src/share/vm/opto/compile.cpp

Wed, 02 Jun 2010 09:49:32 -0700

author
kvn
date
Wed, 02 Jun 2010 09:49:32 -0700
changeset 1930
3657cb01ffc5
parent 1832
b4776199210f
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6954029: Improve implicit null check generation with compressed oops
Summary: Hoist DecodeN instruction above null check
Reviewed-by: never, twisti

duke@435 1 /*
twisti@1700 2 * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_compile.cpp.incl"
duke@435 27
duke@435 28 /// Support for intrinsics.
duke@435 29
duke@435 30 // Return the index at which m must be inserted (or already exists).
duke@435 31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 33 #ifdef ASSERT
duke@435 34 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 35 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 36 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 37 assert(cg1->method() != cg2->method()
duke@435 38 ? cg1->method() < cg2->method()
duke@435 39 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 40 "compiler intrinsics list must stay sorted");
duke@435 41 }
duke@435 42 #endif
duke@435 43 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 44 int lo = 0, hi = _intrinsics->length()-1;
duke@435 45 while (lo <= hi) {
duke@435 46 int mid = (uint)(hi + lo) / 2;
duke@435 47 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 48 if (m < mid_m) {
duke@435 49 hi = mid-1;
duke@435 50 } else if (m > mid_m) {
duke@435 51 lo = mid+1;
duke@435 52 } else {
duke@435 53 // look at minor sort key
duke@435 54 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 55 if (is_virtual < mid_virt) {
duke@435 56 hi = mid-1;
duke@435 57 } else if (is_virtual > mid_virt) {
duke@435 58 lo = mid+1;
duke@435 59 } else {
duke@435 60 return mid; // exact match
duke@435 61 }
duke@435 62 }
duke@435 63 }
duke@435 64 return lo; // inexact match
duke@435 65 }
duke@435 66
duke@435 67 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 68 if (_intrinsics == NULL) {
duke@435 69 _intrinsics = new GrowableArray<CallGenerator*>(60);
duke@435 70 }
duke@435 71 // This code is stolen from ciObjectFactory::insert.
duke@435 72 // Really, GrowableArray should have methods for
duke@435 73 // insert_at, remove_at, and binary_search.
duke@435 74 int len = _intrinsics->length();
duke@435 75 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 76 if (index == len) {
duke@435 77 _intrinsics->append(cg);
duke@435 78 } else {
duke@435 79 #ifdef ASSERT
duke@435 80 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 81 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 82 #endif
duke@435 83 _intrinsics->append(_intrinsics->at(len-1));
duke@435 84 int pos;
duke@435 85 for (pos = len-2; pos >= index; pos--) {
duke@435 86 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 87 }
duke@435 88 _intrinsics->at_put(index, cg);
duke@435 89 }
duke@435 90 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 91 }
duke@435 92
duke@435 93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 94 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 95 if (_intrinsics != NULL) {
duke@435 96 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 97 if (index < _intrinsics->length()
duke@435 98 && _intrinsics->at(index)->method() == m
duke@435 99 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 100 return _intrinsics->at(index);
duke@435 101 }
duke@435 102 }
duke@435 103 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 104 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 105 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 106 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 107 if (cg != NULL) {
duke@435 108 // Save it for next time:
duke@435 109 register_intrinsic(cg);
duke@435 110 return cg;
duke@435 111 } else {
duke@435 112 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 113 }
duke@435 114 }
duke@435 115 return NULL;
duke@435 116 }
duke@435 117
duke@435 118 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 119 // in library_call.cpp.
duke@435 120
duke@435 121
duke@435 122 #ifndef PRODUCT
duke@435 123 // statistics gathering...
duke@435 124
duke@435 125 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 126 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 127
duke@435 128 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 129 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 130 int oflags = _intrinsic_hist_flags[id];
duke@435 131 assert(flags != 0, "what happened?");
duke@435 132 if (is_virtual) {
duke@435 133 flags |= _intrinsic_virtual;
duke@435 134 }
duke@435 135 bool changed = (flags != oflags);
duke@435 136 if ((flags & _intrinsic_worked) != 0) {
duke@435 137 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 138 if (count == 1) {
duke@435 139 changed = true; // first time
duke@435 140 }
duke@435 141 // increment the overall count also:
duke@435 142 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 143 }
duke@435 144 if (changed) {
duke@435 145 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 146 // Something changed about the intrinsic's virtuality.
duke@435 147 if ((flags & _intrinsic_virtual) != 0) {
duke@435 148 // This is the first use of this intrinsic as a virtual call.
duke@435 149 if (oflags != 0) {
duke@435 150 // We already saw it as a non-virtual, so note both cases.
duke@435 151 flags |= _intrinsic_both;
duke@435 152 }
duke@435 153 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 154 // This is the first use of this intrinsic as a non-virtual
duke@435 155 flags |= _intrinsic_both;
duke@435 156 }
duke@435 157 }
duke@435 158 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 159 }
duke@435 160 // update the overall flags also:
duke@435 161 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 162 return changed;
duke@435 163 }
duke@435 164
duke@435 165 static char* format_flags(int flags, char* buf) {
duke@435 166 buf[0] = 0;
duke@435 167 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 168 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 169 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 170 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 171 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 172 if (buf[0] == 0) strcat(buf, ",");
duke@435 173 assert(buf[0] == ',', "must be");
duke@435 174 return &buf[1];
duke@435 175 }
duke@435 176
duke@435 177 void Compile::print_intrinsic_statistics() {
duke@435 178 char flagsbuf[100];
duke@435 179 ttyLocker ttyl;
duke@435 180 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 181 tty->print_cr("Compiler intrinsic usage:");
duke@435 182 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 183 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 184 #define PRINT_STAT_LINE(name, c, f) \
duke@435 185 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 186 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 187 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 188 int flags = _intrinsic_hist_flags[id];
duke@435 189 juint count = _intrinsic_hist_count[id];
duke@435 190 if ((flags | count) != 0) {
duke@435 191 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 192 }
duke@435 193 }
duke@435 194 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 195 if (xtty != NULL) xtty->tail("statistics");
duke@435 196 }
duke@435 197
duke@435 198 void Compile::print_statistics() {
duke@435 199 { ttyLocker ttyl;
duke@435 200 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 201 Parse::print_statistics();
duke@435 202 PhaseCCP::print_statistics();
duke@435 203 PhaseRegAlloc::print_statistics();
duke@435 204 Scheduling::print_statistics();
duke@435 205 PhasePeephole::print_statistics();
duke@435 206 PhaseIdealLoop::print_statistics();
duke@435 207 if (xtty != NULL) xtty->tail("statistics");
duke@435 208 }
duke@435 209 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 210 // put this under its own <statistics> element.
duke@435 211 print_intrinsic_statistics();
duke@435 212 }
duke@435 213 }
duke@435 214 #endif //PRODUCT
duke@435 215
duke@435 216 // Support for bundling info
duke@435 217 Bundle* Compile::node_bundling(const Node *n) {
duke@435 218 assert(valid_bundle_info(n), "oob");
duke@435 219 return &_node_bundling_base[n->_idx];
duke@435 220 }
duke@435 221
duke@435 222 bool Compile::valid_bundle_info(const Node *n) {
duke@435 223 return (_node_bundling_limit > n->_idx);
duke@435 224 }
duke@435 225
duke@435 226
never@1515 227 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 228 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 229 Node* use = n->last_out(i);
never@1515 230 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 231 uint uses_found = 0;
never@1515 232 for (uint j = 0; j < use->len(); j++) {
never@1515 233 if (use->in(j) == n) {
never@1515 234 if (j < use->req())
never@1515 235 use->set_req(j, nn);
never@1515 236 else
never@1515 237 use->set_prec(j, nn);
never@1515 238 uses_found++;
never@1515 239 }
never@1515 240 }
never@1515 241 if (is_in_table) {
never@1515 242 // reinsert into table
never@1515 243 initial_gvn()->hash_find_insert(use);
never@1515 244 }
never@1515 245 record_for_igvn(use);
never@1515 246 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 247 }
never@1515 248 }
never@1515 249
never@1515 250
never@1515 251
never@1515 252
duke@435 253 // Identify all nodes that are reachable from below, useful.
duke@435 254 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 255 // recursive traversal is slower.
duke@435 256 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 257 int estimated_worklist_size = unique();
duke@435 258 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 259
duke@435 260 // Initialize worklist
duke@435 261 if (root() != NULL) { useful.push(root()); }
duke@435 262 // If 'top' is cached, declare it useful to preserve cached node
duke@435 263 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 264
duke@435 265 // Push all useful nodes onto the list, breadthfirst
duke@435 266 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 267 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 268 Node *n = useful.at(next);
duke@435 269 uint max = n->len();
duke@435 270 for( uint i = 0; i < max; ++i ) {
duke@435 271 Node *m = n->in(i);
duke@435 272 if( m == NULL ) continue;
duke@435 273 useful.push(m);
duke@435 274 }
duke@435 275 }
duke@435 276 }
duke@435 277
duke@435 278 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 279 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 280 uint next = 0;
duke@435 281 while( next < useful.size() ) {
duke@435 282 Node *n = useful.at(next++);
duke@435 283 // Use raw traversal of out edges since this code removes out edges
duke@435 284 int max = n->outcnt();
duke@435 285 for (int j = 0; j < max; ++j ) {
duke@435 286 Node* child = n->raw_out(j);
duke@435 287 if( ! useful.member(child) ) {
duke@435 288 assert( !child->is_top() || child != top(),
duke@435 289 "If top is cached in Compile object it is in useful list");
duke@435 290 // Only need to remove this out-edge to the useless node
duke@435 291 n->raw_del_out(j);
duke@435 292 --j;
duke@435 293 --max;
duke@435 294 }
duke@435 295 }
duke@435 296 if (n->outcnt() == 1 && n->has_special_unique_user()) {
duke@435 297 record_for_igvn( n->unique_out() );
duke@435 298 }
duke@435 299 }
duke@435 300 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 301 }
duke@435 302
duke@435 303 //------------------------------frame_size_in_words-----------------------------
duke@435 304 // frame_slots in units of words
duke@435 305 int Compile::frame_size_in_words() const {
duke@435 306 // shift is 0 in LP32 and 1 in LP64
duke@435 307 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 308 int words = _frame_slots >> shift;
duke@435 309 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 310 return words;
duke@435 311 }
duke@435 312
duke@435 313 // ============================================================================
duke@435 314 //------------------------------CompileWrapper---------------------------------
duke@435 315 class CompileWrapper : public StackObj {
duke@435 316 Compile *const _compile;
duke@435 317 public:
duke@435 318 CompileWrapper(Compile* compile);
duke@435 319
duke@435 320 ~CompileWrapper();
duke@435 321 };
duke@435 322
duke@435 323 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 324 // the Compile* pointer is stored in the current ciEnv:
duke@435 325 ciEnv* env = compile->env();
duke@435 326 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 327 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 328 env->set_compiler_data(compile);
duke@435 329 assert(compile == Compile::current(), "sanity");
duke@435 330
duke@435 331 compile->set_type_dict(NULL);
duke@435 332 compile->set_type_hwm(NULL);
duke@435 333 compile->set_type_last_size(0);
duke@435 334 compile->set_last_tf(NULL, NULL);
duke@435 335 compile->set_indexSet_arena(NULL);
duke@435 336 compile->set_indexSet_free_block_list(NULL);
duke@435 337 compile->init_type_arena();
duke@435 338 Type::Initialize(compile);
duke@435 339 _compile->set_scratch_buffer_blob(NULL);
duke@435 340 _compile->begin_method();
duke@435 341 }
duke@435 342 CompileWrapper::~CompileWrapper() {
duke@435 343 _compile->end_method();
duke@435 344 if (_compile->scratch_buffer_blob() != NULL)
duke@435 345 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 346 _compile->env()->set_compiler_data(NULL);
duke@435 347 }
duke@435 348
duke@435 349
duke@435 350 //----------------------------print_compile_messages---------------------------
duke@435 351 void Compile::print_compile_messages() {
duke@435 352 #ifndef PRODUCT
duke@435 353 // Check if recompiling
duke@435 354 if (_subsume_loads == false && PrintOpto) {
duke@435 355 // Recompiling without allowing machine instructions to subsume loads
duke@435 356 tty->print_cr("*********************************************************");
duke@435 357 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 358 tty->print_cr("*********************************************************");
duke@435 359 }
kvn@473 360 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 361 // Recompiling without escape analysis
kvn@473 362 tty->print_cr("*********************************************************");
kvn@473 363 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 364 tty->print_cr("*********************************************************");
kvn@473 365 }
duke@435 366 if (env()->break_at_compile()) {
twisti@1040 367 // Open the debugger when compiling this method.
duke@435 368 tty->print("### Breaking when compiling: ");
duke@435 369 method()->print_short_name();
duke@435 370 tty->cr();
duke@435 371 BREAKPOINT;
duke@435 372 }
duke@435 373
duke@435 374 if( PrintOpto ) {
duke@435 375 if (is_osr_compilation()) {
duke@435 376 tty->print("[OSR]%3d", _compile_id);
duke@435 377 } else {
duke@435 378 tty->print("%3d", _compile_id);
duke@435 379 }
duke@435 380 }
duke@435 381 #endif
duke@435 382 }
duke@435 383
duke@435 384
duke@435 385 void Compile::init_scratch_buffer_blob() {
duke@435 386 if( scratch_buffer_blob() != NULL ) return;
duke@435 387
duke@435 388 // Construct a temporary CodeBuffer to have it construct a BufferBlob
duke@435 389 // Cache this BufferBlob for this compile.
duke@435 390 ResourceMark rm;
duke@435 391 int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
duke@435 392 BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
duke@435 393 // Record the buffer blob for next time.
duke@435 394 set_scratch_buffer_blob(blob);
kvn@598 395 // Have we run out of code space?
kvn@598 396 if (scratch_buffer_blob() == NULL) {
kvn@598 397 // Let CompilerBroker disable further compilations.
kvn@598 398 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@598 399 return;
kvn@598 400 }
duke@435 401
duke@435 402 // Initialize the relocation buffers
duke@435 403 relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
duke@435 404 set_scratch_locs_memory(locs_buf);
duke@435 405 }
duke@435 406
duke@435 407
duke@435 408 //-----------------------scratch_emit_size-------------------------------------
duke@435 409 // Helper function that computes size by emitting code
duke@435 410 uint Compile::scratch_emit_size(const Node* n) {
duke@435 411 // Emit into a trash buffer and count bytes emitted.
duke@435 412 // This is a pretty expensive way to compute a size,
duke@435 413 // but it works well enough if seldom used.
duke@435 414 // All common fixed-size instructions are given a size
duke@435 415 // method by the AD file.
duke@435 416 // Note that the scratch buffer blob and locs memory are
duke@435 417 // allocated at the beginning of the compile task, and
duke@435 418 // may be shared by several calls to scratch_emit_size.
duke@435 419 // The allocation of the scratch buffer blob is particularly
duke@435 420 // expensive, since it has to grab the code cache lock.
duke@435 421 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 422 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 423 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 424 relocInfo* locs_buf = scratch_locs_memory();
duke@435 425 address blob_begin = blob->instructions_begin();
duke@435 426 address blob_end = (address)locs_buf;
duke@435 427 assert(blob->instructions_contains(blob_end), "sanity");
duke@435 428 CodeBuffer buf(blob_begin, blob_end - blob_begin);
duke@435 429 buf.initialize_consts_size(MAX_const_size);
duke@435 430 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 431 assert(locs_buf != NULL, "sanity");
duke@435 432 int lsize = MAX_locs_size / 2;
duke@435 433 buf.insts()->initialize_shared_locs(&locs_buf[0], lsize);
duke@435 434 buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
duke@435 435 n->emit(buf, this->regalloc());
duke@435 436 return buf.code_size();
duke@435 437 }
duke@435 438
duke@435 439
duke@435 440 // ============================================================================
duke@435 441 //------------------------------Compile standard-------------------------------
duke@435 442 debug_only( int Compile::_debug_idx = 100000; )
duke@435 443
duke@435 444 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 445 // the continuation bci for on stack replacement.
duke@435 446
duke@435 447
kvn@473 448 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
duke@435 449 : Phase(Compiler),
duke@435 450 _env(ci_env),
duke@435 451 _log(ci_env->log()),
duke@435 452 _compile_id(ci_env->compile_id()),
duke@435 453 _save_argument_registers(false),
duke@435 454 _stub_name(NULL),
duke@435 455 _stub_function(NULL),
duke@435 456 _stub_entry_point(NULL),
duke@435 457 _method(target),
duke@435 458 _entry_bci(osr_bci),
duke@435 459 _initial_gvn(NULL),
duke@435 460 _for_igvn(NULL),
duke@435 461 _warm_calls(NULL),
duke@435 462 _subsume_loads(subsume_loads),
kvn@473 463 _do_escape_analysis(do_escape_analysis),
duke@435 464 _failure_reason(NULL),
duke@435 465 _code_buffer("Compile::Fill_buffer"),
duke@435 466 _orig_pc_slot(0),
duke@435 467 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 468 _has_method_handle_invokes(false),
duke@435 469 _node_bundling_limit(0),
duke@435 470 _node_bundling_base(NULL),
kvn@1294 471 _java_calls(0),
kvn@1294 472 _inner_loops(0),
duke@435 473 #ifndef PRODUCT
duke@435 474 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 475 _printer(IdealGraphPrinter::printer()),
duke@435 476 #endif
duke@435 477 _congraph(NULL) {
duke@435 478 C = this;
duke@435 479
duke@435 480 CompileWrapper cw(this);
duke@435 481 #ifndef PRODUCT
duke@435 482 if (TimeCompiler2) {
duke@435 483 tty->print(" ");
duke@435 484 target->holder()->name()->print();
duke@435 485 tty->print(".");
duke@435 486 target->print_short_name();
duke@435 487 tty->print(" ");
duke@435 488 }
duke@435 489 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 490 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 491 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 492 if (!print_opto_assembly) {
jrose@535 493 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 494 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 495 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 496 print_opto_assembly = true;
jrose@535 497 }
jrose@535 498 }
jrose@535 499 set_print_assembly(print_opto_assembly);
never@802 500 set_parsed_irreducible_loop(false);
duke@435 501 #endif
duke@435 502
duke@435 503 if (ProfileTraps) {
duke@435 504 // Make sure the method being compiled gets its own MDO,
duke@435 505 // so we can at least track the decompile_count().
duke@435 506 method()->build_method_data();
duke@435 507 }
duke@435 508
duke@435 509 Init(::AliasLevel);
duke@435 510
duke@435 511
duke@435 512 print_compile_messages();
duke@435 513
duke@435 514 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 515 _ilt = InlineTree::build_inline_tree_root();
duke@435 516 else
duke@435 517 _ilt = NULL;
duke@435 518
duke@435 519 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 520 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 521
duke@435 522 #define MINIMUM_NODE_HASH 1023
duke@435 523 // Node list that Iterative GVN will start with
duke@435 524 Unique_Node_List for_igvn(comp_arena());
duke@435 525 set_for_igvn(&for_igvn);
duke@435 526
duke@435 527 // GVN that will be run immediately on new nodes
duke@435 528 uint estimated_size = method()->code_size()*4+64;
duke@435 529 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 530 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 531 set_initial_gvn(&gvn);
duke@435 532
duke@435 533 { // Scope for timing the parser
duke@435 534 TracePhase t3("parse", &_t_parser, true);
duke@435 535
duke@435 536 // Put top into the hash table ASAP.
duke@435 537 initial_gvn()->transform_no_reclaim(top());
duke@435 538
duke@435 539 // Set up tf(), start(), and find a CallGenerator.
duke@435 540 CallGenerator* cg;
duke@435 541 if (is_osr_compilation()) {
duke@435 542 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 543 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 544 init_tf(TypeFunc::make(domain, range));
duke@435 545 StartNode* s = new (this, 2) StartOSRNode(root(), domain);
duke@435 546 initial_gvn()->set_type_bottom(s);
duke@435 547 init_start(s);
duke@435 548 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 549 } else {
duke@435 550 // Normal case.
duke@435 551 init_tf(TypeFunc::make(method()));
duke@435 552 StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
duke@435 553 initial_gvn()->set_type_bottom(s);
duke@435 554 init_start(s);
duke@435 555 float past_uses = method()->interpreter_invocation_count();
duke@435 556 float expected_uses = past_uses;
duke@435 557 cg = CallGenerator::for_inline(method(), expected_uses);
duke@435 558 }
duke@435 559 if (failing()) return;
duke@435 560 if (cg == NULL) {
duke@435 561 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 562 return;
duke@435 563 }
duke@435 564 JVMState* jvms = build_start_state(start(), tf());
duke@435 565 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 566 record_method_not_compilable("method parse failed");
duke@435 567 return;
duke@435 568 }
duke@435 569 GraphKit kit(jvms);
duke@435 570
duke@435 571 if (!kit.stopped()) {
duke@435 572 // Accept return values, and transfer control we know not where.
duke@435 573 // This is done by a special, unique ReturnNode bound to root.
duke@435 574 return_values(kit.jvms());
duke@435 575 }
duke@435 576
duke@435 577 if (kit.has_exceptions()) {
duke@435 578 // Any exceptions that escape from this call must be rethrown
duke@435 579 // to whatever caller is dynamically above us on the stack.
duke@435 580 // This is done by a special, unique RethrowNode bound to root.
duke@435 581 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 582 }
duke@435 583
never@1515 584 if (!failing() && has_stringbuilder()) {
never@1515 585 {
never@1515 586 // remove useless nodes to make the usage analysis simpler
never@1515 587 ResourceMark rm;
never@1515 588 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
never@1515 589 }
never@1515 590
never@1515 591 {
never@1515 592 ResourceMark rm;
never@1515 593 print_method("Before StringOpts", 3);
never@1515 594 PhaseStringOpts pso(initial_gvn(), &for_igvn);
never@1515 595 print_method("After StringOpts", 3);
never@1515 596 }
never@1515 597
never@1515 598 // now inline anything that we skipped the first time around
never@1515 599 while (_late_inlines.length() > 0) {
never@1515 600 CallGenerator* cg = _late_inlines.pop();
never@1515 601 cg->do_late_inline();
never@1515 602 }
never@1515 603 }
never@1515 604 assert(_late_inlines.length() == 0, "should have been processed");
never@1515 605
never@852 606 print_method("Before RemoveUseless", 3);
never@802 607
duke@435 608 // Remove clutter produced by parsing.
duke@435 609 if (!failing()) {
duke@435 610 ResourceMark rm;
duke@435 611 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 612 }
duke@435 613 }
duke@435 614
duke@435 615 // Note: Large methods are capped off in do_one_bytecode().
duke@435 616 if (failing()) return;
duke@435 617
duke@435 618 // After parsing, node notes are no longer automagic.
duke@435 619 // They must be propagated by register_new_node_with_optimizer(),
duke@435 620 // clone(), or the like.
duke@435 621 set_default_node_notes(NULL);
duke@435 622
duke@435 623 for (;;) {
duke@435 624 int successes = Inline_Warm();
duke@435 625 if (failing()) return;
duke@435 626 if (successes == 0) break;
duke@435 627 }
duke@435 628
duke@435 629 // Drain the list.
duke@435 630 Finish_Warm();
duke@435 631 #ifndef PRODUCT
duke@435 632 if (_printer) {
duke@435 633 _printer->print_inlining(this);
duke@435 634 }
duke@435 635 #endif
duke@435 636
duke@435 637 if (failing()) return;
duke@435 638 NOT_PRODUCT( verify_graph_edges(); )
duke@435 639
duke@435 640 // Perform escape analysis
kvn@679 641 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@679 642 TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
kvn@688 643 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction.
kvn@688 644 PhaseGVN* igvn = initial_gvn();
kvn@688 645 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 646 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@679 647
kvn@679 648 _congraph = new(comp_arena()) ConnectionGraph(this);
kvn@679 649 bool has_non_escaping_obj = _congraph->compute_escape();
kvn@473 650
duke@435 651 #ifndef PRODUCT
duke@435 652 if (PrintEscapeAnalysis) {
duke@435 653 _congraph->dump();
duke@435 654 }
duke@435 655 #endif
kvn@688 656 // Cleanup.
kvn@688 657 if (oop_null->outcnt() == 0)
kvn@688 658 igvn->hash_delete(oop_null);
kvn@688 659 if (noop_null->outcnt() == 0)
kvn@688 660 igvn->hash_delete(noop_null);
kvn@688 661
kvn@679 662 if (!has_non_escaping_obj) {
kvn@679 663 _congraph = NULL;
kvn@679 664 }
kvn@679 665
kvn@679 666 if (failing()) return;
duke@435 667 }
duke@435 668 // Now optimize
duke@435 669 Optimize();
duke@435 670 if (failing()) return;
duke@435 671 NOT_PRODUCT( verify_graph_edges(); )
duke@435 672
duke@435 673 #ifndef PRODUCT
duke@435 674 if (PrintIdeal) {
duke@435 675 ttyLocker ttyl; // keep the following output all in one block
duke@435 676 // This output goes directly to the tty, not the compiler log.
duke@435 677 // To enable tools to match it up with the compilation activity,
duke@435 678 // be sure to tag this tty output with the compile ID.
duke@435 679 if (xtty != NULL) {
duke@435 680 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 681 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 682 "");
duke@435 683 }
duke@435 684 root()->dump(9999);
duke@435 685 if (xtty != NULL) {
duke@435 686 xtty->tail("ideal");
duke@435 687 }
duke@435 688 }
duke@435 689 #endif
duke@435 690
duke@435 691 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 692 // for the original deopt pc.
duke@435 693
duke@435 694 _orig_pc_slot = fixed_slots();
duke@435 695 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 696 set_fixed_slots(next_slot);
duke@435 697
duke@435 698 // Now generate code
duke@435 699 Code_Gen();
duke@435 700 if (failing()) return;
duke@435 701
duke@435 702 // Check if we want to skip execution of all compiled code.
duke@435 703 {
duke@435 704 #ifndef PRODUCT
duke@435 705 if (OptoNoExecute) {
duke@435 706 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 707 return;
duke@435 708 }
duke@435 709 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 710 #endif
duke@435 711
duke@435 712 if (is_osr_compilation()) {
duke@435 713 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 714 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 715 } else {
duke@435 716 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 717 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 718 }
duke@435 719
duke@435 720 env()->register_method(_method, _entry_bci,
duke@435 721 &_code_offsets,
duke@435 722 _orig_pc_slot_offset_in_bytes,
duke@435 723 code_buffer(),
duke@435 724 frame_size_in_words(), _oop_map_set,
duke@435 725 &_handler_table, &_inc_table,
duke@435 726 compiler,
duke@435 727 env()->comp_level(),
duke@435 728 true, /*has_debug_info*/
duke@435 729 has_unsafe_access()
duke@435 730 );
duke@435 731 }
duke@435 732 }
duke@435 733
duke@435 734 //------------------------------Compile----------------------------------------
duke@435 735 // Compile a runtime stub
duke@435 736 Compile::Compile( ciEnv* ci_env,
duke@435 737 TypeFunc_generator generator,
duke@435 738 address stub_function,
duke@435 739 const char *stub_name,
duke@435 740 int is_fancy_jump,
duke@435 741 bool pass_tls,
duke@435 742 bool save_arg_registers,
duke@435 743 bool return_pc )
duke@435 744 : Phase(Compiler),
duke@435 745 _env(ci_env),
duke@435 746 _log(ci_env->log()),
duke@435 747 _compile_id(-1),
duke@435 748 _save_argument_registers(save_arg_registers),
duke@435 749 _method(NULL),
duke@435 750 _stub_name(stub_name),
duke@435 751 _stub_function(stub_function),
duke@435 752 _stub_entry_point(NULL),
duke@435 753 _entry_bci(InvocationEntryBci),
duke@435 754 _initial_gvn(NULL),
duke@435 755 _for_igvn(NULL),
duke@435 756 _warm_calls(NULL),
duke@435 757 _orig_pc_slot(0),
duke@435 758 _orig_pc_slot_offset_in_bytes(0),
duke@435 759 _subsume_loads(true),
kvn@473 760 _do_escape_analysis(false),
duke@435 761 _failure_reason(NULL),
duke@435 762 _code_buffer("Compile::Fill_buffer"),
twisti@1700 763 _has_method_handle_invokes(false),
duke@435 764 _node_bundling_limit(0),
duke@435 765 _node_bundling_base(NULL),
kvn@1294 766 _java_calls(0),
kvn@1294 767 _inner_loops(0),
duke@435 768 #ifndef PRODUCT
duke@435 769 _trace_opto_output(TraceOptoOutput),
duke@435 770 _printer(NULL),
duke@435 771 #endif
duke@435 772 _congraph(NULL) {
duke@435 773 C = this;
duke@435 774
duke@435 775 #ifndef PRODUCT
duke@435 776 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 777 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 778 set_print_assembly(PrintFrameConverterAssembly);
never@802 779 set_parsed_irreducible_loop(false);
duke@435 780 #endif
duke@435 781 CompileWrapper cw(this);
duke@435 782 Init(/*AliasLevel=*/ 0);
duke@435 783 init_tf((*generator)());
duke@435 784
duke@435 785 {
duke@435 786 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 787 Unique_Node_List for_igvn(comp_arena());
duke@435 788 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 789 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 790 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 791 gvn.transform_no_reclaim(top());
duke@435 792
duke@435 793 GraphKit kit;
duke@435 794 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 795 }
duke@435 796
duke@435 797 NOT_PRODUCT( verify_graph_edges(); )
duke@435 798 Code_Gen();
duke@435 799 if (failing()) return;
duke@435 800
duke@435 801
duke@435 802 // Entry point will be accessed using compile->stub_entry_point();
duke@435 803 if (code_buffer() == NULL) {
duke@435 804 Matcher::soft_match_failure();
duke@435 805 } else {
duke@435 806 if (PrintAssembly && (WizardMode || Verbose))
duke@435 807 tty->print_cr("### Stub::%s", stub_name);
duke@435 808
duke@435 809 if (!failing()) {
duke@435 810 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 811
duke@435 812 // Make the NMethod
duke@435 813 // For now we mark the frame as never safe for profile stackwalking
duke@435 814 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 815 code_buffer(),
duke@435 816 CodeOffsets::frame_never_safe,
duke@435 817 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 818 frame_size_in_words(),
duke@435 819 _oop_map_set,
duke@435 820 save_arg_registers);
duke@435 821 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 822
duke@435 823 _stub_entry_point = rs->entry_point();
duke@435 824 }
duke@435 825 }
duke@435 826 }
duke@435 827
duke@435 828 #ifndef PRODUCT
duke@435 829 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
duke@435 830 if(PrintOpto && Verbose) {
duke@435 831 tty->print("%s ", stub_name); j_sig->print_flattened(); tty->cr();
duke@435 832 }
duke@435 833 }
duke@435 834 #endif
duke@435 835
duke@435 836 void Compile::print_codes() {
duke@435 837 }
duke@435 838
duke@435 839 //------------------------------Init-------------------------------------------
duke@435 840 // Prepare for a single compilation
duke@435 841 void Compile::Init(int aliaslevel) {
duke@435 842 _unique = 0;
duke@435 843 _regalloc = NULL;
duke@435 844
duke@435 845 _tf = NULL; // filled in later
duke@435 846 _top = NULL; // cached later
duke@435 847 _matcher = NULL; // filled in later
duke@435 848 _cfg = NULL; // filled in later
duke@435 849
duke@435 850 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 851
duke@435 852 _node_note_array = NULL;
duke@435 853 _default_node_notes = NULL;
duke@435 854
duke@435 855 _immutable_memory = NULL; // filled in at first inquiry
duke@435 856
duke@435 857 // Globally visible Nodes
duke@435 858 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 859 set_cached_top_node(NULL);
duke@435 860 set_root(new (this, 3) RootNode());
duke@435 861 // Now that you have a Root to point to, create the real TOP
duke@435 862 set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
duke@435 863 set_recent_alloc(NULL, NULL);
duke@435 864
duke@435 865 // Create Debug Information Recorder to record scopes, oopmaps, etc.
duke@435 866 env()->set_oop_recorder(new OopRecorder(comp_arena()));
duke@435 867 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 868 env()->set_dependencies(new Dependencies(env()));
duke@435 869
duke@435 870 _fixed_slots = 0;
duke@435 871 set_has_split_ifs(false);
duke@435 872 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 873 set_has_stringbuilder(false);
duke@435 874 _trap_can_recompile = false; // no traps emitted yet
duke@435 875 _major_progress = true; // start out assuming good things will happen
duke@435 876 set_has_unsafe_access(false);
duke@435 877 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 878 set_decompile_count(0);
duke@435 879
rasbold@853 880 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
duke@435 881 // Compilation level related initialization
duke@435 882 if (env()->comp_level() == CompLevel_fast_compile) {
duke@435 883 set_num_loop_opts(Tier1LoopOptsCount);
duke@435 884 set_do_inlining(Tier1Inline != 0);
duke@435 885 set_max_inline_size(Tier1MaxInlineSize);
duke@435 886 set_freq_inline_size(Tier1FreqInlineSize);
duke@435 887 set_do_scheduling(false);
duke@435 888 set_do_count_invocations(Tier1CountInvocations);
duke@435 889 set_do_method_data_update(Tier1UpdateMethodData);
duke@435 890 } else {
duke@435 891 assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
duke@435 892 set_num_loop_opts(LoopOptsCount);
duke@435 893 set_do_inlining(Inline);
duke@435 894 set_max_inline_size(MaxInlineSize);
duke@435 895 set_freq_inline_size(FreqInlineSize);
duke@435 896 set_do_scheduling(OptoScheduling);
duke@435 897 set_do_count_invocations(false);
duke@435 898 set_do_method_data_update(false);
duke@435 899 }
duke@435 900
duke@435 901 if (debug_info()->recording_non_safepoints()) {
duke@435 902 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 903 (comp_arena(), 8, 0, NULL));
duke@435 904 set_default_node_notes(Node_Notes::make(this));
duke@435 905 }
duke@435 906
duke@435 907 // // -- Initialize types before each compile --
duke@435 908 // // Update cached type information
duke@435 909 // if( _method && _method->constants() )
duke@435 910 // Type::update_loaded_types(_method, _method->constants());
duke@435 911
duke@435 912 // Init alias_type map.
kvn@473 913 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 914 aliaslevel = 2; // No unique types without escape analysis
duke@435 915 _AliasLevel = aliaslevel;
duke@435 916 const int grow_ats = 16;
duke@435 917 _max_alias_types = grow_ats;
duke@435 918 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 919 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 920 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 921 {
duke@435 922 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 923 }
duke@435 924 // Initialize the first few types.
duke@435 925 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 926 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 927 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 928 _num_alias_types = AliasIdxRaw+1;
duke@435 929 // Zero out the alias type cache.
duke@435 930 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 931 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 932 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 933
duke@435 934 _intrinsics = NULL;
duke@435 935 _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
cfang@1607 936 _predicate_opaqs = new GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 937 register_library_intrinsics();
duke@435 938 }
duke@435 939
duke@435 940 //---------------------------init_start----------------------------------------
duke@435 941 // Install the StartNode on this compile object.
duke@435 942 void Compile::init_start(StartNode* s) {
duke@435 943 if (failing())
duke@435 944 return; // already failing
duke@435 945 assert(s == start(), "");
duke@435 946 }
duke@435 947
duke@435 948 StartNode* Compile::start() const {
duke@435 949 assert(!failing(), "");
duke@435 950 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 951 Node* start = root()->fast_out(i);
duke@435 952 if( start->is_Start() )
duke@435 953 return start->as_Start();
duke@435 954 }
duke@435 955 ShouldNotReachHere();
duke@435 956 return NULL;
duke@435 957 }
duke@435 958
duke@435 959 //-------------------------------immutable_memory-------------------------------------
duke@435 960 // Access immutable memory
duke@435 961 Node* Compile::immutable_memory() {
duke@435 962 if (_immutable_memory != NULL) {
duke@435 963 return _immutable_memory;
duke@435 964 }
duke@435 965 StartNode* s = start();
duke@435 966 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 967 Node *p = s->fast_out(i);
duke@435 968 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 969 _immutable_memory = p;
duke@435 970 return _immutable_memory;
duke@435 971 }
duke@435 972 }
duke@435 973 ShouldNotReachHere();
duke@435 974 return NULL;
duke@435 975 }
duke@435 976
duke@435 977 //----------------------set_cached_top_node------------------------------------
duke@435 978 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 979 void Compile::set_cached_top_node(Node* tn) {
duke@435 980 if (tn != NULL) verify_top(tn);
duke@435 981 Node* old_top = _top;
duke@435 982 _top = tn;
duke@435 983 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 984 // their _out arrays.
duke@435 985 if (_top != NULL) _top->setup_is_top();
duke@435 986 if (old_top != NULL) old_top->setup_is_top();
duke@435 987 assert(_top == NULL || top()->is_top(), "");
duke@435 988 }
duke@435 989
duke@435 990 #ifndef PRODUCT
duke@435 991 void Compile::verify_top(Node* tn) const {
duke@435 992 if (tn != NULL) {
duke@435 993 assert(tn->is_Con(), "top node must be a constant");
duke@435 994 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 995 assert(tn->in(0) != NULL, "must have live top node");
duke@435 996 }
duke@435 997 }
duke@435 998 #endif
duke@435 999
duke@435 1000
duke@435 1001 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1002
duke@435 1003 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1004 guarantee(arr != NULL, "");
duke@435 1005 int num_blocks = arr->length();
duke@435 1006 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1007 int num_notes = grow_by * _node_notes_block_size;
duke@435 1008 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1009 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1010 while (num_notes > 0) {
duke@435 1011 arr->append(notes);
duke@435 1012 notes += _node_notes_block_size;
duke@435 1013 num_notes -= _node_notes_block_size;
duke@435 1014 }
duke@435 1015 assert(num_notes == 0, "exact multiple, please");
duke@435 1016 }
duke@435 1017
duke@435 1018 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1019 if (source == NULL || dest == NULL) return false;
duke@435 1020
duke@435 1021 if (dest->is_Con())
duke@435 1022 return false; // Do not push debug info onto constants.
duke@435 1023
duke@435 1024 #ifdef ASSERT
duke@435 1025 // Leave a bread crumb trail pointing to the original node:
duke@435 1026 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1027 dest->set_debug_orig(source);
duke@435 1028 }
duke@435 1029 #endif
duke@435 1030
duke@435 1031 if (node_note_array() == NULL)
duke@435 1032 return false; // Not collecting any notes now.
duke@435 1033
duke@435 1034 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1035 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1036 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1037 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1038 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1039 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1040 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1041 }
duke@435 1042
duke@435 1043 Node_Notes merged_notes = (*source_notes);
duke@435 1044 // The order of operations here ensures that dest notes will win...
duke@435 1045 merged_notes.update_from(dest_notes);
duke@435 1046 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1047 }
duke@435 1048
duke@435 1049
duke@435 1050 //--------------------------allow_range_check_smearing-------------------------
duke@435 1051 // Gating condition for coalescing similar range checks.
duke@435 1052 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1053 // single covering check that is at least as strong as any of them.
duke@435 1054 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1055 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1056 // on the optimization.
duke@435 1057 bool Compile::allow_range_check_smearing() const {
duke@435 1058 // If this method has already thrown a range-check,
duke@435 1059 // assume it was because we already tried range smearing
duke@435 1060 // and it failed.
duke@435 1061 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1062 return !already_trapped;
duke@435 1063 }
duke@435 1064
duke@435 1065
duke@435 1066 //------------------------------flatten_alias_type-----------------------------
duke@435 1067 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1068 int offset = tj->offset();
duke@435 1069 TypePtr::PTR ptr = tj->ptr();
duke@435 1070
kvn@682 1071 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1072 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1073 tj->is_oopptr()->is_known_instance();
kvn@682 1074
duke@435 1075 // Process weird unsafe references.
duke@435 1076 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1077 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1078 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1079 tj = TypeOopPtr::BOTTOM;
duke@435 1080 ptr = tj->ptr();
duke@435 1081 offset = tj->offset();
duke@435 1082 }
duke@435 1083
duke@435 1084 // Array pointers need some flattening
duke@435 1085 const TypeAryPtr *ta = tj->isa_aryptr();
kvn@682 1086 if( ta && is_known_inst ) {
kvn@682 1087 if ( offset != Type::OffsetBot &&
kvn@682 1088 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1089 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1090 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1091 }
kvn@682 1092 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1093 // For arrays indexed by constant indices, we flatten the alias
duke@435 1094 // space to include all of the array body. Only the header, klass
duke@435 1095 // and array length can be accessed un-aliased.
duke@435 1096 if( offset != Type::OffsetBot ) {
duke@435 1097 if( ta->const_oop() ) { // methodDataOop or methodOop
duke@435 1098 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1099 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1100 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1101 // range is OK as-is.
duke@435 1102 tj = ta = TypeAryPtr::RANGE;
duke@435 1103 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1104 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1105 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1106 ptr = TypePtr::BotPTR;
duke@435 1107 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1108 tj = TypeInstPtr::MARK;
duke@435 1109 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1110 ptr = TypePtr::BotPTR;
duke@435 1111 } else { // Random constant offset into array body
duke@435 1112 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1113 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1114 }
duke@435 1115 }
duke@435 1116 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1117 if (ta->size() != TypeInt::POS) {
duke@435 1118 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1119 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1120 }
duke@435 1121 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1122 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1123 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1124 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1125 }
duke@435 1126 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1127 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1128 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1129 }
duke@435 1130 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1131 // cannot be distinguished by bytecode alone.
duke@435 1132 if (ta->elem() == TypeInt::BOOL) {
duke@435 1133 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1134 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1135 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1136 }
duke@435 1137 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1138 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1139 // Also, make sure exact and non-exact variants alias the same.
duke@435 1140 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
duke@435 1141 if (ta->const_oop()) {
duke@435 1142 tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1143 } else {
duke@435 1144 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1145 }
duke@435 1146 }
duke@435 1147 }
duke@435 1148
duke@435 1149 // Oop pointers need some flattening
duke@435 1150 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1151 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
duke@435 1152 if( ptr == TypePtr::Constant ) {
duke@435 1153 // No constant oop pointers (such as Strings); they alias with
duke@435 1154 // unknown strings.
kvn@682 1155 assert(!is_known_inst, "not scalarizable allocation");
duke@435 1156 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
kvn@682 1157 } else if( is_known_inst ) {
kvn@598 1158 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1159 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1160 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1161 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1162 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1163 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1164 }
duke@435 1165 // Canonicalize the holder of this field
duke@435 1166 ciInstanceKlass *k = to->klass()->as_instance_klass();
coleenp@548 1167 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1168 // First handle header references such as a LoadKlassNode, even if the
duke@435 1169 // object's klass is unloaded at compile time (4965979).
kvn@682 1170 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1171 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1172 }
duke@435 1173 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
duke@435 1174 to = NULL;
duke@435 1175 tj = TypeOopPtr::BOTTOM;
duke@435 1176 offset = tj->offset();
duke@435 1177 } else {
duke@435 1178 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1179 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1180 if( is_known_inst ) {
kvn@682 1181 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1182 } else {
kvn@682 1183 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1184 }
duke@435 1185 }
duke@435 1186 }
duke@435 1187 }
duke@435 1188
duke@435 1189 // Klass pointers to object array klasses need some flattening
duke@435 1190 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1191 if( tk ) {
duke@435 1192 // If we are referencing a field within a Klass, we need
duke@435 1193 // to assume the worst case of an Object. Both exact and
duke@435 1194 // inexact types must flatten to the same alias class.
duke@435 1195 // Since the flattened result for a klass is defined to be
duke@435 1196 // precisely java.lang.Object, use a constant ptr.
duke@435 1197 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1198
duke@435 1199 tj = tk = TypeKlassPtr::make(TypePtr::Constant,
duke@435 1200 TypeKlassPtr::OBJECT->klass(),
duke@435 1201 offset);
duke@435 1202 }
duke@435 1203
duke@435 1204 ciKlass* klass = tk->klass();
duke@435 1205 if( klass->is_obj_array_klass() ) {
duke@435 1206 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1207 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1208 k = TypeInstPtr::BOTTOM->klass();
duke@435 1209 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1210 }
duke@435 1211
duke@435 1212 // Check for precise loads from the primary supertype array and force them
duke@435 1213 // to the supertype cache alias index. Check for generic array loads from
duke@435 1214 // the primary supertype array and also force them to the supertype cache
duke@435 1215 // alias index. Since the same load can reach both, we need to merge
duke@435 1216 // these 2 disparate memories into the same alias class. Since the
duke@435 1217 // primary supertype array is read-only, there's no chance of confusion
duke@435 1218 // where we bypass an array load and an array store.
duke@435 1219 uint off2 = offset - Klass::primary_supers_offset_in_bytes();
duke@435 1220 if( offset == Type::OffsetBot ||
duke@435 1221 off2 < Klass::primary_super_limit()*wordSize ) {
duke@435 1222 offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
duke@435 1223 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1224 }
duke@435 1225 }
duke@435 1226
duke@435 1227 // Flatten all Raw pointers together.
duke@435 1228 if (tj->base() == Type::RawPtr)
duke@435 1229 tj = TypeRawPtr::BOTTOM;
duke@435 1230
duke@435 1231 if (tj->base() == Type::AnyPtr)
duke@435 1232 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1233
duke@435 1234 // Flatten all to bottom for now
duke@435 1235 switch( _AliasLevel ) {
duke@435 1236 case 0:
duke@435 1237 tj = TypePtr::BOTTOM;
duke@435 1238 break;
duke@435 1239 case 1: // Flatten to: oop, static, field or array
duke@435 1240 switch (tj->base()) {
duke@435 1241 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1242 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1243 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1244 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1245 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1246 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1247 default: ShouldNotReachHere();
duke@435 1248 }
duke@435 1249 break;
twisti@1040 1250 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1251 case 3: // No collapsing at level 3; keep all splits
duke@435 1252 break;
duke@435 1253 default:
duke@435 1254 Unimplemented();
duke@435 1255 }
duke@435 1256
duke@435 1257 offset = tj->offset();
duke@435 1258 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1259
duke@435 1260 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1261 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1262 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1263 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1264 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1265 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1266 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1267 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1268 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1269 tj->ptr() != TypePtr::AnyNull &&
duke@435 1270 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1271 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1272 // tj->base() == Type::RawPtr ||
duke@435 1273 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1274
duke@435 1275 return tj;
duke@435 1276 }
duke@435 1277
duke@435 1278 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1279 _index = i;
duke@435 1280 _adr_type = at;
duke@435 1281 _field = NULL;
duke@435 1282 _is_rewritable = true; // default
duke@435 1283 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1284 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1285 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1286 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1287 } else {
duke@435 1288 _general_index = 0;
duke@435 1289 }
duke@435 1290 }
duke@435 1291
duke@435 1292 //---------------------------------print_on------------------------------------
duke@435 1293 #ifndef PRODUCT
duke@435 1294 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1295 if (index() < 10)
duke@435 1296 st->print("@ <%d> ", index());
duke@435 1297 else st->print("@ <%d>", index());
duke@435 1298 st->print(is_rewritable() ? " " : " RO");
duke@435 1299 int offset = adr_type()->offset();
duke@435 1300 if (offset == Type::OffsetBot)
duke@435 1301 st->print(" +any");
duke@435 1302 else st->print(" +%-3d", offset);
duke@435 1303 st->print(" in ");
duke@435 1304 adr_type()->dump_on(st);
duke@435 1305 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1306 if (field() != NULL && tjp) {
duke@435 1307 if (tjp->klass() != field()->holder() ||
duke@435 1308 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1309 st->print(" != ");
duke@435 1310 field()->print();
duke@435 1311 st->print(" ***");
duke@435 1312 }
duke@435 1313 }
duke@435 1314 }
duke@435 1315
duke@435 1316 void print_alias_types() {
duke@435 1317 Compile* C = Compile::current();
duke@435 1318 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1319 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1320 C->alias_type(idx)->print_on(tty);
duke@435 1321 tty->cr();
duke@435 1322 }
duke@435 1323 }
duke@435 1324 #endif
duke@435 1325
duke@435 1326
duke@435 1327 //----------------------------probe_alias_cache--------------------------------
duke@435 1328 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1329 intptr_t key = (intptr_t) adr_type;
duke@435 1330 key ^= key >> logAliasCacheSize;
duke@435 1331 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1332 }
duke@435 1333
duke@435 1334
duke@435 1335 //-----------------------------grow_alias_types--------------------------------
duke@435 1336 void Compile::grow_alias_types() {
duke@435 1337 const int old_ats = _max_alias_types; // how many before?
duke@435 1338 const int new_ats = old_ats; // how many more?
duke@435 1339 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1340 _max_alias_types = grow_ats;
duke@435 1341 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1342 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1343 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1344 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1345 }
duke@435 1346
duke@435 1347
duke@435 1348 //--------------------------------find_alias_type------------------------------
duke@435 1349 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
duke@435 1350 if (_AliasLevel == 0)
duke@435 1351 return alias_type(AliasIdxBot);
duke@435 1352
duke@435 1353 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1354 if (ace->_adr_type == adr_type) {
duke@435 1355 return alias_type(ace->_index);
duke@435 1356 }
duke@435 1357
duke@435 1358 // Handle special cases.
duke@435 1359 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1360 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1361
duke@435 1362 // Do it the slow way.
duke@435 1363 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1364
duke@435 1365 #ifdef ASSERT
duke@435 1366 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1367 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1368 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1369 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1370 // Scalarizable allocations have exact klass always.
kvn@682 1371 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1372 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1373 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1374 }
duke@435 1375 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1376 #endif
duke@435 1377
duke@435 1378 int idx = AliasIdxTop;
duke@435 1379 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1380 if (alias_type(i)->adr_type() == flat) {
duke@435 1381 idx = i;
duke@435 1382 break;
duke@435 1383 }
duke@435 1384 }
duke@435 1385
duke@435 1386 if (idx == AliasIdxTop) {
duke@435 1387 if (no_create) return NULL;
duke@435 1388 // Grow the array if necessary.
duke@435 1389 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1390 // Add a new alias type.
duke@435 1391 idx = _num_alias_types++;
duke@435 1392 _alias_types[idx]->Init(idx, flat);
duke@435 1393 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1394 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1395 if (flat->isa_instptr()) {
duke@435 1396 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1397 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1398 alias_type(idx)->set_rewritable(false);
duke@435 1399 }
duke@435 1400 if (flat->isa_klassptr()) {
duke@435 1401 if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1402 alias_type(idx)->set_rewritable(false);
duke@435 1403 if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1404 alias_type(idx)->set_rewritable(false);
duke@435 1405 if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1406 alias_type(idx)->set_rewritable(false);
duke@435 1407 if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1408 alias_type(idx)->set_rewritable(false);
duke@435 1409 }
duke@435 1410 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1411 // but the base pointer type is not distinctive enough to identify
duke@435 1412 // references into JavaThread.)
duke@435 1413
duke@435 1414 // Check for final instance fields.
duke@435 1415 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1416 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
duke@435 1417 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
duke@435 1418 ciField* field = k->get_field_by_offset(tinst->offset(), false);
duke@435 1419 // Set field() and is_rewritable() attributes.
duke@435 1420 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1421 }
duke@435 1422 const TypeKlassPtr* tklass = flat->isa_klassptr();
duke@435 1423 // Check for final static fields.
duke@435 1424 if (tklass && tklass->klass()->is_instance_klass()) {
duke@435 1425 ciInstanceKlass *k = tklass->klass()->as_instance_klass();
duke@435 1426 ciField* field = k->get_field_by_offset(tklass->offset(), true);
duke@435 1427 // Set field() and is_rewritable() attributes.
duke@435 1428 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1429 }
duke@435 1430 }
duke@435 1431
duke@435 1432 // Fill the cache for next time.
duke@435 1433 ace->_adr_type = adr_type;
duke@435 1434 ace->_index = idx;
duke@435 1435 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1436
duke@435 1437 // Might as well try to fill the cache for the flattened version, too.
duke@435 1438 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1439 if (face->_adr_type == NULL) {
duke@435 1440 face->_adr_type = flat;
duke@435 1441 face->_index = idx;
duke@435 1442 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1443 }
duke@435 1444
duke@435 1445 return alias_type(idx);
duke@435 1446 }
duke@435 1447
duke@435 1448
duke@435 1449 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1450 const TypeOopPtr* t;
duke@435 1451 if (field->is_static())
duke@435 1452 t = TypeKlassPtr::make(field->holder());
duke@435 1453 else
duke@435 1454 t = TypeOopPtr::make_from_klass_raw(field->holder());
duke@435 1455 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
duke@435 1456 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1457 return atp;
duke@435 1458 }
duke@435 1459
duke@435 1460
duke@435 1461 //------------------------------have_alias_type--------------------------------
duke@435 1462 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1463 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1464 if (ace->_adr_type == adr_type) {
duke@435 1465 return true;
duke@435 1466 }
duke@435 1467
duke@435 1468 // Handle special cases.
duke@435 1469 if (adr_type == NULL) return true;
duke@435 1470 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1471
duke@435 1472 return find_alias_type(adr_type, true) != NULL;
duke@435 1473 }
duke@435 1474
duke@435 1475 //-----------------------------must_alias--------------------------------------
duke@435 1476 // True if all values of the given address type are in the given alias category.
duke@435 1477 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1478 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1479 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1480 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1481 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1482
duke@435 1483 // the only remaining possible overlap is identity
duke@435 1484 int adr_idx = get_alias_index(adr_type);
duke@435 1485 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1486 assert(adr_idx == alias_idx ||
duke@435 1487 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1488 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1489 "should not be testing for overlap with an unsafe pointer");
duke@435 1490 return adr_idx == alias_idx;
duke@435 1491 }
duke@435 1492
duke@435 1493 //------------------------------can_alias--------------------------------------
duke@435 1494 // True if any values of the given address type are in the given alias category.
duke@435 1495 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1496 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1497 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1498 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1499 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1500
duke@435 1501 // the only remaining possible overlap is identity
duke@435 1502 int adr_idx = get_alias_index(adr_type);
duke@435 1503 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1504 return adr_idx == alias_idx;
duke@435 1505 }
duke@435 1506
duke@435 1507
duke@435 1508
duke@435 1509 //---------------------------pop_warm_call-------------------------------------
duke@435 1510 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1511 WarmCallInfo* wci = _warm_calls;
duke@435 1512 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1513 return wci;
duke@435 1514 }
duke@435 1515
duke@435 1516 //----------------------------Inline_Warm--------------------------------------
duke@435 1517 int Compile::Inline_Warm() {
duke@435 1518 // If there is room, try to inline some more warm call sites.
duke@435 1519 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1520 if (!InlineWarmCalls) return 0;
duke@435 1521
duke@435 1522 int calls_made_hot = 0;
duke@435 1523 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1524 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1525 int amount_grown = 0;
duke@435 1526 WarmCallInfo* call;
duke@435 1527 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1528 int est_size = (int)call->size();
duke@435 1529 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1530 // This one won't fit anyway. Get rid of it.
duke@435 1531 call->make_cold();
duke@435 1532 continue;
duke@435 1533 }
duke@435 1534 call->make_hot();
duke@435 1535 calls_made_hot++;
duke@435 1536 amount_grown += est_size;
duke@435 1537 amount_to_grow -= est_size;
duke@435 1538 }
duke@435 1539
duke@435 1540 if (calls_made_hot > 0) set_major_progress();
duke@435 1541 return calls_made_hot;
duke@435 1542 }
duke@435 1543
duke@435 1544
duke@435 1545 //----------------------------Finish_Warm--------------------------------------
duke@435 1546 void Compile::Finish_Warm() {
duke@435 1547 if (!InlineWarmCalls) return;
duke@435 1548 if (failing()) return;
duke@435 1549 if (warm_calls() == NULL) return;
duke@435 1550
duke@435 1551 // Clean up loose ends, if we are out of space for inlining.
duke@435 1552 WarmCallInfo* call;
duke@435 1553 while ((call = pop_warm_call()) != NULL) {
duke@435 1554 call->make_cold();
duke@435 1555 }
duke@435 1556 }
duke@435 1557
cfang@1607 1558 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1559 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1560 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1561 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1562 if (predicate_count()==0) return;
cfang@1607 1563 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1564 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1565 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1566 igvn.replace_node(n, n->in(1));
cfang@1607 1567 }
cfang@1607 1568 assert(predicate_count()==0, "should be clean!");
cfang@1607 1569 igvn.optimize();
cfang@1607 1570 }
duke@435 1571
duke@435 1572 //------------------------------Optimize---------------------------------------
duke@435 1573 // Given a graph, optimize it.
duke@435 1574 void Compile::Optimize() {
duke@435 1575 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1576
duke@435 1577 #ifndef PRODUCT
duke@435 1578 if (env()->break_at_compile()) {
duke@435 1579 BREAKPOINT;
duke@435 1580 }
duke@435 1581
duke@435 1582 #endif
duke@435 1583
duke@435 1584 ResourceMark rm;
duke@435 1585 int loop_opts_cnt;
duke@435 1586
duke@435 1587 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1588
never@657 1589 print_method("After Parsing");
duke@435 1590
duke@435 1591 {
duke@435 1592 // Iterative Global Value Numbering, including ideal transforms
duke@435 1593 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1594 PhaseIterGVN igvn(initial_gvn());
duke@435 1595 {
duke@435 1596 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1597 igvn.optimize();
duke@435 1598 }
duke@435 1599
duke@435 1600 print_method("Iter GVN 1", 2);
duke@435 1601
duke@435 1602 if (failing()) return;
duke@435 1603
duke@435 1604 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1605 // peeling, unrolling, etc.
duke@435 1606
duke@435 1607 // Set loop opts counter
duke@435 1608 loop_opts_cnt = num_loop_opts();
duke@435 1609 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 1610 {
duke@435 1611 TracePhase t2("idealLoop", &_t_idealLoop, true);
cfang@1607 1612 PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
duke@435 1613 loop_opts_cnt--;
duke@435 1614 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
duke@435 1615 if (failing()) return;
duke@435 1616 }
duke@435 1617 // Loop opts pass if partial peeling occurred in previous pass
duke@435 1618 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 1619 TracePhase t3("idealLoop", &_t_idealLoop, true);
cfang@1607 1620 PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
duke@435 1621 loop_opts_cnt--;
duke@435 1622 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
duke@435 1623 if (failing()) return;
duke@435 1624 }
duke@435 1625 // Loop opts pass for loop-unrolling before CCP
duke@435 1626 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1627 TracePhase t4("idealLoop", &_t_idealLoop, true);
cfang@1607 1628 PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
duke@435 1629 loop_opts_cnt--;
duke@435 1630 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
duke@435 1631 }
never@1356 1632 if (!failing()) {
never@1356 1633 // Verify that last round of loop opts produced a valid graph
never@1356 1634 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1635 PhaseIdealLoop::verify(igvn);
never@1356 1636 }
duke@435 1637 }
duke@435 1638 if (failing()) return;
duke@435 1639
duke@435 1640 // Conditional Constant Propagation;
duke@435 1641 PhaseCCP ccp( &igvn );
duke@435 1642 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 1643 {
duke@435 1644 TracePhase t2("ccp", &_t_ccp, true);
duke@435 1645 ccp.do_transform();
duke@435 1646 }
duke@435 1647 print_method("PhaseCPP 1", 2);
duke@435 1648
duke@435 1649 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 1650
duke@435 1651 // Iterative Global Value Numbering, including ideal transforms
duke@435 1652 {
duke@435 1653 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 1654 igvn = ccp;
duke@435 1655 igvn.optimize();
duke@435 1656 }
duke@435 1657
duke@435 1658 print_method("Iter GVN 2", 2);
duke@435 1659
duke@435 1660 if (failing()) return;
duke@435 1661
duke@435 1662 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1663 // peeling, unrolling, etc.
duke@435 1664 if(loop_opts_cnt > 0) {
duke@435 1665 debug_only( int cnt = 0; );
cfang@1607 1666 bool loop_predication = UseLoopPredicate;
duke@435 1667 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1668 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 1669 assert( cnt++ < 40, "infinite cycle in loop optimization" );
cfang@1607 1670 PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
duke@435 1671 loop_opts_cnt--;
duke@435 1672 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
duke@435 1673 if (failing()) return;
cfang@1607 1674 // Perform loop predication optimization during first iteration after CCP.
cfang@1607 1675 // After that switch it off and cleanup unused loop predicates.
cfang@1607 1676 if (loop_predication) {
cfang@1607 1677 loop_predication = false;
cfang@1607 1678 cleanup_loop_predicates(igvn);
cfang@1607 1679 if (failing()) return;
cfang@1607 1680 }
duke@435 1681 }
duke@435 1682 }
never@1356 1683
never@1356 1684 {
never@1356 1685 // Verify that all previous optimizations produced a valid graph
never@1356 1686 // at least to this point, even if no loop optimizations were done.
never@1356 1687 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1688 PhaseIdealLoop::verify(igvn);
never@1356 1689 }
never@1356 1690
duke@435 1691 {
duke@435 1692 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 1693 PhaseMacroExpand mex(igvn);
duke@435 1694 if (mex.expand_macro_nodes()) {
duke@435 1695 assert(failing(), "must bail out w/ explicit message");
duke@435 1696 return;
duke@435 1697 }
duke@435 1698 }
duke@435 1699
duke@435 1700 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 1701
duke@435 1702 // A method with only infinite loops has no edges entering loops from root
duke@435 1703 {
duke@435 1704 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 1705 if (final_graph_reshaping()) {
duke@435 1706 assert(failing(), "must bail out w/ explicit message");
duke@435 1707 return;
duke@435 1708 }
duke@435 1709 }
duke@435 1710
duke@435 1711 print_method("Optimize finished", 2);
duke@435 1712 }
duke@435 1713
duke@435 1714
duke@435 1715 //------------------------------Code_Gen---------------------------------------
duke@435 1716 // Given a graph, generate code for it
duke@435 1717 void Compile::Code_Gen() {
duke@435 1718 if (failing()) return;
duke@435 1719
duke@435 1720 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 1721 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 1722 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 1723 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 1724 // set a bit in reclaimed memory.
duke@435 1725
duke@435 1726 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1727 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1728 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1729
duke@435 1730 Node_List proj_list;
duke@435 1731 Matcher m(proj_list);
duke@435 1732 _matcher = &m;
duke@435 1733 {
duke@435 1734 TracePhase t2("matcher", &_t_matcher, true);
duke@435 1735 m.match();
duke@435 1736 }
duke@435 1737 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1738 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1739 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1740
duke@435 1741 // If you have too many nodes, or if matching has failed, bail out
duke@435 1742 check_node_count(0, "out of nodes matching instructions");
duke@435 1743 if (failing()) return;
duke@435 1744
duke@435 1745 // Build a proper-looking CFG
duke@435 1746 PhaseCFG cfg(node_arena(), root(), m);
duke@435 1747 _cfg = &cfg;
duke@435 1748 {
duke@435 1749 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
duke@435 1750 cfg.Dominators();
duke@435 1751 if (failing()) return;
duke@435 1752
duke@435 1753 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1754
duke@435 1755 cfg.Estimate_Block_Frequency();
duke@435 1756 cfg.GlobalCodeMotion(m,unique(),proj_list);
duke@435 1757
duke@435 1758 print_method("Global code motion", 2);
duke@435 1759
duke@435 1760 if (failing()) return;
duke@435 1761 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1762
duke@435 1763 debug_only( cfg.verify(); )
duke@435 1764 }
duke@435 1765 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1766
duke@435 1767 PhaseChaitin regalloc(unique(),cfg,m);
duke@435 1768 _regalloc = &regalloc;
duke@435 1769 {
duke@435 1770 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 1771 // Perform any platform dependent preallocation actions. This is used,
duke@435 1772 // for example, to avoid taking an implicit null pointer exception
duke@435 1773 // using the frame pointer on win95.
duke@435 1774 _regalloc->pd_preallocate_hook();
duke@435 1775
duke@435 1776 // Perform register allocation. After Chaitin, use-def chains are
duke@435 1777 // no longer accurate (at spill code) and so must be ignored.
duke@435 1778 // Node->LRG->reg mappings are still accurate.
duke@435 1779 _regalloc->Register_Allocate();
duke@435 1780
duke@435 1781 // Bail out if the allocator builds too many nodes
duke@435 1782 if (failing()) return;
duke@435 1783 }
duke@435 1784
duke@435 1785 // Prior to register allocation we kept empty basic blocks in case the
duke@435 1786 // the allocator needed a place to spill. After register allocation we
duke@435 1787 // are not adding any new instructions. If any basic block is empty, we
duke@435 1788 // can now safely remove it.
duke@435 1789 {
rasbold@853 1790 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
rasbold@853 1791 cfg.remove_empty();
rasbold@853 1792 if (do_freq_based_layout()) {
rasbold@853 1793 PhaseBlockLayout layout(cfg);
rasbold@853 1794 } else {
rasbold@853 1795 cfg.set_loop_alignment();
rasbold@853 1796 }
rasbold@853 1797 cfg.fixup_flow();
duke@435 1798 }
duke@435 1799
duke@435 1800 // Perform any platform dependent postallocation verifications.
duke@435 1801 debug_only( _regalloc->pd_postallocate_verify_hook(); )
duke@435 1802
duke@435 1803 // Apply peephole optimizations
duke@435 1804 if( OptoPeephole ) {
duke@435 1805 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 1806 PhasePeephole peep( _regalloc, cfg);
duke@435 1807 peep.do_transform();
duke@435 1808 }
duke@435 1809
duke@435 1810 // Convert Nodes to instruction bits in a buffer
duke@435 1811 {
duke@435 1812 // %%%% workspace merge brought two timers together for one job
duke@435 1813 TracePhase t2a("output", &_t_output, true);
duke@435 1814 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 1815 Output();
duke@435 1816 }
duke@435 1817
never@657 1818 print_method("Final Code");
duke@435 1819
duke@435 1820 // He's dead, Jim.
duke@435 1821 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 1822 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 1823 }
duke@435 1824
duke@435 1825
duke@435 1826 //------------------------------dump_asm---------------------------------------
duke@435 1827 // Dump formatted assembly
duke@435 1828 #ifndef PRODUCT
duke@435 1829 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 1830 bool cut_short = false;
duke@435 1831 tty->print_cr("#");
duke@435 1832 tty->print("# "); _tf->dump(); tty->cr();
duke@435 1833 tty->print_cr("#");
duke@435 1834
duke@435 1835 // For all blocks
duke@435 1836 int pc = 0x0; // Program counter
duke@435 1837 char starts_bundle = ' ';
duke@435 1838 _regalloc->dump_frame();
duke@435 1839
duke@435 1840 Node *n = NULL;
duke@435 1841 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1842 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1843 Block *b = _cfg->_blocks[i];
duke@435 1844 if (b->is_connector() && !Verbose) continue;
duke@435 1845 n = b->_nodes[0];
duke@435 1846 if (pcs && n->_idx < pc_limit)
duke@435 1847 tty->print("%3.3x ", pcs[n->_idx]);
duke@435 1848 else
duke@435 1849 tty->print(" ");
duke@435 1850 b->dump_head( &_cfg->_bbs );
duke@435 1851 if (b->is_connector()) {
duke@435 1852 tty->print_cr(" # Empty connector block");
duke@435 1853 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 1854 tty->print_cr(" # Block is sole successor of call");
duke@435 1855 }
duke@435 1856
duke@435 1857 // For all instructions
duke@435 1858 Node *delay = NULL;
duke@435 1859 for( uint j = 0; j<b->_nodes.size(); j++ ) {
duke@435 1860 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1861 n = b->_nodes[j];
duke@435 1862 if (valid_bundle_info(n)) {
duke@435 1863 Bundle *bundle = node_bundling(n);
duke@435 1864 if (bundle->used_in_unconditional_delay()) {
duke@435 1865 delay = n;
duke@435 1866 continue;
duke@435 1867 }
duke@435 1868 if (bundle->starts_bundle())
duke@435 1869 starts_bundle = '+';
duke@435 1870 }
duke@435 1871
coleenp@548 1872 if (WizardMode) n->dump();
coleenp@548 1873
duke@435 1874 if( !n->is_Region() && // Dont print in the Assembly
duke@435 1875 !n->is_Phi() && // a few noisely useless nodes
duke@435 1876 !n->is_Proj() &&
duke@435 1877 !n->is_MachTemp() &&
kvn@1535 1878 !n->is_SafePointScalarObject() &&
duke@435 1879 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 1880 !n->is_MergeMem() && // Not very interesting
duke@435 1881 !n->is_top() && // Debug info table constants
duke@435 1882 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 1883 ) {
duke@435 1884 if (pcs && n->_idx < pc_limit)
duke@435 1885 tty->print("%3.3x", pcs[n->_idx]);
duke@435 1886 else
duke@435 1887 tty->print(" ");
duke@435 1888 tty->print(" %c ", starts_bundle);
duke@435 1889 starts_bundle = ' ';
duke@435 1890 tty->print("\t");
duke@435 1891 n->format(_regalloc, tty);
duke@435 1892 tty->cr();
duke@435 1893 }
duke@435 1894
duke@435 1895 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 1896 // then back up and print it
duke@435 1897 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1898 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 1899 if (WizardMode) delay->dump();
coleenp@548 1900
duke@435 1901 if (node_bundling(delay)->starts_bundle())
duke@435 1902 starts_bundle = '+';
duke@435 1903 if (pcs && n->_idx < pc_limit)
duke@435 1904 tty->print("%3.3x", pcs[n->_idx]);
duke@435 1905 else
duke@435 1906 tty->print(" ");
duke@435 1907 tty->print(" %c ", starts_bundle);
duke@435 1908 starts_bundle = ' ';
duke@435 1909 tty->print("\t");
duke@435 1910 delay->format(_regalloc, tty);
duke@435 1911 tty->print_cr("");
duke@435 1912 delay = NULL;
duke@435 1913 }
duke@435 1914
duke@435 1915 // Dump the exception table as well
duke@435 1916 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 1917 // Print the exception table for this offset
duke@435 1918 _handler_table.print_subtable_for(pc);
duke@435 1919 }
duke@435 1920 }
duke@435 1921
duke@435 1922 if (pcs && n->_idx < pc_limit)
duke@435 1923 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 1924 else
duke@435 1925 tty->print_cr("");
duke@435 1926
duke@435 1927 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 1928
duke@435 1929 } // End of per-block dump
duke@435 1930 tty->print_cr("");
duke@435 1931
duke@435 1932 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 1933 }
duke@435 1934 #endif
duke@435 1935
duke@435 1936 //------------------------------Final_Reshape_Counts---------------------------
duke@435 1937 // This class defines counters to help identify when a method
duke@435 1938 // may/must be executed using hardware with only 24-bit precision.
duke@435 1939 struct Final_Reshape_Counts : public StackObj {
duke@435 1940 int _call_count; // count non-inlined 'common' calls
duke@435 1941 int _float_count; // count float ops requiring 24-bit precision
duke@435 1942 int _double_count; // count double ops requiring more precision
duke@435 1943 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 1944 int _inner_loop_count; // count loops which need alignment
duke@435 1945 VectorSet _visited; // Visitation flags
duke@435 1946 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 1947
duke@435 1948 Final_Reshape_Counts() :
kvn@1294 1949 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 1950 _java_call_count(0), _inner_loop_count(0),
duke@435 1951 _visited( Thread::current()->resource_area() ) { }
duke@435 1952
duke@435 1953 void inc_call_count () { _call_count ++; }
duke@435 1954 void inc_float_count () { _float_count ++; }
duke@435 1955 void inc_double_count() { _double_count++; }
duke@435 1956 void inc_java_call_count() { _java_call_count++; }
kvn@1294 1957 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 1958
duke@435 1959 int get_call_count () const { return _call_count ; }
duke@435 1960 int get_float_count () const { return _float_count ; }
duke@435 1961 int get_double_count() const { return _double_count; }
duke@435 1962 int get_java_call_count() const { return _java_call_count; }
kvn@1294 1963 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 1964 };
duke@435 1965
duke@435 1966 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 1967 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 1968 // Make sure the offset goes inside the instance layout.
coleenp@548 1969 return k->contains_field_offset(tp->offset());
duke@435 1970 // Note that OffsetBot and OffsetTop are very negative.
duke@435 1971 }
duke@435 1972
duke@435 1973 //------------------------------final_graph_reshaping_impl----------------------
duke@435 1974 // Implement items 1-5 from final_graph_reshaping below.
kvn@1294 1975 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
duke@435 1976
kvn@603 1977 if ( n->outcnt() == 0 ) return; // dead node
duke@435 1978 uint nop = n->Opcode();
duke@435 1979
duke@435 1980 // Check for 2-input instruction with "last use" on right input.
duke@435 1981 // Swap to left input. Implements item (2).
duke@435 1982 if( n->req() == 3 && // two-input instruction
duke@435 1983 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 1984 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 1985 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 1986 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 1987 // Check for commutative opcode
duke@435 1988 switch( nop ) {
duke@435 1989 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 1990 case Op_MaxI: case Op_MinI:
duke@435 1991 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 1992 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 1993 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 1994 // Move "last use" input to left by swapping inputs
duke@435 1995 n->swap_edges(1, 2);
duke@435 1996 break;
duke@435 1997 }
duke@435 1998 default:
duke@435 1999 break;
duke@435 2000 }
duke@435 2001 }
duke@435 2002
duke@435 2003 // Count FPU ops and common calls, implements item (3)
duke@435 2004 switch( nop ) {
duke@435 2005 // Count all float operations that may use FPU
duke@435 2006 case Op_AddF:
duke@435 2007 case Op_SubF:
duke@435 2008 case Op_MulF:
duke@435 2009 case Op_DivF:
duke@435 2010 case Op_NegF:
duke@435 2011 case Op_ModF:
duke@435 2012 case Op_ConvI2F:
duke@435 2013 case Op_ConF:
duke@435 2014 case Op_CmpF:
duke@435 2015 case Op_CmpF3:
duke@435 2016 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2017 frc.inc_float_count();
duke@435 2018 break;
duke@435 2019
duke@435 2020 case Op_ConvF2D:
duke@435 2021 case Op_ConvD2F:
kvn@1294 2022 frc.inc_float_count();
kvn@1294 2023 frc.inc_double_count();
duke@435 2024 break;
duke@435 2025
duke@435 2026 // Count all double operations that may use FPU
duke@435 2027 case Op_AddD:
duke@435 2028 case Op_SubD:
duke@435 2029 case Op_MulD:
duke@435 2030 case Op_DivD:
duke@435 2031 case Op_NegD:
duke@435 2032 case Op_ModD:
duke@435 2033 case Op_ConvI2D:
duke@435 2034 case Op_ConvD2I:
duke@435 2035 // case Op_ConvL2D: // handled by leaf call
duke@435 2036 // case Op_ConvD2L: // handled by leaf call
duke@435 2037 case Op_ConD:
duke@435 2038 case Op_CmpD:
duke@435 2039 case Op_CmpD3:
kvn@1294 2040 frc.inc_double_count();
duke@435 2041 break;
duke@435 2042 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2043 case Op_Opaque2: // Remove Opaque Nodes before matching
kvn@603 2044 n->subsume_by(n->in(1));
duke@435 2045 break;
duke@435 2046 case Op_CallStaticJava:
duke@435 2047 case Op_CallJava:
duke@435 2048 case Op_CallDynamicJava:
kvn@1294 2049 frc.inc_java_call_count(); // Count java call site;
duke@435 2050 case Op_CallRuntime:
duke@435 2051 case Op_CallLeaf:
duke@435 2052 case Op_CallLeafNoFP: {
duke@435 2053 assert( n->is_Call(), "" );
duke@435 2054 CallNode *call = n->as_Call();
duke@435 2055 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2056 // Do not count uncommon runtime calls:
duke@435 2057 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2058 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2059 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2060 frc.inc_call_count(); // Count the call site
duke@435 2061 } else { // See if uncommon argument is shared
duke@435 2062 Node *n = call->in(TypeFunc::Parms);
duke@435 2063 int nop = n->Opcode();
duke@435 2064 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2065 if( n->outcnt() > 1 &&
duke@435 2066 !n->is_Proj() &&
duke@435 2067 nop != Op_CreateEx &&
duke@435 2068 nop != Op_CheckCastPP &&
kvn@766 2069 nop != Op_DecodeN &&
duke@435 2070 !n->is_Mem() ) {
duke@435 2071 Node *x = n->clone();
duke@435 2072 call->set_req( TypeFunc::Parms, x );
duke@435 2073 }
duke@435 2074 }
duke@435 2075 break;
duke@435 2076 }
duke@435 2077
duke@435 2078 case Op_StoreD:
duke@435 2079 case Op_LoadD:
duke@435 2080 case Op_LoadD_unaligned:
kvn@1294 2081 frc.inc_double_count();
duke@435 2082 goto handle_mem;
duke@435 2083 case Op_StoreF:
duke@435 2084 case Op_LoadF:
kvn@1294 2085 frc.inc_float_count();
duke@435 2086 goto handle_mem;
duke@435 2087
duke@435 2088 case Op_StoreB:
duke@435 2089 case Op_StoreC:
duke@435 2090 case Op_StoreCM:
duke@435 2091 case Op_StorePConditional:
duke@435 2092 case Op_StoreI:
duke@435 2093 case Op_StoreL:
kvn@855 2094 case Op_StoreIConditional:
duke@435 2095 case Op_StoreLConditional:
duke@435 2096 case Op_CompareAndSwapI:
duke@435 2097 case Op_CompareAndSwapL:
duke@435 2098 case Op_CompareAndSwapP:
coleenp@548 2099 case Op_CompareAndSwapN:
duke@435 2100 case Op_StoreP:
coleenp@548 2101 case Op_StoreN:
duke@435 2102 case Op_LoadB:
twisti@1059 2103 case Op_LoadUB:
twisti@993 2104 case Op_LoadUS:
duke@435 2105 case Op_LoadI:
twisti@1059 2106 case Op_LoadUI2L:
duke@435 2107 case Op_LoadKlass:
kvn@599 2108 case Op_LoadNKlass:
duke@435 2109 case Op_LoadL:
duke@435 2110 case Op_LoadL_unaligned:
duke@435 2111 case Op_LoadPLocked:
duke@435 2112 case Op_LoadLLocked:
duke@435 2113 case Op_LoadP:
coleenp@548 2114 case Op_LoadN:
duke@435 2115 case Op_LoadRange:
duke@435 2116 case Op_LoadS: {
duke@435 2117 handle_mem:
duke@435 2118 #ifdef ASSERT
duke@435 2119 if( VerifyOptoOopOffsets ) {
duke@435 2120 assert( n->is_Mem(), "" );
duke@435 2121 MemNode *mem = (MemNode*)n;
duke@435 2122 // Check to see if address types have grounded out somehow.
duke@435 2123 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2124 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2125 }
duke@435 2126 #endif
duke@435 2127 break;
duke@435 2128 }
duke@435 2129
duke@435 2130 case Op_AddP: { // Assert sane base pointers
kvn@617 2131 Node *addp = n->in(AddPNode::Address);
duke@435 2132 assert( !addp->is_AddP() ||
duke@435 2133 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2134 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2135 "Base pointers must match" );
kvn@617 2136 #ifdef _LP64
kvn@617 2137 if (UseCompressedOops &&
kvn@617 2138 addp->Opcode() == Op_ConP &&
kvn@617 2139 addp == n->in(AddPNode::Base) &&
kvn@617 2140 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2141 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2142 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2143 // instructions (4) then load 64-bits constant (7).
kvn@617 2144 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2145 const Type* t = addp->bottom_type();
kvn@617 2146 if (t->isa_oopptr()) {
kvn@617 2147 Node* nn = NULL;
kvn@617 2148
kvn@617 2149 // Look for existing ConN node of the same exact type.
kvn@617 2150 Compile* C = Compile::current();
kvn@617 2151 Node* r = C->root();
kvn@617 2152 uint cnt = r->outcnt();
kvn@617 2153 for (uint i = 0; i < cnt; i++) {
kvn@617 2154 Node* m = r->raw_out(i);
kvn@617 2155 if (m!= NULL && m->Opcode() == Op_ConN &&
kvn@656 2156 m->bottom_type()->make_ptr() == t) {
kvn@617 2157 nn = m;
kvn@617 2158 break;
kvn@617 2159 }
kvn@617 2160 }
kvn@617 2161 if (nn != NULL) {
kvn@617 2162 // Decode a narrow oop to match address
kvn@617 2163 // [R12 + narrow_oop_reg<<3 + offset]
kvn@617 2164 nn = new (C, 2) DecodeNNode(nn, t);
kvn@617 2165 n->set_req(AddPNode::Base, nn);
kvn@617 2166 n->set_req(AddPNode::Address, nn);
kvn@617 2167 if (addp->outcnt() == 0) {
kvn@617 2168 addp->disconnect_inputs(NULL);
kvn@617 2169 }
kvn@617 2170 }
kvn@617 2171 }
kvn@617 2172 }
kvn@617 2173 #endif
duke@435 2174 break;
duke@435 2175 }
duke@435 2176
kvn@599 2177 #ifdef _LP64
kvn@803 2178 case Op_CastPP:
kvn@1930 2179 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2180 Compile* C = Compile::current();
kvn@803 2181 Node* in1 = n->in(1);
kvn@803 2182 const Type* t = n->bottom_type();
kvn@803 2183 Node* new_in1 = in1->clone();
kvn@803 2184 new_in1->as_DecodeN()->set_type(t);
kvn@803 2185
kvn@1930 2186 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2187 //
kvn@803 2188 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2189 // and Matcher can fold a DecodeN node into address by using
kvn@803 2190 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2191 //
kvn@803 2192 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2193 // NullCheck narrow_oop_reg
kvn@803 2194 //
kvn@803 2195 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2196 // use it to do implicit NULL check in address:
kvn@803 2197 //
kvn@803 2198 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2199 // [base_reg + offset]
kvn@803 2200 // NullCheck base_reg
kvn@803 2201 //
twisti@1040 2202 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2203 // to keep the information to which NULL check the new DecodeN node
kvn@803 2204 // corresponds to use it as value in implicit_null_check().
kvn@803 2205 //
kvn@803 2206 new_in1->set_req(0, n->in(0));
kvn@803 2207 }
kvn@803 2208
kvn@803 2209 n->subsume_by(new_in1);
kvn@803 2210 if (in1->outcnt() == 0) {
kvn@803 2211 in1->disconnect_inputs(NULL);
kvn@803 2212 }
kvn@803 2213 }
kvn@803 2214 break;
kvn@803 2215
kvn@599 2216 case Op_CmpP:
kvn@603 2217 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2218 // other TypePtr related Ideal optimizations (for example, ptr nullness).
kvn@766 2219 if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
kvn@766 2220 Node* in1 = n->in(1);
kvn@766 2221 Node* in2 = n->in(2);
kvn@766 2222 if (!in1->is_DecodeN()) {
kvn@766 2223 in2 = in1;
kvn@766 2224 in1 = n->in(2);
kvn@766 2225 }
kvn@766 2226 assert(in1->is_DecodeN(), "sanity");
kvn@766 2227
kvn@599 2228 Compile* C = Compile::current();
kvn@766 2229 Node* new_in2 = NULL;
kvn@766 2230 if (in2->is_DecodeN()) {
kvn@766 2231 new_in2 = in2->in(1);
kvn@766 2232 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2233 const Type* t = in2->bottom_type();
kvn@1930 2234 if (t == TypePtr::NULL_PTR) {
kvn@1930 2235 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2236 // oops implicit null check is not generated.
kvn@1930 2237 // This will allow to generate normal oop implicit null check.
kvn@1930 2238 if (Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2239 new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
kvn@803 2240 //
kvn@803 2241 // This transformation together with CastPP transformation above
kvn@803 2242 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2243 //
kvn@803 2244 // The original code after Optimize()
kvn@803 2245 //
kvn@803 2246 // LoadN memory, narrow_oop_reg
kvn@803 2247 // decode narrow_oop_reg, base_reg
kvn@803 2248 // CmpP base_reg, NULL
kvn@803 2249 // CastPP base_reg // NotNull
kvn@803 2250 // Load [base_reg + offset], val_reg
kvn@803 2251 //
kvn@803 2252 // after these transformations will be
kvn@803 2253 //
kvn@803 2254 // LoadN memory, narrow_oop_reg
kvn@803 2255 // CmpN narrow_oop_reg, NULL
kvn@803 2256 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2257 // Load [base_reg + offset], val_reg
kvn@803 2258 //
kvn@803 2259 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2260 // since narrow oops can be used in debug info now (see the code in
kvn@803 2261 // final_graph_reshaping_walk()).
kvn@803 2262 //
kvn@803 2263 // At the end the code will be matched to
kvn@803 2264 // on x86:
kvn@803 2265 //
kvn@803 2266 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2267 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2268 // NullCheck narrow_oop_reg
kvn@803 2269 //
kvn@803 2270 // and on sparc:
kvn@803 2271 //
kvn@803 2272 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2273 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2274 // Load [base_reg + offset], val_reg
kvn@803 2275 // NullCheck base_reg
kvn@803 2276 //
kvn@599 2277 } else if (t->isa_oopptr()) {
kvn@766 2278 new_in2 = ConNode::make(C, t->make_narrowoop());
kvn@599 2279 }
kvn@599 2280 }
kvn@766 2281 if (new_in2 != NULL) {
kvn@766 2282 Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
kvn@603 2283 n->subsume_by( cmpN );
kvn@766 2284 if (in1->outcnt() == 0) {
kvn@766 2285 in1->disconnect_inputs(NULL);
kvn@766 2286 }
kvn@766 2287 if (in2->outcnt() == 0) {
kvn@766 2288 in2->disconnect_inputs(NULL);
kvn@766 2289 }
kvn@599 2290 }
kvn@599 2291 }
kvn@728 2292 break;
kvn@803 2293
kvn@803 2294 case Op_DecodeN:
kvn@803 2295 assert(!n->in(1)->is_EncodeP(), "should be optimized out");
kvn@1930 2296 // DecodeN could be pinned when it can't be fold into
kvn@927 2297 // an address expression, see the code for Op_CastPP above.
kvn@1930 2298 assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
kvn@803 2299 break;
kvn@803 2300
kvn@803 2301 case Op_EncodeP: {
kvn@803 2302 Node* in1 = n->in(1);
kvn@803 2303 if (in1->is_DecodeN()) {
kvn@803 2304 n->subsume_by(in1->in(1));
kvn@803 2305 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2306 Compile* C = Compile::current();
kvn@803 2307 const Type* t = in1->bottom_type();
kvn@803 2308 if (t == TypePtr::NULL_PTR) {
kvn@803 2309 n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
kvn@803 2310 } else if (t->isa_oopptr()) {
kvn@803 2311 n->subsume_by(ConNode::make(C, t->make_narrowoop()));
kvn@803 2312 }
kvn@803 2313 }
kvn@803 2314 if (in1->outcnt() == 0) {
kvn@803 2315 in1->disconnect_inputs(NULL);
kvn@803 2316 }
kvn@803 2317 break;
kvn@803 2318 }
kvn@803 2319
never@1515 2320 case Op_Proj: {
never@1515 2321 if (OptimizeStringConcat) {
never@1515 2322 ProjNode* p = n->as_Proj();
never@1515 2323 if (p->_is_io_use) {
never@1515 2324 // Separate projections were used for the exception path which
never@1515 2325 // are normally removed by a late inline. If it wasn't inlined
never@1515 2326 // then they will hang around and should just be replaced with
never@1515 2327 // the original one.
never@1515 2328 Node* proj = NULL;
never@1515 2329 // Replace with just one
never@1515 2330 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2331 Node *use = i.get();
never@1515 2332 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2333 proj = use;
never@1515 2334 break;
never@1515 2335 }
never@1515 2336 }
never@1515 2337 assert(p != NULL, "must be found");
never@1515 2338 p->subsume_by(proj);
never@1515 2339 }
never@1515 2340 }
never@1515 2341 break;
never@1515 2342 }
never@1515 2343
kvn@803 2344 case Op_Phi:
kvn@803 2345 if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
kvn@803 2346 // The EncodeP optimization may create Phi with the same edges
kvn@803 2347 // for all paths. It is not handled well by Register Allocator.
kvn@803 2348 Node* unique_in = n->in(1);
kvn@803 2349 assert(unique_in != NULL, "");
kvn@803 2350 uint cnt = n->req();
kvn@803 2351 for (uint i = 2; i < cnt; i++) {
kvn@803 2352 Node* m = n->in(i);
kvn@803 2353 assert(m != NULL, "");
kvn@803 2354 if (unique_in != m)
kvn@803 2355 unique_in = NULL;
kvn@803 2356 }
kvn@803 2357 if (unique_in != NULL) {
kvn@803 2358 n->subsume_by(unique_in);
kvn@803 2359 }
kvn@803 2360 }
kvn@803 2361 break;
kvn@803 2362
kvn@599 2363 #endif
kvn@599 2364
duke@435 2365 case Op_ModI:
duke@435 2366 if (UseDivMod) {
duke@435 2367 // Check if a%b and a/b both exist
duke@435 2368 Node* d = n->find_similar(Op_DivI);
duke@435 2369 if (d) {
duke@435 2370 // Replace them with a fused divmod if supported
duke@435 2371 Compile* C = Compile::current();
duke@435 2372 if (Matcher::has_match_rule(Op_DivModI)) {
duke@435 2373 DivModINode* divmod = DivModINode::make(C, n);
kvn@603 2374 d->subsume_by(divmod->div_proj());
kvn@603 2375 n->subsume_by(divmod->mod_proj());
duke@435 2376 } else {
duke@435 2377 // replace a%b with a-((a/b)*b)
duke@435 2378 Node* mult = new (C, 3) MulINode(d, d->in(2));
duke@435 2379 Node* sub = new (C, 3) SubINode(d->in(1), mult);
kvn@603 2380 n->subsume_by( sub );
duke@435 2381 }
duke@435 2382 }
duke@435 2383 }
duke@435 2384 break;
duke@435 2385
duke@435 2386 case Op_ModL:
duke@435 2387 if (UseDivMod) {
duke@435 2388 // Check if a%b and a/b both exist
duke@435 2389 Node* d = n->find_similar(Op_DivL);
duke@435 2390 if (d) {
duke@435 2391 // Replace them with a fused divmod if supported
duke@435 2392 Compile* C = Compile::current();
duke@435 2393 if (Matcher::has_match_rule(Op_DivModL)) {
duke@435 2394 DivModLNode* divmod = DivModLNode::make(C, n);
kvn@603 2395 d->subsume_by(divmod->div_proj());
kvn@603 2396 n->subsume_by(divmod->mod_proj());
duke@435 2397 } else {
duke@435 2398 // replace a%b with a-((a/b)*b)
duke@435 2399 Node* mult = new (C, 3) MulLNode(d, d->in(2));
duke@435 2400 Node* sub = new (C, 3) SubLNode(d->in(1), mult);
kvn@603 2401 n->subsume_by( sub );
duke@435 2402 }
duke@435 2403 }
duke@435 2404 }
duke@435 2405 break;
duke@435 2406
duke@435 2407 case Op_Load16B:
duke@435 2408 case Op_Load8B:
duke@435 2409 case Op_Load4B:
duke@435 2410 case Op_Load8S:
duke@435 2411 case Op_Load4S:
duke@435 2412 case Op_Load2S:
duke@435 2413 case Op_Load8C:
duke@435 2414 case Op_Load4C:
duke@435 2415 case Op_Load2C:
duke@435 2416 case Op_Load4I:
duke@435 2417 case Op_Load2I:
duke@435 2418 case Op_Load2L:
duke@435 2419 case Op_Load4F:
duke@435 2420 case Op_Load2F:
duke@435 2421 case Op_Load2D:
duke@435 2422 case Op_Store16B:
duke@435 2423 case Op_Store8B:
duke@435 2424 case Op_Store4B:
duke@435 2425 case Op_Store8C:
duke@435 2426 case Op_Store4C:
duke@435 2427 case Op_Store2C:
duke@435 2428 case Op_Store4I:
duke@435 2429 case Op_Store2I:
duke@435 2430 case Op_Store2L:
duke@435 2431 case Op_Store4F:
duke@435 2432 case Op_Store2F:
duke@435 2433 case Op_Store2D:
duke@435 2434 break;
duke@435 2435
duke@435 2436 case Op_PackB:
duke@435 2437 case Op_PackS:
duke@435 2438 case Op_PackC:
duke@435 2439 case Op_PackI:
duke@435 2440 case Op_PackF:
duke@435 2441 case Op_PackL:
duke@435 2442 case Op_PackD:
duke@435 2443 if (n->req()-1 > 2) {
duke@435 2444 // Replace many operand PackNodes with a binary tree for matching
duke@435 2445 PackNode* p = (PackNode*) n;
duke@435 2446 Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
kvn@603 2447 n->subsume_by(btp);
duke@435 2448 }
duke@435 2449 break;
kvn@1294 2450 case Op_Loop:
kvn@1294 2451 case Op_CountedLoop:
kvn@1294 2452 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2453 frc.inc_inner_loop_count();
kvn@1294 2454 }
kvn@1294 2455 break;
duke@435 2456 default:
duke@435 2457 assert( !n->is_Call(), "" );
duke@435 2458 assert( !n->is_Mem(), "" );
duke@435 2459 break;
duke@435 2460 }
never@562 2461
never@562 2462 // Collect CFG split points
never@562 2463 if (n->is_MultiBranch())
kvn@1294 2464 frc._tests.push(n);
duke@435 2465 }
duke@435 2466
duke@435 2467 //------------------------------final_graph_reshaping_walk---------------------
duke@435 2468 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 2469 // requires that the walk visits a node's inputs before visiting the node.
kvn@1294 2470 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 2471 ResourceArea *area = Thread::current()->resource_area();
kvn@766 2472 Unique_Node_List sfpt(area);
kvn@766 2473
kvn@1294 2474 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 2475 uint cnt = root->req();
duke@435 2476 Node *n = root;
duke@435 2477 uint i = 0;
duke@435 2478 while (true) {
duke@435 2479 if (i < cnt) {
duke@435 2480 // Place all non-visited non-null inputs onto stack
duke@435 2481 Node* m = n->in(i);
duke@435 2482 ++i;
kvn@1294 2483 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 2484 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 2485 sfpt.push(m);
duke@435 2486 cnt = m->req();
duke@435 2487 nstack.push(n, i); // put on stack parent and next input's index
duke@435 2488 n = m;
duke@435 2489 i = 0;
duke@435 2490 }
duke@435 2491 } else {
duke@435 2492 // Now do post-visit work
kvn@1294 2493 final_graph_reshaping_impl( n, frc );
duke@435 2494 if (nstack.is_empty())
duke@435 2495 break; // finished
duke@435 2496 n = nstack.node(); // Get node from stack
duke@435 2497 cnt = n->req();
duke@435 2498 i = nstack.index();
duke@435 2499 nstack.pop(); // Shift to the next node on stack
duke@435 2500 }
duke@435 2501 }
kvn@766 2502
kvn@1930 2503 // Skip next transformation if compressed oops are not used.
kvn@1930 2504 if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2505 return;
kvn@1930 2506
kvn@766 2507 // Go over safepoints nodes to skip DecodeN nodes for debug edges.
kvn@766 2508 // It could be done for an uncommon traps or any safepoints/calls
kvn@766 2509 // if the DecodeN node is referenced only in a debug info.
kvn@766 2510 while (sfpt.size() > 0) {
kvn@766 2511 n = sfpt.pop();
kvn@766 2512 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 2513 assert(jvms != NULL, "sanity");
kvn@766 2514 int start = jvms->debug_start();
kvn@766 2515 int end = n->req();
kvn@766 2516 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 2517 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 2518 for (int j = start; j < end; j++) {
kvn@766 2519 Node* in = n->in(j);
kvn@766 2520 if (in->is_DecodeN()) {
kvn@766 2521 bool safe_to_skip = true;
kvn@766 2522 if (!is_uncommon ) {
kvn@766 2523 // Is it safe to skip?
kvn@766 2524 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 2525 Node* u = in->raw_out(i);
kvn@766 2526 if (!u->is_SafePoint() ||
kvn@766 2527 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 2528 safe_to_skip = false;
kvn@766 2529 }
kvn@766 2530 }
kvn@766 2531 }
kvn@766 2532 if (safe_to_skip) {
kvn@766 2533 n->set_req(j, in->in(1));
kvn@766 2534 }
kvn@766 2535 if (in->outcnt() == 0) {
kvn@766 2536 in->disconnect_inputs(NULL);
kvn@766 2537 }
kvn@766 2538 }
kvn@766 2539 }
kvn@766 2540 }
duke@435 2541 }
duke@435 2542
duke@435 2543 //------------------------------final_graph_reshaping--------------------------
duke@435 2544 // Final Graph Reshaping.
duke@435 2545 //
duke@435 2546 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 2547 // and not commoned up and forced early. Must come after regular
duke@435 2548 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 2549 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 2550 // Remove Opaque nodes.
duke@435 2551 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 2552 // Intel update-in-place two-address operations and better register usage
duke@435 2553 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 2554 // calls canonicalizing them back.
duke@435 2555 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 2556 // and call sites. On Intel, we can get correct rounding either by
duke@435 2557 // forcing singles to memory (requires extra stores and loads after each
duke@435 2558 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 2559 // clearing the mode bit around call sites). The mode bit is only used
duke@435 2560 // if the relative frequency of single FP ops to calls is low enough.
duke@435 2561 // This is a key transform for SPEC mpeg_audio.
duke@435 2562 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 2563 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 2564 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 2565 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 2566 // Detection is by looking for IfNodes where only 1 projection is
duke@435 2567 // reachable from below or CatchNodes missing some targets.
duke@435 2568 // (5) Assert for insane oop offsets in debug mode.
duke@435 2569
duke@435 2570 bool Compile::final_graph_reshaping() {
duke@435 2571 // an infinite loop may have been eliminated by the optimizer,
duke@435 2572 // in which case the graph will be empty.
duke@435 2573 if (root()->req() == 1) {
duke@435 2574 record_method_not_compilable("trivial infinite loop");
duke@435 2575 return true;
duke@435 2576 }
duke@435 2577
kvn@1294 2578 Final_Reshape_Counts frc;
duke@435 2579
duke@435 2580 // Visit everybody reachable!
duke@435 2581 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2582 Node_Stack nstack(unique() >> 1);
kvn@1294 2583 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 2584
duke@435 2585 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 2586 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 2587 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 2588 // Get number of CFG targets.
duke@435 2589 // Note that PCTables include exception targets after calls.
never@562 2590 uint required_outcnt = n->required_outcnt();
never@562 2591 if (n->outcnt() != required_outcnt) {
duke@435 2592 // Check for a few special cases. Rethrow Nodes never take the
duke@435 2593 // 'fall-thru' path, so expected kids is 1 less.
duke@435 2594 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 2595 if (n->in(0)->in(0)->is_Call()) {
duke@435 2596 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 2597 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 2598 required_outcnt--; // Rethrow always has 1 less kid
duke@435 2599 } else if (call->req() > TypeFunc::Parms &&
duke@435 2600 call->is_CallDynamicJava()) {
duke@435 2601 // Check for null receiver. In such case, the optimizer has
duke@435 2602 // detected that the virtual call will always result in a null
duke@435 2603 // pointer exception. The fall-through projection of this CatchNode
duke@435 2604 // will not be populated.
duke@435 2605 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 2606 if (arg0->is_Type() &&
duke@435 2607 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 2608 required_outcnt--;
duke@435 2609 }
duke@435 2610 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 2611 call->req() > TypeFunc::Parms+1 &&
duke@435 2612 call->is_CallStaticJava()) {
duke@435 2613 // Check for negative array length. In such case, the optimizer has
duke@435 2614 // detected that the allocation attempt will always result in an
duke@435 2615 // exception. There is no fall-through projection of this CatchNode .
duke@435 2616 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 2617 if (arg1->is_Type() &&
duke@435 2618 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 2619 required_outcnt--;
duke@435 2620 }
duke@435 2621 }
duke@435 2622 }
duke@435 2623 }
never@562 2624 // Recheck with a better notion of 'required_outcnt'
never@562 2625 if (n->outcnt() != required_outcnt) {
duke@435 2626 record_method_not_compilable("malformed control flow");
duke@435 2627 return true; // Not all targets reachable!
duke@435 2628 }
duke@435 2629 }
duke@435 2630 // Check that I actually visited all kids. Unreached kids
duke@435 2631 // must be infinite loops.
duke@435 2632 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 2633 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 2634 record_method_not_compilable("infinite loop");
duke@435 2635 return true; // Found unvisited kid; must be unreach
duke@435 2636 }
duke@435 2637 }
duke@435 2638
duke@435 2639 // If original bytecodes contained a mixture of floats and doubles
duke@435 2640 // check if the optimizer has made it homogenous, item (3).
never@1364 2641 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 2642 frc.get_float_count() > 32 &&
kvn@1294 2643 frc.get_double_count() == 0 &&
kvn@1294 2644 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 2645 set_24_bit_selection_and_mode( false, true );
duke@435 2646 }
duke@435 2647
kvn@1294 2648 set_java_calls(frc.get_java_call_count());
kvn@1294 2649 set_inner_loops(frc.get_inner_loop_count());
duke@435 2650
duke@435 2651 // No infinite loops, no reason to bail out.
duke@435 2652 return false;
duke@435 2653 }
duke@435 2654
duke@435 2655 //-----------------------------too_many_traps----------------------------------
duke@435 2656 // Report if there are too many traps at the current method and bci.
duke@435 2657 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 2658 bool Compile::too_many_traps(ciMethod* method,
duke@435 2659 int bci,
duke@435 2660 Deoptimization::DeoptReason reason) {
duke@435 2661 ciMethodData* md = method->method_data();
duke@435 2662 if (md->is_empty()) {
duke@435 2663 // Assume the trap has not occurred, or that it occurred only
duke@435 2664 // because of a transient condition during start-up in the interpreter.
duke@435 2665 return false;
duke@435 2666 }
duke@435 2667 if (md->has_trap_at(bci, reason) != 0) {
duke@435 2668 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 2669 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2670 // assume the worst.
duke@435 2671 if (log())
duke@435 2672 log()->elem("observe trap='%s' count='%d'",
duke@435 2673 Deoptimization::trap_reason_name(reason),
duke@435 2674 md->trap_count(reason));
duke@435 2675 return true;
duke@435 2676 } else {
duke@435 2677 // Ignore method/bci and see if there have been too many globally.
duke@435 2678 return too_many_traps(reason, md);
duke@435 2679 }
duke@435 2680 }
duke@435 2681
duke@435 2682 // Less-accurate variant which does not require a method and bci.
duke@435 2683 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 2684 ciMethodData* logmd) {
duke@435 2685 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 2686 // Too many traps globally.
duke@435 2687 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 2688 if (log()) {
duke@435 2689 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 2690 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 2691 Deoptimization::trap_reason_name(reason),
duke@435 2692 mcount, trap_count(reason));
duke@435 2693 }
duke@435 2694 return true;
duke@435 2695 } else {
duke@435 2696 // The coast is clear.
duke@435 2697 return false;
duke@435 2698 }
duke@435 2699 }
duke@435 2700
duke@435 2701 //--------------------------too_many_recompiles--------------------------------
duke@435 2702 // Report if there are too many recompiles at the current method and bci.
duke@435 2703 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 2704 // Is not eager to return true, since this will cause the compiler to use
duke@435 2705 // Action_none for a trap point, to avoid too many recompilations.
duke@435 2706 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 2707 int bci,
duke@435 2708 Deoptimization::DeoptReason reason) {
duke@435 2709 ciMethodData* md = method->method_data();
duke@435 2710 if (md->is_empty()) {
duke@435 2711 // Assume the trap has not occurred, or that it occurred only
duke@435 2712 // because of a transient condition during start-up in the interpreter.
duke@435 2713 return false;
duke@435 2714 }
duke@435 2715 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 2716 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 2717 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 2718 Deoptimization::DeoptReason per_bc_reason
duke@435 2719 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 2720 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 2721 || md->has_trap_at(bci, reason) != 0)
duke@435 2722 // The trap frequency measure we care about is the recompile count:
duke@435 2723 && md->trap_recompiled_at(bci)
duke@435 2724 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 2725 // Do not emit a trap here if it has already caused recompilations.
duke@435 2726 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2727 // assume the worst.
duke@435 2728 if (log())
duke@435 2729 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 2730 Deoptimization::trap_reason_name(reason),
duke@435 2731 md->trap_count(reason),
duke@435 2732 md->overflow_recompile_count());
duke@435 2733 return true;
duke@435 2734 } else if (trap_count(reason) != 0
duke@435 2735 && decompile_count() >= m_cutoff) {
duke@435 2736 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 2737 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 2738 if (log())
duke@435 2739 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 2740 Deoptimization::trap_reason_name(reason),
duke@435 2741 md->trap_count(reason), trap_count(reason),
duke@435 2742 md->decompile_count(), decompile_count());
duke@435 2743 return true;
duke@435 2744 } else {
duke@435 2745 // The coast is clear.
duke@435 2746 return false;
duke@435 2747 }
duke@435 2748 }
duke@435 2749
duke@435 2750
duke@435 2751 #ifndef PRODUCT
duke@435 2752 //------------------------------verify_graph_edges---------------------------
duke@435 2753 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 2754 // between Use-Def edges and Def-Use edges in the graph.
duke@435 2755 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 2756 if (VerifyGraphEdges) {
duke@435 2757 ResourceArea *area = Thread::current()->resource_area();
duke@435 2758 Unique_Node_List visited(area);
duke@435 2759 // Call recursive graph walk to check edges
duke@435 2760 _root->verify_edges(visited);
duke@435 2761 if (no_dead_code) {
duke@435 2762 // Now make sure that no visited node is used by an unvisited node.
duke@435 2763 bool dead_nodes = 0;
duke@435 2764 Unique_Node_List checked(area);
duke@435 2765 while (visited.size() > 0) {
duke@435 2766 Node* n = visited.pop();
duke@435 2767 checked.push(n);
duke@435 2768 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 2769 Node* use = n->raw_out(i);
duke@435 2770 if (checked.member(use)) continue; // already checked
duke@435 2771 if (visited.member(use)) continue; // already in the graph
duke@435 2772 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 2773 // At this point, we have found a dead node which is DU-reachable.
duke@435 2774 if (dead_nodes++ == 0)
duke@435 2775 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 2776 use->dump(2);
duke@435 2777 tty->print_cr("---");
duke@435 2778 checked.push(use); // No repeats; pretend it is now checked.
duke@435 2779 }
duke@435 2780 }
duke@435 2781 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 2782 }
duke@435 2783 }
duke@435 2784 }
duke@435 2785 #endif
duke@435 2786
duke@435 2787 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 2788 // This is required because there is not quite a 1-1 relation between the
duke@435 2789 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 2790 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 2791 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 2792 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 2793 // by the logic in C2Compiler.
duke@435 2794 void Compile::record_failure(const char* reason) {
duke@435 2795 if (log() != NULL) {
duke@435 2796 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 2797 }
duke@435 2798 if (_failure_reason == NULL) {
duke@435 2799 // Record the first failure reason.
duke@435 2800 _failure_reason = reason;
duke@435 2801 }
never@657 2802 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
never@657 2803 C->print_method(_failure_reason);
never@657 2804 }
duke@435 2805 _root = NULL; // flush the graph, too
duke@435 2806 }
duke@435 2807
duke@435 2808 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
duke@435 2809 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
duke@435 2810 {
duke@435 2811 if (dolog) {
duke@435 2812 C = Compile::current();
duke@435 2813 _log = C->log();
duke@435 2814 } else {
duke@435 2815 C = NULL;
duke@435 2816 _log = NULL;
duke@435 2817 }
duke@435 2818 if (_log != NULL) {
duke@435 2819 _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
duke@435 2820 _log->stamp();
duke@435 2821 _log->end_head();
duke@435 2822 }
duke@435 2823 }
duke@435 2824
duke@435 2825 Compile::TracePhase::~TracePhase() {
duke@435 2826 if (_log != NULL) {
duke@435 2827 _log->done("phase nodes='%d'", C->unique());
duke@435 2828 }
duke@435 2829 }

mercurial