src/share/vm/opto/compile.cpp

Wed, 16 Nov 2011 09:13:57 -0800

author
kvn
date
Wed, 16 Nov 2011 09:13:57 -0800
changeset 3311
1bd45abaa507
parent 3310
6729bbc1fcd6
child 3389
669f6a7d5b70
permissions
-rw-r--r--

6890673: Eliminate allocations immediately after EA
Summary: Try to eliminate allocations and related locks immediately after escape analysis.
Reviewed-by: never

duke@435 1 /*
never@2658 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "code/exceptionHandlerTable.hpp"
stefank@2314 29 #include "code/nmethod.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "compiler/oopMap.hpp"
stefank@2314 32 #include "opto/addnode.hpp"
stefank@2314 33 #include "opto/block.hpp"
stefank@2314 34 #include "opto/c2compiler.hpp"
stefank@2314 35 #include "opto/callGenerator.hpp"
stefank@2314 36 #include "opto/callnode.hpp"
stefank@2314 37 #include "opto/cfgnode.hpp"
stefank@2314 38 #include "opto/chaitin.hpp"
stefank@2314 39 #include "opto/compile.hpp"
stefank@2314 40 #include "opto/connode.hpp"
stefank@2314 41 #include "opto/divnode.hpp"
stefank@2314 42 #include "opto/escape.hpp"
stefank@2314 43 #include "opto/idealGraphPrinter.hpp"
stefank@2314 44 #include "opto/loopnode.hpp"
stefank@2314 45 #include "opto/machnode.hpp"
stefank@2314 46 #include "opto/macro.hpp"
stefank@2314 47 #include "opto/matcher.hpp"
stefank@2314 48 #include "opto/memnode.hpp"
stefank@2314 49 #include "opto/mulnode.hpp"
stefank@2314 50 #include "opto/node.hpp"
stefank@2314 51 #include "opto/opcodes.hpp"
stefank@2314 52 #include "opto/output.hpp"
stefank@2314 53 #include "opto/parse.hpp"
stefank@2314 54 #include "opto/phaseX.hpp"
stefank@2314 55 #include "opto/rootnode.hpp"
stefank@2314 56 #include "opto/runtime.hpp"
stefank@2314 57 #include "opto/stringopts.hpp"
stefank@2314 58 #include "opto/type.hpp"
stefank@2314 59 #include "opto/vectornode.hpp"
stefank@2314 60 #include "runtime/arguments.hpp"
stefank@2314 61 #include "runtime/signature.hpp"
stefank@2314 62 #include "runtime/stubRoutines.hpp"
stefank@2314 63 #include "runtime/timer.hpp"
stefank@2314 64 #include "utilities/copy.hpp"
stefank@2314 65 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 66 # include "adfiles/ad_x86_32.hpp"
stefank@2314 67 #endif
stefank@2314 68 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 69 # include "adfiles/ad_x86_64.hpp"
stefank@2314 70 #endif
stefank@2314 71 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 72 # include "adfiles/ad_sparc.hpp"
stefank@2314 73 #endif
stefank@2314 74 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 75 # include "adfiles/ad_zero.hpp"
stefank@2314 76 #endif
bobv@2508 77 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 78 # include "adfiles/ad_arm.hpp"
bobv@2508 79 #endif
bobv@2508 80 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 81 # include "adfiles/ad_ppc.hpp"
bobv@2508 82 #endif
duke@435 83
twisti@2350 84
twisti@2350 85 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 86 // Constant table base node singleton.
twisti@2350 87 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 88 if (_mach_constant_base_node == NULL) {
twisti@2350 89 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 90 _mach_constant_base_node->add_req(C->root());
twisti@2350 91 }
twisti@2350 92 return _mach_constant_base_node;
twisti@2350 93 }
twisti@2350 94
twisti@2350 95
duke@435 96 /// Support for intrinsics.
duke@435 97
duke@435 98 // Return the index at which m must be inserted (or already exists).
duke@435 99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 101 #ifdef ASSERT
duke@435 102 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 103 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 104 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 105 assert(cg1->method() != cg2->method()
duke@435 106 ? cg1->method() < cg2->method()
duke@435 107 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 108 "compiler intrinsics list must stay sorted");
duke@435 109 }
duke@435 110 #endif
duke@435 111 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 112 int lo = 0, hi = _intrinsics->length()-1;
duke@435 113 while (lo <= hi) {
duke@435 114 int mid = (uint)(hi + lo) / 2;
duke@435 115 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 116 if (m < mid_m) {
duke@435 117 hi = mid-1;
duke@435 118 } else if (m > mid_m) {
duke@435 119 lo = mid+1;
duke@435 120 } else {
duke@435 121 // look at minor sort key
duke@435 122 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 123 if (is_virtual < mid_virt) {
duke@435 124 hi = mid-1;
duke@435 125 } else if (is_virtual > mid_virt) {
duke@435 126 lo = mid+1;
duke@435 127 } else {
duke@435 128 return mid; // exact match
duke@435 129 }
duke@435 130 }
duke@435 131 }
duke@435 132 return lo; // inexact match
duke@435 133 }
duke@435 134
duke@435 135 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 136 if (_intrinsics == NULL) {
duke@435 137 _intrinsics = new GrowableArray<CallGenerator*>(60);
duke@435 138 }
duke@435 139 // This code is stolen from ciObjectFactory::insert.
duke@435 140 // Really, GrowableArray should have methods for
duke@435 141 // insert_at, remove_at, and binary_search.
duke@435 142 int len = _intrinsics->length();
duke@435 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 144 if (index == len) {
duke@435 145 _intrinsics->append(cg);
duke@435 146 } else {
duke@435 147 #ifdef ASSERT
duke@435 148 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 149 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 150 #endif
duke@435 151 _intrinsics->append(_intrinsics->at(len-1));
duke@435 152 int pos;
duke@435 153 for (pos = len-2; pos >= index; pos--) {
duke@435 154 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 155 }
duke@435 156 _intrinsics->at_put(index, cg);
duke@435 157 }
duke@435 158 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 159 }
duke@435 160
duke@435 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 162 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 163 if (_intrinsics != NULL) {
duke@435 164 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 165 if (index < _intrinsics->length()
duke@435 166 && _intrinsics->at(index)->method() == m
duke@435 167 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 168 return _intrinsics->at(index);
duke@435 169 }
duke@435 170 }
duke@435 171 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 172 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 173 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 174 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 175 if (cg != NULL) {
duke@435 176 // Save it for next time:
duke@435 177 register_intrinsic(cg);
duke@435 178 return cg;
duke@435 179 } else {
duke@435 180 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 181 }
duke@435 182 }
duke@435 183 return NULL;
duke@435 184 }
duke@435 185
duke@435 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 187 // in library_call.cpp.
duke@435 188
duke@435 189
duke@435 190 #ifndef PRODUCT
duke@435 191 // statistics gathering...
duke@435 192
duke@435 193 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 195
duke@435 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 197 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 198 int oflags = _intrinsic_hist_flags[id];
duke@435 199 assert(flags != 0, "what happened?");
duke@435 200 if (is_virtual) {
duke@435 201 flags |= _intrinsic_virtual;
duke@435 202 }
duke@435 203 bool changed = (flags != oflags);
duke@435 204 if ((flags & _intrinsic_worked) != 0) {
duke@435 205 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 206 if (count == 1) {
duke@435 207 changed = true; // first time
duke@435 208 }
duke@435 209 // increment the overall count also:
duke@435 210 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 211 }
duke@435 212 if (changed) {
duke@435 213 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 214 // Something changed about the intrinsic's virtuality.
duke@435 215 if ((flags & _intrinsic_virtual) != 0) {
duke@435 216 // This is the first use of this intrinsic as a virtual call.
duke@435 217 if (oflags != 0) {
duke@435 218 // We already saw it as a non-virtual, so note both cases.
duke@435 219 flags |= _intrinsic_both;
duke@435 220 }
duke@435 221 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 222 // This is the first use of this intrinsic as a non-virtual
duke@435 223 flags |= _intrinsic_both;
duke@435 224 }
duke@435 225 }
duke@435 226 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 227 }
duke@435 228 // update the overall flags also:
duke@435 229 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 230 return changed;
duke@435 231 }
duke@435 232
duke@435 233 static char* format_flags(int flags, char* buf) {
duke@435 234 buf[0] = 0;
duke@435 235 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 236 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 237 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 238 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 239 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 240 if (buf[0] == 0) strcat(buf, ",");
duke@435 241 assert(buf[0] == ',', "must be");
duke@435 242 return &buf[1];
duke@435 243 }
duke@435 244
duke@435 245 void Compile::print_intrinsic_statistics() {
duke@435 246 char flagsbuf[100];
duke@435 247 ttyLocker ttyl;
duke@435 248 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 249 tty->print_cr("Compiler intrinsic usage:");
duke@435 250 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 251 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 252 #define PRINT_STAT_LINE(name, c, f) \
duke@435 253 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 254 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 255 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 256 int flags = _intrinsic_hist_flags[id];
duke@435 257 juint count = _intrinsic_hist_count[id];
duke@435 258 if ((flags | count) != 0) {
duke@435 259 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 260 }
duke@435 261 }
duke@435 262 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 263 if (xtty != NULL) xtty->tail("statistics");
duke@435 264 }
duke@435 265
duke@435 266 void Compile::print_statistics() {
duke@435 267 { ttyLocker ttyl;
duke@435 268 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 269 Parse::print_statistics();
duke@435 270 PhaseCCP::print_statistics();
duke@435 271 PhaseRegAlloc::print_statistics();
duke@435 272 Scheduling::print_statistics();
duke@435 273 PhasePeephole::print_statistics();
duke@435 274 PhaseIdealLoop::print_statistics();
duke@435 275 if (xtty != NULL) xtty->tail("statistics");
duke@435 276 }
duke@435 277 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 278 // put this under its own <statistics> element.
duke@435 279 print_intrinsic_statistics();
duke@435 280 }
duke@435 281 }
duke@435 282 #endif //PRODUCT
duke@435 283
duke@435 284 // Support for bundling info
duke@435 285 Bundle* Compile::node_bundling(const Node *n) {
duke@435 286 assert(valid_bundle_info(n), "oob");
duke@435 287 return &_node_bundling_base[n->_idx];
duke@435 288 }
duke@435 289
duke@435 290 bool Compile::valid_bundle_info(const Node *n) {
duke@435 291 return (_node_bundling_limit > n->_idx);
duke@435 292 }
duke@435 293
duke@435 294
never@1515 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 296 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 297 Node* use = n->last_out(i);
never@1515 298 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 299 uint uses_found = 0;
never@1515 300 for (uint j = 0; j < use->len(); j++) {
never@1515 301 if (use->in(j) == n) {
never@1515 302 if (j < use->req())
never@1515 303 use->set_req(j, nn);
never@1515 304 else
never@1515 305 use->set_prec(j, nn);
never@1515 306 uses_found++;
never@1515 307 }
never@1515 308 }
never@1515 309 if (is_in_table) {
never@1515 310 // reinsert into table
never@1515 311 initial_gvn()->hash_find_insert(use);
never@1515 312 }
never@1515 313 record_for_igvn(use);
never@1515 314 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 315 }
never@1515 316 }
never@1515 317
never@1515 318
never@1515 319
never@1515 320
duke@435 321 // Identify all nodes that are reachable from below, useful.
duke@435 322 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 323 // recursive traversal is slower.
duke@435 324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 325 int estimated_worklist_size = unique();
duke@435 326 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 327
duke@435 328 // Initialize worklist
duke@435 329 if (root() != NULL) { useful.push(root()); }
duke@435 330 // If 'top' is cached, declare it useful to preserve cached node
duke@435 331 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 332
duke@435 333 // Push all useful nodes onto the list, breadthfirst
duke@435 334 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 335 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 336 Node *n = useful.at(next);
duke@435 337 uint max = n->len();
duke@435 338 for( uint i = 0; i < max; ++i ) {
duke@435 339 Node *m = n->in(i);
duke@435 340 if( m == NULL ) continue;
duke@435 341 useful.push(m);
duke@435 342 }
duke@435 343 }
duke@435 344 }
duke@435 345
duke@435 346 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 348 uint next = 0;
kvn@3260 349 while (next < useful.size()) {
duke@435 350 Node *n = useful.at(next++);
duke@435 351 // Use raw traversal of out edges since this code removes out edges
duke@435 352 int max = n->outcnt();
kvn@3260 353 for (int j = 0; j < max; ++j) {
duke@435 354 Node* child = n->raw_out(j);
kvn@3260 355 if (! useful.member(child)) {
kvn@3260 356 assert(!child->is_top() || child != top(),
kvn@3260 357 "If top is cached in Compile object it is in useful list");
duke@435 358 // Only need to remove this out-edge to the useless node
duke@435 359 n->raw_del_out(j);
duke@435 360 --j;
duke@435 361 --max;
duke@435 362 }
duke@435 363 }
duke@435 364 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 365 record_for_igvn(n->unique_out());
kvn@3260 366 }
kvn@3260 367 }
kvn@3260 368 // Remove useless macro and predicate opaq nodes
kvn@3260 369 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 370 Node* n = C->macro_node(i);
kvn@3260 371 if (!useful.member(n)) {
kvn@3260 372 remove_macro_node(n);
duke@435 373 }
duke@435 374 }
duke@435 375 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 376 }
duke@435 377
duke@435 378 //------------------------------frame_size_in_words-----------------------------
duke@435 379 // frame_slots in units of words
duke@435 380 int Compile::frame_size_in_words() const {
duke@435 381 // shift is 0 in LP32 and 1 in LP64
duke@435 382 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 383 int words = _frame_slots >> shift;
duke@435 384 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 385 return words;
duke@435 386 }
duke@435 387
duke@435 388 // ============================================================================
duke@435 389 //------------------------------CompileWrapper---------------------------------
duke@435 390 class CompileWrapper : public StackObj {
duke@435 391 Compile *const _compile;
duke@435 392 public:
duke@435 393 CompileWrapper(Compile* compile);
duke@435 394
duke@435 395 ~CompileWrapper();
duke@435 396 };
duke@435 397
duke@435 398 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 399 // the Compile* pointer is stored in the current ciEnv:
duke@435 400 ciEnv* env = compile->env();
duke@435 401 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 402 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 403 env->set_compiler_data(compile);
duke@435 404 assert(compile == Compile::current(), "sanity");
duke@435 405
duke@435 406 compile->set_type_dict(NULL);
duke@435 407 compile->set_type_hwm(NULL);
duke@435 408 compile->set_type_last_size(0);
duke@435 409 compile->set_last_tf(NULL, NULL);
duke@435 410 compile->set_indexSet_arena(NULL);
duke@435 411 compile->set_indexSet_free_block_list(NULL);
duke@435 412 compile->init_type_arena();
duke@435 413 Type::Initialize(compile);
duke@435 414 _compile->set_scratch_buffer_blob(NULL);
duke@435 415 _compile->begin_method();
duke@435 416 }
duke@435 417 CompileWrapper::~CompileWrapper() {
duke@435 418 _compile->end_method();
duke@435 419 if (_compile->scratch_buffer_blob() != NULL)
duke@435 420 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 421 _compile->env()->set_compiler_data(NULL);
duke@435 422 }
duke@435 423
duke@435 424
duke@435 425 //----------------------------print_compile_messages---------------------------
duke@435 426 void Compile::print_compile_messages() {
duke@435 427 #ifndef PRODUCT
duke@435 428 // Check if recompiling
duke@435 429 if (_subsume_loads == false && PrintOpto) {
duke@435 430 // Recompiling without allowing machine instructions to subsume loads
duke@435 431 tty->print_cr("*********************************************************");
duke@435 432 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 433 tty->print_cr("*********************************************************");
duke@435 434 }
kvn@473 435 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 436 // Recompiling without escape analysis
kvn@473 437 tty->print_cr("*********************************************************");
kvn@473 438 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 439 tty->print_cr("*********************************************************");
kvn@473 440 }
duke@435 441 if (env()->break_at_compile()) {
twisti@1040 442 // Open the debugger when compiling this method.
duke@435 443 tty->print("### Breaking when compiling: ");
duke@435 444 method()->print_short_name();
duke@435 445 tty->cr();
duke@435 446 BREAKPOINT;
duke@435 447 }
duke@435 448
duke@435 449 if( PrintOpto ) {
duke@435 450 if (is_osr_compilation()) {
duke@435 451 tty->print("[OSR]%3d", _compile_id);
duke@435 452 } else {
duke@435 453 tty->print("%3d", _compile_id);
duke@435 454 }
duke@435 455 }
duke@435 456 #endif
duke@435 457 }
duke@435 458
duke@435 459
kvn@2414 460 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 461 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 462 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 463 // If there is already a scratch buffer blob allocated and the
kvn@2414 464 // constant section is big enough, use it. Otherwise free the
kvn@2414 465 // current and allocate a new one.
kvn@2414 466 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 467 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 468 // Use the current blob.
kvn@2414 469 } else {
kvn@2414 470 if (blob != NULL) {
kvn@2414 471 BufferBlob::free(blob);
kvn@2414 472 }
duke@435 473
kvn@2414 474 ResourceMark rm;
kvn@2414 475 _scratch_const_size = const_size;
kvn@2414 476 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 477 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 478 // Record the buffer blob for next time.
kvn@2414 479 set_scratch_buffer_blob(blob);
kvn@2414 480 // Have we run out of code space?
kvn@2414 481 if (scratch_buffer_blob() == NULL) {
kvn@2414 482 // Let CompilerBroker disable further compilations.
kvn@2414 483 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 484 return;
kvn@2414 485 }
kvn@598 486 }
duke@435 487
duke@435 488 // Initialize the relocation buffers
twisti@2103 489 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 490 set_scratch_locs_memory(locs_buf);
duke@435 491 }
duke@435 492
duke@435 493
duke@435 494 //-----------------------scratch_emit_size-------------------------------------
duke@435 495 // Helper function that computes size by emitting code
duke@435 496 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 497 // Start scratch_emit_size section.
twisti@2350 498 set_in_scratch_emit_size(true);
twisti@2350 499
duke@435 500 // Emit into a trash buffer and count bytes emitted.
duke@435 501 // This is a pretty expensive way to compute a size,
duke@435 502 // but it works well enough if seldom used.
duke@435 503 // All common fixed-size instructions are given a size
duke@435 504 // method by the AD file.
duke@435 505 // Note that the scratch buffer blob and locs memory are
duke@435 506 // allocated at the beginning of the compile task, and
duke@435 507 // may be shared by several calls to scratch_emit_size.
duke@435 508 // The allocation of the scratch buffer blob is particularly
duke@435 509 // expensive, since it has to grab the code cache lock.
duke@435 510 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 511 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 512 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 513 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 514 address blob_begin = blob->content_begin();
duke@435 515 address blob_end = (address)locs_buf;
twisti@2103 516 assert(blob->content_contains(blob_end), "sanity");
duke@435 517 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 518 buf.initialize_consts_size(_scratch_const_size);
duke@435 519 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 520 assert(locs_buf != NULL, "sanity");
twisti@2350 521 int lsize = MAX_locs_size / 3;
twisti@2350 522 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 523 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 524 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 525
twisti@2350 526 // Do the emission.
kvn@3037 527
kvn@3037 528 Label fakeL; // Fake label for branch instructions.
kvn@3051 529 Label* saveL = NULL;
kvn@3051 530 uint save_bnum = 0;
kvn@3051 531 bool is_branch = n->is_MachBranch();
kvn@3037 532 if (is_branch) {
kvn@3037 533 MacroAssembler masm(&buf);
kvn@3037 534 masm.bind(fakeL);
kvn@3051 535 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 536 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 537 }
duke@435 538 n->emit(buf, this->regalloc());
kvn@3051 539 if (is_branch) // Restore label.
kvn@3051 540 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 541
twisti@2350 542 // End scratch_emit_size section.
twisti@2350 543 set_in_scratch_emit_size(false);
twisti@2350 544
twisti@2103 545 return buf.insts_size();
duke@435 546 }
duke@435 547
duke@435 548
duke@435 549 // ============================================================================
duke@435 550 //------------------------------Compile standard-------------------------------
duke@435 551 debug_only( int Compile::_debug_idx = 100000; )
duke@435 552
duke@435 553 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 554 // the continuation bci for on stack replacement.
duke@435 555
duke@435 556
kvn@473 557 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
duke@435 558 : Phase(Compiler),
duke@435 559 _env(ci_env),
duke@435 560 _log(ci_env->log()),
duke@435 561 _compile_id(ci_env->compile_id()),
duke@435 562 _save_argument_registers(false),
duke@435 563 _stub_name(NULL),
duke@435 564 _stub_function(NULL),
duke@435 565 _stub_entry_point(NULL),
duke@435 566 _method(target),
duke@435 567 _entry_bci(osr_bci),
duke@435 568 _initial_gvn(NULL),
duke@435 569 _for_igvn(NULL),
duke@435 570 _warm_calls(NULL),
duke@435 571 _subsume_loads(subsume_loads),
kvn@473 572 _do_escape_analysis(do_escape_analysis),
duke@435 573 _failure_reason(NULL),
duke@435 574 _code_buffer("Compile::Fill_buffer"),
duke@435 575 _orig_pc_slot(0),
duke@435 576 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 577 _has_method_handle_invokes(false),
twisti@2350 578 _mach_constant_base_node(NULL),
duke@435 579 _node_bundling_limit(0),
duke@435 580 _node_bundling_base(NULL),
kvn@1294 581 _java_calls(0),
kvn@1294 582 _inner_loops(0),
twisti@2350 583 _scratch_const_size(-1),
twisti@2350 584 _in_scratch_emit_size(false),
duke@435 585 #ifndef PRODUCT
duke@435 586 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 587 _printer(IdealGraphPrinter::printer()),
duke@435 588 #endif
duke@435 589 _congraph(NULL) {
duke@435 590 C = this;
duke@435 591
duke@435 592 CompileWrapper cw(this);
duke@435 593 #ifndef PRODUCT
duke@435 594 if (TimeCompiler2) {
duke@435 595 tty->print(" ");
duke@435 596 target->holder()->name()->print();
duke@435 597 tty->print(".");
duke@435 598 target->print_short_name();
duke@435 599 tty->print(" ");
duke@435 600 }
duke@435 601 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 602 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 603 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 604 if (!print_opto_assembly) {
jrose@535 605 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 606 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 607 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 608 print_opto_assembly = true;
jrose@535 609 }
jrose@535 610 }
jrose@535 611 set_print_assembly(print_opto_assembly);
never@802 612 set_parsed_irreducible_loop(false);
duke@435 613 #endif
duke@435 614
duke@435 615 if (ProfileTraps) {
duke@435 616 // Make sure the method being compiled gets its own MDO,
duke@435 617 // so we can at least track the decompile_count().
iveresov@2349 618 method()->ensure_method_data();
duke@435 619 }
duke@435 620
duke@435 621 Init(::AliasLevel);
duke@435 622
duke@435 623
duke@435 624 print_compile_messages();
duke@435 625
duke@435 626 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 627 _ilt = InlineTree::build_inline_tree_root();
duke@435 628 else
duke@435 629 _ilt = NULL;
duke@435 630
duke@435 631 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 632 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 633
duke@435 634 #define MINIMUM_NODE_HASH 1023
duke@435 635 // Node list that Iterative GVN will start with
duke@435 636 Unique_Node_List for_igvn(comp_arena());
duke@435 637 set_for_igvn(&for_igvn);
duke@435 638
duke@435 639 // GVN that will be run immediately on new nodes
duke@435 640 uint estimated_size = method()->code_size()*4+64;
duke@435 641 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 642 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 643 set_initial_gvn(&gvn);
duke@435 644
duke@435 645 { // Scope for timing the parser
duke@435 646 TracePhase t3("parse", &_t_parser, true);
duke@435 647
duke@435 648 // Put top into the hash table ASAP.
duke@435 649 initial_gvn()->transform_no_reclaim(top());
duke@435 650
duke@435 651 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 652 CallGenerator* cg = NULL;
duke@435 653 if (is_osr_compilation()) {
duke@435 654 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 655 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 656 init_tf(TypeFunc::make(domain, range));
duke@435 657 StartNode* s = new (this, 2) StartOSRNode(root(), domain);
duke@435 658 initial_gvn()->set_type_bottom(s);
duke@435 659 init_start(s);
duke@435 660 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 661 } else {
duke@435 662 // Normal case.
duke@435 663 init_tf(TypeFunc::make(method()));
duke@435 664 StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
duke@435 665 initial_gvn()->set_type_bottom(s);
duke@435 666 init_start(s);
johnc@2781 667 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 668 // With java.lang.ref.reference.get() we must go through the
johnc@2781 669 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 670 // method of the compile - so that, if necessary, the value in
johnc@2781 671 // the referent field of the reference object gets recorded by
johnc@2781 672 // the pre-barrier code.
johnc@2781 673 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 674 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 675 // result in the referent being marked live and the reference
johnc@2781 676 // object removed from the list of discovered references during
johnc@2781 677 // reference processing.
johnc@2781 678 cg = find_intrinsic(method(), false);
johnc@2781 679 }
johnc@2781 680 if (cg == NULL) {
johnc@2781 681 float past_uses = method()->interpreter_invocation_count();
johnc@2781 682 float expected_uses = past_uses;
johnc@2781 683 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 684 }
duke@435 685 }
duke@435 686 if (failing()) return;
duke@435 687 if (cg == NULL) {
duke@435 688 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 689 return;
duke@435 690 }
duke@435 691 JVMState* jvms = build_start_state(start(), tf());
duke@435 692 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 693 record_method_not_compilable("method parse failed");
duke@435 694 return;
duke@435 695 }
duke@435 696 GraphKit kit(jvms);
duke@435 697
duke@435 698 if (!kit.stopped()) {
duke@435 699 // Accept return values, and transfer control we know not where.
duke@435 700 // This is done by a special, unique ReturnNode bound to root.
duke@435 701 return_values(kit.jvms());
duke@435 702 }
duke@435 703
duke@435 704 if (kit.has_exceptions()) {
duke@435 705 // Any exceptions that escape from this call must be rethrown
duke@435 706 // to whatever caller is dynamically above us on the stack.
duke@435 707 // This is done by a special, unique RethrowNode bound to root.
duke@435 708 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 709 }
duke@435 710
never@1515 711 if (!failing() && has_stringbuilder()) {
never@1515 712 {
never@1515 713 // remove useless nodes to make the usage analysis simpler
never@1515 714 ResourceMark rm;
never@1515 715 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
never@1515 716 }
never@1515 717
never@1515 718 {
never@1515 719 ResourceMark rm;
never@1515 720 print_method("Before StringOpts", 3);
never@1515 721 PhaseStringOpts pso(initial_gvn(), &for_igvn);
never@1515 722 print_method("After StringOpts", 3);
never@1515 723 }
never@1515 724
never@1515 725 // now inline anything that we skipped the first time around
never@1515 726 while (_late_inlines.length() > 0) {
never@1515 727 CallGenerator* cg = _late_inlines.pop();
never@1515 728 cg->do_late_inline();
kvn@3260 729 if (failing()) return;
never@1515 730 }
never@1515 731 }
never@1515 732 assert(_late_inlines.length() == 0, "should have been processed");
never@1515 733
never@852 734 print_method("Before RemoveUseless", 3);
never@802 735
duke@435 736 // Remove clutter produced by parsing.
duke@435 737 if (!failing()) {
duke@435 738 ResourceMark rm;
duke@435 739 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 740 }
duke@435 741 }
duke@435 742
duke@435 743 // Note: Large methods are capped off in do_one_bytecode().
duke@435 744 if (failing()) return;
duke@435 745
duke@435 746 // After parsing, node notes are no longer automagic.
duke@435 747 // They must be propagated by register_new_node_with_optimizer(),
duke@435 748 // clone(), or the like.
duke@435 749 set_default_node_notes(NULL);
duke@435 750
duke@435 751 for (;;) {
duke@435 752 int successes = Inline_Warm();
duke@435 753 if (failing()) return;
duke@435 754 if (successes == 0) break;
duke@435 755 }
duke@435 756
duke@435 757 // Drain the list.
duke@435 758 Finish_Warm();
duke@435 759 #ifndef PRODUCT
duke@435 760 if (_printer) {
duke@435 761 _printer->print_inlining(this);
duke@435 762 }
duke@435 763 #endif
duke@435 764
duke@435 765 if (failing()) return;
duke@435 766 NOT_PRODUCT( verify_graph_edges(); )
duke@435 767
duke@435 768 // Now optimize
duke@435 769 Optimize();
duke@435 770 if (failing()) return;
duke@435 771 NOT_PRODUCT( verify_graph_edges(); )
duke@435 772
duke@435 773 #ifndef PRODUCT
duke@435 774 if (PrintIdeal) {
duke@435 775 ttyLocker ttyl; // keep the following output all in one block
duke@435 776 // This output goes directly to the tty, not the compiler log.
duke@435 777 // To enable tools to match it up with the compilation activity,
duke@435 778 // be sure to tag this tty output with the compile ID.
duke@435 779 if (xtty != NULL) {
duke@435 780 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 781 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 782 "");
duke@435 783 }
duke@435 784 root()->dump(9999);
duke@435 785 if (xtty != NULL) {
duke@435 786 xtty->tail("ideal");
duke@435 787 }
duke@435 788 }
duke@435 789 #endif
duke@435 790
duke@435 791 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 792 // for the original deopt pc.
duke@435 793
duke@435 794 _orig_pc_slot = fixed_slots();
duke@435 795 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 796 set_fixed_slots(next_slot);
duke@435 797
duke@435 798 // Now generate code
duke@435 799 Code_Gen();
duke@435 800 if (failing()) return;
duke@435 801
duke@435 802 // Check if we want to skip execution of all compiled code.
duke@435 803 {
duke@435 804 #ifndef PRODUCT
duke@435 805 if (OptoNoExecute) {
duke@435 806 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 807 return;
duke@435 808 }
duke@435 809 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 810 #endif
duke@435 811
duke@435 812 if (is_osr_compilation()) {
duke@435 813 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 814 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 815 } else {
duke@435 816 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 817 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 818 }
duke@435 819
duke@435 820 env()->register_method(_method, _entry_bci,
duke@435 821 &_code_offsets,
duke@435 822 _orig_pc_slot_offset_in_bytes,
duke@435 823 code_buffer(),
duke@435 824 frame_size_in_words(), _oop_map_set,
duke@435 825 &_handler_table, &_inc_table,
duke@435 826 compiler,
duke@435 827 env()->comp_level(),
duke@435 828 has_unsafe_access()
duke@435 829 );
duke@435 830 }
duke@435 831 }
duke@435 832
duke@435 833 //------------------------------Compile----------------------------------------
duke@435 834 // Compile a runtime stub
duke@435 835 Compile::Compile( ciEnv* ci_env,
duke@435 836 TypeFunc_generator generator,
duke@435 837 address stub_function,
duke@435 838 const char *stub_name,
duke@435 839 int is_fancy_jump,
duke@435 840 bool pass_tls,
duke@435 841 bool save_arg_registers,
duke@435 842 bool return_pc )
duke@435 843 : Phase(Compiler),
duke@435 844 _env(ci_env),
duke@435 845 _log(ci_env->log()),
duke@435 846 _compile_id(-1),
duke@435 847 _save_argument_registers(save_arg_registers),
duke@435 848 _method(NULL),
duke@435 849 _stub_name(stub_name),
duke@435 850 _stub_function(stub_function),
duke@435 851 _stub_entry_point(NULL),
duke@435 852 _entry_bci(InvocationEntryBci),
duke@435 853 _initial_gvn(NULL),
duke@435 854 _for_igvn(NULL),
duke@435 855 _warm_calls(NULL),
duke@435 856 _orig_pc_slot(0),
duke@435 857 _orig_pc_slot_offset_in_bytes(0),
duke@435 858 _subsume_loads(true),
kvn@473 859 _do_escape_analysis(false),
duke@435 860 _failure_reason(NULL),
duke@435 861 _code_buffer("Compile::Fill_buffer"),
twisti@1700 862 _has_method_handle_invokes(false),
twisti@2350 863 _mach_constant_base_node(NULL),
duke@435 864 _node_bundling_limit(0),
duke@435 865 _node_bundling_base(NULL),
kvn@1294 866 _java_calls(0),
kvn@1294 867 _inner_loops(0),
duke@435 868 #ifndef PRODUCT
duke@435 869 _trace_opto_output(TraceOptoOutput),
duke@435 870 _printer(NULL),
duke@435 871 #endif
duke@435 872 _congraph(NULL) {
duke@435 873 C = this;
duke@435 874
duke@435 875 #ifndef PRODUCT
duke@435 876 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 877 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 878 set_print_assembly(PrintFrameConverterAssembly);
never@802 879 set_parsed_irreducible_loop(false);
duke@435 880 #endif
duke@435 881 CompileWrapper cw(this);
duke@435 882 Init(/*AliasLevel=*/ 0);
duke@435 883 init_tf((*generator)());
duke@435 884
duke@435 885 {
duke@435 886 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 887 Unique_Node_List for_igvn(comp_arena());
duke@435 888 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 889 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 890 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 891 gvn.transform_no_reclaim(top());
duke@435 892
duke@435 893 GraphKit kit;
duke@435 894 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 895 }
duke@435 896
duke@435 897 NOT_PRODUCT( verify_graph_edges(); )
duke@435 898 Code_Gen();
duke@435 899 if (failing()) return;
duke@435 900
duke@435 901
duke@435 902 // Entry point will be accessed using compile->stub_entry_point();
duke@435 903 if (code_buffer() == NULL) {
duke@435 904 Matcher::soft_match_failure();
duke@435 905 } else {
duke@435 906 if (PrintAssembly && (WizardMode || Verbose))
duke@435 907 tty->print_cr("### Stub::%s", stub_name);
duke@435 908
duke@435 909 if (!failing()) {
duke@435 910 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 911
duke@435 912 // Make the NMethod
duke@435 913 // For now we mark the frame as never safe for profile stackwalking
duke@435 914 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 915 code_buffer(),
duke@435 916 CodeOffsets::frame_never_safe,
duke@435 917 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 918 frame_size_in_words(),
duke@435 919 _oop_map_set,
duke@435 920 save_arg_registers);
duke@435 921 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 922
duke@435 923 _stub_entry_point = rs->entry_point();
duke@435 924 }
duke@435 925 }
duke@435 926 }
duke@435 927
duke@435 928 #ifndef PRODUCT
duke@435 929 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
duke@435 930 if(PrintOpto && Verbose) {
duke@435 931 tty->print("%s ", stub_name); j_sig->print_flattened(); tty->cr();
duke@435 932 }
duke@435 933 }
duke@435 934 #endif
duke@435 935
duke@435 936 void Compile::print_codes() {
duke@435 937 }
duke@435 938
duke@435 939 //------------------------------Init-------------------------------------------
duke@435 940 // Prepare for a single compilation
duke@435 941 void Compile::Init(int aliaslevel) {
duke@435 942 _unique = 0;
duke@435 943 _regalloc = NULL;
duke@435 944
duke@435 945 _tf = NULL; // filled in later
duke@435 946 _top = NULL; // cached later
duke@435 947 _matcher = NULL; // filled in later
duke@435 948 _cfg = NULL; // filled in later
duke@435 949
duke@435 950 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 951
duke@435 952 _node_note_array = NULL;
duke@435 953 _default_node_notes = NULL;
duke@435 954
duke@435 955 _immutable_memory = NULL; // filled in at first inquiry
duke@435 956
duke@435 957 // Globally visible Nodes
duke@435 958 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 959 set_cached_top_node(NULL);
duke@435 960 set_root(new (this, 3) RootNode());
duke@435 961 // Now that you have a Root to point to, create the real TOP
duke@435 962 set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
duke@435 963 set_recent_alloc(NULL, NULL);
duke@435 964
duke@435 965 // Create Debug Information Recorder to record scopes, oopmaps, etc.
duke@435 966 env()->set_oop_recorder(new OopRecorder(comp_arena()));
duke@435 967 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 968 env()->set_dependencies(new Dependencies(env()));
duke@435 969
duke@435 970 _fixed_slots = 0;
duke@435 971 set_has_split_ifs(false);
duke@435 972 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 973 set_has_stringbuilder(false);
duke@435 974 _trap_can_recompile = false; // no traps emitted yet
duke@435 975 _major_progress = true; // start out assuming good things will happen
duke@435 976 set_has_unsafe_access(false);
duke@435 977 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 978 set_decompile_count(0);
duke@435 979
rasbold@853 980 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 981 set_num_loop_opts(LoopOptsCount);
iveresov@2138 982 set_do_inlining(Inline);
iveresov@2138 983 set_max_inline_size(MaxInlineSize);
iveresov@2138 984 set_freq_inline_size(FreqInlineSize);
iveresov@2138 985 set_do_scheduling(OptoScheduling);
iveresov@2138 986 set_do_count_invocations(false);
iveresov@2138 987 set_do_method_data_update(false);
duke@435 988
duke@435 989 if (debug_info()->recording_non_safepoints()) {
duke@435 990 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 991 (comp_arena(), 8, 0, NULL));
duke@435 992 set_default_node_notes(Node_Notes::make(this));
duke@435 993 }
duke@435 994
duke@435 995 // // -- Initialize types before each compile --
duke@435 996 // // Update cached type information
duke@435 997 // if( _method && _method->constants() )
duke@435 998 // Type::update_loaded_types(_method, _method->constants());
duke@435 999
duke@435 1000 // Init alias_type map.
kvn@473 1001 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 1002 aliaslevel = 2; // No unique types without escape analysis
duke@435 1003 _AliasLevel = aliaslevel;
duke@435 1004 const int grow_ats = 16;
duke@435 1005 _max_alias_types = grow_ats;
duke@435 1006 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 1007 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 1008 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1009 {
duke@435 1010 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1011 }
duke@435 1012 // Initialize the first few types.
duke@435 1013 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1014 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1015 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1016 _num_alias_types = AliasIdxRaw+1;
duke@435 1017 // Zero out the alias type cache.
duke@435 1018 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1019 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1020 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1021
duke@435 1022 _intrinsics = NULL;
kvn@2040 1023 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1024 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1025 register_library_intrinsics();
duke@435 1026 }
duke@435 1027
duke@435 1028 //---------------------------init_start----------------------------------------
duke@435 1029 // Install the StartNode on this compile object.
duke@435 1030 void Compile::init_start(StartNode* s) {
duke@435 1031 if (failing())
duke@435 1032 return; // already failing
duke@435 1033 assert(s == start(), "");
duke@435 1034 }
duke@435 1035
duke@435 1036 StartNode* Compile::start() const {
duke@435 1037 assert(!failing(), "");
duke@435 1038 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1039 Node* start = root()->fast_out(i);
duke@435 1040 if( start->is_Start() )
duke@435 1041 return start->as_Start();
duke@435 1042 }
duke@435 1043 ShouldNotReachHere();
duke@435 1044 return NULL;
duke@435 1045 }
duke@435 1046
duke@435 1047 //-------------------------------immutable_memory-------------------------------------
duke@435 1048 // Access immutable memory
duke@435 1049 Node* Compile::immutable_memory() {
duke@435 1050 if (_immutable_memory != NULL) {
duke@435 1051 return _immutable_memory;
duke@435 1052 }
duke@435 1053 StartNode* s = start();
duke@435 1054 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1055 Node *p = s->fast_out(i);
duke@435 1056 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1057 _immutable_memory = p;
duke@435 1058 return _immutable_memory;
duke@435 1059 }
duke@435 1060 }
duke@435 1061 ShouldNotReachHere();
duke@435 1062 return NULL;
duke@435 1063 }
duke@435 1064
duke@435 1065 //----------------------set_cached_top_node------------------------------------
duke@435 1066 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1067 void Compile::set_cached_top_node(Node* tn) {
duke@435 1068 if (tn != NULL) verify_top(tn);
duke@435 1069 Node* old_top = _top;
duke@435 1070 _top = tn;
duke@435 1071 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1072 // their _out arrays.
duke@435 1073 if (_top != NULL) _top->setup_is_top();
duke@435 1074 if (old_top != NULL) old_top->setup_is_top();
duke@435 1075 assert(_top == NULL || top()->is_top(), "");
duke@435 1076 }
duke@435 1077
duke@435 1078 #ifndef PRODUCT
duke@435 1079 void Compile::verify_top(Node* tn) const {
duke@435 1080 if (tn != NULL) {
duke@435 1081 assert(tn->is_Con(), "top node must be a constant");
duke@435 1082 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1083 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1084 }
duke@435 1085 }
duke@435 1086 #endif
duke@435 1087
duke@435 1088
duke@435 1089 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1090
duke@435 1091 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1092 guarantee(arr != NULL, "");
duke@435 1093 int num_blocks = arr->length();
duke@435 1094 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1095 int num_notes = grow_by * _node_notes_block_size;
duke@435 1096 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1097 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1098 while (num_notes > 0) {
duke@435 1099 arr->append(notes);
duke@435 1100 notes += _node_notes_block_size;
duke@435 1101 num_notes -= _node_notes_block_size;
duke@435 1102 }
duke@435 1103 assert(num_notes == 0, "exact multiple, please");
duke@435 1104 }
duke@435 1105
duke@435 1106 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1107 if (source == NULL || dest == NULL) return false;
duke@435 1108
duke@435 1109 if (dest->is_Con())
duke@435 1110 return false; // Do not push debug info onto constants.
duke@435 1111
duke@435 1112 #ifdef ASSERT
duke@435 1113 // Leave a bread crumb trail pointing to the original node:
duke@435 1114 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1115 dest->set_debug_orig(source);
duke@435 1116 }
duke@435 1117 #endif
duke@435 1118
duke@435 1119 if (node_note_array() == NULL)
duke@435 1120 return false; // Not collecting any notes now.
duke@435 1121
duke@435 1122 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1123 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1124 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1125 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1126 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1127 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1128 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1129 }
duke@435 1130
duke@435 1131 Node_Notes merged_notes = (*source_notes);
duke@435 1132 // The order of operations here ensures that dest notes will win...
duke@435 1133 merged_notes.update_from(dest_notes);
duke@435 1134 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1135 }
duke@435 1136
duke@435 1137
duke@435 1138 //--------------------------allow_range_check_smearing-------------------------
duke@435 1139 // Gating condition for coalescing similar range checks.
duke@435 1140 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1141 // single covering check that is at least as strong as any of them.
duke@435 1142 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1143 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1144 // on the optimization.
duke@435 1145 bool Compile::allow_range_check_smearing() const {
duke@435 1146 // If this method has already thrown a range-check,
duke@435 1147 // assume it was because we already tried range smearing
duke@435 1148 // and it failed.
duke@435 1149 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1150 return !already_trapped;
duke@435 1151 }
duke@435 1152
duke@435 1153
duke@435 1154 //------------------------------flatten_alias_type-----------------------------
duke@435 1155 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1156 int offset = tj->offset();
duke@435 1157 TypePtr::PTR ptr = tj->ptr();
duke@435 1158
kvn@682 1159 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1160 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1161 tj->is_oopptr()->is_known_instance();
kvn@682 1162
duke@435 1163 // Process weird unsafe references.
duke@435 1164 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1165 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1166 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1167 tj = TypeOopPtr::BOTTOM;
duke@435 1168 ptr = tj->ptr();
duke@435 1169 offset = tj->offset();
duke@435 1170 }
duke@435 1171
duke@435 1172 // Array pointers need some flattening
duke@435 1173 const TypeAryPtr *ta = tj->isa_aryptr();
kvn@682 1174 if( ta && is_known_inst ) {
kvn@682 1175 if ( offset != Type::OffsetBot &&
kvn@682 1176 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1177 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1178 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1179 }
kvn@682 1180 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1181 // For arrays indexed by constant indices, we flatten the alias
duke@435 1182 // space to include all of the array body. Only the header, klass
duke@435 1183 // and array length can be accessed un-aliased.
duke@435 1184 if( offset != Type::OffsetBot ) {
duke@435 1185 if( ta->const_oop() ) { // methodDataOop or methodOop
duke@435 1186 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1187 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1188 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1189 // range is OK as-is.
duke@435 1190 tj = ta = TypeAryPtr::RANGE;
duke@435 1191 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1192 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1193 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1194 ptr = TypePtr::BotPTR;
duke@435 1195 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1196 tj = TypeInstPtr::MARK;
duke@435 1197 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1198 ptr = TypePtr::BotPTR;
duke@435 1199 } else { // Random constant offset into array body
duke@435 1200 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1201 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1202 }
duke@435 1203 }
duke@435 1204 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1205 if (ta->size() != TypeInt::POS) {
duke@435 1206 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1207 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1208 }
duke@435 1209 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1210 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1211 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1212 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1213 }
duke@435 1214 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1215 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1216 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1217 }
duke@435 1218 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1219 // cannot be distinguished by bytecode alone.
duke@435 1220 if (ta->elem() == TypeInt::BOOL) {
duke@435 1221 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1222 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1223 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1224 }
duke@435 1225 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1226 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1227 // Also, make sure exact and non-exact variants alias the same.
duke@435 1228 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
kvn@2986 1229 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1230 }
duke@435 1231 }
duke@435 1232
duke@435 1233 // Oop pointers need some flattening
duke@435 1234 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1235 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1236 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1237 if( ptr == TypePtr::Constant ) {
never@2658 1238 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1239 offset < k->size_helper() * wordSize) {
never@2658 1240 // No constant oop pointers (such as Strings); they alias with
never@2658 1241 // unknown strings.
never@2658 1242 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1243 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1244 }
kvn@682 1245 } else if( is_known_inst ) {
kvn@598 1246 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1247 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1248 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1249 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1250 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1251 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1252 }
duke@435 1253 // Canonicalize the holder of this field
coleenp@548 1254 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1255 // First handle header references such as a LoadKlassNode, even if the
duke@435 1256 // object's klass is unloaded at compile time (4965979).
kvn@682 1257 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1258 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1259 }
duke@435 1260 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1261 // Static fields are in the space above the normal instance
never@2658 1262 // fields in the java.lang.Class instance.
never@2658 1263 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1264 to = NULL;
never@2658 1265 tj = TypeOopPtr::BOTTOM;
never@2658 1266 offset = tj->offset();
never@2658 1267 }
duke@435 1268 } else {
duke@435 1269 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1270 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1271 if( is_known_inst ) {
kvn@682 1272 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1273 } else {
kvn@682 1274 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1275 }
duke@435 1276 }
duke@435 1277 }
duke@435 1278 }
duke@435 1279
duke@435 1280 // Klass pointers to object array klasses need some flattening
duke@435 1281 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1282 if( tk ) {
duke@435 1283 // If we are referencing a field within a Klass, we need
duke@435 1284 // to assume the worst case of an Object. Both exact and
duke@435 1285 // inexact types must flatten to the same alias class.
duke@435 1286 // Since the flattened result for a klass is defined to be
duke@435 1287 // precisely java.lang.Object, use a constant ptr.
duke@435 1288 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1289
duke@435 1290 tj = tk = TypeKlassPtr::make(TypePtr::Constant,
duke@435 1291 TypeKlassPtr::OBJECT->klass(),
duke@435 1292 offset);
duke@435 1293 }
duke@435 1294
duke@435 1295 ciKlass* klass = tk->klass();
duke@435 1296 if( klass->is_obj_array_klass() ) {
duke@435 1297 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1298 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1299 k = TypeInstPtr::BOTTOM->klass();
duke@435 1300 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1301 }
duke@435 1302
duke@435 1303 // Check for precise loads from the primary supertype array and force them
duke@435 1304 // to the supertype cache alias index. Check for generic array loads from
duke@435 1305 // the primary supertype array and also force them to the supertype cache
duke@435 1306 // alias index. Since the same load can reach both, we need to merge
duke@435 1307 // these 2 disparate memories into the same alias class. Since the
duke@435 1308 // primary supertype array is read-only, there's no chance of confusion
duke@435 1309 // where we bypass an array load and an array store.
duke@435 1310 uint off2 = offset - Klass::primary_supers_offset_in_bytes();
duke@435 1311 if( offset == Type::OffsetBot ||
duke@435 1312 off2 < Klass::primary_super_limit()*wordSize ) {
duke@435 1313 offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
duke@435 1314 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1315 }
duke@435 1316 }
duke@435 1317
duke@435 1318 // Flatten all Raw pointers together.
duke@435 1319 if (tj->base() == Type::RawPtr)
duke@435 1320 tj = TypeRawPtr::BOTTOM;
duke@435 1321
duke@435 1322 if (tj->base() == Type::AnyPtr)
duke@435 1323 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1324
duke@435 1325 // Flatten all to bottom for now
duke@435 1326 switch( _AliasLevel ) {
duke@435 1327 case 0:
duke@435 1328 tj = TypePtr::BOTTOM;
duke@435 1329 break;
duke@435 1330 case 1: // Flatten to: oop, static, field or array
duke@435 1331 switch (tj->base()) {
duke@435 1332 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1333 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1334 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1335 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1336 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1337 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1338 default: ShouldNotReachHere();
duke@435 1339 }
duke@435 1340 break;
twisti@1040 1341 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1342 case 3: // No collapsing at level 3; keep all splits
duke@435 1343 break;
duke@435 1344 default:
duke@435 1345 Unimplemented();
duke@435 1346 }
duke@435 1347
duke@435 1348 offset = tj->offset();
duke@435 1349 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1350
duke@435 1351 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1352 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1353 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1354 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1355 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1356 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1357 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1358 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1359 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1360 tj->ptr() != TypePtr::AnyNull &&
duke@435 1361 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1362 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1363 // tj->base() == Type::RawPtr ||
duke@435 1364 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1365
duke@435 1366 return tj;
duke@435 1367 }
duke@435 1368
duke@435 1369 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1370 _index = i;
duke@435 1371 _adr_type = at;
duke@435 1372 _field = NULL;
duke@435 1373 _is_rewritable = true; // default
duke@435 1374 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1375 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1376 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1377 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1378 } else {
duke@435 1379 _general_index = 0;
duke@435 1380 }
duke@435 1381 }
duke@435 1382
duke@435 1383 //---------------------------------print_on------------------------------------
duke@435 1384 #ifndef PRODUCT
duke@435 1385 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1386 if (index() < 10)
duke@435 1387 st->print("@ <%d> ", index());
duke@435 1388 else st->print("@ <%d>", index());
duke@435 1389 st->print(is_rewritable() ? " " : " RO");
duke@435 1390 int offset = adr_type()->offset();
duke@435 1391 if (offset == Type::OffsetBot)
duke@435 1392 st->print(" +any");
duke@435 1393 else st->print(" +%-3d", offset);
duke@435 1394 st->print(" in ");
duke@435 1395 adr_type()->dump_on(st);
duke@435 1396 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1397 if (field() != NULL && tjp) {
duke@435 1398 if (tjp->klass() != field()->holder() ||
duke@435 1399 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1400 st->print(" != ");
duke@435 1401 field()->print();
duke@435 1402 st->print(" ***");
duke@435 1403 }
duke@435 1404 }
duke@435 1405 }
duke@435 1406
duke@435 1407 void print_alias_types() {
duke@435 1408 Compile* C = Compile::current();
duke@435 1409 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1410 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1411 C->alias_type(idx)->print_on(tty);
duke@435 1412 tty->cr();
duke@435 1413 }
duke@435 1414 }
duke@435 1415 #endif
duke@435 1416
duke@435 1417
duke@435 1418 //----------------------------probe_alias_cache--------------------------------
duke@435 1419 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1420 intptr_t key = (intptr_t) adr_type;
duke@435 1421 key ^= key >> logAliasCacheSize;
duke@435 1422 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1423 }
duke@435 1424
duke@435 1425
duke@435 1426 //-----------------------------grow_alias_types--------------------------------
duke@435 1427 void Compile::grow_alias_types() {
duke@435 1428 const int old_ats = _max_alias_types; // how many before?
duke@435 1429 const int new_ats = old_ats; // how many more?
duke@435 1430 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1431 _max_alias_types = grow_ats;
duke@435 1432 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1433 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1434 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1435 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1436 }
duke@435 1437
duke@435 1438
duke@435 1439 //--------------------------------find_alias_type------------------------------
never@2658 1440 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1441 if (_AliasLevel == 0)
duke@435 1442 return alias_type(AliasIdxBot);
duke@435 1443
duke@435 1444 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1445 if (ace->_adr_type == adr_type) {
duke@435 1446 return alias_type(ace->_index);
duke@435 1447 }
duke@435 1448
duke@435 1449 // Handle special cases.
duke@435 1450 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1451 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1452
duke@435 1453 // Do it the slow way.
duke@435 1454 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1455
duke@435 1456 #ifdef ASSERT
duke@435 1457 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1458 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1459 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1460 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1461 // Scalarizable allocations have exact klass always.
kvn@682 1462 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1463 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1464 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1465 }
duke@435 1466 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1467 #endif
duke@435 1468
duke@435 1469 int idx = AliasIdxTop;
duke@435 1470 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1471 if (alias_type(i)->adr_type() == flat) {
duke@435 1472 idx = i;
duke@435 1473 break;
duke@435 1474 }
duke@435 1475 }
duke@435 1476
duke@435 1477 if (idx == AliasIdxTop) {
duke@435 1478 if (no_create) return NULL;
duke@435 1479 // Grow the array if necessary.
duke@435 1480 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1481 // Add a new alias type.
duke@435 1482 idx = _num_alias_types++;
duke@435 1483 _alias_types[idx]->Init(idx, flat);
duke@435 1484 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1485 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1486 if (flat->isa_instptr()) {
duke@435 1487 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1488 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1489 alias_type(idx)->set_rewritable(false);
duke@435 1490 }
duke@435 1491 if (flat->isa_klassptr()) {
duke@435 1492 if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1493 alias_type(idx)->set_rewritable(false);
duke@435 1494 if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1495 alias_type(idx)->set_rewritable(false);
duke@435 1496 if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1497 alias_type(idx)->set_rewritable(false);
duke@435 1498 if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1499 alias_type(idx)->set_rewritable(false);
duke@435 1500 }
duke@435 1501 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1502 // but the base pointer type is not distinctive enough to identify
duke@435 1503 // references into JavaThread.)
duke@435 1504
never@2658 1505 // Check for final fields.
duke@435 1506 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1507 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1508 ciField* field;
never@2658 1509 if (tinst->const_oop() != NULL &&
never@2658 1510 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1511 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1512 // static field
never@2658 1513 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1514 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1515 } else {
never@2658 1516 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1517 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1518 }
never@2658 1519 assert(field == NULL ||
never@2658 1520 original_field == NULL ||
never@2658 1521 (field->holder() == original_field->holder() &&
never@2658 1522 field->offset() == original_field->offset() &&
never@2658 1523 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1524 // Set field() and is_rewritable() attributes.
duke@435 1525 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1526 }
duke@435 1527 }
duke@435 1528
duke@435 1529 // Fill the cache for next time.
duke@435 1530 ace->_adr_type = adr_type;
duke@435 1531 ace->_index = idx;
duke@435 1532 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1533
duke@435 1534 // Might as well try to fill the cache for the flattened version, too.
duke@435 1535 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1536 if (face->_adr_type == NULL) {
duke@435 1537 face->_adr_type = flat;
duke@435 1538 face->_index = idx;
duke@435 1539 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1540 }
duke@435 1541
duke@435 1542 return alias_type(idx);
duke@435 1543 }
duke@435 1544
duke@435 1545
duke@435 1546 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1547 const TypeOopPtr* t;
duke@435 1548 if (field->is_static())
never@2658 1549 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1550 else
duke@435 1551 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1552 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
duke@435 1553 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1554 return atp;
duke@435 1555 }
duke@435 1556
duke@435 1557
duke@435 1558 //------------------------------have_alias_type--------------------------------
duke@435 1559 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1560 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1561 if (ace->_adr_type == adr_type) {
duke@435 1562 return true;
duke@435 1563 }
duke@435 1564
duke@435 1565 // Handle special cases.
duke@435 1566 if (adr_type == NULL) return true;
duke@435 1567 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1568
never@2658 1569 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1570 }
duke@435 1571
duke@435 1572 //-----------------------------must_alias--------------------------------------
duke@435 1573 // True if all values of the given address type are in the given alias category.
duke@435 1574 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1575 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1576 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1577 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1578 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1579
duke@435 1580 // the only remaining possible overlap is identity
duke@435 1581 int adr_idx = get_alias_index(adr_type);
duke@435 1582 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1583 assert(adr_idx == alias_idx ||
duke@435 1584 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1585 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1586 "should not be testing for overlap with an unsafe pointer");
duke@435 1587 return adr_idx == alias_idx;
duke@435 1588 }
duke@435 1589
duke@435 1590 //------------------------------can_alias--------------------------------------
duke@435 1591 // True if any values of the given address type are in the given alias category.
duke@435 1592 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1593 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1594 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1595 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1596 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1597
duke@435 1598 // the only remaining possible overlap is identity
duke@435 1599 int adr_idx = get_alias_index(adr_type);
duke@435 1600 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1601 return adr_idx == alias_idx;
duke@435 1602 }
duke@435 1603
duke@435 1604
duke@435 1605
duke@435 1606 //---------------------------pop_warm_call-------------------------------------
duke@435 1607 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1608 WarmCallInfo* wci = _warm_calls;
duke@435 1609 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1610 return wci;
duke@435 1611 }
duke@435 1612
duke@435 1613 //----------------------------Inline_Warm--------------------------------------
duke@435 1614 int Compile::Inline_Warm() {
duke@435 1615 // If there is room, try to inline some more warm call sites.
duke@435 1616 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1617 if (!InlineWarmCalls) return 0;
duke@435 1618
duke@435 1619 int calls_made_hot = 0;
duke@435 1620 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1621 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1622 int amount_grown = 0;
duke@435 1623 WarmCallInfo* call;
duke@435 1624 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1625 int est_size = (int)call->size();
duke@435 1626 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1627 // This one won't fit anyway. Get rid of it.
duke@435 1628 call->make_cold();
duke@435 1629 continue;
duke@435 1630 }
duke@435 1631 call->make_hot();
duke@435 1632 calls_made_hot++;
duke@435 1633 amount_grown += est_size;
duke@435 1634 amount_to_grow -= est_size;
duke@435 1635 }
duke@435 1636
duke@435 1637 if (calls_made_hot > 0) set_major_progress();
duke@435 1638 return calls_made_hot;
duke@435 1639 }
duke@435 1640
duke@435 1641
duke@435 1642 //----------------------------Finish_Warm--------------------------------------
duke@435 1643 void Compile::Finish_Warm() {
duke@435 1644 if (!InlineWarmCalls) return;
duke@435 1645 if (failing()) return;
duke@435 1646 if (warm_calls() == NULL) return;
duke@435 1647
duke@435 1648 // Clean up loose ends, if we are out of space for inlining.
duke@435 1649 WarmCallInfo* call;
duke@435 1650 while ((call = pop_warm_call()) != NULL) {
duke@435 1651 call->make_cold();
duke@435 1652 }
duke@435 1653 }
duke@435 1654
cfang@1607 1655 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1656 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1657 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1658 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1659 if (predicate_count()==0) return;
cfang@1607 1660 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1661 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1662 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1663 igvn.replace_node(n, n->in(1));
cfang@1607 1664 }
cfang@1607 1665 assert(predicate_count()==0, "should be clean!");
cfang@1607 1666 }
duke@435 1667
duke@435 1668 //------------------------------Optimize---------------------------------------
duke@435 1669 // Given a graph, optimize it.
duke@435 1670 void Compile::Optimize() {
duke@435 1671 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1672
duke@435 1673 #ifndef PRODUCT
duke@435 1674 if (env()->break_at_compile()) {
duke@435 1675 BREAKPOINT;
duke@435 1676 }
duke@435 1677
duke@435 1678 #endif
duke@435 1679
duke@435 1680 ResourceMark rm;
duke@435 1681 int loop_opts_cnt;
duke@435 1682
duke@435 1683 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1684
never@657 1685 print_method("After Parsing");
duke@435 1686
duke@435 1687 {
duke@435 1688 // Iterative Global Value Numbering, including ideal transforms
duke@435 1689 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1690 PhaseIterGVN igvn(initial_gvn());
duke@435 1691 {
duke@435 1692 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1693 igvn.optimize();
duke@435 1694 }
duke@435 1695
duke@435 1696 print_method("Iter GVN 1", 2);
duke@435 1697
duke@435 1698 if (failing()) return;
duke@435 1699
kvn@1989 1700 // Perform escape analysis
kvn@1989 1701 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 1702 if (has_loops()) {
kvn@3260 1703 // Cleanup graph (remove dead nodes).
kvn@3260 1704 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 1705 PhaseIdealLoop ideal_loop( igvn, false, true );
kvn@3260 1706 if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
kvn@3260 1707 if (failing()) return;
kvn@3260 1708 }
kvn@1989 1709 TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
kvn@1989 1710 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 1711
kvn@1989 1712 if (failing()) return;
kvn@1989 1713
kvn@3311 1714 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 1715 igvn.optimize();
kvn@3260 1716 print_method("Iter GVN after EA", 2);
kvn@1989 1717
kvn@1989 1718 if (failing()) return;
kvn@1989 1719
kvn@3311 1720 if (congraph() != NULL && macro_count() > 0) {
kvn@3311 1721 PhaseMacroExpand mexp(igvn);
kvn@3311 1722 mexp.eliminate_macro_nodes();
kvn@3311 1723 igvn.set_delay_transform(false);
kvn@3311 1724
kvn@3311 1725 igvn.optimize();
kvn@3311 1726 print_method("Iter GVN after eliminating allocations and locks", 2);
kvn@3311 1727
kvn@3311 1728 if (failing()) return;
kvn@3311 1729 }
kvn@1989 1730 }
kvn@1989 1731
duke@435 1732 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1733 // peeling, unrolling, etc.
duke@435 1734
duke@435 1735 // Set loop opts counter
duke@435 1736 loop_opts_cnt = num_loop_opts();
duke@435 1737 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 1738 {
duke@435 1739 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 1740 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 1741 loop_opts_cnt--;
duke@435 1742 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
duke@435 1743 if (failing()) return;
duke@435 1744 }
duke@435 1745 // Loop opts pass if partial peeling occurred in previous pass
duke@435 1746 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 1747 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 1748 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1749 loop_opts_cnt--;
duke@435 1750 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
duke@435 1751 if (failing()) return;
duke@435 1752 }
duke@435 1753 // Loop opts pass for loop-unrolling before CCP
duke@435 1754 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1755 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 1756 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1757 loop_opts_cnt--;
duke@435 1758 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
duke@435 1759 }
never@1356 1760 if (!failing()) {
never@1356 1761 // Verify that last round of loop opts produced a valid graph
never@1356 1762 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1763 PhaseIdealLoop::verify(igvn);
never@1356 1764 }
duke@435 1765 }
duke@435 1766 if (failing()) return;
duke@435 1767
duke@435 1768 // Conditional Constant Propagation;
duke@435 1769 PhaseCCP ccp( &igvn );
duke@435 1770 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 1771 {
duke@435 1772 TracePhase t2("ccp", &_t_ccp, true);
duke@435 1773 ccp.do_transform();
duke@435 1774 }
duke@435 1775 print_method("PhaseCPP 1", 2);
duke@435 1776
duke@435 1777 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 1778
duke@435 1779 // Iterative Global Value Numbering, including ideal transforms
duke@435 1780 {
duke@435 1781 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 1782 igvn = ccp;
duke@435 1783 igvn.optimize();
duke@435 1784 }
duke@435 1785
duke@435 1786 print_method("Iter GVN 2", 2);
duke@435 1787
duke@435 1788 if (failing()) return;
duke@435 1789
duke@435 1790 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1791 // peeling, unrolling, etc.
duke@435 1792 if(loop_opts_cnt > 0) {
duke@435 1793 debug_only( int cnt = 0; );
duke@435 1794 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1795 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 1796 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 1797 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 1798 loop_opts_cnt--;
duke@435 1799 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
duke@435 1800 if (failing()) return;
duke@435 1801 }
duke@435 1802 }
never@1356 1803
never@1356 1804 {
never@1356 1805 // Verify that all previous optimizations produced a valid graph
never@1356 1806 // at least to this point, even if no loop optimizations were done.
never@1356 1807 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1808 PhaseIdealLoop::verify(igvn);
never@1356 1809 }
never@1356 1810
duke@435 1811 {
duke@435 1812 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 1813 PhaseMacroExpand mex(igvn);
duke@435 1814 if (mex.expand_macro_nodes()) {
duke@435 1815 assert(failing(), "must bail out w/ explicit message");
duke@435 1816 return;
duke@435 1817 }
duke@435 1818 }
duke@435 1819
duke@435 1820 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 1821
duke@435 1822 // A method with only infinite loops has no edges entering loops from root
duke@435 1823 {
duke@435 1824 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 1825 if (final_graph_reshaping()) {
duke@435 1826 assert(failing(), "must bail out w/ explicit message");
duke@435 1827 return;
duke@435 1828 }
duke@435 1829 }
duke@435 1830
duke@435 1831 print_method("Optimize finished", 2);
duke@435 1832 }
duke@435 1833
duke@435 1834
duke@435 1835 //------------------------------Code_Gen---------------------------------------
duke@435 1836 // Given a graph, generate code for it
duke@435 1837 void Compile::Code_Gen() {
duke@435 1838 if (failing()) return;
duke@435 1839
duke@435 1840 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 1841 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 1842 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 1843 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 1844 // set a bit in reclaimed memory.
duke@435 1845
duke@435 1846 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1847 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1848 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1849
duke@435 1850 Node_List proj_list;
duke@435 1851 Matcher m(proj_list);
duke@435 1852 _matcher = &m;
duke@435 1853 {
duke@435 1854 TracePhase t2("matcher", &_t_matcher, true);
duke@435 1855 m.match();
duke@435 1856 }
duke@435 1857 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1858 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1859 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1860
duke@435 1861 // If you have too many nodes, or if matching has failed, bail out
duke@435 1862 check_node_count(0, "out of nodes matching instructions");
duke@435 1863 if (failing()) return;
duke@435 1864
duke@435 1865 // Build a proper-looking CFG
duke@435 1866 PhaseCFG cfg(node_arena(), root(), m);
duke@435 1867 _cfg = &cfg;
duke@435 1868 {
duke@435 1869 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
duke@435 1870 cfg.Dominators();
duke@435 1871 if (failing()) return;
duke@435 1872
duke@435 1873 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1874
duke@435 1875 cfg.Estimate_Block_Frequency();
duke@435 1876 cfg.GlobalCodeMotion(m,unique(),proj_list);
duke@435 1877
duke@435 1878 print_method("Global code motion", 2);
duke@435 1879
duke@435 1880 if (failing()) return;
duke@435 1881 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1882
duke@435 1883 debug_only( cfg.verify(); )
duke@435 1884 }
duke@435 1885 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1886
duke@435 1887 PhaseChaitin regalloc(unique(),cfg,m);
duke@435 1888 _regalloc = &regalloc;
duke@435 1889 {
duke@435 1890 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 1891 // Perform any platform dependent preallocation actions. This is used,
duke@435 1892 // for example, to avoid taking an implicit null pointer exception
duke@435 1893 // using the frame pointer on win95.
duke@435 1894 _regalloc->pd_preallocate_hook();
duke@435 1895
duke@435 1896 // Perform register allocation. After Chaitin, use-def chains are
duke@435 1897 // no longer accurate (at spill code) and so must be ignored.
duke@435 1898 // Node->LRG->reg mappings are still accurate.
duke@435 1899 _regalloc->Register_Allocate();
duke@435 1900
duke@435 1901 // Bail out if the allocator builds too many nodes
duke@435 1902 if (failing()) return;
duke@435 1903 }
duke@435 1904
duke@435 1905 // Prior to register allocation we kept empty basic blocks in case the
duke@435 1906 // the allocator needed a place to spill. After register allocation we
duke@435 1907 // are not adding any new instructions. If any basic block is empty, we
duke@435 1908 // can now safely remove it.
duke@435 1909 {
rasbold@853 1910 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
rasbold@853 1911 cfg.remove_empty();
rasbold@853 1912 if (do_freq_based_layout()) {
rasbold@853 1913 PhaseBlockLayout layout(cfg);
rasbold@853 1914 } else {
rasbold@853 1915 cfg.set_loop_alignment();
rasbold@853 1916 }
rasbold@853 1917 cfg.fixup_flow();
duke@435 1918 }
duke@435 1919
duke@435 1920 // Perform any platform dependent postallocation verifications.
duke@435 1921 debug_only( _regalloc->pd_postallocate_verify_hook(); )
duke@435 1922
duke@435 1923 // Apply peephole optimizations
duke@435 1924 if( OptoPeephole ) {
duke@435 1925 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 1926 PhasePeephole peep( _regalloc, cfg);
duke@435 1927 peep.do_transform();
duke@435 1928 }
duke@435 1929
duke@435 1930 // Convert Nodes to instruction bits in a buffer
duke@435 1931 {
duke@435 1932 // %%%% workspace merge brought two timers together for one job
duke@435 1933 TracePhase t2a("output", &_t_output, true);
duke@435 1934 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 1935 Output();
duke@435 1936 }
duke@435 1937
never@657 1938 print_method("Final Code");
duke@435 1939
duke@435 1940 // He's dead, Jim.
duke@435 1941 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 1942 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 1943 }
duke@435 1944
duke@435 1945
duke@435 1946 //------------------------------dump_asm---------------------------------------
duke@435 1947 // Dump formatted assembly
duke@435 1948 #ifndef PRODUCT
duke@435 1949 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 1950 bool cut_short = false;
duke@435 1951 tty->print_cr("#");
duke@435 1952 tty->print("# "); _tf->dump(); tty->cr();
duke@435 1953 tty->print_cr("#");
duke@435 1954
duke@435 1955 // For all blocks
duke@435 1956 int pc = 0x0; // Program counter
duke@435 1957 char starts_bundle = ' ';
duke@435 1958 _regalloc->dump_frame();
duke@435 1959
duke@435 1960 Node *n = NULL;
duke@435 1961 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1962 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1963 Block *b = _cfg->_blocks[i];
duke@435 1964 if (b->is_connector() && !Verbose) continue;
duke@435 1965 n = b->_nodes[0];
duke@435 1966 if (pcs && n->_idx < pc_limit)
duke@435 1967 tty->print("%3.3x ", pcs[n->_idx]);
duke@435 1968 else
duke@435 1969 tty->print(" ");
duke@435 1970 b->dump_head( &_cfg->_bbs );
duke@435 1971 if (b->is_connector()) {
duke@435 1972 tty->print_cr(" # Empty connector block");
duke@435 1973 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 1974 tty->print_cr(" # Block is sole successor of call");
duke@435 1975 }
duke@435 1976
duke@435 1977 // For all instructions
duke@435 1978 Node *delay = NULL;
duke@435 1979 for( uint j = 0; j<b->_nodes.size(); j++ ) {
duke@435 1980 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1981 n = b->_nodes[j];
duke@435 1982 if (valid_bundle_info(n)) {
duke@435 1983 Bundle *bundle = node_bundling(n);
duke@435 1984 if (bundle->used_in_unconditional_delay()) {
duke@435 1985 delay = n;
duke@435 1986 continue;
duke@435 1987 }
duke@435 1988 if (bundle->starts_bundle())
duke@435 1989 starts_bundle = '+';
duke@435 1990 }
duke@435 1991
coleenp@548 1992 if (WizardMode) n->dump();
coleenp@548 1993
duke@435 1994 if( !n->is_Region() && // Dont print in the Assembly
duke@435 1995 !n->is_Phi() && // a few noisely useless nodes
duke@435 1996 !n->is_Proj() &&
duke@435 1997 !n->is_MachTemp() &&
kvn@1535 1998 !n->is_SafePointScalarObject() &&
duke@435 1999 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 2000 !n->is_MergeMem() && // Not very interesting
duke@435 2001 !n->is_top() && // Debug info table constants
duke@435 2002 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 2003 ) {
duke@435 2004 if (pcs && n->_idx < pc_limit)
duke@435 2005 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2006 else
duke@435 2007 tty->print(" ");
duke@435 2008 tty->print(" %c ", starts_bundle);
duke@435 2009 starts_bundle = ' ';
duke@435 2010 tty->print("\t");
duke@435 2011 n->format(_regalloc, tty);
duke@435 2012 tty->cr();
duke@435 2013 }
duke@435 2014
duke@435 2015 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2016 // then back up and print it
duke@435 2017 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2018 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2019 if (WizardMode) delay->dump();
coleenp@548 2020
duke@435 2021 if (node_bundling(delay)->starts_bundle())
duke@435 2022 starts_bundle = '+';
duke@435 2023 if (pcs && n->_idx < pc_limit)
duke@435 2024 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2025 else
duke@435 2026 tty->print(" ");
duke@435 2027 tty->print(" %c ", starts_bundle);
duke@435 2028 starts_bundle = ' ';
duke@435 2029 tty->print("\t");
duke@435 2030 delay->format(_regalloc, tty);
duke@435 2031 tty->print_cr("");
duke@435 2032 delay = NULL;
duke@435 2033 }
duke@435 2034
duke@435 2035 // Dump the exception table as well
duke@435 2036 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2037 // Print the exception table for this offset
duke@435 2038 _handler_table.print_subtable_for(pc);
duke@435 2039 }
duke@435 2040 }
duke@435 2041
duke@435 2042 if (pcs && n->_idx < pc_limit)
duke@435 2043 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2044 else
duke@435 2045 tty->print_cr("");
duke@435 2046
duke@435 2047 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2048
duke@435 2049 } // End of per-block dump
duke@435 2050 tty->print_cr("");
duke@435 2051
duke@435 2052 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2053 }
duke@435 2054 #endif
duke@435 2055
duke@435 2056 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2057 // This class defines counters to help identify when a method
duke@435 2058 // may/must be executed using hardware with only 24-bit precision.
duke@435 2059 struct Final_Reshape_Counts : public StackObj {
duke@435 2060 int _call_count; // count non-inlined 'common' calls
duke@435 2061 int _float_count; // count float ops requiring 24-bit precision
duke@435 2062 int _double_count; // count double ops requiring more precision
duke@435 2063 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2064 int _inner_loop_count; // count loops which need alignment
duke@435 2065 VectorSet _visited; // Visitation flags
duke@435 2066 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2067
duke@435 2068 Final_Reshape_Counts() :
kvn@1294 2069 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2070 _java_call_count(0), _inner_loop_count(0),
duke@435 2071 _visited( Thread::current()->resource_area() ) { }
duke@435 2072
duke@435 2073 void inc_call_count () { _call_count ++; }
duke@435 2074 void inc_float_count () { _float_count ++; }
duke@435 2075 void inc_double_count() { _double_count++; }
duke@435 2076 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2077 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2078
duke@435 2079 int get_call_count () const { return _call_count ; }
duke@435 2080 int get_float_count () const { return _float_count ; }
duke@435 2081 int get_double_count() const { return _double_count; }
duke@435 2082 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2083 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2084 };
duke@435 2085
duke@435 2086 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2087 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2088 // Make sure the offset goes inside the instance layout.
coleenp@548 2089 return k->contains_field_offset(tp->offset());
duke@435 2090 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2091 }
duke@435 2092
never@2780 2093 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2094 // precedence edges.
never@2780 2095 static void eliminate_redundant_card_marks(Node* n) {
never@2780 2096 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2097 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2098 // There are multiple users of the same address so it might be
never@2780 2099 // possible to eliminate some of the StoreCMs
never@2780 2100 Node* mem = n->in(MemNode::Memory);
never@2780 2101 Node* adr = n->in(MemNode::Address);
never@2780 2102 Node* val = n->in(MemNode::ValueIn);
never@2780 2103 Node* prev = n;
never@2780 2104 bool done = false;
never@2780 2105 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2106 // long as it's a chain of single users then the optimization is
never@2780 2107 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2108 // cloning copies down the other paths.
never@2780 2109 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2110 if (adr == mem->in(MemNode::Address) &&
never@2780 2111 val == mem->in(MemNode::ValueIn)) {
never@2780 2112 // redundant StoreCM
never@2780 2113 if (mem->req() > MemNode::OopStore) {
never@2780 2114 // Hasn't been processed by this code yet.
never@2780 2115 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2116 } else {
never@2780 2117 // Already converted to precedence edge
never@2780 2118 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2119 // Accumulate any precedence edges
never@2780 2120 if (mem->in(i) != NULL) {
never@2780 2121 n->add_prec(mem->in(i));
never@2780 2122 }
never@2780 2123 }
never@2780 2124 // Everything above this point has been processed.
never@2780 2125 done = true;
never@2780 2126 }
never@2780 2127 // Eliminate the previous StoreCM
never@2780 2128 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2129 assert(mem->outcnt() == 0, "should be dead");
never@2780 2130 mem->disconnect_inputs(NULL);
never@2780 2131 } else {
never@2780 2132 prev = mem;
never@2780 2133 }
never@2780 2134 mem = prev->in(MemNode::Memory);
never@2780 2135 }
never@2780 2136 }
never@2780 2137 }
never@2780 2138
duke@435 2139 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2140 // Implement items 1-5 from final_graph_reshaping below.
kvn@1294 2141 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
duke@435 2142
kvn@603 2143 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2144 uint nop = n->Opcode();
duke@435 2145
duke@435 2146 // Check for 2-input instruction with "last use" on right input.
duke@435 2147 // Swap to left input. Implements item (2).
duke@435 2148 if( n->req() == 3 && // two-input instruction
duke@435 2149 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2150 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2151 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2152 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2153 // Check for commutative opcode
duke@435 2154 switch( nop ) {
duke@435 2155 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2156 case Op_MaxI: case Op_MinI:
duke@435 2157 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2158 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2159 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2160 // Move "last use" input to left by swapping inputs
duke@435 2161 n->swap_edges(1, 2);
duke@435 2162 break;
duke@435 2163 }
duke@435 2164 default:
duke@435 2165 break;
duke@435 2166 }
duke@435 2167 }
duke@435 2168
kvn@1964 2169 #ifdef ASSERT
kvn@1964 2170 if( n->is_Mem() ) {
kvn@1964 2171 Compile* C = Compile::current();
kvn@1964 2172 int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2173 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2174 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2175 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2176 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2177 "raw memory operations should have control edge");
kvn@1964 2178 }
kvn@1964 2179 #endif
duke@435 2180 // Count FPU ops and common calls, implements item (3)
duke@435 2181 switch( nop ) {
duke@435 2182 // Count all float operations that may use FPU
duke@435 2183 case Op_AddF:
duke@435 2184 case Op_SubF:
duke@435 2185 case Op_MulF:
duke@435 2186 case Op_DivF:
duke@435 2187 case Op_NegF:
duke@435 2188 case Op_ModF:
duke@435 2189 case Op_ConvI2F:
duke@435 2190 case Op_ConF:
duke@435 2191 case Op_CmpF:
duke@435 2192 case Op_CmpF3:
duke@435 2193 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2194 frc.inc_float_count();
duke@435 2195 break;
duke@435 2196
duke@435 2197 case Op_ConvF2D:
duke@435 2198 case Op_ConvD2F:
kvn@1294 2199 frc.inc_float_count();
kvn@1294 2200 frc.inc_double_count();
duke@435 2201 break;
duke@435 2202
duke@435 2203 // Count all double operations that may use FPU
duke@435 2204 case Op_AddD:
duke@435 2205 case Op_SubD:
duke@435 2206 case Op_MulD:
duke@435 2207 case Op_DivD:
duke@435 2208 case Op_NegD:
duke@435 2209 case Op_ModD:
duke@435 2210 case Op_ConvI2D:
duke@435 2211 case Op_ConvD2I:
duke@435 2212 // case Op_ConvL2D: // handled by leaf call
duke@435 2213 // case Op_ConvD2L: // handled by leaf call
duke@435 2214 case Op_ConD:
duke@435 2215 case Op_CmpD:
duke@435 2216 case Op_CmpD3:
kvn@1294 2217 frc.inc_double_count();
duke@435 2218 break;
duke@435 2219 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2220 case Op_Opaque2: // Remove Opaque Nodes before matching
kvn@603 2221 n->subsume_by(n->in(1));
duke@435 2222 break;
duke@435 2223 case Op_CallStaticJava:
duke@435 2224 case Op_CallJava:
duke@435 2225 case Op_CallDynamicJava:
kvn@1294 2226 frc.inc_java_call_count(); // Count java call site;
duke@435 2227 case Op_CallRuntime:
duke@435 2228 case Op_CallLeaf:
duke@435 2229 case Op_CallLeafNoFP: {
duke@435 2230 assert( n->is_Call(), "" );
duke@435 2231 CallNode *call = n->as_Call();
duke@435 2232 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2233 // Do not count uncommon runtime calls:
duke@435 2234 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2235 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2236 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2237 frc.inc_call_count(); // Count the call site
duke@435 2238 } else { // See if uncommon argument is shared
duke@435 2239 Node *n = call->in(TypeFunc::Parms);
duke@435 2240 int nop = n->Opcode();
duke@435 2241 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2242 if( n->outcnt() > 1 &&
duke@435 2243 !n->is_Proj() &&
duke@435 2244 nop != Op_CreateEx &&
duke@435 2245 nop != Op_CheckCastPP &&
kvn@766 2246 nop != Op_DecodeN &&
duke@435 2247 !n->is_Mem() ) {
duke@435 2248 Node *x = n->clone();
duke@435 2249 call->set_req( TypeFunc::Parms, x );
duke@435 2250 }
duke@435 2251 }
duke@435 2252 break;
duke@435 2253 }
duke@435 2254
duke@435 2255 case Op_StoreD:
duke@435 2256 case Op_LoadD:
duke@435 2257 case Op_LoadD_unaligned:
kvn@1294 2258 frc.inc_double_count();
duke@435 2259 goto handle_mem;
duke@435 2260 case Op_StoreF:
duke@435 2261 case Op_LoadF:
kvn@1294 2262 frc.inc_float_count();
duke@435 2263 goto handle_mem;
duke@435 2264
never@2780 2265 case Op_StoreCM:
never@2780 2266 {
never@2780 2267 // Convert OopStore dependence into precedence edge
never@2780 2268 Node* prec = n->in(MemNode::OopStore);
never@2780 2269 n->del_req(MemNode::OopStore);
never@2780 2270 n->add_prec(prec);
never@2780 2271 eliminate_redundant_card_marks(n);
never@2780 2272 }
never@2780 2273
never@2780 2274 // fall through
never@2780 2275
duke@435 2276 case Op_StoreB:
duke@435 2277 case Op_StoreC:
duke@435 2278 case Op_StorePConditional:
duke@435 2279 case Op_StoreI:
duke@435 2280 case Op_StoreL:
kvn@855 2281 case Op_StoreIConditional:
duke@435 2282 case Op_StoreLConditional:
duke@435 2283 case Op_CompareAndSwapI:
duke@435 2284 case Op_CompareAndSwapL:
duke@435 2285 case Op_CompareAndSwapP:
coleenp@548 2286 case Op_CompareAndSwapN:
duke@435 2287 case Op_StoreP:
coleenp@548 2288 case Op_StoreN:
duke@435 2289 case Op_LoadB:
twisti@1059 2290 case Op_LoadUB:
twisti@993 2291 case Op_LoadUS:
duke@435 2292 case Op_LoadI:
twisti@1059 2293 case Op_LoadUI2L:
duke@435 2294 case Op_LoadKlass:
kvn@599 2295 case Op_LoadNKlass:
duke@435 2296 case Op_LoadL:
duke@435 2297 case Op_LoadL_unaligned:
duke@435 2298 case Op_LoadPLocked:
duke@435 2299 case Op_LoadLLocked:
duke@435 2300 case Op_LoadP:
coleenp@548 2301 case Op_LoadN:
duke@435 2302 case Op_LoadRange:
duke@435 2303 case Op_LoadS: {
duke@435 2304 handle_mem:
duke@435 2305 #ifdef ASSERT
duke@435 2306 if( VerifyOptoOopOffsets ) {
duke@435 2307 assert( n->is_Mem(), "" );
duke@435 2308 MemNode *mem = (MemNode*)n;
duke@435 2309 // Check to see if address types have grounded out somehow.
duke@435 2310 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2311 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2312 }
duke@435 2313 #endif
duke@435 2314 break;
duke@435 2315 }
duke@435 2316
duke@435 2317 case Op_AddP: { // Assert sane base pointers
kvn@617 2318 Node *addp = n->in(AddPNode::Address);
duke@435 2319 assert( !addp->is_AddP() ||
duke@435 2320 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2321 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2322 "Base pointers must match" );
kvn@617 2323 #ifdef _LP64
kvn@617 2324 if (UseCompressedOops &&
kvn@617 2325 addp->Opcode() == Op_ConP &&
kvn@617 2326 addp == n->in(AddPNode::Base) &&
kvn@617 2327 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2328 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2329 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2330 // instructions (4) then load 64-bits constant (7).
kvn@617 2331 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2332 const Type* t = addp->bottom_type();
kvn@617 2333 if (t->isa_oopptr()) {
kvn@617 2334 Node* nn = NULL;
kvn@617 2335
kvn@617 2336 // Look for existing ConN node of the same exact type.
kvn@617 2337 Compile* C = Compile::current();
kvn@617 2338 Node* r = C->root();
kvn@617 2339 uint cnt = r->outcnt();
kvn@617 2340 for (uint i = 0; i < cnt; i++) {
kvn@617 2341 Node* m = r->raw_out(i);
kvn@617 2342 if (m!= NULL && m->Opcode() == Op_ConN &&
kvn@656 2343 m->bottom_type()->make_ptr() == t) {
kvn@617 2344 nn = m;
kvn@617 2345 break;
kvn@617 2346 }
kvn@617 2347 }
kvn@617 2348 if (nn != NULL) {
kvn@617 2349 // Decode a narrow oop to match address
kvn@617 2350 // [R12 + narrow_oop_reg<<3 + offset]
kvn@617 2351 nn = new (C, 2) DecodeNNode(nn, t);
kvn@617 2352 n->set_req(AddPNode::Base, nn);
kvn@617 2353 n->set_req(AddPNode::Address, nn);
kvn@617 2354 if (addp->outcnt() == 0) {
kvn@617 2355 addp->disconnect_inputs(NULL);
kvn@617 2356 }
kvn@617 2357 }
kvn@617 2358 }
kvn@617 2359 }
kvn@617 2360 #endif
duke@435 2361 break;
duke@435 2362 }
duke@435 2363
kvn@599 2364 #ifdef _LP64
kvn@803 2365 case Op_CastPP:
kvn@1930 2366 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2367 Compile* C = Compile::current();
kvn@803 2368 Node* in1 = n->in(1);
kvn@803 2369 const Type* t = n->bottom_type();
kvn@803 2370 Node* new_in1 = in1->clone();
kvn@803 2371 new_in1->as_DecodeN()->set_type(t);
kvn@803 2372
kvn@1930 2373 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2374 //
kvn@803 2375 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2376 // and Matcher can fold a DecodeN node into address by using
kvn@803 2377 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2378 //
kvn@803 2379 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2380 // NullCheck narrow_oop_reg
kvn@803 2381 //
kvn@803 2382 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2383 // use it to do implicit NULL check in address:
kvn@803 2384 //
kvn@803 2385 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2386 // [base_reg + offset]
kvn@803 2387 // NullCheck base_reg
kvn@803 2388 //
twisti@1040 2389 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2390 // to keep the information to which NULL check the new DecodeN node
kvn@803 2391 // corresponds to use it as value in implicit_null_check().
kvn@803 2392 //
kvn@803 2393 new_in1->set_req(0, n->in(0));
kvn@803 2394 }
kvn@803 2395
kvn@803 2396 n->subsume_by(new_in1);
kvn@803 2397 if (in1->outcnt() == 0) {
kvn@803 2398 in1->disconnect_inputs(NULL);
kvn@803 2399 }
kvn@803 2400 }
kvn@803 2401 break;
kvn@803 2402
kvn@599 2403 case Op_CmpP:
kvn@603 2404 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2405 // other TypePtr related Ideal optimizations (for example, ptr nullness).
kvn@766 2406 if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
kvn@766 2407 Node* in1 = n->in(1);
kvn@766 2408 Node* in2 = n->in(2);
kvn@766 2409 if (!in1->is_DecodeN()) {
kvn@766 2410 in2 = in1;
kvn@766 2411 in1 = n->in(2);
kvn@766 2412 }
kvn@766 2413 assert(in1->is_DecodeN(), "sanity");
kvn@766 2414
kvn@599 2415 Compile* C = Compile::current();
kvn@766 2416 Node* new_in2 = NULL;
kvn@766 2417 if (in2->is_DecodeN()) {
kvn@766 2418 new_in2 = in2->in(1);
kvn@766 2419 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2420 const Type* t = in2->bottom_type();
kvn@1930 2421 if (t == TypePtr::NULL_PTR) {
kvn@1930 2422 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2423 // oops implicit null check is not generated.
kvn@1930 2424 // This will allow to generate normal oop implicit null check.
kvn@1930 2425 if (Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2426 new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
kvn@803 2427 //
kvn@803 2428 // This transformation together with CastPP transformation above
kvn@803 2429 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2430 //
kvn@803 2431 // The original code after Optimize()
kvn@803 2432 //
kvn@803 2433 // LoadN memory, narrow_oop_reg
kvn@803 2434 // decode narrow_oop_reg, base_reg
kvn@803 2435 // CmpP base_reg, NULL
kvn@803 2436 // CastPP base_reg // NotNull
kvn@803 2437 // Load [base_reg + offset], val_reg
kvn@803 2438 //
kvn@803 2439 // after these transformations will be
kvn@803 2440 //
kvn@803 2441 // LoadN memory, narrow_oop_reg
kvn@803 2442 // CmpN narrow_oop_reg, NULL
kvn@803 2443 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2444 // Load [base_reg + offset], val_reg
kvn@803 2445 //
kvn@803 2446 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2447 // since narrow oops can be used in debug info now (see the code in
kvn@803 2448 // final_graph_reshaping_walk()).
kvn@803 2449 //
kvn@803 2450 // At the end the code will be matched to
kvn@803 2451 // on x86:
kvn@803 2452 //
kvn@803 2453 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2454 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2455 // NullCheck narrow_oop_reg
kvn@803 2456 //
kvn@803 2457 // and on sparc:
kvn@803 2458 //
kvn@803 2459 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2460 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2461 // Load [base_reg + offset], val_reg
kvn@803 2462 // NullCheck base_reg
kvn@803 2463 //
kvn@599 2464 } else if (t->isa_oopptr()) {
kvn@766 2465 new_in2 = ConNode::make(C, t->make_narrowoop());
kvn@599 2466 }
kvn@599 2467 }
kvn@766 2468 if (new_in2 != NULL) {
kvn@766 2469 Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
kvn@603 2470 n->subsume_by( cmpN );
kvn@766 2471 if (in1->outcnt() == 0) {
kvn@766 2472 in1->disconnect_inputs(NULL);
kvn@766 2473 }
kvn@766 2474 if (in2->outcnt() == 0) {
kvn@766 2475 in2->disconnect_inputs(NULL);
kvn@766 2476 }
kvn@599 2477 }
kvn@599 2478 }
kvn@728 2479 break;
kvn@803 2480
kvn@803 2481 case Op_DecodeN:
kvn@803 2482 assert(!n->in(1)->is_EncodeP(), "should be optimized out");
kvn@1930 2483 // DecodeN could be pinned when it can't be fold into
kvn@927 2484 // an address expression, see the code for Op_CastPP above.
kvn@1930 2485 assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
kvn@803 2486 break;
kvn@803 2487
kvn@803 2488 case Op_EncodeP: {
kvn@803 2489 Node* in1 = n->in(1);
kvn@803 2490 if (in1->is_DecodeN()) {
kvn@803 2491 n->subsume_by(in1->in(1));
kvn@803 2492 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2493 Compile* C = Compile::current();
kvn@803 2494 const Type* t = in1->bottom_type();
kvn@803 2495 if (t == TypePtr::NULL_PTR) {
kvn@803 2496 n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
kvn@803 2497 } else if (t->isa_oopptr()) {
kvn@803 2498 n->subsume_by(ConNode::make(C, t->make_narrowoop()));
kvn@803 2499 }
kvn@803 2500 }
kvn@803 2501 if (in1->outcnt() == 0) {
kvn@803 2502 in1->disconnect_inputs(NULL);
kvn@803 2503 }
kvn@803 2504 break;
kvn@803 2505 }
kvn@803 2506
never@1515 2507 case Op_Proj: {
never@1515 2508 if (OptimizeStringConcat) {
never@1515 2509 ProjNode* p = n->as_Proj();
never@1515 2510 if (p->_is_io_use) {
never@1515 2511 // Separate projections were used for the exception path which
never@1515 2512 // are normally removed by a late inline. If it wasn't inlined
never@1515 2513 // then they will hang around and should just be replaced with
never@1515 2514 // the original one.
never@1515 2515 Node* proj = NULL;
never@1515 2516 // Replace with just one
never@1515 2517 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2518 Node *use = i.get();
never@1515 2519 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2520 proj = use;
never@1515 2521 break;
never@1515 2522 }
never@1515 2523 }
never@1515 2524 assert(p != NULL, "must be found");
never@1515 2525 p->subsume_by(proj);
never@1515 2526 }
never@1515 2527 }
never@1515 2528 break;
never@1515 2529 }
never@1515 2530
kvn@803 2531 case Op_Phi:
kvn@803 2532 if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
kvn@803 2533 // The EncodeP optimization may create Phi with the same edges
kvn@803 2534 // for all paths. It is not handled well by Register Allocator.
kvn@803 2535 Node* unique_in = n->in(1);
kvn@803 2536 assert(unique_in != NULL, "");
kvn@803 2537 uint cnt = n->req();
kvn@803 2538 for (uint i = 2; i < cnt; i++) {
kvn@803 2539 Node* m = n->in(i);
kvn@803 2540 assert(m != NULL, "");
kvn@803 2541 if (unique_in != m)
kvn@803 2542 unique_in = NULL;
kvn@803 2543 }
kvn@803 2544 if (unique_in != NULL) {
kvn@803 2545 n->subsume_by(unique_in);
kvn@803 2546 }
kvn@803 2547 }
kvn@803 2548 break;
kvn@803 2549
kvn@599 2550 #endif
kvn@599 2551
duke@435 2552 case Op_ModI:
duke@435 2553 if (UseDivMod) {
duke@435 2554 // Check if a%b and a/b both exist
duke@435 2555 Node* d = n->find_similar(Op_DivI);
duke@435 2556 if (d) {
duke@435 2557 // Replace them with a fused divmod if supported
duke@435 2558 Compile* C = Compile::current();
duke@435 2559 if (Matcher::has_match_rule(Op_DivModI)) {
duke@435 2560 DivModINode* divmod = DivModINode::make(C, n);
kvn@603 2561 d->subsume_by(divmod->div_proj());
kvn@603 2562 n->subsume_by(divmod->mod_proj());
duke@435 2563 } else {
duke@435 2564 // replace a%b with a-((a/b)*b)
duke@435 2565 Node* mult = new (C, 3) MulINode(d, d->in(2));
duke@435 2566 Node* sub = new (C, 3) SubINode(d->in(1), mult);
kvn@603 2567 n->subsume_by( sub );
duke@435 2568 }
duke@435 2569 }
duke@435 2570 }
duke@435 2571 break;
duke@435 2572
duke@435 2573 case Op_ModL:
duke@435 2574 if (UseDivMod) {
duke@435 2575 // Check if a%b and a/b both exist
duke@435 2576 Node* d = n->find_similar(Op_DivL);
duke@435 2577 if (d) {
duke@435 2578 // Replace them with a fused divmod if supported
duke@435 2579 Compile* C = Compile::current();
duke@435 2580 if (Matcher::has_match_rule(Op_DivModL)) {
duke@435 2581 DivModLNode* divmod = DivModLNode::make(C, n);
kvn@603 2582 d->subsume_by(divmod->div_proj());
kvn@603 2583 n->subsume_by(divmod->mod_proj());
duke@435 2584 } else {
duke@435 2585 // replace a%b with a-((a/b)*b)
duke@435 2586 Node* mult = new (C, 3) MulLNode(d, d->in(2));
duke@435 2587 Node* sub = new (C, 3) SubLNode(d->in(1), mult);
kvn@603 2588 n->subsume_by( sub );
duke@435 2589 }
duke@435 2590 }
duke@435 2591 }
duke@435 2592 break;
duke@435 2593
duke@435 2594 case Op_Load16B:
duke@435 2595 case Op_Load8B:
duke@435 2596 case Op_Load4B:
duke@435 2597 case Op_Load8S:
duke@435 2598 case Op_Load4S:
duke@435 2599 case Op_Load2S:
duke@435 2600 case Op_Load8C:
duke@435 2601 case Op_Load4C:
duke@435 2602 case Op_Load2C:
duke@435 2603 case Op_Load4I:
duke@435 2604 case Op_Load2I:
duke@435 2605 case Op_Load2L:
duke@435 2606 case Op_Load4F:
duke@435 2607 case Op_Load2F:
duke@435 2608 case Op_Load2D:
duke@435 2609 case Op_Store16B:
duke@435 2610 case Op_Store8B:
duke@435 2611 case Op_Store4B:
duke@435 2612 case Op_Store8C:
duke@435 2613 case Op_Store4C:
duke@435 2614 case Op_Store2C:
duke@435 2615 case Op_Store4I:
duke@435 2616 case Op_Store2I:
duke@435 2617 case Op_Store2L:
duke@435 2618 case Op_Store4F:
duke@435 2619 case Op_Store2F:
duke@435 2620 case Op_Store2D:
duke@435 2621 break;
duke@435 2622
duke@435 2623 case Op_PackB:
duke@435 2624 case Op_PackS:
duke@435 2625 case Op_PackC:
duke@435 2626 case Op_PackI:
duke@435 2627 case Op_PackF:
duke@435 2628 case Op_PackL:
duke@435 2629 case Op_PackD:
duke@435 2630 if (n->req()-1 > 2) {
duke@435 2631 // Replace many operand PackNodes with a binary tree for matching
duke@435 2632 PackNode* p = (PackNode*) n;
duke@435 2633 Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
kvn@603 2634 n->subsume_by(btp);
duke@435 2635 }
duke@435 2636 break;
kvn@1294 2637 case Op_Loop:
kvn@1294 2638 case Op_CountedLoop:
kvn@1294 2639 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2640 frc.inc_inner_loop_count();
kvn@1294 2641 }
kvn@1294 2642 break;
roland@2683 2643 case Op_LShiftI:
roland@2683 2644 case Op_RShiftI:
roland@2683 2645 case Op_URShiftI:
roland@2683 2646 case Op_LShiftL:
roland@2683 2647 case Op_RShiftL:
roland@2683 2648 case Op_URShiftL:
roland@2683 2649 if (Matcher::need_masked_shift_count) {
roland@2683 2650 // The cpu's shift instructions don't restrict the count to the
roland@2683 2651 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 2652 Node* in2 = n->in(2);
roland@2683 2653 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 2654 const TypeInt* t = in2->find_int_type();
roland@2683 2655 if (t != NULL && t->is_con()) {
roland@2683 2656 juint shift = t->get_con();
roland@2683 2657 if (shift > mask) { // Unsigned cmp
roland@2683 2658 Compile* C = Compile::current();
roland@2683 2659 n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
roland@2683 2660 }
roland@2683 2661 } else {
roland@2683 2662 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
roland@2683 2663 Compile* C = Compile::current();
roland@2683 2664 Node* shift = new (C, 3) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
roland@2683 2665 n->set_req(2, shift);
roland@2683 2666 }
roland@2683 2667 }
roland@2683 2668 if (in2->outcnt() == 0) { // Remove dead node
roland@2683 2669 in2->disconnect_inputs(NULL);
roland@2683 2670 }
roland@2683 2671 }
roland@2683 2672 break;
duke@435 2673 default:
duke@435 2674 assert( !n->is_Call(), "" );
duke@435 2675 assert( !n->is_Mem(), "" );
duke@435 2676 break;
duke@435 2677 }
never@562 2678
never@562 2679 // Collect CFG split points
never@562 2680 if (n->is_MultiBranch())
kvn@1294 2681 frc._tests.push(n);
duke@435 2682 }
duke@435 2683
duke@435 2684 //------------------------------final_graph_reshaping_walk---------------------
duke@435 2685 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 2686 // requires that the walk visits a node's inputs before visiting the node.
kvn@1294 2687 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 2688 ResourceArea *area = Thread::current()->resource_area();
kvn@766 2689 Unique_Node_List sfpt(area);
kvn@766 2690
kvn@1294 2691 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 2692 uint cnt = root->req();
duke@435 2693 Node *n = root;
duke@435 2694 uint i = 0;
duke@435 2695 while (true) {
duke@435 2696 if (i < cnt) {
duke@435 2697 // Place all non-visited non-null inputs onto stack
duke@435 2698 Node* m = n->in(i);
duke@435 2699 ++i;
kvn@1294 2700 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 2701 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 2702 sfpt.push(m);
duke@435 2703 cnt = m->req();
duke@435 2704 nstack.push(n, i); // put on stack parent and next input's index
duke@435 2705 n = m;
duke@435 2706 i = 0;
duke@435 2707 }
duke@435 2708 } else {
duke@435 2709 // Now do post-visit work
kvn@1294 2710 final_graph_reshaping_impl( n, frc );
duke@435 2711 if (nstack.is_empty())
duke@435 2712 break; // finished
duke@435 2713 n = nstack.node(); // Get node from stack
duke@435 2714 cnt = n->req();
duke@435 2715 i = nstack.index();
duke@435 2716 nstack.pop(); // Shift to the next node on stack
duke@435 2717 }
duke@435 2718 }
kvn@766 2719
kvn@1930 2720 // Skip next transformation if compressed oops are not used.
kvn@1930 2721 if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2722 return;
kvn@1930 2723
kvn@766 2724 // Go over safepoints nodes to skip DecodeN nodes for debug edges.
kvn@766 2725 // It could be done for an uncommon traps or any safepoints/calls
kvn@766 2726 // if the DecodeN node is referenced only in a debug info.
kvn@766 2727 while (sfpt.size() > 0) {
kvn@766 2728 n = sfpt.pop();
kvn@766 2729 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 2730 assert(jvms != NULL, "sanity");
kvn@766 2731 int start = jvms->debug_start();
kvn@766 2732 int end = n->req();
kvn@766 2733 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 2734 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 2735 for (int j = start; j < end; j++) {
kvn@766 2736 Node* in = n->in(j);
kvn@766 2737 if (in->is_DecodeN()) {
kvn@766 2738 bool safe_to_skip = true;
kvn@766 2739 if (!is_uncommon ) {
kvn@766 2740 // Is it safe to skip?
kvn@766 2741 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 2742 Node* u = in->raw_out(i);
kvn@766 2743 if (!u->is_SafePoint() ||
kvn@766 2744 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 2745 safe_to_skip = false;
kvn@766 2746 }
kvn@766 2747 }
kvn@766 2748 }
kvn@766 2749 if (safe_to_skip) {
kvn@766 2750 n->set_req(j, in->in(1));
kvn@766 2751 }
kvn@766 2752 if (in->outcnt() == 0) {
kvn@766 2753 in->disconnect_inputs(NULL);
kvn@766 2754 }
kvn@766 2755 }
kvn@766 2756 }
kvn@766 2757 }
duke@435 2758 }
duke@435 2759
duke@435 2760 //------------------------------final_graph_reshaping--------------------------
duke@435 2761 // Final Graph Reshaping.
duke@435 2762 //
duke@435 2763 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 2764 // and not commoned up and forced early. Must come after regular
duke@435 2765 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 2766 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 2767 // Remove Opaque nodes.
duke@435 2768 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 2769 // Intel update-in-place two-address operations and better register usage
duke@435 2770 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 2771 // calls canonicalizing them back.
duke@435 2772 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 2773 // and call sites. On Intel, we can get correct rounding either by
duke@435 2774 // forcing singles to memory (requires extra stores and loads after each
duke@435 2775 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 2776 // clearing the mode bit around call sites). The mode bit is only used
duke@435 2777 // if the relative frequency of single FP ops to calls is low enough.
duke@435 2778 // This is a key transform for SPEC mpeg_audio.
duke@435 2779 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 2780 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 2781 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 2782 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 2783 // Detection is by looking for IfNodes where only 1 projection is
duke@435 2784 // reachable from below or CatchNodes missing some targets.
duke@435 2785 // (5) Assert for insane oop offsets in debug mode.
duke@435 2786
duke@435 2787 bool Compile::final_graph_reshaping() {
duke@435 2788 // an infinite loop may have been eliminated by the optimizer,
duke@435 2789 // in which case the graph will be empty.
duke@435 2790 if (root()->req() == 1) {
duke@435 2791 record_method_not_compilable("trivial infinite loop");
duke@435 2792 return true;
duke@435 2793 }
duke@435 2794
kvn@1294 2795 Final_Reshape_Counts frc;
duke@435 2796
duke@435 2797 // Visit everybody reachable!
duke@435 2798 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2799 Node_Stack nstack(unique() >> 1);
kvn@1294 2800 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 2801
duke@435 2802 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 2803 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 2804 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 2805 // Get number of CFG targets.
duke@435 2806 // Note that PCTables include exception targets after calls.
never@562 2807 uint required_outcnt = n->required_outcnt();
never@562 2808 if (n->outcnt() != required_outcnt) {
duke@435 2809 // Check for a few special cases. Rethrow Nodes never take the
duke@435 2810 // 'fall-thru' path, so expected kids is 1 less.
duke@435 2811 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 2812 if (n->in(0)->in(0)->is_Call()) {
duke@435 2813 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 2814 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 2815 required_outcnt--; // Rethrow always has 1 less kid
duke@435 2816 } else if (call->req() > TypeFunc::Parms &&
duke@435 2817 call->is_CallDynamicJava()) {
duke@435 2818 // Check for null receiver. In such case, the optimizer has
duke@435 2819 // detected that the virtual call will always result in a null
duke@435 2820 // pointer exception. The fall-through projection of this CatchNode
duke@435 2821 // will not be populated.
duke@435 2822 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 2823 if (arg0->is_Type() &&
duke@435 2824 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 2825 required_outcnt--;
duke@435 2826 }
duke@435 2827 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 2828 call->req() > TypeFunc::Parms+1 &&
duke@435 2829 call->is_CallStaticJava()) {
duke@435 2830 // Check for negative array length. In such case, the optimizer has
duke@435 2831 // detected that the allocation attempt will always result in an
duke@435 2832 // exception. There is no fall-through projection of this CatchNode .
duke@435 2833 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 2834 if (arg1->is_Type() &&
duke@435 2835 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 2836 required_outcnt--;
duke@435 2837 }
duke@435 2838 }
duke@435 2839 }
duke@435 2840 }
never@562 2841 // Recheck with a better notion of 'required_outcnt'
never@562 2842 if (n->outcnt() != required_outcnt) {
duke@435 2843 record_method_not_compilable("malformed control flow");
duke@435 2844 return true; // Not all targets reachable!
duke@435 2845 }
duke@435 2846 }
duke@435 2847 // Check that I actually visited all kids. Unreached kids
duke@435 2848 // must be infinite loops.
duke@435 2849 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 2850 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 2851 record_method_not_compilable("infinite loop");
duke@435 2852 return true; // Found unvisited kid; must be unreach
duke@435 2853 }
duke@435 2854 }
duke@435 2855
duke@435 2856 // If original bytecodes contained a mixture of floats and doubles
duke@435 2857 // check if the optimizer has made it homogenous, item (3).
never@1364 2858 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 2859 frc.get_float_count() > 32 &&
kvn@1294 2860 frc.get_double_count() == 0 &&
kvn@1294 2861 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 2862 set_24_bit_selection_and_mode( false, true );
duke@435 2863 }
duke@435 2864
kvn@1294 2865 set_java_calls(frc.get_java_call_count());
kvn@1294 2866 set_inner_loops(frc.get_inner_loop_count());
duke@435 2867
duke@435 2868 // No infinite loops, no reason to bail out.
duke@435 2869 return false;
duke@435 2870 }
duke@435 2871
duke@435 2872 //-----------------------------too_many_traps----------------------------------
duke@435 2873 // Report if there are too many traps at the current method and bci.
duke@435 2874 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 2875 bool Compile::too_many_traps(ciMethod* method,
duke@435 2876 int bci,
duke@435 2877 Deoptimization::DeoptReason reason) {
duke@435 2878 ciMethodData* md = method->method_data();
duke@435 2879 if (md->is_empty()) {
duke@435 2880 // Assume the trap has not occurred, or that it occurred only
duke@435 2881 // because of a transient condition during start-up in the interpreter.
duke@435 2882 return false;
duke@435 2883 }
duke@435 2884 if (md->has_trap_at(bci, reason) != 0) {
duke@435 2885 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 2886 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2887 // assume the worst.
duke@435 2888 if (log())
duke@435 2889 log()->elem("observe trap='%s' count='%d'",
duke@435 2890 Deoptimization::trap_reason_name(reason),
duke@435 2891 md->trap_count(reason));
duke@435 2892 return true;
duke@435 2893 } else {
duke@435 2894 // Ignore method/bci and see if there have been too many globally.
duke@435 2895 return too_many_traps(reason, md);
duke@435 2896 }
duke@435 2897 }
duke@435 2898
duke@435 2899 // Less-accurate variant which does not require a method and bci.
duke@435 2900 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 2901 ciMethodData* logmd) {
duke@435 2902 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 2903 // Too many traps globally.
duke@435 2904 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 2905 if (log()) {
duke@435 2906 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 2907 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 2908 Deoptimization::trap_reason_name(reason),
duke@435 2909 mcount, trap_count(reason));
duke@435 2910 }
duke@435 2911 return true;
duke@435 2912 } else {
duke@435 2913 // The coast is clear.
duke@435 2914 return false;
duke@435 2915 }
duke@435 2916 }
duke@435 2917
duke@435 2918 //--------------------------too_many_recompiles--------------------------------
duke@435 2919 // Report if there are too many recompiles at the current method and bci.
duke@435 2920 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 2921 // Is not eager to return true, since this will cause the compiler to use
duke@435 2922 // Action_none for a trap point, to avoid too many recompilations.
duke@435 2923 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 2924 int bci,
duke@435 2925 Deoptimization::DeoptReason reason) {
duke@435 2926 ciMethodData* md = method->method_data();
duke@435 2927 if (md->is_empty()) {
duke@435 2928 // Assume the trap has not occurred, or that it occurred only
duke@435 2929 // because of a transient condition during start-up in the interpreter.
duke@435 2930 return false;
duke@435 2931 }
duke@435 2932 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 2933 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 2934 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 2935 Deoptimization::DeoptReason per_bc_reason
duke@435 2936 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 2937 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 2938 || md->has_trap_at(bci, reason) != 0)
duke@435 2939 // The trap frequency measure we care about is the recompile count:
duke@435 2940 && md->trap_recompiled_at(bci)
duke@435 2941 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 2942 // Do not emit a trap here if it has already caused recompilations.
duke@435 2943 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2944 // assume the worst.
duke@435 2945 if (log())
duke@435 2946 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 2947 Deoptimization::trap_reason_name(reason),
duke@435 2948 md->trap_count(reason),
duke@435 2949 md->overflow_recompile_count());
duke@435 2950 return true;
duke@435 2951 } else if (trap_count(reason) != 0
duke@435 2952 && decompile_count() >= m_cutoff) {
duke@435 2953 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 2954 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 2955 if (log())
duke@435 2956 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 2957 Deoptimization::trap_reason_name(reason),
duke@435 2958 md->trap_count(reason), trap_count(reason),
duke@435 2959 md->decompile_count(), decompile_count());
duke@435 2960 return true;
duke@435 2961 } else {
duke@435 2962 // The coast is clear.
duke@435 2963 return false;
duke@435 2964 }
duke@435 2965 }
duke@435 2966
duke@435 2967
duke@435 2968 #ifndef PRODUCT
duke@435 2969 //------------------------------verify_graph_edges---------------------------
duke@435 2970 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 2971 // between Use-Def edges and Def-Use edges in the graph.
duke@435 2972 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 2973 if (VerifyGraphEdges) {
duke@435 2974 ResourceArea *area = Thread::current()->resource_area();
duke@435 2975 Unique_Node_List visited(area);
duke@435 2976 // Call recursive graph walk to check edges
duke@435 2977 _root->verify_edges(visited);
duke@435 2978 if (no_dead_code) {
duke@435 2979 // Now make sure that no visited node is used by an unvisited node.
duke@435 2980 bool dead_nodes = 0;
duke@435 2981 Unique_Node_List checked(area);
duke@435 2982 while (visited.size() > 0) {
duke@435 2983 Node* n = visited.pop();
duke@435 2984 checked.push(n);
duke@435 2985 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 2986 Node* use = n->raw_out(i);
duke@435 2987 if (checked.member(use)) continue; // already checked
duke@435 2988 if (visited.member(use)) continue; // already in the graph
duke@435 2989 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 2990 // At this point, we have found a dead node which is DU-reachable.
duke@435 2991 if (dead_nodes++ == 0)
duke@435 2992 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 2993 use->dump(2);
duke@435 2994 tty->print_cr("---");
duke@435 2995 checked.push(use); // No repeats; pretend it is now checked.
duke@435 2996 }
duke@435 2997 }
duke@435 2998 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 2999 }
duke@435 3000 }
duke@435 3001 }
duke@435 3002 #endif
duke@435 3003
duke@435 3004 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 3005 // This is required because there is not quite a 1-1 relation between the
duke@435 3006 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 3007 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 3008 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 3009 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 3010 // by the logic in C2Compiler.
duke@435 3011 void Compile::record_failure(const char* reason) {
duke@435 3012 if (log() != NULL) {
duke@435 3013 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 3014 }
duke@435 3015 if (_failure_reason == NULL) {
duke@435 3016 // Record the first failure reason.
duke@435 3017 _failure_reason = reason;
duke@435 3018 }
never@657 3019 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
never@657 3020 C->print_method(_failure_reason);
never@657 3021 }
duke@435 3022 _root = NULL; // flush the graph, too
duke@435 3023 }
duke@435 3024
duke@435 3025 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
duke@435 3026 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
duke@435 3027 {
duke@435 3028 if (dolog) {
duke@435 3029 C = Compile::current();
duke@435 3030 _log = C->log();
duke@435 3031 } else {
duke@435 3032 C = NULL;
duke@435 3033 _log = NULL;
duke@435 3034 }
duke@435 3035 if (_log != NULL) {
duke@435 3036 _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
duke@435 3037 _log->stamp();
duke@435 3038 _log->end_head();
duke@435 3039 }
duke@435 3040 }
duke@435 3041
duke@435 3042 Compile::TracePhase::~TracePhase() {
duke@435 3043 if (_log != NULL) {
duke@435 3044 _log->done("phase nodes='%d'", C->unique());
duke@435 3045 }
duke@435 3046 }
twisti@2350 3047
twisti@2350 3048 //=============================================================================
twisti@2350 3049 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3050 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3051 if (type() != other.type() ) return false;
twisti@2350 3052 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3053 // For floating point values we compare the bit pattern.
twisti@2350 3054 switch (type()) {
twisti@2350 3055 case T_FLOAT: return (_value.i == other._value.i);
twisti@2350 3056 case T_LONG:
twisti@2350 3057 case T_DOUBLE: return (_value.j == other._value.j);
twisti@2350 3058 case T_OBJECT:
twisti@2350 3059 case T_ADDRESS: return (_value.l == other._value.l);
twisti@2350 3060 case T_VOID: return (_value.l == other._value.l); // jump-table entries
twisti@2350 3061 default: ShouldNotReachHere();
twisti@2350 3062 }
twisti@2350 3063 return false;
twisti@2350 3064 }
twisti@2350 3065
twisti@2350 3066 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3067 switch (t) {
twisti@2350 3068 case T_LONG: return sizeof(jlong );
twisti@2350 3069 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3070 case T_DOUBLE: return sizeof(jdouble);
twisti@2350 3071 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3072 // need an internal word relocation.
twisti@2350 3073 case T_VOID:
twisti@2350 3074 case T_ADDRESS:
twisti@2350 3075 case T_OBJECT: return sizeof(jobject);
twisti@2350 3076 }
twisti@2350 3077
twisti@2350 3078 ShouldNotReachHere();
twisti@2350 3079 return -1;
twisti@2350 3080 }
twisti@2350 3081
twisti@3310 3082 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3083 // sort descending
twisti@3310 3084 if (a->freq() > b->freq()) return -1;
twisti@3310 3085 if (a->freq() < b->freq()) return 1;
twisti@3310 3086 return 0;
twisti@3310 3087 }
twisti@3310 3088
twisti@2350 3089 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3090 // First, sort the array by frequencies.
twisti@3310 3091 _constants.sort(qsort_comparator);
twisti@3310 3092
twisti@3310 3093 #ifdef ASSERT
twisti@3310 3094 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3095 // array (they have a negative frequency).
twisti@3310 3096 bool found_void = false;
twisti@3310 3097 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3098 Constant con = _constants.at(i);
twisti@3310 3099 if (con.type() == T_VOID)
twisti@3310 3100 found_void = true; // jump-tables
twisti@3310 3101 else
twisti@3310 3102 assert(!found_void, "wrong sorting");
twisti@3310 3103 }
twisti@3310 3104 #endif
twisti@3310 3105
twisti@3310 3106 int offset = 0;
twisti@3310 3107 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3108 Constant* con = _constants.adr_at(i);
twisti@3310 3109
twisti@3310 3110 // Align offset for type.
twisti@3310 3111 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3112 offset = align_size_up(offset, typesize);
twisti@3310 3113 con->set_offset(offset); // set constant's offset
twisti@3310 3114
twisti@3310 3115 if (con->type() == T_VOID) {
twisti@3310 3116 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3117 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3118 } else {
twisti@3310 3119 offset = offset + typesize;
twisti@2350 3120 }
twisti@2350 3121 }
twisti@2350 3122
twisti@2350 3123 // Align size up to the next section start (which is insts; see
twisti@2350 3124 // CodeBuffer::align_at_start).
twisti@2350 3125 assert(_size == -1, "already set?");
twisti@3310 3126 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3127 }
twisti@2350 3128
twisti@2350 3129 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3130 MacroAssembler _masm(&cb);
twisti@3310 3131 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3132 Constant con = _constants.at(i);
twisti@3310 3133 address constant_addr;
twisti@3310 3134 switch (con.type()) {
twisti@3310 3135 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3136 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3137 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3138 case T_OBJECT: {
twisti@3310 3139 jobject obj = con.get_jobject();
twisti@3310 3140 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3141 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3142 break;
twisti@3310 3143 }
twisti@3310 3144 case T_ADDRESS: {
twisti@3310 3145 address addr = (address) con.get_jobject();
twisti@3310 3146 constant_addr = _masm.address_constant(addr);
twisti@3310 3147 break;
twisti@3310 3148 }
twisti@3310 3149 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3150 // need an internal word relocation.
twisti@3310 3151 case T_VOID: {
twisti@3310 3152 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3153 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3154 // filled in later in fill_jump_table.
twisti@3310 3155 address dummy = (address) n;
twisti@3310 3156 constant_addr = _masm.address_constant(dummy);
twisti@3310 3157 // Expand jump-table
twisti@3310 3158 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3159 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3160 assert(temp_addr, "consts section too small");
twisti@2350 3161 }
twisti@3310 3162 break;
twisti@2350 3163 }
twisti@3310 3164 default: ShouldNotReachHere();
twisti@3310 3165 }
twisti@3310 3166 assert(constant_addr, "consts section too small");
twisti@3310 3167 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
twisti@2350 3168 }
twisti@2350 3169 }
twisti@2350 3170
twisti@2350 3171 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3172 int idx = _constants.find(con);
twisti@2350 3173 assert(idx != -1, "constant must be in constant table");
twisti@2350 3174 int offset = _constants.at(idx).offset();
twisti@2350 3175 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3176 return offset;
twisti@2350 3177 }
twisti@2350 3178
twisti@2350 3179 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3180 if (con.can_be_reused()) {
twisti@2350 3181 int idx = _constants.find(con);
twisti@2350 3182 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3183 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3184 return;
twisti@2350 3185 }
twisti@2350 3186 }
twisti@2350 3187 (void) _constants.append(con);
twisti@2350 3188 }
twisti@2350 3189
twisti@3310 3190 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
twisti@3310 3191 Block* b = Compile::current()->cfg()->_bbs[n->_idx];
twisti@3310 3192 Constant con(type, value, b->_freq);
twisti@2350 3193 add(con);
twisti@2350 3194 return con;
twisti@2350 3195 }
twisti@2350 3196
twisti@3310 3197 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3198 jvalue value;
twisti@2350 3199 BasicType type = oper->type()->basic_type();
twisti@2350 3200 switch (type) {
twisti@2350 3201 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3202 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3203 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3204 case T_OBJECT:
twisti@2350 3205 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
twisti@2350 3206 default: ShouldNotReachHere();
twisti@2350 3207 }
twisti@3310 3208 return add(n, type, value);
twisti@2350 3209 }
twisti@2350 3210
twisti@3310 3211 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3212 jvalue value;
twisti@2350 3213 // We can use the node pointer here to identify the right jump-table
twisti@2350 3214 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3215 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3216 // MachNode pointers do not change anymore).
twisti@2350 3217 value.l = (jobject) n;
twisti@3310 3218 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3219 add(con);
twisti@2350 3220 return con;
twisti@2350 3221 }
twisti@2350 3222
twisti@2350 3223 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3224 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3225 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3226
twisti@2350 3227 assert(labels.is_nonempty(), "must be");
twisti@2350 3228 assert((uint) labels.length() == n->outcnt(), err_msg("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3229
twisti@2350 3230 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3231 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3232 // to get the plain offset into the constant table.
twisti@2350 3233 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3234
twisti@2350 3235 MacroAssembler _masm(&cb);
twisti@2350 3236 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3237
twisti@3310 3238 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3239 address* constant_addr = &jump_table_base[i];
twisti@3310 3240 assert(*constant_addr == (((address) n) + i), err_msg("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
twisti@2350 3241 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3242 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3243 }
twisti@2350 3244 }

mercurial