src/share/vm/gc_interface/collectedHeap.hpp

Mon, 26 Sep 2011 10:24:05 -0700

author
kvn
date
Mon, 26 Sep 2011 10:24:05 -0700
changeset 3157
a92cdbac8b9e
parent 2971
c9ca3f51cf41
child 3205
e5928e7dab26
permissions
-rw-r--r--

7081933: Use zeroing elimination optimization for large array
Summary: Don't zero new typeArray during runtime call if the allocation is followed by arraycopy into it.
Reviewed-by: twisti

duke@435 1 /*
tonyp@2971 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_interface/gcCause.hpp"
stefank@2314 29 #include "memory/allocation.hpp"
stefank@2314 30 #include "memory/barrierSet.hpp"
stefank@2314 31 #include "runtime/handles.hpp"
stefank@2314 32 #include "runtime/perfData.hpp"
stefank@2314 33 #include "runtime/safepoint.hpp"
stefank@2314 34
duke@435 35 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This
duke@435 36 // is an abstract class: there may be many different kinds of heaps. This
duke@435 37 // class defines the functions that a heap must implement, and contains
duke@435 38 // infrastructure common to all heaps.
duke@435 39
duke@435 40 class BarrierSet;
duke@435 41 class ThreadClosure;
duke@435 42 class AdaptiveSizePolicy;
duke@435 43 class Thread;
jmasa@1822 44 class CollectorPolicy;
duke@435 45
duke@435 46 //
duke@435 47 // CollectedHeap
duke@435 48 // SharedHeap
duke@435 49 // GenCollectedHeap
duke@435 50 // G1CollectedHeap
duke@435 51 // ParallelScavengeHeap
duke@435 52 //
duke@435 53 class CollectedHeap : public CHeapObj {
duke@435 54 friend class VMStructs;
duke@435 55 friend class IsGCActiveMark; // Block structured external access to _is_gc_active
jmasa@977 56 friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
duke@435 57
duke@435 58 #ifdef ASSERT
duke@435 59 static int _fire_out_of_memory_count;
duke@435 60 #endif
duke@435 61
jcoomes@916 62 // Used for filler objects (static, but initialized in ctor).
jcoomes@916 63 static size_t _filler_array_max_size;
jcoomes@916 64
ysr@1601 65 // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
ysr@1601 66 bool _defer_initial_card_mark;
ysr@1601 67
duke@435 68 protected:
duke@435 69 MemRegion _reserved;
duke@435 70 BarrierSet* _barrier_set;
duke@435 71 bool _is_gc_active;
jmasa@2188 72 int _n_par_threads;
jmasa@2188 73
duke@435 74 unsigned int _total_collections; // ... started
duke@435 75 unsigned int _total_full_collections; // ... started
duke@435 76 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
duke@435 77 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
duke@435 78
duke@435 79 // Reason for current garbage collection. Should be set to
duke@435 80 // a value reflecting no collection between collections.
duke@435 81 GCCause::Cause _gc_cause;
duke@435 82 GCCause::Cause _gc_lastcause;
duke@435 83 PerfStringVariable* _perf_gc_cause;
duke@435 84 PerfStringVariable* _perf_gc_lastcause;
duke@435 85
duke@435 86 // Constructor
duke@435 87 CollectedHeap();
duke@435 88
ysr@1601 89 // Do common initializations that must follow instance construction,
ysr@1601 90 // for example, those needing virtual calls.
ysr@1601 91 // This code could perhaps be moved into initialize() but would
ysr@1601 92 // be slightly more awkward because we want the latter to be a
ysr@1601 93 // pure virtual.
ysr@1601 94 void pre_initialize();
ysr@1601 95
tonyp@2971 96 // Create a new tlab. All TLAB allocations must go through this.
duke@435 97 virtual HeapWord* allocate_new_tlab(size_t size);
duke@435 98
duke@435 99 // Accumulate statistics on all tlabs.
duke@435 100 virtual void accumulate_statistics_all_tlabs();
duke@435 101
duke@435 102 // Reinitialize tlabs before resuming mutators.
duke@435 103 virtual void resize_all_tlabs();
duke@435 104
duke@435 105 protected:
duke@435 106 // Allocate from the current thread's TLAB, with broken-out slow path.
duke@435 107 inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
duke@435 108 static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
duke@435 109
duke@435 110 // Allocate an uninitialized block of the given size, or returns NULL if
duke@435 111 // this is impossible.
tonyp@2971 112 inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
duke@435 113
duke@435 114 // Like allocate_init, but the block returned by a successful allocation
duke@435 115 // is guaranteed initialized to zeros.
tonyp@2971 116 inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
duke@435 117
duke@435 118 // Same as common_mem version, except memory is allocated in the permanent area
duke@435 119 // If there is no permanent area, revert to common_mem_allocate_noinit
duke@435 120 inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
duke@435 121
duke@435 122 // Same as common_mem version, except memory is allocated in the permanent area
duke@435 123 // If there is no permanent area, revert to common_mem_allocate_init
duke@435 124 inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
duke@435 125
duke@435 126 // Helper functions for (VM) allocation.
duke@435 127 inline static void post_allocation_setup_common(KlassHandle klass,
duke@435 128 HeapWord* obj, size_t size);
duke@435 129 inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
duke@435 130 HeapWord* objPtr,
duke@435 131 size_t size);
duke@435 132
duke@435 133 inline static void post_allocation_setup_obj(KlassHandle klass,
duke@435 134 HeapWord* obj, size_t size);
duke@435 135
duke@435 136 inline static void post_allocation_setup_array(KlassHandle klass,
duke@435 137 HeapWord* obj, size_t size,
duke@435 138 int length);
duke@435 139
duke@435 140 // Clears an allocated object.
duke@435 141 inline static void init_obj(HeapWord* obj, size_t size);
duke@435 142
jcoomes@916 143 // Filler object utilities.
jcoomes@916 144 static inline size_t filler_array_hdr_size();
jcoomes@916 145 static inline size_t filler_array_min_size();
jcoomes@916 146 static inline size_t filler_array_max_size();
jcoomes@916 147
jcoomes@916 148 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
johnc@1600 149 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
jcoomes@916 150
jcoomes@916 151 // Fill with a single array; caller must ensure filler_array_min_size() <=
jcoomes@916 152 // words <= filler_array_max_size().
johnc@1600 153 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 154
jcoomes@916 155 // Fill with a single object (either an int array or a java.lang.Object).
johnc@1600 156 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 157
duke@435 158 // Verification functions
duke@435 159 virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 160 PRODUCT_RETURN;
duke@435 161 virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 162 PRODUCT_RETURN;
jmasa@977 163 debug_only(static void check_for_valid_allocation_state();)
duke@435 164
duke@435 165 public:
duke@435 166 enum Name {
duke@435 167 Abstract,
duke@435 168 SharedHeap,
duke@435 169 GenCollectedHeap,
duke@435 170 ParallelScavengeHeap,
duke@435 171 G1CollectedHeap
duke@435 172 };
duke@435 173
duke@435 174 virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
duke@435 175
duke@435 176 /**
duke@435 177 * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
duke@435 178 * and JNI_OK on success.
duke@435 179 */
duke@435 180 virtual jint initialize() = 0;
duke@435 181
duke@435 182 // In many heaps, there will be a need to perform some initialization activities
duke@435 183 // after the Universe is fully formed, but before general heap allocation is allowed.
duke@435 184 // This is the correct place to place such initialization methods.
duke@435 185 virtual void post_initialize() = 0;
duke@435 186
duke@435 187 MemRegion reserved_region() const { return _reserved; }
coleenp@548 188 address base() const { return (address)reserved_region().start(); }
duke@435 189
duke@435 190 // Future cleanup here. The following functions should specify bytes or
duke@435 191 // heapwords as part of their signature.
duke@435 192 virtual size_t capacity() const = 0;
duke@435 193 virtual size_t used() const = 0;
duke@435 194
duke@435 195 // Return "true" if the part of the heap that allocates Java
duke@435 196 // objects has reached the maximal committed limit that it can
duke@435 197 // reach, without a garbage collection.
duke@435 198 virtual bool is_maximal_no_gc() const = 0;
duke@435 199
duke@435 200 virtual size_t permanent_capacity() const = 0;
duke@435 201 virtual size_t permanent_used() const = 0;
duke@435 202
duke@435 203 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of
duke@435 204 // memory that the vm could make available for storing 'normal' java objects.
duke@435 205 // This is based on the reserved address space, but should not include space
duke@435 206 // that the vm uses internally for bookkeeping or temporary storage (e.g.,
duke@435 207 // perm gen space or, in the case of the young gen, one of the survivor
duke@435 208 // spaces).
duke@435 209 virtual size_t max_capacity() const = 0;
duke@435 210
duke@435 211 // Returns "TRUE" if "p" points into the reserved area of the heap.
duke@435 212 bool is_in_reserved(const void* p) const {
duke@435 213 return _reserved.contains(p);
duke@435 214 }
duke@435 215
duke@435 216 bool is_in_reserved_or_null(const void* p) const {
duke@435 217 return p == NULL || is_in_reserved(p);
duke@435 218 }
duke@435 219
duke@435 220 // Returns "TRUE" if "p" points to the head of an allocated object in the
duke@435 221 // heap. Since this method can be expensive in general, we restrict its
duke@435 222 // use to assertion checking only.
duke@435 223 virtual bool is_in(const void* p) const = 0;
duke@435 224
duke@435 225 bool is_in_or_null(const void* p) const {
duke@435 226 return p == NULL || is_in(p);
duke@435 227 }
duke@435 228
duke@435 229 // Let's define some terms: a "closed" subset of a heap is one that
duke@435 230 //
duke@435 231 // 1) contains all currently-allocated objects, and
duke@435 232 //
duke@435 233 // 2) is closed under reference: no object in the closed subset
duke@435 234 // references one outside the closed subset.
duke@435 235 //
duke@435 236 // Membership in a heap's closed subset is useful for assertions.
duke@435 237 // Clearly, the entire heap is a closed subset, so the default
duke@435 238 // implementation is to use "is_in_reserved". But this may not be too
duke@435 239 // liberal to perform useful checking. Also, the "is_in" predicate
duke@435 240 // defines a closed subset, but may be too expensive, since "is_in"
duke@435 241 // verifies that its argument points to an object head. The
duke@435 242 // "closed_subset" method allows a heap to define an intermediate
duke@435 243 // predicate, allowing more precise checking than "is_in_reserved" at
duke@435 244 // lower cost than "is_in."
duke@435 245
duke@435 246 // One important case is a heap composed of disjoint contiguous spaces,
duke@435 247 // such as the Garbage-First collector. Such heaps have a convenient
duke@435 248 // closed subset consisting of the allocated portions of those
duke@435 249 // contiguous spaces.
duke@435 250
duke@435 251 // Return "TRUE" iff the given pointer points into the heap's defined
duke@435 252 // closed subset (which defaults to the entire heap).
duke@435 253 virtual bool is_in_closed_subset(const void* p) const {
duke@435 254 return is_in_reserved(p);
duke@435 255 }
duke@435 256
duke@435 257 bool is_in_closed_subset_or_null(const void* p) const {
duke@435 258 return p == NULL || is_in_closed_subset(p);
duke@435 259 }
duke@435 260
ysr@1376 261 // XXX is_permanent() and is_in_permanent() should be better named
ysr@1376 262 // to distinguish one from the other.
ysr@1376 263
duke@435 264 // Returns "TRUE" if "p" is allocated as "permanent" data.
duke@435 265 // If the heap does not use "permanent" data, returns the same
duke@435 266 // value is_in_reserved() would return.
duke@435 267 // NOTE: this actually returns true if "p" is in reserved space
duke@435 268 // for the space not that it is actually allocated (i.e. in committed
duke@435 269 // space). If you need the more conservative answer use is_permanent().
duke@435 270 virtual bool is_in_permanent(const void *p) const = 0;
duke@435 271
jmasa@2909 272
jmasa@2909 273 #ifdef ASSERT
jmasa@2909 274 // Returns true if "p" is in the part of the
jmasa@2909 275 // heap being collected.
jmasa@2909 276 virtual bool is_in_partial_collection(const void *p) = 0;
jmasa@2909 277 #endif
jmasa@2909 278
ysr@1376 279 bool is_in_permanent_or_null(const void *p) const {
ysr@1376 280 return p == NULL || is_in_permanent(p);
ysr@1376 281 }
ysr@1376 282
duke@435 283 // Returns "TRUE" if "p" is in the committed area of "permanent" data.
duke@435 284 // If the heap does not use "permanent" data, returns the same
duke@435 285 // value is_in() would return.
duke@435 286 virtual bool is_permanent(const void *p) const = 0;
duke@435 287
ysr@1376 288 bool is_permanent_or_null(const void *p) const {
ysr@1376 289 return p == NULL || is_permanent(p);
duke@435 290 }
duke@435 291
jrose@1424 292 // An object is scavengable if its location may move during a scavenge.
jrose@1424 293 // (A scavenge is a GC which is not a full GC.)
jmasa@2909 294 virtual bool is_scavengable(const void *p) = 0;
jrose@1424 295
duke@435 296 // Returns "TRUE" if "p" is a method oop in the
duke@435 297 // current heap, with high probability. This predicate
duke@435 298 // is not stable, in general.
duke@435 299 bool is_valid_method(oop p) const;
duke@435 300
duke@435 301 void set_gc_cause(GCCause::Cause v) {
duke@435 302 if (UsePerfData) {
duke@435 303 _gc_lastcause = _gc_cause;
duke@435 304 _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
duke@435 305 _perf_gc_cause->set_value(GCCause::to_string(v));
duke@435 306 }
duke@435 307 _gc_cause = v;
duke@435 308 }
duke@435 309 GCCause::Cause gc_cause() { return _gc_cause; }
duke@435 310
jmasa@2188 311 // Number of threads currently working on GC tasks.
jmasa@2188 312 int n_par_threads() { return _n_par_threads; }
jmasa@2188 313
jmasa@2188 314 // May be overridden to set additional parallelism.
jmasa@2188 315 virtual void set_par_threads(int t) { _n_par_threads = t; };
jmasa@2188 316
duke@435 317 // Preload classes into the shared portion of the heap, and then dump
duke@435 318 // that data to a file so that it can be loaded directly by another
duke@435 319 // VM (then terminate).
duke@435 320 virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
duke@435 321
duke@435 322 // General obj/array allocation facilities.
duke@435 323 inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
duke@435 324 inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
kvn@3157 325 inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
duke@435 326
duke@435 327 // Special obj/array allocation facilities.
duke@435 328 // Some heaps may want to manage "permanent" data uniquely. These default
duke@435 329 // to the general routines if the heap does not support such handling.
duke@435 330 inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
duke@435 331 // permanent_obj_allocate_no_klass_install() does not do the installation of
duke@435 332 // the klass pointer in the newly created object (as permanent_obj_allocate()
duke@435 333 // above does). This allows for a delay in the installation of the klass
duke@435 334 // pointer that is needed during the create of klassKlass's. The
duke@435 335 // method post_allocation_install_obj_klass() is used to install the
duke@435 336 // klass pointer.
duke@435 337 inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
duke@435 338 int size,
duke@435 339 TRAPS);
duke@435 340 inline static void post_allocation_install_obj_klass(KlassHandle klass,
duke@435 341 oop obj,
duke@435 342 int size);
duke@435 343 inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
duke@435 344
duke@435 345 // Raw memory allocation facilities
duke@435 346 // The obj and array allocate methods are covers for these methods.
duke@435 347 // The permanent allocation method should default to mem_allocate if
tonyp@2971 348 // permanent memory isn't supported. mem_allocate() should never be
tonyp@2971 349 // called to allocate TLABs, only individual objects.
duke@435 350 virtual HeapWord* mem_allocate(size_t size,
duke@435 351 bool* gc_overhead_limit_was_exceeded) = 0;
duke@435 352 virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
duke@435 353
jcoomes@916 354 // Utilities for turning raw memory into filler objects.
jcoomes@916 355 //
jcoomes@916 356 // min_fill_size() is the smallest region that can be filled.
jcoomes@916 357 // fill_with_objects() can fill arbitrary-sized regions of the heap using
jcoomes@916 358 // multiple objects. fill_with_object() is for regions known to be smaller
jcoomes@916 359 // than the largest array of integers; it uses a single object to fill the
jcoomes@916 360 // region and has slightly less overhead.
jcoomes@916 361 static size_t min_fill_size() {
jcoomes@916 362 return size_t(align_object_size(oopDesc::header_size()));
jcoomes@916 363 }
jcoomes@916 364
johnc@1600 365 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 366
johnc@1600 367 static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
johnc@1600 368 static void fill_with_object(MemRegion region, bool zap = true) {
johnc@1600 369 fill_with_object(region.start(), region.word_size(), zap);
jcoomes@916 370 }
johnc@1600 371 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
johnc@1600 372 fill_with_object(start, pointer_delta(end, start), zap);
jcoomes@916 373 }
jcoomes@916 374
duke@435 375 // Some heaps may offer a contiguous region for shared non-blocking
duke@435 376 // allocation, via inlined code (by exporting the address of the top and
duke@435 377 // end fields defining the extent of the contiguous allocation region.)
duke@435 378
duke@435 379 // This function returns "true" iff the heap supports this kind of
duke@435 380 // allocation. (Default is "no".)
duke@435 381 virtual bool supports_inline_contig_alloc() const {
duke@435 382 return false;
duke@435 383 }
duke@435 384 // These functions return the addresses of the fields that define the
duke@435 385 // boundaries of the contiguous allocation area. (These fields should be
duke@435 386 // physically near to one another.)
duke@435 387 virtual HeapWord** top_addr() const {
duke@435 388 guarantee(false, "inline contiguous allocation not supported");
duke@435 389 return NULL;
duke@435 390 }
duke@435 391 virtual HeapWord** end_addr() const {
duke@435 392 guarantee(false, "inline contiguous allocation not supported");
duke@435 393 return NULL;
duke@435 394 }
duke@435 395
duke@435 396 // Some heaps may be in an unparseable state at certain times between
duke@435 397 // collections. This may be necessary for efficient implementation of
duke@435 398 // certain allocation-related activities. Calling this function before
duke@435 399 // attempting to parse a heap ensures that the heap is in a parsable
duke@435 400 // state (provided other concurrent activity does not introduce
duke@435 401 // unparsability). It is normally expected, therefore, that this
duke@435 402 // method is invoked with the world stopped.
duke@435 403 // NOTE: if you override this method, make sure you call
duke@435 404 // super::ensure_parsability so that the non-generational
duke@435 405 // part of the work gets done. See implementation of
duke@435 406 // CollectedHeap::ensure_parsability and, for instance,
duke@435 407 // that of GenCollectedHeap::ensure_parsability().
duke@435 408 // The argument "retire_tlabs" controls whether existing TLABs
duke@435 409 // are merely filled or also retired, thus preventing further
duke@435 410 // allocation from them and necessitating allocation of new TLABs.
duke@435 411 virtual void ensure_parsability(bool retire_tlabs);
duke@435 412
duke@435 413 // Return an estimate of the maximum allocation that could be performed
duke@435 414 // without triggering any collection or expansion activity. In a
duke@435 415 // generational collector, for example, this is probably the largest
duke@435 416 // allocation that could be supported (without expansion) in the youngest
duke@435 417 // generation. It is "unsafe" because no locks are taken; the result
duke@435 418 // should be treated as an approximation, not a guarantee, for use in
duke@435 419 // heuristic resizing decisions.
duke@435 420 virtual size_t unsafe_max_alloc() = 0;
duke@435 421
duke@435 422 // Section on thread-local allocation buffers (TLABs)
duke@435 423 // If the heap supports thread-local allocation buffers, it should override
duke@435 424 // the following methods:
duke@435 425 // Returns "true" iff the heap supports thread-local allocation buffers.
duke@435 426 // The default is "no".
duke@435 427 virtual bool supports_tlab_allocation() const {
duke@435 428 return false;
duke@435 429 }
duke@435 430 // The amount of space available for thread-local allocation buffers.
duke@435 431 virtual size_t tlab_capacity(Thread *thr) const {
duke@435 432 guarantee(false, "thread-local allocation buffers not supported");
duke@435 433 return 0;
duke@435 434 }
duke@435 435 // An estimate of the maximum allocation that could be performed
duke@435 436 // for thread-local allocation buffers without triggering any
duke@435 437 // collection or expansion activity.
duke@435 438 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
duke@435 439 guarantee(false, "thread-local allocation buffers not supported");
duke@435 440 return 0;
duke@435 441 }
ysr@1462 442
duke@435 443 // Can a compiler initialize a new object without store barriers?
duke@435 444 // This permission only extends from the creation of a new object
ysr@1462 445 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 446 // is granted for this heap type, the compiler promises to call
ysr@1462 447 // defer_store_barrier() below on any slow path allocation of
ysr@1462 448 // a new object for which such initializing store barriers will
ysr@1462 449 // have been elided.
ysr@777 450 virtual bool can_elide_tlab_store_barriers() const = 0;
ysr@777 451
duke@435 452 // If a compiler is eliding store barriers for TLAB-allocated objects,
duke@435 453 // there is probably a corresponding slow path which can produce
duke@435 454 // an object allocated anywhere. The compiler's runtime support
duke@435 455 // promises to call this function on such a slow-path-allocated
duke@435 456 // object before performing initializations that have elided
ysr@1462 457 // store barriers. Returns new_obj, or maybe a safer copy thereof.
ysr@1601 458 virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
ysr@1462 459
ysr@1462 460 // Answers whether an initializing store to a new object currently
ysr@1601 461 // allocated at the given address doesn't need a store
ysr@1462 462 // barrier. Returns "true" if it doesn't need an initializing
ysr@1462 463 // store barrier; answers "false" if it does.
ysr@1462 464 virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
ysr@1462 465
ysr@1601 466 // If a compiler is eliding store barriers for TLAB-allocated objects,
ysr@1601 467 // we will be informed of a slow-path allocation by a call
ysr@1601 468 // to new_store_pre_barrier() above. Such a call precedes the
ysr@1601 469 // initialization of the object itself, and no post-store-barriers will
ysr@1601 470 // be issued. Some heap types require that the barrier strictly follows
ysr@1601 471 // the initializing stores. (This is currently implemented by deferring the
ysr@1601 472 // barrier until the next slow-path allocation or gc-related safepoint.)
ysr@1601 473 // This interface answers whether a particular heap type needs the card
ysr@1601 474 // mark to be thus strictly sequenced after the stores.
ysr@1601 475 virtual bool card_mark_must_follow_store() const = 0;
ysr@1601 476
ysr@1462 477 // If the CollectedHeap was asked to defer a store barrier above,
ysr@1462 478 // this informs it to flush such a deferred store barrier to the
ysr@1462 479 // remembered set.
ysr@1462 480 virtual void flush_deferred_store_barrier(JavaThread* thread);
duke@435 481
duke@435 482 // Can a compiler elide a store barrier when it writes
duke@435 483 // a permanent oop into the heap? Applies when the compiler
duke@435 484 // is storing x to the heap, where x->is_perm() is true.
ysr@777 485 virtual bool can_elide_permanent_oop_store_barriers() const = 0;
duke@435 486
duke@435 487 // Does this heap support heap inspection (+PrintClassHistogram?)
ysr@777 488 virtual bool supports_heap_inspection() const = 0;
duke@435 489
duke@435 490 // Perform a collection of the heap; intended for use in implementing
duke@435 491 // "System.gc". This probably implies as full a collection as the
duke@435 492 // "CollectedHeap" supports.
duke@435 493 virtual void collect(GCCause::Cause cause) = 0;
duke@435 494
duke@435 495 // This interface assumes that it's being called by the
duke@435 496 // vm thread. It collects the heap assuming that the
duke@435 497 // heap lock is already held and that we are executing in
duke@435 498 // the context of the vm thread.
duke@435 499 virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
duke@435 500
duke@435 501 // Returns the barrier set for this heap
duke@435 502 BarrierSet* barrier_set() { return _barrier_set; }
duke@435 503
duke@435 504 // Returns "true" iff there is a stop-world GC in progress. (I assume
duke@435 505 // that it should answer "false" for the concurrent part of a concurrent
duke@435 506 // collector -- dld).
duke@435 507 bool is_gc_active() const { return _is_gc_active; }
duke@435 508
duke@435 509 // Total number of GC collections (started)
duke@435 510 unsigned int total_collections() const { return _total_collections; }
duke@435 511 unsigned int total_full_collections() const { return _total_full_collections;}
duke@435 512
duke@435 513 // Increment total number of GC collections (started)
duke@435 514 // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
duke@435 515 void increment_total_collections(bool full = false) {
duke@435 516 _total_collections++;
duke@435 517 if (full) {
duke@435 518 increment_total_full_collections();
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522 void increment_total_full_collections() { _total_full_collections++; }
duke@435 523
duke@435 524 // Return the AdaptiveSizePolicy for the heap.
duke@435 525 virtual AdaptiveSizePolicy* size_policy() = 0;
duke@435 526
jmasa@1822 527 // Return the CollectorPolicy for the heap
jmasa@1822 528 virtual CollectorPolicy* collector_policy() const = 0;
jmasa@1822 529
duke@435 530 // Iterate over all the ref-containing fields of all objects, calling
duke@435 531 // "cl.do_oop" on each. This includes objects in permanent memory.
duke@435 532 virtual void oop_iterate(OopClosure* cl) = 0;
duke@435 533
duke@435 534 // Iterate over all objects, calling "cl.do_object" on each.
duke@435 535 // This includes objects in permanent memory.
duke@435 536 virtual void object_iterate(ObjectClosure* cl) = 0;
duke@435 537
jmasa@952 538 // Similar to object_iterate() except iterates only
jmasa@952 539 // over live objects.
jmasa@952 540 virtual void safe_object_iterate(ObjectClosure* cl) = 0;
jmasa@952 541
duke@435 542 // Behaves the same as oop_iterate, except only traverses
duke@435 543 // interior pointers contained in permanent memory. If there
duke@435 544 // is no permanent memory, does nothing.
duke@435 545 virtual void permanent_oop_iterate(OopClosure* cl) = 0;
duke@435 546
duke@435 547 // Behaves the same as object_iterate, except only traverses
duke@435 548 // object contained in permanent memory. If there is no
duke@435 549 // permanent memory, does nothing.
duke@435 550 virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
duke@435 551
duke@435 552 // NOTE! There is no requirement that a collector implement these
duke@435 553 // functions.
duke@435 554 //
duke@435 555 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
duke@435 556 // each address in the (reserved) heap is a member of exactly
duke@435 557 // one block. The defining characteristic of a block is that it is
duke@435 558 // possible to find its size, and thus to progress forward to the next
duke@435 559 // block. (Blocks may be of different sizes.) Thus, blocks may
duke@435 560 // represent Java objects, or they might be free blocks in a
duke@435 561 // free-list-based heap (or subheap), as long as the two kinds are
duke@435 562 // distinguishable and the size of each is determinable.
duke@435 563
duke@435 564 // Returns the address of the start of the "block" that contains the
duke@435 565 // address "addr". We say "blocks" instead of "object" since some heaps
duke@435 566 // may not pack objects densely; a chunk may either be an object or a
duke@435 567 // non-object.
duke@435 568 virtual HeapWord* block_start(const void* addr) const = 0;
duke@435 569
duke@435 570 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 571 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 572 // of the active area of the heap.
duke@435 573 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 574
duke@435 575 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 576 // the block is an object.
duke@435 577 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 578
duke@435 579 // Returns the longest time (in ms) that has elapsed since the last
duke@435 580 // time that any part of the heap was examined by a garbage collection.
duke@435 581 virtual jlong millis_since_last_gc() = 0;
duke@435 582
duke@435 583 // Perform any cleanup actions necessary before allowing a verification.
duke@435 584 virtual void prepare_for_verify() = 0;
duke@435 585
ysr@1050 586 // Generate any dumps preceding or following a full gc
ysr@1050 587 void pre_full_gc_dump();
ysr@1050 588 void post_full_gc_dump();
ysr@1050 589
duke@435 590 virtual void print() const = 0;
duke@435 591 virtual void print_on(outputStream* st) const = 0;
duke@435 592
duke@435 593 // Print all GC threads (other than the VM thread)
duke@435 594 // used by this heap.
duke@435 595 virtual void print_gc_threads_on(outputStream* st) const = 0;
duke@435 596 void print_gc_threads() { print_gc_threads_on(tty); }
duke@435 597 // Iterator for all GC threads (other than VM thread)
duke@435 598 virtual void gc_threads_do(ThreadClosure* tc) const = 0;
duke@435 599
duke@435 600 // Print any relevant tracing info that flags imply.
duke@435 601 // Default implementation does nothing.
duke@435 602 virtual void print_tracing_info() const = 0;
duke@435 603
duke@435 604 // Heap verification
johnc@2969 605 virtual void verify(bool allow_dirty, bool silent, VerifyOption option) = 0;
duke@435 606
duke@435 607 // Non product verification and debugging.
duke@435 608 #ifndef PRODUCT
duke@435 609 // Support for PromotionFailureALot. Return true if it's time to cause a
duke@435 610 // promotion failure. The no-argument version uses
duke@435 611 // this->_promotion_failure_alot_count as the counter.
duke@435 612 inline bool promotion_should_fail(volatile size_t* count);
duke@435 613 inline bool promotion_should_fail();
duke@435 614
duke@435 615 // Reset the PromotionFailureALot counters. Should be called at the end of a
duke@435 616 // GC in which promotion failure ocurred.
duke@435 617 inline void reset_promotion_should_fail(volatile size_t* count);
duke@435 618 inline void reset_promotion_should_fail();
duke@435 619 #endif // #ifndef PRODUCT
duke@435 620
duke@435 621 #ifdef ASSERT
duke@435 622 static int fired_fake_oom() {
duke@435 623 return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
duke@435 624 }
duke@435 625 #endif
jmasa@2188 626
jmasa@2188 627 public:
jmasa@2188 628 // This is a convenience method that is used in cases where
jmasa@2188 629 // the actual number of GC worker threads is not pertinent but
jmasa@2188 630 // only whether there more than 0. Use of this method helps
jmasa@2188 631 // reduce the occurrence of ParallelGCThreads to uses where the
jmasa@2188 632 // actual number may be germane.
jmasa@2188 633 static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
duke@435 634 };
duke@435 635
duke@435 636 // Class to set and reset the GC cause for a CollectedHeap.
duke@435 637
duke@435 638 class GCCauseSetter : StackObj {
duke@435 639 CollectedHeap* _heap;
duke@435 640 GCCause::Cause _previous_cause;
duke@435 641 public:
duke@435 642 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
duke@435 643 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 644 "This method manipulates heap state without locking");
duke@435 645 _heap = heap;
duke@435 646 _previous_cause = _heap->gc_cause();
duke@435 647 _heap->set_gc_cause(cause);
duke@435 648 }
duke@435 649
duke@435 650 ~GCCauseSetter() {
duke@435 651 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 652 "This method manipulates heap state without locking");
duke@435 653 _heap->set_gc_cause(_previous_cause);
duke@435 654 }
duke@435 655 };
stefank@2314 656
stefank@2314 657 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial