src/share/vm/opto/chaitin.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1001
91263420e1c6
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_chaitin.cpp.incl"
duke@435 27
duke@435 28 //=============================================================================
duke@435 29
duke@435 30 #ifndef PRODUCT
duke@435 31 void LRG::dump( ) const {
duke@435 32 ttyLocker ttyl;
duke@435 33 tty->print("%d ",num_regs());
duke@435 34 _mask.dump();
duke@435 35 if( _msize_valid ) {
duke@435 36 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
duke@435 37 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
duke@435 38 } else {
duke@435 39 tty->print(", #?(%d) ",_mask.Size());
duke@435 40 }
duke@435 41
duke@435 42 tty->print("EffDeg: ");
duke@435 43 if( _degree_valid ) tty->print( "%d ", _eff_degree );
duke@435 44 else tty->print("? ");
duke@435 45
never@730 46 if( is_multidef() ) {
duke@435 47 tty->print("MultiDef ");
duke@435 48 if (_defs != NULL) {
duke@435 49 tty->print("(");
duke@435 50 for (int i = 0; i < _defs->length(); i++) {
duke@435 51 tty->print("N%d ", _defs->at(i)->_idx);
duke@435 52 }
duke@435 53 tty->print(") ");
duke@435 54 }
duke@435 55 }
duke@435 56 else if( _def == 0 ) tty->print("Dead ");
duke@435 57 else tty->print("Def: N%d ",_def->_idx);
duke@435 58
duke@435 59 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
duke@435 60 // Flags
duke@435 61 if( _is_oop ) tty->print("Oop ");
duke@435 62 if( _is_float ) tty->print("Float ");
duke@435 63 if( _was_spilled1 ) tty->print("Spilled ");
duke@435 64 if( _was_spilled2 ) tty->print("Spilled2 ");
duke@435 65 if( _direct_conflict ) tty->print("Direct_conflict ");
duke@435 66 if( _fat_proj ) tty->print("Fat ");
duke@435 67 if( _was_lo ) tty->print("Lo ");
duke@435 68 if( _has_copy ) tty->print("Copy ");
duke@435 69 if( _at_risk ) tty->print("Risk ");
duke@435 70
duke@435 71 if( _must_spill ) tty->print("Must_spill ");
duke@435 72 if( _is_bound ) tty->print("Bound ");
duke@435 73 if( _msize_valid ) {
duke@435 74 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
duke@435 75 }
duke@435 76
duke@435 77 tty->cr();
duke@435 78 }
duke@435 79 #endif
duke@435 80
duke@435 81 //------------------------------score------------------------------------------
duke@435 82 // Compute score from cost and area. Low score is best to spill.
duke@435 83 static double raw_score( double cost, double area ) {
duke@435 84 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
duke@435 85 }
duke@435 86
duke@435 87 double LRG::score() const {
duke@435 88 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
duke@435 89 // Bigger area lowers score, encourages spilling this live range.
duke@435 90 // Bigger cost raise score, prevents spilling this live range.
duke@435 91 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
duke@435 92 // to turn a divide by a constant into a multiply by the reciprical).
duke@435 93 double score = raw_score( _cost, _area);
duke@435 94
duke@435 95 // Account for area. Basically, LRGs covering large areas are better
duke@435 96 // to spill because more other LRGs get freed up.
duke@435 97 if( _area == 0.0 ) // No area? Then no progress to spill
duke@435 98 return 1e35;
duke@435 99
duke@435 100 if( _was_spilled2 ) // If spilled once before, we are unlikely
duke@435 101 return score + 1e30; // to make progress again.
duke@435 102
duke@435 103 if( _cost >= _area*3.0 ) // Tiny area relative to cost
duke@435 104 return score + 1e17; // Probably no progress to spill
duke@435 105
duke@435 106 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
duke@435 107 return score + 1e10; // Likely no progress to spill
duke@435 108
duke@435 109 return score;
duke@435 110 }
duke@435 111
duke@435 112 //------------------------------LRG_List---------------------------------------
duke@435 113 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
duke@435 114 memset( _lidxs, 0, sizeof(uint)*max );
duke@435 115 }
duke@435 116
duke@435 117 void LRG_List::extend( uint nidx, uint lidx ) {
duke@435 118 _nesting.check();
duke@435 119 if( nidx >= _max ) {
duke@435 120 uint size = 16;
duke@435 121 while( size <= nidx ) size <<=1;
duke@435 122 _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
duke@435 123 _max = size;
duke@435 124 }
duke@435 125 while( _cnt <= nidx )
duke@435 126 _lidxs[_cnt++] = 0;
duke@435 127 _lidxs[nidx] = lidx;
duke@435 128 }
duke@435 129
duke@435 130 #define NUMBUCKS 3
duke@435 131
duke@435 132 //------------------------------Chaitin----------------------------------------
duke@435 133 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
duke@435 134 : PhaseRegAlloc(unique, cfg, matcher,
duke@435 135 #ifndef PRODUCT
duke@435 136 print_chaitin_statistics
duke@435 137 #else
duke@435 138 NULL
duke@435 139 #endif
duke@435 140 ),
duke@435 141 _names(unique), _uf_map(unique),
duke@435 142 _maxlrg(0), _live(0),
duke@435 143 _spilled_once(Thread::current()->resource_area()),
duke@435 144 _spilled_twice(Thread::current()->resource_area()),
duke@435 145 _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
duke@435 146 _oldphi(unique)
duke@435 147 #ifndef PRODUCT
duke@435 148 , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
duke@435 149 #endif
duke@435 150 {
duke@435 151 NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
duke@435 152 uint i,j;
duke@435 153 // Build a list of basic blocks, sorted by frequency
duke@435 154 _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
duke@435 155 // Experiment with sorting strategies to speed compilation
duke@435 156 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
duke@435 157 Block **buckets[NUMBUCKS]; // Array of buckets
duke@435 158 uint buckcnt[NUMBUCKS]; // Array of bucket counters
duke@435 159 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
duke@435 160 for( i = 0; i < NUMBUCKS; i++ ) {
duke@435 161 buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
duke@435 162 buckcnt[i] = 0;
duke@435 163 // Bump by three orders of magnitude each time
duke@435 164 cutoff *= 0.001;
duke@435 165 buckval[i] = cutoff;
duke@435 166 for( j = 0; j < _cfg._num_blocks; j++ ) {
duke@435 167 buckets[i][j] = NULL;
duke@435 168 }
duke@435 169 }
duke@435 170 // Sort blocks into buckets
duke@435 171 for( i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 172 for( j = 0; j < NUMBUCKS; j++ ) {
duke@435 173 if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
duke@435 174 // Assign block to end of list for appropriate bucket
duke@435 175 buckets[j][buckcnt[j]++] = _cfg._blocks[i];
duke@435 176 break; // kick out of inner loop
duke@435 177 }
duke@435 178 }
duke@435 179 }
duke@435 180 // Dump buckets into final block array
duke@435 181 uint blkcnt = 0;
duke@435 182 for( i = 0; i < NUMBUCKS; i++ ) {
duke@435 183 for( j = 0; j < buckcnt[i]; j++ ) {
duke@435 184 _blks[blkcnt++] = buckets[i][j];
duke@435 185 }
duke@435 186 }
duke@435 187
duke@435 188 assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
duke@435 189 }
duke@435 190
duke@435 191 void PhaseChaitin::Register_Allocate() {
duke@435 192
duke@435 193 // Above the OLD FP (and in registers) are the incoming arguments. Stack
duke@435 194 // slots in this area are called "arg_slots". Above the NEW FP (and in
duke@435 195 // registers) is the outgoing argument area; above that is the spill/temp
duke@435 196 // area. These are all "frame_slots". Arg_slots start at the zero
duke@435 197 // stack_slots and count up to the known arg_size. Frame_slots start at
duke@435 198 // the stack_slot #arg_size and go up. After allocation I map stack
duke@435 199 // slots to actual offsets. Stack-slots in the arg_slot area are biased
duke@435 200 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
duke@435 201
duke@435 202 _trip_cnt = 0;
duke@435 203 _alternate = 0;
duke@435 204 _matcher._allocation_started = true;
duke@435 205
duke@435 206 ResourceArea live_arena; // Arena for liveness & IFG info
duke@435 207 ResourceMark rm(&live_arena);
duke@435 208
duke@435 209 // Need live-ness for the IFG; need the IFG for coalescing. If the
duke@435 210 // liveness is JUST for coalescing, then I can get some mileage by renaming
duke@435 211 // all copy-related live ranges low and then using the max copy-related
duke@435 212 // live range as a cut-off for LIVE and the IFG. In other words, I can
duke@435 213 // build a subset of LIVE and IFG just for copies.
duke@435 214 PhaseLive live(_cfg,_names,&live_arena);
duke@435 215
duke@435 216 // Need IFG for coalescing and coloring
duke@435 217 PhaseIFG ifg( &live_arena );
duke@435 218 _ifg = &ifg;
duke@435 219
duke@435 220 if (C->unique() > _names.Size()) _names.extend(C->unique()-1, 0);
duke@435 221
duke@435 222 // Come out of SSA world to the Named world. Assign (virtual) registers to
duke@435 223 // Nodes. Use the same register for all inputs and the output of PhiNodes
duke@435 224 // - effectively ending SSA form. This requires either coalescing live
duke@435 225 // ranges or inserting copies. For the moment, we insert "virtual copies"
duke@435 226 // - we pretend there is a copy prior to each Phi in predecessor blocks.
duke@435 227 // We will attempt to coalesce such "virtual copies" before we manifest
duke@435 228 // them for real.
duke@435 229 de_ssa();
duke@435 230
kvn@1001 231 #ifdef ASSERT
kvn@1001 232 // Veify the graph before RA.
kvn@1001 233 verify(&live_arena);
kvn@1001 234 #endif
kvn@1001 235
duke@435 236 {
duke@435 237 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 238 _live = NULL; // Mark live as being not available
duke@435 239 rm.reset_to_mark(); // Reclaim working storage
duke@435 240 IndexSet::reset_memory(C, &live_arena);
duke@435 241 ifg.init(_maxlrg); // Empty IFG
duke@435 242 gather_lrg_masks( false ); // Collect LRG masks
duke@435 243 live.compute( _maxlrg ); // Compute liveness
duke@435 244 _live = &live; // Mark LIVE as being available
duke@435 245 }
duke@435 246
duke@435 247 // Base pointers are currently "used" by instructions which define new
duke@435 248 // derived pointers. This makes base pointers live up to the where the
duke@435 249 // derived pointer is made, but not beyond. Really, they need to be live
duke@435 250 // across any GC point where the derived value is live. So this code looks
duke@435 251 // at all the GC points, and "stretches" the live range of any base pointer
duke@435 252 // to the GC point.
duke@435 253 if( stretch_base_pointer_live_ranges(&live_arena) ) {
duke@435 254 NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
duke@435 255 // Since some live range stretched, I need to recompute live
duke@435 256 _live = NULL;
duke@435 257 rm.reset_to_mark(); // Reclaim working storage
duke@435 258 IndexSet::reset_memory(C, &live_arena);
duke@435 259 ifg.init(_maxlrg);
duke@435 260 gather_lrg_masks( false );
duke@435 261 live.compute( _maxlrg );
duke@435 262 _live = &live;
duke@435 263 }
duke@435 264 // Create the interference graph using virtual copies
duke@435 265 build_ifg_virtual( ); // Include stack slots this time
duke@435 266
duke@435 267 // Aggressive (but pessimistic) copy coalescing.
duke@435 268 // This pass works on virtual copies. Any virtual copies which are not
duke@435 269 // coalesced get manifested as actual copies
duke@435 270 {
duke@435 271 // The IFG is/was triangular. I am 'squaring it up' so Union can run
duke@435 272 // faster. Union requires a 'for all' operation which is slow on the
duke@435 273 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
duke@435 274 // meaning I can visit all the Nodes neighbors less than a Node in time
duke@435 275 // O(# of neighbors), but I have to visit all the Nodes greater than a
duke@435 276 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
duke@435 277 _ifg->SquareUp();
duke@435 278
duke@435 279 PhaseAggressiveCoalesce coalesce( *this );
duke@435 280 coalesce.coalesce_driver( );
duke@435 281 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
duke@435 282 // not match the Phi itself, insert a copy.
duke@435 283 coalesce.insert_copies(_matcher);
duke@435 284 }
duke@435 285
duke@435 286 // After aggressive coalesce, attempt a first cut at coloring.
duke@435 287 // To color, we need the IFG and for that we need LIVE.
duke@435 288 {
duke@435 289 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 290 _live = NULL;
duke@435 291 rm.reset_to_mark(); // Reclaim working storage
duke@435 292 IndexSet::reset_memory(C, &live_arena);
duke@435 293 ifg.init(_maxlrg);
duke@435 294 gather_lrg_masks( true );
duke@435 295 live.compute( _maxlrg );
duke@435 296 _live = &live;
duke@435 297 }
duke@435 298
duke@435 299 // Build physical interference graph
duke@435 300 uint must_spill = 0;
duke@435 301 must_spill = build_ifg_physical( &live_arena );
duke@435 302 // If we have a guaranteed spill, might as well spill now
duke@435 303 if( must_spill ) {
duke@435 304 if( !_maxlrg ) return;
duke@435 305 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
duke@435 306 C->check_node_count(10*must_spill, "out of nodes before split");
duke@435 307 if (C->failing()) return;
duke@435 308 _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere
duke@435 309 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
duke@435 310 // or we failed to split
duke@435 311 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
duke@435 312 if (C->failing()) return;
duke@435 313
duke@435 314 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 315
duke@435 316 compact(); // Compact LRGs; return new lower max lrg
duke@435 317
duke@435 318 {
duke@435 319 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 320 _live = NULL;
duke@435 321 rm.reset_to_mark(); // Reclaim working storage
duke@435 322 IndexSet::reset_memory(C, &live_arena);
duke@435 323 ifg.init(_maxlrg); // Build a new interference graph
duke@435 324 gather_lrg_masks( true ); // Collect intersect mask
duke@435 325 live.compute( _maxlrg ); // Compute LIVE
duke@435 326 _live = &live;
duke@435 327 }
duke@435 328 build_ifg_physical( &live_arena );
duke@435 329 _ifg->SquareUp();
duke@435 330 _ifg->Compute_Effective_Degree();
duke@435 331 // Only do conservative coalescing if requested
duke@435 332 if( OptoCoalesce ) {
duke@435 333 // Conservative (and pessimistic) copy coalescing of those spills
duke@435 334 PhaseConservativeCoalesce coalesce( *this );
duke@435 335 // If max live ranges greater than cutoff, don't color the stack.
duke@435 336 // This cutoff can be larger than below since it is only done once.
duke@435 337 coalesce.coalesce_driver( );
duke@435 338 }
duke@435 339 compress_uf_map_for_nodes();
duke@435 340
duke@435 341 #ifdef ASSERT
kvn@1001 342 verify(&live_arena, true);
duke@435 343 #endif
duke@435 344 } else {
duke@435 345 ifg.SquareUp();
duke@435 346 ifg.Compute_Effective_Degree();
duke@435 347 #ifdef ASSERT
duke@435 348 set_was_low();
duke@435 349 #endif
duke@435 350 }
duke@435 351
duke@435 352 // Prepare for Simplify & Select
duke@435 353 cache_lrg_info(); // Count degree of LRGs
duke@435 354
duke@435 355 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 356 // LRGs of low degree are trivially colorable.
duke@435 357 Simplify();
duke@435 358
duke@435 359 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 360 // Return whether or not something spills.
duke@435 361 uint spills = Select( );
duke@435 362
duke@435 363 // If we spill, split and recycle the entire thing
duke@435 364 while( spills ) {
duke@435 365 if( _trip_cnt++ > 24 ) {
duke@435 366 DEBUG_ONLY( dump_for_spill_split_recycle(); )
duke@435 367 if( _trip_cnt > 27 ) {
duke@435 368 C->record_method_not_compilable("failed spill-split-recycle sanity check");
duke@435 369 return;
duke@435 370 }
duke@435 371 }
duke@435 372
duke@435 373 if( !_maxlrg ) return;
duke@435 374 _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere
duke@435 375 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
duke@435 376 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
duke@435 377 if (C->failing()) return;
duke@435 378
duke@435 379 compact(); // Compact LRGs; return new lower max lrg
duke@435 380
duke@435 381 // Nuke the live-ness and interference graph and LiveRanGe info
duke@435 382 {
duke@435 383 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 384 _live = NULL;
duke@435 385 rm.reset_to_mark(); // Reclaim working storage
duke@435 386 IndexSet::reset_memory(C, &live_arena);
duke@435 387 ifg.init(_maxlrg);
duke@435 388
duke@435 389 // Create LiveRanGe array.
duke@435 390 // Intersect register masks for all USEs and DEFs
duke@435 391 gather_lrg_masks( true );
duke@435 392 live.compute( _maxlrg );
duke@435 393 _live = &live;
duke@435 394 }
duke@435 395 must_spill = build_ifg_physical( &live_arena );
duke@435 396 _ifg->SquareUp();
duke@435 397 _ifg->Compute_Effective_Degree();
duke@435 398
duke@435 399 // Only do conservative coalescing if requested
duke@435 400 if( OptoCoalesce ) {
duke@435 401 // Conservative (and pessimistic) copy coalescing
duke@435 402 PhaseConservativeCoalesce coalesce( *this );
duke@435 403 // Check for few live ranges determines how aggressive coalesce is.
duke@435 404 coalesce.coalesce_driver( );
duke@435 405 }
duke@435 406 compress_uf_map_for_nodes();
duke@435 407 #ifdef ASSERT
kvn@1001 408 verify(&live_arena, true);
duke@435 409 #endif
duke@435 410 cache_lrg_info(); // Count degree of LRGs
duke@435 411
duke@435 412 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 413 // LRGs of low degree are trivially colorable.
duke@435 414 Simplify();
duke@435 415
duke@435 416 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 417 // Return whether or not something spills.
duke@435 418 spills = Select( );
duke@435 419 }
duke@435 420
duke@435 421 // Count number of Simplify-Select trips per coloring success.
duke@435 422 _allocator_attempts += _trip_cnt + 1;
duke@435 423 _allocator_successes += 1;
duke@435 424
duke@435 425 // Peephole remove copies
duke@435 426 post_allocate_copy_removal();
duke@435 427
kvn@1001 428 #ifdef ASSERT
kvn@1001 429 // Veify the graph after RA.
kvn@1001 430 verify(&live_arena);
kvn@1001 431 #endif
kvn@1001 432
duke@435 433 // max_reg is past the largest *register* used.
duke@435 434 // Convert that to a frame_slot number.
duke@435 435 if( _max_reg <= _matcher._new_SP )
duke@435 436 _framesize = C->out_preserve_stack_slots();
duke@435 437 else _framesize = _max_reg -_matcher._new_SP;
duke@435 438 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
duke@435 439
duke@435 440 // This frame must preserve the required fp alignment
never@854 441 _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
duke@435 442 assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
duke@435 443 #ifndef PRODUCT
duke@435 444 _total_framesize += _framesize;
duke@435 445 if( (int)_framesize > _max_framesize )
duke@435 446 _max_framesize = _framesize;
duke@435 447 #endif
duke@435 448
duke@435 449 // Convert CISC spills
duke@435 450 fixup_spills();
duke@435 451
duke@435 452 // Log regalloc results
duke@435 453 CompileLog* log = Compile::current()->log();
duke@435 454 if (log != NULL) {
duke@435 455 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
duke@435 456 }
duke@435 457
duke@435 458 if (C->failing()) return;
duke@435 459
duke@435 460 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 461
duke@435 462 // Move important info out of the live_arena to longer lasting storage.
duke@435 463 alloc_node_regs(_names.Size());
duke@435 464 for( uint i=0; i < _names.Size(); i++ ) {
duke@435 465 if( _names[i] ) { // Live range associated with Node?
duke@435 466 LRG &lrg = lrgs( _names[i] );
duke@435 467 if( lrg.num_regs() == 1 ) {
duke@435 468 _node_regs[i].set1( lrg.reg() );
duke@435 469 } else { // Must be a register-pair
duke@435 470 if( !lrg._fat_proj ) { // Must be aligned adjacent register pair
duke@435 471 // Live ranges record the highest register in their mask.
duke@435 472 // We want the low register for the AD file writer's convenience.
duke@435 473 _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
duke@435 474 } else { // Misaligned; extract 2 bits
duke@435 475 OptoReg::Name hi = lrg.reg(); // Get hi register
duke@435 476 lrg.Remove(hi); // Yank from mask
duke@435 477 int lo = lrg.mask().find_first_elem(); // Find lo
duke@435 478 _node_regs[i].set_pair( hi, lo );
duke@435 479 }
duke@435 480 }
duke@435 481 if( lrg._is_oop ) _node_oops.set(i);
duke@435 482 } else {
duke@435 483 _node_regs[i].set_bad();
duke@435 484 }
duke@435 485 }
duke@435 486
duke@435 487 // Done!
duke@435 488 _live = NULL;
duke@435 489 _ifg = NULL;
duke@435 490 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
duke@435 491 }
duke@435 492
duke@435 493 //------------------------------de_ssa-----------------------------------------
duke@435 494 void PhaseChaitin::de_ssa() {
duke@435 495 // Set initial Names for all Nodes. Most Nodes get the virtual register
duke@435 496 // number. A few get the ZERO live range number. These do not
duke@435 497 // get allocated, but instead rely on correct scheduling to ensure that
duke@435 498 // only one instance is simultaneously live at a time.
duke@435 499 uint lr_counter = 1;
duke@435 500 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 501 Block *b = _cfg._blocks[i];
duke@435 502 uint cnt = b->_nodes.size();
duke@435 503
duke@435 504 // Handle all the normal Nodes in the block
duke@435 505 for( uint j = 0; j < cnt; j++ ) {
duke@435 506 Node *n = b->_nodes[j];
duke@435 507 // Pre-color to the zero live range, or pick virtual register
duke@435 508 const RegMask &rm = n->out_RegMask();
duke@435 509 _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
duke@435 510 }
duke@435 511 }
duke@435 512 // Reset the Union-Find mapping to be identity
duke@435 513 reset_uf_map(lr_counter);
duke@435 514 }
duke@435 515
duke@435 516
duke@435 517 //------------------------------gather_lrg_masks-------------------------------
duke@435 518 // Gather LiveRanGe information, including register masks. Modification of
duke@435 519 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
duke@435 520 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
duke@435 521
duke@435 522 // Nail down the frame pointer live range
duke@435 523 uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
duke@435 524 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
duke@435 525
duke@435 526 // For all blocks
duke@435 527 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 528 Block *b = _cfg._blocks[i];
duke@435 529
duke@435 530 // For all instructions
duke@435 531 for( uint j = 1; j < b->_nodes.size(); j++ ) {
duke@435 532 Node *n = b->_nodes[j];
duke@435 533 uint input_edge_start =1; // Skip control most nodes
duke@435 534 if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
duke@435 535 uint idx = n->is_Copy();
duke@435 536
duke@435 537 // Get virtual register number, same as LiveRanGe index
duke@435 538 uint vreg = n2lidx(n);
duke@435 539 LRG &lrg = lrgs(vreg);
duke@435 540 if( vreg ) { // No vreg means un-allocable (e.g. memory)
duke@435 541
duke@435 542 // Collect has-copy bit
duke@435 543 if( idx ) {
duke@435 544 lrg._has_copy = 1;
duke@435 545 uint clidx = n2lidx(n->in(idx));
duke@435 546 LRG &copy_src = lrgs(clidx);
duke@435 547 copy_src._has_copy = 1;
duke@435 548 }
duke@435 549
duke@435 550 // Check for float-vs-int live range (used in register-pressure
duke@435 551 // calculations)
duke@435 552 const Type *n_type = n->bottom_type();
duke@435 553 if( n_type->is_floatingpoint() )
duke@435 554 lrg._is_float = 1;
duke@435 555
duke@435 556 // Check for twice prior spilling. Once prior spilling might have
duke@435 557 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
duke@435 558 // further spilling is unlikely to make progress.
duke@435 559 if( _spilled_once.test(n->_idx) ) {
duke@435 560 lrg._was_spilled1 = 1;
duke@435 561 if( _spilled_twice.test(n->_idx) )
duke@435 562 lrg._was_spilled2 = 1;
duke@435 563 }
duke@435 564
duke@435 565 #ifndef PRODUCT
duke@435 566 if (trace_spilling() && lrg._def != NULL) {
duke@435 567 // collect defs for MultiDef printing
duke@435 568 if (lrg._defs == NULL) {
duke@435 569 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
duke@435 570 lrg._defs->append(lrg._def);
duke@435 571 }
duke@435 572 lrg._defs->append(n);
duke@435 573 }
duke@435 574 #endif
duke@435 575
duke@435 576 // Check for a single def LRG; these can spill nicely
duke@435 577 // via rematerialization. Flag as NULL for no def found
duke@435 578 // yet, or 'n' for single def or -1 for many defs.
duke@435 579 lrg._def = lrg._def ? NodeSentinel : n;
duke@435 580
duke@435 581 // Limit result register mask to acceptable registers
duke@435 582 const RegMask &rm = n->out_RegMask();
duke@435 583 lrg.AND( rm );
duke@435 584 // Check for bound register masks
duke@435 585 const RegMask &lrgmask = lrg.mask();
duke@435 586 if( lrgmask.is_bound1() || lrgmask.is_bound2() )
duke@435 587 lrg._is_bound = 1;
duke@435 588
duke@435 589 // Check for maximum frequency value
duke@435 590 if( lrg._maxfreq < b->_freq )
duke@435 591 lrg._maxfreq = b->_freq;
duke@435 592
duke@435 593 int ireg = n->ideal_reg();
duke@435 594 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
duke@435 595 "oops must be in Op_RegP's" );
duke@435 596 // Check for oop-iness, or long/double
duke@435 597 // Check for multi-kill projection
duke@435 598 switch( ireg ) {
duke@435 599 case MachProjNode::fat_proj:
duke@435 600 // Fat projections have size equal to number of registers killed
duke@435 601 lrg.set_num_regs(rm.Size());
duke@435 602 lrg.set_reg_pressure(lrg.num_regs());
duke@435 603 lrg._fat_proj = 1;
duke@435 604 lrg._is_bound = 1;
duke@435 605 break;
duke@435 606 case Op_RegP:
duke@435 607 #ifdef _LP64
duke@435 608 lrg.set_num_regs(2); // Size is 2 stack words
duke@435 609 #else
duke@435 610 lrg.set_num_regs(1); // Size is 1 stack word
duke@435 611 #endif
duke@435 612 // Register pressure is tracked relative to the maximum values
duke@435 613 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
duke@435 614 // and relative to other types which compete for the same regs.
duke@435 615 //
duke@435 616 // The following table contains suggested values based on the
duke@435 617 // architectures as defined in each .ad file.
duke@435 618 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
duke@435 619 // compile-speed or performance.
duke@435 620 // Note1:
duke@435 621 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
duke@435 622 // since .ad registers are defined as high and low halves.
duke@435 623 // These reg_pressure values remain compatible with the code
duke@435 624 // in is_high_pressure() which relates get_invalid_mask_size(),
duke@435 625 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
duke@435 626 // Note2:
duke@435 627 // SPARC -d32 has 24 registers available for integral values,
duke@435 628 // but only 10 of these are safe for 64-bit longs.
duke@435 629 // Using set_reg_pressure(2) for both int and long means
duke@435 630 // the allocator will believe it can fit 26 longs into
duke@435 631 // registers. Using 2 for longs and 1 for ints means the
duke@435 632 // allocator will attempt to put 52 integers into registers.
duke@435 633 // The settings below limit this problem to methods with
duke@435 634 // many long values which are being run on 32-bit SPARC.
duke@435 635 //
duke@435 636 // ------------------- reg_pressure --------------------
duke@435 637 // Each entry is reg_pressure_per_value,number_of_regs
duke@435 638 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
duke@435 639 // IA32 2 1 1 1 1 6 6
duke@435 640 // IA64 1 1 1 1 1 50 41
duke@435 641 // SPARC 2 2 2 2 2 48 (24) 52 (26)
duke@435 642 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
duke@435 643 // AMD64 1 1 1 1 1 14 15
duke@435 644 // -----------------------------------------------------
duke@435 645 #if defined(SPARC)
duke@435 646 lrg.set_reg_pressure(2); // use for v9 as well
duke@435 647 #else
duke@435 648 lrg.set_reg_pressure(1); // normally one value per register
duke@435 649 #endif
duke@435 650 if( n_type->isa_oop_ptr() ) {
duke@435 651 lrg._is_oop = 1;
duke@435 652 }
duke@435 653 break;
duke@435 654 case Op_RegL: // Check for long or double
duke@435 655 case Op_RegD:
duke@435 656 lrg.set_num_regs(2);
duke@435 657 // Define platform specific register pressure
duke@435 658 #ifdef SPARC
duke@435 659 lrg.set_reg_pressure(2);
duke@435 660 #elif defined(IA32)
duke@435 661 if( ireg == Op_RegL ) {
duke@435 662 lrg.set_reg_pressure(2);
duke@435 663 } else {
duke@435 664 lrg.set_reg_pressure(1);
duke@435 665 }
duke@435 666 #else
duke@435 667 lrg.set_reg_pressure(1); // normally one value per register
duke@435 668 #endif
duke@435 669 // If this def of a double forces a mis-aligned double,
duke@435 670 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 671 // AND changes how we count interferences. A mis-aligned
duke@435 672 // double can interfere with TWO aligned pairs, or effectively
duke@435 673 // FOUR registers!
duke@435 674 if( rm.is_misaligned_Pair() ) {
duke@435 675 lrg._fat_proj = 1;
duke@435 676 lrg._is_bound = 1;
duke@435 677 }
duke@435 678 break;
duke@435 679 case Op_RegF:
duke@435 680 case Op_RegI:
coleenp@548 681 case Op_RegN:
duke@435 682 case Op_RegFlags:
duke@435 683 case 0: // not an ideal register
duke@435 684 lrg.set_num_regs(1);
duke@435 685 #ifdef SPARC
duke@435 686 lrg.set_reg_pressure(2);
duke@435 687 #else
duke@435 688 lrg.set_reg_pressure(1);
duke@435 689 #endif
duke@435 690 break;
duke@435 691 default:
duke@435 692 ShouldNotReachHere();
duke@435 693 }
duke@435 694 }
duke@435 695
duke@435 696 // Now do the same for inputs
duke@435 697 uint cnt = n->req();
duke@435 698 // Setup for CISC SPILLING
duke@435 699 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
duke@435 700 if( UseCISCSpill && after_aggressive ) {
duke@435 701 inp = n->cisc_operand();
duke@435 702 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
duke@435 703 // Convert operand number to edge index number
duke@435 704 inp = n->as_Mach()->operand_index(inp);
duke@435 705 }
duke@435 706 // Prepare register mask for each input
duke@435 707 for( uint k = input_edge_start; k < cnt; k++ ) {
duke@435 708 uint vreg = n2lidx(n->in(k));
duke@435 709 if( !vreg ) continue;
duke@435 710
duke@435 711 // If this instruction is CISC Spillable, add the flags
duke@435 712 // bit to its appropriate input
duke@435 713 if( UseCISCSpill && after_aggressive && inp == k ) {
duke@435 714 #ifndef PRODUCT
duke@435 715 if( TraceCISCSpill ) {
duke@435 716 tty->print(" use_cisc_RegMask: ");
duke@435 717 n->dump();
duke@435 718 }
duke@435 719 #endif
duke@435 720 n->as_Mach()->use_cisc_RegMask();
duke@435 721 }
duke@435 722
duke@435 723 LRG &lrg = lrgs(vreg);
duke@435 724 // // Testing for floating point code shape
duke@435 725 // Node *test = n->in(k);
duke@435 726 // if( test->is_Mach() ) {
duke@435 727 // MachNode *m = test->as_Mach();
duke@435 728 // int op = m->ideal_Opcode();
duke@435 729 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
duke@435 730 // int zzz = 1;
duke@435 731 // }
duke@435 732 // }
duke@435 733
duke@435 734 // Limit result register mask to acceptable registers.
duke@435 735 // Do not limit registers from uncommon uses before
duke@435 736 // AggressiveCoalesce. This effectively pre-virtual-splits
duke@435 737 // around uncommon uses of common defs.
duke@435 738 const RegMask &rm = n->in_RegMask(k);
duke@435 739 if( !after_aggressive &&
duke@435 740 _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
duke@435 741 // Since we are BEFORE aggressive coalesce, leave the register
duke@435 742 // mask untrimmed by the call. This encourages more coalescing.
duke@435 743 // Later, AFTER aggressive, this live range will have to spill
duke@435 744 // but the spiller handles slow-path calls very nicely.
duke@435 745 } else {
duke@435 746 lrg.AND( rm );
duke@435 747 }
duke@435 748 // Check for bound register masks
duke@435 749 const RegMask &lrgmask = lrg.mask();
duke@435 750 if( lrgmask.is_bound1() || lrgmask.is_bound2() )
duke@435 751 lrg._is_bound = 1;
duke@435 752 // If this use of a double forces a mis-aligned double,
duke@435 753 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 754 // AND changes how we count interferences. A mis-aligned
duke@435 755 // double can interfere with TWO aligned pairs, or effectively
duke@435 756 // FOUR registers!
duke@435 757 if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
duke@435 758 lrg._fat_proj = 1;
duke@435 759 lrg._is_bound = 1;
duke@435 760 }
duke@435 761 // if the LRG is an unaligned pair, we will have to spill
duke@435 762 // so clear the LRG's register mask if it is not already spilled
duke@435 763 if ( !n->is_SpillCopy() &&
never@730 764 (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
duke@435 765 lrgmask.is_misaligned_Pair()) {
duke@435 766 lrg.Clear();
duke@435 767 }
duke@435 768
duke@435 769 // Check for maximum frequency value
duke@435 770 if( lrg._maxfreq < b->_freq )
duke@435 771 lrg._maxfreq = b->_freq;
duke@435 772
duke@435 773 } // End for all allocated inputs
duke@435 774 } // end for all instructions
duke@435 775 } // end for all blocks
duke@435 776
duke@435 777 // Final per-liverange setup
duke@435 778 for( uint i2=0; i2<_maxlrg; i2++ ) {
duke@435 779 LRG &lrg = lrgs(i2);
duke@435 780 if( lrg.num_regs() == 2 && !lrg._fat_proj )
duke@435 781 lrg.ClearToPairs();
duke@435 782 lrg.compute_set_mask_size();
duke@435 783 if( lrg.not_free() ) { // Handle case where we lose from the start
duke@435 784 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 785 lrg._direct_conflict = 1;
duke@435 786 }
duke@435 787 lrg.set_degree(0); // no neighbors in IFG yet
duke@435 788 }
duke@435 789 }
duke@435 790
duke@435 791 //------------------------------set_was_low------------------------------------
duke@435 792 // Set the was-lo-degree bit. Conservative coalescing should not change the
duke@435 793 // colorability of the graph. If any live range was of low-degree before
duke@435 794 // coalescing, it should Simplify. This call sets the was-lo-degree bit.
duke@435 795 // The bit is checked in Simplify.
duke@435 796 void PhaseChaitin::set_was_low() {
duke@435 797 #ifdef ASSERT
duke@435 798 for( uint i = 1; i < _maxlrg; i++ ) {
duke@435 799 int size = lrgs(i).num_regs();
duke@435 800 uint old_was_lo = lrgs(i)._was_lo;
duke@435 801 lrgs(i)._was_lo = 0;
duke@435 802 if( lrgs(i).lo_degree() ) {
duke@435 803 lrgs(i)._was_lo = 1; // Trivially of low degree
duke@435 804 } else { // Else check the Brigg's assertion
duke@435 805 // Brigg's observation is that the lo-degree neighbors of a
duke@435 806 // hi-degree live range will not interfere with the color choices
duke@435 807 // of said hi-degree live range. The Simplify reverse-stack-coloring
duke@435 808 // order takes care of the details. Hence you do not have to count
duke@435 809 // low-degree neighbors when determining if this guy colors.
duke@435 810 int briggs_degree = 0;
duke@435 811 IndexSet *s = _ifg->neighbors(i);
duke@435 812 IndexSetIterator elements(s);
duke@435 813 uint lidx;
duke@435 814 while((lidx = elements.next()) != 0) {
duke@435 815 if( !lrgs(lidx).lo_degree() )
duke@435 816 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
duke@435 817 }
duke@435 818 if( briggs_degree < lrgs(i).degrees_of_freedom() )
duke@435 819 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
duke@435 820 }
duke@435 821 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
duke@435 822 }
duke@435 823 #endif
duke@435 824 }
duke@435 825
duke@435 826 #define REGISTER_CONSTRAINED 16
duke@435 827
duke@435 828 //------------------------------cache_lrg_info---------------------------------
duke@435 829 // Compute cost/area ratio, in case we spill. Build the lo-degree list.
duke@435 830 void PhaseChaitin::cache_lrg_info( ) {
duke@435 831
duke@435 832 for( uint i = 1; i < _maxlrg; i++ ) {
duke@435 833 LRG &lrg = lrgs(i);
duke@435 834
duke@435 835 // Check for being of low degree: means we can be trivially colored.
duke@435 836 // Low degree, dead or must-spill guys just get to simplify right away
duke@435 837 if( lrg.lo_degree() ||
duke@435 838 !lrg.alive() ||
duke@435 839 lrg._must_spill ) {
duke@435 840 // Split low degree list into those guys that must get a
duke@435 841 // register and those that can go to register or stack.
duke@435 842 // The idea is LRGs that can go register or stack color first when
duke@435 843 // they have a good chance of getting a register. The register-only
duke@435 844 // lo-degree live ranges always get a register.
duke@435 845 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
duke@435 846 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
duke@435 847 lrg._next = _lo_stk_degree;
duke@435 848 _lo_stk_degree = i;
duke@435 849 } else {
duke@435 850 lrg._next = _lo_degree;
duke@435 851 _lo_degree = i;
duke@435 852 }
duke@435 853 } else { // Else high degree
duke@435 854 lrgs(_hi_degree)._prev = i;
duke@435 855 lrg._next = _hi_degree;
duke@435 856 lrg._prev = 0;
duke@435 857 _hi_degree = i;
duke@435 858 }
duke@435 859 }
duke@435 860 }
duke@435 861
duke@435 862 //------------------------------Pre-Simplify-----------------------------------
duke@435 863 // Simplify the IFG by removing LRGs of low degree that have NO copies
duke@435 864 void PhaseChaitin::Pre_Simplify( ) {
duke@435 865
duke@435 866 // Warm up the lo-degree no-copy list
duke@435 867 int lo_no_copy = 0;
duke@435 868 for( uint i = 1; i < _maxlrg; i++ ) {
duke@435 869 if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
duke@435 870 !lrgs(i).alive() ||
duke@435 871 lrgs(i)._must_spill ) {
duke@435 872 lrgs(i)._next = lo_no_copy;
duke@435 873 lo_no_copy = i;
duke@435 874 }
duke@435 875 }
duke@435 876
duke@435 877 while( lo_no_copy ) {
duke@435 878 uint lo = lo_no_copy;
duke@435 879 lo_no_copy = lrgs(lo)._next;
duke@435 880 int size = lrgs(lo).num_regs();
duke@435 881
duke@435 882 // Put the simplified guy on the simplified list.
duke@435 883 lrgs(lo)._next = _simplified;
duke@435 884 _simplified = lo;
duke@435 885
duke@435 886 // Yank this guy from the IFG.
duke@435 887 IndexSet *adj = _ifg->remove_node( lo );
duke@435 888
duke@435 889 // If any neighbors' degrees fall below their number of
duke@435 890 // allowed registers, then put that neighbor on the low degree
duke@435 891 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 892 // unchanged by this action. Thus the two are equal at most once,
duke@435 893 // so LRGs hit the lo-degree worklists at most once.
duke@435 894 IndexSetIterator elements(adj);
duke@435 895 uint neighbor;
duke@435 896 while ((neighbor = elements.next()) != 0) {
duke@435 897 LRG *n = &lrgs(neighbor);
duke@435 898 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 899
duke@435 900 // Check for just becoming of-low-degree
duke@435 901 if( n->just_lo_degree() && !n->_has_copy ) {
duke@435 902 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 903 // Put on lo-degree list
duke@435 904 n->_next = lo_no_copy;
duke@435 905 lo_no_copy = neighbor;
duke@435 906 }
duke@435 907 }
duke@435 908 } // End of while lo-degree no_copy worklist not empty
duke@435 909
duke@435 910 // No more lo-degree no-copy live ranges to simplify
duke@435 911 }
duke@435 912
duke@435 913 //------------------------------Simplify---------------------------------------
duke@435 914 // Simplify the IFG by removing LRGs of low degree.
duke@435 915 void PhaseChaitin::Simplify( ) {
duke@435 916
duke@435 917 while( 1 ) { // Repeat till simplified it all
duke@435 918 // May want to explore simplifying lo_degree before _lo_stk_degree.
duke@435 919 // This might result in more spills coloring into registers during
duke@435 920 // Select().
duke@435 921 while( _lo_degree || _lo_stk_degree ) {
duke@435 922 // If possible, pull from lo_stk first
duke@435 923 uint lo;
duke@435 924 if( _lo_degree ) {
duke@435 925 lo = _lo_degree;
duke@435 926 _lo_degree = lrgs(lo)._next;
duke@435 927 } else {
duke@435 928 lo = _lo_stk_degree;
duke@435 929 _lo_stk_degree = lrgs(lo)._next;
duke@435 930 }
duke@435 931
duke@435 932 // Put the simplified guy on the simplified list.
duke@435 933 lrgs(lo)._next = _simplified;
duke@435 934 _simplified = lo;
duke@435 935 // If this guy is "at risk" then mark his current neighbors
duke@435 936 if( lrgs(lo)._at_risk ) {
duke@435 937 IndexSetIterator elements(_ifg->neighbors(lo));
duke@435 938 uint datum;
duke@435 939 while ((datum = elements.next()) != 0) {
duke@435 940 lrgs(datum)._risk_bias = lo;
duke@435 941 }
duke@435 942 }
duke@435 943
duke@435 944 // Yank this guy from the IFG.
duke@435 945 IndexSet *adj = _ifg->remove_node( lo );
duke@435 946
duke@435 947 // If any neighbors' degrees fall below their number of
duke@435 948 // allowed registers, then put that neighbor on the low degree
duke@435 949 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 950 // unchanged by this action. Thus the two are equal at most once,
duke@435 951 // so LRGs hit the lo-degree worklist at most once.
duke@435 952 IndexSetIterator elements(adj);
duke@435 953 uint neighbor;
duke@435 954 while ((neighbor = elements.next()) != 0) {
duke@435 955 LRG *n = &lrgs(neighbor);
duke@435 956 #ifdef ASSERT
kvn@985 957 if( VerifyOpto || VerifyRegisterAllocator ) {
duke@435 958 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 959 }
duke@435 960 #endif
duke@435 961
duke@435 962 // Check for just becoming of-low-degree just counting registers.
duke@435 963 // _must_spill live ranges are already on the low degree list.
duke@435 964 if( n->just_lo_degree() && !n->_must_spill ) {
duke@435 965 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 966 // Pull from hi-degree list
duke@435 967 uint prev = n->_prev;
duke@435 968 uint next = n->_next;
duke@435 969 if( prev ) lrgs(prev)._next = next;
duke@435 970 else _hi_degree = next;
duke@435 971 lrgs(next)._prev = prev;
duke@435 972 n->_next = _lo_degree;
duke@435 973 _lo_degree = neighbor;
duke@435 974 }
duke@435 975 }
duke@435 976 } // End of while lo-degree/lo_stk_degree worklist not empty
duke@435 977
duke@435 978 // Check for got everything: is hi-degree list empty?
duke@435 979 if( !_hi_degree ) break;
duke@435 980
duke@435 981 // Time to pick a potential spill guy
duke@435 982 uint lo_score = _hi_degree;
duke@435 983 double score = lrgs(lo_score).score();
duke@435 984 double area = lrgs(lo_score)._area;
duke@435 985
duke@435 986 // Find cheapest guy
duke@435 987 debug_only( int lo_no_simplify=0; );
duke@435 988 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
duke@435 989 assert( !(*_ifg->_yanked)[i], "" );
duke@435 990 // It's just vaguely possible to move hi-degree to lo-degree without
duke@435 991 // going through a just-lo-degree stage: If you remove a double from
duke@435 992 // a float live range it's degree will drop by 2 and you can skip the
duke@435 993 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
duke@435 994 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
duke@435 995 if( lrgs(i).lo_degree() ) {
duke@435 996 lo_score = i;
duke@435 997 break;
duke@435 998 }
duke@435 999 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
duke@435 1000 double iscore = lrgs(i).score();
duke@435 1001 double iarea = lrgs(i)._area;
duke@435 1002
duke@435 1003 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
duke@435 1004 // wins. Ties happen because all live ranges in question have spilled
duke@435 1005 // a few times before and the spill-score adds a huge number which
duke@435 1006 // washes out the low order bits. We are choosing the lesser of 2
duke@435 1007 // evils; in this case pick largest area to spill.
duke@435 1008 if( iscore < score ||
duke@435 1009 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
duke@435 1010 lo_score = i;
duke@435 1011 score = iscore;
duke@435 1012 area = iarea;
duke@435 1013 }
duke@435 1014 }
duke@435 1015 LRG *lo_lrg = &lrgs(lo_score);
duke@435 1016 // The live range we choose for spilling is either hi-degree, or very
duke@435 1017 // rarely it can be low-degree. If we choose a hi-degree live range
duke@435 1018 // there better not be any lo-degree choices.
duke@435 1019 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
duke@435 1020
duke@435 1021 // Pull from hi-degree list
duke@435 1022 uint prev = lo_lrg->_prev;
duke@435 1023 uint next = lo_lrg->_next;
duke@435 1024 if( prev ) lrgs(prev)._next = next;
duke@435 1025 else _hi_degree = next;
duke@435 1026 lrgs(next)._prev = prev;
duke@435 1027 // Jam him on the lo-degree list, despite his high degree.
duke@435 1028 // Maybe he'll get a color, and maybe he'll spill.
duke@435 1029 // Only Select() will know.
duke@435 1030 lrgs(lo_score)._at_risk = true;
duke@435 1031 _lo_degree = lo_score;
duke@435 1032 lo_lrg->_next = 0;
duke@435 1033
duke@435 1034 } // End of while not simplified everything
duke@435 1035
duke@435 1036 }
duke@435 1037
duke@435 1038 //------------------------------bias_color-------------------------------------
duke@435 1039 // Choose a color using the biasing heuristic
duke@435 1040 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
duke@435 1041
duke@435 1042 // Check for "at_risk" LRG's
duke@435 1043 uint risk_lrg = Find(lrg._risk_bias);
duke@435 1044 if( risk_lrg != 0 ) {
duke@435 1045 // Walk the colored neighbors of the "at_risk" candidate
duke@435 1046 // Choose a color which is both legal and already taken by a neighbor
duke@435 1047 // of the "at_risk" candidate in order to improve the chances of the
duke@435 1048 // "at_risk" candidate of coloring
duke@435 1049 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
duke@435 1050 uint datum;
duke@435 1051 while ((datum = elements.next()) != 0) {
duke@435 1052 OptoReg::Name reg = lrgs(datum).reg();
duke@435 1053 // If this LRG's register is legal for us, choose it
duke@435 1054 if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
duke@435 1055 lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
duke@435 1056 (lrg.num_regs()==1 || // either size 1
duke@435 1057 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs)
duke@435 1058 return reg;
duke@435 1059 }
duke@435 1060 }
duke@435 1061
duke@435 1062 uint copy_lrg = Find(lrg._copy_bias);
duke@435 1063 if( copy_lrg != 0 ) {
duke@435 1064 // If he has a color,
duke@435 1065 if( !(*(_ifg->_yanked))[copy_lrg] ) {
duke@435 1066 OptoReg::Name reg = lrgs(copy_lrg).reg();
duke@435 1067 // And it is legal for you,
duke@435 1068 if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
duke@435 1069 lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
duke@435 1070 (lrg.num_regs()==1 || // either size 1
duke@435 1071 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs)
duke@435 1072 return reg;
duke@435 1073 } else if( chunk == 0 ) {
duke@435 1074 // Choose a color which is legal for him
duke@435 1075 RegMask tempmask = lrg.mask();
duke@435 1076 tempmask.AND(lrgs(copy_lrg).mask());
duke@435 1077 OptoReg::Name reg;
duke@435 1078 if( lrg.num_regs() == 1 ) {
duke@435 1079 reg = tempmask.find_first_elem();
duke@435 1080 } else {
duke@435 1081 tempmask.ClearToPairs();
duke@435 1082 reg = tempmask.find_first_pair();
duke@435 1083 }
duke@435 1084 if( OptoReg::is_valid(reg) )
duke@435 1085 return reg;
duke@435 1086 }
duke@435 1087 }
duke@435 1088
duke@435 1089 // If no bias info exists, just go with the register selection ordering
duke@435 1090 if( lrg.num_regs() == 2 ) {
duke@435 1091 // Find an aligned pair
duke@435 1092 return OptoReg::add(lrg.mask().find_first_pair(),chunk);
duke@435 1093 }
duke@435 1094
duke@435 1095 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
duke@435 1096 // copy removal to remove many more copies, by preventing a just-assigned
duke@435 1097 // register from being repeatedly assigned.
duke@435 1098 OptoReg::Name reg = lrg.mask().find_first_elem();
duke@435 1099 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
duke@435 1100 // This 'Remove; find; Insert' idiom is an expensive way to find the
duke@435 1101 // SECOND element in the mask.
duke@435 1102 lrg.Remove(reg);
duke@435 1103 OptoReg::Name reg2 = lrg.mask().find_first_elem();
duke@435 1104 lrg.Insert(reg);
duke@435 1105 if( OptoReg::is_reg(reg2))
duke@435 1106 reg = reg2;
duke@435 1107 }
duke@435 1108 return OptoReg::add( reg, chunk );
duke@435 1109 }
duke@435 1110
duke@435 1111 //------------------------------choose_color-----------------------------------
duke@435 1112 // Choose a color in the current chunk
duke@435 1113 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
duke@435 1114 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
duke@435 1115 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
duke@435 1116
duke@435 1117 if( lrg.num_regs() == 1 || // Common Case
duke@435 1118 !lrg._fat_proj ) // Aligned+adjacent pairs ok
duke@435 1119 // Use a heuristic to "bias" the color choice
duke@435 1120 return bias_color(lrg, chunk);
duke@435 1121
duke@435 1122 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
duke@435 1123
duke@435 1124 // Fat-proj case or misaligned double argument.
duke@435 1125 assert(lrg.compute_mask_size() == lrg.num_regs() ||
duke@435 1126 lrg.num_regs() == 2,"fat projs exactly color" );
duke@435 1127 assert( !chunk, "always color in 1st chunk" );
duke@435 1128 // Return the highest element in the set.
duke@435 1129 return lrg.mask().find_last_elem();
duke@435 1130 }
duke@435 1131
duke@435 1132 //------------------------------Select-----------------------------------------
duke@435 1133 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
duke@435 1134 // in reverse order of removal. As long as nothing of hi-degree was yanked,
duke@435 1135 // everything going back is guaranteed a color. Select that color. If some
duke@435 1136 // hi-degree LRG cannot get a color then we record that we must spill.
duke@435 1137 uint PhaseChaitin::Select( ) {
duke@435 1138 uint spill_reg = LRG::SPILL_REG;
duke@435 1139 _max_reg = OptoReg::Name(0); // Past max register used
duke@435 1140 while( _simplified ) {
duke@435 1141 // Pull next LRG from the simplified list - in reverse order of removal
duke@435 1142 uint lidx = _simplified;
duke@435 1143 LRG *lrg = &lrgs(lidx);
duke@435 1144 _simplified = lrg->_next;
duke@435 1145
duke@435 1146
duke@435 1147 #ifndef PRODUCT
duke@435 1148 if (trace_spilling()) {
duke@435 1149 ttyLocker ttyl;
duke@435 1150 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
duke@435 1151 lrg->degrees_of_freedom());
duke@435 1152 lrg->dump();
duke@435 1153 }
duke@435 1154 #endif
duke@435 1155
duke@435 1156 // Re-insert into the IFG
duke@435 1157 _ifg->re_insert(lidx);
duke@435 1158 if( !lrg->alive() ) continue;
duke@435 1159 // capture allstackedness flag before mask is hacked
duke@435 1160 const int is_allstack = lrg->mask().is_AllStack();
duke@435 1161
duke@435 1162 // Yeah, yeah, yeah, I know, I know. I can refactor this
duke@435 1163 // to avoid the GOTO, although the refactored code will not
duke@435 1164 // be much clearer. We arrive here IFF we have a stack-based
duke@435 1165 // live range that cannot color in the current chunk, and it
duke@435 1166 // has to move into the next free stack chunk.
duke@435 1167 int chunk = 0; // Current chunk is first chunk
duke@435 1168 retry_next_chunk:
duke@435 1169
duke@435 1170 // Remove neighbor colors
duke@435 1171 IndexSet *s = _ifg->neighbors(lidx);
duke@435 1172
duke@435 1173 debug_only(RegMask orig_mask = lrg->mask();)
duke@435 1174 IndexSetIterator elements(s);
duke@435 1175 uint neighbor;
duke@435 1176 while ((neighbor = elements.next()) != 0) {
duke@435 1177 // Note that neighbor might be a spill_reg. In this case, exclusion
duke@435 1178 // of its color will be a no-op, since the spill_reg chunk is in outer
duke@435 1179 // space. Also, if neighbor is in a different chunk, this exclusion
duke@435 1180 // will be a no-op. (Later on, if lrg runs out of possible colors in
duke@435 1181 // its chunk, a new chunk of color may be tried, in which case
duke@435 1182 // examination of neighbors is started again, at retry_next_chunk.)
duke@435 1183 LRG &nlrg = lrgs(neighbor);
duke@435 1184 OptoReg::Name nreg = nlrg.reg();
duke@435 1185 // Only subtract masks in the same chunk
duke@435 1186 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
duke@435 1187 #ifndef PRODUCT
duke@435 1188 uint size = lrg->mask().Size();
duke@435 1189 RegMask rm = lrg->mask();
duke@435 1190 #endif
duke@435 1191 lrg->SUBTRACT(nlrg.mask());
duke@435 1192 #ifndef PRODUCT
duke@435 1193 if (trace_spilling() && lrg->mask().Size() != size) {
duke@435 1194 ttyLocker ttyl;
duke@435 1195 tty->print("L%d ", lidx);
duke@435 1196 rm.dump();
duke@435 1197 tty->print(" intersected L%d ", neighbor);
duke@435 1198 nlrg.mask().dump();
duke@435 1199 tty->print(" removed ");
duke@435 1200 rm.SUBTRACT(lrg->mask());
duke@435 1201 rm.dump();
duke@435 1202 tty->print(" leaving ");
duke@435 1203 lrg->mask().dump();
duke@435 1204 tty->cr();
duke@435 1205 }
duke@435 1206 #endif
duke@435 1207 }
duke@435 1208 }
duke@435 1209 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
duke@435 1210 // Aligned pairs need aligned masks
duke@435 1211 if( lrg->num_regs() == 2 && !lrg->_fat_proj )
duke@435 1212 lrg->ClearToPairs();
duke@435 1213
duke@435 1214 // Check if a color is available and if so pick the color
duke@435 1215 OptoReg::Name reg = choose_color( *lrg, chunk );
duke@435 1216 #ifdef SPARC
duke@435 1217 debug_only(lrg->compute_set_mask_size());
duke@435 1218 assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
duke@435 1219 #endif
duke@435 1220
duke@435 1221 //---------------
duke@435 1222 // If we fail to color and the AllStack flag is set, trigger
duke@435 1223 // a chunk-rollover event
duke@435 1224 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
duke@435 1225 // Bump register mask up to next stack chunk
duke@435 1226 chunk += RegMask::CHUNK_SIZE;
duke@435 1227 lrg->Set_All();
duke@435 1228
duke@435 1229 goto retry_next_chunk;
duke@435 1230 }
duke@435 1231
duke@435 1232 //---------------
duke@435 1233 // Did we get a color?
duke@435 1234 else if( OptoReg::is_valid(reg)) {
duke@435 1235 #ifndef PRODUCT
duke@435 1236 RegMask avail_rm = lrg->mask();
duke@435 1237 #endif
duke@435 1238
duke@435 1239 // Record selected register
duke@435 1240 lrg->set_reg(reg);
duke@435 1241
duke@435 1242 if( reg >= _max_reg ) // Compute max register limit
duke@435 1243 _max_reg = OptoReg::add(reg,1);
duke@435 1244 // Fold reg back into normal space
duke@435 1245 reg = OptoReg::add(reg,-chunk);
duke@435 1246
duke@435 1247 // If the live range is not bound, then we actually had some choices
duke@435 1248 // to make. In this case, the mask has more bits in it than the colors
twisti@1040 1249 // chosen. Restrict the mask to just what was picked.
duke@435 1250 if( lrg->num_regs() == 1 ) { // Size 1 live range
duke@435 1251 lrg->Clear(); // Clear the mask
duke@435 1252 lrg->Insert(reg); // Set regmask to match selected reg
duke@435 1253 lrg->set_mask_size(1);
duke@435 1254 } else if( !lrg->_fat_proj ) {
duke@435 1255 // For pairs, also insert the low bit of the pair
duke@435 1256 assert( lrg->num_regs() == 2, "unbound fatproj???" );
duke@435 1257 lrg->Clear(); // Clear the mask
duke@435 1258 lrg->Insert(reg); // Set regmask to match selected reg
duke@435 1259 lrg->Insert(OptoReg::add(reg,-1));
duke@435 1260 lrg->set_mask_size(2);
duke@435 1261 } else { // Else fatproj
duke@435 1262 // mask must be equal to fatproj bits, by definition
duke@435 1263 }
duke@435 1264 #ifndef PRODUCT
duke@435 1265 if (trace_spilling()) {
duke@435 1266 ttyLocker ttyl;
duke@435 1267 tty->print("L%d selected ", lidx);
duke@435 1268 lrg->mask().dump();
duke@435 1269 tty->print(" from ");
duke@435 1270 avail_rm.dump();
duke@435 1271 tty->cr();
duke@435 1272 }
duke@435 1273 #endif
duke@435 1274 // Note that reg is the highest-numbered register in the newly-bound mask.
duke@435 1275 } // end color available case
duke@435 1276
duke@435 1277 //---------------
duke@435 1278 // Live range is live and no colors available
duke@435 1279 else {
duke@435 1280 assert( lrg->alive(), "" );
never@730 1281 assert( !lrg->_fat_proj || lrg->is_multidef() ||
duke@435 1282 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
duke@435 1283 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
duke@435 1284
duke@435 1285 // Assign the special spillreg register
duke@435 1286 lrg->set_reg(OptoReg::Name(spill_reg++));
duke@435 1287 // Do not empty the regmask; leave mask_size lying around
duke@435 1288 // for use during Spilling
duke@435 1289 #ifndef PRODUCT
duke@435 1290 if( trace_spilling() ) {
duke@435 1291 ttyLocker ttyl;
duke@435 1292 tty->print("L%d spilling with neighbors: ", lidx);
duke@435 1293 s->dump();
duke@435 1294 debug_only(tty->print(" original mask: "));
duke@435 1295 debug_only(orig_mask.dump());
duke@435 1296 dump_lrg(lidx);
duke@435 1297 }
duke@435 1298 #endif
duke@435 1299 } // end spill case
duke@435 1300
duke@435 1301 }
duke@435 1302
duke@435 1303 return spill_reg-LRG::SPILL_REG; // Return number of spills
duke@435 1304 }
duke@435 1305
duke@435 1306
duke@435 1307 //------------------------------copy_was_spilled-------------------------------
duke@435 1308 // Copy 'was_spilled'-edness from the source Node to the dst Node.
duke@435 1309 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
duke@435 1310 if( _spilled_once.test(src->_idx) ) {
duke@435 1311 _spilled_once.set(dst->_idx);
duke@435 1312 lrgs(Find(dst))._was_spilled1 = 1;
duke@435 1313 if( _spilled_twice.test(src->_idx) ) {
duke@435 1314 _spilled_twice.set(dst->_idx);
duke@435 1315 lrgs(Find(dst))._was_spilled2 = 1;
duke@435 1316 }
duke@435 1317 }
duke@435 1318 }
duke@435 1319
duke@435 1320 //------------------------------set_was_spilled--------------------------------
duke@435 1321 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
duke@435 1322 void PhaseChaitin::set_was_spilled( Node *n ) {
duke@435 1323 if( _spilled_once.test_set(n->_idx) )
duke@435 1324 _spilled_twice.set(n->_idx);
duke@435 1325 }
duke@435 1326
duke@435 1327 //------------------------------fixup_spills-----------------------------------
duke@435 1328 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
duke@435 1329 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
duke@435 1330 void PhaseChaitin::fixup_spills() {
duke@435 1331 // This function does only cisc spill work.
duke@435 1332 if( !UseCISCSpill ) return;
duke@435 1333
duke@435 1334 NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
duke@435 1335
duke@435 1336 // Grab the Frame Pointer
duke@435 1337 Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
duke@435 1338
duke@435 1339 // For all blocks
duke@435 1340 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 1341 Block *b = _cfg._blocks[i];
duke@435 1342
duke@435 1343 // For all instructions in block
duke@435 1344 uint last_inst = b->end_idx();
duke@435 1345 for( uint j = 1; j <= last_inst; j++ ) {
duke@435 1346 Node *n = b->_nodes[j];
duke@435 1347
duke@435 1348 // Dead instruction???
duke@435 1349 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
duke@435 1350 C->top() == n || // Or the random TOP node
duke@435 1351 n->is_Proj(), // Or a fat-proj kill node
duke@435 1352 "No dead instructions after post-alloc" );
duke@435 1353
duke@435 1354 int inp = n->cisc_operand();
duke@435 1355 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
duke@435 1356 // Convert operand number to edge index number
duke@435 1357 MachNode *mach = n->as_Mach();
duke@435 1358 inp = mach->operand_index(inp);
duke@435 1359 Node *src = n->in(inp); // Value to load or store
duke@435 1360 LRG &lrg_cisc = lrgs( Find_const(src) );
duke@435 1361 OptoReg::Name src_reg = lrg_cisc.reg();
duke@435 1362 // Doubles record the HIGH register of an adjacent pair.
duke@435 1363 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
duke@435 1364 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
duke@435 1365 // This is a CISC Spill, get stack offset and construct new node
duke@435 1366 #ifndef PRODUCT
duke@435 1367 if( TraceCISCSpill ) {
duke@435 1368 tty->print(" reg-instr: ");
duke@435 1369 n->dump();
duke@435 1370 }
duke@435 1371 #endif
duke@435 1372 int stk_offset = reg2offset(src_reg);
duke@435 1373 // Bailout if we might exceed node limit when spilling this instruction
duke@435 1374 C->check_node_count(0, "out of nodes fixing spills");
duke@435 1375 if (C->failing()) return;
duke@435 1376 // Transform node
duke@435 1377 MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
duke@435 1378 cisc->set_req(inp,fp); // Base register is frame pointer
duke@435 1379 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
duke@435 1380 assert( cisc->oper_input_base() == 2, "Only adding one edge");
duke@435 1381 cisc->ins_req(1,src); // Requires a memory edge
duke@435 1382 }
duke@435 1383 b->_nodes.map(j,cisc); // Insert into basic block
kvn@603 1384 n->subsume_by(cisc); // Correct graph
duke@435 1385 //
duke@435 1386 ++_used_cisc_instructions;
duke@435 1387 #ifndef PRODUCT
duke@435 1388 if( TraceCISCSpill ) {
duke@435 1389 tty->print(" cisc-instr: ");
duke@435 1390 cisc->dump();
duke@435 1391 }
duke@435 1392 #endif
duke@435 1393 } else {
duke@435 1394 #ifndef PRODUCT
duke@435 1395 if( TraceCISCSpill ) {
duke@435 1396 tty->print(" using reg-instr: ");
duke@435 1397 n->dump();
duke@435 1398 }
duke@435 1399 #endif
duke@435 1400 ++_unused_cisc_instructions; // input can be on stack
duke@435 1401 }
duke@435 1402 }
duke@435 1403
duke@435 1404 } // End of for all instructions
duke@435 1405
duke@435 1406 } // End of for all blocks
duke@435 1407 }
duke@435 1408
duke@435 1409 //------------------------------find_base_for_derived--------------------------
duke@435 1410 // Helper to stretch above; recursively discover the base Node for a
duke@435 1411 // given derived Node. Easy for AddP-related machine nodes, but needs
duke@435 1412 // to be recursive for derived Phis.
duke@435 1413 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
duke@435 1414 // See if already computed; if so return it
duke@435 1415 if( derived_base_map[derived->_idx] )
duke@435 1416 return derived_base_map[derived->_idx];
duke@435 1417
duke@435 1418 // See if this happens to be a base.
duke@435 1419 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
duke@435 1420 // pointers derived from NULL! These are always along paths that
duke@435 1421 // can't happen at run-time but the optimizer cannot deduce it so
duke@435 1422 // we have to handle it gracefully.
duke@435 1423 const TypePtr *tj = derived->bottom_type()->isa_ptr();
duke@435 1424 // If its an OOP with a non-zero offset, then it is derived.
duke@435 1425 if( tj->_offset == 0 ) {
duke@435 1426 derived_base_map[derived->_idx] = derived;
duke@435 1427 return derived;
duke@435 1428 }
duke@435 1429 // Derived is NULL+offset? Base is NULL!
duke@435 1430 if( derived->is_Con() ) {
duke@435 1431 Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
duke@435 1432 uint no_lidx = 0; // an unmatched constant in debug info has no LRG
duke@435 1433 _names.extend(base->_idx, no_lidx);
duke@435 1434 derived_base_map[derived->_idx] = base;
duke@435 1435 return base;
duke@435 1436 }
duke@435 1437
duke@435 1438 // Check for AddP-related opcodes
duke@435 1439 if( !derived->is_Phi() ) {
duke@435 1440 assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
duke@435 1441 Node *base = derived->in(AddPNode::Base);
duke@435 1442 derived_base_map[derived->_idx] = base;
duke@435 1443 return base;
duke@435 1444 }
duke@435 1445
duke@435 1446 // Recursively find bases for Phis.
duke@435 1447 // First check to see if we can avoid a base Phi here.
duke@435 1448 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
duke@435 1449 uint i;
duke@435 1450 for( i = 2; i < derived->req(); i++ )
duke@435 1451 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
duke@435 1452 break;
duke@435 1453 // Went to the end without finding any different bases?
duke@435 1454 if( i == derived->req() ) { // No need for a base Phi here
duke@435 1455 derived_base_map[derived->_idx] = base;
duke@435 1456 return base;
duke@435 1457 }
duke@435 1458
duke@435 1459 // Now we see we need a base-Phi here to merge the bases
duke@435 1460 base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
duke@435 1461 for( i = 1; i < derived->req(); i++ )
duke@435 1462 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
duke@435 1463
duke@435 1464 // Search the current block for an existing base-Phi
duke@435 1465 Block *b = _cfg._bbs[derived->_idx];
duke@435 1466 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
duke@435 1467 Node *phi = b->_nodes[i];
duke@435 1468 if( !phi->is_Phi() ) { // Found end of Phis with no match?
duke@435 1469 b->_nodes.insert( i, base ); // Must insert created Phi here as base
duke@435 1470 _cfg._bbs.map( base->_idx, b );
duke@435 1471 new_lrg(base,maxlrg++);
duke@435 1472 break;
duke@435 1473 }
duke@435 1474 // See if Phi matches.
duke@435 1475 uint j;
duke@435 1476 for( j = 1; j < base->req(); j++ )
duke@435 1477 if( phi->in(j) != base->in(j) &&
duke@435 1478 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
duke@435 1479 break;
duke@435 1480 if( j == base->req() ) { // All inputs match?
duke@435 1481 base = phi; // Then use existing 'phi' and drop 'base'
duke@435 1482 break;
duke@435 1483 }
duke@435 1484 }
duke@435 1485
duke@435 1486
duke@435 1487 // Cache info for later passes
duke@435 1488 derived_base_map[derived->_idx] = base;
duke@435 1489 return base;
duke@435 1490 }
duke@435 1491
duke@435 1492
duke@435 1493 //------------------------------stretch_base_pointer_live_ranges---------------
duke@435 1494 // At each Safepoint, insert extra debug edges for each pair of derived value/
duke@435 1495 // base pointer that is live across the Safepoint for oopmap building. The
duke@435 1496 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
duke@435 1497 // required edge set.
duke@435 1498 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
duke@435 1499 int must_recompute_live = false;
duke@435 1500 uint maxlrg = _maxlrg;
duke@435 1501 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
duke@435 1502 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
duke@435 1503
duke@435 1504 // For all blocks in RPO do...
duke@435 1505 for( uint i=0; i<_cfg._num_blocks; i++ ) {
duke@435 1506 Block *b = _cfg._blocks[i];
duke@435 1507 // Note use of deep-copy constructor. I cannot hammer the original
duke@435 1508 // liveout bits, because they are needed by the following coalesce pass.
duke@435 1509 IndexSet liveout(_live->live(b));
duke@435 1510
duke@435 1511 for( uint j = b->end_idx() + 1; j > 1; j-- ) {
duke@435 1512 Node *n = b->_nodes[j-1];
duke@435 1513
duke@435 1514 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
duke@435 1515 // like to see in the same register. Compare uses the loop-phi and so
duke@435 1516 // extends its live range BUT cannot be part of the cycle. If this
duke@435 1517 // extended live range overlaps with the update of the loop-phi value
duke@435 1518 // we need both alive at the same time -- which requires at least 1
duke@435 1519 // copy. But because Intel has only 2-address registers we end up with
duke@435 1520 // at least 2 copies, one before the loop-phi update instruction and
duke@435 1521 // one after. Instead we split the input to the compare just after the
duke@435 1522 // phi.
duke@435 1523 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
duke@435 1524 Node *phi = n->in(1);
duke@435 1525 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
duke@435 1526 Block *phi_block = _cfg._bbs[phi->_idx];
duke@435 1527 if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
duke@435 1528 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
duke@435 1529 Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
duke@435 1530 insert_proj( phi_block, 1, spill, maxlrg++ );
duke@435 1531 n->set_req(1,spill);
duke@435 1532 must_recompute_live = true;
duke@435 1533 }
duke@435 1534 }
duke@435 1535 }
duke@435 1536
duke@435 1537 // Get value being defined
duke@435 1538 uint lidx = n2lidx(n);
duke@435 1539 if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
duke@435 1540 // Remove from live-out set
duke@435 1541 liveout.remove(lidx);
duke@435 1542
duke@435 1543 // Copies do not define a new value and so do not interfere.
duke@435 1544 // Remove the copies source from the liveout set before interfering.
duke@435 1545 uint idx = n->is_Copy();
duke@435 1546 if( idx ) liveout.remove( n2lidx(n->in(idx)) );
duke@435 1547 }
duke@435 1548
duke@435 1549 // Found a safepoint?
duke@435 1550 JVMState *jvms = n->jvms();
duke@435 1551 if( jvms ) {
duke@435 1552 // Now scan for a live derived pointer
duke@435 1553 IndexSetIterator elements(&liveout);
duke@435 1554 uint neighbor;
duke@435 1555 while ((neighbor = elements.next()) != 0) {
duke@435 1556 // Find reaching DEF for base and derived values
duke@435 1557 // This works because we are still in SSA during this call.
duke@435 1558 Node *derived = lrgs(neighbor)._def;
duke@435 1559 const TypePtr *tj = derived->bottom_type()->isa_ptr();
duke@435 1560 // If its an OOP with a non-zero offset, then it is derived.
duke@435 1561 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
duke@435 1562 Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
duke@435 1563 assert( base->_idx < _names.Size(), "" );
duke@435 1564 // Add reaching DEFs of derived pointer and base pointer as a
duke@435 1565 // pair of inputs
duke@435 1566 n->add_req( derived );
duke@435 1567 n->add_req( base );
duke@435 1568
duke@435 1569 // See if the base pointer is already live to this point.
duke@435 1570 // Since I'm working on the SSA form, live-ness amounts to
duke@435 1571 // reaching def's. So if I find the base's live range then
duke@435 1572 // I know the base's def reaches here.
duke@435 1573 if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
duke@435 1574 !liveout.member( n2lidx(base) ) ) && // not live) AND
duke@435 1575 (n2lidx(base) > 0) && // not a constant
duke@435 1576 _cfg._bbs[base->_idx] != b ) { // base not def'd in blk)
duke@435 1577 // Base pointer is not currently live. Since I stretched
duke@435 1578 // the base pointer to here and it crosses basic-block
duke@435 1579 // boundaries, the global live info is now incorrect.
duke@435 1580 // Recompute live.
duke@435 1581 must_recompute_live = true;
duke@435 1582 } // End of if base pointer is not live to debug info
duke@435 1583 }
duke@435 1584 } // End of scan all live data for derived ptrs crossing GC point
duke@435 1585 } // End of if found a GC point
duke@435 1586
duke@435 1587 // Make all inputs live
duke@435 1588 if( !n->is_Phi() ) { // Phi function uses come from prior block
duke@435 1589 for( uint k = 1; k < n->req(); k++ ) {
duke@435 1590 uint lidx = n2lidx(n->in(k));
duke@435 1591 if( lidx < _maxlrg )
duke@435 1592 liveout.insert( lidx );
duke@435 1593 }
duke@435 1594 }
duke@435 1595
duke@435 1596 } // End of forall instructions in block
duke@435 1597 liveout.clear(); // Free the memory used by liveout.
duke@435 1598
duke@435 1599 } // End of forall blocks
duke@435 1600 _maxlrg = maxlrg;
duke@435 1601
duke@435 1602 // If I created a new live range I need to recompute live
duke@435 1603 if( maxlrg != _ifg->_maxlrg )
duke@435 1604 must_recompute_live = true;
duke@435 1605
duke@435 1606 return must_recompute_live != 0;
duke@435 1607 }
duke@435 1608
duke@435 1609
duke@435 1610 //------------------------------add_reference----------------------------------
duke@435 1611 // Extend the node to LRG mapping
duke@435 1612 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
duke@435 1613 _names.extend( node->_idx, n2lidx(old_node) );
duke@435 1614 }
duke@435 1615
duke@435 1616 //------------------------------dump-------------------------------------------
duke@435 1617 #ifndef PRODUCT
duke@435 1618 void PhaseChaitin::dump( const Node *n ) const {
duke@435 1619 uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
duke@435 1620 tty->print("L%d",r);
duke@435 1621 if( r && n->Opcode() != Op_Phi ) {
duke@435 1622 if( _node_regs ) { // Got a post-allocation copy of allocation?
duke@435 1623 tty->print("[");
duke@435 1624 OptoReg::Name second = get_reg_second(n);
duke@435 1625 if( OptoReg::is_valid(second) ) {
duke@435 1626 if( OptoReg::is_reg(second) )
duke@435 1627 tty->print("%s:",Matcher::regName[second]);
duke@435 1628 else
duke@435 1629 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
duke@435 1630 }
duke@435 1631 OptoReg::Name first = get_reg_first(n);
duke@435 1632 if( OptoReg::is_reg(first) )
duke@435 1633 tty->print("%s]",Matcher::regName[first]);
duke@435 1634 else
duke@435 1635 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
duke@435 1636 } else
duke@435 1637 n->out_RegMask().dump();
duke@435 1638 }
duke@435 1639 tty->print("/N%d\t",n->_idx);
duke@435 1640 tty->print("%s === ", n->Name());
duke@435 1641 uint k;
duke@435 1642 for( k = 0; k < n->req(); k++) {
duke@435 1643 Node *m = n->in(k);
duke@435 1644 if( !m ) tty->print("_ ");
duke@435 1645 else {
duke@435 1646 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
duke@435 1647 tty->print("L%d",r);
duke@435 1648 // Data MultiNode's can have projections with no real registers.
duke@435 1649 // Don't die while dumping them.
duke@435 1650 int op = n->Opcode();
duke@435 1651 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
duke@435 1652 if( _node_regs ) {
duke@435 1653 tty->print("[");
duke@435 1654 OptoReg::Name second = get_reg_second(n->in(k));
duke@435 1655 if( OptoReg::is_valid(second) ) {
duke@435 1656 if( OptoReg::is_reg(second) )
duke@435 1657 tty->print("%s:",Matcher::regName[second]);
duke@435 1658 else
duke@435 1659 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1660 reg2offset_unchecked(second));
duke@435 1661 }
duke@435 1662 OptoReg::Name first = get_reg_first(n->in(k));
duke@435 1663 if( OptoReg::is_reg(first) )
duke@435 1664 tty->print("%s]",Matcher::regName[first]);
duke@435 1665 else
duke@435 1666 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1667 reg2offset_unchecked(first));
duke@435 1668 } else
duke@435 1669 n->in_RegMask(k).dump();
duke@435 1670 }
duke@435 1671 tty->print("/N%d ",m->_idx);
duke@435 1672 }
duke@435 1673 }
duke@435 1674 if( k < n->len() && n->in(k) ) tty->print("| ");
duke@435 1675 for( ; k < n->len(); k++ ) {
duke@435 1676 Node *m = n->in(k);
duke@435 1677 if( !m ) break;
duke@435 1678 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
duke@435 1679 tty->print("L%d",r);
duke@435 1680 tty->print("/N%d ",m->_idx);
duke@435 1681 }
duke@435 1682 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
duke@435 1683 else n->dump_spec(tty);
duke@435 1684 if( _spilled_once.test(n->_idx ) ) {
duke@435 1685 tty->print(" Spill_1");
duke@435 1686 if( _spilled_twice.test(n->_idx ) )
duke@435 1687 tty->print(" Spill_2");
duke@435 1688 }
duke@435 1689 tty->print("\n");
duke@435 1690 }
duke@435 1691
duke@435 1692 void PhaseChaitin::dump( const Block * b ) const {
duke@435 1693 b->dump_head( &_cfg._bbs );
duke@435 1694
duke@435 1695 // For all instructions
duke@435 1696 for( uint j = 0; j < b->_nodes.size(); j++ )
duke@435 1697 dump(b->_nodes[j]);
duke@435 1698 // Print live-out info at end of block
duke@435 1699 if( _live ) {
duke@435 1700 tty->print("Liveout: ");
duke@435 1701 IndexSet *live = _live->live(b);
duke@435 1702 IndexSetIterator elements(live);
duke@435 1703 tty->print("{");
duke@435 1704 uint i;
duke@435 1705 while ((i = elements.next()) != 0) {
duke@435 1706 tty->print("L%d ", Find_const(i));
duke@435 1707 }
duke@435 1708 tty->print_cr("}");
duke@435 1709 }
duke@435 1710 tty->print("\n");
duke@435 1711 }
duke@435 1712
duke@435 1713 void PhaseChaitin::dump() const {
duke@435 1714 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
duke@435 1715 _matcher._new_SP, _framesize );
duke@435 1716
duke@435 1717 // For all blocks
duke@435 1718 for( uint i = 0; i < _cfg._num_blocks; i++ )
duke@435 1719 dump(_cfg._blocks[i]);
duke@435 1720 // End of per-block dump
duke@435 1721 tty->print("\n");
duke@435 1722
duke@435 1723 if (!_ifg) {
duke@435 1724 tty->print("(No IFG.)\n");
duke@435 1725 return;
duke@435 1726 }
duke@435 1727
duke@435 1728 // Dump LRG array
duke@435 1729 tty->print("--- Live RanGe Array ---\n");
duke@435 1730 for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
duke@435 1731 tty->print("L%d: ",i2);
duke@435 1732 if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
duke@435 1733 else tty->print("new LRG");
duke@435 1734 }
duke@435 1735 tty->print_cr("");
duke@435 1736
duke@435 1737 // Dump lo-degree list
duke@435 1738 tty->print("Lo degree: ");
duke@435 1739 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
duke@435 1740 tty->print("L%d ",i3);
duke@435 1741 tty->print_cr("");
duke@435 1742
duke@435 1743 // Dump lo-stk-degree list
duke@435 1744 tty->print("Lo stk degree: ");
duke@435 1745 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
duke@435 1746 tty->print("L%d ",i4);
duke@435 1747 tty->print_cr("");
duke@435 1748
duke@435 1749 // Dump lo-degree list
duke@435 1750 tty->print("Hi degree: ");
duke@435 1751 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
duke@435 1752 tty->print("L%d ",i5);
duke@435 1753 tty->print_cr("");
duke@435 1754 }
duke@435 1755
duke@435 1756 //------------------------------dump_degree_lists------------------------------
duke@435 1757 void PhaseChaitin::dump_degree_lists() const {
duke@435 1758 // Dump lo-degree list
duke@435 1759 tty->print("Lo degree: ");
duke@435 1760 for( uint i = _lo_degree; i; i = lrgs(i)._next )
duke@435 1761 tty->print("L%d ",i);
duke@435 1762 tty->print_cr("");
duke@435 1763
duke@435 1764 // Dump lo-stk-degree list
duke@435 1765 tty->print("Lo stk degree: ");
duke@435 1766 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
duke@435 1767 tty->print("L%d ",i2);
duke@435 1768 tty->print_cr("");
duke@435 1769
duke@435 1770 // Dump lo-degree list
duke@435 1771 tty->print("Hi degree: ");
duke@435 1772 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
duke@435 1773 tty->print("L%d ",i3);
duke@435 1774 tty->print_cr("");
duke@435 1775 }
duke@435 1776
duke@435 1777 //------------------------------dump_simplified--------------------------------
duke@435 1778 void PhaseChaitin::dump_simplified() const {
duke@435 1779 tty->print("Simplified: ");
duke@435 1780 for( uint i = _simplified; i; i = lrgs(i)._next )
duke@435 1781 tty->print("L%d ",i);
duke@435 1782 tty->print_cr("");
duke@435 1783 }
duke@435 1784
duke@435 1785 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
duke@435 1786 if ((int)reg < 0)
duke@435 1787 sprintf(buf, "<OptoReg::%d>", (int)reg);
duke@435 1788 else if (OptoReg::is_reg(reg))
duke@435 1789 strcpy(buf, Matcher::regName[reg]);
duke@435 1790 else
duke@435 1791 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1792 pc->reg2offset(reg));
duke@435 1793 return buf+strlen(buf);
duke@435 1794 }
duke@435 1795
duke@435 1796 //------------------------------dump_register----------------------------------
duke@435 1797 // Dump a register name into a buffer. Be intelligent if we get called
duke@435 1798 // before allocation is complete.
duke@435 1799 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
duke@435 1800 if( !this ) { // Not got anything?
duke@435 1801 sprintf(buf,"N%d",n->_idx); // Then use Node index
duke@435 1802 } else if( _node_regs ) {
duke@435 1803 // Post allocation, use direct mappings, no LRG info available
duke@435 1804 print_reg( get_reg_first(n), this, buf );
duke@435 1805 } else {
duke@435 1806 uint lidx = Find_const(n); // Grab LRG number
duke@435 1807 if( !_ifg ) {
duke@435 1808 sprintf(buf,"L%d",lidx); // No register binding yet
duke@435 1809 } else if( !lidx ) { // Special, not allocated value
duke@435 1810 strcpy(buf,"Special");
duke@435 1811 } else if( (lrgs(lidx).num_regs() == 1)
duke@435 1812 ? !lrgs(lidx).mask().is_bound1()
duke@435 1813 : !lrgs(lidx).mask().is_bound2() ) {
duke@435 1814 sprintf(buf,"L%d",lidx); // No register binding yet
duke@435 1815 } else { // Hah! We have a bound machine register
duke@435 1816 print_reg( lrgs(lidx).reg(), this, buf );
duke@435 1817 }
duke@435 1818 }
duke@435 1819 return buf+strlen(buf);
duke@435 1820 }
duke@435 1821
duke@435 1822 //----------------------dump_for_spill_split_recycle--------------------------
duke@435 1823 void PhaseChaitin::dump_for_spill_split_recycle() const {
duke@435 1824 if( WizardMode && (PrintCompilation || PrintOpto) ) {
duke@435 1825 // Display which live ranges need to be split and the allocator's state
duke@435 1826 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
duke@435 1827 for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
duke@435 1828 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
duke@435 1829 tty->print("L%d: ", bidx);
duke@435 1830 lrgs(bidx).dump();
duke@435 1831 }
duke@435 1832 }
duke@435 1833 tty->cr();
duke@435 1834 dump();
duke@435 1835 }
duke@435 1836 }
duke@435 1837
duke@435 1838 //------------------------------dump_frame------------------------------------
duke@435 1839 void PhaseChaitin::dump_frame() const {
duke@435 1840 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
duke@435 1841 const TypeTuple *domain = C->tf()->domain();
duke@435 1842 const int argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 1843
duke@435 1844 // Incoming arguments in registers dump
duke@435 1845 for( int k = 0; k < argcnt; k++ ) {
duke@435 1846 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
duke@435 1847 if( OptoReg::is_reg(parmreg)) {
duke@435 1848 const char *reg_name = OptoReg::regname(parmreg);
duke@435 1849 tty->print("#r%3.3d %s", parmreg, reg_name);
duke@435 1850 parmreg = _matcher._parm_regs[k].second();
duke@435 1851 if( OptoReg::is_reg(parmreg)) {
duke@435 1852 tty->print(":%s", OptoReg::regname(parmreg));
duke@435 1853 }
duke@435 1854 tty->print(" : parm %d: ", k);
duke@435 1855 domain->field_at(k + TypeFunc::Parms)->dump();
duke@435 1856 tty->print_cr("");
duke@435 1857 }
duke@435 1858 }
duke@435 1859
duke@435 1860 // Check for un-owned padding above incoming args
duke@435 1861 OptoReg::Name reg = _matcher._new_SP;
duke@435 1862 if( reg > _matcher._in_arg_limit ) {
duke@435 1863 reg = OptoReg::add(reg, -1);
duke@435 1864 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
duke@435 1865 }
duke@435 1866
duke@435 1867 // Incoming argument area dump
duke@435 1868 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
duke@435 1869 while( reg > begin_in_arg ) {
duke@435 1870 reg = OptoReg::add(reg, -1);
duke@435 1871 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
duke@435 1872 int j;
duke@435 1873 for( j = 0; j < argcnt; j++) {
duke@435 1874 if( _matcher._parm_regs[j].first() == reg ||
duke@435 1875 _matcher._parm_regs[j].second() == reg ) {
duke@435 1876 tty->print("parm %d: ",j);
duke@435 1877 domain->field_at(j + TypeFunc::Parms)->dump();
duke@435 1878 tty->print_cr("");
duke@435 1879 break;
duke@435 1880 }
duke@435 1881 }
duke@435 1882 if( j >= argcnt )
duke@435 1883 tty->print_cr("HOLE, owned by SELF");
duke@435 1884 }
duke@435 1885
duke@435 1886 // Old outgoing preserve area
duke@435 1887 while( reg > _matcher._old_SP ) {
duke@435 1888 reg = OptoReg::add(reg, -1);
duke@435 1889 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 1890 }
duke@435 1891
duke@435 1892 // Old SP
duke@435 1893 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
duke@435 1894 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
duke@435 1895
duke@435 1896 // Preserve area dump
duke@435 1897 reg = OptoReg::add(reg, -1);
duke@435 1898 while( OptoReg::is_stack(reg)) {
duke@435 1899 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
duke@435 1900 if( _matcher.return_addr() == reg )
duke@435 1901 tty->print_cr("return address");
duke@435 1902 else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
duke@435 1903 VerifyStackAtCalls )
duke@435 1904 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
duke@435 1905 else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
duke@435 1906 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
duke@435 1907 else
duke@435 1908 tty->print_cr("pad2, in_preserve");
duke@435 1909 reg = OptoReg::add(reg, -1);
duke@435 1910 }
duke@435 1911
duke@435 1912 // Spill area dump
duke@435 1913 reg = OptoReg::add(_matcher._new_SP, _framesize );
duke@435 1914 while( reg > _matcher._out_arg_limit ) {
duke@435 1915 reg = OptoReg::add(reg, -1);
duke@435 1916 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
duke@435 1917 }
duke@435 1918
duke@435 1919 // Outgoing argument area dump
duke@435 1920 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
duke@435 1921 reg = OptoReg::add(reg, -1);
duke@435 1922 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
duke@435 1923 }
duke@435 1924
duke@435 1925 // Outgoing new preserve area
duke@435 1926 while( reg > _matcher._new_SP ) {
duke@435 1927 reg = OptoReg::add(reg, -1);
duke@435 1928 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 1929 }
duke@435 1930 tty->print_cr("#");
duke@435 1931 }
duke@435 1932
duke@435 1933 //------------------------------dump_bb----------------------------------------
duke@435 1934 void PhaseChaitin::dump_bb( uint pre_order ) const {
duke@435 1935 tty->print_cr("---dump of B%d---",pre_order);
duke@435 1936 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 1937 Block *b = _cfg._blocks[i];
duke@435 1938 if( b->_pre_order == pre_order )
duke@435 1939 dump(b);
duke@435 1940 }
duke@435 1941 }
duke@435 1942
duke@435 1943 //------------------------------dump_lrg---------------------------------------
duke@435 1944 void PhaseChaitin::dump_lrg( uint lidx ) const {
duke@435 1945 tty->print_cr("---dump of L%d---",lidx);
duke@435 1946
duke@435 1947 if( _ifg ) {
duke@435 1948 if( lidx >= _maxlrg ) {
duke@435 1949 tty->print("Attempt to print live range index beyond max live range.\n");
duke@435 1950 return;
duke@435 1951 }
duke@435 1952 tty->print("L%d: ",lidx);
duke@435 1953 lrgs(lidx).dump( );
duke@435 1954 }
duke@435 1955 if( _ifg ) { tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
duke@435 1956 _ifg->neighbors(lidx)->dump();
duke@435 1957 tty->cr();
duke@435 1958 }
duke@435 1959 // For all blocks
duke@435 1960 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 1961 Block *b = _cfg._blocks[i];
duke@435 1962 int dump_once = 0;
duke@435 1963
duke@435 1964 // For all instructions
duke@435 1965 for( uint j = 0; j < b->_nodes.size(); j++ ) {
duke@435 1966 Node *n = b->_nodes[j];
duke@435 1967 if( Find_const(n) == lidx ) {
duke@435 1968 if( !dump_once++ ) {
duke@435 1969 tty->cr();
duke@435 1970 b->dump_head( &_cfg._bbs );
duke@435 1971 }
duke@435 1972 dump(n);
duke@435 1973 continue;
duke@435 1974 }
duke@435 1975 uint cnt = n->req();
duke@435 1976 for( uint k = 1; k < cnt; k++ ) {
duke@435 1977 Node *m = n->in(k);
duke@435 1978 if (!m) continue; // be robust in the dumper
duke@435 1979 if( Find_const(m) == lidx ) {
duke@435 1980 if( !dump_once++ ) {
duke@435 1981 tty->cr();
duke@435 1982 b->dump_head( &_cfg._bbs );
duke@435 1983 }
duke@435 1984 dump(n);
duke@435 1985 }
duke@435 1986 }
duke@435 1987 }
duke@435 1988 } // End of per-block dump
duke@435 1989 tty->cr();
duke@435 1990 }
duke@435 1991 #endif // not PRODUCT
duke@435 1992
duke@435 1993 //------------------------------print_chaitin_statistics-------------------------------
duke@435 1994 int PhaseChaitin::_final_loads = 0;
duke@435 1995 int PhaseChaitin::_final_stores = 0;
duke@435 1996 int PhaseChaitin::_final_memoves= 0;
duke@435 1997 int PhaseChaitin::_final_copies = 0;
duke@435 1998 double PhaseChaitin::_final_load_cost = 0;
duke@435 1999 double PhaseChaitin::_final_store_cost = 0;
duke@435 2000 double PhaseChaitin::_final_memove_cost= 0;
duke@435 2001 double PhaseChaitin::_final_copy_cost = 0;
duke@435 2002 int PhaseChaitin::_conserv_coalesce = 0;
duke@435 2003 int PhaseChaitin::_conserv_coalesce_pair = 0;
duke@435 2004 int PhaseChaitin::_conserv_coalesce_trie = 0;
duke@435 2005 int PhaseChaitin::_conserv_coalesce_quad = 0;
duke@435 2006 int PhaseChaitin::_post_alloc = 0;
duke@435 2007 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
duke@435 2008 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
duke@435 2009 int PhaseChaitin::_used_cisc_instructions = 0;
duke@435 2010 int PhaseChaitin::_unused_cisc_instructions = 0;
duke@435 2011 int PhaseChaitin::_allocator_attempts = 0;
duke@435 2012 int PhaseChaitin::_allocator_successes = 0;
duke@435 2013
duke@435 2014 #ifndef PRODUCT
duke@435 2015 uint PhaseChaitin::_high_pressure = 0;
duke@435 2016 uint PhaseChaitin::_low_pressure = 0;
duke@435 2017
duke@435 2018 void PhaseChaitin::print_chaitin_statistics() {
duke@435 2019 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
duke@435 2020 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
duke@435 2021 tty->print_cr("Adjusted spill cost = %7.0f.",
duke@435 2022 _final_load_cost*4.0 + _final_store_cost * 2.0 +
duke@435 2023 _final_copy_cost*1.0 + _final_memove_cost*12.0);
duke@435 2024 tty->print("Conservatively coalesced %d copies, %d pairs",
duke@435 2025 _conserv_coalesce, _conserv_coalesce_pair);
duke@435 2026 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
duke@435 2027 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
duke@435 2028 tty->print_cr(", %d post alloc.", _post_alloc);
duke@435 2029 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
duke@435 2030 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
duke@435 2031 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
duke@435 2032 if( _used_cisc_instructions || _unused_cisc_instructions )
duke@435 2033 tty->print_cr("Used cisc instruction %d, remained in register %d",
duke@435 2034 _used_cisc_instructions, _unused_cisc_instructions);
duke@435 2035 if( _allocator_successes != 0 )
duke@435 2036 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
duke@435 2037 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
duke@435 2038 }
duke@435 2039 #endif // not PRODUCT

mercurial