 // Eliminate the previous StoreCM
never@2780 2540 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2541 assert(mem->outcnt() == 0, "should be dead");
bharadwaj@4315 2542 mem->disconnect_inputs(NULL, this);
never@2780 2543 } else {
never@2780 2544 prev = mem;
never@2780 2545 }
never@2780 2546 mem = prev->in(MemNode::Memory);
never@2780 2547 }
never@2780 2548 }
never@2780 2549 }
never@2780 2550
duke@435 2551 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2552 // Implement items 1-5 from final_graph_reshaping below.
bharadwaj@4315 2553 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
duke@435 2554
kvn@603 2555 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2556 uint nop = n->Opcode();
duke@435 2557
duke@435 2558 // Check for 2-input instruction with "last use" on right input.
duke@435 2559 // Swap to left input. Implements item (2).
duke@435 2560 if( n->req() == 3 && // two-input instruction
duke@435 2561 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2562 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2563 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2564 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2565 // Check for commutative opcode
duke@435 2566 switch( nop ) {
duke@435 2567 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2568 case Op_MaxI: case Op_MinI:
duke@435 2569 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2570 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2571 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2572 // Move "last use" input to left by swapping inputs
duke@435 2573 n->swap_edges(1, 2);
duke@435 2574 break;
duke@435 2575 }
duke@435 2576 default:
duke@435 2577 break;
duke@435 2578 }
duke@435 2579 }
duke@435 2580
kvn@1964 2581 #ifdef ASSERT
kvn@1964 2582 if( n->is_Mem() ) {
bharadwaj@4315 2583 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2584 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2585 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2586 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2587 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2588 "raw memory operations should have control edge");
kvn@1964 2589 }
kvn@1964 2590 #endif
duke@435 2591 // Count FPU ops and common calls, implements item (3)
duke@435 2592 switch( nop ) {
duke@435 2593 // Count all float operations that may use FPU
duke@435 2594 case Op_AddF:
duke@435 2595 case Op_SubF:
duke@435 2596 case Op_MulF:
duke@435 2597 case Op_DivF:
duke@435 2598 case Op_NegF:
duke@435 2599 case Op_ModF:
duke@435 2600 case Op_ConvI2F:
duke@435 2601 case Op_ConF:
duke@435 2602 case Op_CmpF:
duke@435 2603 case Op_CmpF3:
duke@435 2604 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2605 frc.inc_float_count();
duke@435 2606 break;
duke@435 2607
duke@435 2608 case Op_ConvF2D:
duke@435 2609 case Op_ConvD2F:
kvn@1294 2610 frc.inc_float_count();
kvn@1294 2611 frc.inc_double_count();
duke@435 2612 break;
duke@435 2613
duke@435 2614 // Count all double operations that may use FPU
duke@435 2615 case Op_AddD:
duke@435 2616 case Op_SubD:
duke@435 2617 case Op_MulD:
duke@435 2618 case Op_DivD:
duke@435 2619 case Op_NegD:
duke@435 2620 case Op_ModD:
duke@435 2621 case Op_ConvI2D:
duke@435 2622 case Op_ConvD2I:
duke@435 2623 // case Op_ConvL2D: // handled by leaf call
duke@435 2624 // case Op_ConvD2L: // handled by leaf call
duke@435 2625 case Op_ConD:
duke@435 2626 case Op_CmpD:
duke@435 2627 case Op_CmpD3:
kvn@1294 2628 frc.inc_double_count();
duke@435 2629 break;
duke@435 2630 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2631 case Op_Opaque2: // Remove Opaque Nodes before matching
kvn@6429 2632 case Op_Opaque3:
bharadwaj@4315 2633 n->subsume_by(n->in(1), this);
duke@435 2634 break;
duke@435 2635 case Op_CallStaticJava:
duke@435 2636 case Op_CallJava:
duke@435 2637 case Op_CallDynamicJava:
kvn@1294 2638 frc.inc_java_call_count(); // Count java call site;
duke@435 2639 case Op_CallRuntime:
duke@435 2640 case Op_CallLeaf:
duke@435 2641 case Op_CallLeafNoFP: {
duke@435 2642 assert( n->is_Call(), "" );
duke@435 2643 CallNode *call = n->as_Call();
duke@435 2644 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2645 // Do not count uncommon runtime calls:
duke@435 2646 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2647 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2648 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2649 frc.inc_call_count(); // Count the call site
duke@435 2650 } else { // See if uncommon argument is shared
duke@435 2651 Node *n = call->in(TypeFunc::Parms);
duke@435 2652 int nop = n->Opcode();
duke@435 2653 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2654 if( n->outcnt() > 1 &&
duke@435 2655 !n->is_Proj() &&
duke@435 2656 nop != Op_CreateEx &&
duke@435 2657 nop != Op_CheckCastPP &&
kvn@766 2658 nop != Op_DecodeN &&
roland@4159 2659 nop != Op_DecodeNKlass &&
duke@435 2660 !n->is_Mem() ) {
duke@435 2661 Node *x = n->clone();
duke@435 2662 call->set_req( TypeFunc::Parms, x );
duke@435 2663 }
duke@435 2664 }
duke@435 2665 break;
duke@435 2666 }
duke@435 2667
duke@435 2668 case Op_StoreD:
duke@435 2669 case Op_LoadD:
duke@435 2670 case Op_LoadD_unaligned:
kvn@1294 2671 frc.inc_double_count();
duke@435 2672 goto handle_mem;
duke@435 2673 case Op_StoreF:
duke@435 2674 case Op_LoadF:
kvn@1294 2675 frc.inc_float_count();
duke@435 2676 goto handle_mem;
duke@435 2677
never@2780 2678 case Op_StoreCM:
never@2780 2679 {
never@2780 2680 // Convert OopStore dependence into precedence edge
never@2780 2681 Node* prec = n->in(MemNode::OopStore);
never@2780 2682 n->del_req(MemNode::OopStore);
never@2780 2683 n->add_prec(prec);
never@2780 2684 eliminate_redundant_card_marks(n);
never@2780 2685 }
never@2780 2686
never@2780 2687 // fall through
never@2780 2688
duke@435 2689 case Op_StoreB:
duke@435 2690 case Op_StoreC:
duke@435 2691 case Op_StorePConditional:
duke@435 2692 case Op_StoreI:
duke@435 2693 case Op_StoreL:
kvn@855 2694 case Op_StoreIConditional:
duke@435 2695 case Op_StoreLConditional:
duke@435 2696 case Op_CompareAndSwapI:
duke@435 2697 case Op_CompareAndSwapL:
duke@435 2698 case Op_CompareAndSwapP:
coleenp@548 2699 case Op_CompareAndSwapN:
roland@4106 2700 case Op_GetAndAddI:
roland@4106 2701 case Op_GetAndAddL:
roland@4106 2702 case Op_GetAndSetI:
roland@4106 2703 case Op_GetAndSetL:
roland@4106 2704 case Op_GetAndSetP:
roland@4106 2705 case Op_GetAndSetN:
duke@435 2706 case Op_StoreP:
coleenp@548 2707 case Op_StoreN:
roland@4159 2708 case Op_StoreNKlass:
duke@435 2709 case Op_LoadB:
twisti@1059 2710 case Op_LoadUB:
twisti@993 2711 case Op_LoadUS:
duke@435 2712 case Op_LoadI:
duke@435 2713 case Op_LoadKlass:
kvn@599 2714 case Op_LoadNKlass:
duke@435 2715 case Op_LoadL:
duke@435 2716 case Op_LoadL_unaligned:
duke@435 2717 case Op_LoadPLocked:
duke@435 2718 case Op_LoadP:
coleenp@548 2719 case Op_LoadN:
duke@435 2720 case Op_LoadRange:
duke@435 2721 case Op_LoadS: {
duke@435 2722 handle_mem:
duke@435 2723 #ifdef ASSERT
duke@435 2724 if( VerifyOptoOopOffsets ) {
duke@435 2725 assert( n->is_Mem(), "" );
duke@435 2726 MemNode *mem = (MemNode*)n;
duke@435 2727 // Check to see if address types have grounded out somehow.
duke@435 2728 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2729 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2730 }
duke@435 2731 #endif
duke@435 2732 break;
duke@435 2733 }
duke@435 2734
duke@435 2735 case Op_AddP: { // Assert sane base pointers
kvn@617 2736 Node *addp = n->in(AddPNode::Address);
duke@435 2737 assert( !addp->is_AddP() ||
duke@435 2738 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2739 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2740 "Base pointers must match" );
kvn@617 2741 #ifdef _LP64
ehelin@5694 2742 if ((UseCompressedOops || UseCompressedClassPointers) &&
kvn@617 2743 addp->Opcode() == Op_ConP &&
kvn@617 2744 addp == n->in(AddPNode::Base) &&
kvn@617 2745 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2746 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2747 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2748 // instructions (4) then load 64-bits constant (7).
kvn@617 2749 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2750 const Type* t = addp->bottom_type();
roland@4159 2751 if (t->isa_oopptr() || t->isa_klassptr()) {
kvn@617 2752 Node* nn = NULL;
kvn@617 2753
roland@4159 2754 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
roland@4159 2755
kvn@617 2756 // Look for existing ConN node of the same exact type.
bharadwaj@4315 2757 Node* r = root();
kvn@617 2758 uint cnt = r->outcnt();
kvn@617 2759 for (uint i = 0; i < cnt; i++) {
kvn@617 2760 Node* m = r->raw_out(i);
roland@4159 2761 if (m!= NULL && m->Opcode() == op &&
kvn@656 2762 m->bottom_type()->make_ptr() == t) {
kvn@617 2763 nn = m;
kvn@617 2764 break;
kvn@617 2765 }
kvn@617 2766 }
kvn@617 2767 if (nn != NULL) {
kvn@617 2768 // Decode a narrow oop to match address
kvn@617 2769 // [R12 + narrow_oop_reg<<3 + offset]
roland@4159 2770 if (t->isa_oopptr()) {
bharadwaj@4315 2771 nn = new (this) DecodeNNode(nn, t);
roland@4159 2772 } else {
bharadwaj@4315 2773 nn = new (this) DecodeNKlassNode(nn, t);
roland@4159 2774 }
kvn@617 2775 n->set_req(AddPNode::Base, nn);
kvn@617 2776 n->set_req(AddPNode::Address, nn);
kvn@617 2777 if (addp->outcnt() == 0) {
bharadwaj@4315 2778 addp->disconnect_inputs(NULL, this);
kvn@617 2779 }
kvn@617 2780 }
kvn@617 2781 }
kvn@617 2782 }
kvn@617 2783 #endif
duke@435 2784 break;
duke@435 2785 }
duke@435 2786
kvn@599 2787 #ifdef _LP64
kvn@803 2788 case Op_CastPP:
kvn@1930 2789 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2790 Node* in1 = n->in(1);
kvn@803 2791 const Type* t = n->bottom_type();
kvn@803 2792 Node* new_in1 = in1->clone();
kvn@803 2793 new_in1->as_DecodeN()->set_type(t);
kvn@803 2794
kvn@1930 2795 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2796 //
kvn@803 2797 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2798 // and Matcher can fold a DecodeN node into address by using
kvn@803 2799 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2800 //
kvn@803 2801 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2802 // NullCheck narrow_oop_reg
kvn@803 2803 //
kvn@803 2804 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2805 // use it to do implicit NULL check in address:
kvn@803 2806 //
kvn@803 2807 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2808 // [base_reg + offset]
kvn@803 2809 // NullCheck base_reg
kvn@803 2810 //
twisti@1040 2811 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2812 // to keep the information to which NULL check the new DecodeN node
kvn@803 2813 // corresponds to use it as value in implicit_null_check().
kvn@803 2814 //
kvn@803 2815 new_in1->set_req(0, n->in(0));
kvn@803 2816 }
kvn@803 2817
bharadwaj@4315 2818 n->subsume_by(new_in1, this);
kvn@803 2819 if (in1->outcnt() == 0) {
bharadwaj@4315 2820 in1->disconnect_inputs(NULL, this);
kvn@803 2821 }
kvn@803 2822 }
kvn@803 2823 break;
kvn@803 2824
kvn@599 2825 case Op_CmpP:
kvn@603 2826 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2827 // other TypePtr related Ideal optimizations (for example, ptr nullness).
roland@4159 2828 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
kvn@766 2829 Node* in1 = n->in(1);
kvn@766 2830 Node* in2 = n->in(2);
roland@4159 2831 if (!in1->is_DecodeNarrowPtr()) {
kvn@766 2832 in2 = in1;
kvn@766 2833 in1 = n->in(2);
kvn@766 2834 }
roland@4159 2835 assert(in1->is_DecodeNarrowPtr(), "sanity");
kvn@766 2836
kvn@766 2837 Node* new_in2 = NULL;
roland@4159 2838 if (in2->is_DecodeNarrowPtr()) {
roland@4159 2839 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
kvn@766 2840 new_in2 = in2->in(1);
kvn@766 2841 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2842 const Type* t = in2->bottom_type();
kvn@1930 2843 if (t == TypePtr::NULL_PTR) {
roland@4159 2844 assert(in1->is_DecodeN(), "compare klass to null?");
kvn@1930 2845 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2846 // oops implicit null check is not generated.
kvn@1930 2847 // This will allow to generate normal oop implicit null check.
kvn@1930 2848 if (Matcher::gen_narrow_oop_implicit_null_checks())
bharadwaj@4315 2849 new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
kvn@803 2850 //
kvn@803 2851 // This transformation together with CastPP transformation above
kvn@803 2852 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2853 //
kvn@803 2854 // The original code after Optimize()
kvn@803 2855 //
kvn@803 2856 // LoadN memory, narrow_oop_reg
kvn@803 2857 // decode narrow_oop_reg, base_reg
kvn@803 2858 // CmpP base_reg, NULL
kvn@803 2859 // CastPP base_reg // NotNull
kvn@803 2860 // Load [base_reg + offset], val_reg
kvn@803 2861 //
kvn@803 2862 // after these transformations will be
kvn@803 2863 //
kvn@803 2864 // LoadN memory, narrow_oop_reg
kvn@803 2865 // CmpN narrow_oop_reg, NULL
kvn@803 2866 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2867 // Load [base_reg + offset], val_reg
kvn@803 2868 //
kvn@803 2869 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2870 // since narrow oops can be used in debug info now (see the code in
kvn@803 2871 // final_graph_reshaping_walk()).
kvn@803 2872 //
kvn@803 2873 // At the end the code will be matched to
kvn@803 2874 // on x86:
kvn@803 2875 //
kvn@803 2876 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2877 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2878 // NullCheck narrow_oop_reg
kvn@803 2879 //
kvn@803 2880 // and on sparc:
kvn@803 2881 //
kvn@803 2882 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2883 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2884 // Load [base_reg + offset], val_reg
kvn@803 2885 // NullCheck base_reg
kvn@803 2886 //
kvn@599 2887 } else if (t->isa_oopptr()) {
bharadwaj@4315 2888 new_in2 = ConNode::make(this, t->make_narrowoop());
roland@4159 2889 } else if (t->isa_klassptr()) {
bharadwaj@4315 2890 new_in2 = ConNode::make(this, t->make_narrowklass());
kvn@599 2891 }
kvn@599 2892 }
kvn@766 2893 if (new_in2 != NULL) {
bharadwaj@4315 2894 Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
bharadwaj@4315 2895 n->subsume_by(cmpN, this);
kvn@766 2896 if (in1->outcnt() == 0) {
bharadwaj@4315 2897 in1->disconnect_inputs(NULL, this);
kvn@766 2898 }
kvn@766 2899 if (in2->outcnt() == 0) {
bharadwaj@4315 2900 in2->disconnect_inputs(NULL, this);
kvn@766 2901 }
kvn@599 2902 }
kvn@599 2903 }
kvn@728 2904 break;
kvn@803 2905
kvn@803 2906 case Op_DecodeN:
roland@4159 2907 case Op_DecodeNKlass:
roland@4159 2908 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
kvn@1930 2909 // DecodeN could be pinned when it can't be fold into
kvn@927 2910 // an address expression, see the code for Op_CastPP above.
roland@4159 2911 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
kvn@803 2912 break;
kvn@803 2913
roland@4159 2914 case Op_EncodeP:
roland@4159 2915 case Op_EncodePKlass: {
kvn@803 2916 Node* in1 = n->in(1);
roland@4159 2917 if (in1->is_DecodeNarrowPtr()) {
bharadwaj@4315 2918 n->subsume_by(in1->in(1), this);
kvn@803 2919 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2920 const Type* t = in1->bottom_type();
kvn@803 2921 if (t == TypePtr::NULL_PTR) {
roland@4159 2922 assert(t->isa_oopptr(), "null klass?");
bharadwaj@4315 2923 n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
kvn@803 2924 } else if (t->isa_oopptr()) {
bharadwaj@4315 2925 n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
roland@4159 2926 } else if (t->isa_klassptr()) {
bharadwaj@4315 2927 n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
kvn@803 2928 }
kvn@803 2929 }
kvn@803 2930 if (in1->outcnt() == 0) {
bharadwaj@4315 2931 in1->disconnect_inputs(NULL, this);
kvn@803 2932 }
kvn@803 2933 break;
kvn@803 2934 }
kvn@803 2935
never@1515 2936 case Op_Proj: {
never@1515 2937 if (OptimizeStringConcat) {
never@1515 2938 ProjNode* p = n->as_Proj();
never@1515 2939 if (p->_is_io_use) {
never@1515 2940 // Separate projections were used for the exception path which
never@1515 2941 // are normally removed by a late inline. If it wasn't inlined
never@1515 2942 // then they will hang around and should just be replaced with
never@1515 2943 // the original one.
never@1515 2944 Node* proj = NULL;
never@1515 2945 // Replace with just one
never@1515 2946 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2947 Node *use = i.get();
never@1515 2948 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2949 proj = use;
never@1515 2950 break;
never@1515 2951 }
never@1515 2952 }
kvn@3396 2953 assert(proj != NULL, "must be found");
bharadwaj@4315 2954 p->subsume_by(proj, this);
never@1515 2955 }
never@1515 2956 }
never@1515 2957 break;
never@1515 2958 }
never@1515 2959
kvn@803 2960 case Op_Phi:
roland@4159 2961 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
kvn@803 2962 // The EncodeP optimization may create Phi with the same edges
kvn@803 2963 // for all paths. It is not handled well by Register Allocator.
kvn@803 2964 Node* unique_in = n->in(1);
kvn@803 2965 assert(unique_in != NULL, "");
kvn@803 2966 uint cnt = n->req();
kvn@803 2967 for (uint i = 2; i < cnt; i++) {
kvn@803 2968 Node* m = n->in(i);
kvn@803 2969 assert(m != NULL, "");
kvn@803 2970 if (unique_in != m)
kvn@803 2971 unique_in = NULL;
kvn@803 2972 }
kvn@803 2973 if (unique_in != NULL) {
bharadwaj@4315 2974 n->subsume_by(unique_in, this);
kvn@803 2975 }
kvn@803 2976 }
kvn@803 2977 break;
kvn@803 2978
kvn@599 2979 #endif
kvn@599 2980
duke@435 2981 case Op_ModI:
duke@435 2982 if (UseDivMod) {
duke@435 2983 // Check if a%b and a/b both exist
duke@435 2984 Node* d = n->find_similar(Op_DivI);
duke@435 2985 if (d) {
duke@435 2986 // Replace them with a fused divmod if supported
duke@435 2987 if (Matcher::has_match_rule(Op_DivModI)) {
bharadwaj@4315 2988 DivModINode* divmod = DivModINode::make(this, n);
bharadwaj@4315 2989 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2990 n->subsume_by(divmod->mod_proj(), this);
duke@435 2991 } else {
duke@435 2992 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2993 Node* mult = new (this) MulINode(d, d->in(2));
bharadwaj@4315 2994 Node* sub = new (this) SubINode(d->in(1), mult);
bharadwaj@4315 2995 n->subsume_by(sub, this);
duke@435 2996 }
duke@435 2997 }
duke@435 2998 }
duke@435 2999 break;
duke@435 3000
duke@435 3001 case Op_ModL:
duke@435 3002 if (UseDivMod) {
duke@435 3003 // Check if a%b and a/b both exist
duke@435 3004 Node* d = n->find_similar(Op_DivL);
duke@435 3005 if (d) {
duke@435 3006 // Replace them with a fused divmod if supported
duke@435 3007 if (Matcher::has_match_rule(Op_DivModL)) {
bharadwaj@4315 3008 DivModLNode* divmod = DivModLNode::make(this, n);
bharadwaj@4315 3009 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 3010 n->subsume_by(divmod->mod_proj(), this);
duke@435 3011 } else {
duke@435 3012 // replace a%b with a-((a/b)*b)
bharadwaj@4315 3013 Node* mult = new (this) MulLNode(d, d->in(2));
bharadwaj@4315 3014 Node* sub = new (this) SubLNode(d->in(1), mult);
bharadwaj@4315 3015 n->subsume_by(sub, this);
duke@435 3016 }
duke@435 3017 }
duke@435 3018 }
duke@435 3019 break;
duke@435 3020
kvn@3882 3021 case Op_LoadVector:
kvn@3882 3022 case Op_StoreVector:
duke@435 3023 break;
duke@435 3024
duke@435 3025 case Op_PackB:
duke@435 3026 case Op_PackS:
duke@435 3027 case Op_PackI:
duke@435 3028 case Op_PackF:
duke@435 3029 case Op_PackL:
duke@435 3030 case Op_PackD:
duke@435 3031 if (n->req()-1 > 2) {
duke@435 3032 // Replace many operand PackNodes with a binary tree for matching
duke@435 3033 PackNode* p = (PackNode*) n;
bharadwaj@4315 3034 Node* btp = p->binary_tree_pack(this, 1, n->req());
bharadwaj@4315 3035 n->subsume_by(btp, this);
duke@435 3036 }
duke@435 3037 break;
kvn@1294 3038 case Op_Loop:
kvn@1294 3039 case Op_CountedLoop:
kvn@1294 3040 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 3041 frc.inc_inner_loop_count();
kvn@1294 3042 }
kvn@1294 3043 break;
roland@2683 3044 case Op_LShiftI:
roland@2683 3045 case Op_RShiftI:
roland@2683 3046 case Op_URShiftI:
roland@2683 3047 case Op_LShiftL:
roland@2683 3048 case Op_RShiftL:
roland@2683 3049 case Op_URShiftL:
roland@2683 3050 if (Matcher::need_masked_shift_count) {
roland@2683 3051 // The cpu's shift instructions don't restrict the count to the
roland@2683 3052 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 3053 Node* in2 = n->in(2);
roland@2683 3054 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 3055 const TypeInt* t = in2->find_int_type();
roland@2683 3056 if (t != NULL && t->is_con()) {
roland@2683 3057 juint shift = t->get_con();
roland@2683 3058 if (shift > mask) { // Unsigned cmp
bharadwaj@4315 3059 n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
roland@2683 3060 }
roland@2683 3061 } else {
roland@2683 3062 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
bharadwaj@4315 3063 Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
roland@2683 3064 n->set_req(2, shift);
roland@2683 3065 }
roland@2683 3066 }
roland@2683 3067 if (in2->outcnt() == 0) { // Remove dead node
bharadwaj@4315 3068 in2->disconnect_inputs(NULL, this);
roland@2683 3069 }
roland@2683 3070 }
roland@2683 3071 break;
roland@4694 3072 case Op_MemBarStoreStore:
kvn@5110 3073 case Op_MemBarRelease:
roland@4694 3074 // Break the link with AllocateNode: it is no longer useful and
roland@4694 3075 // confuses register allocation.
roland@4694 3076 if (n->req() > MemBarNode::Precedent) {
roland@4694 3077 n->set_req(MemBarNode::Precedent, top());
roland@4694 3078 }
roland@4694 3079 break;
duke@435 3080 default:
duke@435 3081 assert( !n->is_Call(), "" );
duke@435 3082 assert( !n->is_Mem(), "" );
duke@435 3083 break;
duke@435 3084 }
never@562 3085
never@562 3086 // Collect CFG split points
never@562 3087 if (n->is_MultiBranch())
kvn@1294 3088 frc._tests.push(n);
duke@435 3089 }
duke@435 3090
duke@435 3091 //------------------------------final_graph_reshaping_walk---------------------
duke@435 3092 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 3093 // requires that the walk visits a node's inputs before visiting the node.
bharadwaj@4315 3094 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 3095 ResourceArea *area = Thread::current()->resource_area();
kvn@766 3096 Unique_Node_List sfpt(area);
kvn@766 3097
kvn@1294 3098 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 3099 uint cnt = root->req();
duke@435 3100 Node *n = root;
duke@435 3101 uint i = 0;
duke@435 3102 while (true) {
duke@435 3103 if (i < cnt) {
duke@435 3104 // Place all non-visited non-null inputs onto stack
duke@435 3105 Node* m = n->in(i);
duke@435 3106 ++i;
kvn@1294 3107 if (m != NULL && !frc._visited.test_set(m->_idx)) {
roland@6723 3108 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
roland@6723 3109 // compute worst case interpreter size in case of a deoptimization
roland@6723 3110 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
roland@6723 3111
kvn@766 3112 sfpt.push(m);
roland@6723 3113 }
duke@435 3114 cnt = m->req();
duke@435 3115 nstack.push(n, i); // put on stack parent and next input's index
duke@435 3116 n = m;
duke@435 3117 i = 0;
duke@435 3118 }
duke@435 3119 } else {
duke@435 3120 // Now do post-visit work
kvn@1294 3121 final_graph_reshaping_impl( n, frc );
duke@435 3122 if (nstack.is_empty())
duke@435 3123 break; // finished
duke@435 3124 n = nstack.node(); // Get node from stack
duke@435 3125 cnt = n->req();
duke@435 3126 i = nstack.index();
duke@435 3127 nstack.pop(); // Shift to the next node on stack
duke@435 3128 }
duke@435 3129 }
kvn@766 3130
kvn@1930 3131 // Skip next transformation if compressed oops are not used.
roland@4159 3132 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
ehelin@5694 3133 (!UseCompressedOops && !UseCompressedClassPointers))
kvn@1930 3134 return;
kvn@1930 3135
roland@4159 3136 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
kvn@766 3137 // It could be done for an uncommon traps or any safepoints/calls
roland@4159 3138 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
kvn@766 3139 while (sfpt.size() > 0) {
kvn@766 3140 n = sfpt.pop();
kvn@766 3141 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 3142 assert(jvms != NULL, "sanity");
kvn@766 3143 int start = jvms->debug_start();
kvn@766 3144 int end = n->req();
kvn@766 3145 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 3146 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 3147 for (int j = start; j < end; j++) {
kvn@766 3148 Node* in = n->in(j);
roland@4159 3149 if (in->is_DecodeNarrowPtr()) {
kvn@766 3150 bool safe_to_skip = true;
kvn@766 3151 if (!is_uncommon ) {
kvn@766 3152 // Is it safe to skip?
kvn@766 3153 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 3154 Node* u = in->raw_out(i);
kvn@766 3155 if (!u->is_SafePoint() ||
kvn@766 3156 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 3157 safe_to_skip = false;
kvn@766 3158 }
kvn@766 3159 }
kvn@766 3160 }
kvn@766 3161 if (safe_to_skip) {
kvn@766 3162 n->set_req(j, in->in(1));
kvn@766 3163 }
kvn@766 3164 if (in->outcnt() == 0) {
bharadwaj@4315 3165 in->disconnect_inputs(NULL, this);
kvn@766 3166 }
kvn@766 3167 }
kvn@766 3168 }
kvn@766 3169 }
duke@435 3170 }
duke@435 3171
duke@435 3172 //------------------------------final_graph_reshaping--------------------------
duke@435 3173 // Final Graph Reshaping.
duke@435 3174 //
duke@435 3175 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 3176 // and not commoned up and forced early. Must come after regular
duke@435 3177 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 3178 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 3179 // Remove Opaque nodes.
duke@435 3180 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 3181 // Intel update-in-place two-address operations and better register usage
duke@435 3182 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 3183 // calls canonicalizing them back.
duke@435 3184 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 3185 // and call sites. On Intel, we can get correct rounding either by
duke@435 3186 // forcing singles to memory (requires extra stores and loads after each
duke@435 3187 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 3188 // clearing the mode bit around call sites). The mode bit is only used
duke@435 3189 // if the relative frequency of single FP ops to calls is low enough.
duke@435 3190 // This is a key transform for SPEC mpeg_audio.
duke@435 3191 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 3192 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 3193 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 3194 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 3195 // Detection is by looking for IfNodes where only 1 projection is
duke@435 3196 // reachable from below or CatchNodes missing some targets.
duke@435 3197 // (5) Assert for insane oop offsets in debug mode.
duke@435 3198
duke@435 3199 bool Compile::final_graph_reshaping() {
duke@435 3200 // an infinite loop may have been eliminated by the optimizer,
duke@435 3201 // in which case the graph will be empty.
duke@435 3202 if (root()->req() == 1) {
duke@435 3203 record_method_not_compilable("trivial infinite loop");
duke@435 3204 return true;
duke@435 3205 }
duke@435 3206
roland@4589 3207 // Expensive nodes have their control input set to prevent the GVN
roland@4589 3208 // from freely commoning them. There's no GVN beyond this point so
roland@4589 3209 // no need to keep the control input. We want the expensive nodes to
roland@4589 3210 // be freely moved to the least frequent code path by gcm.
roland@4589 3211 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
roland@4589 3212 for (int i = 0; i < expensive_count(); i++) {
roland@4589 3213 _expensive_nodes->at(i)->set_req(0, NULL);
roland@4589 3214 }
roland@4589 3215
kvn@1294 3216 Final_Reshape_Counts frc;
duke@435 3217
duke@435 3218 // Visit everybody reachable!
duke@435 3219 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 3220 Node_Stack nstack(unique() >> 1);
kvn@1294 3221 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 3222
duke@435 3223 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 3224 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 3225 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 3226 // Get number of CFG targets.
duke@435 3227 // Note that PCTables include exception targets after calls.
never@562 3228 uint required_outcnt = n->required_outcnt();
never@562 3229 if (n->outcnt() != required_outcnt) {
duke@435 3230 // Check for a few special cases. Rethrow Nodes never take the
duke@435 3231 // 'fall-thru' path, so expected kids is 1 less.
duke@435 3232 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 3233 if (n->in(0)->in(0)->is_Call()) {
duke@435 3234 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 3235 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 3236 required_outcnt--; // Rethrow always has 1 less kid
duke@435 3237 } else if (call->req() > TypeFunc::Parms &&
duke@435 3238 call->is_CallDynamicJava()) {
duke@435 3239 // Check for null receiver. In such case, the optimizer has
duke@435 3240 // detected that the virtual call will always result in a null
duke@435 3241 // pointer exception. The fall-through projection of this CatchNode
duke@435 3242 // will not be populated.
duke@435 3243 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 3244 if (arg0->is_Type() &&
duke@435 3245 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 3246 required_outcnt--;
duke@435 3247 }
duke@435 3248 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 3249 call->req() > TypeFunc::Parms+1 &&
duke@435 3250 call->is_CallStaticJava()) {
duke@435 3251 // Check for negative array length. In such case, the optimizer has
duke@435 3252 // detected that the allocation attempt will always result in an
duke@435 3253 // exception. There is no fall-through projection of this CatchNode .
duke@435 3254 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 3255 if (arg1->is_Type() &&
duke@435 3256 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 3257 required_outcnt--;
duke@435 3258 }
duke@435 3259 }
duke@435 3260 }
duke@435 3261 }
never@562 3262 // Recheck with a better notion of 'required_outcnt'
never@562 3263 if (n->outcnt() != required_outcnt) {
duke@435 3264 record_method_not_compilable("malformed control flow");
duke@435 3265 return true; // Not all targets reachable!
duke@435 3266 }
duke@435 3267 }
duke@435 3268 // Check that I actually visited all kids. Unreached kids
duke@435 3269 // must be infinite loops.
duke@435 3270 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 3271 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 3272 record_method_not_compilable("infinite loop");
duke@435 3273 return true; // Found unvisited kid; must be unreach
duke@435 3274 }
duke@435 3275 }
duke@435 3276
duke@435 3277 // If original bytecodes contained a mixture of floats and doubles
duke@435 3278 // check if the optimizer has made it homogenous, item (3).
never@1364 3279 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 3280 frc.get_float_count() > 32 &&
kvn@1294 3281 frc.get_double_count() == 0 &&
kvn@1294 3282 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 3283 set_24_bit_selection_and_mode( false, true );
duke@435 3284 }
duke@435 3285
kvn@1294 3286 set_java_calls(frc.get_java_call_count());
kvn@1294 3287 set_inner_loops(frc.get_inner_loop_count());
duke@435 3288
duke@435 3289 // No infinite loops, no reason to bail out.
duke@435 3290 return false;
duke@435 3291 }
duke@435 3292
duke@435 3293 //-----------------------------too_many_traps----------------------------------
duke@435 3294 // Report if there are too many traps at the current method and bci.
duke@435 3295 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 3296 bool Compile::too_many_traps(ciMethod* method,
duke@435 3297 int bci,
duke@435 3298 Deoptimization::DeoptReason reason) {
duke@435 3299 ciMethodData* md = method->method_data();
duke@435 3300 if (md->is_empty()) {
duke@435 3301 // Assume the trap has not occurred, or that it occurred only
duke@435 3302 // because of a transient condition during start-up in the interpreter.
duke@435 3303 return false;
duke@435 3304 }
roland@6377 3305 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
roland@6377 3306 if (md->has_trap_at(bci, m, reason) != 0) {
duke@435 3307 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 3308 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3309 // assume the worst.
duke@435 3310 if (log())
duke@435 3311 log()->elem("observe trap='%s' count='%d'",
duke@435 3312 Deoptimization::trap_reason_name(reason),
duke@435 3313 md->trap_count(reason));
duke@435 3314 return true;
duke@435 3315 } else {
duke@435 3316 // Ignore method/bci and see if there have been too many globally.
duke@435 3317 return too_many_traps(reason, md);
duke@435 3318 }
duke@435 3319 }
duke@435 3320
duke@435 3321 // Less-accurate variant which does not require a method and bci.
duke@435 3322 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 3323 ciMethodData* logmd) {
roland@6377 3324 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
duke@435 3325 // Too many traps globally.
duke@435 3326 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 3327 if (log()) {
duke@435 3328 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 3329 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 3330 Deoptimization::trap_reason_name(reason),
duke@435 3331 mcount, trap_count(reason));
duke@435 3332 }
duke@435 3333 return true;
duke@435 3334 } else {
duke@435 3335 // The coast is clear.
duke@435 3336 return false;
duke@435 3337 }
duke@435 3338 }
duke@435 3339
duke@435 3340 //--------------------------too_many_recompiles--------------------------------
duke@435 3341 // Report if there are too many recompiles at the current method and bci.
duke@435 3342 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 3343 // Is not eager to return true, since this will cause the compiler to use
duke@435 3344 // Action_none for a trap point, to avoid too many recompilations.
duke@435 3345 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 3346 int bci,
duke@435 3347 Deoptimization::DeoptReason reason) {
duke@435 3348 ciMethodData* md = method->method_data();
duke@435 3349 if (md->is_empty()) {
duke@435 3350 // Assume the trap has not occurred, or that it occurred only
duke@435 3351 // because of a transient condition during start-up in the interpreter.
duke@435 3352 return false;
duke@435 3353 }
duke@435 3354 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 3355 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 3356 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 3357 Deoptimization::DeoptReason per_bc_reason
duke@435 3358 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
roland@6377 3359 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
duke@435 3360 if ((per_bc_reason == Deoptimization::Reason_none
roland@6377 3361 || md->has_trap_at(bci, m, reason) != 0)
duke@435 3362 // The trap frequency measure we care about is the recompile count:
roland@6377 3363 && md->trap_recompiled_at(bci, m)
duke@435 3364 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 3365 // Do not emit a trap here if it has already caused recompilations.
duke@435 3366 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3367 // assume the worst.
duke@435 3368 if (log())
duke@435 3369 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 3370 Deoptimization::trap_reason_name(reason),
duke@435 3371 md->trap_count(reason),
duke@435 3372 md->overflow_recompile_count());
duke@435 3373 return true;
duke@435 3374 } else if (trap_count(reason) != 0
duke@435 3375 && decompile_count() >= m_cutoff) {
duke@435 3376 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 3377 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 3378 if (log())
duke@435 3379 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 3380 Deoptimization::trap_reason_name(reason),
duke@435 3381 md->trap_count(reason), trap_count(reason),
duke@435 3382 md->decompile_count(), decompile_count());
duke@435 3383 return true;
duke@435 3384 } else {
duke@435 3385 // The coast is clear.
duke@435 3386 return false;
duke@435 3387 }
duke@435 3388 }
duke@435 3389
goetz@6490 3390 // Compute when not to trap. Used by matching trap based nodes and
goetz@6490 3391 // NullCheck optimization.
goetz@6490 3392 void Compile::set_allowed_deopt_reasons() {
goetz@6490 3393 _allowed_reasons = 0;
goetz@6490 3394 if (is_method_compilation()) {
goetz@6490 3395 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
goetz@6490 3396 assert(rs < BitsPerInt, "recode bit map");
goetz@6490 3397 if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
goetz@6490 3398 _allowed_reasons |= nth_bit(rs);
goetz@6490 3399 }
goetz@6490 3400 }
goetz@6490 3401 }
goetz@6490 3402 }
duke@435 3403
duke@435 3404 #ifndef PRODUCT
duke@435 3405 //------------------------------verify_graph_edges---------------------------
duke@435 3406 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 3407 // between Use-Def edges and Def-Use edges in the graph.
duke@435 3408 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 3409 if (VerifyGraphEdges) {
duke@435 3410 ResourceArea *area = Thread::current()->resource_area();
duke@435 3411 Unique_Node_List visited(area);
duke@435 3412 // Call recursive graph walk to check edges
duke@435 3413 _root->verify_edges(visited);
duke@435 3414 if (no_dead_code) {
duke@435 3415 // Now make sure that no visited node is used by an unvisited node.
duke@435 3416 bool dead_nodes = 0;
duke@435 3417 Unique_Node_List checked(area);
duke@435 3418 while (visited.size() > 0) {
duke@435 3419 Node* n = visited.pop();
duke@435 3420 checked.push(n);
duke@435 3421 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 3422 Node* use = n->raw_out(i);
duke@435 3423 if (checked.member(use)) continue; // already checked
duke@435 3424 if (visited.member(use)) continue; // already in the graph
duke@435 3425 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 3426 // At this point, we have found a dead node which is DU-reachable.
duke@435 3427 if (dead_nodes++ == 0)
duke@435 3428 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 3429 use->dump(2);
duke@435 3430 tty->print_cr("---");
duke@435 3431 checked.push(use); // No repeats; pretend it is now checked.
duke@435 3432 }
duke@435 3433 }
duke@435 3434 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 3435 }
duke@435 3436 }
duke@435 3437 }
iveresov@6070 3438
iveresov@6070 3439 // Verify GC barriers consistency
iveresov@6070 3440 // Currently supported:
iveresov@6070 3441 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
iveresov@6070 3442 void Compile::verify_barriers() {
iveresov@6070 3443 if (UseG1GC) {
iveresov@6070 3444 // Verify G1 pre-barriers
iveresov@6070 3445 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
iveresov@6070 3446
iveresov@6070 3447 ResourceArea *area = Thread::current()->resource_area();
iveresov@6070 3448 Unique_Node_List visited(area);
iveresov@6070 3449 Node_List worklist(area);
iveresov@6070 3450 // We're going to walk control flow backwards starting from the Root
iveresov@6070 3451 worklist.push(_root);
iveresov@6070 3452 while (worklist.size() > 0) {
iveresov@6070 3453 Node* x = worklist.pop();
iveresov@6070 3454 if (x == NULL || x == top()) continue;
iveresov@6070 3455 if (visited.member(x)) {
iveresov@6070 3456 continue;
iveresov@6070 3457 } else {
iveresov@6070 3458 visited.push(x);
iveresov@6070 3459 }
iveresov@6070 3460
iveresov@6070 3461 if (x->is_Region()) {
iveresov@6070 3462 for (uint i = 1; i < x->req(); i++) {
iveresov@6070 3463 worklist.push(x->in(i));
iveresov@6070 3464 }
iveresov@6070 3465 } else {
iveresov@6070 3466 worklist.push(x->in(0));
iveresov@6070 3467 // We are looking for the pattern:
iveresov@6070 3468 // /->ThreadLocal
iveresov@6070 3469 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
iveresov@6070 3470 // \->ConI(0)
iveresov@6070 3471 // We want to verify that the If and the LoadB have the same control
iveresov@6070 3472 // See GraphKit::g1_write_barrier_pre()
iveresov@6070 3473 if (x->is_If()) {
iveresov@6070 3474 IfNode *iff = x->as_If();
iveresov@6070 3475 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
iveresov@6070 3476 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
iveresov@6070 3477 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
iveresov@6070 3478 && cmp->in(1)->is_Load()) {
iveresov@6070 3479 LoadNode* load = cmp->in(1)->as_Load();
iveresov@6070 3480 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
iveresov@6070 3481 && load->in(2)->in(3)->is_Con()
iveresov@6070 3482 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
iveresov@6070 3483
iveresov@6070 3484 Node* if_ctrl = iff->in(0);
iveresov@6070 3485 Node* load_ctrl = load->in(0);
iveresov@6070 3486
iveresov@6070 3487 if (if_ctrl != load_ctrl) {
iveresov@6070 3488 // Skip possible CProj->NeverBranch in infinite loops
iveresov@6070 3489 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
iveresov@6070 3490 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
iveresov@6070 3491 if_ctrl = if_ctrl->in(0)->in(0);
iveresov@6070 3492 }
iveresov@6070 3493 }
iveresov@6070 3494 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
iveresov@6070 3495 }
iveresov@6070 3496 }
iveresov@6070 3497 }
iveresov@6070 3498 }
iveresov@6070 3499 }
iveresov@6070 3500 }
iveresov@6070 3501 }
iveresov@6070 3502 }
iveresov@6070 3503
duke@435 3504 #endif
duke@435 3505
duke@435 3506 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 3507 // This is required because there is not quite a 1-1 relation between the
duke@435 3508 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 3509 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 3510 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 3511 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 3512 // by the logic in C2Compiler.
duke@435 3513 void Compile::record_failure(const char* reason) {
duke@435 3514 if (log() != NULL) {
duke@435 3515 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 3516 }
duke@435 3517 if (_failure_reason == NULL) {
duke@435 3518 // Record the first failure reason.
duke@435 3519 _failure_reason = reason;
duke@435 3520 }
sla@5237 3521
sla@5237 3522 EventCompilerFailure event;
sla@5237 3523 if (event.should_commit()) {
sla@5237 3524 event.set_compileID(Compile::compile_id());
sla@5237 3525 event.set_failure(reason);
sla@5237 3526 event.commit();
sla@5237 3527 }
sla@5237 3528
never@657 3529 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
sla@5237 3530 C->print_method(PHASE_FAILURE);
never@657 3531 }
duke@435 3532 _root = NULL; // flush the graph, too
duke@435 3533 }
duke@435 3534
duke@435 3535 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
bharadwaj@4315 3536 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
bharadwaj@4315 3537 _phase_name(name), _dolog(dolog)
duke@435 3538 {
duke@435 3539 if (dolog) {
duke@435 3540 C = Compile::current();
duke@435 3541 _log = C->log();
duke@435 3542 } else {
duke@435 3543 C = NULL;
duke@435 3544 _log = NULL;
duke@435 3545 }
duke@435 3546 if (_log != NULL) {
bharadwaj@4315 3547 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3548 _log->stamp();
duke@435 3549 _log->end_head();
duke@435 3550 }
duke@435 3551 }
duke@435 3552
duke@435 3553 Compile::TracePhase::~TracePhase() {
bharadwaj@4315 3554
bharadwaj@4315 3555 C = Compile::current();
bharadwaj@4315 3556 if (_dolog) {
bharadwaj@4315 3557 _log = C->log();
bharadwaj@4315 3558 } else {
bharadwaj@4315 3559 _log = NULL;
bharadwaj@4315 3560 }
bharadwaj@4315 3561
bharadwaj@4315 3562 #ifdef ASSERT
bharadwaj@4315 3563 if (PrintIdealNodeCount) {
bharadwaj@4315 3564 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
bharadwaj@4315 3565 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
bharadwaj@4315 3566 }
bharadwaj@4315 3567
bharadwaj@4315 3568 if (VerifyIdealNodeCount) {
bharadwaj@4315 3569 Compile::current()->print_missing_nodes();
bharadwaj@4315 3570 }
bharadwaj@4315 3571 #endif
bharadwaj@4315 3572
duke@435 3573 if (_log != NULL) {
bharadwaj@4315 3574 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3575 }
duke@435 3576 }
twisti@2350 3577
twisti@2350 3578 //=============================================================================
twisti@2350 3579 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3580 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3581 if (type() != other.type() ) return false;
twisti@2350 3582 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3583 // For floating point values we compare the bit pattern.
twisti@2350 3584 switch (type()) {
coleenp@4037 3585 case T_FLOAT: return (_v._value.i == other._v._value.i);
twisti@2350 3586 case T_LONG:
coleenp@4037 3587 case T_DOUBLE: return (_v._value.j == other._v._value.j);
twisti@2350 3588 case T_OBJECT:
coleenp@4037 3589 case T_ADDRESS: return (_v._value.l == other._v._value.l);
coleenp@4037 3590 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
kvn@4199 3591 case T_METADATA: return (_v._metadata == other._v._metadata);
twisti@2350 3592 default: ShouldNotReachHere();
twisti@2350 3593 }
twisti@2350 3594 return false;
twisti@2350 3595 }
twisti@2350 3596
twisti@2350 3597 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3598 switch (t) {
twisti@2350 3599 case T_LONG: return sizeof(jlong );
twisti@2350 3600 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3601 case T_DOUBLE: return sizeof(jdouble);
coleenp@4037 3602 case T_METADATA: return sizeof(Metadata*);
twisti@2350 3603 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3604 // need an internal word relocation.
twisti@2350 3605 case T_VOID:
twisti@2350 3606 case T_ADDRESS:
twisti@2350 3607 case T_OBJECT: return sizeof(jobject);
twisti@2350 3608 }
twisti@2350 3609
twisti@2350 3610 ShouldNotReachHere();
twisti@2350 3611 return -1;
twisti@2350 3612 }
twisti@2350 3613
twisti@3310 3614 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3615 // sort descending
twisti@3310 3616 if (a->freq() > b->freq()) return -1;
twisti@3310 3617 if (a->freq() < b->freq()) return 1;
twisti@3310 3618 return 0;
twisti@3310 3619 }
twisti@3310 3620
twisti@2350 3621 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3622 // First, sort the array by frequencies.
twisti@3310 3623 _constants.sort(qsort_comparator);
twisti@3310 3624
twisti@3310 3625 #ifdef ASSERT
twisti@3310 3626 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3627 // array (they have a negative frequency).
twisti@3310 3628 bool found_void = false;
twisti@3310 3629 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3630 Constant con = _constants.at(i);
twisti@3310 3631 if (con.type() == T_VOID)
twisti@3310 3632 found_void = true; // jump-tables
twisti@3310 3633 else
twisti@3310 3634 assert(!found_void, "wrong sorting");
twisti@3310 3635 }
twisti@3310 3636 #endif
twisti@3310 3637
twisti@3310 3638 int offset = 0;
twisti@3310 3639 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3640 Constant* con = _constants.adr_at(i);
twisti@3310 3641
twisti@3310 3642 // Align offset for type.
twisti@3310 3643 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3644 offset = align_size_up(offset, typesize);
twisti@3310 3645 con->set_offset(offset); // set constant's offset
twisti@3310 3646
twisti@3310 3647 if (con->type() == T_VOID) {
twisti@3310 3648 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3649 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3650 } else {
twisti@3310 3651 offset = offset + typesize;
twisti@2350 3652 }
twisti@2350 3653 }
twisti@2350 3654
twisti@2350 3655 // Align size up to the next section start (which is insts; see
twisti@2350 3656 // CodeBuffer::align_at_start).
twisti@2350 3657 assert(_size == -1, "already set?");
twisti@3310 3658 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3659 }
twisti@2350 3660
twisti@2350 3661 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3662 MacroAssembler _masm(&cb);
twisti@3310 3663 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3664 Constant con = _constants.at(i);
twisti@3310 3665 address constant_addr;
twisti@3310 3666 switch (con.type()) {
twisti@3310 3667 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3668 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3669 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3670 case T_OBJECT: {
twisti@3310 3671 jobject obj = con.get_jobject();
twisti@3310 3672 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3673 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3674 break;
twisti@3310 3675 }
twisti@3310 3676 case T_ADDRESS: {
twisti@3310 3677 address addr = (address) con.get_jobject();
twisti@3310 3678 constant_addr = _masm.address_constant(addr);
twisti@3310 3679 break;
twisti@3310 3680 }
twisti@3310 3681 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3682 // need an internal word relocation.
twisti@3310 3683 case T_VOID: {
twisti@3310 3684 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3685 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3686 // filled in later in fill_jump_table.
twisti@3310 3687 address dummy = (address) n;
twisti@3310 3688 constant_addr = _masm.address_constant(dummy);
twisti@3310 3689 // Expand jump-table
twisti@3310 3690 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3691 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3692 assert(temp_addr, "consts section too small");
twisti@2350 3693 }
twisti@3310 3694 break;
twisti@2350 3695 }
coleenp@4037 3696 case T_METADATA: {
coleenp@4037 3697 Metadata* obj = con.get_metadata();
coleenp@4037 3698 int metadata_index = _masm.oop_recorder()->find_index(obj);
coleenp@4037 3699 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
coleenp@4037 3700 break;
coleenp@4037 3701 }
twisti@3310 3702 default: ShouldNotReachHere();
twisti@3310 3703 }
twisti@3310 3704 assert(constant_addr, "consts section too small");
drchase@6680 3705 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
drchase@6680 3706 err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
twisti@2350 3707 }
twisti@2350 3708 }
twisti@2350 3709
twisti@2350 3710 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3711 int idx = _constants.find(con);
twisti@2350 3712 assert(idx != -1, "constant must be in constant table");
twisti@2350 3713 int offset = _constants.at(idx).offset();
twisti@2350 3714 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3715 return offset;
twisti@2350 3716 }
twisti@2350 3717
twisti@2350 3718 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3719 if (con.can_be_reused()) {
twisti@2350 3720 int idx = _constants.find(con);
twisti@2350 3721 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3722 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3723 return;
twisti@2350 3724 }
twisti@2350 3725 }
twisti@2350 3726 (void) _constants.append(con);
twisti@2350 3727 }
twisti@2350 3728
twisti@3310 3729 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
adlertz@5509 3730 Block* b = Compile::current()->cfg()->get_block_for_node(n);
twisti@3310 3731 Constant con(type, value, b->_freq);
twisti@2350 3732 add(con);
twisti@2350 3733 return con;
twisti@2350 3734 }
twisti@2350 3735
coleenp@4037 3736 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
coleenp@4037 3737 Constant con(metadata);
coleenp@4037 3738 add(con);
coleenp@4037 3739 return con;
coleenp@4037 3740 }
coleenp@4037 3741
twisti@3310 3742 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3743 jvalue value;
twisti@2350 3744 BasicType type = oper->type()->basic_type();
twisti@2350 3745 switch (type) {
twisti@2350 3746 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3747 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3748 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3749 case T_OBJECT:
twisti@2350 3750 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
coleenp@4037 3751 case T_METADATA: return add((Metadata*)oper->constant()); break;
coleenp@4037 3752 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
twisti@2350 3753 }
twisti@3310 3754 return add(n, type, value);
twisti@2350 3755 }
twisti@2350 3756
twisti@3310 3757 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3758 jvalue value;
twisti@2350 3759 // We can use the node pointer here to identify the right jump-table
twisti@2350 3760 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3761 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3762 // MachNode pointers do not change anymore).
twisti@2350 3763 value.l = (jobject) n;
twisti@3310 3764 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3765 add(con);
twisti@2350 3766 return con;
twisti@2350 3767 }
twisti@2350 3768
twisti@2350 3769 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3770 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3771 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3772
twisti@2350 3773 assert(labels.is_nonempty(), "must be");
kvn@3971 3774 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3775
twisti@2350 3776 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3777 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3778 // to get the plain offset into the constant table.
twisti@2350 3779 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3780
twisti@2350 3781 MacroAssembler _masm(&cb);
twisti@2350 3782 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3783
twisti@3310 3784 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3785 address* constant_addr = &jump_table_base[i];
drchase@6680 3786 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
twisti@2350 3787 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3788 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3789 }
twisti@2350 3790 }
roland@4357 3791
roland@4357 3792 void Compile::dump_inlining() {
kvn@5763 3793 if (print_inlining() || print_intrinsics()) {
roland@4409 3794 // Print inlining message for candidates that we couldn't inline
roland@4409 3795 // for lack of space or non constant receiver
roland@4409 3796 for (int i = 0; i < _late_inlines.length(); i++) {
roland@4409 3797 CallGenerator* cg = _late_inlines.at(i);
roland@4409 3798 cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
roland@4409 3799 }
roland@4409 3800 Unique_Node_List useful;
roland@4409 3801 useful.push(root());
roland@4409 3802 for (uint next = 0; next < useful.size(); ++next) {
roland@4409 3803 Node* n = useful.at(next);
roland@4409 3804 if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
roland@4409 3805 CallNode* call = n->as_Call();
roland@4409 3806 CallGenerator* cg = call->generator();
roland@4409 3807 cg->print_inlining_late("receiver not constant");
roland@4409 3808 }
roland@4409 3809 uint max = n->len();
roland@4409 3810 for ( uint i = 0; i < max; ++i ) {
roland@4409 3811 Node *m = n->in(i);
roland@4409 3812 if ( m == NULL ) continue;
roland@4409 3813 useful.push(m);
roland@4409 3814 }
roland@4409 3815 }
roland@4357 3816 for (int i = 0; i < _print_inlining_list->length(); i++) {
drchase@6680 3817 tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
roland@4357 3818 }
roland@4357 3819 }
roland@4357 3820 }
roland@4589 3821
kvn@6217 3822 // Dump inlining replay data to the stream.
kvn@6217 3823 // Don't change thread state and acquire any locks.
kvn@6217 3824 void Compile::dump_inline_data(outputStream* out) {
kvn@6217 3825 InlineTree* inl_tree = ilt();
kvn@6217 3826 if (inl_tree != NULL) {
kvn@6217 3827 out->print(" inline %d", inl_tree->count());
kvn@6217 3828 inl_tree->dump_replay_data(out);
kvn@6217 3829 }
kvn@6217 3830 }
kvn@6217 3831
roland@4589 3832 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
roland@4589 3833 if (n1->Opcode() < n2->Opcode()) return -1;
roland@4589 3834 else if (n1->Opcode() > n2->Opcode()) return 1;
roland@4589 3835
roland@4589 3836 assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
roland@4589 3837 for (uint i = 1; i < n1->req(); i++) {
roland@4589 3838 if (n1->in(i) < n2->in(i)) return -1;
roland@4589 3839 else if (n1->in(i) > n2->in(i)) return 1;
roland@4589 3840 }
roland@4589 3841
roland@4589 3842 return 0;
roland@4589 3843 }
roland@4589 3844
roland@4589 3845 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
roland@4589 3846 Node* n1 = *n1p;
roland@4589 3847 Node* n2 = *n2p;
roland@4589 3848
roland@4589 3849 return cmp_expensive_nodes(n1, n2);
roland@4589 3850 }
roland@4589 3851
roland@4589 3852 void Compile::sort_expensive_nodes() {
roland@4589 3853 if (!expensive_nodes_sorted()) {
roland@4589 3854 _expensive_nodes->sort(cmp_expensive_nodes);
roland@4589 3855 }
roland@4589 3856 }
roland@4589 3857
roland@4589 3858 bool Compile::expensive_nodes_sorted() const {
roland@4589 3859 for (int i = 1; i < _expensive_nodes->length(); i++) {
roland@4589 3860 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
roland@4589 3861 return false;
roland@4589 3862 }
roland@4589 3863 }
roland@4589 3864 return true;
roland@4589 3865 }
roland@4589 3866
roland@4589 3867 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3868 if (_expensive_nodes->length() == 0) {
roland@4589 3869 return false;
roland@4589 3870 }
roland@4589 3871
roland@4589 3872 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3873
roland@4589 3874 // Take this opportunity to remove dead nodes from the list
roland@4589 3875 int j = 0;
roland@4589 3876 for (int i = 0; i < _expensive_nodes->length(); i++) {
roland@4589 3877 Node* n = _expensive_nodes->at(i);
roland@4589 3878 if (!n->is_unreachable(igvn)) {
roland@4589 3879 assert(n->is_expensive(), "should be expensive");
roland@4589 3880 _expensive_nodes->at_put(j, n);
roland@4589 3881 j++;
roland@4589 3882 }
roland@4589 3883 }
roland@4589 3884 _expensive_nodes->trunc_to(j);
roland@4589 3885
roland@4589 3886 // Then sort the list so that similar nodes are next to each other
roland@4589 3887 // and check for at least two nodes of identical kind with same data
roland@4589 3888 // inputs.
roland@4589 3889 sort_expensive_nodes();
roland@4589 3890
roland@4589 3891 for (int i = 0; i < _expensive_nodes->length()-1; i++) {
roland@4589 3892 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
roland@4589 3893 return true;
roland@4589 3894 }
roland@4589 3895 }
roland@4589 3896
roland@4589 3897 return false;
roland@4589 3898 }
roland@4589 3899
roland@4589 3900 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3901 if (_expensive_nodes->length() == 0) {
roland@4589 3902 return;
roland@4589 3903 }
roland@4589 3904
roland@4589 3905 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3906
roland@4589 3907 // Sort to bring similar nodes next to each other and clear the
roland@4589 3908 // control input of nodes for which there's only a single copy.
roland@4589 3909 sort_expensive_nodes();
roland@4589 3910
roland@4589 3911 int j = 0;
roland@4589 3912 int identical = 0;
roland@4589 3913 int i = 0;
roland@4589 3914 for (; i < _expensive_nodes->length()-1; i++) {
roland@4589 3915 assert(j <= i, "can't write beyond current index");
roland@4589 3916 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
roland@4589 3917 identical++;
roland@4589 3918 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3919 continue;
roland@4589 3920 }
roland@4589 3921 if (identical > 0) {
roland@4589 3922 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3923 identical = 0;
roland@4589 3924 } else {
roland@4589 3925 Node* n = _expensive_nodes->at(i);
roland@4589 3926 igvn.hash_delete(n);
roland@4589 3927 n->set_req(0, NULL);
roland@4589 3928 igvn.hash_insert(n);
roland@4589 3929 }
roland@4589 3930 }
roland@4589 3931 if (identical > 0) {
roland@4589 3932 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3933 } else if (_expensive_nodes->length() >= 1) {
roland@4589 3934 Node* n = _expensive_nodes->at(i);
roland@4589 3935 igvn.hash_delete(n);
roland@4589 3936 n->set_req(0, NULL);
roland@4589 3937 igvn.hash_insert(n);
roland@4589 3938 }
roland@4589 3939 _expensive_nodes->trunc_to(j);
roland@4589 3940 }
roland@4589 3941
roland@4589 3942 void Compile::add_expensive_node(Node * n) {
roland@4589 3943 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
roland@4589 3944 assert(n->is_expensive(), "expensive nodes with non-null control here only");
roland@4589 3945 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
roland@4589 3946 if (OptimizeExpensiveOps) {
roland@4589 3947 _expensive_nodes->append(n);
roland@4589 3948 } else {
roland@4589 3949 // Clear control input and let IGVN optimize expensive nodes if
roland@4589 3950 // OptimizeExpensiveOps is off.
roland@4589 3951 n->set_req(0, NULL);
roland@4589 3952 }
roland@4589 3953 }
shade@4691 3954
roland@5991 3955 /**
roland@5991 3956 * Remove the speculative part of types and clean up the graph
roland@5991 3957 */
roland@5991 3958 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
roland@5991 3959 if (UseTypeSpeculation) {
roland@5991 3960 Unique_Node_List worklist;
roland@5991 3961 worklist.push(root());
roland@5991 3962 int modified = 0;
roland@5991 3963 // Go over all type nodes that carry a speculative type, drop the
roland@5991 3964 // speculative part of the type and enqueue the node for an igvn
roland@5991 3965 // which may optimize it out.
roland@5991 3966 for (uint next = 0; next < worklist.size(); ++next) {
roland@5991 3967 Node *n = worklist.at(next);
roland@6313 3968 if (n->is_Type()) {
roland@5991 3969 TypeNode* tn = n->as_Type();
roland@6313 3970 const Type* t = tn->type();
roland@6313 3971 const Type* t_no_spec = t->remove_speculative();
roland@6313 3972 if (t_no_spec != t) {
roland@6313 3973 bool in_hash = igvn.hash_delete(n);
roland@6313 3974 assert(in_hash, "node should be in igvn hash table");
roland@6313 3975 tn->set_type(t_no_spec);
roland@6313 3976 igvn.hash_insert(n);
roland@6313 3977 igvn._worklist.push(n); // give it a chance to go away
roland@6313 3978 modified++;
roland@6313 3979 }
roland@5991 3980 }
roland@5991 3981 uint max = n->len();
roland@5991 3982 for( uint i = 0; i < max; ++i ) {
roland@5991 3983 Node *m = n->in(i);
roland@5991 3984 if (not_a_node(m)) continue;
roland@5991 3985 worklist.push(m);
roland@5991 3986 }
roland@5991 3987 }
roland@5991 3988 // Drop the speculative part of all types in the igvn's type table
roland@5991 3989 igvn.remove_speculative_types();
roland@5991 3990 if (modified > 0) {
roland@5991 3991 igvn.optimize();
roland@5991 3992 }
roland@6313 3993 #ifdef ASSERT
roland@6313 3994 // Verify that after the IGVN is over no speculative type has resurfaced
roland@6313 3995 worklist.clear();
roland@6313 3996 worklist.push(root());
roland@6313 3997 for (uint next = 0; next < worklist.size(); ++next) {
roland@6313 3998 Node *n = worklist.at(next);
anoll@6638 3999 const Type* t = igvn.type_or_null(n);
anoll@6638 4000 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
roland@6313 4001 if (n->is_Type()) {
roland@6313 4002 t = n->as_Type()->type();
roland@6313 4003 assert(t == t->remove_speculative(), "no more speculative types");
roland@6313 4004 }
roland@6313 4005 uint max = n->len();
roland@6313 4006 for( uint i = 0; i < max; ++i ) {
roland@6313 4007 Node *m = n->in(i);
roland@6313 4008 if (not_a_node(m)) continue;
roland@6313 4009 worklist.push(m);
roland@6313 4010 }
roland@6313 4011 }
roland@6313 4012 igvn.check_no_speculative_types();
roland@6313 4013 #endif
roland@5991 4014 }
roland@5991 4015 }
roland@5991 4016
shade@4691 4017 // Auxiliary method to support randomized stressing/fuzzing.
shade@4691 4018 //
shade@4691 4019 // This method can be called the arbitrary number of times, with current count
shade@4691 4020 // as the argument. The logic allows selecting a single candidate from the
shade@4691 4021 // running list of candidates as follows:
shade@4691 4022 // int count = 0;
shade@4691 4023 // Cand* selected = null;
shade@4691 4024 // while(cand = cand->next()) {
shade@4691 4025 // if (randomized_select(++count)) {
shade@4691 4026 // selected = cand;
shade@4691 4027 // }
shade@4691 4028 // }
shade@4691 4029 //
shade@4691 4030 // Including count equalizes the chances any candidate is "selected".
shade@4691 4031 // This is useful when we don't have the complete list of candidates to choose
shade@4691 4032 // from uniformly. In this case, we need to adjust the randomicity of the
shade@4691 4033 // selection, or else we will end up biasing the selection towards the latter
shade@4691 4034 // candidates.
shade@4691 4035 //
shade@4691 4036 // Quick back-envelope calculation shows that for the list of n candidates
shade@4691 4037 // the equal probability for the candidate to persist as "best" can be
shade@4691 4038 // achieved by replacing it with "next" k-th candidate with the probability
shade@4691 4039 // of 1/k. It can be easily shown that by the end of the run, the
shade@4691 4040 // probability for any candidate is converged to 1/n, thus giving the
shade@4691 4041 // uniform distribution among all the candidates.
shade@4691 4042 //
shade@4691 4043 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
shade@4691 4044 #define RANDOMIZED_DOMAIN_POW 29
shade@4691 4045 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
shade@4691 4046 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
shade@4691 4047 bool Compile::randomized_select(int count) {
shade@4691 4048 assert(count > 0, "only positive");
shade@4691 4049 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
shade@4691 4050 }

mercurial