src/share/vm/gc_interface/collectedHeap.hpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3900
d2a62e0f25eb
child 4295
59c790074993
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

duke@435 1 /*
never@3499 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_interface/gcCause.hpp"
stefank@2314 29 #include "memory/allocation.hpp"
stefank@2314 30 #include "memory/barrierSet.hpp"
stefank@2314 31 #include "runtime/handles.hpp"
stefank@2314 32 #include "runtime/perfData.hpp"
stefank@2314 33 #include "runtime/safepoint.hpp"
never@3499 34 #include "utilities/events.hpp"
stefank@2314 35
duke@435 36 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This
duke@435 37 // is an abstract class: there may be many different kinds of heaps. This
duke@435 38 // class defines the functions that a heap must implement, and contains
duke@435 39 // infrastructure common to all heaps.
duke@435 40
duke@435 41 class BarrierSet;
duke@435 42 class ThreadClosure;
duke@435 43 class AdaptiveSizePolicy;
duke@435 44 class Thread;
jmasa@1822 45 class CollectorPolicy;
duke@435 46
never@3499 47 class GCMessage : public FormatBuffer<1024> {
never@3499 48 public:
never@3499 49 bool is_before;
never@3499 50
never@3499 51 public:
never@3499 52 GCMessage() {}
never@3499 53 };
never@3499 54
never@3499 55 class GCHeapLog : public EventLogBase<GCMessage> {
never@3499 56 private:
never@3499 57 void log_heap(bool before);
never@3499 58
never@3499 59 public:
never@3499 60 GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
never@3499 61
never@3499 62 void log_heap_before() {
never@3499 63 log_heap(true);
never@3499 64 }
never@3499 65 void log_heap_after() {
never@3499 66 log_heap(false);
never@3499 67 }
never@3499 68 };
never@3499 69
duke@435 70 //
duke@435 71 // CollectedHeap
duke@435 72 // SharedHeap
duke@435 73 // GenCollectedHeap
duke@435 74 // G1CollectedHeap
duke@435 75 // ParallelScavengeHeap
duke@435 76 //
zgu@3900 77 class CollectedHeap : public CHeapObj<mtInternal> {
duke@435 78 friend class VMStructs;
duke@435 79 friend class IsGCActiveMark; // Block structured external access to _is_gc_active
duke@435 80
duke@435 81 #ifdef ASSERT
duke@435 82 static int _fire_out_of_memory_count;
duke@435 83 #endif
duke@435 84
jcoomes@916 85 // Used for filler objects (static, but initialized in ctor).
jcoomes@916 86 static size_t _filler_array_max_size;
jcoomes@916 87
never@3499 88 GCHeapLog* _gc_heap_log;
never@3499 89
ysr@1601 90 // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
ysr@1601 91 bool _defer_initial_card_mark;
ysr@1601 92
duke@435 93 protected:
duke@435 94 MemRegion _reserved;
duke@435 95 BarrierSet* _barrier_set;
duke@435 96 bool _is_gc_active;
jmasa@3357 97 uint _n_par_threads;
jmasa@2188 98
duke@435 99 unsigned int _total_collections; // ... started
duke@435 100 unsigned int _total_full_collections; // ... started
duke@435 101 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
duke@435 102 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
duke@435 103
duke@435 104 // Reason for current garbage collection. Should be set to
duke@435 105 // a value reflecting no collection between collections.
duke@435 106 GCCause::Cause _gc_cause;
duke@435 107 GCCause::Cause _gc_lastcause;
duke@435 108 PerfStringVariable* _perf_gc_cause;
duke@435 109 PerfStringVariable* _perf_gc_lastcause;
duke@435 110
duke@435 111 // Constructor
duke@435 112 CollectedHeap();
duke@435 113
ysr@1601 114 // Do common initializations that must follow instance construction,
ysr@1601 115 // for example, those needing virtual calls.
ysr@1601 116 // This code could perhaps be moved into initialize() but would
ysr@1601 117 // be slightly more awkward because we want the latter to be a
ysr@1601 118 // pure virtual.
ysr@1601 119 void pre_initialize();
ysr@1601 120
tonyp@2971 121 // Create a new tlab. All TLAB allocations must go through this.
duke@435 122 virtual HeapWord* allocate_new_tlab(size_t size);
duke@435 123
duke@435 124 // Accumulate statistics on all tlabs.
duke@435 125 virtual void accumulate_statistics_all_tlabs();
duke@435 126
duke@435 127 // Reinitialize tlabs before resuming mutators.
duke@435 128 virtual void resize_all_tlabs();
duke@435 129
duke@435 130 // Allocate from the current thread's TLAB, with broken-out slow path.
duke@435 131 inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
duke@435 132 static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
duke@435 133
duke@435 134 // Allocate an uninitialized block of the given size, or returns NULL if
duke@435 135 // this is impossible.
tonyp@2971 136 inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
duke@435 137
duke@435 138 // Like allocate_init, but the block returned by a successful allocation
duke@435 139 // is guaranteed initialized to zeros.
tonyp@2971 140 inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
duke@435 141
duke@435 142 // Helper functions for (VM) allocation.
brutisso@3675 143 inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
duke@435 144 inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
brutisso@3675 145 HeapWord* objPtr);
duke@435 146
brutisso@3675 147 inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj);
duke@435 148
duke@435 149 inline static void post_allocation_setup_array(KlassHandle klass,
brutisso@3675 150 HeapWord* obj, int length);
duke@435 151
duke@435 152 // Clears an allocated object.
duke@435 153 inline static void init_obj(HeapWord* obj, size_t size);
duke@435 154
jcoomes@916 155 // Filler object utilities.
jcoomes@916 156 static inline size_t filler_array_hdr_size();
jcoomes@916 157 static inline size_t filler_array_min_size();
jcoomes@916 158
jcoomes@916 159 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
johnc@1600 160 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
jcoomes@916 161
jcoomes@916 162 // Fill with a single array; caller must ensure filler_array_min_size() <=
jcoomes@916 163 // words <= filler_array_max_size().
johnc@1600 164 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 165
jcoomes@916 166 // Fill with a single object (either an int array or a java.lang.Object).
johnc@1600 167 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 168
duke@435 169 // Verification functions
duke@435 170 virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 171 PRODUCT_RETURN;
duke@435 172 virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 173 PRODUCT_RETURN;
jmasa@977 174 debug_only(static void check_for_valid_allocation_state();)
duke@435 175
duke@435 176 public:
duke@435 177 enum Name {
duke@435 178 Abstract,
duke@435 179 SharedHeap,
duke@435 180 GenCollectedHeap,
duke@435 181 ParallelScavengeHeap,
duke@435 182 G1CollectedHeap
duke@435 183 };
duke@435 184
brutisso@3668 185 static inline size_t filler_array_max_size() {
brutisso@3668 186 return _filler_array_max_size;
brutisso@3668 187 }
brutisso@3668 188
duke@435 189 virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
duke@435 190
duke@435 191 /**
duke@435 192 * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
duke@435 193 * and JNI_OK on success.
duke@435 194 */
duke@435 195 virtual jint initialize() = 0;
duke@435 196
duke@435 197 // In many heaps, there will be a need to perform some initialization activities
duke@435 198 // after the Universe is fully formed, but before general heap allocation is allowed.
duke@435 199 // This is the correct place to place such initialization methods.
duke@435 200 virtual void post_initialize() = 0;
duke@435 201
duke@435 202 MemRegion reserved_region() const { return _reserved; }
coleenp@548 203 address base() const { return (address)reserved_region().start(); }
duke@435 204
duke@435 205 // Future cleanup here. The following functions should specify bytes or
duke@435 206 // heapwords as part of their signature.
duke@435 207 virtual size_t capacity() const = 0;
duke@435 208 virtual size_t used() const = 0;
duke@435 209
duke@435 210 // Return "true" if the part of the heap that allocates Java
duke@435 211 // objects has reached the maximal committed limit that it can
duke@435 212 // reach, without a garbage collection.
duke@435 213 virtual bool is_maximal_no_gc() const = 0;
duke@435 214
duke@435 215 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of
duke@435 216 // memory that the vm could make available for storing 'normal' java objects.
duke@435 217 // This is based on the reserved address space, but should not include space
coleenp@4037 218 // that the vm uses internally for bookkeeping or temporary storage
coleenp@4037 219 // (e.g., in the case of the young gen, one of the survivor
duke@435 220 // spaces).
duke@435 221 virtual size_t max_capacity() const = 0;
duke@435 222
duke@435 223 // Returns "TRUE" if "p" points into the reserved area of the heap.
duke@435 224 bool is_in_reserved(const void* p) const {
duke@435 225 return _reserved.contains(p);
duke@435 226 }
duke@435 227
duke@435 228 bool is_in_reserved_or_null(const void* p) const {
duke@435 229 return p == NULL || is_in_reserved(p);
duke@435 230 }
duke@435 231
stefank@3335 232 // Returns "TRUE" iff "p" points into the committed areas of the heap.
stefank@3335 233 // Since this method can be expensive in general, we restrict its
duke@435 234 // use to assertion checking only.
duke@435 235 virtual bool is_in(const void* p) const = 0;
duke@435 236
duke@435 237 bool is_in_or_null(const void* p) const {
duke@435 238 return p == NULL || is_in(p);
duke@435 239 }
duke@435 240
coleenp@4037 241 bool is_in_place(Metadata** p) {
coleenp@4037 242 return !Universe::heap()->is_in(p);
coleenp@4037 243 }
coleenp@4037 244 bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
coleenp@4037 245 bool is_in_place(narrowOop* p) {
coleenp@4037 246 oop o = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@4037 247 return Universe::heap()->is_in((const void*)o);
coleenp@4037 248 }
coleenp@4037 249
duke@435 250 // Let's define some terms: a "closed" subset of a heap is one that
duke@435 251 //
duke@435 252 // 1) contains all currently-allocated objects, and
duke@435 253 //
duke@435 254 // 2) is closed under reference: no object in the closed subset
duke@435 255 // references one outside the closed subset.
duke@435 256 //
duke@435 257 // Membership in a heap's closed subset is useful for assertions.
duke@435 258 // Clearly, the entire heap is a closed subset, so the default
duke@435 259 // implementation is to use "is_in_reserved". But this may not be too
duke@435 260 // liberal to perform useful checking. Also, the "is_in" predicate
duke@435 261 // defines a closed subset, but may be too expensive, since "is_in"
duke@435 262 // verifies that its argument points to an object head. The
duke@435 263 // "closed_subset" method allows a heap to define an intermediate
duke@435 264 // predicate, allowing more precise checking than "is_in_reserved" at
duke@435 265 // lower cost than "is_in."
duke@435 266
duke@435 267 // One important case is a heap composed of disjoint contiguous spaces,
duke@435 268 // such as the Garbage-First collector. Such heaps have a convenient
duke@435 269 // closed subset consisting of the allocated portions of those
duke@435 270 // contiguous spaces.
duke@435 271
duke@435 272 // Return "TRUE" iff the given pointer points into the heap's defined
duke@435 273 // closed subset (which defaults to the entire heap).
duke@435 274 virtual bool is_in_closed_subset(const void* p) const {
duke@435 275 return is_in_reserved(p);
duke@435 276 }
duke@435 277
duke@435 278 bool is_in_closed_subset_or_null(const void* p) const {
duke@435 279 return p == NULL || is_in_closed_subset(p);
duke@435 280 }
duke@435 281
jmasa@2909 282 #ifdef ASSERT
jmasa@2909 283 // Returns true if "p" is in the part of the
jmasa@2909 284 // heap being collected.
jmasa@2909 285 virtual bool is_in_partial_collection(const void *p) = 0;
jmasa@2909 286 #endif
jmasa@2909 287
jrose@1424 288 // An object is scavengable if its location may move during a scavenge.
jrose@1424 289 // (A scavenge is a GC which is not a full GC.)
jmasa@2909 290 virtual bool is_scavengable(const void *p) = 0;
jrose@1424 291
duke@435 292 // Returns "TRUE" if "p" is a method oop in the
duke@435 293 // current heap, with high probability. This predicate
duke@435 294 // is not stable, in general.
coleenp@4037 295 bool is_valid_method(Method* p) const;
duke@435 296
duke@435 297 void set_gc_cause(GCCause::Cause v) {
duke@435 298 if (UsePerfData) {
duke@435 299 _gc_lastcause = _gc_cause;
duke@435 300 _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
duke@435 301 _perf_gc_cause->set_value(GCCause::to_string(v));
duke@435 302 }
duke@435 303 _gc_cause = v;
duke@435 304 }
duke@435 305 GCCause::Cause gc_cause() { return _gc_cause; }
duke@435 306
jmasa@2188 307 // Number of threads currently working on GC tasks.
jmasa@3357 308 uint n_par_threads() { return _n_par_threads; }
jmasa@2188 309
jmasa@2188 310 // May be overridden to set additional parallelism.
jmasa@3357 311 virtual void set_par_threads(uint t) { _n_par_threads = t; };
jmasa@2188 312
never@3205 313 // Allocate and initialize instances of Class
never@3205 314 static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);
never@3205 315
duke@435 316 // General obj/array allocation facilities.
duke@435 317 inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
duke@435 318 inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
kvn@3157 319 inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
duke@435 320
coleenp@4037 321 inline static void post_allocation_install_obj_klass(KlassHandle klass,
coleenp@4037 322 oop obj);
duke@435 323
duke@435 324 // Raw memory allocation facilities
duke@435 325 // The obj and array allocate methods are covers for these methods.
coleenp@4037 326 // mem_allocate() should never be
tonyp@2971 327 // called to allocate TLABs, only individual objects.
duke@435 328 virtual HeapWord* mem_allocate(size_t size,
duke@435 329 bool* gc_overhead_limit_was_exceeded) = 0;
duke@435 330
jcoomes@916 331 // Utilities for turning raw memory into filler objects.
jcoomes@916 332 //
jcoomes@916 333 // min_fill_size() is the smallest region that can be filled.
jcoomes@916 334 // fill_with_objects() can fill arbitrary-sized regions of the heap using
jcoomes@916 335 // multiple objects. fill_with_object() is for regions known to be smaller
jcoomes@916 336 // than the largest array of integers; it uses a single object to fill the
jcoomes@916 337 // region and has slightly less overhead.
jcoomes@916 338 static size_t min_fill_size() {
jcoomes@916 339 return size_t(align_object_size(oopDesc::header_size()));
jcoomes@916 340 }
jcoomes@916 341
johnc@1600 342 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 343
johnc@1600 344 static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
johnc@1600 345 static void fill_with_object(MemRegion region, bool zap = true) {
johnc@1600 346 fill_with_object(region.start(), region.word_size(), zap);
jcoomes@916 347 }
johnc@1600 348 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
johnc@1600 349 fill_with_object(start, pointer_delta(end, start), zap);
jcoomes@916 350 }
jcoomes@916 351
duke@435 352 // Some heaps may offer a contiguous region for shared non-blocking
duke@435 353 // allocation, via inlined code (by exporting the address of the top and
duke@435 354 // end fields defining the extent of the contiguous allocation region.)
duke@435 355
duke@435 356 // This function returns "true" iff the heap supports this kind of
duke@435 357 // allocation. (Default is "no".)
duke@435 358 virtual bool supports_inline_contig_alloc() const {
duke@435 359 return false;
duke@435 360 }
duke@435 361 // These functions return the addresses of the fields that define the
duke@435 362 // boundaries of the contiguous allocation area. (These fields should be
duke@435 363 // physically near to one another.)
duke@435 364 virtual HeapWord** top_addr() const {
duke@435 365 guarantee(false, "inline contiguous allocation not supported");
duke@435 366 return NULL;
duke@435 367 }
duke@435 368 virtual HeapWord** end_addr() const {
duke@435 369 guarantee(false, "inline contiguous allocation not supported");
duke@435 370 return NULL;
duke@435 371 }
duke@435 372
duke@435 373 // Some heaps may be in an unparseable state at certain times between
duke@435 374 // collections. This may be necessary for efficient implementation of
duke@435 375 // certain allocation-related activities. Calling this function before
duke@435 376 // attempting to parse a heap ensures that the heap is in a parsable
duke@435 377 // state (provided other concurrent activity does not introduce
duke@435 378 // unparsability). It is normally expected, therefore, that this
duke@435 379 // method is invoked with the world stopped.
duke@435 380 // NOTE: if you override this method, make sure you call
duke@435 381 // super::ensure_parsability so that the non-generational
duke@435 382 // part of the work gets done. See implementation of
duke@435 383 // CollectedHeap::ensure_parsability and, for instance,
duke@435 384 // that of GenCollectedHeap::ensure_parsability().
duke@435 385 // The argument "retire_tlabs" controls whether existing TLABs
duke@435 386 // are merely filled or also retired, thus preventing further
duke@435 387 // allocation from them and necessitating allocation of new TLABs.
duke@435 388 virtual void ensure_parsability(bool retire_tlabs);
duke@435 389
duke@435 390 // Return an estimate of the maximum allocation that could be performed
duke@435 391 // without triggering any collection or expansion activity. In a
duke@435 392 // generational collector, for example, this is probably the largest
duke@435 393 // allocation that could be supported (without expansion) in the youngest
duke@435 394 // generation. It is "unsafe" because no locks are taken; the result
duke@435 395 // should be treated as an approximation, not a guarantee, for use in
duke@435 396 // heuristic resizing decisions.
duke@435 397 virtual size_t unsafe_max_alloc() = 0;
duke@435 398
duke@435 399 // Section on thread-local allocation buffers (TLABs)
duke@435 400 // If the heap supports thread-local allocation buffers, it should override
duke@435 401 // the following methods:
duke@435 402 // Returns "true" iff the heap supports thread-local allocation buffers.
duke@435 403 // The default is "no".
duke@435 404 virtual bool supports_tlab_allocation() const {
duke@435 405 return false;
duke@435 406 }
duke@435 407 // The amount of space available for thread-local allocation buffers.
duke@435 408 virtual size_t tlab_capacity(Thread *thr) const {
duke@435 409 guarantee(false, "thread-local allocation buffers not supported");
duke@435 410 return 0;
duke@435 411 }
duke@435 412 // An estimate of the maximum allocation that could be performed
duke@435 413 // for thread-local allocation buffers without triggering any
duke@435 414 // collection or expansion activity.
duke@435 415 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
duke@435 416 guarantee(false, "thread-local allocation buffers not supported");
duke@435 417 return 0;
duke@435 418 }
ysr@1462 419
duke@435 420 // Can a compiler initialize a new object without store barriers?
duke@435 421 // This permission only extends from the creation of a new object
ysr@1462 422 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 423 // is granted for this heap type, the compiler promises to call
ysr@1462 424 // defer_store_barrier() below on any slow path allocation of
ysr@1462 425 // a new object for which such initializing store barriers will
ysr@1462 426 // have been elided.
ysr@777 427 virtual bool can_elide_tlab_store_barriers() const = 0;
ysr@777 428
duke@435 429 // If a compiler is eliding store barriers for TLAB-allocated objects,
duke@435 430 // there is probably a corresponding slow path which can produce
duke@435 431 // an object allocated anywhere. The compiler's runtime support
duke@435 432 // promises to call this function on such a slow-path-allocated
duke@435 433 // object before performing initializations that have elided
ysr@1462 434 // store barriers. Returns new_obj, or maybe a safer copy thereof.
ysr@1601 435 virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
ysr@1462 436
ysr@1462 437 // Answers whether an initializing store to a new object currently
ysr@1601 438 // allocated at the given address doesn't need a store
ysr@1462 439 // barrier. Returns "true" if it doesn't need an initializing
ysr@1462 440 // store barrier; answers "false" if it does.
ysr@1462 441 virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
ysr@1462 442
ysr@1601 443 // If a compiler is eliding store barriers for TLAB-allocated objects,
ysr@1601 444 // we will be informed of a slow-path allocation by a call
ysr@1601 445 // to new_store_pre_barrier() above. Such a call precedes the
ysr@1601 446 // initialization of the object itself, and no post-store-barriers will
ysr@1601 447 // be issued. Some heap types require that the barrier strictly follows
ysr@1601 448 // the initializing stores. (This is currently implemented by deferring the
ysr@1601 449 // barrier until the next slow-path allocation or gc-related safepoint.)
ysr@1601 450 // This interface answers whether a particular heap type needs the card
ysr@1601 451 // mark to be thus strictly sequenced after the stores.
ysr@1601 452 virtual bool card_mark_must_follow_store() const = 0;
ysr@1601 453
ysr@1462 454 // If the CollectedHeap was asked to defer a store barrier above,
ysr@1462 455 // this informs it to flush such a deferred store barrier to the
ysr@1462 456 // remembered set.
ysr@1462 457 virtual void flush_deferred_store_barrier(JavaThread* thread);
duke@435 458
duke@435 459 // Does this heap support heap inspection (+PrintClassHistogram?)
ysr@777 460 virtual bool supports_heap_inspection() const = 0;
duke@435 461
duke@435 462 // Perform a collection of the heap; intended for use in implementing
duke@435 463 // "System.gc". This probably implies as full a collection as the
duke@435 464 // "CollectedHeap" supports.
duke@435 465 virtual void collect(GCCause::Cause cause) = 0;
duke@435 466
coleenp@4037 467 // Perform a full collection
coleenp@4037 468 virtual void do_full_collection(bool clear_all_soft_refs) = 0;
coleenp@4037 469
duke@435 470 // This interface assumes that it's being called by the
duke@435 471 // vm thread. It collects the heap assuming that the
duke@435 472 // heap lock is already held and that we are executing in
duke@435 473 // the context of the vm thread.
coleenp@4037 474 virtual void collect_as_vm_thread(GCCause::Cause cause);
coleenp@4037 475
coleenp@4037 476 // Callback from VM_CollectForMetadataAllocation operation.
coleenp@4037 477 MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
coleenp@4037 478 size_t size,
coleenp@4037 479 Metaspace::MetadataType mdtype);
duke@435 480
duke@435 481 // Returns the barrier set for this heap
duke@435 482 BarrierSet* barrier_set() { return _barrier_set; }
duke@435 483
duke@435 484 // Returns "true" iff there is a stop-world GC in progress. (I assume
duke@435 485 // that it should answer "false" for the concurrent part of a concurrent
duke@435 486 // collector -- dld).
duke@435 487 bool is_gc_active() const { return _is_gc_active; }
duke@435 488
duke@435 489 // Total number of GC collections (started)
duke@435 490 unsigned int total_collections() const { return _total_collections; }
duke@435 491 unsigned int total_full_collections() const { return _total_full_collections;}
duke@435 492
duke@435 493 // Increment total number of GC collections (started)
duke@435 494 // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
duke@435 495 void increment_total_collections(bool full = false) {
duke@435 496 _total_collections++;
duke@435 497 if (full) {
duke@435 498 increment_total_full_collections();
duke@435 499 }
duke@435 500 }
duke@435 501
duke@435 502 void increment_total_full_collections() { _total_full_collections++; }
duke@435 503
duke@435 504 // Return the AdaptiveSizePolicy for the heap.
duke@435 505 virtual AdaptiveSizePolicy* size_policy() = 0;
duke@435 506
jmasa@1822 507 // Return the CollectorPolicy for the heap
jmasa@1822 508 virtual CollectorPolicy* collector_policy() const = 0;
jmasa@1822 509
coleenp@4037 510 void oop_iterate_no_header(OopClosure* cl);
coleenp@4037 511
duke@435 512 // Iterate over all the ref-containing fields of all objects, calling
coleenp@4037 513 // "cl.do_oop" on each.
coleenp@4037 514 virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
duke@435 515
duke@435 516 // Iterate over all objects, calling "cl.do_object" on each.
duke@435 517 virtual void object_iterate(ObjectClosure* cl) = 0;
duke@435 518
jmasa@952 519 // Similar to object_iterate() except iterates only
jmasa@952 520 // over live objects.
jmasa@952 521 virtual void safe_object_iterate(ObjectClosure* cl) = 0;
jmasa@952 522
duke@435 523 // NOTE! There is no requirement that a collector implement these
duke@435 524 // functions.
duke@435 525 //
duke@435 526 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
duke@435 527 // each address in the (reserved) heap is a member of exactly
duke@435 528 // one block. The defining characteristic of a block is that it is
duke@435 529 // possible to find its size, and thus to progress forward to the next
duke@435 530 // block. (Blocks may be of different sizes.) Thus, blocks may
duke@435 531 // represent Java objects, or they might be free blocks in a
duke@435 532 // free-list-based heap (or subheap), as long as the two kinds are
duke@435 533 // distinguishable and the size of each is determinable.
duke@435 534
duke@435 535 // Returns the address of the start of the "block" that contains the
duke@435 536 // address "addr". We say "blocks" instead of "object" since some heaps
duke@435 537 // may not pack objects densely; a chunk may either be an object or a
duke@435 538 // non-object.
duke@435 539 virtual HeapWord* block_start(const void* addr) const = 0;
duke@435 540
duke@435 541 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 542 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 543 // of the active area of the heap.
duke@435 544 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 545
duke@435 546 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 547 // the block is an object.
duke@435 548 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 549
duke@435 550 // Returns the longest time (in ms) that has elapsed since the last
duke@435 551 // time that any part of the heap was examined by a garbage collection.
duke@435 552 virtual jlong millis_since_last_gc() = 0;
duke@435 553
duke@435 554 // Perform any cleanup actions necessary before allowing a verification.
duke@435 555 virtual void prepare_for_verify() = 0;
duke@435 556
ysr@1050 557 // Generate any dumps preceding or following a full gc
ysr@1050 558 void pre_full_gc_dump();
ysr@1050 559 void post_full_gc_dump();
ysr@1050 560
tonyp@3269 561 // Print heap information on the given outputStream.
duke@435 562 virtual void print_on(outputStream* st) const = 0;
tonyp@3269 563 // The default behavior is to call print_on() on tty.
tonyp@3269 564 virtual void print() const {
tonyp@3269 565 print_on(tty);
tonyp@3269 566 }
tonyp@3269 567 // Print more detailed heap information on the given
tonyp@3269 568 // outputStream. The default behaviour is to call print_on(). It is
tonyp@3269 569 // up to each subclass to override it and add any additional output
tonyp@3269 570 // it needs.
tonyp@3269 571 virtual void print_extended_on(outputStream* st) const {
tonyp@3269 572 print_on(st);
tonyp@3269 573 }
duke@435 574
duke@435 575 // Print all GC threads (other than the VM thread)
duke@435 576 // used by this heap.
duke@435 577 virtual void print_gc_threads_on(outputStream* st) const = 0;
tonyp@3269 578 // The default behavior is to call print_gc_threads_on() on tty.
tonyp@3269 579 void print_gc_threads() {
tonyp@3269 580 print_gc_threads_on(tty);
tonyp@3269 581 }
duke@435 582 // Iterator for all GC threads (other than VM thread)
duke@435 583 virtual void gc_threads_do(ThreadClosure* tc) const = 0;
duke@435 584
duke@435 585 // Print any relevant tracing info that flags imply.
duke@435 586 // Default implementation does nothing.
duke@435 587 virtual void print_tracing_info() const = 0;
duke@435 588
never@3499 589 // If PrintHeapAtGC is set call the appropriate routi
never@3499 590 void print_heap_before_gc() {
never@3499 591 if (PrintHeapAtGC) {
never@3499 592 Universe::print_heap_before_gc();
never@3499 593 }
never@3499 594 if (_gc_heap_log != NULL) {
never@3499 595 _gc_heap_log->log_heap_before();
never@3499 596 }
never@3499 597 }
never@3499 598 void print_heap_after_gc() {
never@3499 599 if (PrintHeapAtGC) {
never@3499 600 Universe::print_heap_after_gc();
never@3499 601 }
never@3499 602 if (_gc_heap_log != NULL) {
never@3499 603 _gc_heap_log->log_heap_after();
never@3499 604 }
never@3499 605 }
never@3499 606
duke@435 607 // Heap verification
brutisso@3711 608 virtual void verify(bool silent, VerifyOption option) = 0;
duke@435 609
duke@435 610 // Non product verification and debugging.
duke@435 611 #ifndef PRODUCT
duke@435 612 // Support for PromotionFailureALot. Return true if it's time to cause a
duke@435 613 // promotion failure. The no-argument version uses
duke@435 614 // this->_promotion_failure_alot_count as the counter.
duke@435 615 inline bool promotion_should_fail(volatile size_t* count);
duke@435 616 inline bool promotion_should_fail();
duke@435 617
duke@435 618 // Reset the PromotionFailureALot counters. Should be called at the end of a
duke@435 619 // GC in which promotion failure ocurred.
duke@435 620 inline void reset_promotion_should_fail(volatile size_t* count);
duke@435 621 inline void reset_promotion_should_fail();
duke@435 622 #endif // #ifndef PRODUCT
duke@435 623
duke@435 624 #ifdef ASSERT
duke@435 625 static int fired_fake_oom() {
duke@435 626 return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
duke@435 627 }
duke@435 628 #endif
jmasa@2188 629
jmasa@2188 630 public:
jmasa@2188 631 // This is a convenience method that is used in cases where
jmasa@2188 632 // the actual number of GC worker threads is not pertinent but
jmasa@2188 633 // only whether there more than 0. Use of this method helps
jmasa@2188 634 // reduce the occurrence of ParallelGCThreads to uses where the
jmasa@2188 635 // actual number may be germane.
jmasa@2188 636 static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
stefank@3335 637
stefank@3335 638 /////////////// Unit tests ///////////////
stefank@3335 639
stefank@3335 640 NOT_PRODUCT(static void test_is_in();)
duke@435 641 };
duke@435 642
duke@435 643 // Class to set and reset the GC cause for a CollectedHeap.
duke@435 644
duke@435 645 class GCCauseSetter : StackObj {
duke@435 646 CollectedHeap* _heap;
duke@435 647 GCCause::Cause _previous_cause;
duke@435 648 public:
duke@435 649 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
duke@435 650 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 651 "This method manipulates heap state without locking");
duke@435 652 _heap = heap;
duke@435 653 _previous_cause = _heap->gc_cause();
duke@435 654 _heap->set_gc_cause(cause);
duke@435 655 }
duke@435 656
duke@435 657 ~GCCauseSetter() {
duke@435 658 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 659 "This method manipulates heap state without locking");
duke@435 660 _heap->set_gc_cause(_previous_cause);
duke@435 661 }
duke@435 662 };
stefank@2314 663
stefank@2314 664 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial