src/share/vm/opto/chaitin.cpp

Mon, 26 Aug 2013 12:50:23 +0200

author
adlertz
date
Mon, 26 Aug 2013 12:50:23 +0200
changeset 5635
650868c062a9
parent 5543
4b2838704fd5
child 5722
8c83625e3a53
permissions
-rw-r--r--

8023691: Create interface for nodes in class Block
Summary: Create public methods for accessing the nodes in a block
Reviewed-by: kvn, roland

duke@435 1 /*
drchase@5285 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "compiler/oopMap.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "opto/addnode.hpp"
stefank@2314 30 #include "opto/block.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/chaitin.hpp"
stefank@2314 34 #include "opto/coalesce.hpp"
stefank@2314 35 #include "opto/connode.hpp"
stefank@2314 36 #include "opto/idealGraphPrinter.hpp"
stefank@2314 37 #include "opto/indexSet.hpp"
stefank@2314 38 #include "opto/machnode.hpp"
stefank@2314 39 #include "opto/memnode.hpp"
stefank@2314 40 #include "opto/opcodes.hpp"
stefank@2314 41 #include "opto/rootnode.hpp"
duke@435 42
duke@435 43 #ifndef PRODUCT
adlertz@5539 44 void LRG::dump() const {
duke@435 45 ttyLocker ttyl;
duke@435 46 tty->print("%d ",num_regs());
duke@435 47 _mask.dump();
duke@435 48 if( _msize_valid ) {
duke@435 49 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
duke@435 50 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
duke@435 51 } else {
duke@435 52 tty->print(", #?(%d) ",_mask.Size());
duke@435 53 }
duke@435 54
duke@435 55 tty->print("EffDeg: ");
duke@435 56 if( _degree_valid ) tty->print( "%d ", _eff_degree );
duke@435 57 else tty->print("? ");
duke@435 58
never@730 59 if( is_multidef() ) {
duke@435 60 tty->print("MultiDef ");
duke@435 61 if (_defs != NULL) {
duke@435 62 tty->print("(");
duke@435 63 for (int i = 0; i < _defs->length(); i++) {
duke@435 64 tty->print("N%d ", _defs->at(i)->_idx);
duke@435 65 }
duke@435 66 tty->print(") ");
duke@435 67 }
duke@435 68 }
duke@435 69 else if( _def == 0 ) tty->print("Dead ");
duke@435 70 else tty->print("Def: N%d ",_def->_idx);
duke@435 71
duke@435 72 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
duke@435 73 // Flags
duke@435 74 if( _is_oop ) tty->print("Oop ");
duke@435 75 if( _is_float ) tty->print("Float ");
kvn@3882 76 if( _is_vector ) tty->print("Vector ");
duke@435 77 if( _was_spilled1 ) tty->print("Spilled ");
duke@435 78 if( _was_spilled2 ) tty->print("Spilled2 ");
duke@435 79 if( _direct_conflict ) tty->print("Direct_conflict ");
duke@435 80 if( _fat_proj ) tty->print("Fat ");
duke@435 81 if( _was_lo ) tty->print("Lo ");
duke@435 82 if( _has_copy ) tty->print("Copy ");
duke@435 83 if( _at_risk ) tty->print("Risk ");
duke@435 84
duke@435 85 if( _must_spill ) tty->print("Must_spill ");
duke@435 86 if( _is_bound ) tty->print("Bound ");
duke@435 87 if( _msize_valid ) {
duke@435 88 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
duke@435 89 }
duke@435 90
duke@435 91 tty->cr();
duke@435 92 }
duke@435 93 #endif
duke@435 94
duke@435 95 // Compute score from cost and area. Low score is best to spill.
duke@435 96 static double raw_score( double cost, double area ) {
duke@435 97 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
duke@435 98 }
duke@435 99
duke@435 100 double LRG::score() const {
duke@435 101 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
duke@435 102 // Bigger area lowers score, encourages spilling this live range.
duke@435 103 // Bigger cost raise score, prevents spilling this live range.
duke@435 104 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
duke@435 105 // to turn a divide by a constant into a multiply by the reciprical).
duke@435 106 double score = raw_score( _cost, _area);
duke@435 107
duke@435 108 // Account for area. Basically, LRGs covering large areas are better
duke@435 109 // to spill because more other LRGs get freed up.
duke@435 110 if( _area == 0.0 ) // No area? Then no progress to spill
duke@435 111 return 1e35;
duke@435 112
duke@435 113 if( _was_spilled2 ) // If spilled once before, we are unlikely
duke@435 114 return score + 1e30; // to make progress again.
duke@435 115
duke@435 116 if( _cost >= _area*3.0 ) // Tiny area relative to cost
duke@435 117 return score + 1e17; // Probably no progress to spill
duke@435 118
duke@435 119 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
duke@435 120 return score + 1e10; // Likely no progress to spill
duke@435 121
duke@435 122 return score;
duke@435 123 }
duke@435 124
duke@435 125 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
duke@435 126 memset( _lidxs, 0, sizeof(uint)*max );
duke@435 127 }
duke@435 128
duke@435 129 void LRG_List::extend( uint nidx, uint lidx ) {
duke@435 130 _nesting.check();
duke@435 131 if( nidx >= _max ) {
duke@435 132 uint size = 16;
duke@435 133 while( size <= nidx ) size <<=1;
duke@435 134 _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
duke@435 135 _max = size;
duke@435 136 }
duke@435 137 while( _cnt <= nidx )
duke@435 138 _lidxs[_cnt++] = 0;
duke@435 139 _lidxs[nidx] = lidx;
duke@435 140 }
duke@435 141
duke@435 142 #define NUMBUCKS 3
duke@435 143
neliasso@4949 144 // Straight out of Tarjan's union-find algorithm
neliasso@4949 145 uint LiveRangeMap::find_compress(uint lrg) {
neliasso@4949 146 uint cur = lrg;
neliasso@4949 147 uint next = _uf_map[cur];
neliasso@4949 148 while (next != cur) { // Scan chain of equivalences
neliasso@4949 149 assert( next < cur, "always union smaller");
neliasso@4949 150 cur = next; // until find a fixed-point
neliasso@4949 151 next = _uf_map[cur];
neliasso@4949 152 }
neliasso@4949 153
neliasso@4949 154 // Core of union-find algorithm: update chain of
neliasso@4949 155 // equivalences to be equal to the root.
neliasso@4949 156 while (lrg != next) {
neliasso@4949 157 uint tmp = _uf_map[lrg];
neliasso@4949 158 _uf_map.map(lrg, next);
neliasso@4949 159 lrg = tmp;
neliasso@4949 160 }
neliasso@4949 161 return lrg;
neliasso@4949 162 }
neliasso@4949 163
neliasso@4949 164 // Reset the Union-Find map to identity
neliasso@4949 165 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
neliasso@4949 166 _max_lrg_id= max_lrg_id;
neliasso@4949 167 // Force the Union-Find mapping to be at least this large
neliasso@4949 168 _uf_map.extend(_max_lrg_id, 0);
neliasso@4949 169 // Initialize it to be the ID mapping.
neliasso@4949 170 for (uint i = 0; i < _max_lrg_id; ++i) {
neliasso@4949 171 _uf_map.map(i, i);
neliasso@4949 172 }
neliasso@4949 173 }
neliasso@4949 174
neliasso@4949 175 // Make all Nodes map directly to their final live range; no need for
neliasso@4949 176 // the Union-Find mapping after this call.
neliasso@4949 177 void LiveRangeMap::compress_uf_map_for_nodes() {
neliasso@4949 178 // For all Nodes, compress mapping
neliasso@4949 179 uint unique = _names.Size();
neliasso@4949 180 for (uint i = 0; i < unique; ++i) {
neliasso@4949 181 uint lrg = _names[i];
neliasso@4949 182 uint compressed_lrg = find(lrg);
neliasso@4949 183 if (lrg != compressed_lrg) {
neliasso@4949 184 _names.map(i, compressed_lrg);
neliasso@4949 185 }
neliasso@4949 186 }
neliasso@4949 187 }
neliasso@4949 188
neliasso@4949 189 // Like Find above, but no path compress, so bad asymptotic behavior
neliasso@4949 190 uint LiveRangeMap::find_const(uint lrg) const {
neliasso@4949 191 if (!lrg) {
neliasso@4949 192 return lrg; // Ignore the zero LRG
neliasso@4949 193 }
neliasso@4949 194
neliasso@4949 195 // Off the end? This happens during debugging dumps when you got
neliasso@4949 196 // brand new live ranges but have not told the allocator yet.
neliasso@4949 197 if (lrg >= _max_lrg_id) {
neliasso@4949 198 return lrg;
neliasso@4949 199 }
neliasso@4949 200
neliasso@4949 201 uint next = _uf_map[lrg];
neliasso@4949 202 while (next != lrg) { // Scan chain of equivalences
neliasso@4949 203 assert(next < lrg, "always union smaller");
neliasso@4949 204 lrg = next; // until find a fixed-point
neliasso@4949 205 next = _uf_map[lrg];
neliasso@4949 206 }
neliasso@4949 207 return next;
neliasso@4949 208 }
neliasso@4949 209
duke@435 210 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
duke@435 211 : PhaseRegAlloc(unique, cfg, matcher,
duke@435 212 #ifndef PRODUCT
duke@435 213 print_chaitin_statistics
duke@435 214 #else
duke@435 215 NULL
duke@435 216 #endif
neliasso@4949 217 )
neliasso@4949 218 , _lrg_map(unique)
neliasso@4949 219 , _live(0)
neliasso@4949 220 , _spilled_once(Thread::current()->resource_area())
neliasso@4949 221 , _spilled_twice(Thread::current()->resource_area())
neliasso@4949 222 , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
neliasso@4949 223 , _oldphi(unique)
duke@435 224 #ifndef PRODUCT
duke@435 225 , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
duke@435 226 #endif
duke@435 227 {
duke@435 228 NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
kvn@1108 229
adlertz@5539 230 _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
kvn@1108 231
duke@435 232 // Build a list of basic blocks, sorted by frequency
adlertz@5539 233 _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
duke@435 234 // Experiment with sorting strategies to speed compilation
duke@435 235 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
duke@435 236 Block **buckets[NUMBUCKS]; // Array of buckets
duke@435 237 uint buckcnt[NUMBUCKS]; // Array of bucket counters
duke@435 238 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
neliasso@4949 239 for (uint i = 0; i < NUMBUCKS; i++) {
adlertz@5539 240 buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
duke@435 241 buckcnt[i] = 0;
duke@435 242 // Bump by three orders of magnitude each time
duke@435 243 cutoff *= 0.001;
duke@435 244 buckval[i] = cutoff;
adlertz@5539 245 for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
duke@435 246 buckets[i][j] = NULL;
duke@435 247 }
duke@435 248 }
duke@435 249 // Sort blocks into buckets
adlertz@5539 250 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
neliasso@4949 251 for (uint j = 0; j < NUMBUCKS; j++) {
adlertz@5539 252 if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
duke@435 253 // Assign block to end of list for appropriate bucket
adlertz@5539 254 buckets[j][buckcnt[j]++] = _cfg.get_block(i);
neliasso@4949 255 break; // kick out of inner loop
duke@435 256 }
duke@435 257 }
duke@435 258 }
duke@435 259 // Dump buckets into final block array
duke@435 260 uint blkcnt = 0;
neliasso@4949 261 for (uint i = 0; i < NUMBUCKS; i++) {
neliasso@4949 262 for (uint j = 0; j < buckcnt[i]; j++) {
duke@435 263 _blks[blkcnt++] = buckets[i][j];
duke@435 264 }
duke@435 265 }
duke@435 266
adlertz@5539 267 assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
duke@435 268 }
duke@435 269
neliasso@4949 270 // union 2 sets together.
neliasso@4949 271 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
neliasso@4949 272 uint src = _lrg_map.find(src_n);
neliasso@4949 273 uint dst = _lrg_map.find(dst_n);
neliasso@4949 274 assert(src, "");
neliasso@4949 275 assert(dst, "");
neliasso@4949 276 assert(src < _lrg_map.max_lrg_id(), "oob");
neliasso@4949 277 assert(dst < _lrg_map.max_lrg_id(), "oob");
neliasso@4949 278 assert(src < dst, "always union smaller");
neliasso@4949 279 _lrg_map.uf_map(dst, src);
neliasso@4949 280 }
neliasso@4949 281
neliasso@4949 282 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
neliasso@4949 283 // Make the Node->LRG mapping
neliasso@4949 284 _lrg_map.extend(x->_idx,lrg);
neliasso@4949 285 // Make the Union-Find mapping an identity function
neliasso@4949 286 _lrg_map.uf_extend(lrg, lrg);
neliasso@4949 287 }
neliasso@4949 288
neliasso@4949 289
kvn@5543 290 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
kvn@5543 291 assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
kvn@5543 292 DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
kvn@5543 293 int found_projs = 0;
kvn@5543 294 uint cnt = orig->outcnt();
kvn@5543 295 for (uint i = 0; i < cnt; i++) {
kvn@5543 296 Node* proj = orig->raw_out(i);
kvn@5543 297 if (proj->is_MachProj()) {
kvn@5543 298 assert(proj->outcnt() == 0, "only kill projections are expected here");
kvn@5543 299 assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
kvn@5543 300 found_projs++;
kvn@5543 301 // Copy kill projections after the cloned node
kvn@5543 302 Node* kills = proj->clone();
kvn@5543 303 kills->set_req(0, copy);
adlertz@5635 304 b->insert_node(kills, idx++);
kvn@5543 305 _cfg.map_node_to_block(kills, b);
kvn@5543 306 new_lrg(kills, max_lrg_id++);
kvn@5543 307 }
neliasso@4949 308 }
kvn@5543 309 return found_projs;
neliasso@4949 310 }
neliasso@4949 311
neliasso@4949 312 // Renumber the live ranges to compact them. Makes the IFG smaller.
neliasso@4949 313 void PhaseChaitin::compact() {
neliasso@4949 314 // Current the _uf_map contains a series of short chains which are headed
neliasso@4949 315 // by a self-cycle. All the chains run from big numbers to little numbers.
neliasso@4949 316 // The Find() call chases the chains & shortens them for the next Find call.
neliasso@4949 317 // We are going to change this structure slightly. Numbers above a moving
neliasso@4949 318 // wave 'i' are unchanged. Numbers below 'j' point directly to their
neliasso@4949 319 // compacted live range with no further chaining. There are no chains or
neliasso@4949 320 // cycles below 'i', so the Find call no longer works.
neliasso@4949 321 uint j=1;
neliasso@4949 322 uint i;
neliasso@4949 323 for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
neliasso@4949 324 uint lr = _lrg_map.uf_live_range_id(i);
neliasso@4949 325 // Ignore unallocated live ranges
neliasso@4949 326 if (!lr) {
neliasso@4949 327 continue;
neliasso@4949 328 }
neliasso@4949 329 assert(lr <= i, "");
neliasso@4949 330 _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
neliasso@4949 331 }
neliasso@4949 332 // Now change the Node->LR mapping to reflect the compacted names
neliasso@4949 333 uint unique = _lrg_map.size();
neliasso@4949 334 for (i = 0; i < unique; i++) {
neliasso@4949 335 uint lrg_id = _lrg_map.live_range_id(i);
neliasso@4949 336 _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
neliasso@4949 337 }
neliasso@4949 338
neliasso@4949 339 // Reset the Union-Find mapping
neliasso@4949 340 _lrg_map.reset_uf_map(j);
neliasso@4949 341 }
neliasso@4949 342
duke@435 343 void PhaseChaitin::Register_Allocate() {
duke@435 344
duke@435 345 // Above the OLD FP (and in registers) are the incoming arguments. Stack
duke@435 346 // slots in this area are called "arg_slots". Above the NEW FP (and in
duke@435 347 // registers) is the outgoing argument area; above that is the spill/temp
duke@435 348 // area. These are all "frame_slots". Arg_slots start at the zero
duke@435 349 // stack_slots and count up to the known arg_size. Frame_slots start at
duke@435 350 // the stack_slot #arg_size and go up. After allocation I map stack
duke@435 351 // slots to actual offsets. Stack-slots in the arg_slot area are biased
duke@435 352 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
duke@435 353
duke@435 354 _trip_cnt = 0;
duke@435 355 _alternate = 0;
duke@435 356 _matcher._allocation_started = true;
duke@435 357
kvn@4019 358 ResourceArea split_arena; // Arena for Split local resources
duke@435 359 ResourceArea live_arena; // Arena for liveness & IFG info
duke@435 360 ResourceMark rm(&live_arena);
duke@435 361
duke@435 362 // Need live-ness for the IFG; need the IFG for coalescing. If the
duke@435 363 // liveness is JUST for coalescing, then I can get some mileage by renaming
duke@435 364 // all copy-related live ranges low and then using the max copy-related
duke@435 365 // live range as a cut-off for LIVE and the IFG. In other words, I can
duke@435 366 // build a subset of LIVE and IFG just for copies.
neliasso@4949 367 PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
duke@435 368
duke@435 369 // Need IFG for coalescing and coloring
neliasso@4949 370 PhaseIFG ifg(&live_arena);
duke@435 371 _ifg = &ifg;
duke@435 372
duke@435 373 // Come out of SSA world to the Named world. Assign (virtual) registers to
duke@435 374 // Nodes. Use the same register for all inputs and the output of PhiNodes
duke@435 375 // - effectively ending SSA form. This requires either coalescing live
duke@435 376 // ranges or inserting copies. For the moment, we insert "virtual copies"
duke@435 377 // - we pretend there is a copy prior to each Phi in predecessor blocks.
duke@435 378 // We will attempt to coalesce such "virtual copies" before we manifest
duke@435 379 // them for real.
duke@435 380 de_ssa();
duke@435 381
kvn@1001 382 #ifdef ASSERT
kvn@1001 383 // Veify the graph before RA.
kvn@1001 384 verify(&live_arena);
kvn@1001 385 #endif
kvn@1001 386
duke@435 387 {
duke@435 388 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 389 _live = NULL; // Mark live as being not available
duke@435 390 rm.reset_to_mark(); // Reclaim working storage
duke@435 391 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 392 ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
duke@435 393 gather_lrg_masks( false ); // Collect LRG masks
neliasso@4949 394 live.compute(_lrg_map.max_lrg_id()); // Compute liveness
duke@435 395 _live = &live; // Mark LIVE as being available
duke@435 396 }
duke@435 397
duke@435 398 // Base pointers are currently "used" by instructions which define new
duke@435 399 // derived pointers. This makes base pointers live up to the where the
duke@435 400 // derived pointer is made, but not beyond. Really, they need to be live
duke@435 401 // across any GC point where the derived value is live. So this code looks
duke@435 402 // at all the GC points, and "stretches" the live range of any base pointer
duke@435 403 // to the GC point.
neliasso@4949 404 if (stretch_base_pointer_live_ranges(&live_arena)) {
neliasso@4949 405 NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
duke@435 406 // Since some live range stretched, I need to recompute live
duke@435 407 _live = NULL;
duke@435 408 rm.reset_to_mark(); // Reclaim working storage
duke@435 409 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 410 ifg.init(_lrg_map.max_lrg_id());
neliasso@4949 411 gather_lrg_masks(false);
neliasso@4949 412 live.compute(_lrg_map.max_lrg_id());
duke@435 413 _live = &live;
duke@435 414 }
duke@435 415 // Create the interference graph using virtual copies
neliasso@4949 416 build_ifg_virtual(); // Include stack slots this time
duke@435 417
duke@435 418 // Aggressive (but pessimistic) copy coalescing.
duke@435 419 // This pass works on virtual copies. Any virtual copies which are not
duke@435 420 // coalesced get manifested as actual copies
duke@435 421 {
duke@435 422 // The IFG is/was triangular. I am 'squaring it up' so Union can run
duke@435 423 // faster. Union requires a 'for all' operation which is slow on the
duke@435 424 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
duke@435 425 // meaning I can visit all the Nodes neighbors less than a Node in time
duke@435 426 // O(# of neighbors), but I have to visit all the Nodes greater than a
duke@435 427 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
duke@435 428 _ifg->SquareUp();
duke@435 429
neliasso@4949 430 PhaseAggressiveCoalesce coalesce(*this);
neliasso@4949 431 coalesce.coalesce_driver();
duke@435 432 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
duke@435 433 // not match the Phi itself, insert a copy.
duke@435 434 coalesce.insert_copies(_matcher);
drchase@5285 435 if (C->failing()) {
drchase@5285 436 return;
drchase@5285 437 }
duke@435 438 }
duke@435 439
duke@435 440 // After aggressive coalesce, attempt a first cut at coloring.
duke@435 441 // To color, we need the IFG and for that we need LIVE.
duke@435 442 {
duke@435 443 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 444 _live = NULL;
duke@435 445 rm.reset_to_mark(); // Reclaim working storage
duke@435 446 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 447 ifg.init(_lrg_map.max_lrg_id());
duke@435 448 gather_lrg_masks( true );
neliasso@4949 449 live.compute(_lrg_map.max_lrg_id());
duke@435 450 _live = &live;
duke@435 451 }
duke@435 452
duke@435 453 // Build physical interference graph
duke@435 454 uint must_spill = 0;
neliasso@4949 455 must_spill = build_ifg_physical(&live_arena);
duke@435 456 // If we have a guaranteed spill, might as well spill now
neliasso@4949 457 if (must_spill) {
neliasso@4949 458 if(!_lrg_map.max_lrg_id()) {
neliasso@4949 459 return;
neliasso@4949 460 }
duke@435 461 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
duke@435 462 C->check_node_count(10*must_spill, "out of nodes before split");
neliasso@4949 463 if (C->failing()) {
neliasso@4949 464 return;
neliasso@4949 465 }
neliasso@4949 466
neliasso@4949 467 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
neliasso@4949 468 _lrg_map.set_max_lrg_id(new_max_lrg_id);
duke@435 469 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
duke@435 470 // or we failed to split
duke@435 471 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
neliasso@4949 472 if (C->failing()) {
neliasso@4949 473 return;
neliasso@4949 474 }
duke@435 475
neliasso@4949 476 NOT_PRODUCT(C->verify_graph_edges();)
duke@435 477
duke@435 478 compact(); // Compact LRGs; return new lower max lrg
duke@435 479
duke@435 480 {
duke@435 481 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 482 _live = NULL;
duke@435 483 rm.reset_to_mark(); // Reclaim working storage
duke@435 484 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 485 ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
duke@435 486 gather_lrg_masks( true ); // Collect intersect mask
neliasso@4949 487 live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
duke@435 488 _live = &live;
duke@435 489 }
neliasso@4949 490 build_ifg_physical(&live_arena);
duke@435 491 _ifg->SquareUp();
duke@435 492 _ifg->Compute_Effective_Degree();
duke@435 493 // Only do conservative coalescing if requested
neliasso@4949 494 if (OptoCoalesce) {
duke@435 495 // Conservative (and pessimistic) copy coalescing of those spills
neliasso@4949 496 PhaseConservativeCoalesce coalesce(*this);
duke@435 497 // If max live ranges greater than cutoff, don't color the stack.
duke@435 498 // This cutoff can be larger than below since it is only done once.
neliasso@4949 499 coalesce.coalesce_driver();
duke@435 500 }
neliasso@4949 501 _lrg_map.compress_uf_map_for_nodes();
duke@435 502
duke@435 503 #ifdef ASSERT
kvn@1001 504 verify(&live_arena, true);
duke@435 505 #endif
duke@435 506 } else {
duke@435 507 ifg.SquareUp();
duke@435 508 ifg.Compute_Effective_Degree();
duke@435 509 #ifdef ASSERT
duke@435 510 set_was_low();
duke@435 511 #endif
duke@435 512 }
duke@435 513
duke@435 514 // Prepare for Simplify & Select
duke@435 515 cache_lrg_info(); // Count degree of LRGs
duke@435 516
duke@435 517 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 518 // LRGs of low degree are trivially colorable.
duke@435 519 Simplify();
duke@435 520
duke@435 521 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 522 // Return whether or not something spills.
duke@435 523 uint spills = Select( );
duke@435 524
duke@435 525 // If we spill, split and recycle the entire thing
duke@435 526 while( spills ) {
duke@435 527 if( _trip_cnt++ > 24 ) {
duke@435 528 DEBUG_ONLY( dump_for_spill_split_recycle(); )
duke@435 529 if( _trip_cnt > 27 ) {
duke@435 530 C->record_method_not_compilable("failed spill-split-recycle sanity check");
duke@435 531 return;
duke@435 532 }
duke@435 533 }
duke@435 534
neliasso@4949 535 if (!_lrg_map.max_lrg_id()) {
neliasso@4949 536 return;
neliasso@4949 537 }
neliasso@4949 538 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
neliasso@4949 539 _lrg_map.set_max_lrg_id(new_max_lrg_id);
duke@435 540 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
neliasso@4949 541 C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
neliasso@4949 542 if (C->failing()) {
neliasso@4949 543 return;
neliasso@4949 544 }
duke@435 545
neliasso@4949 546 compact(); // Compact LRGs; return new lower max lrg
duke@435 547
duke@435 548 // Nuke the live-ness and interference graph and LiveRanGe info
duke@435 549 {
duke@435 550 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 551 _live = NULL;
duke@435 552 rm.reset_to_mark(); // Reclaim working storage
duke@435 553 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 554 ifg.init(_lrg_map.max_lrg_id());
duke@435 555
duke@435 556 // Create LiveRanGe array.
duke@435 557 // Intersect register masks for all USEs and DEFs
neliasso@4949 558 gather_lrg_masks(true);
neliasso@4949 559 live.compute(_lrg_map.max_lrg_id());
duke@435 560 _live = &live;
duke@435 561 }
neliasso@4949 562 must_spill = build_ifg_physical(&live_arena);
duke@435 563 _ifg->SquareUp();
duke@435 564 _ifg->Compute_Effective_Degree();
duke@435 565
duke@435 566 // Only do conservative coalescing if requested
neliasso@4949 567 if (OptoCoalesce) {
duke@435 568 // Conservative (and pessimistic) copy coalescing
neliasso@4949 569 PhaseConservativeCoalesce coalesce(*this);
duke@435 570 // Check for few live ranges determines how aggressive coalesce is.
neliasso@4949 571 coalesce.coalesce_driver();
duke@435 572 }
neliasso@4949 573 _lrg_map.compress_uf_map_for_nodes();
duke@435 574 #ifdef ASSERT
kvn@1001 575 verify(&live_arena, true);
duke@435 576 #endif
duke@435 577 cache_lrg_info(); // Count degree of LRGs
duke@435 578
duke@435 579 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 580 // LRGs of low degree are trivially colorable.
duke@435 581 Simplify();
duke@435 582
duke@435 583 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 584 // Return whether or not something spills.
neliasso@4949 585 spills = Select();
duke@435 586 }
duke@435 587
duke@435 588 // Count number of Simplify-Select trips per coloring success.
duke@435 589 _allocator_attempts += _trip_cnt + 1;
duke@435 590 _allocator_successes += 1;
duke@435 591
duke@435 592 // Peephole remove copies
duke@435 593 post_allocate_copy_removal();
duke@435 594
kvn@1001 595 #ifdef ASSERT
kvn@1001 596 // Veify the graph after RA.
kvn@1001 597 verify(&live_arena);
kvn@1001 598 #endif
kvn@1001 599
duke@435 600 // max_reg is past the largest *register* used.
duke@435 601 // Convert that to a frame_slot number.
neliasso@4949 602 if (_max_reg <= _matcher._new_SP) {
duke@435 603 _framesize = C->out_preserve_stack_slots();
neliasso@4949 604 }
neliasso@4949 605 else {
neliasso@4949 606 _framesize = _max_reg -_matcher._new_SP;
neliasso@4949 607 }
duke@435 608 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
duke@435 609
duke@435 610 // This frame must preserve the required fp alignment
never@854 611 _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
duke@435 612 assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
duke@435 613 #ifndef PRODUCT
duke@435 614 _total_framesize += _framesize;
neliasso@4949 615 if ((int)_framesize > _max_framesize) {
duke@435 616 _max_framesize = _framesize;
neliasso@4949 617 }
duke@435 618 #endif
duke@435 619
duke@435 620 // Convert CISC spills
duke@435 621 fixup_spills();
duke@435 622
duke@435 623 // Log regalloc results
duke@435 624 CompileLog* log = Compile::current()->log();
duke@435 625 if (log != NULL) {
duke@435 626 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
duke@435 627 }
duke@435 628
neliasso@4949 629 if (C->failing()) {
neliasso@4949 630 return;
neliasso@4949 631 }
duke@435 632
neliasso@4949 633 NOT_PRODUCT(C->verify_graph_edges();)
duke@435 634
duke@435 635 // Move important info out of the live_arena to longer lasting storage.
neliasso@4949 636 alloc_node_regs(_lrg_map.size());
neliasso@4949 637 for (uint i=0; i < _lrg_map.size(); i++) {
neliasso@4949 638 if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
neliasso@4949 639 LRG &lrg = lrgs(_lrg_map.live_range_id(i));
kvn@3882 640 if (!lrg.alive()) {
kvn@4007 641 set_bad(i);
kvn@3882 642 } else if (lrg.num_regs() == 1) {
kvn@4007 643 set1(i, lrg.reg());
kvn@4007 644 } else { // Must be a register-set
kvn@4007 645 if (!lrg._fat_proj) { // Must be aligned adjacent register set
duke@435 646 // Live ranges record the highest register in their mask.
duke@435 647 // We want the low register for the AD file writer's convenience.
kvn@4007 648 OptoReg::Name hi = lrg.reg(); // Get hi register
kvn@4007 649 OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
kvn@4007 650 // We have to use pair [lo,lo+1] even for wide vectors because
kvn@4007 651 // the rest of code generation works only with pairs. It is safe
kvn@4007 652 // since for registers encoding only 'lo' is used.
kvn@4007 653 // Second reg from pair is used in ScheduleAndBundle on SPARC where
kvn@4007 654 // vector max size is 8 which corresponds to registers pair.
kvn@4007 655 // It is also used in BuildOopMaps but oop operations are not
kvn@4007 656 // vectorized.
kvn@4007 657 set2(i, lo);
duke@435 658 } else { // Misaligned; extract 2 bits
duke@435 659 OptoReg::Name hi = lrg.reg(); // Get hi register
duke@435 660 lrg.Remove(hi); // Yank from mask
duke@435 661 int lo = lrg.mask().find_first_elem(); // Find lo
kvn@4007 662 set_pair(i, hi, lo);
duke@435 663 }
duke@435 664 }
duke@435 665 if( lrg._is_oop ) _node_oops.set(i);
duke@435 666 } else {
kvn@4007 667 set_bad(i);
duke@435 668 }
duke@435 669 }
duke@435 670
duke@435 671 // Done!
duke@435 672 _live = NULL;
duke@435 673 _ifg = NULL;
duke@435 674 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
duke@435 675 }
duke@435 676
duke@435 677 void PhaseChaitin::de_ssa() {
duke@435 678 // Set initial Names for all Nodes. Most Nodes get the virtual register
duke@435 679 // number. A few get the ZERO live range number. These do not
duke@435 680 // get allocated, but instead rely on correct scheduling to ensure that
duke@435 681 // only one instance is simultaneously live at a time.
duke@435 682 uint lr_counter = 1;
adlertz@5539 683 for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
adlertz@5539 684 Block* block = _cfg.get_block(i);
adlertz@5635 685 uint cnt = block->number_of_nodes();
duke@435 686
duke@435 687 // Handle all the normal Nodes in the block
duke@435 688 for( uint j = 0; j < cnt; j++ ) {
adlertz@5635 689 Node *n = block->get_node(j);
duke@435 690 // Pre-color to the zero live range, or pick virtual register
duke@435 691 const RegMask &rm = n->out_RegMask();
neliasso@4949 692 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
duke@435 693 }
duke@435 694 }
duke@435 695 // Reset the Union-Find mapping to be identity
neliasso@4949 696 _lrg_map.reset_uf_map(lr_counter);
duke@435 697 }
duke@435 698
duke@435 699
duke@435 700 // Gather LiveRanGe information, including register masks. Modification of
duke@435 701 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
duke@435 702 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
duke@435 703
duke@435 704 // Nail down the frame pointer live range
adlertz@5539 705 uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
duke@435 706 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
duke@435 707
duke@435 708 // For all blocks
adlertz@5539 709 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 710 Block* block = _cfg.get_block(i);
duke@435 711
duke@435 712 // For all instructions
adlertz@5635 713 for (uint j = 1; j < block->number_of_nodes(); j++) {
adlertz@5635 714 Node* n = block->get_node(j);
duke@435 715 uint input_edge_start =1; // Skip control most nodes
adlertz@5539 716 if (n->is_Mach()) {
adlertz@5539 717 input_edge_start = n->as_Mach()->oper_input_base();
adlertz@5539 718 }
duke@435 719 uint idx = n->is_Copy();
duke@435 720
duke@435 721 // Get virtual register number, same as LiveRanGe index
neliasso@4949 722 uint vreg = _lrg_map.live_range_id(n);
adlertz@5539 723 LRG& lrg = lrgs(vreg);
adlertz@5539 724 if (vreg) { // No vreg means un-allocable (e.g. memory)
duke@435 725
duke@435 726 // Collect has-copy bit
adlertz@5539 727 if (idx) {
duke@435 728 lrg._has_copy = 1;
neliasso@4949 729 uint clidx = _lrg_map.live_range_id(n->in(idx));
adlertz@5539 730 LRG& copy_src = lrgs(clidx);
duke@435 731 copy_src._has_copy = 1;
duke@435 732 }
duke@435 733
duke@435 734 // Check for float-vs-int live range (used in register-pressure
duke@435 735 // calculations)
duke@435 736 const Type *n_type = n->bottom_type();
adlertz@5539 737 if (n_type->is_floatingpoint()) {
duke@435 738 lrg._is_float = 1;
adlertz@5539 739 }
duke@435 740
duke@435 741 // Check for twice prior spilling. Once prior spilling might have
duke@435 742 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
duke@435 743 // further spilling is unlikely to make progress.
adlertz@5539 744 if (_spilled_once.test(n->_idx)) {
duke@435 745 lrg._was_spilled1 = 1;
adlertz@5539 746 if (_spilled_twice.test(n->_idx)) {
duke@435 747 lrg._was_spilled2 = 1;
adlertz@5539 748 }
duke@435 749 }
duke@435 750
duke@435 751 #ifndef PRODUCT
duke@435 752 if (trace_spilling() && lrg._def != NULL) {
duke@435 753 // collect defs for MultiDef printing
duke@435 754 if (lrg._defs == NULL) {
kvn@2040 755 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
duke@435 756 lrg._defs->append(lrg._def);
duke@435 757 }
duke@435 758 lrg._defs->append(n);
duke@435 759 }
duke@435 760 #endif
duke@435 761
duke@435 762 // Check for a single def LRG; these can spill nicely
duke@435 763 // via rematerialization. Flag as NULL for no def found
duke@435 764 // yet, or 'n' for single def or -1 for many defs.
duke@435 765 lrg._def = lrg._def ? NodeSentinel : n;
duke@435 766
duke@435 767 // Limit result register mask to acceptable registers
duke@435 768 const RegMask &rm = n->out_RegMask();
duke@435 769 lrg.AND( rm );
duke@435 770
duke@435 771 int ireg = n->ideal_reg();
duke@435 772 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
duke@435 773 "oops must be in Op_RegP's" );
kvn@3882 774
kvn@3882 775 // Check for vector live range (only if vector register is used).
kvn@3882 776 // On SPARC vector uses RegD which could be misaligned so it is not
kvn@3882 777 // processes as vector in RA.
kvn@3882 778 if (RegMask::is_vector(ireg))
kvn@3882 779 lrg._is_vector = 1;
kvn@3882 780 assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
kvn@3882 781 "vector must be in vector registers");
kvn@3882 782
kvn@3882 783 // Check for bound register masks
kvn@3882 784 const RegMask &lrgmask = lrg.mask();
adlertz@5539 785 if (lrgmask.is_bound(ireg)) {
kvn@3882 786 lrg._is_bound = 1;
adlertz@5539 787 }
kvn@3882 788
kvn@3882 789 // Check for maximum frequency value
adlertz@5539 790 if (lrg._maxfreq < block->_freq) {
adlertz@5539 791 lrg._maxfreq = block->_freq;
adlertz@5539 792 }
kvn@3882 793
duke@435 794 // Check for oop-iness, or long/double
duke@435 795 // Check for multi-kill projection
adlertz@5539 796 switch (ireg) {
duke@435 797 case MachProjNode::fat_proj:
duke@435 798 // Fat projections have size equal to number of registers killed
duke@435 799 lrg.set_num_regs(rm.Size());
duke@435 800 lrg.set_reg_pressure(lrg.num_regs());
duke@435 801 lrg._fat_proj = 1;
duke@435 802 lrg._is_bound = 1;
duke@435 803 break;
duke@435 804 case Op_RegP:
duke@435 805 #ifdef _LP64
duke@435 806 lrg.set_num_regs(2); // Size is 2 stack words
duke@435 807 #else
duke@435 808 lrg.set_num_regs(1); // Size is 1 stack word
duke@435 809 #endif
duke@435 810 // Register pressure is tracked relative to the maximum values
duke@435 811 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
duke@435 812 // and relative to other types which compete for the same regs.
duke@435 813 //
duke@435 814 // The following table contains suggested values based on the
duke@435 815 // architectures as defined in each .ad file.
duke@435 816 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
duke@435 817 // compile-speed or performance.
duke@435 818 // Note1:
duke@435 819 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
duke@435 820 // since .ad registers are defined as high and low halves.
duke@435 821 // These reg_pressure values remain compatible with the code
duke@435 822 // in is_high_pressure() which relates get_invalid_mask_size(),
duke@435 823 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
duke@435 824 // Note2:
duke@435 825 // SPARC -d32 has 24 registers available for integral values,
duke@435 826 // but only 10 of these are safe for 64-bit longs.
duke@435 827 // Using set_reg_pressure(2) for both int and long means
duke@435 828 // the allocator will believe it can fit 26 longs into
duke@435 829 // registers. Using 2 for longs and 1 for ints means the
duke@435 830 // allocator will attempt to put 52 integers into registers.
duke@435 831 // The settings below limit this problem to methods with
duke@435 832 // many long values which are being run on 32-bit SPARC.
duke@435 833 //
duke@435 834 // ------------------- reg_pressure --------------------
duke@435 835 // Each entry is reg_pressure_per_value,number_of_regs
duke@435 836 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
duke@435 837 // IA32 2 1 1 1 1 6 6
duke@435 838 // IA64 1 1 1 1 1 50 41
duke@435 839 // SPARC 2 2 2 2 2 48 (24) 52 (26)
duke@435 840 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
duke@435 841 // AMD64 1 1 1 1 1 14 15
duke@435 842 // -----------------------------------------------------
duke@435 843 #if defined(SPARC)
duke@435 844 lrg.set_reg_pressure(2); // use for v9 as well
duke@435 845 #else
duke@435 846 lrg.set_reg_pressure(1); // normally one value per register
duke@435 847 #endif
duke@435 848 if( n_type->isa_oop_ptr() ) {
duke@435 849 lrg._is_oop = 1;
duke@435 850 }
duke@435 851 break;
duke@435 852 case Op_RegL: // Check for long or double
duke@435 853 case Op_RegD:
duke@435 854 lrg.set_num_regs(2);
duke@435 855 // Define platform specific register pressure
roland@2683 856 #if defined(SPARC) || defined(ARM)
duke@435 857 lrg.set_reg_pressure(2);
duke@435 858 #elif defined(IA32)
duke@435 859 if( ireg == Op_RegL ) {
duke@435 860 lrg.set_reg_pressure(2);
duke@435 861 } else {
duke@435 862 lrg.set_reg_pressure(1);
duke@435 863 }
duke@435 864 #else
duke@435 865 lrg.set_reg_pressure(1); // normally one value per register
duke@435 866 #endif
duke@435 867 // If this def of a double forces a mis-aligned double,
duke@435 868 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 869 // AND changes how we count interferences. A mis-aligned
duke@435 870 // double can interfere with TWO aligned pairs, or effectively
duke@435 871 // FOUR registers!
kvn@3882 872 if (rm.is_misaligned_pair()) {
duke@435 873 lrg._fat_proj = 1;
duke@435 874 lrg._is_bound = 1;
duke@435 875 }
duke@435 876 break;
duke@435 877 case Op_RegF:
duke@435 878 case Op_RegI:
coleenp@548 879 case Op_RegN:
duke@435 880 case Op_RegFlags:
duke@435 881 case 0: // not an ideal register
duke@435 882 lrg.set_num_regs(1);
duke@435 883 #ifdef SPARC
duke@435 884 lrg.set_reg_pressure(2);
duke@435 885 #else
duke@435 886 lrg.set_reg_pressure(1);
duke@435 887 #endif
duke@435 888 break;
kvn@3882 889 case Op_VecS:
kvn@3882 890 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
kvn@3882 891 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
kvn@3882 892 lrg.set_num_regs(RegMask::SlotsPerVecS);
kvn@3882 893 lrg.set_reg_pressure(1);
kvn@3882 894 break;
kvn@3882 895 case Op_VecD:
kvn@3882 896 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
kvn@3882 897 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
kvn@3882 898 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
kvn@3882 899 lrg.set_num_regs(RegMask::SlotsPerVecD);
kvn@3882 900 lrg.set_reg_pressure(1);
kvn@3882 901 break;
kvn@3882 902 case Op_VecX:
kvn@3882 903 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
kvn@3882 904 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
kvn@3882 905 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
kvn@3882 906 lrg.set_num_regs(RegMask::SlotsPerVecX);
kvn@3882 907 lrg.set_reg_pressure(1);
kvn@3882 908 break;
kvn@3882 909 case Op_VecY:
kvn@3882 910 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
kvn@3882 911 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
kvn@3882 912 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
kvn@3882 913 lrg.set_num_regs(RegMask::SlotsPerVecY);
kvn@3882 914 lrg.set_reg_pressure(1);
kvn@3882 915 break;
duke@435 916 default:
duke@435 917 ShouldNotReachHere();
duke@435 918 }
duke@435 919 }
duke@435 920
duke@435 921 // Now do the same for inputs
duke@435 922 uint cnt = n->req();
duke@435 923 // Setup for CISC SPILLING
duke@435 924 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
duke@435 925 if( UseCISCSpill && after_aggressive ) {
duke@435 926 inp = n->cisc_operand();
duke@435 927 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
duke@435 928 // Convert operand number to edge index number
duke@435 929 inp = n->as_Mach()->operand_index(inp);
duke@435 930 }
duke@435 931 // Prepare register mask for each input
duke@435 932 for( uint k = input_edge_start; k < cnt; k++ ) {
neliasso@4949 933 uint vreg = _lrg_map.live_range_id(n->in(k));
neliasso@4949 934 if (!vreg) {
neliasso@4949 935 continue;
neliasso@4949 936 }
duke@435 937
duke@435 938 // If this instruction is CISC Spillable, add the flags
duke@435 939 // bit to its appropriate input
duke@435 940 if( UseCISCSpill && after_aggressive && inp == k ) {
duke@435 941 #ifndef PRODUCT
duke@435 942 if( TraceCISCSpill ) {
duke@435 943 tty->print(" use_cisc_RegMask: ");
duke@435 944 n->dump();
duke@435 945 }
duke@435 946 #endif
duke@435 947 n->as_Mach()->use_cisc_RegMask();
duke@435 948 }
duke@435 949
duke@435 950 LRG &lrg = lrgs(vreg);
duke@435 951 // // Testing for floating point code shape
duke@435 952 // Node *test = n->in(k);
duke@435 953 // if( test->is_Mach() ) {
duke@435 954 // MachNode *m = test->as_Mach();
duke@435 955 // int op = m->ideal_Opcode();
duke@435 956 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
duke@435 957 // int zzz = 1;
duke@435 958 // }
duke@435 959 // }
duke@435 960
duke@435 961 // Limit result register mask to acceptable registers.
duke@435 962 // Do not limit registers from uncommon uses before
duke@435 963 // AggressiveCoalesce. This effectively pre-virtual-splits
duke@435 964 // around uncommon uses of common defs.
duke@435 965 const RegMask &rm = n->in_RegMask(k);
adlertz@5539 966 if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
duke@435 967 // Since we are BEFORE aggressive coalesce, leave the register
duke@435 968 // mask untrimmed by the call. This encourages more coalescing.
duke@435 969 // Later, AFTER aggressive, this live range will have to spill
duke@435 970 // but the spiller handles slow-path calls very nicely.
duke@435 971 } else {
duke@435 972 lrg.AND( rm );
duke@435 973 }
kvn@3882 974
duke@435 975 // Check for bound register masks
duke@435 976 const RegMask &lrgmask = lrg.mask();
kvn@3882 977 int kreg = n->in(k)->ideal_reg();
kvn@3882 978 bool is_vect = RegMask::is_vector(kreg);
kvn@3882 979 assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
kvn@3882 980 is_vect || kreg == Op_RegD,
kvn@3882 981 "vector must be in vector registers");
kvn@3882 982 if (lrgmask.is_bound(kreg))
duke@435 983 lrg._is_bound = 1;
kvn@3882 984
duke@435 985 // If this use of a double forces a mis-aligned double,
duke@435 986 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 987 // AND changes how we count interferences. A mis-aligned
duke@435 988 // double can interfere with TWO aligned pairs, or effectively
duke@435 989 // FOUR registers!
kvn@3882 990 #ifdef ASSERT
kvn@3882 991 if (is_vect) {
kvn@3882 992 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
kvn@3882 993 assert(!lrg._fat_proj, "sanity");
kvn@3882 994 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
kvn@3882 995 }
kvn@3882 996 #endif
kvn@3882 997 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
duke@435 998 lrg._fat_proj = 1;
duke@435 999 lrg._is_bound = 1;
duke@435 1000 }
duke@435 1001 // if the LRG is an unaligned pair, we will have to spill
duke@435 1002 // so clear the LRG's register mask if it is not already spilled
kvn@3882 1003 if (!is_vect && !n->is_SpillCopy() &&
kvn@3882 1004 (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
kvn@3882 1005 lrgmask.is_misaligned_pair()) {
duke@435 1006 lrg.Clear();
duke@435 1007 }
duke@435 1008
duke@435 1009 // Check for maximum frequency value
adlertz@5539 1010 if (lrg._maxfreq < block->_freq) {
adlertz@5539 1011 lrg._maxfreq = block->_freq;
adlertz@5539 1012 }
duke@435 1013
duke@435 1014 } // End for all allocated inputs
duke@435 1015 } // end for all instructions
duke@435 1016 } // end for all blocks
duke@435 1017
duke@435 1018 // Final per-liverange setup
neliasso@4949 1019 for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
duke@435 1020 LRG &lrg = lrgs(i2);
kvn@3882 1021 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
kvn@3882 1022 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
kvn@3882 1023 lrg.clear_to_sets();
kvn@3882 1024 }
duke@435 1025 lrg.compute_set_mask_size();
kvn@3882 1026 if (lrg.not_free()) { // Handle case where we lose from the start
duke@435 1027 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 1028 lrg._direct_conflict = 1;
duke@435 1029 }
duke@435 1030 lrg.set_degree(0); // no neighbors in IFG yet
duke@435 1031 }
duke@435 1032 }
duke@435 1033
duke@435 1034 // Set the was-lo-degree bit. Conservative coalescing should not change the
duke@435 1035 // colorability of the graph. If any live range was of low-degree before
duke@435 1036 // coalescing, it should Simplify. This call sets the was-lo-degree bit.
duke@435 1037 // The bit is checked in Simplify.
duke@435 1038 void PhaseChaitin::set_was_low() {
duke@435 1039 #ifdef ASSERT
neliasso@4949 1040 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
duke@435 1041 int size = lrgs(i).num_regs();
duke@435 1042 uint old_was_lo = lrgs(i)._was_lo;
duke@435 1043 lrgs(i)._was_lo = 0;
duke@435 1044 if( lrgs(i).lo_degree() ) {
duke@435 1045 lrgs(i)._was_lo = 1; // Trivially of low degree
duke@435 1046 } else { // Else check the Brigg's assertion
duke@435 1047 // Brigg's observation is that the lo-degree neighbors of a
duke@435 1048 // hi-degree live range will not interfere with the color choices
duke@435 1049 // of said hi-degree live range. The Simplify reverse-stack-coloring
duke@435 1050 // order takes care of the details. Hence you do not have to count
duke@435 1051 // low-degree neighbors when determining if this guy colors.
duke@435 1052 int briggs_degree = 0;
duke@435 1053 IndexSet *s = _ifg->neighbors(i);
duke@435 1054 IndexSetIterator elements(s);
duke@435 1055 uint lidx;
duke@435 1056 while((lidx = elements.next()) != 0) {
duke@435 1057 if( !lrgs(lidx).lo_degree() )
duke@435 1058 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
duke@435 1059 }
duke@435 1060 if( briggs_degree < lrgs(i).degrees_of_freedom() )
duke@435 1061 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
duke@435 1062 }
duke@435 1063 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
duke@435 1064 }
duke@435 1065 #endif
duke@435 1066 }
duke@435 1067
duke@435 1068 #define REGISTER_CONSTRAINED 16
duke@435 1069
duke@435 1070 // Compute cost/area ratio, in case we spill. Build the lo-degree list.
duke@435 1071 void PhaseChaitin::cache_lrg_info( ) {
duke@435 1072
neliasso@4949 1073 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
duke@435 1074 LRG &lrg = lrgs(i);
duke@435 1075
duke@435 1076 // Check for being of low degree: means we can be trivially colored.
duke@435 1077 // Low degree, dead or must-spill guys just get to simplify right away
duke@435 1078 if( lrg.lo_degree() ||
duke@435 1079 !lrg.alive() ||
duke@435 1080 lrg._must_spill ) {
duke@435 1081 // Split low degree list into those guys that must get a
duke@435 1082 // register and those that can go to register or stack.
duke@435 1083 // The idea is LRGs that can go register or stack color first when
duke@435 1084 // they have a good chance of getting a register. The register-only
duke@435 1085 // lo-degree live ranges always get a register.
duke@435 1086 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
duke@435 1087 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
duke@435 1088 lrg._next = _lo_stk_degree;
duke@435 1089 _lo_stk_degree = i;
duke@435 1090 } else {
duke@435 1091 lrg._next = _lo_degree;
duke@435 1092 _lo_degree = i;
duke@435 1093 }
duke@435 1094 } else { // Else high degree
duke@435 1095 lrgs(_hi_degree)._prev = i;
duke@435 1096 lrg._next = _hi_degree;
duke@435 1097 lrg._prev = 0;
duke@435 1098 _hi_degree = i;
duke@435 1099 }
duke@435 1100 }
duke@435 1101 }
duke@435 1102
duke@435 1103 // Simplify the IFG by removing LRGs of low degree that have NO copies
duke@435 1104 void PhaseChaitin::Pre_Simplify( ) {
duke@435 1105
duke@435 1106 // Warm up the lo-degree no-copy list
duke@435 1107 int lo_no_copy = 0;
neliasso@4949 1108 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
neliasso@4949 1109 if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
duke@435 1110 !lrgs(i).alive() ||
neliasso@4949 1111 lrgs(i)._must_spill) {
duke@435 1112 lrgs(i)._next = lo_no_copy;
duke@435 1113 lo_no_copy = i;
duke@435 1114 }
duke@435 1115 }
duke@435 1116
duke@435 1117 while( lo_no_copy ) {
duke@435 1118 uint lo = lo_no_copy;
duke@435 1119 lo_no_copy = lrgs(lo)._next;
duke@435 1120 int size = lrgs(lo).num_regs();
duke@435 1121
duke@435 1122 // Put the simplified guy on the simplified list.
duke@435 1123 lrgs(lo)._next = _simplified;
duke@435 1124 _simplified = lo;
duke@435 1125
duke@435 1126 // Yank this guy from the IFG.
duke@435 1127 IndexSet *adj = _ifg->remove_node( lo );
duke@435 1128
duke@435 1129 // If any neighbors' degrees fall below their number of
duke@435 1130 // allowed registers, then put that neighbor on the low degree
duke@435 1131 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 1132 // unchanged by this action. Thus the two are equal at most once,
duke@435 1133 // so LRGs hit the lo-degree worklists at most once.
duke@435 1134 IndexSetIterator elements(adj);
duke@435 1135 uint neighbor;
duke@435 1136 while ((neighbor = elements.next()) != 0) {
duke@435 1137 LRG *n = &lrgs(neighbor);
duke@435 1138 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 1139
duke@435 1140 // Check for just becoming of-low-degree
duke@435 1141 if( n->just_lo_degree() && !n->_has_copy ) {
duke@435 1142 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 1143 // Put on lo-degree list
duke@435 1144 n->_next = lo_no_copy;
duke@435 1145 lo_no_copy = neighbor;
duke@435 1146 }
duke@435 1147 }
duke@435 1148 } // End of while lo-degree no_copy worklist not empty
duke@435 1149
duke@435 1150 // No more lo-degree no-copy live ranges to simplify
duke@435 1151 }
duke@435 1152
duke@435 1153 // Simplify the IFG by removing LRGs of low degree.
duke@435 1154 void PhaseChaitin::Simplify( ) {
duke@435 1155
duke@435 1156 while( 1 ) { // Repeat till simplified it all
duke@435 1157 // May want to explore simplifying lo_degree before _lo_stk_degree.
duke@435 1158 // This might result in more spills coloring into registers during
duke@435 1159 // Select().
duke@435 1160 while( _lo_degree || _lo_stk_degree ) {
duke@435 1161 // If possible, pull from lo_stk first
duke@435 1162 uint lo;
duke@435 1163 if( _lo_degree ) {
duke@435 1164 lo = _lo_degree;
duke@435 1165 _lo_degree = lrgs(lo)._next;
duke@435 1166 } else {
duke@435 1167 lo = _lo_stk_degree;
duke@435 1168 _lo_stk_degree = lrgs(lo)._next;
duke@435 1169 }
duke@435 1170
duke@435 1171 // Put the simplified guy on the simplified list.
duke@435 1172 lrgs(lo)._next = _simplified;
duke@435 1173 _simplified = lo;
duke@435 1174 // If this guy is "at risk" then mark his current neighbors
duke@435 1175 if( lrgs(lo)._at_risk ) {
duke@435 1176 IndexSetIterator elements(_ifg->neighbors(lo));
duke@435 1177 uint datum;
duke@435 1178 while ((datum = elements.next()) != 0) {
duke@435 1179 lrgs(datum)._risk_bias = lo;
duke@435 1180 }
duke@435 1181 }
duke@435 1182
duke@435 1183 // Yank this guy from the IFG.
duke@435 1184 IndexSet *adj = _ifg->remove_node( lo );
duke@435 1185
duke@435 1186 // If any neighbors' degrees fall below their number of
duke@435 1187 // allowed registers, then put that neighbor on the low degree
duke@435 1188 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 1189 // unchanged by this action. Thus the two are equal at most once,
duke@435 1190 // so LRGs hit the lo-degree worklist at most once.
duke@435 1191 IndexSetIterator elements(adj);
duke@435 1192 uint neighbor;
duke@435 1193 while ((neighbor = elements.next()) != 0) {
duke@435 1194 LRG *n = &lrgs(neighbor);
duke@435 1195 #ifdef ASSERT
kvn@985 1196 if( VerifyOpto || VerifyRegisterAllocator ) {
duke@435 1197 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 1198 }
duke@435 1199 #endif
duke@435 1200
duke@435 1201 // Check for just becoming of-low-degree just counting registers.
duke@435 1202 // _must_spill live ranges are already on the low degree list.
duke@435 1203 if( n->just_lo_degree() && !n->_must_spill ) {
duke@435 1204 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 1205 // Pull from hi-degree list
duke@435 1206 uint prev = n->_prev;
duke@435 1207 uint next = n->_next;
duke@435 1208 if( prev ) lrgs(prev)._next = next;
duke@435 1209 else _hi_degree = next;
duke@435 1210 lrgs(next)._prev = prev;
duke@435 1211 n->_next = _lo_degree;
duke@435 1212 _lo_degree = neighbor;
duke@435 1213 }
duke@435 1214 }
duke@435 1215 } // End of while lo-degree/lo_stk_degree worklist not empty
duke@435 1216
duke@435 1217 // Check for got everything: is hi-degree list empty?
duke@435 1218 if( !_hi_degree ) break;
duke@435 1219
duke@435 1220 // Time to pick a potential spill guy
duke@435 1221 uint lo_score = _hi_degree;
duke@435 1222 double score = lrgs(lo_score).score();
duke@435 1223 double area = lrgs(lo_score)._area;
kvn@1443 1224 double cost = lrgs(lo_score)._cost;
kvn@1443 1225 bool bound = lrgs(lo_score)._is_bound;
duke@435 1226
duke@435 1227 // Find cheapest guy
duke@435 1228 debug_only( int lo_no_simplify=0; );
kvn@1447 1229 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
duke@435 1230 assert( !(*_ifg->_yanked)[i], "" );
duke@435 1231 // It's just vaguely possible to move hi-degree to lo-degree without
duke@435 1232 // going through a just-lo-degree stage: If you remove a double from
duke@435 1233 // a float live range it's degree will drop by 2 and you can skip the
duke@435 1234 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
duke@435 1235 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
duke@435 1236 if( lrgs(i).lo_degree() ) {
duke@435 1237 lo_score = i;
duke@435 1238 break;
duke@435 1239 }
duke@435 1240 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
duke@435 1241 double iscore = lrgs(i).score();
duke@435 1242 double iarea = lrgs(i)._area;
kvn@1443 1243 double icost = lrgs(i)._cost;
kvn@1443 1244 bool ibound = lrgs(i)._is_bound;
duke@435 1245
duke@435 1246 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
duke@435 1247 // wins. Ties happen because all live ranges in question have spilled
duke@435 1248 // a few times before and the spill-score adds a huge number which
duke@435 1249 // washes out the low order bits. We are choosing the lesser of 2
duke@435 1250 // evils; in this case pick largest area to spill.
kvn@1443 1251 // Ties also happen when live ranges are defined and used only inside
kvn@1443 1252 // one block. In which case their area is 0 and score set to max.
kvn@1443 1253 // In such case choose bound live range over unbound to free registers
kvn@1443 1254 // or with smaller cost to spill.
duke@435 1255 if( iscore < score ||
kvn@1443 1256 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
kvn@1443 1257 (iscore == score && iarea == area &&
kvn@1443 1258 ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
duke@435 1259 lo_score = i;
duke@435 1260 score = iscore;
duke@435 1261 area = iarea;
kvn@1443 1262 cost = icost;
kvn@1443 1263 bound = ibound;
duke@435 1264 }
duke@435 1265 }
duke@435 1266 LRG *lo_lrg = &lrgs(lo_score);
duke@435 1267 // The live range we choose for spilling is either hi-degree, or very
duke@435 1268 // rarely it can be low-degree. If we choose a hi-degree live range
duke@435 1269 // there better not be any lo-degree choices.
duke@435 1270 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
duke@435 1271
duke@435 1272 // Pull from hi-degree list
duke@435 1273 uint prev = lo_lrg->_prev;
duke@435 1274 uint next = lo_lrg->_next;
duke@435 1275 if( prev ) lrgs(prev)._next = next;
duke@435 1276 else _hi_degree = next;
duke@435 1277 lrgs(next)._prev = prev;
duke@435 1278 // Jam him on the lo-degree list, despite his high degree.
duke@435 1279 // Maybe he'll get a color, and maybe he'll spill.
duke@435 1280 // Only Select() will know.
duke@435 1281 lrgs(lo_score)._at_risk = true;
duke@435 1282 _lo_degree = lo_score;
duke@435 1283 lo_lrg->_next = 0;
duke@435 1284
duke@435 1285 } // End of while not simplified everything
duke@435 1286
duke@435 1287 }
duke@435 1288
kvn@4007 1289 // Is 'reg' register legal for 'lrg'?
kvn@4007 1290 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
kvn@4007 1291 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
kvn@4007 1292 lrg.mask().Member(OptoReg::add(reg,-chunk))) {
kvn@4007 1293 // RA uses OptoReg which represent the highest element of a registers set.
kvn@4007 1294 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
kvn@4007 1295 // in which XMMd is used by RA to represent such vectors. A double value
kvn@4007 1296 // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
kvn@4007 1297 // The register mask uses largest bits set of overlapping register sets.
kvn@4007 1298 // On x86 with AVX it uses 8 bits for each XMM registers set.
kvn@4007 1299 //
kvn@4007 1300 // The 'lrg' already has cleared-to-set register mask (done in Select()
kvn@4007 1301 // before calling choose_color()). Passing mask.Member(reg) check above
kvn@4007 1302 // indicates that the size (num_regs) of 'reg' set is less or equal to
kvn@4007 1303 // 'lrg' set size.
kvn@4007 1304 // For set size 1 any register which is member of 'lrg' mask is legal.
kvn@4007 1305 if (lrg.num_regs()==1)
kvn@4007 1306 return true;
kvn@4007 1307 // For larger sets only an aligned register with the same set size is legal.
kvn@4007 1308 int mask = lrg.num_regs()-1;
kvn@4007 1309 if ((reg&mask) == mask)
kvn@4007 1310 return true;
kvn@4007 1311 }
kvn@4007 1312 return false;
kvn@4007 1313 }
kvn@4007 1314
duke@435 1315 // Choose a color using the biasing heuristic
duke@435 1316 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
duke@435 1317
duke@435 1318 // Check for "at_risk" LRG's
neliasso@4949 1319 uint risk_lrg = _lrg_map.find(lrg._risk_bias);
duke@435 1320 if( risk_lrg != 0 ) {
duke@435 1321 // Walk the colored neighbors of the "at_risk" candidate
duke@435 1322 // Choose a color which is both legal and already taken by a neighbor
duke@435 1323 // of the "at_risk" candidate in order to improve the chances of the
duke@435 1324 // "at_risk" candidate of coloring
duke@435 1325 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
duke@435 1326 uint datum;
duke@435 1327 while ((datum = elements.next()) != 0) {
duke@435 1328 OptoReg::Name reg = lrgs(datum).reg();
duke@435 1329 // If this LRG's register is legal for us, choose it
kvn@4007 1330 if (is_legal_reg(lrg, reg, chunk))
duke@435 1331 return reg;
duke@435 1332 }
duke@435 1333 }
duke@435 1334
neliasso@4949 1335 uint copy_lrg = _lrg_map.find(lrg._copy_bias);
duke@435 1336 if( copy_lrg != 0 ) {
duke@435 1337 // If he has a color,
duke@435 1338 if( !(*(_ifg->_yanked))[copy_lrg] ) {
duke@435 1339 OptoReg::Name reg = lrgs(copy_lrg).reg();
duke@435 1340 // And it is legal for you,
kvn@4007 1341 if (is_legal_reg(lrg, reg, chunk))
duke@435 1342 return reg;
duke@435 1343 } else if( chunk == 0 ) {
duke@435 1344 // Choose a color which is legal for him
duke@435 1345 RegMask tempmask = lrg.mask();
duke@435 1346 tempmask.AND(lrgs(copy_lrg).mask());
kvn@3882 1347 tempmask.clear_to_sets(lrg.num_regs());
kvn@3882 1348 OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
kvn@3882 1349 if (OptoReg::is_valid(reg))
duke@435 1350 return reg;
duke@435 1351 }
duke@435 1352 }
duke@435 1353
duke@435 1354 // If no bias info exists, just go with the register selection ordering
kvn@3882 1355 if (lrg._is_vector || lrg.num_regs() == 2) {
kvn@3882 1356 // Find an aligned set
kvn@3882 1357 return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
duke@435 1358 }
duke@435 1359
duke@435 1360 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
duke@435 1361 // copy removal to remove many more copies, by preventing a just-assigned
duke@435 1362 // register from being repeatedly assigned.
duke@435 1363 OptoReg::Name reg = lrg.mask().find_first_elem();
duke@435 1364 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
duke@435 1365 // This 'Remove; find; Insert' idiom is an expensive way to find the
duke@435 1366 // SECOND element in the mask.
duke@435 1367 lrg.Remove(reg);
duke@435 1368 OptoReg::Name reg2 = lrg.mask().find_first_elem();
duke@435 1369 lrg.Insert(reg);
duke@435 1370 if( OptoReg::is_reg(reg2))
duke@435 1371 reg = reg2;
duke@435 1372 }
duke@435 1373 return OptoReg::add( reg, chunk );
duke@435 1374 }
duke@435 1375
duke@435 1376 // Choose a color in the current chunk
duke@435 1377 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
duke@435 1378 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
duke@435 1379 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
duke@435 1380
duke@435 1381 if( lrg.num_regs() == 1 || // Common Case
duke@435 1382 !lrg._fat_proj ) // Aligned+adjacent pairs ok
duke@435 1383 // Use a heuristic to "bias" the color choice
duke@435 1384 return bias_color(lrg, chunk);
duke@435 1385
kvn@3882 1386 assert(!lrg._is_vector, "should be not vector here" );
duke@435 1387 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
duke@435 1388
duke@435 1389 // Fat-proj case or misaligned double argument.
duke@435 1390 assert(lrg.compute_mask_size() == lrg.num_regs() ||
duke@435 1391 lrg.num_regs() == 2,"fat projs exactly color" );
duke@435 1392 assert( !chunk, "always color in 1st chunk" );
duke@435 1393 // Return the highest element in the set.
duke@435 1394 return lrg.mask().find_last_elem();
duke@435 1395 }
duke@435 1396
duke@435 1397 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
duke@435 1398 // in reverse order of removal. As long as nothing of hi-degree was yanked,
duke@435 1399 // everything going back is guaranteed a color. Select that color. If some
duke@435 1400 // hi-degree LRG cannot get a color then we record that we must spill.
duke@435 1401 uint PhaseChaitin::Select( ) {
duke@435 1402 uint spill_reg = LRG::SPILL_REG;
duke@435 1403 _max_reg = OptoReg::Name(0); // Past max register used
duke@435 1404 while( _simplified ) {
duke@435 1405 // Pull next LRG from the simplified list - in reverse order of removal
duke@435 1406 uint lidx = _simplified;
duke@435 1407 LRG *lrg = &lrgs(lidx);
duke@435 1408 _simplified = lrg->_next;
duke@435 1409
duke@435 1410
duke@435 1411 #ifndef PRODUCT
duke@435 1412 if (trace_spilling()) {
duke@435 1413 ttyLocker ttyl;
duke@435 1414 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
duke@435 1415 lrg->degrees_of_freedom());
duke@435 1416 lrg->dump();
duke@435 1417 }
duke@435 1418 #endif
duke@435 1419
duke@435 1420 // Re-insert into the IFG
duke@435 1421 _ifg->re_insert(lidx);
duke@435 1422 if( !lrg->alive() ) continue;
duke@435 1423 // capture allstackedness flag before mask is hacked
duke@435 1424 const int is_allstack = lrg->mask().is_AllStack();
duke@435 1425
duke@435 1426 // Yeah, yeah, yeah, I know, I know. I can refactor this
duke@435 1427 // to avoid the GOTO, although the refactored code will not
duke@435 1428 // be much clearer. We arrive here IFF we have a stack-based
duke@435 1429 // live range that cannot color in the current chunk, and it
duke@435 1430 // has to move into the next free stack chunk.
duke@435 1431 int chunk = 0; // Current chunk is first chunk
duke@435 1432 retry_next_chunk:
duke@435 1433
duke@435 1434 // Remove neighbor colors
duke@435 1435 IndexSet *s = _ifg->neighbors(lidx);
duke@435 1436
duke@435 1437 debug_only(RegMask orig_mask = lrg->mask();)
duke@435 1438 IndexSetIterator elements(s);
duke@435 1439 uint neighbor;
duke@435 1440 while ((neighbor = elements.next()) != 0) {
duke@435 1441 // Note that neighbor might be a spill_reg. In this case, exclusion
duke@435 1442 // of its color will be a no-op, since the spill_reg chunk is in outer
duke@435 1443 // space. Also, if neighbor is in a different chunk, this exclusion
duke@435 1444 // will be a no-op. (Later on, if lrg runs out of possible colors in
duke@435 1445 // its chunk, a new chunk of color may be tried, in which case
duke@435 1446 // examination of neighbors is started again, at retry_next_chunk.)
duke@435 1447 LRG &nlrg = lrgs(neighbor);
duke@435 1448 OptoReg::Name nreg = nlrg.reg();
duke@435 1449 // Only subtract masks in the same chunk
duke@435 1450 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
duke@435 1451 #ifndef PRODUCT
duke@435 1452 uint size = lrg->mask().Size();
duke@435 1453 RegMask rm = lrg->mask();
duke@435 1454 #endif
duke@435 1455 lrg->SUBTRACT(nlrg.mask());
duke@435 1456 #ifndef PRODUCT
duke@435 1457 if (trace_spilling() && lrg->mask().Size() != size) {
duke@435 1458 ttyLocker ttyl;
duke@435 1459 tty->print("L%d ", lidx);
duke@435 1460 rm.dump();
duke@435 1461 tty->print(" intersected L%d ", neighbor);
duke@435 1462 nlrg.mask().dump();
duke@435 1463 tty->print(" removed ");
duke@435 1464 rm.SUBTRACT(lrg->mask());
duke@435 1465 rm.dump();
duke@435 1466 tty->print(" leaving ");
duke@435 1467 lrg->mask().dump();
duke@435 1468 tty->cr();
duke@435 1469 }
duke@435 1470 #endif
duke@435 1471 }
duke@435 1472 }
duke@435 1473 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
duke@435 1474 // Aligned pairs need aligned masks
kvn@3882 1475 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1476 if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
kvn@3882 1477 lrg->clear_to_sets();
kvn@3882 1478 }
duke@435 1479
duke@435 1480 // Check if a color is available and if so pick the color
duke@435 1481 OptoReg::Name reg = choose_color( *lrg, chunk );
duke@435 1482 #ifdef SPARC
duke@435 1483 debug_only(lrg->compute_set_mask_size());
kvn@3882 1484 assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
duke@435 1485 #endif
duke@435 1486
duke@435 1487 //---------------
duke@435 1488 // If we fail to color and the AllStack flag is set, trigger
duke@435 1489 // a chunk-rollover event
duke@435 1490 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
duke@435 1491 // Bump register mask up to next stack chunk
duke@435 1492 chunk += RegMask::CHUNK_SIZE;
duke@435 1493 lrg->Set_All();
duke@435 1494
duke@435 1495 goto retry_next_chunk;
duke@435 1496 }
duke@435 1497
duke@435 1498 //---------------
duke@435 1499 // Did we get a color?
duke@435 1500 else if( OptoReg::is_valid(reg)) {
duke@435 1501 #ifndef PRODUCT
duke@435 1502 RegMask avail_rm = lrg->mask();
duke@435 1503 #endif
duke@435 1504
duke@435 1505 // Record selected register
duke@435 1506 lrg->set_reg(reg);
duke@435 1507
duke@435 1508 if( reg >= _max_reg ) // Compute max register limit
duke@435 1509 _max_reg = OptoReg::add(reg,1);
duke@435 1510 // Fold reg back into normal space
duke@435 1511 reg = OptoReg::add(reg,-chunk);
duke@435 1512
duke@435 1513 // If the live range is not bound, then we actually had some choices
duke@435 1514 // to make. In this case, the mask has more bits in it than the colors
twisti@1040 1515 // chosen. Restrict the mask to just what was picked.
kvn@3882 1516 int n_regs = lrg->num_regs();
kvn@3882 1517 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1518 if (n_regs == 1 || !lrg->_fat_proj) {
kvn@3882 1519 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
duke@435 1520 lrg->Clear(); // Clear the mask
duke@435 1521 lrg->Insert(reg); // Set regmask to match selected reg
kvn@3882 1522 // For vectors and pairs, also insert the low bit of the pair
kvn@3882 1523 for (int i = 1; i < n_regs; i++)
kvn@3882 1524 lrg->Insert(OptoReg::add(reg,-i));
kvn@3882 1525 lrg->set_mask_size(n_regs);
duke@435 1526 } else { // Else fatproj
duke@435 1527 // mask must be equal to fatproj bits, by definition
duke@435 1528 }
duke@435 1529 #ifndef PRODUCT
duke@435 1530 if (trace_spilling()) {
duke@435 1531 ttyLocker ttyl;
duke@435 1532 tty->print("L%d selected ", lidx);
duke@435 1533 lrg->mask().dump();
duke@435 1534 tty->print(" from ");
duke@435 1535 avail_rm.dump();
duke@435 1536 tty->cr();
duke@435 1537 }
duke@435 1538 #endif
duke@435 1539 // Note that reg is the highest-numbered register in the newly-bound mask.
duke@435 1540 } // end color available case
duke@435 1541
duke@435 1542 //---------------
duke@435 1543 // Live range is live and no colors available
duke@435 1544 else {
duke@435 1545 assert( lrg->alive(), "" );
never@730 1546 assert( !lrg->_fat_proj || lrg->is_multidef() ||
duke@435 1547 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
duke@435 1548 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
duke@435 1549
duke@435 1550 // Assign the special spillreg register
duke@435 1551 lrg->set_reg(OptoReg::Name(spill_reg++));
duke@435 1552 // Do not empty the regmask; leave mask_size lying around
duke@435 1553 // for use during Spilling
duke@435 1554 #ifndef PRODUCT
duke@435 1555 if( trace_spilling() ) {
duke@435 1556 ttyLocker ttyl;
duke@435 1557 tty->print("L%d spilling with neighbors: ", lidx);
duke@435 1558 s->dump();
duke@435 1559 debug_only(tty->print(" original mask: "));
duke@435 1560 debug_only(orig_mask.dump());
duke@435 1561 dump_lrg(lidx);
duke@435 1562 }
duke@435 1563 #endif
duke@435 1564 } // end spill case
duke@435 1565
duke@435 1566 }
duke@435 1567
duke@435 1568 return spill_reg-LRG::SPILL_REG; // Return number of spills
duke@435 1569 }
duke@435 1570
duke@435 1571 // Copy 'was_spilled'-edness from the source Node to the dst Node.
duke@435 1572 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
duke@435 1573 if( _spilled_once.test(src->_idx) ) {
duke@435 1574 _spilled_once.set(dst->_idx);
neliasso@4949 1575 lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
duke@435 1576 if( _spilled_twice.test(src->_idx) ) {
duke@435 1577 _spilled_twice.set(dst->_idx);
neliasso@4949 1578 lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
duke@435 1579 }
duke@435 1580 }
duke@435 1581 }
duke@435 1582
duke@435 1583 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
duke@435 1584 void PhaseChaitin::set_was_spilled( Node *n ) {
duke@435 1585 if( _spilled_once.test_set(n->_idx) )
duke@435 1586 _spilled_twice.set(n->_idx);
duke@435 1587 }
duke@435 1588
duke@435 1589 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
duke@435 1590 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
duke@435 1591 void PhaseChaitin::fixup_spills() {
duke@435 1592 // This function does only cisc spill work.
duke@435 1593 if( !UseCISCSpill ) return;
duke@435 1594
duke@435 1595 NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
duke@435 1596
duke@435 1597 // Grab the Frame Pointer
adlertz@5539 1598 Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
duke@435 1599
duke@435 1600 // For all blocks
adlertz@5539 1601 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 1602 Block* block = _cfg.get_block(i);
duke@435 1603
duke@435 1604 // For all instructions in block
adlertz@5539 1605 uint last_inst = block->end_idx();
adlertz@5539 1606 for (uint j = 1; j <= last_inst; j++) {
adlertz@5635 1607 Node* n = block->get_node(j);
duke@435 1608
duke@435 1609 // Dead instruction???
duke@435 1610 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
duke@435 1611 C->top() == n || // Or the random TOP node
duke@435 1612 n->is_Proj(), // Or a fat-proj kill node
duke@435 1613 "No dead instructions after post-alloc" );
duke@435 1614
duke@435 1615 int inp = n->cisc_operand();
duke@435 1616 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
duke@435 1617 // Convert operand number to edge index number
duke@435 1618 MachNode *mach = n->as_Mach();
duke@435 1619 inp = mach->operand_index(inp);
duke@435 1620 Node *src = n->in(inp); // Value to load or store
neliasso@4949 1621 LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
duke@435 1622 OptoReg::Name src_reg = lrg_cisc.reg();
duke@435 1623 // Doubles record the HIGH register of an adjacent pair.
duke@435 1624 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
duke@435 1625 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
duke@435 1626 // This is a CISC Spill, get stack offset and construct new node
duke@435 1627 #ifndef PRODUCT
duke@435 1628 if( TraceCISCSpill ) {
duke@435 1629 tty->print(" reg-instr: ");
duke@435 1630 n->dump();
duke@435 1631 }
duke@435 1632 #endif
duke@435 1633 int stk_offset = reg2offset(src_reg);
duke@435 1634 // Bailout if we might exceed node limit when spilling this instruction
duke@435 1635 C->check_node_count(0, "out of nodes fixing spills");
duke@435 1636 if (C->failing()) return;
duke@435 1637 // Transform node
duke@435 1638 MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
duke@435 1639 cisc->set_req(inp,fp); // Base register is frame pointer
duke@435 1640 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
duke@435 1641 assert( cisc->oper_input_base() == 2, "Only adding one edge");
duke@435 1642 cisc->ins_req(1,src); // Requires a memory edge
duke@435 1643 }
adlertz@5635 1644 block->map_node(cisc, j); // Insert into basic block
bharadwaj@4315 1645 n->subsume_by(cisc, C); // Correct graph
duke@435 1646 //
duke@435 1647 ++_used_cisc_instructions;
duke@435 1648 #ifndef PRODUCT
duke@435 1649 if( TraceCISCSpill ) {
duke@435 1650 tty->print(" cisc-instr: ");
duke@435 1651 cisc->dump();
duke@435 1652 }
duke@435 1653 #endif
duke@435 1654 } else {
duke@435 1655 #ifndef PRODUCT
duke@435 1656 if( TraceCISCSpill ) {
duke@435 1657 tty->print(" using reg-instr: ");
duke@435 1658 n->dump();
duke@435 1659 }
duke@435 1660 #endif
duke@435 1661 ++_unused_cisc_instructions; // input can be on stack
duke@435 1662 }
duke@435 1663 }
duke@435 1664
duke@435 1665 } // End of for all instructions
duke@435 1666
duke@435 1667 } // End of for all blocks
duke@435 1668 }
duke@435 1669
duke@435 1670 // Helper to stretch above; recursively discover the base Node for a
duke@435 1671 // given derived Node. Easy for AddP-related machine nodes, but needs
duke@435 1672 // to be recursive for derived Phis.
duke@435 1673 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
duke@435 1674 // See if already computed; if so return it
duke@435 1675 if( derived_base_map[derived->_idx] )
duke@435 1676 return derived_base_map[derived->_idx];
duke@435 1677
duke@435 1678 // See if this happens to be a base.
duke@435 1679 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
duke@435 1680 // pointers derived from NULL! These are always along paths that
duke@435 1681 // can't happen at run-time but the optimizer cannot deduce it so
duke@435 1682 // we have to handle it gracefully.
kvn@1164 1683 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1684 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1685 const TypePtr *tj = derived->bottom_type()->isa_ptr();
duke@435 1686 // If its an OOP with a non-zero offset, then it is derived.
kvn@1164 1687 if( tj == NULL || tj->_offset == 0 ) {
duke@435 1688 derived_base_map[derived->_idx] = derived;
duke@435 1689 return derived;
duke@435 1690 }
duke@435 1691 // Derived is NULL+offset? Base is NULL!
duke@435 1692 if( derived->is_Con() ) {
kvn@1164 1693 Node *base = _matcher.mach_null();
kvn@1164 1694 assert(base != NULL, "sanity");
kvn@1164 1695 if (base->in(0) == NULL) {
kvn@1164 1696 // Initialize it once and make it shared:
kvn@1164 1697 // set control to _root and place it into Start block
kvn@1164 1698 // (where top() node is placed).
adlertz@5539 1699 base->init_req(0, _cfg.get_root_node());
adlertz@5509 1700 Block *startb = _cfg.get_block_for_node(C->top());
adlertz@5635 1701 startb->insert_node(base, startb->find_node(C->top()));
adlertz@5509 1702 _cfg.map_node_to_block(base, startb);
neliasso@4949 1703 assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
kvn@1164 1704 }
neliasso@4949 1705 if (_lrg_map.live_range_id(base) == 0) {
kvn@1164 1706 new_lrg(base, maxlrg++);
kvn@1164 1707 }
adlertz@5539 1708 assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
duke@435 1709 derived_base_map[derived->_idx] = base;
duke@435 1710 return base;
duke@435 1711 }
duke@435 1712
duke@435 1713 // Check for AddP-related opcodes
neliasso@4949 1714 if (!derived->is_Phi()) {
kvn@3971 1715 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
duke@435 1716 Node *base = derived->in(AddPNode::Base);
duke@435 1717 derived_base_map[derived->_idx] = base;
duke@435 1718 return base;
duke@435 1719 }
duke@435 1720
duke@435 1721 // Recursively find bases for Phis.
duke@435 1722 // First check to see if we can avoid a base Phi here.
duke@435 1723 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
duke@435 1724 uint i;
duke@435 1725 for( i = 2; i < derived->req(); i++ )
duke@435 1726 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
duke@435 1727 break;
duke@435 1728 // Went to the end without finding any different bases?
duke@435 1729 if( i == derived->req() ) { // No need for a base Phi here
duke@435 1730 derived_base_map[derived->_idx] = base;
duke@435 1731 return base;
duke@435 1732 }
duke@435 1733
duke@435 1734 // Now we see we need a base-Phi here to merge the bases
kvn@1164 1735 const Type *t = base->bottom_type();
kvn@4115 1736 base = new (C) PhiNode( derived->in(0), t );
kvn@1164 1737 for( i = 1; i < derived->req(); i++ ) {
duke@435 1738 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
kvn@1164 1739 t = t->meet(base->in(i)->bottom_type());
kvn@1164 1740 }
kvn@1164 1741 base->as_Phi()->set_type(t);
duke@435 1742
duke@435 1743 // Search the current block for an existing base-Phi
adlertz@5509 1744 Block *b = _cfg.get_block_for_node(derived);
duke@435 1745 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
adlertz@5635 1746 Node *phi = b->get_node(i);
duke@435 1747 if( !phi->is_Phi() ) { // Found end of Phis with no match?
adlertz@5635 1748 b->insert_node(base, i); // Must insert created Phi here as base
adlertz@5509 1749 _cfg.map_node_to_block(base, b);
duke@435 1750 new_lrg(base,maxlrg++);
duke@435 1751 break;
duke@435 1752 }
duke@435 1753 // See if Phi matches.
duke@435 1754 uint j;
duke@435 1755 for( j = 1; j < base->req(); j++ )
duke@435 1756 if( phi->in(j) != base->in(j) &&
duke@435 1757 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
duke@435 1758 break;
duke@435 1759 if( j == base->req() ) { // All inputs match?
duke@435 1760 base = phi; // Then use existing 'phi' and drop 'base'
duke@435 1761 break;
duke@435 1762 }
duke@435 1763 }
duke@435 1764
duke@435 1765
duke@435 1766 // Cache info for later passes
duke@435 1767 derived_base_map[derived->_idx] = base;
duke@435 1768 return base;
duke@435 1769 }
duke@435 1770
duke@435 1771 // At each Safepoint, insert extra debug edges for each pair of derived value/
duke@435 1772 // base pointer that is live across the Safepoint for oopmap building. The
duke@435 1773 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
duke@435 1774 // required edge set.
neliasso@4949 1775 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
duke@435 1776 int must_recompute_live = false;
neliasso@4949 1777 uint maxlrg = _lrg_map.max_lrg_id();
duke@435 1778 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
duke@435 1779 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
duke@435 1780
duke@435 1781 // For all blocks in RPO do...
adlertz@5539 1782 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 1783 Block* block = _cfg.get_block(i);
duke@435 1784 // Note use of deep-copy constructor. I cannot hammer the original
duke@435 1785 // liveout bits, because they are needed by the following coalesce pass.
adlertz@5539 1786 IndexSet liveout(_live->live(block));
duke@435 1787
adlertz@5539 1788 for (uint j = block->end_idx() + 1; j > 1; j--) {
adlertz@5635 1789 Node* n = block->get_node(j - 1);
duke@435 1790
duke@435 1791 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
duke@435 1792 // like to see in the same register. Compare uses the loop-phi and so
duke@435 1793 // extends its live range BUT cannot be part of the cycle. If this
duke@435 1794 // extended live range overlaps with the update of the loop-phi value
duke@435 1795 // we need both alive at the same time -- which requires at least 1
duke@435 1796 // copy. But because Intel has only 2-address registers we end up with
duke@435 1797 // at least 2 copies, one before the loop-phi update instruction and
duke@435 1798 // one after. Instead we split the input to the compare just after the
duke@435 1799 // phi.
duke@435 1800 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
duke@435 1801 Node *phi = n->in(1);
duke@435 1802 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
adlertz@5509 1803 Block *phi_block = _cfg.get_block_for_node(phi);
adlertz@5539 1804 if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
duke@435 1805 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
duke@435 1806 Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
duke@435 1807 insert_proj( phi_block, 1, spill, maxlrg++ );
duke@435 1808 n->set_req(1,spill);
duke@435 1809 must_recompute_live = true;
duke@435 1810 }
duke@435 1811 }
duke@435 1812 }
duke@435 1813
duke@435 1814 // Get value being defined
neliasso@4949 1815 uint lidx = _lrg_map.live_range_id(n);
neliasso@4949 1816 // Ignore the occasional brand-new live range
neliasso@4949 1817 if (lidx && lidx < _lrg_map.max_lrg_id()) {
duke@435 1818 // Remove from live-out set
duke@435 1819 liveout.remove(lidx);
duke@435 1820
duke@435 1821 // Copies do not define a new value and so do not interfere.
duke@435 1822 // Remove the copies source from the liveout set before interfering.
duke@435 1823 uint idx = n->is_Copy();
neliasso@4949 1824 if (idx) {
neliasso@4949 1825 liveout.remove(_lrg_map.live_range_id(n->in(idx)));
neliasso@4949 1826 }
duke@435 1827 }
duke@435 1828
duke@435 1829 // Found a safepoint?
duke@435 1830 JVMState *jvms = n->jvms();
duke@435 1831 if( jvms ) {
duke@435 1832 // Now scan for a live derived pointer
duke@435 1833 IndexSetIterator elements(&liveout);
duke@435 1834 uint neighbor;
duke@435 1835 while ((neighbor = elements.next()) != 0) {
duke@435 1836 // Find reaching DEF for base and derived values
duke@435 1837 // This works because we are still in SSA during this call.
duke@435 1838 Node *derived = lrgs(neighbor)._def;
duke@435 1839 const TypePtr *tj = derived->bottom_type()->isa_ptr();
kvn@1164 1840 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1841 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1842 // If its an OOP with a non-zero offset, then it is derived.
duke@435 1843 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
neliasso@4949 1844 Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
neliasso@4949 1845 assert(base->_idx < _lrg_map.size(), "");
duke@435 1846 // Add reaching DEFs of derived pointer and base pointer as a
duke@435 1847 // pair of inputs
neliasso@4949 1848 n->add_req(derived);
neliasso@4949 1849 n->add_req(base);
duke@435 1850
duke@435 1851 // See if the base pointer is already live to this point.
duke@435 1852 // Since I'm working on the SSA form, live-ness amounts to
duke@435 1853 // reaching def's. So if I find the base's live range then
duke@435 1854 // I know the base's def reaches here.
neliasso@4949 1855 if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
neliasso@4949 1856 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
neliasso@4949 1857 (_lrg_map.live_range_id(base) > 0) && // not a constant
adlertz@5539 1858 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
duke@435 1859 // Base pointer is not currently live. Since I stretched
duke@435 1860 // the base pointer to here and it crosses basic-block
duke@435 1861 // boundaries, the global live info is now incorrect.
duke@435 1862 // Recompute live.
duke@435 1863 must_recompute_live = true;
duke@435 1864 } // End of if base pointer is not live to debug info
duke@435 1865 }
duke@435 1866 } // End of scan all live data for derived ptrs crossing GC point
duke@435 1867 } // End of if found a GC point
duke@435 1868
duke@435 1869 // Make all inputs live
neliasso@4949 1870 if (!n->is_Phi()) { // Phi function uses come from prior block
neliasso@4949 1871 for (uint k = 1; k < n->req(); k++) {
neliasso@4949 1872 uint lidx = _lrg_map.live_range_id(n->in(k));
neliasso@4949 1873 if (lidx < _lrg_map.max_lrg_id()) {
neliasso@4949 1874 liveout.insert(lidx);
neliasso@4949 1875 }
duke@435 1876 }
duke@435 1877 }
duke@435 1878
duke@435 1879 } // End of forall instructions in block
duke@435 1880 liveout.clear(); // Free the memory used by liveout.
duke@435 1881
duke@435 1882 } // End of forall blocks
neliasso@4949 1883 _lrg_map.set_max_lrg_id(maxlrg);
duke@435 1884
duke@435 1885 // If I created a new live range I need to recompute live
neliasso@4949 1886 if (maxlrg != _ifg->_maxlrg) {
duke@435 1887 must_recompute_live = true;
neliasso@4949 1888 }
duke@435 1889
duke@435 1890 return must_recompute_live != 0;
duke@435 1891 }
duke@435 1892
duke@435 1893 // Extend the node to LRG mapping
neliasso@4949 1894
neliasso@4949 1895 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
neliasso@4949 1896 _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
duke@435 1897 }
duke@435 1898
duke@435 1899 #ifndef PRODUCT
neliasso@4949 1900 void PhaseChaitin::dump(const Node *n) const {
neliasso@4949 1901 uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
duke@435 1902 tty->print("L%d",r);
neliasso@4949 1903 if (r && n->Opcode() != Op_Phi) {
duke@435 1904 if( _node_regs ) { // Got a post-allocation copy of allocation?
duke@435 1905 tty->print("[");
duke@435 1906 OptoReg::Name second = get_reg_second(n);
duke@435 1907 if( OptoReg::is_valid(second) ) {
duke@435 1908 if( OptoReg::is_reg(second) )
duke@435 1909 tty->print("%s:",Matcher::regName[second]);
duke@435 1910 else
duke@435 1911 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
duke@435 1912 }
duke@435 1913 OptoReg::Name first = get_reg_first(n);
duke@435 1914 if( OptoReg::is_reg(first) )
duke@435 1915 tty->print("%s]",Matcher::regName[first]);
duke@435 1916 else
duke@435 1917 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
duke@435 1918 } else
duke@435 1919 n->out_RegMask().dump();
duke@435 1920 }
duke@435 1921 tty->print("/N%d\t",n->_idx);
duke@435 1922 tty->print("%s === ", n->Name());
duke@435 1923 uint k;
neliasso@4949 1924 for (k = 0; k < n->req(); k++) {
duke@435 1925 Node *m = n->in(k);
neliasso@4949 1926 if (!m) {
neliasso@4949 1927 tty->print("_ ");
neliasso@4949 1928 }
duke@435 1929 else {
neliasso@4949 1930 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
duke@435 1931 tty->print("L%d",r);
duke@435 1932 // Data MultiNode's can have projections with no real registers.
duke@435 1933 // Don't die while dumping them.
duke@435 1934 int op = n->Opcode();
duke@435 1935 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
duke@435 1936 if( _node_regs ) {
duke@435 1937 tty->print("[");
duke@435 1938 OptoReg::Name second = get_reg_second(n->in(k));
duke@435 1939 if( OptoReg::is_valid(second) ) {
duke@435 1940 if( OptoReg::is_reg(second) )
duke@435 1941 tty->print("%s:",Matcher::regName[second]);
duke@435 1942 else
duke@435 1943 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1944 reg2offset_unchecked(second));
duke@435 1945 }
duke@435 1946 OptoReg::Name first = get_reg_first(n->in(k));
duke@435 1947 if( OptoReg::is_reg(first) )
duke@435 1948 tty->print("%s]",Matcher::regName[first]);
duke@435 1949 else
duke@435 1950 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1951 reg2offset_unchecked(first));
duke@435 1952 } else
duke@435 1953 n->in_RegMask(k).dump();
duke@435 1954 }
duke@435 1955 tty->print("/N%d ",m->_idx);
duke@435 1956 }
duke@435 1957 }
duke@435 1958 if( k < n->len() && n->in(k) ) tty->print("| ");
duke@435 1959 for( ; k < n->len(); k++ ) {
duke@435 1960 Node *m = n->in(k);
neliasso@4949 1961 if(!m) {
neliasso@4949 1962 break;
neliasso@4949 1963 }
neliasso@4949 1964 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
duke@435 1965 tty->print("L%d",r);
duke@435 1966 tty->print("/N%d ",m->_idx);
duke@435 1967 }
duke@435 1968 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
duke@435 1969 else n->dump_spec(tty);
duke@435 1970 if( _spilled_once.test(n->_idx ) ) {
duke@435 1971 tty->print(" Spill_1");
duke@435 1972 if( _spilled_twice.test(n->_idx ) )
duke@435 1973 tty->print(" Spill_2");
duke@435 1974 }
duke@435 1975 tty->print("\n");
duke@435 1976 }
duke@435 1977
adlertz@5509 1978 void PhaseChaitin::dump(const Block *b) const {
adlertz@5509 1979 b->dump_head(&_cfg);
duke@435 1980
duke@435 1981 // For all instructions
adlertz@5635 1982 for( uint j = 0; j < b->number_of_nodes(); j++ )
adlertz@5635 1983 dump(b->get_node(j));
duke@435 1984 // Print live-out info at end of block
duke@435 1985 if( _live ) {
duke@435 1986 tty->print("Liveout: ");
duke@435 1987 IndexSet *live = _live->live(b);
duke@435 1988 IndexSetIterator elements(live);
duke@435 1989 tty->print("{");
duke@435 1990 uint i;
duke@435 1991 while ((i = elements.next()) != 0) {
neliasso@4949 1992 tty->print("L%d ", _lrg_map.find_const(i));
duke@435 1993 }
duke@435 1994 tty->print_cr("}");
duke@435 1995 }
duke@435 1996 tty->print("\n");
duke@435 1997 }
duke@435 1998
duke@435 1999 void PhaseChaitin::dump() const {
duke@435 2000 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
duke@435 2001 _matcher._new_SP, _framesize );
duke@435 2002
duke@435 2003 // For all blocks
adlertz@5539 2004 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 2005 dump(_cfg.get_block(i));
adlertz@5539 2006 }
duke@435 2007 // End of per-block dump
duke@435 2008 tty->print("\n");
duke@435 2009
duke@435 2010 if (!_ifg) {
duke@435 2011 tty->print("(No IFG.)\n");
duke@435 2012 return;
duke@435 2013 }
duke@435 2014
duke@435 2015 // Dump LRG array
duke@435 2016 tty->print("--- Live RanGe Array ---\n");
neliasso@4949 2017 for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
duke@435 2018 tty->print("L%d: ",i2);
neliasso@4949 2019 if (i2 < _ifg->_maxlrg) {
neliasso@4949 2020 lrgs(i2).dump();
neliasso@4949 2021 }
neliasso@4949 2022 else {
neliasso@4949 2023 tty->print_cr("new LRG");
neliasso@4949 2024 }
duke@435 2025 }
duke@435 2026 tty->print_cr("");
duke@435 2027
duke@435 2028 // Dump lo-degree list
duke@435 2029 tty->print("Lo degree: ");
duke@435 2030 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
duke@435 2031 tty->print("L%d ",i3);
duke@435 2032 tty->print_cr("");
duke@435 2033
duke@435 2034 // Dump lo-stk-degree list
duke@435 2035 tty->print("Lo stk degree: ");
duke@435 2036 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
duke@435 2037 tty->print("L%d ",i4);
duke@435 2038 tty->print_cr("");
duke@435 2039
duke@435 2040 // Dump lo-degree list
duke@435 2041 tty->print("Hi degree: ");
duke@435 2042 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
duke@435 2043 tty->print("L%d ",i5);
duke@435 2044 tty->print_cr("");
duke@435 2045 }
duke@435 2046
duke@435 2047 void PhaseChaitin::dump_degree_lists() const {
duke@435 2048 // Dump lo-degree list
duke@435 2049 tty->print("Lo degree: ");
duke@435 2050 for( uint i = _lo_degree; i; i = lrgs(i)._next )
duke@435 2051 tty->print("L%d ",i);
duke@435 2052 tty->print_cr("");
duke@435 2053
duke@435 2054 // Dump lo-stk-degree list
duke@435 2055 tty->print("Lo stk degree: ");
duke@435 2056 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
duke@435 2057 tty->print("L%d ",i2);
duke@435 2058 tty->print_cr("");
duke@435 2059
duke@435 2060 // Dump lo-degree list
duke@435 2061 tty->print("Hi degree: ");
duke@435 2062 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
duke@435 2063 tty->print("L%d ",i3);
duke@435 2064 tty->print_cr("");
duke@435 2065 }
duke@435 2066
duke@435 2067 void PhaseChaitin::dump_simplified() const {
duke@435 2068 tty->print("Simplified: ");
duke@435 2069 for( uint i = _simplified; i; i = lrgs(i)._next )
duke@435 2070 tty->print("L%d ",i);
duke@435 2071 tty->print_cr("");
duke@435 2072 }
duke@435 2073
duke@435 2074 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
duke@435 2075 if ((int)reg < 0)
duke@435 2076 sprintf(buf, "<OptoReg::%d>", (int)reg);
duke@435 2077 else if (OptoReg::is_reg(reg))
duke@435 2078 strcpy(buf, Matcher::regName[reg]);
duke@435 2079 else
duke@435 2080 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 2081 pc->reg2offset(reg));
duke@435 2082 return buf+strlen(buf);
duke@435 2083 }
duke@435 2084
duke@435 2085 // Dump a register name into a buffer. Be intelligent if we get called
duke@435 2086 // before allocation is complete.
duke@435 2087 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
duke@435 2088 if( !this ) { // Not got anything?
duke@435 2089 sprintf(buf,"N%d",n->_idx); // Then use Node index
duke@435 2090 } else if( _node_regs ) {
duke@435 2091 // Post allocation, use direct mappings, no LRG info available
duke@435 2092 print_reg( get_reg_first(n), this, buf );
duke@435 2093 } else {
neliasso@4949 2094 uint lidx = _lrg_map.find_const(n); // Grab LRG number
duke@435 2095 if( !_ifg ) {
duke@435 2096 sprintf(buf,"L%d",lidx); // No register binding yet
duke@435 2097 } else if( !lidx ) { // Special, not allocated value
duke@435 2098 strcpy(buf,"Special");
kvn@3882 2099 } else {
kvn@3882 2100 if (lrgs(lidx)._is_vector) {
kvn@3882 2101 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
kvn@3882 2102 print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
kvn@3882 2103 else
kvn@3882 2104 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 2105 } else if( (lrgs(lidx).num_regs() == 1)
kvn@3882 2106 ? lrgs(lidx).mask().is_bound1()
kvn@3882 2107 : lrgs(lidx).mask().is_bound_pair() ) {
kvn@3882 2108 // Hah! We have a bound machine register
kvn@3882 2109 print_reg( lrgs(lidx).reg(), this, buf );
kvn@3882 2110 } else {
kvn@3882 2111 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 2112 }
duke@435 2113 }
duke@435 2114 }
duke@435 2115 return buf+strlen(buf);
duke@435 2116 }
duke@435 2117
duke@435 2118 void PhaseChaitin::dump_for_spill_split_recycle() const {
duke@435 2119 if( WizardMode && (PrintCompilation || PrintOpto) ) {
duke@435 2120 // Display which live ranges need to be split and the allocator's state
duke@435 2121 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
neliasso@4949 2122 for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
duke@435 2123 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
duke@435 2124 tty->print("L%d: ", bidx);
duke@435 2125 lrgs(bidx).dump();
duke@435 2126 }
duke@435 2127 }
duke@435 2128 tty->cr();
duke@435 2129 dump();
duke@435 2130 }
duke@435 2131 }
duke@435 2132
duke@435 2133 void PhaseChaitin::dump_frame() const {
duke@435 2134 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
duke@435 2135 const TypeTuple *domain = C->tf()->domain();
duke@435 2136 const int argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 2137
duke@435 2138 // Incoming arguments in registers dump
duke@435 2139 for( int k = 0; k < argcnt; k++ ) {
duke@435 2140 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
duke@435 2141 if( OptoReg::is_reg(parmreg)) {
duke@435 2142 const char *reg_name = OptoReg::regname(parmreg);
duke@435 2143 tty->print("#r%3.3d %s", parmreg, reg_name);
duke@435 2144 parmreg = _matcher._parm_regs[k].second();
duke@435 2145 if( OptoReg::is_reg(parmreg)) {
duke@435 2146 tty->print(":%s", OptoReg::regname(parmreg));
duke@435 2147 }
duke@435 2148 tty->print(" : parm %d: ", k);
duke@435 2149 domain->field_at(k + TypeFunc::Parms)->dump();
duke@435 2150 tty->print_cr("");
duke@435 2151 }
duke@435 2152 }
duke@435 2153
duke@435 2154 // Check for un-owned padding above incoming args
duke@435 2155 OptoReg::Name reg = _matcher._new_SP;
duke@435 2156 if( reg > _matcher._in_arg_limit ) {
duke@435 2157 reg = OptoReg::add(reg, -1);
duke@435 2158 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
duke@435 2159 }
duke@435 2160
duke@435 2161 // Incoming argument area dump
duke@435 2162 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
duke@435 2163 while( reg > begin_in_arg ) {
duke@435 2164 reg = OptoReg::add(reg, -1);
duke@435 2165 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
duke@435 2166 int j;
duke@435 2167 for( j = 0; j < argcnt; j++) {
duke@435 2168 if( _matcher._parm_regs[j].first() == reg ||
duke@435 2169 _matcher._parm_regs[j].second() == reg ) {
duke@435 2170 tty->print("parm %d: ",j);
duke@435 2171 domain->field_at(j + TypeFunc::Parms)->dump();
duke@435 2172 tty->print_cr("");
duke@435 2173 break;
duke@435 2174 }
duke@435 2175 }
duke@435 2176 if( j >= argcnt )
duke@435 2177 tty->print_cr("HOLE, owned by SELF");
duke@435 2178 }
duke@435 2179
duke@435 2180 // Old outgoing preserve area
duke@435 2181 while( reg > _matcher._old_SP ) {
duke@435 2182 reg = OptoReg::add(reg, -1);
duke@435 2183 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2184 }
duke@435 2185
duke@435 2186 // Old SP
duke@435 2187 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
duke@435 2188 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
duke@435 2189
duke@435 2190 // Preserve area dump
kvn@3577 2191 int fixed_slots = C->fixed_slots();
kvn@3577 2192 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
kvn@3577 2193 OptoReg::Name return_addr = _matcher.return_addr();
kvn@3577 2194
duke@435 2195 reg = OptoReg::add(reg, -1);
kvn@3577 2196 while (OptoReg::is_stack(reg)) {
duke@435 2197 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
kvn@3577 2198 if (return_addr == reg) {
duke@435 2199 tty->print_cr("return address");
kvn@3577 2200 } else if (reg >= begin_in_preserve) {
kvn@3577 2201 // Preserved slots are present on x86
kvn@3577 2202 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
kvn@3577 2203 tty->print_cr("saved fp register");
kvn@3577 2204 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
kvn@3577 2205 VerifyStackAtCalls)
kvn@3577 2206 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
kvn@3577 2207 else
kvn@3577 2208 tty->print_cr("in_preserve");
kvn@3577 2209 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
duke@435 2210 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
kvn@3577 2211 } else {
kvn@3577 2212 tty->print_cr("pad2, stack alignment");
kvn@3577 2213 }
duke@435 2214 reg = OptoReg::add(reg, -1);
duke@435 2215 }
duke@435 2216
duke@435 2217 // Spill area dump
duke@435 2218 reg = OptoReg::add(_matcher._new_SP, _framesize );
duke@435 2219 while( reg > _matcher._out_arg_limit ) {
duke@435 2220 reg = OptoReg::add(reg, -1);
duke@435 2221 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
duke@435 2222 }
duke@435 2223
duke@435 2224 // Outgoing argument area dump
duke@435 2225 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
duke@435 2226 reg = OptoReg::add(reg, -1);
duke@435 2227 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
duke@435 2228 }
duke@435 2229
duke@435 2230 // Outgoing new preserve area
duke@435 2231 while( reg > _matcher._new_SP ) {
duke@435 2232 reg = OptoReg::add(reg, -1);
duke@435 2233 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2234 }
duke@435 2235 tty->print_cr("#");
duke@435 2236 }
duke@435 2237
duke@435 2238 void PhaseChaitin::dump_bb( uint pre_order ) const {
duke@435 2239 tty->print_cr("---dump of B%d---",pre_order);
adlertz@5539 2240 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 2241 Block* block = _cfg.get_block(i);
adlertz@5539 2242 if (block->_pre_order == pre_order) {
adlertz@5539 2243 dump(block);
adlertz@5539 2244 }
duke@435 2245 }
duke@435 2246 }
duke@435 2247
never@2358 2248 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
duke@435 2249 tty->print_cr("---dump of L%d---",lidx);
duke@435 2250
neliasso@4949 2251 if (_ifg) {
neliasso@4949 2252 if (lidx >= _lrg_map.max_lrg_id()) {
duke@435 2253 tty->print("Attempt to print live range index beyond max live range.\n");
duke@435 2254 return;
duke@435 2255 }
duke@435 2256 tty->print("L%d: ",lidx);
neliasso@4949 2257 if (lidx < _ifg->_maxlrg) {
neliasso@4949 2258 lrgs(lidx).dump();
neliasso@4949 2259 } else {
neliasso@4949 2260 tty->print_cr("new LRG");
neliasso@4949 2261 }
duke@435 2262 }
never@2358 2263 if( _ifg && lidx < _ifg->_maxlrg) {
never@2358 2264 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
duke@435 2265 _ifg->neighbors(lidx)->dump();
duke@435 2266 tty->cr();
duke@435 2267 }
duke@435 2268 // For all blocks
adlertz@5539 2269 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 2270 Block* block = _cfg.get_block(i);
duke@435 2271 int dump_once = 0;
duke@435 2272
duke@435 2273 // For all instructions
adlertz@5635 2274 for( uint j = 0; j < block->number_of_nodes(); j++ ) {
adlertz@5635 2275 Node *n = block->get_node(j);
neliasso@4949 2276 if (_lrg_map.find_const(n) == lidx) {
neliasso@4949 2277 if (!dump_once++) {
duke@435 2278 tty->cr();
adlertz@5539 2279 block->dump_head(&_cfg);
duke@435 2280 }
duke@435 2281 dump(n);
duke@435 2282 continue;
duke@435 2283 }
never@2358 2284 if (!defs_only) {
never@2358 2285 uint cnt = n->req();
never@2358 2286 for( uint k = 1; k < cnt; k++ ) {
never@2358 2287 Node *m = n->in(k);
neliasso@4949 2288 if (!m) {
neliasso@4949 2289 continue; // be robust in the dumper
neliasso@4949 2290 }
neliasso@4949 2291 if (_lrg_map.find_const(m) == lidx) {
neliasso@4949 2292 if (!dump_once++) {
never@2358 2293 tty->cr();
adlertz@5539 2294 block->dump_head(&_cfg);
never@2358 2295 }
never@2358 2296 dump(n);
duke@435 2297 }
duke@435 2298 }
duke@435 2299 }
duke@435 2300 }
duke@435 2301 } // End of per-block dump
duke@435 2302 tty->cr();
duke@435 2303 }
duke@435 2304 #endif // not PRODUCT
duke@435 2305
duke@435 2306 int PhaseChaitin::_final_loads = 0;
duke@435 2307 int PhaseChaitin::_final_stores = 0;
duke@435 2308 int PhaseChaitin::_final_memoves= 0;
duke@435 2309 int PhaseChaitin::_final_copies = 0;
duke@435 2310 double PhaseChaitin::_final_load_cost = 0;
duke@435 2311 double PhaseChaitin::_final_store_cost = 0;
duke@435 2312 double PhaseChaitin::_final_memove_cost= 0;
duke@435 2313 double PhaseChaitin::_final_copy_cost = 0;
duke@435 2314 int PhaseChaitin::_conserv_coalesce = 0;
duke@435 2315 int PhaseChaitin::_conserv_coalesce_pair = 0;
duke@435 2316 int PhaseChaitin::_conserv_coalesce_trie = 0;
duke@435 2317 int PhaseChaitin::_conserv_coalesce_quad = 0;
duke@435 2318 int PhaseChaitin::_post_alloc = 0;
duke@435 2319 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
duke@435 2320 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
duke@435 2321 int PhaseChaitin::_used_cisc_instructions = 0;
duke@435 2322 int PhaseChaitin::_unused_cisc_instructions = 0;
duke@435 2323 int PhaseChaitin::_allocator_attempts = 0;
duke@435 2324 int PhaseChaitin::_allocator_successes = 0;
duke@435 2325
duke@435 2326 #ifndef PRODUCT
duke@435 2327 uint PhaseChaitin::_high_pressure = 0;
duke@435 2328 uint PhaseChaitin::_low_pressure = 0;
duke@435 2329
duke@435 2330 void PhaseChaitin::print_chaitin_statistics() {
duke@435 2331 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
duke@435 2332 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
duke@435 2333 tty->print_cr("Adjusted spill cost = %7.0f.",
duke@435 2334 _final_load_cost*4.0 + _final_store_cost * 2.0 +
duke@435 2335 _final_copy_cost*1.0 + _final_memove_cost*12.0);
duke@435 2336 tty->print("Conservatively coalesced %d copies, %d pairs",
duke@435 2337 _conserv_coalesce, _conserv_coalesce_pair);
duke@435 2338 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
duke@435 2339 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
duke@435 2340 tty->print_cr(", %d post alloc.", _post_alloc);
duke@435 2341 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
duke@435 2342 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
duke@435 2343 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
duke@435 2344 if( _used_cisc_instructions || _unused_cisc_instructions )
duke@435 2345 tty->print_cr("Used cisc instruction %d, remained in register %d",
duke@435 2346 _used_cisc_instructions, _unused_cisc_instructions);
duke@435 2347 if( _allocator_successes != 0 )
duke@435 2348 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
duke@435 2349 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
duke@435 2350 }
duke@435 2351 #endif // not PRODUCT

mercurial