src/share/vm/opto/chaitin.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7564
9df0d8f65fea
child 7994
04ff2f6cd0eb
child 9055
e4e58811ed1b
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

duke@435 1 /*
dlong@7598 2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "compiler/oopMap.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "opto/addnode.hpp"
stefank@2314 30 #include "opto/block.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/chaitin.hpp"
stefank@2314 34 #include "opto/coalesce.hpp"
stefank@2314 35 #include "opto/connode.hpp"
stefank@2314 36 #include "opto/idealGraphPrinter.hpp"
stefank@2314 37 #include "opto/indexSet.hpp"
stefank@2314 38 #include "opto/machnode.hpp"
stefank@2314 39 #include "opto/memnode.hpp"
stefank@2314 40 #include "opto/opcodes.hpp"
stefank@2314 41 #include "opto/rootnode.hpp"
duke@435 42
duke@435 43 #ifndef PRODUCT
adlertz@5539 44 void LRG::dump() const {
duke@435 45 ttyLocker ttyl;
duke@435 46 tty->print("%d ",num_regs());
duke@435 47 _mask.dump();
duke@435 48 if( _msize_valid ) {
duke@435 49 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
duke@435 50 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
duke@435 51 } else {
duke@435 52 tty->print(", #?(%d) ",_mask.Size());
duke@435 53 }
duke@435 54
duke@435 55 tty->print("EffDeg: ");
duke@435 56 if( _degree_valid ) tty->print( "%d ", _eff_degree );
duke@435 57 else tty->print("? ");
duke@435 58
never@730 59 if( is_multidef() ) {
duke@435 60 tty->print("MultiDef ");
duke@435 61 if (_defs != NULL) {
duke@435 62 tty->print("(");
duke@435 63 for (int i = 0; i < _defs->length(); i++) {
duke@435 64 tty->print("N%d ", _defs->at(i)->_idx);
duke@435 65 }
duke@435 66 tty->print(") ");
duke@435 67 }
duke@435 68 }
duke@435 69 else if( _def == 0 ) tty->print("Dead ");
duke@435 70 else tty->print("Def: N%d ",_def->_idx);
duke@435 71
duke@435 72 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
duke@435 73 // Flags
duke@435 74 if( _is_oop ) tty->print("Oop ");
duke@435 75 if( _is_float ) tty->print("Float ");
kvn@3882 76 if( _is_vector ) tty->print("Vector ");
duke@435 77 if( _was_spilled1 ) tty->print("Spilled ");
duke@435 78 if( _was_spilled2 ) tty->print("Spilled2 ");
duke@435 79 if( _direct_conflict ) tty->print("Direct_conflict ");
duke@435 80 if( _fat_proj ) tty->print("Fat ");
duke@435 81 if( _was_lo ) tty->print("Lo ");
duke@435 82 if( _has_copy ) tty->print("Copy ");
duke@435 83 if( _at_risk ) tty->print("Risk ");
duke@435 84
duke@435 85 if( _must_spill ) tty->print("Must_spill ");
duke@435 86 if( _is_bound ) tty->print("Bound ");
duke@435 87 if( _msize_valid ) {
duke@435 88 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
duke@435 89 }
duke@435 90
duke@435 91 tty->cr();
duke@435 92 }
duke@435 93 #endif
duke@435 94
duke@435 95 // Compute score from cost and area. Low score is best to spill.
duke@435 96 static double raw_score( double cost, double area ) {
duke@435 97 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
duke@435 98 }
duke@435 99
duke@435 100 double LRG::score() const {
duke@435 101 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
duke@435 102 // Bigger area lowers score, encourages spilling this live range.
duke@435 103 // Bigger cost raise score, prevents spilling this live range.
duke@435 104 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
duke@435 105 // to turn a divide by a constant into a multiply by the reciprical).
duke@435 106 double score = raw_score( _cost, _area);
duke@435 107
duke@435 108 // Account for area. Basically, LRGs covering large areas are better
duke@435 109 // to spill because more other LRGs get freed up.
duke@435 110 if( _area == 0.0 ) // No area? Then no progress to spill
duke@435 111 return 1e35;
duke@435 112
duke@435 113 if( _was_spilled2 ) // If spilled once before, we are unlikely
duke@435 114 return score + 1e30; // to make progress again.
duke@435 115
duke@435 116 if( _cost >= _area*3.0 ) // Tiny area relative to cost
duke@435 117 return score + 1e17; // Probably no progress to spill
duke@435 118
duke@435 119 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
duke@435 120 return score + 1e10; // Likely no progress to spill
duke@435 121
duke@435 122 return score;
duke@435 123 }
duke@435 124
duke@435 125 #define NUMBUCKS 3
duke@435 126
neliasso@4949 127 // Straight out of Tarjan's union-find algorithm
neliasso@4949 128 uint LiveRangeMap::find_compress(uint lrg) {
neliasso@4949 129 uint cur = lrg;
adlertz@5722 130 uint next = _uf_map.at(cur);
neliasso@4949 131 while (next != cur) { // Scan chain of equivalences
neliasso@4949 132 assert( next < cur, "always union smaller");
neliasso@4949 133 cur = next; // until find a fixed-point
adlertz@5722 134 next = _uf_map.at(cur);
neliasso@4949 135 }
neliasso@4949 136
neliasso@4949 137 // Core of union-find algorithm: update chain of
neliasso@4949 138 // equivalences to be equal to the root.
neliasso@4949 139 while (lrg != next) {
adlertz@5722 140 uint tmp = _uf_map.at(lrg);
adlertz@5722 141 _uf_map.at_put(lrg, next);
neliasso@4949 142 lrg = tmp;
neliasso@4949 143 }
neliasso@4949 144 return lrg;
neliasso@4949 145 }
neliasso@4949 146
neliasso@4949 147 // Reset the Union-Find map to identity
neliasso@4949 148 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
neliasso@4949 149 _max_lrg_id= max_lrg_id;
neliasso@4949 150 // Force the Union-Find mapping to be at least this large
adlertz@5722 151 _uf_map.at_put_grow(_max_lrg_id, 0);
neliasso@4949 152 // Initialize it to be the ID mapping.
neliasso@4949 153 for (uint i = 0; i < _max_lrg_id; ++i) {
adlertz@5722 154 _uf_map.at_put(i, i);
neliasso@4949 155 }
neliasso@4949 156 }
neliasso@4949 157
neliasso@4949 158 // Make all Nodes map directly to their final live range; no need for
neliasso@4949 159 // the Union-Find mapping after this call.
neliasso@4949 160 void LiveRangeMap::compress_uf_map_for_nodes() {
neliasso@4949 161 // For all Nodes, compress mapping
adlertz@5722 162 uint unique = _names.length();
neliasso@4949 163 for (uint i = 0; i < unique; ++i) {
adlertz@5722 164 uint lrg = _names.at(i);
neliasso@4949 165 uint compressed_lrg = find(lrg);
neliasso@4949 166 if (lrg != compressed_lrg) {
adlertz@5722 167 _names.at_put(i, compressed_lrg);
neliasso@4949 168 }
neliasso@4949 169 }
neliasso@4949 170 }
neliasso@4949 171
neliasso@4949 172 // Like Find above, but no path compress, so bad asymptotic behavior
neliasso@4949 173 uint LiveRangeMap::find_const(uint lrg) const {
neliasso@4949 174 if (!lrg) {
neliasso@4949 175 return lrg; // Ignore the zero LRG
neliasso@4949 176 }
neliasso@4949 177
neliasso@4949 178 // Off the end? This happens during debugging dumps when you got
neliasso@4949 179 // brand new live ranges but have not told the allocator yet.
neliasso@4949 180 if (lrg >= _max_lrg_id) {
neliasso@4949 181 return lrg;
neliasso@4949 182 }
neliasso@4949 183
adlertz@5722 184 uint next = _uf_map.at(lrg);
neliasso@4949 185 while (next != lrg) { // Scan chain of equivalences
neliasso@4949 186 assert(next < lrg, "always union smaller");
neliasso@4949 187 lrg = next; // until find a fixed-point
adlertz@5722 188 next = _uf_map.at(lrg);
neliasso@4949 189 }
neliasso@4949 190 return next;
neliasso@4949 191 }
neliasso@4949 192
duke@435 193 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
duke@435 194 : PhaseRegAlloc(unique, cfg, matcher,
duke@435 195 #ifndef PRODUCT
duke@435 196 print_chaitin_statistics
duke@435 197 #else
duke@435 198 NULL
duke@435 199 #endif
neliasso@4949 200 )
adlertz@5722 201 , _lrg_map(Thread::current()->resource_area(), unique)
neliasso@4949 202 , _live(0)
neliasso@4949 203 , _spilled_once(Thread::current()->resource_area())
neliasso@4949 204 , _spilled_twice(Thread::current()->resource_area())
neliasso@4949 205 , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
neliasso@4949 206 , _oldphi(unique)
duke@435 207 #ifndef PRODUCT
duke@435 208 , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
duke@435 209 #endif
duke@435 210 {
duke@435 211 NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
kvn@1108 212
adlertz@5539 213 _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
kvn@1108 214
duke@435 215 // Build a list of basic blocks, sorted by frequency
adlertz@5539 216 _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
duke@435 217 // Experiment with sorting strategies to speed compilation
duke@435 218 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
duke@435 219 Block **buckets[NUMBUCKS]; // Array of buckets
duke@435 220 uint buckcnt[NUMBUCKS]; // Array of bucket counters
duke@435 221 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
neliasso@4949 222 for (uint i = 0; i < NUMBUCKS; i++) {
adlertz@5539 223 buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
duke@435 224 buckcnt[i] = 0;
duke@435 225 // Bump by three orders of magnitude each time
duke@435 226 cutoff *= 0.001;
duke@435 227 buckval[i] = cutoff;
adlertz@5539 228 for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
duke@435 229 buckets[i][j] = NULL;
duke@435 230 }
duke@435 231 }
duke@435 232 // Sort blocks into buckets
adlertz@5539 233 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
neliasso@4949 234 for (uint j = 0; j < NUMBUCKS; j++) {
adlertz@5539 235 if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
duke@435 236 // Assign block to end of list for appropriate bucket
adlertz@5539 237 buckets[j][buckcnt[j]++] = _cfg.get_block(i);
neliasso@4949 238 break; // kick out of inner loop
duke@435 239 }
duke@435 240 }
duke@435 241 }
duke@435 242 // Dump buckets into final block array
duke@435 243 uint blkcnt = 0;
neliasso@4949 244 for (uint i = 0; i < NUMBUCKS; i++) {
neliasso@4949 245 for (uint j = 0; j < buckcnt[i]; j++) {
duke@435 246 _blks[blkcnt++] = buckets[i][j];
duke@435 247 }
duke@435 248 }
duke@435 249
adlertz@5539 250 assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
duke@435 251 }
duke@435 252
neliasso@4949 253 // union 2 sets together.
neliasso@4949 254 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
neliasso@4949 255 uint src = _lrg_map.find(src_n);
neliasso@4949 256 uint dst = _lrg_map.find(dst_n);
neliasso@4949 257 assert(src, "");
neliasso@4949 258 assert(dst, "");
neliasso@4949 259 assert(src < _lrg_map.max_lrg_id(), "oob");
neliasso@4949 260 assert(dst < _lrg_map.max_lrg_id(), "oob");
neliasso@4949 261 assert(src < dst, "always union smaller");
neliasso@4949 262 _lrg_map.uf_map(dst, src);
neliasso@4949 263 }
neliasso@4949 264
neliasso@4949 265 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
neliasso@4949 266 // Make the Node->LRG mapping
neliasso@4949 267 _lrg_map.extend(x->_idx,lrg);
neliasso@4949 268 // Make the Union-Find mapping an identity function
neliasso@4949 269 _lrg_map.uf_extend(lrg, lrg);
neliasso@4949 270 }
neliasso@4949 271
neliasso@4949 272
kvn@5543 273 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
kvn@5543 274 assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
kvn@5543 275 DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
kvn@5543 276 int found_projs = 0;
kvn@5543 277 uint cnt = orig->outcnt();
kvn@5543 278 for (uint i = 0; i < cnt; i++) {
kvn@5543 279 Node* proj = orig->raw_out(i);
kvn@5543 280 if (proj->is_MachProj()) {
kvn@5543 281 assert(proj->outcnt() == 0, "only kill projections are expected here");
kvn@5543 282 assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
kvn@5543 283 found_projs++;
kvn@5543 284 // Copy kill projections after the cloned node
kvn@5543 285 Node* kills = proj->clone();
kvn@5543 286 kills->set_req(0, copy);
adlertz@5635 287 b->insert_node(kills, idx++);
kvn@5543 288 _cfg.map_node_to_block(kills, b);
kvn@5543 289 new_lrg(kills, max_lrg_id++);
kvn@5543 290 }
neliasso@4949 291 }
kvn@5543 292 return found_projs;
neliasso@4949 293 }
neliasso@4949 294
neliasso@4949 295 // Renumber the live ranges to compact them. Makes the IFG smaller.
neliasso@4949 296 void PhaseChaitin::compact() {
neliasso@4949 297 // Current the _uf_map contains a series of short chains which are headed
neliasso@4949 298 // by a self-cycle. All the chains run from big numbers to little numbers.
neliasso@4949 299 // The Find() call chases the chains & shortens them for the next Find call.
neliasso@4949 300 // We are going to change this structure slightly. Numbers above a moving
neliasso@4949 301 // wave 'i' are unchanged. Numbers below 'j' point directly to their
neliasso@4949 302 // compacted live range with no further chaining. There are no chains or
neliasso@4949 303 // cycles below 'i', so the Find call no longer works.
neliasso@4949 304 uint j=1;
neliasso@4949 305 uint i;
neliasso@4949 306 for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
neliasso@4949 307 uint lr = _lrg_map.uf_live_range_id(i);
neliasso@4949 308 // Ignore unallocated live ranges
neliasso@4949 309 if (!lr) {
neliasso@4949 310 continue;
neliasso@4949 311 }
neliasso@4949 312 assert(lr <= i, "");
neliasso@4949 313 _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
neliasso@4949 314 }
neliasso@4949 315 // Now change the Node->LR mapping to reflect the compacted names
neliasso@4949 316 uint unique = _lrg_map.size();
neliasso@4949 317 for (i = 0; i < unique; i++) {
neliasso@4949 318 uint lrg_id = _lrg_map.live_range_id(i);
neliasso@4949 319 _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
neliasso@4949 320 }
neliasso@4949 321
neliasso@4949 322 // Reset the Union-Find mapping
neliasso@4949 323 _lrg_map.reset_uf_map(j);
neliasso@4949 324 }
neliasso@4949 325
duke@435 326 void PhaseChaitin::Register_Allocate() {
duke@435 327
duke@435 328 // Above the OLD FP (and in registers) are the incoming arguments. Stack
duke@435 329 // slots in this area are called "arg_slots". Above the NEW FP (and in
duke@435 330 // registers) is the outgoing argument area; above that is the spill/temp
duke@435 331 // area. These are all "frame_slots". Arg_slots start at the zero
duke@435 332 // stack_slots and count up to the known arg_size. Frame_slots start at
duke@435 333 // the stack_slot #arg_size and go up. After allocation I map stack
duke@435 334 // slots to actual offsets. Stack-slots in the arg_slot area are biased
duke@435 335 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
duke@435 336
duke@435 337 _trip_cnt = 0;
duke@435 338 _alternate = 0;
duke@435 339 _matcher._allocation_started = true;
duke@435 340
kvn@4019 341 ResourceArea split_arena; // Arena for Split local resources
duke@435 342 ResourceArea live_arena; // Arena for liveness & IFG info
duke@435 343 ResourceMark rm(&live_arena);
duke@435 344
duke@435 345 // Need live-ness for the IFG; need the IFG for coalescing. If the
duke@435 346 // liveness is JUST for coalescing, then I can get some mileage by renaming
duke@435 347 // all copy-related live ranges low and then using the max copy-related
duke@435 348 // live range as a cut-off for LIVE and the IFG. In other words, I can
duke@435 349 // build a subset of LIVE and IFG just for copies.
neliasso@4949 350 PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
duke@435 351
duke@435 352 // Need IFG for coalescing and coloring
neliasso@4949 353 PhaseIFG ifg(&live_arena);
duke@435 354 _ifg = &ifg;
duke@435 355
duke@435 356 // Come out of SSA world to the Named world. Assign (virtual) registers to
duke@435 357 // Nodes. Use the same register for all inputs and the output of PhiNodes
duke@435 358 // - effectively ending SSA form. This requires either coalescing live
duke@435 359 // ranges or inserting copies. For the moment, we insert "virtual copies"
duke@435 360 // - we pretend there is a copy prior to each Phi in predecessor blocks.
duke@435 361 // We will attempt to coalesce such "virtual copies" before we manifest
duke@435 362 // them for real.
duke@435 363 de_ssa();
duke@435 364
kvn@1001 365 #ifdef ASSERT
kvn@1001 366 // Veify the graph before RA.
kvn@1001 367 verify(&live_arena);
kvn@1001 368 #endif
kvn@1001 369
duke@435 370 {
duke@435 371 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 372 _live = NULL; // Mark live as being not available
duke@435 373 rm.reset_to_mark(); // Reclaim working storage
duke@435 374 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 375 ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
duke@435 376 gather_lrg_masks( false ); // Collect LRG masks
neliasso@4949 377 live.compute(_lrg_map.max_lrg_id()); // Compute liveness
duke@435 378 _live = &live; // Mark LIVE as being available
duke@435 379 }
duke@435 380
duke@435 381 // Base pointers are currently "used" by instructions which define new
duke@435 382 // derived pointers. This makes base pointers live up to the where the
duke@435 383 // derived pointer is made, but not beyond. Really, they need to be live
duke@435 384 // across any GC point where the derived value is live. So this code looks
duke@435 385 // at all the GC points, and "stretches" the live range of any base pointer
duke@435 386 // to the GC point.
neliasso@4949 387 if (stretch_base_pointer_live_ranges(&live_arena)) {
neliasso@4949 388 NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
duke@435 389 // Since some live range stretched, I need to recompute live
duke@435 390 _live = NULL;
duke@435 391 rm.reset_to_mark(); // Reclaim working storage
duke@435 392 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 393 ifg.init(_lrg_map.max_lrg_id());
neliasso@4949 394 gather_lrg_masks(false);
neliasso@4949 395 live.compute(_lrg_map.max_lrg_id());
duke@435 396 _live = &live;
duke@435 397 }
duke@435 398 // Create the interference graph using virtual copies
neliasso@4949 399 build_ifg_virtual(); // Include stack slots this time
duke@435 400
duke@435 401 // Aggressive (but pessimistic) copy coalescing.
duke@435 402 // This pass works on virtual copies. Any virtual copies which are not
duke@435 403 // coalesced get manifested as actual copies
duke@435 404 {
duke@435 405 // The IFG is/was triangular. I am 'squaring it up' so Union can run
duke@435 406 // faster. Union requires a 'for all' operation which is slow on the
duke@435 407 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
duke@435 408 // meaning I can visit all the Nodes neighbors less than a Node in time
duke@435 409 // O(# of neighbors), but I have to visit all the Nodes greater than a
duke@435 410 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
duke@435 411 _ifg->SquareUp();
duke@435 412
neliasso@4949 413 PhaseAggressiveCoalesce coalesce(*this);
neliasso@4949 414 coalesce.coalesce_driver();
duke@435 415 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
duke@435 416 // not match the Phi itself, insert a copy.
duke@435 417 coalesce.insert_copies(_matcher);
drchase@5285 418 if (C->failing()) {
drchase@5285 419 return;
drchase@5285 420 }
duke@435 421 }
duke@435 422
duke@435 423 // After aggressive coalesce, attempt a first cut at coloring.
duke@435 424 // To color, we need the IFG and for that we need LIVE.
duke@435 425 {
duke@435 426 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 427 _live = NULL;
duke@435 428 rm.reset_to_mark(); // Reclaim working storage
duke@435 429 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 430 ifg.init(_lrg_map.max_lrg_id());
duke@435 431 gather_lrg_masks( true );
neliasso@4949 432 live.compute(_lrg_map.max_lrg_id());
duke@435 433 _live = &live;
duke@435 434 }
duke@435 435
duke@435 436 // Build physical interference graph
duke@435 437 uint must_spill = 0;
neliasso@4949 438 must_spill = build_ifg_physical(&live_arena);
duke@435 439 // If we have a guaranteed spill, might as well spill now
neliasso@4949 440 if (must_spill) {
neliasso@4949 441 if(!_lrg_map.max_lrg_id()) {
neliasso@4949 442 return;
neliasso@4949 443 }
duke@435 444 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
duke@435 445 C->check_node_count(10*must_spill, "out of nodes before split");
neliasso@4949 446 if (C->failing()) {
neliasso@4949 447 return;
neliasso@4949 448 }
neliasso@4949 449
neliasso@4949 450 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
neliasso@4949 451 _lrg_map.set_max_lrg_id(new_max_lrg_id);
duke@435 452 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
duke@435 453 // or we failed to split
duke@435 454 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
neliasso@4949 455 if (C->failing()) {
neliasso@4949 456 return;
neliasso@4949 457 }
duke@435 458
neliasso@4949 459 NOT_PRODUCT(C->verify_graph_edges();)
duke@435 460
duke@435 461 compact(); // Compact LRGs; return new lower max lrg
duke@435 462
duke@435 463 {
duke@435 464 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 465 _live = NULL;
duke@435 466 rm.reset_to_mark(); // Reclaim working storage
duke@435 467 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 468 ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
duke@435 469 gather_lrg_masks( true ); // Collect intersect mask
neliasso@4949 470 live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
duke@435 471 _live = &live;
duke@435 472 }
neliasso@4949 473 build_ifg_physical(&live_arena);
duke@435 474 _ifg->SquareUp();
duke@435 475 _ifg->Compute_Effective_Degree();
duke@435 476 // Only do conservative coalescing if requested
neliasso@4949 477 if (OptoCoalesce) {
duke@435 478 // Conservative (and pessimistic) copy coalescing of those spills
neliasso@4949 479 PhaseConservativeCoalesce coalesce(*this);
duke@435 480 // If max live ranges greater than cutoff, don't color the stack.
duke@435 481 // This cutoff can be larger than below since it is only done once.
neliasso@4949 482 coalesce.coalesce_driver();
duke@435 483 }
neliasso@4949 484 _lrg_map.compress_uf_map_for_nodes();
duke@435 485
duke@435 486 #ifdef ASSERT
kvn@1001 487 verify(&live_arena, true);
duke@435 488 #endif
duke@435 489 } else {
duke@435 490 ifg.SquareUp();
duke@435 491 ifg.Compute_Effective_Degree();
duke@435 492 #ifdef ASSERT
duke@435 493 set_was_low();
duke@435 494 #endif
duke@435 495 }
duke@435 496
duke@435 497 // Prepare for Simplify & Select
duke@435 498 cache_lrg_info(); // Count degree of LRGs
duke@435 499
duke@435 500 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 501 // LRGs of low degree are trivially colorable.
duke@435 502 Simplify();
duke@435 503
duke@435 504 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 505 // Return whether or not something spills.
duke@435 506 uint spills = Select( );
duke@435 507
duke@435 508 // If we spill, split and recycle the entire thing
duke@435 509 while( spills ) {
duke@435 510 if( _trip_cnt++ > 24 ) {
duke@435 511 DEBUG_ONLY( dump_for_spill_split_recycle(); )
duke@435 512 if( _trip_cnt > 27 ) {
duke@435 513 C->record_method_not_compilable("failed spill-split-recycle sanity check");
duke@435 514 return;
duke@435 515 }
duke@435 516 }
duke@435 517
neliasso@4949 518 if (!_lrg_map.max_lrg_id()) {
neliasso@4949 519 return;
neliasso@4949 520 }
neliasso@4949 521 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
neliasso@4949 522 _lrg_map.set_max_lrg_id(new_max_lrg_id);
duke@435 523 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
neliasso@4949 524 C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
neliasso@4949 525 if (C->failing()) {
neliasso@4949 526 return;
neliasso@4949 527 }
duke@435 528
neliasso@4949 529 compact(); // Compact LRGs; return new lower max lrg
duke@435 530
duke@435 531 // Nuke the live-ness and interference graph and LiveRanGe info
duke@435 532 {
duke@435 533 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 534 _live = NULL;
duke@435 535 rm.reset_to_mark(); // Reclaim working storage
duke@435 536 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 537 ifg.init(_lrg_map.max_lrg_id());
duke@435 538
duke@435 539 // Create LiveRanGe array.
duke@435 540 // Intersect register masks for all USEs and DEFs
neliasso@4949 541 gather_lrg_masks(true);
neliasso@4949 542 live.compute(_lrg_map.max_lrg_id());
duke@435 543 _live = &live;
duke@435 544 }
neliasso@4949 545 must_spill = build_ifg_physical(&live_arena);
duke@435 546 _ifg->SquareUp();
duke@435 547 _ifg->Compute_Effective_Degree();
duke@435 548
duke@435 549 // Only do conservative coalescing if requested
neliasso@4949 550 if (OptoCoalesce) {
duke@435 551 // Conservative (and pessimistic) copy coalescing
neliasso@4949 552 PhaseConservativeCoalesce coalesce(*this);
duke@435 553 // Check for few live ranges determines how aggressive coalesce is.
neliasso@4949 554 coalesce.coalesce_driver();
duke@435 555 }
neliasso@4949 556 _lrg_map.compress_uf_map_for_nodes();
duke@435 557 #ifdef ASSERT
kvn@1001 558 verify(&live_arena, true);
duke@435 559 #endif
duke@435 560 cache_lrg_info(); // Count degree of LRGs
duke@435 561
duke@435 562 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 563 // LRGs of low degree are trivially colorable.
duke@435 564 Simplify();
duke@435 565
duke@435 566 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 567 // Return whether or not something spills.
neliasso@4949 568 spills = Select();
duke@435 569 }
duke@435 570
duke@435 571 // Count number of Simplify-Select trips per coloring success.
duke@435 572 _allocator_attempts += _trip_cnt + 1;
duke@435 573 _allocator_successes += 1;
duke@435 574
duke@435 575 // Peephole remove copies
duke@435 576 post_allocate_copy_removal();
duke@435 577
iveresov@7564 578 // Merge multidefs if multiple defs representing the same value are used in a single block.
iveresov@7564 579 merge_multidefs();
iveresov@7564 580
kvn@1001 581 #ifdef ASSERT
kvn@1001 582 // Veify the graph after RA.
kvn@1001 583 verify(&live_arena);
kvn@1001 584 #endif
kvn@1001 585
duke@435 586 // max_reg is past the largest *register* used.
duke@435 587 // Convert that to a frame_slot number.
neliasso@4949 588 if (_max_reg <= _matcher._new_SP) {
duke@435 589 _framesize = C->out_preserve_stack_slots();
neliasso@4949 590 }
neliasso@4949 591 else {
neliasso@4949 592 _framesize = _max_reg -_matcher._new_SP;
neliasso@4949 593 }
duke@435 594 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
duke@435 595
duke@435 596 // This frame must preserve the required fp alignment
never@854 597 _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
duke@435 598 assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
duke@435 599 #ifndef PRODUCT
duke@435 600 _total_framesize += _framesize;
neliasso@4949 601 if ((int)_framesize > _max_framesize) {
duke@435 602 _max_framesize = _framesize;
neliasso@4949 603 }
duke@435 604 #endif
duke@435 605
duke@435 606 // Convert CISC spills
duke@435 607 fixup_spills();
duke@435 608
duke@435 609 // Log regalloc results
duke@435 610 CompileLog* log = Compile::current()->log();
duke@435 611 if (log != NULL) {
duke@435 612 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
duke@435 613 }
duke@435 614
neliasso@4949 615 if (C->failing()) {
neliasso@4949 616 return;
neliasso@4949 617 }
duke@435 618
neliasso@4949 619 NOT_PRODUCT(C->verify_graph_edges();)
duke@435 620
duke@435 621 // Move important info out of the live_arena to longer lasting storage.
neliasso@4949 622 alloc_node_regs(_lrg_map.size());
neliasso@4949 623 for (uint i=0; i < _lrg_map.size(); i++) {
neliasso@4949 624 if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
neliasso@4949 625 LRG &lrg = lrgs(_lrg_map.live_range_id(i));
kvn@3882 626 if (!lrg.alive()) {
kvn@4007 627 set_bad(i);
kvn@3882 628 } else if (lrg.num_regs() == 1) {
kvn@4007 629 set1(i, lrg.reg());
kvn@4007 630 } else { // Must be a register-set
kvn@4007 631 if (!lrg._fat_proj) { // Must be aligned adjacent register set
duke@435 632 // Live ranges record the highest register in their mask.
duke@435 633 // We want the low register for the AD file writer's convenience.
kvn@4007 634 OptoReg::Name hi = lrg.reg(); // Get hi register
kvn@4007 635 OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
kvn@4007 636 // We have to use pair [lo,lo+1] even for wide vectors because
kvn@4007 637 // the rest of code generation works only with pairs. It is safe
kvn@4007 638 // since for registers encoding only 'lo' is used.
kvn@4007 639 // Second reg from pair is used in ScheduleAndBundle on SPARC where
kvn@4007 640 // vector max size is 8 which corresponds to registers pair.
kvn@4007 641 // It is also used in BuildOopMaps but oop operations are not
kvn@4007 642 // vectorized.
kvn@4007 643 set2(i, lo);
duke@435 644 } else { // Misaligned; extract 2 bits
duke@435 645 OptoReg::Name hi = lrg.reg(); // Get hi register
duke@435 646 lrg.Remove(hi); // Yank from mask
duke@435 647 int lo = lrg.mask().find_first_elem(); // Find lo
kvn@4007 648 set_pair(i, hi, lo);
duke@435 649 }
duke@435 650 }
duke@435 651 if( lrg._is_oop ) _node_oops.set(i);
duke@435 652 } else {
kvn@4007 653 set_bad(i);
duke@435 654 }
duke@435 655 }
duke@435 656
duke@435 657 // Done!
duke@435 658 _live = NULL;
duke@435 659 _ifg = NULL;
duke@435 660 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
duke@435 661 }
duke@435 662
duke@435 663 void PhaseChaitin::de_ssa() {
duke@435 664 // Set initial Names for all Nodes. Most Nodes get the virtual register
duke@435 665 // number. A few get the ZERO live range number. These do not
duke@435 666 // get allocated, but instead rely on correct scheduling to ensure that
duke@435 667 // only one instance is simultaneously live at a time.
duke@435 668 uint lr_counter = 1;
adlertz@5539 669 for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
adlertz@5539 670 Block* block = _cfg.get_block(i);
adlertz@5635 671 uint cnt = block->number_of_nodes();
duke@435 672
duke@435 673 // Handle all the normal Nodes in the block
duke@435 674 for( uint j = 0; j < cnt; j++ ) {
adlertz@5635 675 Node *n = block->get_node(j);
duke@435 676 // Pre-color to the zero live range, or pick virtual register
duke@435 677 const RegMask &rm = n->out_RegMask();
neliasso@4949 678 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
duke@435 679 }
duke@435 680 }
adlertz@5722 681
duke@435 682 // Reset the Union-Find mapping to be identity
neliasso@4949 683 _lrg_map.reset_uf_map(lr_counter);
duke@435 684 }
duke@435 685
duke@435 686
duke@435 687 // Gather LiveRanGe information, including register masks. Modification of
duke@435 688 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
duke@435 689 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
duke@435 690
duke@435 691 // Nail down the frame pointer live range
adlertz@5539 692 uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
duke@435 693 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
duke@435 694
duke@435 695 // For all blocks
adlertz@5539 696 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 697 Block* block = _cfg.get_block(i);
duke@435 698
duke@435 699 // For all instructions
adlertz@5635 700 for (uint j = 1; j < block->number_of_nodes(); j++) {
adlertz@5635 701 Node* n = block->get_node(j);
duke@435 702 uint input_edge_start =1; // Skip control most nodes
adlertz@5539 703 if (n->is_Mach()) {
adlertz@5539 704 input_edge_start = n->as_Mach()->oper_input_base();
adlertz@5539 705 }
duke@435 706 uint idx = n->is_Copy();
duke@435 707
duke@435 708 // Get virtual register number, same as LiveRanGe index
neliasso@4949 709 uint vreg = _lrg_map.live_range_id(n);
adlertz@5539 710 LRG& lrg = lrgs(vreg);
adlertz@5539 711 if (vreg) { // No vreg means un-allocable (e.g. memory)
duke@435 712
duke@435 713 // Collect has-copy bit
adlertz@5539 714 if (idx) {
duke@435 715 lrg._has_copy = 1;
neliasso@4949 716 uint clidx = _lrg_map.live_range_id(n->in(idx));
adlertz@5539 717 LRG& copy_src = lrgs(clidx);
duke@435 718 copy_src._has_copy = 1;
duke@435 719 }
duke@435 720
duke@435 721 // Check for float-vs-int live range (used in register-pressure
duke@435 722 // calculations)
duke@435 723 const Type *n_type = n->bottom_type();
adlertz@5539 724 if (n_type->is_floatingpoint()) {
duke@435 725 lrg._is_float = 1;
adlertz@5539 726 }
duke@435 727
duke@435 728 // Check for twice prior spilling. Once prior spilling might have
duke@435 729 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
duke@435 730 // further spilling is unlikely to make progress.
adlertz@5539 731 if (_spilled_once.test(n->_idx)) {
duke@435 732 lrg._was_spilled1 = 1;
adlertz@5539 733 if (_spilled_twice.test(n->_idx)) {
duke@435 734 lrg._was_spilled2 = 1;
adlertz@5539 735 }
duke@435 736 }
duke@435 737
duke@435 738 #ifndef PRODUCT
duke@435 739 if (trace_spilling() && lrg._def != NULL) {
duke@435 740 // collect defs for MultiDef printing
duke@435 741 if (lrg._defs == NULL) {
kvn@2040 742 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
duke@435 743 lrg._defs->append(lrg._def);
duke@435 744 }
duke@435 745 lrg._defs->append(n);
duke@435 746 }
duke@435 747 #endif
duke@435 748
duke@435 749 // Check for a single def LRG; these can spill nicely
duke@435 750 // via rematerialization. Flag as NULL for no def found
duke@435 751 // yet, or 'n' for single def or -1 for many defs.
duke@435 752 lrg._def = lrg._def ? NodeSentinel : n;
duke@435 753
duke@435 754 // Limit result register mask to acceptable registers
duke@435 755 const RegMask &rm = n->out_RegMask();
duke@435 756 lrg.AND( rm );
duke@435 757
duke@435 758 int ireg = n->ideal_reg();
duke@435 759 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
duke@435 760 "oops must be in Op_RegP's" );
kvn@3882 761
kvn@3882 762 // Check for vector live range (only if vector register is used).
kvn@3882 763 // On SPARC vector uses RegD which could be misaligned so it is not
kvn@3882 764 // processes as vector in RA.
kvn@3882 765 if (RegMask::is_vector(ireg))
kvn@3882 766 lrg._is_vector = 1;
goetz@6487 767 assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
kvn@3882 768 "vector must be in vector registers");
kvn@3882 769
kvn@3882 770 // Check for bound register masks
kvn@3882 771 const RegMask &lrgmask = lrg.mask();
adlertz@5539 772 if (lrgmask.is_bound(ireg)) {
kvn@3882 773 lrg._is_bound = 1;
adlertz@5539 774 }
kvn@3882 775
kvn@3882 776 // Check for maximum frequency value
adlertz@5539 777 if (lrg._maxfreq < block->_freq) {
adlertz@5539 778 lrg._maxfreq = block->_freq;
adlertz@5539 779 }
kvn@3882 780
duke@435 781 // Check for oop-iness, or long/double
duke@435 782 // Check for multi-kill projection
adlertz@5539 783 switch (ireg) {
duke@435 784 case MachProjNode::fat_proj:
duke@435 785 // Fat projections have size equal to number of registers killed
duke@435 786 lrg.set_num_regs(rm.Size());
duke@435 787 lrg.set_reg_pressure(lrg.num_regs());
duke@435 788 lrg._fat_proj = 1;
duke@435 789 lrg._is_bound = 1;
duke@435 790 break;
duke@435 791 case Op_RegP:
duke@435 792 #ifdef _LP64
duke@435 793 lrg.set_num_regs(2); // Size is 2 stack words
duke@435 794 #else
duke@435 795 lrg.set_num_regs(1); // Size is 1 stack word
duke@435 796 #endif
duke@435 797 // Register pressure is tracked relative to the maximum values
duke@435 798 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
duke@435 799 // and relative to other types which compete for the same regs.
duke@435 800 //
duke@435 801 // The following table contains suggested values based on the
duke@435 802 // architectures as defined in each .ad file.
duke@435 803 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
duke@435 804 // compile-speed or performance.
duke@435 805 // Note1:
duke@435 806 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
duke@435 807 // since .ad registers are defined as high and low halves.
duke@435 808 // These reg_pressure values remain compatible with the code
duke@435 809 // in is_high_pressure() which relates get_invalid_mask_size(),
duke@435 810 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
duke@435 811 // Note2:
duke@435 812 // SPARC -d32 has 24 registers available for integral values,
duke@435 813 // but only 10 of these are safe for 64-bit longs.
duke@435 814 // Using set_reg_pressure(2) for both int and long means
duke@435 815 // the allocator will believe it can fit 26 longs into
duke@435 816 // registers. Using 2 for longs and 1 for ints means the
duke@435 817 // allocator will attempt to put 52 integers into registers.
duke@435 818 // The settings below limit this problem to methods with
duke@435 819 // many long values which are being run on 32-bit SPARC.
duke@435 820 //
duke@435 821 // ------------------- reg_pressure --------------------
duke@435 822 // Each entry is reg_pressure_per_value,number_of_regs
duke@435 823 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
duke@435 824 // IA32 2 1 1 1 1 6 6
duke@435 825 // IA64 1 1 1 1 1 50 41
duke@435 826 // SPARC 2 2 2 2 2 48 (24) 52 (26)
duke@435 827 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
duke@435 828 // AMD64 1 1 1 1 1 14 15
duke@435 829 // -----------------------------------------------------
duke@435 830 #if defined(SPARC)
duke@435 831 lrg.set_reg_pressure(2); // use for v9 as well
duke@435 832 #else
duke@435 833 lrg.set_reg_pressure(1); // normally one value per register
duke@435 834 #endif
duke@435 835 if( n_type->isa_oop_ptr() ) {
duke@435 836 lrg._is_oop = 1;
duke@435 837 }
duke@435 838 break;
duke@435 839 case Op_RegL: // Check for long or double
duke@435 840 case Op_RegD:
duke@435 841 lrg.set_num_regs(2);
duke@435 842 // Define platform specific register pressure
dlong@7598 843 #if defined(SPARC) || defined(ARM32)
duke@435 844 lrg.set_reg_pressure(2);
duke@435 845 #elif defined(IA32)
duke@435 846 if( ireg == Op_RegL ) {
duke@435 847 lrg.set_reg_pressure(2);
duke@435 848 } else {
duke@435 849 lrg.set_reg_pressure(1);
duke@435 850 }
duke@435 851 #else
duke@435 852 lrg.set_reg_pressure(1); // normally one value per register
duke@435 853 #endif
duke@435 854 // If this def of a double forces a mis-aligned double,
duke@435 855 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 856 // AND changes how we count interferences. A mis-aligned
duke@435 857 // double can interfere with TWO aligned pairs, or effectively
duke@435 858 // FOUR registers!
kvn@3882 859 if (rm.is_misaligned_pair()) {
duke@435 860 lrg._fat_proj = 1;
duke@435 861 lrg._is_bound = 1;
duke@435 862 }
duke@435 863 break;
duke@435 864 case Op_RegF:
duke@435 865 case Op_RegI:
coleenp@548 866 case Op_RegN:
duke@435 867 case Op_RegFlags:
duke@435 868 case 0: // not an ideal register
duke@435 869 lrg.set_num_regs(1);
duke@435 870 #ifdef SPARC
duke@435 871 lrg.set_reg_pressure(2);
duke@435 872 #else
duke@435 873 lrg.set_reg_pressure(1);
duke@435 874 #endif
duke@435 875 break;
kvn@3882 876 case Op_VecS:
kvn@3882 877 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
kvn@3882 878 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
kvn@3882 879 lrg.set_num_regs(RegMask::SlotsPerVecS);
kvn@3882 880 lrg.set_reg_pressure(1);
kvn@3882 881 break;
kvn@3882 882 case Op_VecD:
kvn@3882 883 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
kvn@3882 884 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
kvn@3882 885 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
kvn@3882 886 lrg.set_num_regs(RegMask::SlotsPerVecD);
kvn@3882 887 lrg.set_reg_pressure(1);
kvn@3882 888 break;
kvn@3882 889 case Op_VecX:
kvn@3882 890 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
kvn@3882 891 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
kvn@3882 892 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
kvn@3882 893 lrg.set_num_regs(RegMask::SlotsPerVecX);
kvn@3882 894 lrg.set_reg_pressure(1);
kvn@3882 895 break;
kvn@3882 896 case Op_VecY:
kvn@3882 897 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
kvn@3882 898 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
kvn@3882 899 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
kvn@3882 900 lrg.set_num_regs(RegMask::SlotsPerVecY);
kvn@3882 901 lrg.set_reg_pressure(1);
kvn@3882 902 break;
duke@435 903 default:
duke@435 904 ShouldNotReachHere();
duke@435 905 }
duke@435 906 }
duke@435 907
duke@435 908 // Now do the same for inputs
duke@435 909 uint cnt = n->req();
duke@435 910 // Setup for CISC SPILLING
duke@435 911 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
duke@435 912 if( UseCISCSpill && after_aggressive ) {
duke@435 913 inp = n->cisc_operand();
duke@435 914 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
duke@435 915 // Convert operand number to edge index number
duke@435 916 inp = n->as_Mach()->operand_index(inp);
duke@435 917 }
duke@435 918 // Prepare register mask for each input
duke@435 919 for( uint k = input_edge_start; k < cnt; k++ ) {
neliasso@4949 920 uint vreg = _lrg_map.live_range_id(n->in(k));
neliasso@4949 921 if (!vreg) {
neliasso@4949 922 continue;
neliasso@4949 923 }
duke@435 924
duke@435 925 // If this instruction is CISC Spillable, add the flags
duke@435 926 // bit to its appropriate input
duke@435 927 if( UseCISCSpill && after_aggressive && inp == k ) {
duke@435 928 #ifndef PRODUCT
duke@435 929 if( TraceCISCSpill ) {
duke@435 930 tty->print(" use_cisc_RegMask: ");
duke@435 931 n->dump();
duke@435 932 }
duke@435 933 #endif
duke@435 934 n->as_Mach()->use_cisc_RegMask();
duke@435 935 }
duke@435 936
duke@435 937 LRG &lrg = lrgs(vreg);
duke@435 938 // // Testing for floating point code shape
duke@435 939 // Node *test = n->in(k);
duke@435 940 // if( test->is_Mach() ) {
duke@435 941 // MachNode *m = test->as_Mach();
duke@435 942 // int op = m->ideal_Opcode();
duke@435 943 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
duke@435 944 // int zzz = 1;
duke@435 945 // }
duke@435 946 // }
duke@435 947
duke@435 948 // Limit result register mask to acceptable registers.
duke@435 949 // Do not limit registers from uncommon uses before
duke@435 950 // AggressiveCoalesce. This effectively pre-virtual-splits
duke@435 951 // around uncommon uses of common defs.
duke@435 952 const RegMask &rm = n->in_RegMask(k);
adlertz@5539 953 if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
duke@435 954 // Since we are BEFORE aggressive coalesce, leave the register
duke@435 955 // mask untrimmed by the call. This encourages more coalescing.
duke@435 956 // Later, AFTER aggressive, this live range will have to spill
duke@435 957 // but the spiller handles slow-path calls very nicely.
duke@435 958 } else {
duke@435 959 lrg.AND( rm );
duke@435 960 }
kvn@3882 961
duke@435 962 // Check for bound register masks
duke@435 963 const RegMask &lrgmask = lrg.mask();
kvn@3882 964 int kreg = n->in(k)->ideal_reg();
kvn@3882 965 bool is_vect = RegMask::is_vector(kreg);
kvn@3882 966 assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
goetz@6487 967 is_vect || kreg == Op_RegD || kreg == Op_RegL,
kvn@3882 968 "vector must be in vector registers");
kvn@3882 969 if (lrgmask.is_bound(kreg))
duke@435 970 lrg._is_bound = 1;
kvn@3882 971
duke@435 972 // If this use of a double forces a mis-aligned double,
duke@435 973 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 974 // AND changes how we count interferences. A mis-aligned
duke@435 975 // double can interfere with TWO aligned pairs, or effectively
duke@435 976 // FOUR registers!
kvn@3882 977 #ifdef ASSERT
kvn@3882 978 if (is_vect) {
kvn@3882 979 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
kvn@3882 980 assert(!lrg._fat_proj, "sanity");
kvn@3882 981 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
kvn@3882 982 }
kvn@3882 983 #endif
kvn@3882 984 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
duke@435 985 lrg._fat_proj = 1;
duke@435 986 lrg._is_bound = 1;
duke@435 987 }
duke@435 988 // if the LRG is an unaligned pair, we will have to spill
duke@435 989 // so clear the LRG's register mask if it is not already spilled
kvn@3882 990 if (!is_vect && !n->is_SpillCopy() &&
kvn@3882 991 (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
kvn@3882 992 lrgmask.is_misaligned_pair()) {
duke@435 993 lrg.Clear();
duke@435 994 }
duke@435 995
duke@435 996 // Check for maximum frequency value
adlertz@5539 997 if (lrg._maxfreq < block->_freq) {
adlertz@5539 998 lrg._maxfreq = block->_freq;
adlertz@5539 999 }
duke@435 1000
duke@435 1001 } // End for all allocated inputs
duke@435 1002 } // end for all instructions
duke@435 1003 } // end for all blocks
duke@435 1004
duke@435 1005 // Final per-liverange setup
neliasso@4949 1006 for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
duke@435 1007 LRG &lrg = lrgs(i2);
kvn@3882 1008 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
kvn@3882 1009 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
kvn@3882 1010 lrg.clear_to_sets();
kvn@3882 1011 }
duke@435 1012 lrg.compute_set_mask_size();
kvn@3882 1013 if (lrg.not_free()) { // Handle case where we lose from the start
duke@435 1014 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 1015 lrg._direct_conflict = 1;
duke@435 1016 }
duke@435 1017 lrg.set_degree(0); // no neighbors in IFG yet
duke@435 1018 }
duke@435 1019 }
duke@435 1020
duke@435 1021 // Set the was-lo-degree bit. Conservative coalescing should not change the
duke@435 1022 // colorability of the graph. If any live range was of low-degree before
duke@435 1023 // coalescing, it should Simplify. This call sets the was-lo-degree bit.
duke@435 1024 // The bit is checked in Simplify.
duke@435 1025 void PhaseChaitin::set_was_low() {
duke@435 1026 #ifdef ASSERT
neliasso@4949 1027 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
duke@435 1028 int size = lrgs(i).num_regs();
duke@435 1029 uint old_was_lo = lrgs(i)._was_lo;
duke@435 1030 lrgs(i)._was_lo = 0;
duke@435 1031 if( lrgs(i).lo_degree() ) {
duke@435 1032 lrgs(i)._was_lo = 1; // Trivially of low degree
duke@435 1033 } else { // Else check the Brigg's assertion
duke@435 1034 // Brigg's observation is that the lo-degree neighbors of a
duke@435 1035 // hi-degree live range will not interfere with the color choices
duke@435 1036 // of said hi-degree live range. The Simplify reverse-stack-coloring
duke@435 1037 // order takes care of the details. Hence you do not have to count
duke@435 1038 // low-degree neighbors when determining if this guy colors.
duke@435 1039 int briggs_degree = 0;
duke@435 1040 IndexSet *s = _ifg->neighbors(i);
duke@435 1041 IndexSetIterator elements(s);
duke@435 1042 uint lidx;
duke@435 1043 while((lidx = elements.next()) != 0) {
duke@435 1044 if( !lrgs(lidx).lo_degree() )
duke@435 1045 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
duke@435 1046 }
duke@435 1047 if( briggs_degree < lrgs(i).degrees_of_freedom() )
duke@435 1048 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
duke@435 1049 }
duke@435 1050 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
duke@435 1051 }
duke@435 1052 #endif
duke@435 1053 }
duke@435 1054
duke@435 1055 #define REGISTER_CONSTRAINED 16
duke@435 1056
duke@435 1057 // Compute cost/area ratio, in case we spill. Build the lo-degree list.
duke@435 1058 void PhaseChaitin::cache_lrg_info( ) {
duke@435 1059
neliasso@4949 1060 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
duke@435 1061 LRG &lrg = lrgs(i);
duke@435 1062
duke@435 1063 // Check for being of low degree: means we can be trivially colored.
duke@435 1064 // Low degree, dead or must-spill guys just get to simplify right away
duke@435 1065 if( lrg.lo_degree() ||
duke@435 1066 !lrg.alive() ||
duke@435 1067 lrg._must_spill ) {
duke@435 1068 // Split low degree list into those guys that must get a
duke@435 1069 // register and those that can go to register or stack.
duke@435 1070 // The idea is LRGs that can go register or stack color first when
duke@435 1071 // they have a good chance of getting a register. The register-only
duke@435 1072 // lo-degree live ranges always get a register.
duke@435 1073 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
duke@435 1074 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
duke@435 1075 lrg._next = _lo_stk_degree;
duke@435 1076 _lo_stk_degree = i;
duke@435 1077 } else {
duke@435 1078 lrg._next = _lo_degree;
duke@435 1079 _lo_degree = i;
duke@435 1080 }
duke@435 1081 } else { // Else high degree
duke@435 1082 lrgs(_hi_degree)._prev = i;
duke@435 1083 lrg._next = _hi_degree;
duke@435 1084 lrg._prev = 0;
duke@435 1085 _hi_degree = i;
duke@435 1086 }
duke@435 1087 }
duke@435 1088 }
duke@435 1089
duke@435 1090 // Simplify the IFG by removing LRGs of low degree that have NO copies
duke@435 1091 void PhaseChaitin::Pre_Simplify( ) {
duke@435 1092
duke@435 1093 // Warm up the lo-degree no-copy list
duke@435 1094 int lo_no_copy = 0;
neliasso@4949 1095 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
neliasso@4949 1096 if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
duke@435 1097 !lrgs(i).alive() ||
neliasso@4949 1098 lrgs(i)._must_spill) {
duke@435 1099 lrgs(i)._next = lo_no_copy;
duke@435 1100 lo_no_copy = i;
duke@435 1101 }
duke@435 1102 }
duke@435 1103
duke@435 1104 while( lo_no_copy ) {
duke@435 1105 uint lo = lo_no_copy;
duke@435 1106 lo_no_copy = lrgs(lo)._next;
duke@435 1107 int size = lrgs(lo).num_regs();
duke@435 1108
duke@435 1109 // Put the simplified guy on the simplified list.
duke@435 1110 lrgs(lo)._next = _simplified;
duke@435 1111 _simplified = lo;
duke@435 1112
duke@435 1113 // Yank this guy from the IFG.
duke@435 1114 IndexSet *adj = _ifg->remove_node( lo );
duke@435 1115
duke@435 1116 // If any neighbors' degrees fall below their number of
duke@435 1117 // allowed registers, then put that neighbor on the low degree
duke@435 1118 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 1119 // unchanged by this action. Thus the two are equal at most once,
duke@435 1120 // so LRGs hit the lo-degree worklists at most once.
duke@435 1121 IndexSetIterator elements(adj);
duke@435 1122 uint neighbor;
duke@435 1123 while ((neighbor = elements.next()) != 0) {
duke@435 1124 LRG *n = &lrgs(neighbor);
duke@435 1125 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 1126
duke@435 1127 // Check for just becoming of-low-degree
duke@435 1128 if( n->just_lo_degree() && !n->_has_copy ) {
duke@435 1129 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 1130 // Put on lo-degree list
duke@435 1131 n->_next = lo_no_copy;
duke@435 1132 lo_no_copy = neighbor;
duke@435 1133 }
duke@435 1134 }
duke@435 1135 } // End of while lo-degree no_copy worklist not empty
duke@435 1136
duke@435 1137 // No more lo-degree no-copy live ranges to simplify
duke@435 1138 }
duke@435 1139
duke@435 1140 // Simplify the IFG by removing LRGs of low degree.
duke@435 1141 void PhaseChaitin::Simplify( ) {
duke@435 1142
duke@435 1143 while( 1 ) { // Repeat till simplified it all
duke@435 1144 // May want to explore simplifying lo_degree before _lo_stk_degree.
duke@435 1145 // This might result in more spills coloring into registers during
duke@435 1146 // Select().
duke@435 1147 while( _lo_degree || _lo_stk_degree ) {
duke@435 1148 // If possible, pull from lo_stk first
duke@435 1149 uint lo;
duke@435 1150 if( _lo_degree ) {
duke@435 1151 lo = _lo_degree;
duke@435 1152 _lo_degree = lrgs(lo)._next;
duke@435 1153 } else {
duke@435 1154 lo = _lo_stk_degree;
duke@435 1155 _lo_stk_degree = lrgs(lo)._next;
duke@435 1156 }
duke@435 1157
duke@435 1158 // Put the simplified guy on the simplified list.
duke@435 1159 lrgs(lo)._next = _simplified;
duke@435 1160 _simplified = lo;
duke@435 1161 // If this guy is "at risk" then mark his current neighbors
duke@435 1162 if( lrgs(lo)._at_risk ) {
duke@435 1163 IndexSetIterator elements(_ifg->neighbors(lo));
duke@435 1164 uint datum;
duke@435 1165 while ((datum = elements.next()) != 0) {
duke@435 1166 lrgs(datum)._risk_bias = lo;
duke@435 1167 }
duke@435 1168 }
duke@435 1169
duke@435 1170 // Yank this guy from the IFG.
duke@435 1171 IndexSet *adj = _ifg->remove_node( lo );
duke@435 1172
duke@435 1173 // If any neighbors' degrees fall below their number of
duke@435 1174 // allowed registers, then put that neighbor on the low degree
duke@435 1175 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 1176 // unchanged by this action. Thus the two are equal at most once,
duke@435 1177 // so LRGs hit the lo-degree worklist at most once.
duke@435 1178 IndexSetIterator elements(adj);
duke@435 1179 uint neighbor;
duke@435 1180 while ((neighbor = elements.next()) != 0) {
duke@435 1181 LRG *n = &lrgs(neighbor);
duke@435 1182 #ifdef ASSERT
kvn@985 1183 if( VerifyOpto || VerifyRegisterAllocator ) {
duke@435 1184 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 1185 }
duke@435 1186 #endif
duke@435 1187
duke@435 1188 // Check for just becoming of-low-degree just counting registers.
duke@435 1189 // _must_spill live ranges are already on the low degree list.
duke@435 1190 if( n->just_lo_degree() && !n->_must_spill ) {
duke@435 1191 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 1192 // Pull from hi-degree list
duke@435 1193 uint prev = n->_prev;
duke@435 1194 uint next = n->_next;
duke@435 1195 if( prev ) lrgs(prev)._next = next;
duke@435 1196 else _hi_degree = next;
duke@435 1197 lrgs(next)._prev = prev;
duke@435 1198 n->_next = _lo_degree;
duke@435 1199 _lo_degree = neighbor;
duke@435 1200 }
duke@435 1201 }
duke@435 1202 } // End of while lo-degree/lo_stk_degree worklist not empty
duke@435 1203
duke@435 1204 // Check for got everything: is hi-degree list empty?
duke@435 1205 if( !_hi_degree ) break;
duke@435 1206
duke@435 1207 // Time to pick a potential spill guy
duke@435 1208 uint lo_score = _hi_degree;
duke@435 1209 double score = lrgs(lo_score).score();
duke@435 1210 double area = lrgs(lo_score)._area;
kvn@1443 1211 double cost = lrgs(lo_score)._cost;
kvn@1443 1212 bool bound = lrgs(lo_score)._is_bound;
duke@435 1213
duke@435 1214 // Find cheapest guy
duke@435 1215 debug_only( int lo_no_simplify=0; );
kvn@1447 1216 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
duke@435 1217 assert( !(*_ifg->_yanked)[i], "" );
duke@435 1218 // It's just vaguely possible to move hi-degree to lo-degree without
duke@435 1219 // going through a just-lo-degree stage: If you remove a double from
duke@435 1220 // a float live range it's degree will drop by 2 and you can skip the
duke@435 1221 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
duke@435 1222 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
duke@435 1223 if( lrgs(i).lo_degree() ) {
duke@435 1224 lo_score = i;
duke@435 1225 break;
duke@435 1226 }
duke@435 1227 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
duke@435 1228 double iscore = lrgs(i).score();
duke@435 1229 double iarea = lrgs(i)._area;
kvn@1443 1230 double icost = lrgs(i)._cost;
kvn@1443 1231 bool ibound = lrgs(i)._is_bound;
duke@435 1232
duke@435 1233 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
duke@435 1234 // wins. Ties happen because all live ranges in question have spilled
duke@435 1235 // a few times before and the spill-score adds a huge number which
duke@435 1236 // washes out the low order bits. We are choosing the lesser of 2
duke@435 1237 // evils; in this case pick largest area to spill.
kvn@1443 1238 // Ties also happen when live ranges are defined and used only inside
kvn@1443 1239 // one block. In which case their area is 0 and score set to max.
kvn@1443 1240 // In such case choose bound live range over unbound to free registers
kvn@1443 1241 // or with smaller cost to spill.
duke@435 1242 if( iscore < score ||
kvn@1443 1243 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
kvn@1443 1244 (iscore == score && iarea == area &&
kvn@1443 1245 ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
duke@435 1246 lo_score = i;
duke@435 1247 score = iscore;
duke@435 1248 area = iarea;
kvn@1443 1249 cost = icost;
kvn@1443 1250 bound = ibound;
duke@435 1251 }
duke@435 1252 }
duke@435 1253 LRG *lo_lrg = &lrgs(lo_score);
duke@435 1254 // The live range we choose for spilling is either hi-degree, or very
duke@435 1255 // rarely it can be low-degree. If we choose a hi-degree live range
duke@435 1256 // there better not be any lo-degree choices.
duke@435 1257 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
duke@435 1258
duke@435 1259 // Pull from hi-degree list
duke@435 1260 uint prev = lo_lrg->_prev;
duke@435 1261 uint next = lo_lrg->_next;
duke@435 1262 if( prev ) lrgs(prev)._next = next;
duke@435 1263 else _hi_degree = next;
duke@435 1264 lrgs(next)._prev = prev;
duke@435 1265 // Jam him on the lo-degree list, despite his high degree.
duke@435 1266 // Maybe he'll get a color, and maybe he'll spill.
duke@435 1267 // Only Select() will know.
duke@435 1268 lrgs(lo_score)._at_risk = true;
duke@435 1269 _lo_degree = lo_score;
duke@435 1270 lo_lrg->_next = 0;
duke@435 1271
duke@435 1272 } // End of while not simplified everything
duke@435 1273
duke@435 1274 }
duke@435 1275
kvn@4007 1276 // Is 'reg' register legal for 'lrg'?
kvn@4007 1277 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
kvn@4007 1278 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
kvn@4007 1279 lrg.mask().Member(OptoReg::add(reg,-chunk))) {
kvn@4007 1280 // RA uses OptoReg which represent the highest element of a registers set.
kvn@4007 1281 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
kvn@4007 1282 // in which XMMd is used by RA to represent such vectors. A double value
kvn@4007 1283 // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
kvn@4007 1284 // The register mask uses largest bits set of overlapping register sets.
kvn@4007 1285 // On x86 with AVX it uses 8 bits for each XMM registers set.
kvn@4007 1286 //
kvn@4007 1287 // The 'lrg' already has cleared-to-set register mask (done in Select()
kvn@4007 1288 // before calling choose_color()). Passing mask.Member(reg) check above
kvn@4007 1289 // indicates that the size (num_regs) of 'reg' set is less or equal to
kvn@4007 1290 // 'lrg' set size.
kvn@4007 1291 // For set size 1 any register which is member of 'lrg' mask is legal.
kvn@4007 1292 if (lrg.num_regs()==1)
kvn@4007 1293 return true;
kvn@4007 1294 // For larger sets only an aligned register with the same set size is legal.
kvn@4007 1295 int mask = lrg.num_regs()-1;
kvn@4007 1296 if ((reg&mask) == mask)
kvn@4007 1297 return true;
kvn@4007 1298 }
kvn@4007 1299 return false;
kvn@4007 1300 }
kvn@4007 1301
duke@435 1302 // Choose a color using the biasing heuristic
duke@435 1303 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
duke@435 1304
duke@435 1305 // Check for "at_risk" LRG's
neliasso@4949 1306 uint risk_lrg = _lrg_map.find(lrg._risk_bias);
duke@435 1307 if( risk_lrg != 0 ) {
duke@435 1308 // Walk the colored neighbors of the "at_risk" candidate
duke@435 1309 // Choose a color which is both legal and already taken by a neighbor
duke@435 1310 // of the "at_risk" candidate in order to improve the chances of the
duke@435 1311 // "at_risk" candidate of coloring
duke@435 1312 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
duke@435 1313 uint datum;
duke@435 1314 while ((datum = elements.next()) != 0) {
duke@435 1315 OptoReg::Name reg = lrgs(datum).reg();
duke@435 1316 // If this LRG's register is legal for us, choose it
kvn@4007 1317 if (is_legal_reg(lrg, reg, chunk))
duke@435 1318 return reg;
duke@435 1319 }
duke@435 1320 }
duke@435 1321
neliasso@4949 1322 uint copy_lrg = _lrg_map.find(lrg._copy_bias);
duke@435 1323 if( copy_lrg != 0 ) {
duke@435 1324 // If he has a color,
duke@435 1325 if( !(*(_ifg->_yanked))[copy_lrg] ) {
duke@435 1326 OptoReg::Name reg = lrgs(copy_lrg).reg();
duke@435 1327 // And it is legal for you,
kvn@4007 1328 if (is_legal_reg(lrg, reg, chunk))
duke@435 1329 return reg;
duke@435 1330 } else if( chunk == 0 ) {
duke@435 1331 // Choose a color which is legal for him
duke@435 1332 RegMask tempmask = lrg.mask();
duke@435 1333 tempmask.AND(lrgs(copy_lrg).mask());
kvn@3882 1334 tempmask.clear_to_sets(lrg.num_regs());
kvn@3882 1335 OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
kvn@3882 1336 if (OptoReg::is_valid(reg))
duke@435 1337 return reg;
duke@435 1338 }
duke@435 1339 }
duke@435 1340
duke@435 1341 // If no bias info exists, just go with the register selection ordering
kvn@3882 1342 if (lrg._is_vector || lrg.num_regs() == 2) {
kvn@3882 1343 // Find an aligned set
kvn@3882 1344 return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
duke@435 1345 }
duke@435 1346
duke@435 1347 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
duke@435 1348 // copy removal to remove many more copies, by preventing a just-assigned
duke@435 1349 // register from being repeatedly assigned.
duke@435 1350 OptoReg::Name reg = lrg.mask().find_first_elem();
duke@435 1351 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
duke@435 1352 // This 'Remove; find; Insert' idiom is an expensive way to find the
duke@435 1353 // SECOND element in the mask.
duke@435 1354 lrg.Remove(reg);
duke@435 1355 OptoReg::Name reg2 = lrg.mask().find_first_elem();
duke@435 1356 lrg.Insert(reg);
duke@435 1357 if( OptoReg::is_reg(reg2))
duke@435 1358 reg = reg2;
duke@435 1359 }
duke@435 1360 return OptoReg::add( reg, chunk );
duke@435 1361 }
duke@435 1362
duke@435 1363 // Choose a color in the current chunk
duke@435 1364 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
duke@435 1365 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
duke@435 1366 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
duke@435 1367
duke@435 1368 if( lrg.num_regs() == 1 || // Common Case
duke@435 1369 !lrg._fat_proj ) // Aligned+adjacent pairs ok
duke@435 1370 // Use a heuristic to "bias" the color choice
duke@435 1371 return bias_color(lrg, chunk);
duke@435 1372
kvn@3882 1373 assert(!lrg._is_vector, "should be not vector here" );
duke@435 1374 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
duke@435 1375
duke@435 1376 // Fat-proj case or misaligned double argument.
duke@435 1377 assert(lrg.compute_mask_size() == lrg.num_regs() ||
duke@435 1378 lrg.num_regs() == 2,"fat projs exactly color" );
duke@435 1379 assert( !chunk, "always color in 1st chunk" );
duke@435 1380 // Return the highest element in the set.
duke@435 1381 return lrg.mask().find_last_elem();
duke@435 1382 }
duke@435 1383
duke@435 1384 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
duke@435 1385 // in reverse order of removal. As long as nothing of hi-degree was yanked,
duke@435 1386 // everything going back is guaranteed a color. Select that color. If some
duke@435 1387 // hi-degree LRG cannot get a color then we record that we must spill.
duke@435 1388 uint PhaseChaitin::Select( ) {
duke@435 1389 uint spill_reg = LRG::SPILL_REG;
duke@435 1390 _max_reg = OptoReg::Name(0); // Past max register used
duke@435 1391 while( _simplified ) {
duke@435 1392 // Pull next LRG from the simplified list - in reverse order of removal
duke@435 1393 uint lidx = _simplified;
duke@435 1394 LRG *lrg = &lrgs(lidx);
duke@435 1395 _simplified = lrg->_next;
duke@435 1396
duke@435 1397
duke@435 1398 #ifndef PRODUCT
duke@435 1399 if (trace_spilling()) {
duke@435 1400 ttyLocker ttyl;
duke@435 1401 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
duke@435 1402 lrg->degrees_of_freedom());
duke@435 1403 lrg->dump();
duke@435 1404 }
duke@435 1405 #endif
duke@435 1406
duke@435 1407 // Re-insert into the IFG
duke@435 1408 _ifg->re_insert(lidx);
duke@435 1409 if( !lrg->alive() ) continue;
duke@435 1410 // capture allstackedness flag before mask is hacked
duke@435 1411 const int is_allstack = lrg->mask().is_AllStack();
duke@435 1412
duke@435 1413 // Yeah, yeah, yeah, I know, I know. I can refactor this
duke@435 1414 // to avoid the GOTO, although the refactored code will not
duke@435 1415 // be much clearer. We arrive here IFF we have a stack-based
duke@435 1416 // live range that cannot color in the current chunk, and it
duke@435 1417 // has to move into the next free stack chunk.
duke@435 1418 int chunk = 0; // Current chunk is first chunk
duke@435 1419 retry_next_chunk:
duke@435 1420
duke@435 1421 // Remove neighbor colors
duke@435 1422 IndexSet *s = _ifg->neighbors(lidx);
duke@435 1423
duke@435 1424 debug_only(RegMask orig_mask = lrg->mask();)
duke@435 1425 IndexSetIterator elements(s);
duke@435 1426 uint neighbor;
duke@435 1427 while ((neighbor = elements.next()) != 0) {
duke@435 1428 // Note that neighbor might be a spill_reg. In this case, exclusion
duke@435 1429 // of its color will be a no-op, since the spill_reg chunk is in outer
duke@435 1430 // space. Also, if neighbor is in a different chunk, this exclusion
duke@435 1431 // will be a no-op. (Later on, if lrg runs out of possible colors in
duke@435 1432 // its chunk, a new chunk of color may be tried, in which case
duke@435 1433 // examination of neighbors is started again, at retry_next_chunk.)
duke@435 1434 LRG &nlrg = lrgs(neighbor);
duke@435 1435 OptoReg::Name nreg = nlrg.reg();
duke@435 1436 // Only subtract masks in the same chunk
duke@435 1437 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
duke@435 1438 #ifndef PRODUCT
duke@435 1439 uint size = lrg->mask().Size();
duke@435 1440 RegMask rm = lrg->mask();
duke@435 1441 #endif
duke@435 1442 lrg->SUBTRACT(nlrg.mask());
duke@435 1443 #ifndef PRODUCT
duke@435 1444 if (trace_spilling() && lrg->mask().Size() != size) {
duke@435 1445 ttyLocker ttyl;
duke@435 1446 tty->print("L%d ", lidx);
duke@435 1447 rm.dump();
duke@435 1448 tty->print(" intersected L%d ", neighbor);
duke@435 1449 nlrg.mask().dump();
duke@435 1450 tty->print(" removed ");
duke@435 1451 rm.SUBTRACT(lrg->mask());
duke@435 1452 rm.dump();
duke@435 1453 tty->print(" leaving ");
duke@435 1454 lrg->mask().dump();
duke@435 1455 tty->cr();
duke@435 1456 }
duke@435 1457 #endif
duke@435 1458 }
duke@435 1459 }
duke@435 1460 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
duke@435 1461 // Aligned pairs need aligned masks
kvn@3882 1462 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1463 if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
kvn@3882 1464 lrg->clear_to_sets();
kvn@3882 1465 }
duke@435 1466
duke@435 1467 // Check if a color is available and if so pick the color
duke@435 1468 OptoReg::Name reg = choose_color( *lrg, chunk );
duke@435 1469 #ifdef SPARC
duke@435 1470 debug_only(lrg->compute_set_mask_size());
kvn@3882 1471 assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
duke@435 1472 #endif
duke@435 1473
duke@435 1474 //---------------
duke@435 1475 // If we fail to color and the AllStack flag is set, trigger
duke@435 1476 // a chunk-rollover event
duke@435 1477 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
duke@435 1478 // Bump register mask up to next stack chunk
duke@435 1479 chunk += RegMask::CHUNK_SIZE;
duke@435 1480 lrg->Set_All();
duke@435 1481
duke@435 1482 goto retry_next_chunk;
duke@435 1483 }
duke@435 1484
duke@435 1485 //---------------
duke@435 1486 // Did we get a color?
duke@435 1487 else if( OptoReg::is_valid(reg)) {
duke@435 1488 #ifndef PRODUCT
duke@435 1489 RegMask avail_rm = lrg->mask();
duke@435 1490 #endif
duke@435 1491
duke@435 1492 // Record selected register
duke@435 1493 lrg->set_reg(reg);
duke@435 1494
duke@435 1495 if( reg >= _max_reg ) // Compute max register limit
duke@435 1496 _max_reg = OptoReg::add(reg,1);
duke@435 1497 // Fold reg back into normal space
duke@435 1498 reg = OptoReg::add(reg,-chunk);
duke@435 1499
duke@435 1500 // If the live range is not bound, then we actually had some choices
duke@435 1501 // to make. In this case, the mask has more bits in it than the colors
twisti@1040 1502 // chosen. Restrict the mask to just what was picked.
kvn@3882 1503 int n_regs = lrg->num_regs();
kvn@3882 1504 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1505 if (n_regs == 1 || !lrg->_fat_proj) {
kvn@3882 1506 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
duke@435 1507 lrg->Clear(); // Clear the mask
duke@435 1508 lrg->Insert(reg); // Set regmask to match selected reg
kvn@3882 1509 // For vectors and pairs, also insert the low bit of the pair
kvn@3882 1510 for (int i = 1; i < n_regs; i++)
kvn@3882 1511 lrg->Insert(OptoReg::add(reg,-i));
kvn@3882 1512 lrg->set_mask_size(n_regs);
duke@435 1513 } else { // Else fatproj
duke@435 1514 // mask must be equal to fatproj bits, by definition
duke@435 1515 }
duke@435 1516 #ifndef PRODUCT
duke@435 1517 if (trace_spilling()) {
duke@435 1518 ttyLocker ttyl;
duke@435 1519 tty->print("L%d selected ", lidx);
duke@435 1520 lrg->mask().dump();
duke@435 1521 tty->print(" from ");
duke@435 1522 avail_rm.dump();
duke@435 1523 tty->cr();
duke@435 1524 }
duke@435 1525 #endif
duke@435 1526 // Note that reg is the highest-numbered register in the newly-bound mask.
duke@435 1527 } // end color available case
duke@435 1528
duke@435 1529 //---------------
duke@435 1530 // Live range is live and no colors available
duke@435 1531 else {
duke@435 1532 assert( lrg->alive(), "" );
never@730 1533 assert( !lrg->_fat_proj || lrg->is_multidef() ||
duke@435 1534 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
duke@435 1535 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
duke@435 1536
duke@435 1537 // Assign the special spillreg register
duke@435 1538 lrg->set_reg(OptoReg::Name(spill_reg++));
duke@435 1539 // Do not empty the regmask; leave mask_size lying around
duke@435 1540 // for use during Spilling
duke@435 1541 #ifndef PRODUCT
duke@435 1542 if( trace_spilling() ) {
duke@435 1543 ttyLocker ttyl;
duke@435 1544 tty->print("L%d spilling with neighbors: ", lidx);
duke@435 1545 s->dump();
duke@435 1546 debug_only(tty->print(" original mask: "));
duke@435 1547 debug_only(orig_mask.dump());
duke@435 1548 dump_lrg(lidx);
duke@435 1549 }
duke@435 1550 #endif
duke@435 1551 } // end spill case
duke@435 1552
duke@435 1553 }
duke@435 1554
duke@435 1555 return spill_reg-LRG::SPILL_REG; // Return number of spills
duke@435 1556 }
duke@435 1557
duke@435 1558 // Copy 'was_spilled'-edness from the source Node to the dst Node.
duke@435 1559 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
duke@435 1560 if( _spilled_once.test(src->_idx) ) {
duke@435 1561 _spilled_once.set(dst->_idx);
neliasso@4949 1562 lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
duke@435 1563 if( _spilled_twice.test(src->_idx) ) {
duke@435 1564 _spilled_twice.set(dst->_idx);
neliasso@4949 1565 lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
duke@435 1566 }
duke@435 1567 }
duke@435 1568 }
duke@435 1569
duke@435 1570 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
duke@435 1571 void PhaseChaitin::set_was_spilled( Node *n ) {
duke@435 1572 if( _spilled_once.test_set(n->_idx) )
duke@435 1573 _spilled_twice.set(n->_idx);
duke@435 1574 }
duke@435 1575
duke@435 1576 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
duke@435 1577 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
duke@435 1578 void PhaseChaitin::fixup_spills() {
duke@435 1579 // This function does only cisc spill work.
duke@435 1580 if( !UseCISCSpill ) return;
duke@435 1581
duke@435 1582 NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
duke@435 1583
duke@435 1584 // Grab the Frame Pointer
adlertz@5539 1585 Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
duke@435 1586
duke@435 1587 // For all blocks
adlertz@5539 1588 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 1589 Block* block = _cfg.get_block(i);
duke@435 1590
duke@435 1591 // For all instructions in block
adlertz@5539 1592 uint last_inst = block->end_idx();
adlertz@5539 1593 for (uint j = 1; j <= last_inst; j++) {
adlertz@5635 1594 Node* n = block->get_node(j);
duke@435 1595
duke@435 1596 // Dead instruction???
duke@435 1597 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
duke@435 1598 C->top() == n || // Or the random TOP node
duke@435 1599 n->is_Proj(), // Or a fat-proj kill node
duke@435 1600 "No dead instructions after post-alloc" );
duke@435 1601
duke@435 1602 int inp = n->cisc_operand();
duke@435 1603 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
duke@435 1604 // Convert operand number to edge index number
duke@435 1605 MachNode *mach = n->as_Mach();
duke@435 1606 inp = mach->operand_index(inp);
duke@435 1607 Node *src = n->in(inp); // Value to load or store
neliasso@4949 1608 LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
duke@435 1609 OptoReg::Name src_reg = lrg_cisc.reg();
duke@435 1610 // Doubles record the HIGH register of an adjacent pair.
duke@435 1611 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
duke@435 1612 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
duke@435 1613 // This is a CISC Spill, get stack offset and construct new node
duke@435 1614 #ifndef PRODUCT
duke@435 1615 if( TraceCISCSpill ) {
duke@435 1616 tty->print(" reg-instr: ");
duke@435 1617 n->dump();
duke@435 1618 }
duke@435 1619 #endif
duke@435 1620 int stk_offset = reg2offset(src_reg);
duke@435 1621 // Bailout if we might exceed node limit when spilling this instruction
duke@435 1622 C->check_node_count(0, "out of nodes fixing spills");
duke@435 1623 if (C->failing()) return;
duke@435 1624 // Transform node
duke@435 1625 MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
duke@435 1626 cisc->set_req(inp,fp); // Base register is frame pointer
duke@435 1627 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
duke@435 1628 assert( cisc->oper_input_base() == 2, "Only adding one edge");
duke@435 1629 cisc->ins_req(1,src); // Requires a memory edge
duke@435 1630 }
adlertz@5635 1631 block->map_node(cisc, j); // Insert into basic block
bharadwaj@4315 1632 n->subsume_by(cisc, C); // Correct graph
duke@435 1633 //
duke@435 1634 ++_used_cisc_instructions;
duke@435 1635 #ifndef PRODUCT
duke@435 1636 if( TraceCISCSpill ) {
duke@435 1637 tty->print(" cisc-instr: ");
duke@435 1638 cisc->dump();
duke@435 1639 }
duke@435 1640 #endif
duke@435 1641 } else {
duke@435 1642 #ifndef PRODUCT
duke@435 1643 if( TraceCISCSpill ) {
duke@435 1644 tty->print(" using reg-instr: ");
duke@435 1645 n->dump();
duke@435 1646 }
duke@435 1647 #endif
duke@435 1648 ++_unused_cisc_instructions; // input can be on stack
duke@435 1649 }
duke@435 1650 }
duke@435 1651
duke@435 1652 } // End of for all instructions
duke@435 1653
duke@435 1654 } // End of for all blocks
duke@435 1655 }
duke@435 1656
duke@435 1657 // Helper to stretch above; recursively discover the base Node for a
duke@435 1658 // given derived Node. Easy for AddP-related machine nodes, but needs
duke@435 1659 // to be recursive for derived Phis.
duke@435 1660 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
duke@435 1661 // See if already computed; if so return it
duke@435 1662 if( derived_base_map[derived->_idx] )
duke@435 1663 return derived_base_map[derived->_idx];
duke@435 1664
duke@435 1665 // See if this happens to be a base.
duke@435 1666 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
duke@435 1667 // pointers derived from NULL! These are always along paths that
duke@435 1668 // can't happen at run-time but the optimizer cannot deduce it so
duke@435 1669 // we have to handle it gracefully.
kvn@1164 1670 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1671 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1672 const TypePtr *tj = derived->bottom_type()->isa_ptr();
duke@435 1673 // If its an OOP with a non-zero offset, then it is derived.
kvn@1164 1674 if( tj == NULL || tj->_offset == 0 ) {
duke@435 1675 derived_base_map[derived->_idx] = derived;
duke@435 1676 return derived;
duke@435 1677 }
duke@435 1678 // Derived is NULL+offset? Base is NULL!
duke@435 1679 if( derived->is_Con() ) {
kvn@1164 1680 Node *base = _matcher.mach_null();
kvn@1164 1681 assert(base != NULL, "sanity");
kvn@1164 1682 if (base->in(0) == NULL) {
kvn@1164 1683 // Initialize it once and make it shared:
kvn@1164 1684 // set control to _root and place it into Start block
kvn@1164 1685 // (where top() node is placed).
adlertz@5539 1686 base->init_req(0, _cfg.get_root_node());
adlertz@5509 1687 Block *startb = _cfg.get_block_for_node(C->top());
adlertz@6216 1688 uint node_pos = startb->find_node(C->top());
adlertz@6216 1689 startb->insert_node(base, node_pos);
adlertz@5509 1690 _cfg.map_node_to_block(base, startb);
neliasso@4949 1691 assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
adlertz@6216 1692
adlertz@6216 1693 // The loadConP0 might have projection nodes depending on architecture
adlertz@6216 1694 // Add the projection nodes to the CFG
adlertz@6216 1695 for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
adlertz@6216 1696 Node* use = base->fast_out(i);
adlertz@6216 1697 if (use->is_MachProj()) {
adlertz@6216 1698 startb->insert_node(use, ++node_pos);
adlertz@6216 1699 _cfg.map_node_to_block(use, startb);
adlertz@6216 1700 new_lrg(use, maxlrg++);
adlertz@6216 1701 }
adlertz@6216 1702 }
kvn@1164 1703 }
neliasso@4949 1704 if (_lrg_map.live_range_id(base) == 0) {
kvn@1164 1705 new_lrg(base, maxlrg++);
kvn@1164 1706 }
adlertz@5539 1707 assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
duke@435 1708 derived_base_map[derived->_idx] = base;
duke@435 1709 return base;
duke@435 1710 }
duke@435 1711
duke@435 1712 // Check for AddP-related opcodes
neliasso@4949 1713 if (!derived->is_Phi()) {
kvn@3971 1714 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
duke@435 1715 Node *base = derived->in(AddPNode::Base);
duke@435 1716 derived_base_map[derived->_idx] = base;
duke@435 1717 return base;
duke@435 1718 }
duke@435 1719
duke@435 1720 // Recursively find bases for Phis.
duke@435 1721 // First check to see if we can avoid a base Phi here.
duke@435 1722 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
duke@435 1723 uint i;
duke@435 1724 for( i = 2; i < derived->req(); i++ )
duke@435 1725 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
duke@435 1726 break;
duke@435 1727 // Went to the end without finding any different bases?
duke@435 1728 if( i == derived->req() ) { // No need for a base Phi here
duke@435 1729 derived_base_map[derived->_idx] = base;
duke@435 1730 return base;
duke@435 1731 }
duke@435 1732
duke@435 1733 // Now we see we need a base-Phi here to merge the bases
kvn@1164 1734 const Type *t = base->bottom_type();
kvn@4115 1735 base = new (C) PhiNode( derived->in(0), t );
kvn@1164 1736 for( i = 1; i < derived->req(); i++ ) {
duke@435 1737 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
kvn@1164 1738 t = t->meet(base->in(i)->bottom_type());
kvn@1164 1739 }
kvn@1164 1740 base->as_Phi()->set_type(t);
duke@435 1741
duke@435 1742 // Search the current block for an existing base-Phi
adlertz@5509 1743 Block *b = _cfg.get_block_for_node(derived);
duke@435 1744 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
adlertz@5635 1745 Node *phi = b->get_node(i);
duke@435 1746 if( !phi->is_Phi() ) { // Found end of Phis with no match?
adlertz@5635 1747 b->insert_node(base, i); // Must insert created Phi here as base
adlertz@5509 1748 _cfg.map_node_to_block(base, b);
duke@435 1749 new_lrg(base,maxlrg++);
duke@435 1750 break;
duke@435 1751 }
duke@435 1752 // See if Phi matches.
duke@435 1753 uint j;
duke@435 1754 for( j = 1; j < base->req(); j++ )
duke@435 1755 if( phi->in(j) != base->in(j) &&
duke@435 1756 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
duke@435 1757 break;
duke@435 1758 if( j == base->req() ) { // All inputs match?
duke@435 1759 base = phi; // Then use existing 'phi' and drop 'base'
duke@435 1760 break;
duke@435 1761 }
duke@435 1762 }
duke@435 1763
duke@435 1764
duke@435 1765 // Cache info for later passes
duke@435 1766 derived_base_map[derived->_idx] = base;
duke@435 1767 return base;
duke@435 1768 }
duke@435 1769
duke@435 1770 // At each Safepoint, insert extra debug edges for each pair of derived value/
duke@435 1771 // base pointer that is live across the Safepoint for oopmap building. The
duke@435 1772 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
duke@435 1773 // required edge set.
neliasso@4949 1774 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
duke@435 1775 int must_recompute_live = false;
neliasso@4949 1776 uint maxlrg = _lrg_map.max_lrg_id();
duke@435 1777 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
duke@435 1778 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
duke@435 1779
duke@435 1780 // For all blocks in RPO do...
adlertz@5539 1781 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 1782 Block* block = _cfg.get_block(i);
duke@435 1783 // Note use of deep-copy constructor. I cannot hammer the original
duke@435 1784 // liveout bits, because they are needed by the following coalesce pass.
adlertz@5539 1785 IndexSet liveout(_live->live(block));
duke@435 1786
adlertz@5539 1787 for (uint j = block->end_idx() + 1; j > 1; j--) {
adlertz@5635 1788 Node* n = block->get_node(j - 1);
duke@435 1789
duke@435 1790 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
duke@435 1791 // like to see in the same register. Compare uses the loop-phi and so
duke@435 1792 // extends its live range BUT cannot be part of the cycle. If this
duke@435 1793 // extended live range overlaps with the update of the loop-phi value
duke@435 1794 // we need both alive at the same time -- which requires at least 1
duke@435 1795 // copy. But because Intel has only 2-address registers we end up with
duke@435 1796 // at least 2 copies, one before the loop-phi update instruction and
duke@435 1797 // one after. Instead we split the input to the compare just after the
duke@435 1798 // phi.
duke@435 1799 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
duke@435 1800 Node *phi = n->in(1);
duke@435 1801 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
adlertz@5509 1802 Block *phi_block = _cfg.get_block_for_node(phi);
adlertz@5539 1803 if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
duke@435 1804 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
duke@435 1805 Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
duke@435 1806 insert_proj( phi_block, 1, spill, maxlrg++ );
duke@435 1807 n->set_req(1,spill);
duke@435 1808 must_recompute_live = true;
duke@435 1809 }
duke@435 1810 }
duke@435 1811 }
duke@435 1812
duke@435 1813 // Get value being defined
neliasso@4949 1814 uint lidx = _lrg_map.live_range_id(n);
neliasso@4949 1815 // Ignore the occasional brand-new live range
neliasso@4949 1816 if (lidx && lidx < _lrg_map.max_lrg_id()) {
duke@435 1817 // Remove from live-out set
duke@435 1818 liveout.remove(lidx);
duke@435 1819
duke@435 1820 // Copies do not define a new value and so do not interfere.
duke@435 1821 // Remove the copies source from the liveout set before interfering.
duke@435 1822 uint idx = n->is_Copy();
neliasso@4949 1823 if (idx) {
neliasso@4949 1824 liveout.remove(_lrg_map.live_range_id(n->in(idx)));
neliasso@4949 1825 }
duke@435 1826 }
duke@435 1827
duke@435 1828 // Found a safepoint?
duke@435 1829 JVMState *jvms = n->jvms();
duke@435 1830 if( jvms ) {
duke@435 1831 // Now scan for a live derived pointer
duke@435 1832 IndexSetIterator elements(&liveout);
duke@435 1833 uint neighbor;
duke@435 1834 while ((neighbor = elements.next()) != 0) {
duke@435 1835 // Find reaching DEF for base and derived values
duke@435 1836 // This works because we are still in SSA during this call.
duke@435 1837 Node *derived = lrgs(neighbor)._def;
duke@435 1838 const TypePtr *tj = derived->bottom_type()->isa_ptr();
kvn@1164 1839 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1840 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1841 // If its an OOP with a non-zero offset, then it is derived.
duke@435 1842 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
neliasso@4949 1843 Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
neliasso@4949 1844 assert(base->_idx < _lrg_map.size(), "");
duke@435 1845 // Add reaching DEFs of derived pointer and base pointer as a
duke@435 1846 // pair of inputs
neliasso@4949 1847 n->add_req(derived);
neliasso@4949 1848 n->add_req(base);
duke@435 1849
duke@435 1850 // See if the base pointer is already live to this point.
duke@435 1851 // Since I'm working on the SSA form, live-ness amounts to
duke@435 1852 // reaching def's. So if I find the base's live range then
duke@435 1853 // I know the base's def reaches here.
neliasso@4949 1854 if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
neliasso@4949 1855 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
neliasso@4949 1856 (_lrg_map.live_range_id(base) > 0) && // not a constant
adlertz@5539 1857 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
duke@435 1858 // Base pointer is not currently live. Since I stretched
duke@435 1859 // the base pointer to here and it crosses basic-block
duke@435 1860 // boundaries, the global live info is now incorrect.
duke@435 1861 // Recompute live.
duke@435 1862 must_recompute_live = true;
duke@435 1863 } // End of if base pointer is not live to debug info
duke@435 1864 }
duke@435 1865 } // End of scan all live data for derived ptrs crossing GC point
duke@435 1866 } // End of if found a GC point
duke@435 1867
duke@435 1868 // Make all inputs live
neliasso@4949 1869 if (!n->is_Phi()) { // Phi function uses come from prior block
neliasso@4949 1870 for (uint k = 1; k < n->req(); k++) {
neliasso@4949 1871 uint lidx = _lrg_map.live_range_id(n->in(k));
neliasso@4949 1872 if (lidx < _lrg_map.max_lrg_id()) {
neliasso@4949 1873 liveout.insert(lidx);
neliasso@4949 1874 }
duke@435 1875 }
duke@435 1876 }
duke@435 1877
duke@435 1878 } // End of forall instructions in block
duke@435 1879 liveout.clear(); // Free the memory used by liveout.
duke@435 1880
duke@435 1881 } // End of forall blocks
neliasso@4949 1882 _lrg_map.set_max_lrg_id(maxlrg);
duke@435 1883
duke@435 1884 // If I created a new live range I need to recompute live
neliasso@4949 1885 if (maxlrg != _ifg->_maxlrg) {
duke@435 1886 must_recompute_live = true;
neliasso@4949 1887 }
duke@435 1888
duke@435 1889 return must_recompute_live != 0;
duke@435 1890 }
duke@435 1891
duke@435 1892 // Extend the node to LRG mapping
neliasso@4949 1893
neliasso@4949 1894 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
neliasso@4949 1895 _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
duke@435 1896 }
duke@435 1897
duke@435 1898 #ifndef PRODUCT
neliasso@4949 1899 void PhaseChaitin::dump(const Node *n) const {
neliasso@4949 1900 uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
duke@435 1901 tty->print("L%d",r);
neliasso@4949 1902 if (r && n->Opcode() != Op_Phi) {
duke@435 1903 if( _node_regs ) { // Got a post-allocation copy of allocation?
duke@435 1904 tty->print("[");
duke@435 1905 OptoReg::Name second = get_reg_second(n);
duke@435 1906 if( OptoReg::is_valid(second) ) {
duke@435 1907 if( OptoReg::is_reg(second) )
duke@435 1908 tty->print("%s:",Matcher::regName[second]);
duke@435 1909 else
duke@435 1910 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
duke@435 1911 }
duke@435 1912 OptoReg::Name first = get_reg_first(n);
duke@435 1913 if( OptoReg::is_reg(first) )
duke@435 1914 tty->print("%s]",Matcher::regName[first]);
duke@435 1915 else
duke@435 1916 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
duke@435 1917 } else
duke@435 1918 n->out_RegMask().dump();
duke@435 1919 }
duke@435 1920 tty->print("/N%d\t",n->_idx);
duke@435 1921 tty->print("%s === ", n->Name());
duke@435 1922 uint k;
neliasso@4949 1923 for (k = 0; k < n->req(); k++) {
duke@435 1924 Node *m = n->in(k);
neliasso@4949 1925 if (!m) {
neliasso@4949 1926 tty->print("_ ");
neliasso@4949 1927 }
duke@435 1928 else {
neliasso@4949 1929 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
duke@435 1930 tty->print("L%d",r);
duke@435 1931 // Data MultiNode's can have projections with no real registers.
duke@435 1932 // Don't die while dumping them.
duke@435 1933 int op = n->Opcode();
duke@435 1934 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
duke@435 1935 if( _node_regs ) {
duke@435 1936 tty->print("[");
duke@435 1937 OptoReg::Name second = get_reg_second(n->in(k));
duke@435 1938 if( OptoReg::is_valid(second) ) {
duke@435 1939 if( OptoReg::is_reg(second) )
duke@435 1940 tty->print("%s:",Matcher::regName[second]);
duke@435 1941 else
duke@435 1942 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1943 reg2offset_unchecked(second));
duke@435 1944 }
duke@435 1945 OptoReg::Name first = get_reg_first(n->in(k));
duke@435 1946 if( OptoReg::is_reg(first) )
duke@435 1947 tty->print("%s]",Matcher::regName[first]);
duke@435 1948 else
duke@435 1949 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1950 reg2offset_unchecked(first));
duke@435 1951 } else
duke@435 1952 n->in_RegMask(k).dump();
duke@435 1953 }
duke@435 1954 tty->print("/N%d ",m->_idx);
duke@435 1955 }
duke@435 1956 }
duke@435 1957 if( k < n->len() && n->in(k) ) tty->print("| ");
duke@435 1958 for( ; k < n->len(); k++ ) {
duke@435 1959 Node *m = n->in(k);
neliasso@4949 1960 if(!m) {
neliasso@4949 1961 break;
neliasso@4949 1962 }
neliasso@4949 1963 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
duke@435 1964 tty->print("L%d",r);
duke@435 1965 tty->print("/N%d ",m->_idx);
duke@435 1966 }
duke@435 1967 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
duke@435 1968 else n->dump_spec(tty);
duke@435 1969 if( _spilled_once.test(n->_idx ) ) {
duke@435 1970 tty->print(" Spill_1");
duke@435 1971 if( _spilled_twice.test(n->_idx ) )
duke@435 1972 tty->print(" Spill_2");
duke@435 1973 }
duke@435 1974 tty->print("\n");
duke@435 1975 }
duke@435 1976
adlertz@5509 1977 void PhaseChaitin::dump(const Block *b) const {
adlertz@5509 1978 b->dump_head(&_cfg);
duke@435 1979
duke@435 1980 // For all instructions
adlertz@5635 1981 for( uint j = 0; j < b->number_of_nodes(); j++ )
adlertz@5635 1982 dump(b->get_node(j));
duke@435 1983 // Print live-out info at end of block
duke@435 1984 if( _live ) {
duke@435 1985 tty->print("Liveout: ");
duke@435 1986 IndexSet *live = _live->live(b);
duke@435 1987 IndexSetIterator elements(live);
duke@435 1988 tty->print("{");
duke@435 1989 uint i;
duke@435 1990 while ((i = elements.next()) != 0) {
neliasso@4949 1991 tty->print("L%d ", _lrg_map.find_const(i));
duke@435 1992 }
duke@435 1993 tty->print_cr("}");
duke@435 1994 }
duke@435 1995 tty->print("\n");
duke@435 1996 }
duke@435 1997
duke@435 1998 void PhaseChaitin::dump() const {
duke@435 1999 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
duke@435 2000 _matcher._new_SP, _framesize );
duke@435 2001
duke@435 2002 // For all blocks
adlertz@5539 2003 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 2004 dump(_cfg.get_block(i));
adlertz@5539 2005 }
duke@435 2006 // End of per-block dump
duke@435 2007 tty->print("\n");
duke@435 2008
duke@435 2009 if (!_ifg) {
duke@435 2010 tty->print("(No IFG.)\n");
duke@435 2011 return;
duke@435 2012 }
duke@435 2013
duke@435 2014 // Dump LRG array
duke@435 2015 tty->print("--- Live RanGe Array ---\n");
neliasso@4949 2016 for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
duke@435 2017 tty->print("L%d: ",i2);
neliasso@4949 2018 if (i2 < _ifg->_maxlrg) {
neliasso@4949 2019 lrgs(i2).dump();
neliasso@4949 2020 }
neliasso@4949 2021 else {
neliasso@4949 2022 tty->print_cr("new LRG");
neliasso@4949 2023 }
duke@435 2024 }
drchase@6680 2025 tty->cr();
duke@435 2026
duke@435 2027 // Dump lo-degree list
duke@435 2028 tty->print("Lo degree: ");
duke@435 2029 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
duke@435 2030 tty->print("L%d ",i3);
drchase@6680 2031 tty->cr();
duke@435 2032
duke@435 2033 // Dump lo-stk-degree list
duke@435 2034 tty->print("Lo stk degree: ");
duke@435 2035 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
duke@435 2036 tty->print("L%d ",i4);
drchase@6680 2037 tty->cr();
duke@435 2038
duke@435 2039 // Dump lo-degree list
duke@435 2040 tty->print("Hi degree: ");
duke@435 2041 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
duke@435 2042 tty->print("L%d ",i5);
drchase@6680 2043 tty->cr();
duke@435 2044 }
duke@435 2045
duke@435 2046 void PhaseChaitin::dump_degree_lists() const {
duke@435 2047 // Dump lo-degree list
duke@435 2048 tty->print("Lo degree: ");
duke@435 2049 for( uint i = _lo_degree; i; i = lrgs(i)._next )
duke@435 2050 tty->print("L%d ",i);
drchase@6680 2051 tty->cr();
duke@435 2052
duke@435 2053 // Dump lo-stk-degree list
duke@435 2054 tty->print("Lo stk degree: ");
duke@435 2055 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
duke@435 2056 tty->print("L%d ",i2);
drchase@6680 2057 tty->cr();
duke@435 2058
duke@435 2059 // Dump lo-degree list
duke@435 2060 tty->print("Hi degree: ");
duke@435 2061 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
duke@435 2062 tty->print("L%d ",i3);
drchase@6680 2063 tty->cr();
duke@435 2064 }
duke@435 2065
duke@435 2066 void PhaseChaitin::dump_simplified() const {
duke@435 2067 tty->print("Simplified: ");
duke@435 2068 for( uint i = _simplified; i; i = lrgs(i)._next )
duke@435 2069 tty->print("L%d ",i);
drchase@6680 2070 tty->cr();
duke@435 2071 }
duke@435 2072
duke@435 2073 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
duke@435 2074 if ((int)reg < 0)
duke@435 2075 sprintf(buf, "<OptoReg::%d>", (int)reg);
duke@435 2076 else if (OptoReg::is_reg(reg))
duke@435 2077 strcpy(buf, Matcher::regName[reg]);
duke@435 2078 else
duke@435 2079 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 2080 pc->reg2offset(reg));
duke@435 2081 return buf+strlen(buf);
duke@435 2082 }
duke@435 2083
duke@435 2084 // Dump a register name into a buffer. Be intelligent if we get called
duke@435 2085 // before allocation is complete.
duke@435 2086 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
duke@435 2087 if( !this ) { // Not got anything?
duke@435 2088 sprintf(buf,"N%d",n->_idx); // Then use Node index
duke@435 2089 } else if( _node_regs ) {
duke@435 2090 // Post allocation, use direct mappings, no LRG info available
duke@435 2091 print_reg( get_reg_first(n), this, buf );
duke@435 2092 } else {
neliasso@4949 2093 uint lidx = _lrg_map.find_const(n); // Grab LRG number
duke@435 2094 if( !_ifg ) {
duke@435 2095 sprintf(buf,"L%d",lidx); // No register binding yet
duke@435 2096 } else if( !lidx ) { // Special, not allocated value
duke@435 2097 strcpy(buf,"Special");
kvn@3882 2098 } else {
kvn@3882 2099 if (lrgs(lidx)._is_vector) {
kvn@3882 2100 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
kvn@3882 2101 print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
kvn@3882 2102 else
kvn@3882 2103 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 2104 } else if( (lrgs(lidx).num_regs() == 1)
kvn@3882 2105 ? lrgs(lidx).mask().is_bound1()
kvn@3882 2106 : lrgs(lidx).mask().is_bound_pair() ) {
kvn@3882 2107 // Hah! We have a bound machine register
kvn@3882 2108 print_reg( lrgs(lidx).reg(), this, buf );
kvn@3882 2109 } else {
kvn@3882 2110 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 2111 }
duke@435 2112 }
duke@435 2113 }
duke@435 2114 return buf+strlen(buf);
duke@435 2115 }
duke@435 2116
duke@435 2117 void PhaseChaitin::dump_for_spill_split_recycle() const {
duke@435 2118 if( WizardMode && (PrintCompilation || PrintOpto) ) {
duke@435 2119 // Display which live ranges need to be split and the allocator's state
duke@435 2120 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
neliasso@4949 2121 for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
duke@435 2122 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
duke@435 2123 tty->print("L%d: ", bidx);
duke@435 2124 lrgs(bidx).dump();
duke@435 2125 }
duke@435 2126 }
duke@435 2127 tty->cr();
duke@435 2128 dump();
duke@435 2129 }
duke@435 2130 }
duke@435 2131
duke@435 2132 void PhaseChaitin::dump_frame() const {
duke@435 2133 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
duke@435 2134 const TypeTuple *domain = C->tf()->domain();
duke@435 2135 const int argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 2136
duke@435 2137 // Incoming arguments in registers dump
duke@435 2138 for( int k = 0; k < argcnt; k++ ) {
duke@435 2139 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
duke@435 2140 if( OptoReg::is_reg(parmreg)) {
duke@435 2141 const char *reg_name = OptoReg::regname(parmreg);
duke@435 2142 tty->print("#r%3.3d %s", parmreg, reg_name);
duke@435 2143 parmreg = _matcher._parm_regs[k].second();
duke@435 2144 if( OptoReg::is_reg(parmreg)) {
duke@435 2145 tty->print(":%s", OptoReg::regname(parmreg));
duke@435 2146 }
duke@435 2147 tty->print(" : parm %d: ", k);
duke@435 2148 domain->field_at(k + TypeFunc::Parms)->dump();
drchase@6680 2149 tty->cr();
duke@435 2150 }
duke@435 2151 }
duke@435 2152
duke@435 2153 // Check for un-owned padding above incoming args
duke@435 2154 OptoReg::Name reg = _matcher._new_SP;
duke@435 2155 if( reg > _matcher._in_arg_limit ) {
duke@435 2156 reg = OptoReg::add(reg, -1);
duke@435 2157 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
duke@435 2158 }
duke@435 2159
duke@435 2160 // Incoming argument area dump
duke@435 2161 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
duke@435 2162 while( reg > begin_in_arg ) {
duke@435 2163 reg = OptoReg::add(reg, -1);
duke@435 2164 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
duke@435 2165 int j;
duke@435 2166 for( j = 0; j < argcnt; j++) {
duke@435 2167 if( _matcher._parm_regs[j].first() == reg ||
duke@435 2168 _matcher._parm_regs[j].second() == reg ) {
duke@435 2169 tty->print("parm %d: ",j);
duke@435 2170 domain->field_at(j + TypeFunc::Parms)->dump();
drchase@6680 2171 tty->cr();
duke@435 2172 break;
duke@435 2173 }
duke@435 2174 }
duke@435 2175 if( j >= argcnt )
duke@435 2176 tty->print_cr("HOLE, owned by SELF");
duke@435 2177 }
duke@435 2178
duke@435 2179 // Old outgoing preserve area
duke@435 2180 while( reg > _matcher._old_SP ) {
duke@435 2181 reg = OptoReg::add(reg, -1);
duke@435 2182 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2183 }
duke@435 2184
duke@435 2185 // Old SP
duke@435 2186 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
duke@435 2187 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
duke@435 2188
duke@435 2189 // Preserve area dump
kvn@3577 2190 int fixed_slots = C->fixed_slots();
kvn@3577 2191 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
kvn@3577 2192 OptoReg::Name return_addr = _matcher.return_addr();
kvn@3577 2193
duke@435 2194 reg = OptoReg::add(reg, -1);
kvn@3577 2195 while (OptoReg::is_stack(reg)) {
duke@435 2196 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
kvn@3577 2197 if (return_addr == reg) {
duke@435 2198 tty->print_cr("return address");
kvn@3577 2199 } else if (reg >= begin_in_preserve) {
kvn@3577 2200 // Preserved slots are present on x86
kvn@3577 2201 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
kvn@3577 2202 tty->print_cr("saved fp register");
kvn@3577 2203 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
kvn@3577 2204 VerifyStackAtCalls)
kvn@3577 2205 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
kvn@3577 2206 else
kvn@3577 2207 tty->print_cr("in_preserve");
kvn@3577 2208 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
duke@435 2209 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
kvn@3577 2210 } else {
kvn@3577 2211 tty->print_cr("pad2, stack alignment");
kvn@3577 2212 }
duke@435 2213 reg = OptoReg::add(reg, -1);
duke@435 2214 }
duke@435 2215
duke@435 2216 // Spill area dump
duke@435 2217 reg = OptoReg::add(_matcher._new_SP, _framesize );
duke@435 2218 while( reg > _matcher._out_arg_limit ) {
duke@435 2219 reg = OptoReg::add(reg, -1);
duke@435 2220 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
duke@435 2221 }
duke@435 2222
duke@435 2223 // Outgoing argument area dump
duke@435 2224 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
duke@435 2225 reg = OptoReg::add(reg, -1);
duke@435 2226 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
duke@435 2227 }
duke@435 2228
duke@435 2229 // Outgoing new preserve area
duke@435 2230 while( reg > _matcher._new_SP ) {
duke@435 2231 reg = OptoReg::add(reg, -1);
duke@435 2232 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2233 }
duke@435 2234 tty->print_cr("#");
duke@435 2235 }
duke@435 2236
duke@435 2237 void PhaseChaitin::dump_bb( uint pre_order ) const {
duke@435 2238 tty->print_cr("---dump of B%d---",pre_order);
adlertz@5539 2239 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 2240 Block* block = _cfg.get_block(i);
adlertz@5539 2241 if (block->_pre_order == pre_order) {
adlertz@5539 2242 dump(block);
adlertz@5539 2243 }
duke@435 2244 }
duke@435 2245 }
duke@435 2246
never@2358 2247 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
duke@435 2248 tty->print_cr("---dump of L%d---",lidx);
duke@435 2249
neliasso@4949 2250 if (_ifg) {
neliasso@4949 2251 if (lidx >= _lrg_map.max_lrg_id()) {
duke@435 2252 tty->print("Attempt to print live range index beyond max live range.\n");
duke@435 2253 return;
duke@435 2254 }
duke@435 2255 tty->print("L%d: ",lidx);
neliasso@4949 2256 if (lidx < _ifg->_maxlrg) {
neliasso@4949 2257 lrgs(lidx).dump();
neliasso@4949 2258 } else {
neliasso@4949 2259 tty->print_cr("new LRG");
neliasso@4949 2260 }
duke@435 2261 }
never@2358 2262 if( _ifg && lidx < _ifg->_maxlrg) {
never@2358 2263 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
duke@435 2264 _ifg->neighbors(lidx)->dump();
duke@435 2265 tty->cr();
duke@435 2266 }
duke@435 2267 // For all blocks
adlertz@5539 2268 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 2269 Block* block = _cfg.get_block(i);
duke@435 2270 int dump_once = 0;
duke@435 2271
duke@435 2272 // For all instructions
adlertz@5635 2273 for( uint j = 0; j < block->number_of_nodes(); j++ ) {
adlertz@5635 2274 Node *n = block->get_node(j);
neliasso@4949 2275 if (_lrg_map.find_const(n) == lidx) {
neliasso@4949 2276 if (!dump_once++) {
duke@435 2277 tty->cr();
adlertz@5539 2278 block->dump_head(&_cfg);
duke@435 2279 }
duke@435 2280 dump(n);
duke@435 2281 continue;
duke@435 2282 }
never@2358 2283 if (!defs_only) {
never@2358 2284 uint cnt = n->req();
never@2358 2285 for( uint k = 1; k < cnt; k++ ) {
never@2358 2286 Node *m = n->in(k);
neliasso@4949 2287 if (!m) {
neliasso@4949 2288 continue; // be robust in the dumper
neliasso@4949 2289 }
neliasso@4949 2290 if (_lrg_map.find_const(m) == lidx) {
neliasso@4949 2291 if (!dump_once++) {
never@2358 2292 tty->cr();
adlertz@5539 2293 block->dump_head(&_cfg);
never@2358 2294 }
never@2358 2295 dump(n);
duke@435 2296 }
duke@435 2297 }
duke@435 2298 }
duke@435 2299 }
duke@435 2300 } // End of per-block dump
duke@435 2301 tty->cr();
duke@435 2302 }
duke@435 2303 #endif // not PRODUCT
duke@435 2304
duke@435 2305 int PhaseChaitin::_final_loads = 0;
duke@435 2306 int PhaseChaitin::_final_stores = 0;
duke@435 2307 int PhaseChaitin::_final_memoves= 0;
duke@435 2308 int PhaseChaitin::_final_copies = 0;
duke@435 2309 double PhaseChaitin::_final_load_cost = 0;
duke@435 2310 double PhaseChaitin::_final_store_cost = 0;
duke@435 2311 double PhaseChaitin::_final_memove_cost= 0;
duke@435 2312 double PhaseChaitin::_final_copy_cost = 0;
duke@435 2313 int PhaseChaitin::_conserv_coalesce = 0;
duke@435 2314 int PhaseChaitin::_conserv_coalesce_pair = 0;
duke@435 2315 int PhaseChaitin::_conserv_coalesce_trie = 0;
duke@435 2316 int PhaseChaitin::_conserv_coalesce_quad = 0;
duke@435 2317 int PhaseChaitin::_post_alloc = 0;
duke@435 2318 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
duke@435 2319 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
duke@435 2320 int PhaseChaitin::_used_cisc_instructions = 0;
duke@435 2321 int PhaseChaitin::_unused_cisc_instructions = 0;
duke@435 2322 int PhaseChaitin::_allocator_attempts = 0;
duke@435 2323 int PhaseChaitin::_allocator_successes = 0;
duke@435 2324
duke@435 2325 #ifndef PRODUCT
duke@435 2326 uint PhaseChaitin::_high_pressure = 0;
duke@435 2327 uint PhaseChaitin::_low_pressure = 0;
duke@435 2328
duke@435 2329 void PhaseChaitin::print_chaitin_statistics() {
duke@435 2330 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
duke@435 2331 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
duke@435 2332 tty->print_cr("Adjusted spill cost = %7.0f.",
duke@435 2333 _final_load_cost*4.0 + _final_store_cost * 2.0 +
duke@435 2334 _final_copy_cost*1.0 + _final_memove_cost*12.0);
duke@435 2335 tty->print("Conservatively coalesced %d copies, %d pairs",
duke@435 2336 _conserv_coalesce, _conserv_coalesce_pair);
duke@435 2337 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
duke@435 2338 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
duke@435 2339 tty->print_cr(", %d post alloc.", _post_alloc);
duke@435 2340 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
duke@435 2341 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
duke@435 2342 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
duke@435 2343 if( _used_cisc_instructions || _unused_cisc_instructions )
duke@435 2344 tty->print_cr("Used cisc instruction %d, remained in register %d",
duke@435 2345 _used_cisc_instructions, _unused_cisc_instructions);
duke@435 2346 if( _allocator_successes != 0 )
duke@435 2347 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
duke@435 2348 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
duke@435 2349 }
duke@435 2350 #endif // not PRODUCT

mercurial