src/share/vm/opto/chaitin.cpp

Mon, 27 Aug 2012 09:46:38 -0700

author
kvn
date
Mon, 27 Aug 2012 09:46:38 -0700
changeset 4019
a1c7f6472621
parent 4007
f7cd53cedd78
child 4115
e626685e9f6c
permissions
-rw-r--r--

7148109: C2 compiler consumes too much heap resources
Summary: Add split_arena to allocate temporary arrays in PhaseChaitin::Split() and free them on method's exit.
Reviewed-by: twisti

duke@435 1 /*
kvn@3577 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "compiler/oopMap.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "opto/addnode.hpp"
stefank@2314 30 #include "opto/block.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/chaitin.hpp"
stefank@2314 34 #include "opto/coalesce.hpp"
stefank@2314 35 #include "opto/connode.hpp"
stefank@2314 36 #include "opto/idealGraphPrinter.hpp"
stefank@2314 37 #include "opto/indexSet.hpp"
stefank@2314 38 #include "opto/machnode.hpp"
stefank@2314 39 #include "opto/memnode.hpp"
stefank@2314 40 #include "opto/opcodes.hpp"
stefank@2314 41 #include "opto/rootnode.hpp"
duke@435 42
duke@435 43 //=============================================================================
duke@435 44
duke@435 45 #ifndef PRODUCT
duke@435 46 void LRG::dump( ) const {
duke@435 47 ttyLocker ttyl;
duke@435 48 tty->print("%d ",num_regs());
duke@435 49 _mask.dump();
duke@435 50 if( _msize_valid ) {
duke@435 51 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
duke@435 52 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
duke@435 53 } else {
duke@435 54 tty->print(", #?(%d) ",_mask.Size());
duke@435 55 }
duke@435 56
duke@435 57 tty->print("EffDeg: ");
duke@435 58 if( _degree_valid ) tty->print( "%d ", _eff_degree );
duke@435 59 else tty->print("? ");
duke@435 60
never@730 61 if( is_multidef() ) {
duke@435 62 tty->print("MultiDef ");
duke@435 63 if (_defs != NULL) {
duke@435 64 tty->print("(");
duke@435 65 for (int i = 0; i < _defs->length(); i++) {
duke@435 66 tty->print("N%d ", _defs->at(i)->_idx);
duke@435 67 }
duke@435 68 tty->print(") ");
duke@435 69 }
duke@435 70 }
duke@435 71 else if( _def == 0 ) tty->print("Dead ");
duke@435 72 else tty->print("Def: N%d ",_def->_idx);
duke@435 73
duke@435 74 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
duke@435 75 // Flags
duke@435 76 if( _is_oop ) tty->print("Oop ");
duke@435 77 if( _is_float ) tty->print("Float ");
kvn@3882 78 if( _is_vector ) tty->print("Vector ");
duke@435 79 if( _was_spilled1 ) tty->print("Spilled ");
duke@435 80 if( _was_spilled2 ) tty->print("Spilled2 ");
duke@435 81 if( _direct_conflict ) tty->print("Direct_conflict ");
duke@435 82 if( _fat_proj ) tty->print("Fat ");
duke@435 83 if( _was_lo ) tty->print("Lo ");
duke@435 84 if( _has_copy ) tty->print("Copy ");
duke@435 85 if( _at_risk ) tty->print("Risk ");
duke@435 86
duke@435 87 if( _must_spill ) tty->print("Must_spill ");
duke@435 88 if( _is_bound ) tty->print("Bound ");
duke@435 89 if( _msize_valid ) {
duke@435 90 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
duke@435 91 }
duke@435 92
duke@435 93 tty->cr();
duke@435 94 }
duke@435 95 #endif
duke@435 96
duke@435 97 //------------------------------score------------------------------------------
duke@435 98 // Compute score from cost and area. Low score is best to spill.
duke@435 99 static double raw_score( double cost, double area ) {
duke@435 100 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
duke@435 101 }
duke@435 102
duke@435 103 double LRG::score() const {
duke@435 104 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
duke@435 105 // Bigger area lowers score, encourages spilling this live range.
duke@435 106 // Bigger cost raise score, prevents spilling this live range.
duke@435 107 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
duke@435 108 // to turn a divide by a constant into a multiply by the reciprical).
duke@435 109 double score = raw_score( _cost, _area);
duke@435 110
duke@435 111 // Account for area. Basically, LRGs covering large areas are better
duke@435 112 // to spill because more other LRGs get freed up.
duke@435 113 if( _area == 0.0 ) // No area? Then no progress to spill
duke@435 114 return 1e35;
duke@435 115
duke@435 116 if( _was_spilled2 ) // If spilled once before, we are unlikely
duke@435 117 return score + 1e30; // to make progress again.
duke@435 118
duke@435 119 if( _cost >= _area*3.0 ) // Tiny area relative to cost
duke@435 120 return score + 1e17; // Probably no progress to spill
duke@435 121
duke@435 122 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
duke@435 123 return score + 1e10; // Likely no progress to spill
duke@435 124
duke@435 125 return score;
duke@435 126 }
duke@435 127
duke@435 128 //------------------------------LRG_List---------------------------------------
duke@435 129 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
duke@435 130 memset( _lidxs, 0, sizeof(uint)*max );
duke@435 131 }
duke@435 132
duke@435 133 void LRG_List::extend( uint nidx, uint lidx ) {
duke@435 134 _nesting.check();
duke@435 135 if( nidx >= _max ) {
duke@435 136 uint size = 16;
duke@435 137 while( size <= nidx ) size <<=1;
duke@435 138 _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
duke@435 139 _max = size;
duke@435 140 }
duke@435 141 while( _cnt <= nidx )
duke@435 142 _lidxs[_cnt++] = 0;
duke@435 143 _lidxs[nidx] = lidx;
duke@435 144 }
duke@435 145
duke@435 146 #define NUMBUCKS 3
duke@435 147
duke@435 148 //------------------------------Chaitin----------------------------------------
duke@435 149 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
duke@435 150 : PhaseRegAlloc(unique, cfg, matcher,
duke@435 151 #ifndef PRODUCT
duke@435 152 print_chaitin_statistics
duke@435 153 #else
duke@435 154 NULL
duke@435 155 #endif
duke@435 156 ),
duke@435 157 _names(unique), _uf_map(unique),
duke@435 158 _maxlrg(0), _live(0),
duke@435 159 _spilled_once(Thread::current()->resource_area()),
duke@435 160 _spilled_twice(Thread::current()->resource_area()),
duke@435 161 _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
duke@435 162 _oldphi(unique)
duke@435 163 #ifndef PRODUCT
duke@435 164 , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
duke@435 165 #endif
duke@435 166 {
duke@435 167 NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
kvn@1108 168
kvn@1108 169 _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
kvn@1108 170
duke@435 171 uint i,j;
duke@435 172 // Build a list of basic blocks, sorted by frequency
duke@435 173 _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
duke@435 174 // Experiment with sorting strategies to speed compilation
duke@435 175 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
duke@435 176 Block **buckets[NUMBUCKS]; // Array of buckets
duke@435 177 uint buckcnt[NUMBUCKS]; // Array of bucket counters
duke@435 178 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
duke@435 179 for( i = 0; i < NUMBUCKS; i++ ) {
duke@435 180 buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
duke@435 181 buckcnt[i] = 0;
duke@435 182 // Bump by three orders of magnitude each time
duke@435 183 cutoff *= 0.001;
duke@435 184 buckval[i] = cutoff;
duke@435 185 for( j = 0; j < _cfg._num_blocks; j++ ) {
duke@435 186 buckets[i][j] = NULL;
duke@435 187 }
duke@435 188 }
duke@435 189 // Sort blocks into buckets
duke@435 190 for( i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 191 for( j = 0; j < NUMBUCKS; j++ ) {
duke@435 192 if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
duke@435 193 // Assign block to end of list for appropriate bucket
duke@435 194 buckets[j][buckcnt[j]++] = _cfg._blocks[i];
duke@435 195 break; // kick out of inner loop
duke@435 196 }
duke@435 197 }
duke@435 198 }
duke@435 199 // Dump buckets into final block array
duke@435 200 uint blkcnt = 0;
duke@435 201 for( i = 0; i < NUMBUCKS; i++ ) {
duke@435 202 for( j = 0; j < buckcnt[i]; j++ ) {
duke@435 203 _blks[blkcnt++] = buckets[i][j];
duke@435 204 }
duke@435 205 }
duke@435 206
duke@435 207 assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
duke@435 208 }
duke@435 209
duke@435 210 void PhaseChaitin::Register_Allocate() {
duke@435 211
duke@435 212 // Above the OLD FP (and in registers) are the incoming arguments. Stack
duke@435 213 // slots in this area are called "arg_slots". Above the NEW FP (and in
duke@435 214 // registers) is the outgoing argument area; above that is the spill/temp
duke@435 215 // area. These are all "frame_slots". Arg_slots start at the zero
duke@435 216 // stack_slots and count up to the known arg_size. Frame_slots start at
duke@435 217 // the stack_slot #arg_size and go up. After allocation I map stack
duke@435 218 // slots to actual offsets. Stack-slots in the arg_slot area are biased
duke@435 219 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
duke@435 220
duke@435 221 _trip_cnt = 0;
duke@435 222 _alternate = 0;
duke@435 223 _matcher._allocation_started = true;
duke@435 224
kvn@4019 225 ResourceArea split_arena; // Arena for Split local resources
duke@435 226 ResourceArea live_arena; // Arena for liveness & IFG info
duke@435 227 ResourceMark rm(&live_arena);
duke@435 228
duke@435 229 // Need live-ness for the IFG; need the IFG for coalescing. If the
duke@435 230 // liveness is JUST for coalescing, then I can get some mileage by renaming
duke@435 231 // all copy-related live ranges low and then using the max copy-related
duke@435 232 // live range as a cut-off for LIVE and the IFG. In other words, I can
duke@435 233 // build a subset of LIVE and IFG just for copies.
duke@435 234 PhaseLive live(_cfg,_names,&live_arena);
duke@435 235
duke@435 236 // Need IFG for coalescing and coloring
duke@435 237 PhaseIFG ifg( &live_arena );
duke@435 238 _ifg = &ifg;
duke@435 239
duke@435 240 if (C->unique() > _names.Size()) _names.extend(C->unique()-1, 0);
duke@435 241
duke@435 242 // Come out of SSA world to the Named world. Assign (virtual) registers to
duke@435 243 // Nodes. Use the same register for all inputs and the output of PhiNodes
duke@435 244 // - effectively ending SSA form. This requires either coalescing live
duke@435 245 // ranges or inserting copies. For the moment, we insert "virtual copies"
duke@435 246 // - we pretend there is a copy prior to each Phi in predecessor blocks.
duke@435 247 // We will attempt to coalesce such "virtual copies" before we manifest
duke@435 248 // them for real.
duke@435 249 de_ssa();
duke@435 250
kvn@1001 251 #ifdef ASSERT
kvn@1001 252 // Veify the graph before RA.
kvn@1001 253 verify(&live_arena);
kvn@1001 254 #endif
kvn@1001 255
duke@435 256 {
duke@435 257 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 258 _live = NULL; // Mark live as being not available
duke@435 259 rm.reset_to_mark(); // Reclaim working storage
duke@435 260 IndexSet::reset_memory(C, &live_arena);
duke@435 261 ifg.init(_maxlrg); // Empty IFG
duke@435 262 gather_lrg_masks( false ); // Collect LRG masks
duke@435 263 live.compute( _maxlrg ); // Compute liveness
duke@435 264 _live = &live; // Mark LIVE as being available
duke@435 265 }
duke@435 266
duke@435 267 // Base pointers are currently "used" by instructions which define new
duke@435 268 // derived pointers. This makes base pointers live up to the where the
duke@435 269 // derived pointer is made, but not beyond. Really, they need to be live
duke@435 270 // across any GC point where the derived value is live. So this code looks
duke@435 271 // at all the GC points, and "stretches" the live range of any base pointer
duke@435 272 // to the GC point.
duke@435 273 if( stretch_base_pointer_live_ranges(&live_arena) ) {
duke@435 274 NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
duke@435 275 // Since some live range stretched, I need to recompute live
duke@435 276 _live = NULL;
duke@435 277 rm.reset_to_mark(); // Reclaim working storage
duke@435 278 IndexSet::reset_memory(C, &live_arena);
duke@435 279 ifg.init(_maxlrg);
duke@435 280 gather_lrg_masks( false );
duke@435 281 live.compute( _maxlrg );
duke@435 282 _live = &live;
duke@435 283 }
duke@435 284 // Create the interference graph using virtual copies
duke@435 285 build_ifg_virtual( ); // Include stack slots this time
duke@435 286
duke@435 287 // Aggressive (but pessimistic) copy coalescing.
duke@435 288 // This pass works on virtual copies. Any virtual copies which are not
duke@435 289 // coalesced get manifested as actual copies
duke@435 290 {
duke@435 291 // The IFG is/was triangular. I am 'squaring it up' so Union can run
duke@435 292 // faster. Union requires a 'for all' operation which is slow on the
duke@435 293 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
duke@435 294 // meaning I can visit all the Nodes neighbors less than a Node in time
duke@435 295 // O(# of neighbors), but I have to visit all the Nodes greater than a
duke@435 296 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
duke@435 297 _ifg->SquareUp();
duke@435 298
duke@435 299 PhaseAggressiveCoalesce coalesce( *this );
duke@435 300 coalesce.coalesce_driver( );
duke@435 301 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
duke@435 302 // not match the Phi itself, insert a copy.
duke@435 303 coalesce.insert_copies(_matcher);
duke@435 304 }
duke@435 305
duke@435 306 // After aggressive coalesce, attempt a first cut at coloring.
duke@435 307 // To color, we need the IFG and for that we need LIVE.
duke@435 308 {
duke@435 309 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 310 _live = NULL;
duke@435 311 rm.reset_to_mark(); // Reclaim working storage
duke@435 312 IndexSet::reset_memory(C, &live_arena);
duke@435 313 ifg.init(_maxlrg);
duke@435 314 gather_lrg_masks( true );
duke@435 315 live.compute( _maxlrg );
duke@435 316 _live = &live;
duke@435 317 }
duke@435 318
duke@435 319 // Build physical interference graph
duke@435 320 uint must_spill = 0;
duke@435 321 must_spill = build_ifg_physical( &live_arena );
duke@435 322 // If we have a guaranteed spill, might as well spill now
duke@435 323 if( must_spill ) {
duke@435 324 if( !_maxlrg ) return;
duke@435 325 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
duke@435 326 C->check_node_count(10*must_spill, "out of nodes before split");
duke@435 327 if (C->failing()) return;
kvn@4019 328 _maxlrg = Split(_maxlrg, &split_arena); // Split spilling LRG everywhere
duke@435 329 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
duke@435 330 // or we failed to split
duke@435 331 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
duke@435 332 if (C->failing()) return;
duke@435 333
duke@435 334 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 335
duke@435 336 compact(); // Compact LRGs; return new lower max lrg
duke@435 337
duke@435 338 {
duke@435 339 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 340 _live = NULL;
duke@435 341 rm.reset_to_mark(); // Reclaim working storage
duke@435 342 IndexSet::reset_memory(C, &live_arena);
duke@435 343 ifg.init(_maxlrg); // Build a new interference graph
duke@435 344 gather_lrg_masks( true ); // Collect intersect mask
duke@435 345 live.compute( _maxlrg ); // Compute LIVE
duke@435 346 _live = &live;
duke@435 347 }
duke@435 348 build_ifg_physical( &live_arena );
duke@435 349 _ifg->SquareUp();
duke@435 350 _ifg->Compute_Effective_Degree();
duke@435 351 // Only do conservative coalescing if requested
duke@435 352 if( OptoCoalesce ) {
duke@435 353 // Conservative (and pessimistic) copy coalescing of those spills
duke@435 354 PhaseConservativeCoalesce coalesce( *this );
duke@435 355 // If max live ranges greater than cutoff, don't color the stack.
duke@435 356 // This cutoff can be larger than below since it is only done once.
duke@435 357 coalesce.coalesce_driver( );
duke@435 358 }
duke@435 359 compress_uf_map_for_nodes();
duke@435 360
duke@435 361 #ifdef ASSERT
kvn@1001 362 verify(&live_arena, true);
duke@435 363 #endif
duke@435 364 } else {
duke@435 365 ifg.SquareUp();
duke@435 366 ifg.Compute_Effective_Degree();
duke@435 367 #ifdef ASSERT
duke@435 368 set_was_low();
duke@435 369 #endif
duke@435 370 }
duke@435 371
duke@435 372 // Prepare for Simplify & Select
duke@435 373 cache_lrg_info(); // Count degree of LRGs
duke@435 374
duke@435 375 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 376 // LRGs of low degree are trivially colorable.
duke@435 377 Simplify();
duke@435 378
duke@435 379 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 380 // Return whether or not something spills.
duke@435 381 uint spills = Select( );
duke@435 382
duke@435 383 // If we spill, split and recycle the entire thing
duke@435 384 while( spills ) {
duke@435 385 if( _trip_cnt++ > 24 ) {
duke@435 386 DEBUG_ONLY( dump_for_spill_split_recycle(); )
duke@435 387 if( _trip_cnt > 27 ) {
duke@435 388 C->record_method_not_compilable("failed spill-split-recycle sanity check");
duke@435 389 return;
duke@435 390 }
duke@435 391 }
duke@435 392
duke@435 393 if( !_maxlrg ) return;
kvn@4019 394 _maxlrg = Split(_maxlrg, &split_arena); // Split spilling LRG everywhere
duke@435 395 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
duke@435 396 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
duke@435 397 if (C->failing()) return;
duke@435 398
duke@435 399 compact(); // Compact LRGs; return new lower max lrg
duke@435 400
duke@435 401 // Nuke the live-ness and interference graph and LiveRanGe info
duke@435 402 {
duke@435 403 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 404 _live = NULL;
duke@435 405 rm.reset_to_mark(); // Reclaim working storage
duke@435 406 IndexSet::reset_memory(C, &live_arena);
duke@435 407 ifg.init(_maxlrg);
duke@435 408
duke@435 409 // Create LiveRanGe array.
duke@435 410 // Intersect register masks for all USEs and DEFs
duke@435 411 gather_lrg_masks( true );
duke@435 412 live.compute( _maxlrg );
duke@435 413 _live = &live;
duke@435 414 }
duke@435 415 must_spill = build_ifg_physical( &live_arena );
duke@435 416 _ifg->SquareUp();
duke@435 417 _ifg->Compute_Effective_Degree();
duke@435 418
duke@435 419 // Only do conservative coalescing if requested
duke@435 420 if( OptoCoalesce ) {
duke@435 421 // Conservative (and pessimistic) copy coalescing
duke@435 422 PhaseConservativeCoalesce coalesce( *this );
duke@435 423 // Check for few live ranges determines how aggressive coalesce is.
duke@435 424 coalesce.coalesce_driver( );
duke@435 425 }
duke@435 426 compress_uf_map_for_nodes();
duke@435 427 #ifdef ASSERT
kvn@1001 428 verify(&live_arena, true);
duke@435 429 #endif
duke@435 430 cache_lrg_info(); // Count degree of LRGs
duke@435 431
duke@435 432 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 433 // LRGs of low degree are trivially colorable.
duke@435 434 Simplify();
duke@435 435
duke@435 436 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 437 // Return whether or not something spills.
duke@435 438 spills = Select( );
duke@435 439 }
duke@435 440
duke@435 441 // Count number of Simplify-Select trips per coloring success.
duke@435 442 _allocator_attempts += _trip_cnt + 1;
duke@435 443 _allocator_successes += 1;
duke@435 444
duke@435 445 // Peephole remove copies
duke@435 446 post_allocate_copy_removal();
duke@435 447
kvn@1001 448 #ifdef ASSERT
kvn@1001 449 // Veify the graph after RA.
kvn@1001 450 verify(&live_arena);
kvn@1001 451 #endif
kvn@1001 452
duke@435 453 // max_reg is past the largest *register* used.
duke@435 454 // Convert that to a frame_slot number.
duke@435 455 if( _max_reg <= _matcher._new_SP )
duke@435 456 _framesize = C->out_preserve_stack_slots();
duke@435 457 else _framesize = _max_reg -_matcher._new_SP;
duke@435 458 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
duke@435 459
duke@435 460 // This frame must preserve the required fp alignment
never@854 461 _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
duke@435 462 assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
duke@435 463 #ifndef PRODUCT
duke@435 464 _total_framesize += _framesize;
duke@435 465 if( (int)_framesize > _max_framesize )
duke@435 466 _max_framesize = _framesize;
duke@435 467 #endif
duke@435 468
duke@435 469 // Convert CISC spills
duke@435 470 fixup_spills();
duke@435 471
duke@435 472 // Log regalloc results
duke@435 473 CompileLog* log = Compile::current()->log();
duke@435 474 if (log != NULL) {
duke@435 475 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
duke@435 476 }
duke@435 477
duke@435 478 if (C->failing()) return;
duke@435 479
duke@435 480 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 481
duke@435 482 // Move important info out of the live_arena to longer lasting storage.
duke@435 483 alloc_node_regs(_names.Size());
kvn@3882 484 for (uint i=0; i < _names.Size(); i++) {
kvn@3882 485 if (_names[i]) { // Live range associated with Node?
kvn@3882 486 LRG &lrg = lrgs(_names[i]);
kvn@3882 487 if (!lrg.alive()) {
kvn@4007 488 set_bad(i);
kvn@3882 489 } else if (lrg.num_regs() == 1) {
kvn@4007 490 set1(i, lrg.reg());
kvn@4007 491 } else { // Must be a register-set
kvn@4007 492 if (!lrg._fat_proj) { // Must be aligned adjacent register set
duke@435 493 // Live ranges record the highest register in their mask.
duke@435 494 // We want the low register for the AD file writer's convenience.
kvn@4007 495 OptoReg::Name hi = lrg.reg(); // Get hi register
kvn@4007 496 OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
kvn@4007 497 // We have to use pair [lo,lo+1] even for wide vectors because
kvn@4007 498 // the rest of code generation works only with pairs. It is safe
kvn@4007 499 // since for registers encoding only 'lo' is used.
kvn@4007 500 // Second reg from pair is used in ScheduleAndBundle on SPARC where
kvn@4007 501 // vector max size is 8 which corresponds to registers pair.
kvn@4007 502 // It is also used in BuildOopMaps but oop operations are not
kvn@4007 503 // vectorized.
kvn@4007 504 set2(i, lo);
duke@435 505 } else { // Misaligned; extract 2 bits
duke@435 506 OptoReg::Name hi = lrg.reg(); // Get hi register
duke@435 507 lrg.Remove(hi); // Yank from mask
duke@435 508 int lo = lrg.mask().find_first_elem(); // Find lo
kvn@4007 509 set_pair(i, hi, lo);
duke@435 510 }
duke@435 511 }
duke@435 512 if( lrg._is_oop ) _node_oops.set(i);
duke@435 513 } else {
kvn@4007 514 set_bad(i);
duke@435 515 }
duke@435 516 }
duke@435 517
duke@435 518 // Done!
duke@435 519 _live = NULL;
duke@435 520 _ifg = NULL;
duke@435 521 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
duke@435 522 }
duke@435 523
duke@435 524 //------------------------------de_ssa-----------------------------------------
duke@435 525 void PhaseChaitin::de_ssa() {
duke@435 526 // Set initial Names for all Nodes. Most Nodes get the virtual register
duke@435 527 // number. A few get the ZERO live range number. These do not
duke@435 528 // get allocated, but instead rely on correct scheduling to ensure that
duke@435 529 // only one instance is simultaneously live at a time.
duke@435 530 uint lr_counter = 1;
duke@435 531 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 532 Block *b = _cfg._blocks[i];
duke@435 533 uint cnt = b->_nodes.size();
duke@435 534
duke@435 535 // Handle all the normal Nodes in the block
duke@435 536 for( uint j = 0; j < cnt; j++ ) {
duke@435 537 Node *n = b->_nodes[j];
duke@435 538 // Pre-color to the zero live range, or pick virtual register
duke@435 539 const RegMask &rm = n->out_RegMask();
duke@435 540 _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
duke@435 541 }
duke@435 542 }
duke@435 543 // Reset the Union-Find mapping to be identity
duke@435 544 reset_uf_map(lr_counter);
duke@435 545 }
duke@435 546
duke@435 547
duke@435 548 //------------------------------gather_lrg_masks-------------------------------
duke@435 549 // Gather LiveRanGe information, including register masks. Modification of
duke@435 550 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
duke@435 551 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
duke@435 552
duke@435 553 // Nail down the frame pointer live range
duke@435 554 uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
duke@435 555 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
duke@435 556
duke@435 557 // For all blocks
duke@435 558 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 559 Block *b = _cfg._blocks[i];
duke@435 560
duke@435 561 // For all instructions
duke@435 562 for( uint j = 1; j < b->_nodes.size(); j++ ) {
duke@435 563 Node *n = b->_nodes[j];
duke@435 564 uint input_edge_start =1; // Skip control most nodes
duke@435 565 if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
duke@435 566 uint idx = n->is_Copy();
duke@435 567
duke@435 568 // Get virtual register number, same as LiveRanGe index
duke@435 569 uint vreg = n2lidx(n);
duke@435 570 LRG &lrg = lrgs(vreg);
duke@435 571 if( vreg ) { // No vreg means un-allocable (e.g. memory)
duke@435 572
duke@435 573 // Collect has-copy bit
duke@435 574 if( idx ) {
duke@435 575 lrg._has_copy = 1;
duke@435 576 uint clidx = n2lidx(n->in(idx));
duke@435 577 LRG &copy_src = lrgs(clidx);
duke@435 578 copy_src._has_copy = 1;
duke@435 579 }
duke@435 580
duke@435 581 // Check for float-vs-int live range (used in register-pressure
duke@435 582 // calculations)
duke@435 583 const Type *n_type = n->bottom_type();
kvn@3882 584 if (n_type->is_floatingpoint())
duke@435 585 lrg._is_float = 1;
duke@435 586
duke@435 587 // Check for twice prior spilling. Once prior spilling might have
duke@435 588 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
duke@435 589 // further spilling is unlikely to make progress.
duke@435 590 if( _spilled_once.test(n->_idx) ) {
duke@435 591 lrg._was_spilled1 = 1;
duke@435 592 if( _spilled_twice.test(n->_idx) )
duke@435 593 lrg._was_spilled2 = 1;
duke@435 594 }
duke@435 595
duke@435 596 #ifndef PRODUCT
duke@435 597 if (trace_spilling() && lrg._def != NULL) {
duke@435 598 // collect defs for MultiDef printing
duke@435 599 if (lrg._defs == NULL) {
kvn@2040 600 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
duke@435 601 lrg._defs->append(lrg._def);
duke@435 602 }
duke@435 603 lrg._defs->append(n);
duke@435 604 }
duke@435 605 #endif
duke@435 606
duke@435 607 // Check for a single def LRG; these can spill nicely
duke@435 608 // via rematerialization. Flag as NULL for no def found
duke@435 609 // yet, or 'n' for single def or -1 for many defs.
duke@435 610 lrg._def = lrg._def ? NodeSentinel : n;
duke@435 611
duke@435 612 // Limit result register mask to acceptable registers
duke@435 613 const RegMask &rm = n->out_RegMask();
duke@435 614 lrg.AND( rm );
duke@435 615
duke@435 616 int ireg = n->ideal_reg();
duke@435 617 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
duke@435 618 "oops must be in Op_RegP's" );
kvn@3882 619
kvn@3882 620 // Check for vector live range (only if vector register is used).
kvn@3882 621 // On SPARC vector uses RegD which could be misaligned so it is not
kvn@3882 622 // processes as vector in RA.
kvn@3882 623 if (RegMask::is_vector(ireg))
kvn@3882 624 lrg._is_vector = 1;
kvn@3882 625 assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
kvn@3882 626 "vector must be in vector registers");
kvn@3882 627
kvn@3882 628 // Check for bound register masks
kvn@3882 629 const RegMask &lrgmask = lrg.mask();
kvn@3882 630 if (lrgmask.is_bound(ireg))
kvn@3882 631 lrg._is_bound = 1;
kvn@3882 632
kvn@3882 633 // Check for maximum frequency value
kvn@3882 634 if (lrg._maxfreq < b->_freq)
kvn@3882 635 lrg._maxfreq = b->_freq;
kvn@3882 636
duke@435 637 // Check for oop-iness, or long/double
duke@435 638 // Check for multi-kill projection
duke@435 639 switch( ireg ) {
duke@435 640 case MachProjNode::fat_proj:
duke@435 641 // Fat projections have size equal to number of registers killed
duke@435 642 lrg.set_num_regs(rm.Size());
duke@435 643 lrg.set_reg_pressure(lrg.num_regs());
duke@435 644 lrg._fat_proj = 1;
duke@435 645 lrg._is_bound = 1;
duke@435 646 break;
duke@435 647 case Op_RegP:
duke@435 648 #ifdef _LP64
duke@435 649 lrg.set_num_regs(2); // Size is 2 stack words
duke@435 650 #else
duke@435 651 lrg.set_num_regs(1); // Size is 1 stack word
duke@435 652 #endif
duke@435 653 // Register pressure is tracked relative to the maximum values
duke@435 654 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
duke@435 655 // and relative to other types which compete for the same regs.
duke@435 656 //
duke@435 657 // The following table contains suggested values based on the
duke@435 658 // architectures as defined in each .ad file.
duke@435 659 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
duke@435 660 // compile-speed or performance.
duke@435 661 // Note1:
duke@435 662 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
duke@435 663 // since .ad registers are defined as high and low halves.
duke@435 664 // These reg_pressure values remain compatible with the code
duke@435 665 // in is_high_pressure() which relates get_invalid_mask_size(),
duke@435 666 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
duke@435 667 // Note2:
duke@435 668 // SPARC -d32 has 24 registers available for integral values,
duke@435 669 // but only 10 of these are safe for 64-bit longs.
duke@435 670 // Using set_reg_pressure(2) for both int and long means
duke@435 671 // the allocator will believe it can fit 26 longs into
duke@435 672 // registers. Using 2 for longs and 1 for ints means the
duke@435 673 // allocator will attempt to put 52 integers into registers.
duke@435 674 // The settings below limit this problem to methods with
duke@435 675 // many long values which are being run on 32-bit SPARC.
duke@435 676 //
duke@435 677 // ------------------- reg_pressure --------------------
duke@435 678 // Each entry is reg_pressure_per_value,number_of_regs
duke@435 679 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
duke@435 680 // IA32 2 1 1 1 1 6 6
duke@435 681 // IA64 1 1 1 1 1 50 41
duke@435 682 // SPARC 2 2 2 2 2 48 (24) 52 (26)
duke@435 683 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
duke@435 684 // AMD64 1 1 1 1 1 14 15
duke@435 685 // -----------------------------------------------------
duke@435 686 #if defined(SPARC)
duke@435 687 lrg.set_reg_pressure(2); // use for v9 as well
duke@435 688 #else
duke@435 689 lrg.set_reg_pressure(1); // normally one value per register
duke@435 690 #endif
duke@435 691 if( n_type->isa_oop_ptr() ) {
duke@435 692 lrg._is_oop = 1;
duke@435 693 }
duke@435 694 break;
duke@435 695 case Op_RegL: // Check for long or double
duke@435 696 case Op_RegD:
duke@435 697 lrg.set_num_regs(2);
duke@435 698 // Define platform specific register pressure
roland@2683 699 #if defined(SPARC) || defined(ARM)
duke@435 700 lrg.set_reg_pressure(2);
duke@435 701 #elif defined(IA32)
duke@435 702 if( ireg == Op_RegL ) {
duke@435 703 lrg.set_reg_pressure(2);
duke@435 704 } else {
duke@435 705 lrg.set_reg_pressure(1);
duke@435 706 }
duke@435 707 #else
duke@435 708 lrg.set_reg_pressure(1); // normally one value per register
duke@435 709 #endif
duke@435 710 // If this def of a double forces a mis-aligned double,
duke@435 711 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 712 // AND changes how we count interferences. A mis-aligned
duke@435 713 // double can interfere with TWO aligned pairs, or effectively
duke@435 714 // FOUR registers!
kvn@3882 715 if (rm.is_misaligned_pair()) {
duke@435 716 lrg._fat_proj = 1;
duke@435 717 lrg._is_bound = 1;
duke@435 718 }
duke@435 719 break;
duke@435 720 case Op_RegF:
duke@435 721 case Op_RegI:
coleenp@548 722 case Op_RegN:
duke@435 723 case Op_RegFlags:
duke@435 724 case 0: // not an ideal register
duke@435 725 lrg.set_num_regs(1);
duke@435 726 #ifdef SPARC
duke@435 727 lrg.set_reg_pressure(2);
duke@435 728 #else
duke@435 729 lrg.set_reg_pressure(1);
duke@435 730 #endif
duke@435 731 break;
kvn@3882 732 case Op_VecS:
kvn@3882 733 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
kvn@3882 734 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
kvn@3882 735 lrg.set_num_regs(RegMask::SlotsPerVecS);
kvn@3882 736 lrg.set_reg_pressure(1);
kvn@3882 737 break;
kvn@3882 738 case Op_VecD:
kvn@3882 739 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
kvn@3882 740 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
kvn@3882 741 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
kvn@3882 742 lrg.set_num_regs(RegMask::SlotsPerVecD);
kvn@3882 743 lrg.set_reg_pressure(1);
kvn@3882 744 break;
kvn@3882 745 case Op_VecX:
kvn@3882 746 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
kvn@3882 747 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
kvn@3882 748 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
kvn@3882 749 lrg.set_num_regs(RegMask::SlotsPerVecX);
kvn@3882 750 lrg.set_reg_pressure(1);
kvn@3882 751 break;
kvn@3882 752 case Op_VecY:
kvn@3882 753 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
kvn@3882 754 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
kvn@3882 755 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
kvn@3882 756 lrg.set_num_regs(RegMask::SlotsPerVecY);
kvn@3882 757 lrg.set_reg_pressure(1);
kvn@3882 758 break;
duke@435 759 default:
duke@435 760 ShouldNotReachHere();
duke@435 761 }
duke@435 762 }
duke@435 763
duke@435 764 // Now do the same for inputs
duke@435 765 uint cnt = n->req();
duke@435 766 // Setup for CISC SPILLING
duke@435 767 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
duke@435 768 if( UseCISCSpill && after_aggressive ) {
duke@435 769 inp = n->cisc_operand();
duke@435 770 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
duke@435 771 // Convert operand number to edge index number
duke@435 772 inp = n->as_Mach()->operand_index(inp);
duke@435 773 }
duke@435 774 // Prepare register mask for each input
duke@435 775 for( uint k = input_edge_start; k < cnt; k++ ) {
duke@435 776 uint vreg = n2lidx(n->in(k));
duke@435 777 if( !vreg ) continue;
duke@435 778
duke@435 779 // If this instruction is CISC Spillable, add the flags
duke@435 780 // bit to its appropriate input
duke@435 781 if( UseCISCSpill && after_aggressive && inp == k ) {
duke@435 782 #ifndef PRODUCT
duke@435 783 if( TraceCISCSpill ) {
duke@435 784 tty->print(" use_cisc_RegMask: ");
duke@435 785 n->dump();
duke@435 786 }
duke@435 787 #endif
duke@435 788 n->as_Mach()->use_cisc_RegMask();
duke@435 789 }
duke@435 790
duke@435 791 LRG &lrg = lrgs(vreg);
duke@435 792 // // Testing for floating point code shape
duke@435 793 // Node *test = n->in(k);
duke@435 794 // if( test->is_Mach() ) {
duke@435 795 // MachNode *m = test->as_Mach();
duke@435 796 // int op = m->ideal_Opcode();
duke@435 797 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
duke@435 798 // int zzz = 1;
duke@435 799 // }
duke@435 800 // }
duke@435 801
duke@435 802 // Limit result register mask to acceptable registers.
duke@435 803 // Do not limit registers from uncommon uses before
duke@435 804 // AggressiveCoalesce. This effectively pre-virtual-splits
duke@435 805 // around uncommon uses of common defs.
duke@435 806 const RegMask &rm = n->in_RegMask(k);
duke@435 807 if( !after_aggressive &&
duke@435 808 _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
duke@435 809 // Since we are BEFORE aggressive coalesce, leave the register
duke@435 810 // mask untrimmed by the call. This encourages more coalescing.
duke@435 811 // Later, AFTER aggressive, this live range will have to spill
duke@435 812 // but the spiller handles slow-path calls very nicely.
duke@435 813 } else {
duke@435 814 lrg.AND( rm );
duke@435 815 }
kvn@3882 816
duke@435 817 // Check for bound register masks
duke@435 818 const RegMask &lrgmask = lrg.mask();
kvn@3882 819 int kreg = n->in(k)->ideal_reg();
kvn@3882 820 bool is_vect = RegMask::is_vector(kreg);
kvn@3882 821 assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
kvn@3882 822 is_vect || kreg == Op_RegD,
kvn@3882 823 "vector must be in vector registers");
kvn@3882 824 if (lrgmask.is_bound(kreg))
duke@435 825 lrg._is_bound = 1;
kvn@3882 826
duke@435 827 // If this use of a double forces a mis-aligned double,
duke@435 828 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 829 // AND changes how we count interferences. A mis-aligned
duke@435 830 // double can interfere with TWO aligned pairs, or effectively
duke@435 831 // FOUR registers!
kvn@3882 832 #ifdef ASSERT
kvn@3882 833 if (is_vect) {
kvn@3882 834 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
kvn@3882 835 assert(!lrg._fat_proj, "sanity");
kvn@3882 836 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
kvn@3882 837 }
kvn@3882 838 #endif
kvn@3882 839 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
duke@435 840 lrg._fat_proj = 1;
duke@435 841 lrg._is_bound = 1;
duke@435 842 }
duke@435 843 // if the LRG is an unaligned pair, we will have to spill
duke@435 844 // so clear the LRG's register mask if it is not already spilled
kvn@3882 845 if (!is_vect && !n->is_SpillCopy() &&
kvn@3882 846 (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
kvn@3882 847 lrgmask.is_misaligned_pair()) {
duke@435 848 lrg.Clear();
duke@435 849 }
duke@435 850
duke@435 851 // Check for maximum frequency value
duke@435 852 if( lrg._maxfreq < b->_freq )
duke@435 853 lrg._maxfreq = b->_freq;
duke@435 854
duke@435 855 } // End for all allocated inputs
duke@435 856 } // end for all instructions
duke@435 857 } // end for all blocks
duke@435 858
duke@435 859 // Final per-liverange setup
kvn@3882 860 for (uint i2=0; i2<_maxlrg; i2++) {
duke@435 861 LRG &lrg = lrgs(i2);
kvn@3882 862 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
kvn@3882 863 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
kvn@3882 864 lrg.clear_to_sets();
kvn@3882 865 }
duke@435 866 lrg.compute_set_mask_size();
kvn@3882 867 if (lrg.not_free()) { // Handle case where we lose from the start
duke@435 868 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 869 lrg._direct_conflict = 1;
duke@435 870 }
duke@435 871 lrg.set_degree(0); // no neighbors in IFG yet
duke@435 872 }
duke@435 873 }
duke@435 874
duke@435 875 //------------------------------set_was_low------------------------------------
duke@435 876 // Set the was-lo-degree bit. Conservative coalescing should not change the
duke@435 877 // colorability of the graph. If any live range was of low-degree before
duke@435 878 // coalescing, it should Simplify. This call sets the was-lo-degree bit.
duke@435 879 // The bit is checked in Simplify.
duke@435 880 void PhaseChaitin::set_was_low() {
duke@435 881 #ifdef ASSERT
duke@435 882 for( uint i = 1; i < _maxlrg; i++ ) {
duke@435 883 int size = lrgs(i).num_regs();
duke@435 884 uint old_was_lo = lrgs(i)._was_lo;
duke@435 885 lrgs(i)._was_lo = 0;
duke@435 886 if( lrgs(i).lo_degree() ) {
duke@435 887 lrgs(i)._was_lo = 1; // Trivially of low degree
duke@435 888 } else { // Else check the Brigg's assertion
duke@435 889 // Brigg's observation is that the lo-degree neighbors of a
duke@435 890 // hi-degree live range will not interfere with the color choices
duke@435 891 // of said hi-degree live range. The Simplify reverse-stack-coloring
duke@435 892 // order takes care of the details. Hence you do not have to count
duke@435 893 // low-degree neighbors when determining if this guy colors.
duke@435 894 int briggs_degree = 0;
duke@435 895 IndexSet *s = _ifg->neighbors(i);
duke@435 896 IndexSetIterator elements(s);
duke@435 897 uint lidx;
duke@435 898 while((lidx = elements.next()) != 0) {
duke@435 899 if( !lrgs(lidx).lo_degree() )
duke@435 900 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
duke@435 901 }
duke@435 902 if( briggs_degree < lrgs(i).degrees_of_freedom() )
duke@435 903 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
duke@435 904 }
duke@435 905 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
duke@435 906 }
duke@435 907 #endif
duke@435 908 }
duke@435 909
duke@435 910 #define REGISTER_CONSTRAINED 16
duke@435 911
duke@435 912 //------------------------------cache_lrg_info---------------------------------
duke@435 913 // Compute cost/area ratio, in case we spill. Build the lo-degree list.
duke@435 914 void PhaseChaitin::cache_lrg_info( ) {
duke@435 915
duke@435 916 for( uint i = 1; i < _maxlrg; i++ ) {
duke@435 917 LRG &lrg = lrgs(i);
duke@435 918
duke@435 919 // Check for being of low degree: means we can be trivially colored.
duke@435 920 // Low degree, dead or must-spill guys just get to simplify right away
duke@435 921 if( lrg.lo_degree() ||
duke@435 922 !lrg.alive() ||
duke@435 923 lrg._must_spill ) {
duke@435 924 // Split low degree list into those guys that must get a
duke@435 925 // register and those that can go to register or stack.
duke@435 926 // The idea is LRGs that can go register or stack color first when
duke@435 927 // they have a good chance of getting a register. The register-only
duke@435 928 // lo-degree live ranges always get a register.
duke@435 929 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
duke@435 930 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
duke@435 931 lrg._next = _lo_stk_degree;
duke@435 932 _lo_stk_degree = i;
duke@435 933 } else {
duke@435 934 lrg._next = _lo_degree;
duke@435 935 _lo_degree = i;
duke@435 936 }
duke@435 937 } else { // Else high degree
duke@435 938 lrgs(_hi_degree)._prev = i;
duke@435 939 lrg._next = _hi_degree;
duke@435 940 lrg._prev = 0;
duke@435 941 _hi_degree = i;
duke@435 942 }
duke@435 943 }
duke@435 944 }
duke@435 945
duke@435 946 //------------------------------Pre-Simplify-----------------------------------
duke@435 947 // Simplify the IFG by removing LRGs of low degree that have NO copies
duke@435 948 void PhaseChaitin::Pre_Simplify( ) {
duke@435 949
duke@435 950 // Warm up the lo-degree no-copy list
duke@435 951 int lo_no_copy = 0;
duke@435 952 for( uint i = 1; i < _maxlrg; i++ ) {
duke@435 953 if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
duke@435 954 !lrgs(i).alive() ||
duke@435 955 lrgs(i)._must_spill ) {
duke@435 956 lrgs(i)._next = lo_no_copy;
duke@435 957 lo_no_copy = i;
duke@435 958 }
duke@435 959 }
duke@435 960
duke@435 961 while( lo_no_copy ) {
duke@435 962 uint lo = lo_no_copy;
duke@435 963 lo_no_copy = lrgs(lo)._next;
duke@435 964 int size = lrgs(lo).num_regs();
duke@435 965
duke@435 966 // Put the simplified guy on the simplified list.
duke@435 967 lrgs(lo)._next = _simplified;
duke@435 968 _simplified = lo;
duke@435 969
duke@435 970 // Yank this guy from the IFG.
duke@435 971 IndexSet *adj = _ifg->remove_node( lo );
duke@435 972
duke@435 973 // If any neighbors' degrees fall below their number of
duke@435 974 // allowed registers, then put that neighbor on the low degree
duke@435 975 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 976 // unchanged by this action. Thus the two are equal at most once,
duke@435 977 // so LRGs hit the lo-degree worklists at most once.
duke@435 978 IndexSetIterator elements(adj);
duke@435 979 uint neighbor;
duke@435 980 while ((neighbor = elements.next()) != 0) {
duke@435 981 LRG *n = &lrgs(neighbor);
duke@435 982 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 983
duke@435 984 // Check for just becoming of-low-degree
duke@435 985 if( n->just_lo_degree() && !n->_has_copy ) {
duke@435 986 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 987 // Put on lo-degree list
duke@435 988 n->_next = lo_no_copy;
duke@435 989 lo_no_copy = neighbor;
duke@435 990 }
duke@435 991 }
duke@435 992 } // End of while lo-degree no_copy worklist not empty
duke@435 993
duke@435 994 // No more lo-degree no-copy live ranges to simplify
duke@435 995 }
duke@435 996
duke@435 997 //------------------------------Simplify---------------------------------------
duke@435 998 // Simplify the IFG by removing LRGs of low degree.
duke@435 999 void PhaseChaitin::Simplify( ) {
duke@435 1000
duke@435 1001 while( 1 ) { // Repeat till simplified it all
duke@435 1002 // May want to explore simplifying lo_degree before _lo_stk_degree.
duke@435 1003 // This might result in more spills coloring into registers during
duke@435 1004 // Select().
duke@435 1005 while( _lo_degree || _lo_stk_degree ) {
duke@435 1006 // If possible, pull from lo_stk first
duke@435 1007 uint lo;
duke@435 1008 if( _lo_degree ) {
duke@435 1009 lo = _lo_degree;
duke@435 1010 _lo_degree = lrgs(lo)._next;
duke@435 1011 } else {
duke@435 1012 lo = _lo_stk_degree;
duke@435 1013 _lo_stk_degree = lrgs(lo)._next;
duke@435 1014 }
duke@435 1015
duke@435 1016 // Put the simplified guy on the simplified list.
duke@435 1017 lrgs(lo)._next = _simplified;
duke@435 1018 _simplified = lo;
duke@435 1019 // If this guy is "at risk" then mark his current neighbors
duke@435 1020 if( lrgs(lo)._at_risk ) {
duke@435 1021 IndexSetIterator elements(_ifg->neighbors(lo));
duke@435 1022 uint datum;
duke@435 1023 while ((datum = elements.next()) != 0) {
duke@435 1024 lrgs(datum)._risk_bias = lo;
duke@435 1025 }
duke@435 1026 }
duke@435 1027
duke@435 1028 // Yank this guy from the IFG.
duke@435 1029 IndexSet *adj = _ifg->remove_node( lo );
duke@435 1030
duke@435 1031 // If any neighbors' degrees fall below their number of
duke@435 1032 // allowed registers, then put that neighbor on the low degree
duke@435 1033 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 1034 // unchanged by this action. Thus the two are equal at most once,
duke@435 1035 // so LRGs hit the lo-degree worklist at most once.
duke@435 1036 IndexSetIterator elements(adj);
duke@435 1037 uint neighbor;
duke@435 1038 while ((neighbor = elements.next()) != 0) {
duke@435 1039 LRG *n = &lrgs(neighbor);
duke@435 1040 #ifdef ASSERT
kvn@985 1041 if( VerifyOpto || VerifyRegisterAllocator ) {
duke@435 1042 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 1043 }
duke@435 1044 #endif
duke@435 1045
duke@435 1046 // Check for just becoming of-low-degree just counting registers.
duke@435 1047 // _must_spill live ranges are already on the low degree list.
duke@435 1048 if( n->just_lo_degree() && !n->_must_spill ) {
duke@435 1049 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 1050 // Pull from hi-degree list
duke@435 1051 uint prev = n->_prev;
duke@435 1052 uint next = n->_next;
duke@435 1053 if( prev ) lrgs(prev)._next = next;
duke@435 1054 else _hi_degree = next;
duke@435 1055 lrgs(next)._prev = prev;
duke@435 1056 n->_next = _lo_degree;
duke@435 1057 _lo_degree = neighbor;
duke@435 1058 }
duke@435 1059 }
duke@435 1060 } // End of while lo-degree/lo_stk_degree worklist not empty
duke@435 1061
duke@435 1062 // Check for got everything: is hi-degree list empty?
duke@435 1063 if( !_hi_degree ) break;
duke@435 1064
duke@435 1065 // Time to pick a potential spill guy
duke@435 1066 uint lo_score = _hi_degree;
duke@435 1067 double score = lrgs(lo_score).score();
duke@435 1068 double area = lrgs(lo_score)._area;
kvn@1443 1069 double cost = lrgs(lo_score)._cost;
kvn@1443 1070 bool bound = lrgs(lo_score)._is_bound;
duke@435 1071
duke@435 1072 // Find cheapest guy
duke@435 1073 debug_only( int lo_no_simplify=0; );
kvn@1447 1074 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
duke@435 1075 assert( !(*_ifg->_yanked)[i], "" );
duke@435 1076 // It's just vaguely possible to move hi-degree to lo-degree without
duke@435 1077 // going through a just-lo-degree stage: If you remove a double from
duke@435 1078 // a float live range it's degree will drop by 2 and you can skip the
duke@435 1079 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
duke@435 1080 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
duke@435 1081 if( lrgs(i).lo_degree() ) {
duke@435 1082 lo_score = i;
duke@435 1083 break;
duke@435 1084 }
duke@435 1085 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
duke@435 1086 double iscore = lrgs(i).score();
duke@435 1087 double iarea = lrgs(i)._area;
kvn@1443 1088 double icost = lrgs(i)._cost;
kvn@1443 1089 bool ibound = lrgs(i)._is_bound;
duke@435 1090
duke@435 1091 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
duke@435 1092 // wins. Ties happen because all live ranges in question have spilled
duke@435 1093 // a few times before and the spill-score adds a huge number which
duke@435 1094 // washes out the low order bits. We are choosing the lesser of 2
duke@435 1095 // evils; in this case pick largest area to spill.
kvn@1443 1096 // Ties also happen when live ranges are defined and used only inside
kvn@1443 1097 // one block. In which case their area is 0 and score set to max.
kvn@1443 1098 // In such case choose bound live range over unbound to free registers
kvn@1443 1099 // or with smaller cost to spill.
duke@435 1100 if( iscore < score ||
kvn@1443 1101 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
kvn@1443 1102 (iscore == score && iarea == area &&
kvn@1443 1103 ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
duke@435 1104 lo_score = i;
duke@435 1105 score = iscore;
duke@435 1106 area = iarea;
kvn@1443 1107 cost = icost;
kvn@1443 1108 bound = ibound;
duke@435 1109 }
duke@435 1110 }
duke@435 1111 LRG *lo_lrg = &lrgs(lo_score);
duke@435 1112 // The live range we choose for spilling is either hi-degree, or very
duke@435 1113 // rarely it can be low-degree. If we choose a hi-degree live range
duke@435 1114 // there better not be any lo-degree choices.
duke@435 1115 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
duke@435 1116
duke@435 1117 // Pull from hi-degree list
duke@435 1118 uint prev = lo_lrg->_prev;
duke@435 1119 uint next = lo_lrg->_next;
duke@435 1120 if( prev ) lrgs(prev)._next = next;
duke@435 1121 else _hi_degree = next;
duke@435 1122 lrgs(next)._prev = prev;
duke@435 1123 // Jam him on the lo-degree list, despite his high degree.
duke@435 1124 // Maybe he'll get a color, and maybe he'll spill.
duke@435 1125 // Only Select() will know.
duke@435 1126 lrgs(lo_score)._at_risk = true;
duke@435 1127 _lo_degree = lo_score;
duke@435 1128 lo_lrg->_next = 0;
duke@435 1129
duke@435 1130 } // End of while not simplified everything
duke@435 1131
duke@435 1132 }
duke@435 1133
kvn@4007 1134 //------------------------------is_legal_reg-----------------------------------
kvn@4007 1135 // Is 'reg' register legal for 'lrg'?
kvn@4007 1136 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
kvn@4007 1137 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
kvn@4007 1138 lrg.mask().Member(OptoReg::add(reg,-chunk))) {
kvn@4007 1139 // RA uses OptoReg which represent the highest element of a registers set.
kvn@4007 1140 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
kvn@4007 1141 // in which XMMd is used by RA to represent such vectors. A double value
kvn@4007 1142 // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
kvn@4007 1143 // The register mask uses largest bits set of overlapping register sets.
kvn@4007 1144 // On x86 with AVX it uses 8 bits for each XMM registers set.
kvn@4007 1145 //
kvn@4007 1146 // The 'lrg' already has cleared-to-set register mask (done in Select()
kvn@4007 1147 // before calling choose_color()). Passing mask.Member(reg) check above
kvn@4007 1148 // indicates that the size (num_regs) of 'reg' set is less or equal to
kvn@4007 1149 // 'lrg' set size.
kvn@4007 1150 // For set size 1 any register which is member of 'lrg' mask is legal.
kvn@4007 1151 if (lrg.num_regs()==1)
kvn@4007 1152 return true;
kvn@4007 1153 // For larger sets only an aligned register with the same set size is legal.
kvn@4007 1154 int mask = lrg.num_regs()-1;
kvn@4007 1155 if ((reg&mask) == mask)
kvn@4007 1156 return true;
kvn@4007 1157 }
kvn@4007 1158 return false;
kvn@4007 1159 }
kvn@4007 1160
duke@435 1161 //------------------------------bias_color-------------------------------------
duke@435 1162 // Choose a color using the biasing heuristic
duke@435 1163 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
duke@435 1164
duke@435 1165 // Check for "at_risk" LRG's
duke@435 1166 uint risk_lrg = Find(lrg._risk_bias);
duke@435 1167 if( risk_lrg != 0 ) {
duke@435 1168 // Walk the colored neighbors of the "at_risk" candidate
duke@435 1169 // Choose a color which is both legal and already taken by a neighbor
duke@435 1170 // of the "at_risk" candidate in order to improve the chances of the
duke@435 1171 // "at_risk" candidate of coloring
duke@435 1172 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
duke@435 1173 uint datum;
duke@435 1174 while ((datum = elements.next()) != 0) {
duke@435 1175 OptoReg::Name reg = lrgs(datum).reg();
duke@435 1176 // If this LRG's register is legal for us, choose it
kvn@4007 1177 if (is_legal_reg(lrg, reg, chunk))
duke@435 1178 return reg;
duke@435 1179 }
duke@435 1180 }
duke@435 1181
duke@435 1182 uint copy_lrg = Find(lrg._copy_bias);
duke@435 1183 if( copy_lrg != 0 ) {
duke@435 1184 // If he has a color,
duke@435 1185 if( !(*(_ifg->_yanked))[copy_lrg] ) {
duke@435 1186 OptoReg::Name reg = lrgs(copy_lrg).reg();
duke@435 1187 // And it is legal for you,
kvn@4007 1188 if (is_legal_reg(lrg, reg, chunk))
duke@435 1189 return reg;
duke@435 1190 } else if( chunk == 0 ) {
duke@435 1191 // Choose a color which is legal for him
duke@435 1192 RegMask tempmask = lrg.mask();
duke@435 1193 tempmask.AND(lrgs(copy_lrg).mask());
kvn@3882 1194 tempmask.clear_to_sets(lrg.num_regs());
kvn@3882 1195 OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
kvn@3882 1196 if (OptoReg::is_valid(reg))
duke@435 1197 return reg;
duke@435 1198 }
duke@435 1199 }
duke@435 1200
duke@435 1201 // If no bias info exists, just go with the register selection ordering
kvn@3882 1202 if (lrg._is_vector || lrg.num_regs() == 2) {
kvn@3882 1203 // Find an aligned set
kvn@3882 1204 return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
duke@435 1205 }
duke@435 1206
duke@435 1207 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
duke@435 1208 // copy removal to remove many more copies, by preventing a just-assigned
duke@435 1209 // register from being repeatedly assigned.
duke@435 1210 OptoReg::Name reg = lrg.mask().find_first_elem();
duke@435 1211 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
duke@435 1212 // This 'Remove; find; Insert' idiom is an expensive way to find the
duke@435 1213 // SECOND element in the mask.
duke@435 1214 lrg.Remove(reg);
duke@435 1215 OptoReg::Name reg2 = lrg.mask().find_first_elem();
duke@435 1216 lrg.Insert(reg);
duke@435 1217 if( OptoReg::is_reg(reg2))
duke@435 1218 reg = reg2;
duke@435 1219 }
duke@435 1220 return OptoReg::add( reg, chunk );
duke@435 1221 }
duke@435 1222
duke@435 1223 //------------------------------choose_color-----------------------------------
duke@435 1224 // Choose a color in the current chunk
duke@435 1225 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
duke@435 1226 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
duke@435 1227 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
duke@435 1228
duke@435 1229 if( lrg.num_regs() == 1 || // Common Case
duke@435 1230 !lrg._fat_proj ) // Aligned+adjacent pairs ok
duke@435 1231 // Use a heuristic to "bias" the color choice
duke@435 1232 return bias_color(lrg, chunk);
duke@435 1233
kvn@3882 1234 assert(!lrg._is_vector, "should be not vector here" );
duke@435 1235 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
duke@435 1236
duke@435 1237 // Fat-proj case or misaligned double argument.
duke@435 1238 assert(lrg.compute_mask_size() == lrg.num_regs() ||
duke@435 1239 lrg.num_regs() == 2,"fat projs exactly color" );
duke@435 1240 assert( !chunk, "always color in 1st chunk" );
duke@435 1241 // Return the highest element in the set.
duke@435 1242 return lrg.mask().find_last_elem();
duke@435 1243 }
duke@435 1244
duke@435 1245 //------------------------------Select-----------------------------------------
duke@435 1246 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
duke@435 1247 // in reverse order of removal. As long as nothing of hi-degree was yanked,
duke@435 1248 // everything going back is guaranteed a color. Select that color. If some
duke@435 1249 // hi-degree LRG cannot get a color then we record that we must spill.
duke@435 1250 uint PhaseChaitin::Select( ) {
duke@435 1251 uint spill_reg = LRG::SPILL_REG;
duke@435 1252 _max_reg = OptoReg::Name(0); // Past max register used
duke@435 1253 while( _simplified ) {
duke@435 1254 // Pull next LRG from the simplified list - in reverse order of removal
duke@435 1255 uint lidx = _simplified;
duke@435 1256 LRG *lrg = &lrgs(lidx);
duke@435 1257 _simplified = lrg->_next;
duke@435 1258
duke@435 1259
duke@435 1260 #ifndef PRODUCT
duke@435 1261 if (trace_spilling()) {
duke@435 1262 ttyLocker ttyl;
duke@435 1263 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
duke@435 1264 lrg->degrees_of_freedom());
duke@435 1265 lrg->dump();
duke@435 1266 }
duke@435 1267 #endif
duke@435 1268
duke@435 1269 // Re-insert into the IFG
duke@435 1270 _ifg->re_insert(lidx);
duke@435 1271 if( !lrg->alive() ) continue;
duke@435 1272 // capture allstackedness flag before mask is hacked
duke@435 1273 const int is_allstack = lrg->mask().is_AllStack();
duke@435 1274
duke@435 1275 // Yeah, yeah, yeah, I know, I know. I can refactor this
duke@435 1276 // to avoid the GOTO, although the refactored code will not
duke@435 1277 // be much clearer. We arrive here IFF we have a stack-based
duke@435 1278 // live range that cannot color in the current chunk, and it
duke@435 1279 // has to move into the next free stack chunk.
duke@435 1280 int chunk = 0; // Current chunk is first chunk
duke@435 1281 retry_next_chunk:
duke@435 1282
duke@435 1283 // Remove neighbor colors
duke@435 1284 IndexSet *s = _ifg->neighbors(lidx);
duke@435 1285
duke@435 1286 debug_only(RegMask orig_mask = lrg->mask();)
duke@435 1287 IndexSetIterator elements(s);
duke@435 1288 uint neighbor;
duke@435 1289 while ((neighbor = elements.next()) != 0) {
duke@435 1290 // Note that neighbor might be a spill_reg. In this case, exclusion
duke@435 1291 // of its color will be a no-op, since the spill_reg chunk is in outer
duke@435 1292 // space. Also, if neighbor is in a different chunk, this exclusion
duke@435 1293 // will be a no-op. (Later on, if lrg runs out of possible colors in
duke@435 1294 // its chunk, a new chunk of color may be tried, in which case
duke@435 1295 // examination of neighbors is started again, at retry_next_chunk.)
duke@435 1296 LRG &nlrg = lrgs(neighbor);
duke@435 1297 OptoReg::Name nreg = nlrg.reg();
duke@435 1298 // Only subtract masks in the same chunk
duke@435 1299 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
duke@435 1300 #ifndef PRODUCT
duke@435 1301 uint size = lrg->mask().Size();
duke@435 1302 RegMask rm = lrg->mask();
duke@435 1303 #endif
duke@435 1304 lrg->SUBTRACT(nlrg.mask());
duke@435 1305 #ifndef PRODUCT
duke@435 1306 if (trace_spilling() && lrg->mask().Size() != size) {
duke@435 1307 ttyLocker ttyl;
duke@435 1308 tty->print("L%d ", lidx);
duke@435 1309 rm.dump();
duke@435 1310 tty->print(" intersected L%d ", neighbor);
duke@435 1311 nlrg.mask().dump();
duke@435 1312 tty->print(" removed ");
duke@435 1313 rm.SUBTRACT(lrg->mask());
duke@435 1314 rm.dump();
duke@435 1315 tty->print(" leaving ");
duke@435 1316 lrg->mask().dump();
duke@435 1317 tty->cr();
duke@435 1318 }
duke@435 1319 #endif
duke@435 1320 }
duke@435 1321 }
duke@435 1322 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
duke@435 1323 // Aligned pairs need aligned masks
kvn@3882 1324 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1325 if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
kvn@3882 1326 lrg->clear_to_sets();
kvn@3882 1327 }
duke@435 1328
duke@435 1329 // Check if a color is available and if so pick the color
duke@435 1330 OptoReg::Name reg = choose_color( *lrg, chunk );
duke@435 1331 #ifdef SPARC
duke@435 1332 debug_only(lrg->compute_set_mask_size());
kvn@3882 1333 assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
duke@435 1334 #endif
duke@435 1335
duke@435 1336 //---------------
duke@435 1337 // If we fail to color and the AllStack flag is set, trigger
duke@435 1338 // a chunk-rollover event
duke@435 1339 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
duke@435 1340 // Bump register mask up to next stack chunk
duke@435 1341 chunk += RegMask::CHUNK_SIZE;
duke@435 1342 lrg->Set_All();
duke@435 1343
duke@435 1344 goto retry_next_chunk;
duke@435 1345 }
duke@435 1346
duke@435 1347 //---------------
duke@435 1348 // Did we get a color?
duke@435 1349 else if( OptoReg::is_valid(reg)) {
duke@435 1350 #ifndef PRODUCT
duke@435 1351 RegMask avail_rm = lrg->mask();
duke@435 1352 #endif
duke@435 1353
duke@435 1354 // Record selected register
duke@435 1355 lrg->set_reg(reg);
duke@435 1356
duke@435 1357 if( reg >= _max_reg ) // Compute max register limit
duke@435 1358 _max_reg = OptoReg::add(reg,1);
duke@435 1359 // Fold reg back into normal space
duke@435 1360 reg = OptoReg::add(reg,-chunk);
duke@435 1361
duke@435 1362 // If the live range is not bound, then we actually had some choices
duke@435 1363 // to make. In this case, the mask has more bits in it than the colors
twisti@1040 1364 // chosen. Restrict the mask to just what was picked.
kvn@3882 1365 int n_regs = lrg->num_regs();
kvn@3882 1366 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1367 if (n_regs == 1 || !lrg->_fat_proj) {
kvn@3882 1368 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
duke@435 1369 lrg->Clear(); // Clear the mask
duke@435 1370 lrg->Insert(reg); // Set regmask to match selected reg
kvn@3882 1371 // For vectors and pairs, also insert the low bit of the pair
kvn@3882 1372 for (int i = 1; i < n_regs; i++)
kvn@3882 1373 lrg->Insert(OptoReg::add(reg,-i));
kvn@3882 1374 lrg->set_mask_size(n_regs);
duke@435 1375 } else { // Else fatproj
duke@435 1376 // mask must be equal to fatproj bits, by definition
duke@435 1377 }
duke@435 1378 #ifndef PRODUCT
duke@435 1379 if (trace_spilling()) {
duke@435 1380 ttyLocker ttyl;
duke@435 1381 tty->print("L%d selected ", lidx);
duke@435 1382 lrg->mask().dump();
duke@435 1383 tty->print(" from ");
duke@435 1384 avail_rm.dump();
duke@435 1385 tty->cr();
duke@435 1386 }
duke@435 1387 #endif
duke@435 1388 // Note that reg is the highest-numbered register in the newly-bound mask.
duke@435 1389 } // end color available case
duke@435 1390
duke@435 1391 //---------------
duke@435 1392 // Live range is live and no colors available
duke@435 1393 else {
duke@435 1394 assert( lrg->alive(), "" );
never@730 1395 assert( !lrg->_fat_proj || lrg->is_multidef() ||
duke@435 1396 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
duke@435 1397 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
duke@435 1398
duke@435 1399 // Assign the special spillreg register
duke@435 1400 lrg->set_reg(OptoReg::Name(spill_reg++));
duke@435 1401 // Do not empty the regmask; leave mask_size lying around
duke@435 1402 // for use during Spilling
duke@435 1403 #ifndef PRODUCT
duke@435 1404 if( trace_spilling() ) {
duke@435 1405 ttyLocker ttyl;
duke@435 1406 tty->print("L%d spilling with neighbors: ", lidx);
duke@435 1407 s->dump();
duke@435 1408 debug_only(tty->print(" original mask: "));
duke@435 1409 debug_only(orig_mask.dump());
duke@435 1410 dump_lrg(lidx);
duke@435 1411 }
duke@435 1412 #endif
duke@435 1413 } // end spill case
duke@435 1414
duke@435 1415 }
duke@435 1416
duke@435 1417 return spill_reg-LRG::SPILL_REG; // Return number of spills
duke@435 1418 }
duke@435 1419
duke@435 1420
duke@435 1421 //------------------------------copy_was_spilled-------------------------------
duke@435 1422 // Copy 'was_spilled'-edness from the source Node to the dst Node.
duke@435 1423 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
duke@435 1424 if( _spilled_once.test(src->_idx) ) {
duke@435 1425 _spilled_once.set(dst->_idx);
duke@435 1426 lrgs(Find(dst))._was_spilled1 = 1;
duke@435 1427 if( _spilled_twice.test(src->_idx) ) {
duke@435 1428 _spilled_twice.set(dst->_idx);
duke@435 1429 lrgs(Find(dst))._was_spilled2 = 1;
duke@435 1430 }
duke@435 1431 }
duke@435 1432 }
duke@435 1433
duke@435 1434 //------------------------------set_was_spilled--------------------------------
duke@435 1435 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
duke@435 1436 void PhaseChaitin::set_was_spilled( Node *n ) {
duke@435 1437 if( _spilled_once.test_set(n->_idx) )
duke@435 1438 _spilled_twice.set(n->_idx);
duke@435 1439 }
duke@435 1440
duke@435 1441 //------------------------------fixup_spills-----------------------------------
duke@435 1442 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
duke@435 1443 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
duke@435 1444 void PhaseChaitin::fixup_spills() {
duke@435 1445 // This function does only cisc spill work.
duke@435 1446 if( !UseCISCSpill ) return;
duke@435 1447
duke@435 1448 NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
duke@435 1449
duke@435 1450 // Grab the Frame Pointer
duke@435 1451 Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
duke@435 1452
duke@435 1453 // For all blocks
duke@435 1454 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 1455 Block *b = _cfg._blocks[i];
duke@435 1456
duke@435 1457 // For all instructions in block
duke@435 1458 uint last_inst = b->end_idx();
duke@435 1459 for( uint j = 1; j <= last_inst; j++ ) {
duke@435 1460 Node *n = b->_nodes[j];
duke@435 1461
duke@435 1462 // Dead instruction???
duke@435 1463 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
duke@435 1464 C->top() == n || // Or the random TOP node
duke@435 1465 n->is_Proj(), // Or a fat-proj kill node
duke@435 1466 "No dead instructions after post-alloc" );
duke@435 1467
duke@435 1468 int inp = n->cisc_operand();
duke@435 1469 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
duke@435 1470 // Convert operand number to edge index number
duke@435 1471 MachNode *mach = n->as_Mach();
duke@435 1472 inp = mach->operand_index(inp);
duke@435 1473 Node *src = n->in(inp); // Value to load or store
duke@435 1474 LRG &lrg_cisc = lrgs( Find_const(src) );
duke@435 1475 OptoReg::Name src_reg = lrg_cisc.reg();
duke@435 1476 // Doubles record the HIGH register of an adjacent pair.
duke@435 1477 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
duke@435 1478 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
duke@435 1479 // This is a CISC Spill, get stack offset and construct new node
duke@435 1480 #ifndef PRODUCT
duke@435 1481 if( TraceCISCSpill ) {
duke@435 1482 tty->print(" reg-instr: ");
duke@435 1483 n->dump();
duke@435 1484 }
duke@435 1485 #endif
duke@435 1486 int stk_offset = reg2offset(src_reg);
duke@435 1487 // Bailout if we might exceed node limit when spilling this instruction
duke@435 1488 C->check_node_count(0, "out of nodes fixing spills");
duke@435 1489 if (C->failing()) return;
duke@435 1490 // Transform node
duke@435 1491 MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
duke@435 1492 cisc->set_req(inp,fp); // Base register is frame pointer
duke@435 1493 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
duke@435 1494 assert( cisc->oper_input_base() == 2, "Only adding one edge");
duke@435 1495 cisc->ins_req(1,src); // Requires a memory edge
duke@435 1496 }
duke@435 1497 b->_nodes.map(j,cisc); // Insert into basic block
kvn@603 1498 n->subsume_by(cisc); // Correct graph
duke@435 1499 //
duke@435 1500 ++_used_cisc_instructions;
duke@435 1501 #ifndef PRODUCT
duke@435 1502 if( TraceCISCSpill ) {
duke@435 1503 tty->print(" cisc-instr: ");
duke@435 1504 cisc->dump();
duke@435 1505 }
duke@435 1506 #endif
duke@435 1507 } else {
duke@435 1508 #ifndef PRODUCT
duke@435 1509 if( TraceCISCSpill ) {
duke@435 1510 tty->print(" using reg-instr: ");
duke@435 1511 n->dump();
duke@435 1512 }
duke@435 1513 #endif
duke@435 1514 ++_unused_cisc_instructions; // input can be on stack
duke@435 1515 }
duke@435 1516 }
duke@435 1517
duke@435 1518 } // End of for all instructions
duke@435 1519
duke@435 1520 } // End of for all blocks
duke@435 1521 }
duke@435 1522
duke@435 1523 //------------------------------find_base_for_derived--------------------------
duke@435 1524 // Helper to stretch above; recursively discover the base Node for a
duke@435 1525 // given derived Node. Easy for AddP-related machine nodes, but needs
duke@435 1526 // to be recursive for derived Phis.
duke@435 1527 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
duke@435 1528 // See if already computed; if so return it
duke@435 1529 if( derived_base_map[derived->_idx] )
duke@435 1530 return derived_base_map[derived->_idx];
duke@435 1531
duke@435 1532 // See if this happens to be a base.
duke@435 1533 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
duke@435 1534 // pointers derived from NULL! These are always along paths that
duke@435 1535 // can't happen at run-time but the optimizer cannot deduce it so
duke@435 1536 // we have to handle it gracefully.
kvn@1164 1537 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1538 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1539 const TypePtr *tj = derived->bottom_type()->isa_ptr();
duke@435 1540 // If its an OOP with a non-zero offset, then it is derived.
kvn@1164 1541 if( tj == NULL || tj->_offset == 0 ) {
duke@435 1542 derived_base_map[derived->_idx] = derived;
duke@435 1543 return derived;
duke@435 1544 }
duke@435 1545 // Derived is NULL+offset? Base is NULL!
duke@435 1546 if( derived->is_Con() ) {
kvn@1164 1547 Node *base = _matcher.mach_null();
kvn@1164 1548 assert(base != NULL, "sanity");
kvn@1164 1549 if (base->in(0) == NULL) {
kvn@1164 1550 // Initialize it once and make it shared:
kvn@1164 1551 // set control to _root and place it into Start block
kvn@1164 1552 // (where top() node is placed).
kvn@1164 1553 base->init_req(0, _cfg._root);
kvn@1164 1554 Block *startb = _cfg._bbs[C->top()->_idx];
kvn@1164 1555 startb->_nodes.insert(startb->find_node(C->top()), base );
kvn@1164 1556 _cfg._bbs.map( base->_idx, startb );
kvn@1164 1557 assert (n2lidx(base) == 0, "should not have LRG yet");
kvn@1164 1558 }
kvn@1164 1559 if (n2lidx(base) == 0) {
kvn@1164 1560 new_lrg(base, maxlrg++);
kvn@1164 1561 }
kvn@1164 1562 assert(base->in(0) == _cfg._root &&
kvn@1164 1563 _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
duke@435 1564 derived_base_map[derived->_idx] = base;
duke@435 1565 return base;
duke@435 1566 }
duke@435 1567
duke@435 1568 // Check for AddP-related opcodes
duke@435 1569 if( !derived->is_Phi() ) {
kvn@3971 1570 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
duke@435 1571 Node *base = derived->in(AddPNode::Base);
duke@435 1572 derived_base_map[derived->_idx] = base;
duke@435 1573 return base;
duke@435 1574 }
duke@435 1575
duke@435 1576 // Recursively find bases for Phis.
duke@435 1577 // First check to see if we can avoid a base Phi here.
duke@435 1578 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
duke@435 1579 uint i;
duke@435 1580 for( i = 2; i < derived->req(); i++ )
duke@435 1581 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
duke@435 1582 break;
duke@435 1583 // Went to the end without finding any different bases?
duke@435 1584 if( i == derived->req() ) { // No need for a base Phi here
duke@435 1585 derived_base_map[derived->_idx] = base;
duke@435 1586 return base;
duke@435 1587 }
duke@435 1588
duke@435 1589 // Now we see we need a base-Phi here to merge the bases
kvn@1164 1590 const Type *t = base->bottom_type();
kvn@1164 1591 base = new (C, derived->req()) PhiNode( derived->in(0), t );
kvn@1164 1592 for( i = 1; i < derived->req(); i++ ) {
duke@435 1593 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
kvn@1164 1594 t = t->meet(base->in(i)->bottom_type());
kvn@1164 1595 }
kvn@1164 1596 base->as_Phi()->set_type(t);
duke@435 1597
duke@435 1598 // Search the current block for an existing base-Phi
duke@435 1599 Block *b = _cfg._bbs[derived->_idx];
duke@435 1600 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
duke@435 1601 Node *phi = b->_nodes[i];
duke@435 1602 if( !phi->is_Phi() ) { // Found end of Phis with no match?
duke@435 1603 b->_nodes.insert( i, base ); // Must insert created Phi here as base
duke@435 1604 _cfg._bbs.map( base->_idx, b );
duke@435 1605 new_lrg(base,maxlrg++);
duke@435 1606 break;
duke@435 1607 }
duke@435 1608 // See if Phi matches.
duke@435 1609 uint j;
duke@435 1610 for( j = 1; j < base->req(); j++ )
duke@435 1611 if( phi->in(j) != base->in(j) &&
duke@435 1612 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
duke@435 1613 break;
duke@435 1614 if( j == base->req() ) { // All inputs match?
duke@435 1615 base = phi; // Then use existing 'phi' and drop 'base'
duke@435 1616 break;
duke@435 1617 }
duke@435 1618 }
duke@435 1619
duke@435 1620
duke@435 1621 // Cache info for later passes
duke@435 1622 derived_base_map[derived->_idx] = base;
duke@435 1623 return base;
duke@435 1624 }
duke@435 1625
duke@435 1626
duke@435 1627 //------------------------------stretch_base_pointer_live_ranges---------------
duke@435 1628 // At each Safepoint, insert extra debug edges for each pair of derived value/
duke@435 1629 // base pointer that is live across the Safepoint for oopmap building. The
duke@435 1630 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
duke@435 1631 // required edge set.
duke@435 1632 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
duke@435 1633 int must_recompute_live = false;
duke@435 1634 uint maxlrg = _maxlrg;
duke@435 1635 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
duke@435 1636 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
duke@435 1637
duke@435 1638 // For all blocks in RPO do...
duke@435 1639 for( uint i=0; i<_cfg._num_blocks; i++ ) {
duke@435 1640 Block *b = _cfg._blocks[i];
duke@435 1641 // Note use of deep-copy constructor. I cannot hammer the original
duke@435 1642 // liveout bits, because they are needed by the following coalesce pass.
duke@435 1643 IndexSet liveout(_live->live(b));
duke@435 1644
duke@435 1645 for( uint j = b->end_idx() + 1; j > 1; j-- ) {
duke@435 1646 Node *n = b->_nodes[j-1];
duke@435 1647
duke@435 1648 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
duke@435 1649 // like to see in the same register. Compare uses the loop-phi and so
duke@435 1650 // extends its live range BUT cannot be part of the cycle. If this
duke@435 1651 // extended live range overlaps with the update of the loop-phi value
duke@435 1652 // we need both alive at the same time -- which requires at least 1
duke@435 1653 // copy. But because Intel has only 2-address registers we end up with
duke@435 1654 // at least 2 copies, one before the loop-phi update instruction and
duke@435 1655 // one after. Instead we split the input to the compare just after the
duke@435 1656 // phi.
duke@435 1657 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
duke@435 1658 Node *phi = n->in(1);
duke@435 1659 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
duke@435 1660 Block *phi_block = _cfg._bbs[phi->_idx];
duke@435 1661 if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
duke@435 1662 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
duke@435 1663 Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
duke@435 1664 insert_proj( phi_block, 1, spill, maxlrg++ );
duke@435 1665 n->set_req(1,spill);
duke@435 1666 must_recompute_live = true;
duke@435 1667 }
duke@435 1668 }
duke@435 1669 }
duke@435 1670
duke@435 1671 // Get value being defined
duke@435 1672 uint lidx = n2lidx(n);
duke@435 1673 if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
duke@435 1674 // Remove from live-out set
duke@435 1675 liveout.remove(lidx);
duke@435 1676
duke@435 1677 // Copies do not define a new value and so do not interfere.
duke@435 1678 // Remove the copies source from the liveout set before interfering.
duke@435 1679 uint idx = n->is_Copy();
duke@435 1680 if( idx ) liveout.remove( n2lidx(n->in(idx)) );
duke@435 1681 }
duke@435 1682
duke@435 1683 // Found a safepoint?
duke@435 1684 JVMState *jvms = n->jvms();
duke@435 1685 if( jvms ) {
duke@435 1686 // Now scan for a live derived pointer
duke@435 1687 IndexSetIterator elements(&liveout);
duke@435 1688 uint neighbor;
duke@435 1689 while ((neighbor = elements.next()) != 0) {
duke@435 1690 // Find reaching DEF for base and derived values
duke@435 1691 // This works because we are still in SSA during this call.
duke@435 1692 Node *derived = lrgs(neighbor)._def;
duke@435 1693 const TypePtr *tj = derived->bottom_type()->isa_ptr();
kvn@1164 1694 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1695 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1696 // If its an OOP with a non-zero offset, then it is derived.
duke@435 1697 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
duke@435 1698 Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
duke@435 1699 assert( base->_idx < _names.Size(), "" );
duke@435 1700 // Add reaching DEFs of derived pointer and base pointer as a
duke@435 1701 // pair of inputs
duke@435 1702 n->add_req( derived );
duke@435 1703 n->add_req( base );
duke@435 1704
duke@435 1705 // See if the base pointer is already live to this point.
duke@435 1706 // Since I'm working on the SSA form, live-ness amounts to
duke@435 1707 // reaching def's. So if I find the base's live range then
duke@435 1708 // I know the base's def reaches here.
duke@435 1709 if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
duke@435 1710 !liveout.member( n2lidx(base) ) ) && // not live) AND
duke@435 1711 (n2lidx(base) > 0) && // not a constant
duke@435 1712 _cfg._bbs[base->_idx] != b ) { // base not def'd in blk)
duke@435 1713 // Base pointer is not currently live. Since I stretched
duke@435 1714 // the base pointer to here and it crosses basic-block
duke@435 1715 // boundaries, the global live info is now incorrect.
duke@435 1716 // Recompute live.
duke@435 1717 must_recompute_live = true;
duke@435 1718 } // End of if base pointer is not live to debug info
duke@435 1719 }
duke@435 1720 } // End of scan all live data for derived ptrs crossing GC point
duke@435 1721 } // End of if found a GC point
duke@435 1722
duke@435 1723 // Make all inputs live
duke@435 1724 if( !n->is_Phi() ) { // Phi function uses come from prior block
duke@435 1725 for( uint k = 1; k < n->req(); k++ ) {
duke@435 1726 uint lidx = n2lidx(n->in(k));
duke@435 1727 if( lidx < _maxlrg )
duke@435 1728 liveout.insert( lidx );
duke@435 1729 }
duke@435 1730 }
duke@435 1731
duke@435 1732 } // End of forall instructions in block
duke@435 1733 liveout.clear(); // Free the memory used by liveout.
duke@435 1734
duke@435 1735 } // End of forall blocks
duke@435 1736 _maxlrg = maxlrg;
duke@435 1737
duke@435 1738 // If I created a new live range I need to recompute live
duke@435 1739 if( maxlrg != _ifg->_maxlrg )
duke@435 1740 must_recompute_live = true;
duke@435 1741
duke@435 1742 return must_recompute_live != 0;
duke@435 1743 }
duke@435 1744
duke@435 1745
duke@435 1746 //------------------------------add_reference----------------------------------
duke@435 1747 // Extend the node to LRG mapping
duke@435 1748 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
duke@435 1749 _names.extend( node->_idx, n2lidx(old_node) );
duke@435 1750 }
duke@435 1751
duke@435 1752 //------------------------------dump-------------------------------------------
duke@435 1753 #ifndef PRODUCT
duke@435 1754 void PhaseChaitin::dump( const Node *n ) const {
duke@435 1755 uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
duke@435 1756 tty->print("L%d",r);
duke@435 1757 if( r && n->Opcode() != Op_Phi ) {
duke@435 1758 if( _node_regs ) { // Got a post-allocation copy of allocation?
duke@435 1759 tty->print("[");
duke@435 1760 OptoReg::Name second = get_reg_second(n);
duke@435 1761 if( OptoReg::is_valid(second) ) {
duke@435 1762 if( OptoReg::is_reg(second) )
duke@435 1763 tty->print("%s:",Matcher::regName[second]);
duke@435 1764 else
duke@435 1765 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
duke@435 1766 }
duke@435 1767 OptoReg::Name first = get_reg_first(n);
duke@435 1768 if( OptoReg::is_reg(first) )
duke@435 1769 tty->print("%s]",Matcher::regName[first]);
duke@435 1770 else
duke@435 1771 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
duke@435 1772 } else
duke@435 1773 n->out_RegMask().dump();
duke@435 1774 }
duke@435 1775 tty->print("/N%d\t",n->_idx);
duke@435 1776 tty->print("%s === ", n->Name());
duke@435 1777 uint k;
duke@435 1778 for( k = 0; k < n->req(); k++) {
duke@435 1779 Node *m = n->in(k);
duke@435 1780 if( !m ) tty->print("_ ");
duke@435 1781 else {
duke@435 1782 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
duke@435 1783 tty->print("L%d",r);
duke@435 1784 // Data MultiNode's can have projections with no real registers.
duke@435 1785 // Don't die while dumping them.
duke@435 1786 int op = n->Opcode();
duke@435 1787 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
duke@435 1788 if( _node_regs ) {
duke@435 1789 tty->print("[");
duke@435 1790 OptoReg::Name second = get_reg_second(n->in(k));
duke@435 1791 if( OptoReg::is_valid(second) ) {
duke@435 1792 if( OptoReg::is_reg(second) )
duke@435 1793 tty->print("%s:",Matcher::regName[second]);
duke@435 1794 else
duke@435 1795 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1796 reg2offset_unchecked(second));
duke@435 1797 }
duke@435 1798 OptoReg::Name first = get_reg_first(n->in(k));
duke@435 1799 if( OptoReg::is_reg(first) )
duke@435 1800 tty->print("%s]",Matcher::regName[first]);
duke@435 1801 else
duke@435 1802 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1803 reg2offset_unchecked(first));
duke@435 1804 } else
duke@435 1805 n->in_RegMask(k).dump();
duke@435 1806 }
duke@435 1807 tty->print("/N%d ",m->_idx);
duke@435 1808 }
duke@435 1809 }
duke@435 1810 if( k < n->len() && n->in(k) ) tty->print("| ");
duke@435 1811 for( ; k < n->len(); k++ ) {
duke@435 1812 Node *m = n->in(k);
duke@435 1813 if( !m ) break;
duke@435 1814 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
duke@435 1815 tty->print("L%d",r);
duke@435 1816 tty->print("/N%d ",m->_idx);
duke@435 1817 }
duke@435 1818 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
duke@435 1819 else n->dump_spec(tty);
duke@435 1820 if( _spilled_once.test(n->_idx ) ) {
duke@435 1821 tty->print(" Spill_1");
duke@435 1822 if( _spilled_twice.test(n->_idx ) )
duke@435 1823 tty->print(" Spill_2");
duke@435 1824 }
duke@435 1825 tty->print("\n");
duke@435 1826 }
duke@435 1827
duke@435 1828 void PhaseChaitin::dump( const Block * b ) const {
duke@435 1829 b->dump_head( &_cfg._bbs );
duke@435 1830
duke@435 1831 // For all instructions
duke@435 1832 for( uint j = 0; j < b->_nodes.size(); j++ )
duke@435 1833 dump(b->_nodes[j]);
duke@435 1834 // Print live-out info at end of block
duke@435 1835 if( _live ) {
duke@435 1836 tty->print("Liveout: ");
duke@435 1837 IndexSet *live = _live->live(b);
duke@435 1838 IndexSetIterator elements(live);
duke@435 1839 tty->print("{");
duke@435 1840 uint i;
duke@435 1841 while ((i = elements.next()) != 0) {
duke@435 1842 tty->print("L%d ", Find_const(i));
duke@435 1843 }
duke@435 1844 tty->print_cr("}");
duke@435 1845 }
duke@435 1846 tty->print("\n");
duke@435 1847 }
duke@435 1848
duke@435 1849 void PhaseChaitin::dump() const {
duke@435 1850 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
duke@435 1851 _matcher._new_SP, _framesize );
duke@435 1852
duke@435 1853 // For all blocks
duke@435 1854 for( uint i = 0; i < _cfg._num_blocks; i++ )
duke@435 1855 dump(_cfg._blocks[i]);
duke@435 1856 // End of per-block dump
duke@435 1857 tty->print("\n");
duke@435 1858
duke@435 1859 if (!_ifg) {
duke@435 1860 tty->print("(No IFG.)\n");
duke@435 1861 return;
duke@435 1862 }
duke@435 1863
duke@435 1864 // Dump LRG array
duke@435 1865 tty->print("--- Live RanGe Array ---\n");
duke@435 1866 for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
duke@435 1867 tty->print("L%d: ",i2);
duke@435 1868 if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
never@2358 1869 else tty->print_cr("new LRG");
duke@435 1870 }
duke@435 1871 tty->print_cr("");
duke@435 1872
duke@435 1873 // Dump lo-degree list
duke@435 1874 tty->print("Lo degree: ");
duke@435 1875 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
duke@435 1876 tty->print("L%d ",i3);
duke@435 1877 tty->print_cr("");
duke@435 1878
duke@435 1879 // Dump lo-stk-degree list
duke@435 1880 tty->print("Lo stk degree: ");
duke@435 1881 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
duke@435 1882 tty->print("L%d ",i4);
duke@435 1883 tty->print_cr("");
duke@435 1884
duke@435 1885 // Dump lo-degree list
duke@435 1886 tty->print("Hi degree: ");
duke@435 1887 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
duke@435 1888 tty->print("L%d ",i5);
duke@435 1889 tty->print_cr("");
duke@435 1890 }
duke@435 1891
duke@435 1892 //------------------------------dump_degree_lists------------------------------
duke@435 1893 void PhaseChaitin::dump_degree_lists() const {
duke@435 1894 // Dump lo-degree list
duke@435 1895 tty->print("Lo degree: ");
duke@435 1896 for( uint i = _lo_degree; i; i = lrgs(i)._next )
duke@435 1897 tty->print("L%d ",i);
duke@435 1898 tty->print_cr("");
duke@435 1899
duke@435 1900 // Dump lo-stk-degree list
duke@435 1901 tty->print("Lo stk degree: ");
duke@435 1902 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
duke@435 1903 tty->print("L%d ",i2);
duke@435 1904 tty->print_cr("");
duke@435 1905
duke@435 1906 // Dump lo-degree list
duke@435 1907 tty->print("Hi degree: ");
duke@435 1908 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
duke@435 1909 tty->print("L%d ",i3);
duke@435 1910 tty->print_cr("");
duke@435 1911 }
duke@435 1912
duke@435 1913 //------------------------------dump_simplified--------------------------------
duke@435 1914 void PhaseChaitin::dump_simplified() const {
duke@435 1915 tty->print("Simplified: ");
duke@435 1916 for( uint i = _simplified; i; i = lrgs(i)._next )
duke@435 1917 tty->print("L%d ",i);
duke@435 1918 tty->print_cr("");
duke@435 1919 }
duke@435 1920
duke@435 1921 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
duke@435 1922 if ((int)reg < 0)
duke@435 1923 sprintf(buf, "<OptoReg::%d>", (int)reg);
duke@435 1924 else if (OptoReg::is_reg(reg))
duke@435 1925 strcpy(buf, Matcher::regName[reg]);
duke@435 1926 else
duke@435 1927 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1928 pc->reg2offset(reg));
duke@435 1929 return buf+strlen(buf);
duke@435 1930 }
duke@435 1931
duke@435 1932 //------------------------------dump_register----------------------------------
duke@435 1933 // Dump a register name into a buffer. Be intelligent if we get called
duke@435 1934 // before allocation is complete.
duke@435 1935 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
duke@435 1936 if( !this ) { // Not got anything?
duke@435 1937 sprintf(buf,"N%d",n->_idx); // Then use Node index
duke@435 1938 } else if( _node_regs ) {
duke@435 1939 // Post allocation, use direct mappings, no LRG info available
duke@435 1940 print_reg( get_reg_first(n), this, buf );
duke@435 1941 } else {
duke@435 1942 uint lidx = Find_const(n); // Grab LRG number
duke@435 1943 if( !_ifg ) {
duke@435 1944 sprintf(buf,"L%d",lidx); // No register binding yet
duke@435 1945 } else if( !lidx ) { // Special, not allocated value
duke@435 1946 strcpy(buf,"Special");
kvn@3882 1947 } else {
kvn@3882 1948 if (lrgs(lidx)._is_vector) {
kvn@3882 1949 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
kvn@3882 1950 print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
kvn@3882 1951 else
kvn@3882 1952 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 1953 } else if( (lrgs(lidx).num_regs() == 1)
kvn@3882 1954 ? lrgs(lidx).mask().is_bound1()
kvn@3882 1955 : lrgs(lidx).mask().is_bound_pair() ) {
kvn@3882 1956 // Hah! We have a bound machine register
kvn@3882 1957 print_reg( lrgs(lidx).reg(), this, buf );
kvn@3882 1958 } else {
kvn@3882 1959 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 1960 }
duke@435 1961 }
duke@435 1962 }
duke@435 1963 return buf+strlen(buf);
duke@435 1964 }
duke@435 1965
duke@435 1966 //----------------------dump_for_spill_split_recycle--------------------------
duke@435 1967 void PhaseChaitin::dump_for_spill_split_recycle() const {
duke@435 1968 if( WizardMode && (PrintCompilation || PrintOpto) ) {
duke@435 1969 // Display which live ranges need to be split and the allocator's state
duke@435 1970 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
duke@435 1971 for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
duke@435 1972 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
duke@435 1973 tty->print("L%d: ", bidx);
duke@435 1974 lrgs(bidx).dump();
duke@435 1975 }
duke@435 1976 }
duke@435 1977 tty->cr();
duke@435 1978 dump();
duke@435 1979 }
duke@435 1980 }
duke@435 1981
duke@435 1982 //------------------------------dump_frame------------------------------------
duke@435 1983 void PhaseChaitin::dump_frame() const {
duke@435 1984 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
duke@435 1985 const TypeTuple *domain = C->tf()->domain();
duke@435 1986 const int argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 1987
duke@435 1988 // Incoming arguments in registers dump
duke@435 1989 for( int k = 0; k < argcnt; k++ ) {
duke@435 1990 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
duke@435 1991 if( OptoReg::is_reg(parmreg)) {
duke@435 1992 const char *reg_name = OptoReg::regname(parmreg);
duke@435 1993 tty->print("#r%3.3d %s", parmreg, reg_name);
duke@435 1994 parmreg = _matcher._parm_regs[k].second();
duke@435 1995 if( OptoReg::is_reg(parmreg)) {
duke@435 1996 tty->print(":%s", OptoReg::regname(parmreg));
duke@435 1997 }
duke@435 1998 tty->print(" : parm %d: ", k);
duke@435 1999 domain->field_at(k + TypeFunc::Parms)->dump();
duke@435 2000 tty->print_cr("");
duke@435 2001 }
duke@435 2002 }
duke@435 2003
duke@435 2004 // Check for un-owned padding above incoming args
duke@435 2005 OptoReg::Name reg = _matcher._new_SP;
duke@435 2006 if( reg > _matcher._in_arg_limit ) {
duke@435 2007 reg = OptoReg::add(reg, -1);
duke@435 2008 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
duke@435 2009 }
duke@435 2010
duke@435 2011 // Incoming argument area dump
duke@435 2012 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
duke@435 2013 while( reg > begin_in_arg ) {
duke@435 2014 reg = OptoReg::add(reg, -1);
duke@435 2015 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
duke@435 2016 int j;
duke@435 2017 for( j = 0; j < argcnt; j++) {
duke@435 2018 if( _matcher._parm_regs[j].first() == reg ||
duke@435 2019 _matcher._parm_regs[j].second() == reg ) {
duke@435 2020 tty->print("parm %d: ",j);
duke@435 2021 domain->field_at(j + TypeFunc::Parms)->dump();
duke@435 2022 tty->print_cr("");
duke@435 2023 break;
duke@435 2024 }
duke@435 2025 }
duke@435 2026 if( j >= argcnt )
duke@435 2027 tty->print_cr("HOLE, owned by SELF");
duke@435 2028 }
duke@435 2029
duke@435 2030 // Old outgoing preserve area
duke@435 2031 while( reg > _matcher._old_SP ) {
duke@435 2032 reg = OptoReg::add(reg, -1);
duke@435 2033 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2034 }
duke@435 2035
duke@435 2036 // Old SP
duke@435 2037 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
duke@435 2038 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
duke@435 2039
duke@435 2040 // Preserve area dump
kvn@3577 2041 int fixed_slots = C->fixed_slots();
kvn@3577 2042 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
kvn@3577 2043 OptoReg::Name return_addr = _matcher.return_addr();
kvn@3577 2044
duke@435 2045 reg = OptoReg::add(reg, -1);
kvn@3577 2046 while (OptoReg::is_stack(reg)) {
duke@435 2047 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
kvn@3577 2048 if (return_addr == reg) {
duke@435 2049 tty->print_cr("return address");
kvn@3577 2050 } else if (reg >= begin_in_preserve) {
kvn@3577 2051 // Preserved slots are present on x86
kvn@3577 2052 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
kvn@3577 2053 tty->print_cr("saved fp register");
kvn@3577 2054 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
kvn@3577 2055 VerifyStackAtCalls)
kvn@3577 2056 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
kvn@3577 2057 else
kvn@3577 2058 tty->print_cr("in_preserve");
kvn@3577 2059 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
duke@435 2060 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
kvn@3577 2061 } else {
kvn@3577 2062 tty->print_cr("pad2, stack alignment");
kvn@3577 2063 }
duke@435 2064 reg = OptoReg::add(reg, -1);
duke@435 2065 }
duke@435 2066
duke@435 2067 // Spill area dump
duke@435 2068 reg = OptoReg::add(_matcher._new_SP, _framesize );
duke@435 2069 while( reg > _matcher._out_arg_limit ) {
duke@435 2070 reg = OptoReg::add(reg, -1);
duke@435 2071 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
duke@435 2072 }
duke@435 2073
duke@435 2074 // Outgoing argument area dump
duke@435 2075 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
duke@435 2076 reg = OptoReg::add(reg, -1);
duke@435 2077 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
duke@435 2078 }
duke@435 2079
duke@435 2080 // Outgoing new preserve area
duke@435 2081 while( reg > _matcher._new_SP ) {
duke@435 2082 reg = OptoReg::add(reg, -1);
duke@435 2083 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2084 }
duke@435 2085 tty->print_cr("#");
duke@435 2086 }
duke@435 2087
duke@435 2088 //------------------------------dump_bb----------------------------------------
duke@435 2089 void PhaseChaitin::dump_bb( uint pre_order ) const {
duke@435 2090 tty->print_cr("---dump of B%d---",pre_order);
duke@435 2091 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 2092 Block *b = _cfg._blocks[i];
duke@435 2093 if( b->_pre_order == pre_order )
duke@435 2094 dump(b);
duke@435 2095 }
duke@435 2096 }
duke@435 2097
duke@435 2098 //------------------------------dump_lrg---------------------------------------
never@2358 2099 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
duke@435 2100 tty->print_cr("---dump of L%d---",lidx);
duke@435 2101
duke@435 2102 if( _ifg ) {
duke@435 2103 if( lidx >= _maxlrg ) {
duke@435 2104 tty->print("Attempt to print live range index beyond max live range.\n");
duke@435 2105 return;
duke@435 2106 }
duke@435 2107 tty->print("L%d: ",lidx);
never@2358 2108 if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( );
never@2358 2109 else tty->print_cr("new LRG");
duke@435 2110 }
never@2358 2111 if( _ifg && lidx < _ifg->_maxlrg) {
never@2358 2112 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
duke@435 2113 _ifg->neighbors(lidx)->dump();
duke@435 2114 tty->cr();
duke@435 2115 }
duke@435 2116 // For all blocks
duke@435 2117 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 2118 Block *b = _cfg._blocks[i];
duke@435 2119 int dump_once = 0;
duke@435 2120
duke@435 2121 // For all instructions
duke@435 2122 for( uint j = 0; j < b->_nodes.size(); j++ ) {
duke@435 2123 Node *n = b->_nodes[j];
duke@435 2124 if( Find_const(n) == lidx ) {
duke@435 2125 if( !dump_once++ ) {
duke@435 2126 tty->cr();
duke@435 2127 b->dump_head( &_cfg._bbs );
duke@435 2128 }
duke@435 2129 dump(n);
duke@435 2130 continue;
duke@435 2131 }
never@2358 2132 if (!defs_only) {
never@2358 2133 uint cnt = n->req();
never@2358 2134 for( uint k = 1; k < cnt; k++ ) {
never@2358 2135 Node *m = n->in(k);
never@2358 2136 if (!m) continue; // be robust in the dumper
never@2358 2137 if( Find_const(m) == lidx ) {
never@2358 2138 if( !dump_once++ ) {
never@2358 2139 tty->cr();
never@2358 2140 b->dump_head( &_cfg._bbs );
never@2358 2141 }
never@2358 2142 dump(n);
duke@435 2143 }
duke@435 2144 }
duke@435 2145 }
duke@435 2146 }
duke@435 2147 } // End of per-block dump
duke@435 2148 tty->cr();
duke@435 2149 }
duke@435 2150 #endif // not PRODUCT
duke@435 2151
duke@435 2152 //------------------------------print_chaitin_statistics-------------------------------
duke@435 2153 int PhaseChaitin::_final_loads = 0;
duke@435 2154 int PhaseChaitin::_final_stores = 0;
duke@435 2155 int PhaseChaitin::_final_memoves= 0;
duke@435 2156 int PhaseChaitin::_final_copies = 0;
duke@435 2157 double PhaseChaitin::_final_load_cost = 0;
duke@435 2158 double PhaseChaitin::_final_store_cost = 0;
duke@435 2159 double PhaseChaitin::_final_memove_cost= 0;
duke@435 2160 double PhaseChaitin::_final_copy_cost = 0;
duke@435 2161 int PhaseChaitin::_conserv_coalesce = 0;
duke@435 2162 int PhaseChaitin::_conserv_coalesce_pair = 0;
duke@435 2163 int PhaseChaitin::_conserv_coalesce_trie = 0;
duke@435 2164 int PhaseChaitin::_conserv_coalesce_quad = 0;
duke@435 2165 int PhaseChaitin::_post_alloc = 0;
duke@435 2166 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
duke@435 2167 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
duke@435 2168 int PhaseChaitin::_used_cisc_instructions = 0;
duke@435 2169 int PhaseChaitin::_unused_cisc_instructions = 0;
duke@435 2170 int PhaseChaitin::_allocator_attempts = 0;
duke@435 2171 int PhaseChaitin::_allocator_successes = 0;
duke@435 2172
duke@435 2173 #ifndef PRODUCT
duke@435 2174 uint PhaseChaitin::_high_pressure = 0;
duke@435 2175 uint PhaseChaitin::_low_pressure = 0;
duke@435 2176
duke@435 2177 void PhaseChaitin::print_chaitin_statistics() {
duke@435 2178 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
duke@435 2179 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
duke@435 2180 tty->print_cr("Adjusted spill cost = %7.0f.",
duke@435 2181 _final_load_cost*4.0 + _final_store_cost * 2.0 +
duke@435 2182 _final_copy_cost*1.0 + _final_memove_cost*12.0);
duke@435 2183 tty->print("Conservatively coalesced %d copies, %d pairs",
duke@435 2184 _conserv_coalesce, _conserv_coalesce_pair);
duke@435 2185 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
duke@435 2186 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
duke@435 2187 tty->print_cr(", %d post alloc.", _post_alloc);
duke@435 2188 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
duke@435 2189 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
duke@435 2190 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
duke@435 2191 if( _used_cisc_instructions || _unused_cisc_instructions )
duke@435 2192 tty->print_cr("Used cisc instruction %d, remained in register %d",
duke@435 2193 _used_cisc_instructions, _unused_cisc_instructions);
duke@435 2194 if( _allocator_successes != 0 )
duke@435 2195 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
duke@435 2196 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
duke@435 2197 }
duke@435 2198 #endif // not PRODUCT

mercurial