src/share/vm/gc_interface/collectedHeap.hpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1428
54b3b351d6f9
child 1600
2dd52dea6d28
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

duke@435 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This
duke@435 26 // is an abstract class: there may be many different kinds of heaps. This
duke@435 27 // class defines the functions that a heap must implement, and contains
duke@435 28 // infrastructure common to all heaps.
duke@435 29
duke@435 30 class BarrierSet;
duke@435 31 class ThreadClosure;
duke@435 32 class AdaptiveSizePolicy;
duke@435 33 class Thread;
duke@435 34
duke@435 35 //
duke@435 36 // CollectedHeap
duke@435 37 // SharedHeap
duke@435 38 // GenCollectedHeap
duke@435 39 // G1CollectedHeap
duke@435 40 // ParallelScavengeHeap
duke@435 41 //
duke@435 42 class CollectedHeap : public CHeapObj {
duke@435 43 friend class VMStructs;
duke@435 44 friend class IsGCActiveMark; // Block structured external access to _is_gc_active
jmasa@977 45 friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
duke@435 46
duke@435 47 #ifdef ASSERT
duke@435 48 static int _fire_out_of_memory_count;
duke@435 49 #endif
duke@435 50
jcoomes@916 51 // Used for filler objects (static, but initialized in ctor).
jcoomes@916 52 static size_t _filler_array_max_size;
jcoomes@916 53
duke@435 54 protected:
duke@435 55 MemRegion _reserved;
duke@435 56 BarrierSet* _barrier_set;
duke@435 57 bool _is_gc_active;
duke@435 58 unsigned int _total_collections; // ... started
duke@435 59 unsigned int _total_full_collections; // ... started
duke@435 60 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
duke@435 61 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
duke@435 62
duke@435 63 // Reason for current garbage collection. Should be set to
duke@435 64 // a value reflecting no collection between collections.
duke@435 65 GCCause::Cause _gc_cause;
duke@435 66 GCCause::Cause _gc_lastcause;
duke@435 67 PerfStringVariable* _perf_gc_cause;
duke@435 68 PerfStringVariable* _perf_gc_lastcause;
duke@435 69
duke@435 70 // Constructor
duke@435 71 CollectedHeap();
duke@435 72
duke@435 73 // Create a new tlab
duke@435 74 virtual HeapWord* allocate_new_tlab(size_t size);
duke@435 75
duke@435 76 // Fix up tlabs to make the heap well-formed again,
duke@435 77 // optionally retiring the tlabs.
duke@435 78 virtual void fill_all_tlabs(bool retire);
duke@435 79
duke@435 80 // Accumulate statistics on all tlabs.
duke@435 81 virtual void accumulate_statistics_all_tlabs();
duke@435 82
duke@435 83 // Reinitialize tlabs before resuming mutators.
duke@435 84 virtual void resize_all_tlabs();
duke@435 85
duke@435 86 protected:
duke@435 87 // Allocate from the current thread's TLAB, with broken-out slow path.
duke@435 88 inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
duke@435 89 static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
duke@435 90
duke@435 91 // Allocate an uninitialized block of the given size, or returns NULL if
duke@435 92 // this is impossible.
duke@435 93 inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
duke@435 94
duke@435 95 // Like allocate_init, but the block returned by a successful allocation
duke@435 96 // is guaranteed initialized to zeros.
duke@435 97 inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
duke@435 98
duke@435 99 // Same as common_mem version, except memory is allocated in the permanent area
duke@435 100 // If there is no permanent area, revert to common_mem_allocate_noinit
duke@435 101 inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
duke@435 102
duke@435 103 // Same as common_mem version, except memory is allocated in the permanent area
duke@435 104 // If there is no permanent area, revert to common_mem_allocate_init
duke@435 105 inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
duke@435 106
duke@435 107 // Helper functions for (VM) allocation.
duke@435 108 inline static void post_allocation_setup_common(KlassHandle klass,
duke@435 109 HeapWord* obj, size_t size);
duke@435 110 inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
duke@435 111 HeapWord* objPtr,
duke@435 112 size_t size);
duke@435 113
duke@435 114 inline static void post_allocation_setup_obj(KlassHandle klass,
duke@435 115 HeapWord* obj, size_t size);
duke@435 116
duke@435 117 inline static void post_allocation_setup_array(KlassHandle klass,
duke@435 118 HeapWord* obj, size_t size,
duke@435 119 int length);
duke@435 120
duke@435 121 // Clears an allocated object.
duke@435 122 inline static void init_obj(HeapWord* obj, size_t size);
duke@435 123
jcoomes@916 124 // Filler object utilities.
jcoomes@916 125 static inline size_t filler_array_hdr_size();
jcoomes@916 126 static inline size_t filler_array_min_size();
jcoomes@916 127 static inline size_t filler_array_max_size();
jcoomes@916 128
jcoomes@916 129 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
jcoomes@916 130 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words);)
jcoomes@916 131
jcoomes@916 132 // Fill with a single array; caller must ensure filler_array_min_size() <=
jcoomes@916 133 // words <= filler_array_max_size().
jcoomes@916 134 static inline void fill_with_array(HeapWord* start, size_t words);
jcoomes@916 135
jcoomes@916 136 // Fill with a single object (either an int array or a java.lang.Object).
jcoomes@916 137 static inline void fill_with_object_impl(HeapWord* start, size_t words);
jcoomes@916 138
duke@435 139 // Verification functions
duke@435 140 virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 141 PRODUCT_RETURN;
duke@435 142 virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 143 PRODUCT_RETURN;
jmasa@977 144 debug_only(static void check_for_valid_allocation_state();)
duke@435 145
duke@435 146 public:
duke@435 147 enum Name {
duke@435 148 Abstract,
duke@435 149 SharedHeap,
duke@435 150 GenCollectedHeap,
duke@435 151 ParallelScavengeHeap,
duke@435 152 G1CollectedHeap
duke@435 153 };
duke@435 154
duke@435 155 virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
duke@435 156
duke@435 157 /**
duke@435 158 * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
duke@435 159 * and JNI_OK on success.
duke@435 160 */
duke@435 161 virtual jint initialize() = 0;
duke@435 162
duke@435 163 // In many heaps, there will be a need to perform some initialization activities
duke@435 164 // after the Universe is fully formed, but before general heap allocation is allowed.
duke@435 165 // This is the correct place to place such initialization methods.
duke@435 166 virtual void post_initialize() = 0;
duke@435 167
duke@435 168 MemRegion reserved_region() const { return _reserved; }
coleenp@548 169 address base() const { return (address)reserved_region().start(); }
duke@435 170
duke@435 171 // Future cleanup here. The following functions should specify bytes or
duke@435 172 // heapwords as part of their signature.
duke@435 173 virtual size_t capacity() const = 0;
duke@435 174 virtual size_t used() const = 0;
duke@435 175
duke@435 176 // Return "true" if the part of the heap that allocates Java
duke@435 177 // objects has reached the maximal committed limit that it can
duke@435 178 // reach, without a garbage collection.
duke@435 179 virtual bool is_maximal_no_gc() const = 0;
duke@435 180
duke@435 181 virtual size_t permanent_capacity() const = 0;
duke@435 182 virtual size_t permanent_used() const = 0;
duke@435 183
duke@435 184 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of
duke@435 185 // memory that the vm could make available for storing 'normal' java objects.
duke@435 186 // This is based on the reserved address space, but should not include space
duke@435 187 // that the vm uses internally for bookkeeping or temporary storage (e.g.,
duke@435 188 // perm gen space or, in the case of the young gen, one of the survivor
duke@435 189 // spaces).
duke@435 190 virtual size_t max_capacity() const = 0;
duke@435 191
duke@435 192 // Returns "TRUE" if "p" points into the reserved area of the heap.
duke@435 193 bool is_in_reserved(const void* p) const {
duke@435 194 return _reserved.contains(p);
duke@435 195 }
duke@435 196
duke@435 197 bool is_in_reserved_or_null(const void* p) const {
duke@435 198 return p == NULL || is_in_reserved(p);
duke@435 199 }
duke@435 200
duke@435 201 // Returns "TRUE" if "p" points to the head of an allocated object in the
duke@435 202 // heap. Since this method can be expensive in general, we restrict its
duke@435 203 // use to assertion checking only.
duke@435 204 virtual bool is_in(const void* p) const = 0;
duke@435 205
duke@435 206 bool is_in_or_null(const void* p) const {
duke@435 207 return p == NULL || is_in(p);
duke@435 208 }
duke@435 209
duke@435 210 // Let's define some terms: a "closed" subset of a heap is one that
duke@435 211 //
duke@435 212 // 1) contains all currently-allocated objects, and
duke@435 213 //
duke@435 214 // 2) is closed under reference: no object in the closed subset
duke@435 215 // references one outside the closed subset.
duke@435 216 //
duke@435 217 // Membership in a heap's closed subset is useful for assertions.
duke@435 218 // Clearly, the entire heap is a closed subset, so the default
duke@435 219 // implementation is to use "is_in_reserved". But this may not be too
duke@435 220 // liberal to perform useful checking. Also, the "is_in" predicate
duke@435 221 // defines a closed subset, but may be too expensive, since "is_in"
duke@435 222 // verifies that its argument points to an object head. The
duke@435 223 // "closed_subset" method allows a heap to define an intermediate
duke@435 224 // predicate, allowing more precise checking than "is_in_reserved" at
duke@435 225 // lower cost than "is_in."
duke@435 226
duke@435 227 // One important case is a heap composed of disjoint contiguous spaces,
duke@435 228 // such as the Garbage-First collector. Such heaps have a convenient
duke@435 229 // closed subset consisting of the allocated portions of those
duke@435 230 // contiguous spaces.
duke@435 231
duke@435 232 // Return "TRUE" iff the given pointer points into the heap's defined
duke@435 233 // closed subset (which defaults to the entire heap).
duke@435 234 virtual bool is_in_closed_subset(const void* p) const {
duke@435 235 return is_in_reserved(p);
duke@435 236 }
duke@435 237
duke@435 238 bool is_in_closed_subset_or_null(const void* p) const {
duke@435 239 return p == NULL || is_in_closed_subset(p);
duke@435 240 }
duke@435 241
ysr@1376 242 // XXX is_permanent() and is_in_permanent() should be better named
ysr@1376 243 // to distinguish one from the other.
ysr@1376 244
duke@435 245 // Returns "TRUE" if "p" is allocated as "permanent" data.
duke@435 246 // If the heap does not use "permanent" data, returns the same
duke@435 247 // value is_in_reserved() would return.
duke@435 248 // NOTE: this actually returns true if "p" is in reserved space
duke@435 249 // for the space not that it is actually allocated (i.e. in committed
duke@435 250 // space). If you need the more conservative answer use is_permanent().
duke@435 251 virtual bool is_in_permanent(const void *p) const = 0;
duke@435 252
ysr@1376 253 bool is_in_permanent_or_null(const void *p) const {
ysr@1376 254 return p == NULL || is_in_permanent(p);
ysr@1376 255 }
ysr@1376 256
duke@435 257 // Returns "TRUE" if "p" is in the committed area of "permanent" data.
duke@435 258 // If the heap does not use "permanent" data, returns the same
duke@435 259 // value is_in() would return.
duke@435 260 virtual bool is_permanent(const void *p) const = 0;
duke@435 261
ysr@1376 262 bool is_permanent_or_null(const void *p) const {
ysr@1376 263 return p == NULL || is_permanent(p);
duke@435 264 }
duke@435 265
jrose@1424 266 // An object is scavengable if its location may move during a scavenge.
jrose@1424 267 // (A scavenge is a GC which is not a full GC.)
jrose@1424 268 // Currently, this just means it is not perm (and not null).
jrose@1424 269 // This could change if we rethink what's in perm-gen.
jrose@1424 270 bool is_scavengable(const void *p) const {
jrose@1424 271 return !is_in_permanent_or_null(p);
jrose@1424 272 }
jrose@1424 273
duke@435 274 // Returns "TRUE" if "p" is a method oop in the
duke@435 275 // current heap, with high probability. This predicate
duke@435 276 // is not stable, in general.
duke@435 277 bool is_valid_method(oop p) const;
duke@435 278
duke@435 279 void set_gc_cause(GCCause::Cause v) {
duke@435 280 if (UsePerfData) {
duke@435 281 _gc_lastcause = _gc_cause;
duke@435 282 _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
duke@435 283 _perf_gc_cause->set_value(GCCause::to_string(v));
duke@435 284 }
duke@435 285 _gc_cause = v;
duke@435 286 }
duke@435 287 GCCause::Cause gc_cause() { return _gc_cause; }
duke@435 288
duke@435 289 // Preload classes into the shared portion of the heap, and then dump
duke@435 290 // that data to a file so that it can be loaded directly by another
duke@435 291 // VM (then terminate).
duke@435 292 virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
duke@435 293
duke@435 294 // General obj/array allocation facilities.
duke@435 295 inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
duke@435 296 inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
duke@435 297 inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
duke@435 298
duke@435 299 // Special obj/array allocation facilities.
duke@435 300 // Some heaps may want to manage "permanent" data uniquely. These default
duke@435 301 // to the general routines if the heap does not support such handling.
duke@435 302 inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
duke@435 303 // permanent_obj_allocate_no_klass_install() does not do the installation of
duke@435 304 // the klass pointer in the newly created object (as permanent_obj_allocate()
duke@435 305 // above does). This allows for a delay in the installation of the klass
duke@435 306 // pointer that is needed during the create of klassKlass's. The
duke@435 307 // method post_allocation_install_obj_klass() is used to install the
duke@435 308 // klass pointer.
duke@435 309 inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
duke@435 310 int size,
duke@435 311 TRAPS);
duke@435 312 inline static void post_allocation_install_obj_klass(KlassHandle klass,
duke@435 313 oop obj,
duke@435 314 int size);
duke@435 315 inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
duke@435 316
duke@435 317 // Raw memory allocation facilities
duke@435 318 // The obj and array allocate methods are covers for these methods.
duke@435 319 // The permanent allocation method should default to mem_allocate if
duke@435 320 // permanent memory isn't supported.
duke@435 321 virtual HeapWord* mem_allocate(size_t size,
duke@435 322 bool is_noref,
duke@435 323 bool is_tlab,
duke@435 324 bool* gc_overhead_limit_was_exceeded) = 0;
duke@435 325 virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
duke@435 326
duke@435 327 // The boundary between a "large" and "small" array of primitives, in words.
duke@435 328 virtual size_t large_typearray_limit() = 0;
duke@435 329
jcoomes@916 330 // Utilities for turning raw memory into filler objects.
jcoomes@916 331 //
jcoomes@916 332 // min_fill_size() is the smallest region that can be filled.
jcoomes@916 333 // fill_with_objects() can fill arbitrary-sized regions of the heap using
jcoomes@916 334 // multiple objects. fill_with_object() is for regions known to be smaller
jcoomes@916 335 // than the largest array of integers; it uses a single object to fill the
jcoomes@916 336 // region and has slightly less overhead.
jcoomes@916 337 static size_t min_fill_size() {
jcoomes@916 338 return size_t(align_object_size(oopDesc::header_size()));
jcoomes@916 339 }
jcoomes@916 340
jcoomes@916 341 static void fill_with_objects(HeapWord* start, size_t words);
jcoomes@916 342
jcoomes@916 343 static void fill_with_object(HeapWord* start, size_t words);
jcoomes@916 344 static void fill_with_object(MemRegion region) {
jcoomes@916 345 fill_with_object(region.start(), region.word_size());
jcoomes@916 346 }
jcoomes@916 347 static void fill_with_object(HeapWord* start, HeapWord* end) {
jcoomes@916 348 fill_with_object(start, pointer_delta(end, start));
jcoomes@916 349 }
jcoomes@916 350
duke@435 351 // Some heaps may offer a contiguous region for shared non-blocking
duke@435 352 // allocation, via inlined code (by exporting the address of the top and
duke@435 353 // end fields defining the extent of the contiguous allocation region.)
duke@435 354
duke@435 355 // This function returns "true" iff the heap supports this kind of
duke@435 356 // allocation. (Default is "no".)
duke@435 357 virtual bool supports_inline_contig_alloc() const {
duke@435 358 return false;
duke@435 359 }
duke@435 360 // These functions return the addresses of the fields that define the
duke@435 361 // boundaries of the contiguous allocation area. (These fields should be
duke@435 362 // physically near to one another.)
duke@435 363 virtual HeapWord** top_addr() const {
duke@435 364 guarantee(false, "inline contiguous allocation not supported");
duke@435 365 return NULL;
duke@435 366 }
duke@435 367 virtual HeapWord** end_addr() const {
duke@435 368 guarantee(false, "inline contiguous allocation not supported");
duke@435 369 return NULL;
duke@435 370 }
duke@435 371
duke@435 372 // Some heaps may be in an unparseable state at certain times between
duke@435 373 // collections. This may be necessary for efficient implementation of
duke@435 374 // certain allocation-related activities. Calling this function before
duke@435 375 // attempting to parse a heap ensures that the heap is in a parsable
duke@435 376 // state (provided other concurrent activity does not introduce
duke@435 377 // unparsability). It is normally expected, therefore, that this
duke@435 378 // method is invoked with the world stopped.
duke@435 379 // NOTE: if you override this method, make sure you call
duke@435 380 // super::ensure_parsability so that the non-generational
duke@435 381 // part of the work gets done. See implementation of
duke@435 382 // CollectedHeap::ensure_parsability and, for instance,
duke@435 383 // that of GenCollectedHeap::ensure_parsability().
duke@435 384 // The argument "retire_tlabs" controls whether existing TLABs
duke@435 385 // are merely filled or also retired, thus preventing further
duke@435 386 // allocation from them and necessitating allocation of new TLABs.
duke@435 387 virtual void ensure_parsability(bool retire_tlabs);
duke@435 388
duke@435 389 // Return an estimate of the maximum allocation that could be performed
duke@435 390 // without triggering any collection or expansion activity. In a
duke@435 391 // generational collector, for example, this is probably the largest
duke@435 392 // allocation that could be supported (without expansion) in the youngest
duke@435 393 // generation. It is "unsafe" because no locks are taken; the result
duke@435 394 // should be treated as an approximation, not a guarantee, for use in
duke@435 395 // heuristic resizing decisions.
duke@435 396 virtual size_t unsafe_max_alloc() = 0;
duke@435 397
duke@435 398 // Section on thread-local allocation buffers (TLABs)
duke@435 399 // If the heap supports thread-local allocation buffers, it should override
duke@435 400 // the following methods:
duke@435 401 // Returns "true" iff the heap supports thread-local allocation buffers.
duke@435 402 // The default is "no".
duke@435 403 virtual bool supports_tlab_allocation() const {
duke@435 404 return false;
duke@435 405 }
duke@435 406 // The amount of space available for thread-local allocation buffers.
duke@435 407 virtual size_t tlab_capacity(Thread *thr) const {
duke@435 408 guarantee(false, "thread-local allocation buffers not supported");
duke@435 409 return 0;
duke@435 410 }
duke@435 411 // An estimate of the maximum allocation that could be performed
duke@435 412 // for thread-local allocation buffers without triggering any
duke@435 413 // collection or expansion activity.
duke@435 414 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
duke@435 415 guarantee(false, "thread-local allocation buffers not supported");
duke@435 416 return 0;
duke@435 417 }
ysr@1462 418
duke@435 419 // Can a compiler initialize a new object without store barriers?
duke@435 420 // This permission only extends from the creation of a new object
ysr@1462 421 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 422 // is granted for this heap type, the compiler promises to call
ysr@1462 423 // defer_store_barrier() below on any slow path allocation of
ysr@1462 424 // a new object for which such initializing store barriers will
ysr@1462 425 // have been elided.
ysr@777 426 virtual bool can_elide_tlab_store_barriers() const = 0;
ysr@777 427
duke@435 428 // If a compiler is eliding store barriers for TLAB-allocated objects,
duke@435 429 // there is probably a corresponding slow path which can produce
duke@435 430 // an object allocated anywhere. The compiler's runtime support
duke@435 431 // promises to call this function on such a slow-path-allocated
duke@435 432 // object before performing initializations that have elided
ysr@1462 433 // store barriers. Returns new_obj, or maybe a safer copy thereof.
ysr@1462 434 virtual oop defer_store_barrier(JavaThread* thread, oop new_obj);
ysr@1462 435
ysr@1462 436 // Answers whether an initializing store to a new object currently
ysr@1462 437 // allocated at the given address doesn't need a (deferred) store
ysr@1462 438 // barrier. Returns "true" if it doesn't need an initializing
ysr@1462 439 // store barrier; answers "false" if it does.
ysr@1462 440 virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
ysr@1462 441
ysr@1462 442 // If the CollectedHeap was asked to defer a store barrier above,
ysr@1462 443 // this informs it to flush such a deferred store barrier to the
ysr@1462 444 // remembered set.
ysr@1462 445 virtual void flush_deferred_store_barrier(JavaThread* thread);
duke@435 446
duke@435 447 // Can a compiler elide a store barrier when it writes
duke@435 448 // a permanent oop into the heap? Applies when the compiler
duke@435 449 // is storing x to the heap, where x->is_perm() is true.
ysr@777 450 virtual bool can_elide_permanent_oop_store_barriers() const = 0;
duke@435 451
duke@435 452 // Does this heap support heap inspection (+PrintClassHistogram?)
ysr@777 453 virtual bool supports_heap_inspection() const = 0;
duke@435 454
duke@435 455 // Perform a collection of the heap; intended for use in implementing
duke@435 456 // "System.gc". This probably implies as full a collection as the
duke@435 457 // "CollectedHeap" supports.
duke@435 458 virtual void collect(GCCause::Cause cause) = 0;
duke@435 459
duke@435 460 // This interface assumes that it's being called by the
duke@435 461 // vm thread. It collects the heap assuming that the
duke@435 462 // heap lock is already held and that we are executing in
duke@435 463 // the context of the vm thread.
duke@435 464 virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
duke@435 465
duke@435 466 // Returns the barrier set for this heap
duke@435 467 BarrierSet* barrier_set() { return _barrier_set; }
duke@435 468
duke@435 469 // Returns "true" iff there is a stop-world GC in progress. (I assume
duke@435 470 // that it should answer "false" for the concurrent part of a concurrent
duke@435 471 // collector -- dld).
duke@435 472 bool is_gc_active() const { return _is_gc_active; }
duke@435 473
duke@435 474 // Total number of GC collections (started)
duke@435 475 unsigned int total_collections() const { return _total_collections; }
duke@435 476 unsigned int total_full_collections() const { return _total_full_collections;}
duke@435 477
duke@435 478 // Increment total number of GC collections (started)
duke@435 479 // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
duke@435 480 void increment_total_collections(bool full = false) {
duke@435 481 _total_collections++;
duke@435 482 if (full) {
duke@435 483 increment_total_full_collections();
duke@435 484 }
duke@435 485 }
duke@435 486
duke@435 487 void increment_total_full_collections() { _total_full_collections++; }
duke@435 488
duke@435 489 // Return the AdaptiveSizePolicy for the heap.
duke@435 490 virtual AdaptiveSizePolicy* size_policy() = 0;
duke@435 491
duke@435 492 // Iterate over all the ref-containing fields of all objects, calling
duke@435 493 // "cl.do_oop" on each. This includes objects in permanent memory.
duke@435 494 virtual void oop_iterate(OopClosure* cl) = 0;
duke@435 495
duke@435 496 // Iterate over all objects, calling "cl.do_object" on each.
duke@435 497 // This includes objects in permanent memory.
duke@435 498 virtual void object_iterate(ObjectClosure* cl) = 0;
duke@435 499
jmasa@952 500 // Similar to object_iterate() except iterates only
jmasa@952 501 // over live objects.
jmasa@952 502 virtual void safe_object_iterate(ObjectClosure* cl) = 0;
jmasa@952 503
duke@435 504 // Behaves the same as oop_iterate, except only traverses
duke@435 505 // interior pointers contained in permanent memory. If there
duke@435 506 // is no permanent memory, does nothing.
duke@435 507 virtual void permanent_oop_iterate(OopClosure* cl) = 0;
duke@435 508
duke@435 509 // Behaves the same as object_iterate, except only traverses
duke@435 510 // object contained in permanent memory. If there is no
duke@435 511 // permanent memory, does nothing.
duke@435 512 virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
duke@435 513
duke@435 514 // NOTE! There is no requirement that a collector implement these
duke@435 515 // functions.
duke@435 516 //
duke@435 517 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
duke@435 518 // each address in the (reserved) heap is a member of exactly
duke@435 519 // one block. The defining characteristic of a block is that it is
duke@435 520 // possible to find its size, and thus to progress forward to the next
duke@435 521 // block. (Blocks may be of different sizes.) Thus, blocks may
duke@435 522 // represent Java objects, or they might be free blocks in a
duke@435 523 // free-list-based heap (or subheap), as long as the two kinds are
duke@435 524 // distinguishable and the size of each is determinable.
duke@435 525
duke@435 526 // Returns the address of the start of the "block" that contains the
duke@435 527 // address "addr". We say "blocks" instead of "object" since some heaps
duke@435 528 // may not pack objects densely; a chunk may either be an object or a
duke@435 529 // non-object.
duke@435 530 virtual HeapWord* block_start(const void* addr) const = 0;
duke@435 531
duke@435 532 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 533 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 534 // of the active area of the heap.
duke@435 535 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 536
duke@435 537 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 538 // the block is an object.
duke@435 539 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 540
duke@435 541 // Returns the longest time (in ms) that has elapsed since the last
duke@435 542 // time that any part of the heap was examined by a garbage collection.
duke@435 543 virtual jlong millis_since_last_gc() = 0;
duke@435 544
duke@435 545 // Perform any cleanup actions necessary before allowing a verification.
duke@435 546 virtual void prepare_for_verify() = 0;
duke@435 547
ysr@1050 548 // Generate any dumps preceding or following a full gc
ysr@1050 549 void pre_full_gc_dump();
ysr@1050 550 void post_full_gc_dump();
ysr@1050 551
duke@435 552 virtual void print() const = 0;
duke@435 553 virtual void print_on(outputStream* st) const = 0;
duke@435 554
duke@435 555 // Print all GC threads (other than the VM thread)
duke@435 556 // used by this heap.
duke@435 557 virtual void print_gc_threads_on(outputStream* st) const = 0;
duke@435 558 void print_gc_threads() { print_gc_threads_on(tty); }
duke@435 559 // Iterator for all GC threads (other than VM thread)
duke@435 560 virtual void gc_threads_do(ThreadClosure* tc) const = 0;
duke@435 561
duke@435 562 // Print any relevant tracing info that flags imply.
duke@435 563 // Default implementation does nothing.
duke@435 564 virtual void print_tracing_info() const = 0;
duke@435 565
duke@435 566 // Heap verification
ysr@1280 567 virtual void verify(bool allow_dirty, bool silent, bool option) = 0;
duke@435 568
duke@435 569 // Non product verification and debugging.
duke@435 570 #ifndef PRODUCT
duke@435 571 // Support for PromotionFailureALot. Return true if it's time to cause a
duke@435 572 // promotion failure. The no-argument version uses
duke@435 573 // this->_promotion_failure_alot_count as the counter.
duke@435 574 inline bool promotion_should_fail(volatile size_t* count);
duke@435 575 inline bool promotion_should_fail();
duke@435 576
duke@435 577 // Reset the PromotionFailureALot counters. Should be called at the end of a
duke@435 578 // GC in which promotion failure ocurred.
duke@435 579 inline void reset_promotion_should_fail(volatile size_t* count);
duke@435 580 inline void reset_promotion_should_fail();
duke@435 581 #endif // #ifndef PRODUCT
duke@435 582
duke@435 583 #ifdef ASSERT
duke@435 584 static int fired_fake_oom() {
duke@435 585 return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
duke@435 586 }
duke@435 587 #endif
duke@435 588 };
duke@435 589
duke@435 590 // Class to set and reset the GC cause for a CollectedHeap.
duke@435 591
duke@435 592 class GCCauseSetter : StackObj {
duke@435 593 CollectedHeap* _heap;
duke@435 594 GCCause::Cause _previous_cause;
duke@435 595 public:
duke@435 596 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
duke@435 597 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 598 "This method manipulates heap state without locking");
duke@435 599 _heap = heap;
duke@435 600 _previous_cause = _heap->gc_cause();
duke@435 601 _heap->set_gc_cause(cause);
duke@435 602 }
duke@435 603
duke@435 604 ~GCCauseSetter() {
duke@435 605 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 606 "This method manipulates heap state without locking");
duke@435 607 _heap->set_gc_cause(_previous_cause);
duke@435 608 }
duke@435 609 };

mercurial