src/share/vm/gc_interface/collectedHeap.hpp

Wed, 28 Nov 2012 17:50:21 -0500

author
coleenp
date
Wed, 28 Nov 2012 17:50:21 -0500
changeset 4295
59c790074993
parent 4037
da91efe96a93
child 4904
7b835924c31c
permissions
-rw-r--r--

8003635: NPG: AsynchGetCallTrace broken by Method* virtual call
Summary: Make metaspace::contains be lock free and used to see if something is in metaspace, also compare Method* with vtbl pointer.
Reviewed-by: dholmes, sspitsyn, dcubed, jmasa

duke@435 1 /*
never@3499 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_interface/gcCause.hpp"
stefank@2314 29 #include "memory/allocation.hpp"
stefank@2314 30 #include "memory/barrierSet.hpp"
stefank@2314 31 #include "runtime/handles.hpp"
stefank@2314 32 #include "runtime/perfData.hpp"
stefank@2314 33 #include "runtime/safepoint.hpp"
never@3499 34 #include "utilities/events.hpp"
stefank@2314 35
duke@435 36 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This
duke@435 37 // is an abstract class: there may be many different kinds of heaps. This
duke@435 38 // class defines the functions that a heap must implement, and contains
duke@435 39 // infrastructure common to all heaps.
duke@435 40
duke@435 41 class BarrierSet;
duke@435 42 class ThreadClosure;
duke@435 43 class AdaptiveSizePolicy;
duke@435 44 class Thread;
jmasa@1822 45 class CollectorPolicy;
duke@435 46
never@3499 47 class GCMessage : public FormatBuffer<1024> {
never@3499 48 public:
never@3499 49 bool is_before;
never@3499 50
never@3499 51 public:
never@3499 52 GCMessage() {}
never@3499 53 };
never@3499 54
never@3499 55 class GCHeapLog : public EventLogBase<GCMessage> {
never@3499 56 private:
never@3499 57 void log_heap(bool before);
never@3499 58
never@3499 59 public:
never@3499 60 GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
never@3499 61
never@3499 62 void log_heap_before() {
never@3499 63 log_heap(true);
never@3499 64 }
never@3499 65 void log_heap_after() {
never@3499 66 log_heap(false);
never@3499 67 }
never@3499 68 };
never@3499 69
duke@435 70 //
duke@435 71 // CollectedHeap
duke@435 72 // SharedHeap
duke@435 73 // GenCollectedHeap
duke@435 74 // G1CollectedHeap
duke@435 75 // ParallelScavengeHeap
duke@435 76 //
zgu@3900 77 class CollectedHeap : public CHeapObj<mtInternal> {
duke@435 78 friend class VMStructs;
duke@435 79 friend class IsGCActiveMark; // Block structured external access to _is_gc_active
duke@435 80
duke@435 81 #ifdef ASSERT
duke@435 82 static int _fire_out_of_memory_count;
duke@435 83 #endif
duke@435 84
jcoomes@916 85 // Used for filler objects (static, but initialized in ctor).
jcoomes@916 86 static size_t _filler_array_max_size;
jcoomes@916 87
never@3499 88 GCHeapLog* _gc_heap_log;
never@3499 89
ysr@1601 90 // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
ysr@1601 91 bool _defer_initial_card_mark;
ysr@1601 92
duke@435 93 protected:
duke@435 94 MemRegion _reserved;
duke@435 95 BarrierSet* _barrier_set;
duke@435 96 bool _is_gc_active;
jmasa@3357 97 uint _n_par_threads;
jmasa@2188 98
duke@435 99 unsigned int _total_collections; // ... started
duke@435 100 unsigned int _total_full_collections; // ... started
duke@435 101 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
duke@435 102 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
duke@435 103
duke@435 104 // Reason for current garbage collection. Should be set to
duke@435 105 // a value reflecting no collection between collections.
duke@435 106 GCCause::Cause _gc_cause;
duke@435 107 GCCause::Cause _gc_lastcause;
duke@435 108 PerfStringVariable* _perf_gc_cause;
duke@435 109 PerfStringVariable* _perf_gc_lastcause;
duke@435 110
duke@435 111 // Constructor
duke@435 112 CollectedHeap();
duke@435 113
ysr@1601 114 // Do common initializations that must follow instance construction,
ysr@1601 115 // for example, those needing virtual calls.
ysr@1601 116 // This code could perhaps be moved into initialize() but would
ysr@1601 117 // be slightly more awkward because we want the latter to be a
ysr@1601 118 // pure virtual.
ysr@1601 119 void pre_initialize();
ysr@1601 120
tonyp@2971 121 // Create a new tlab. All TLAB allocations must go through this.
duke@435 122 virtual HeapWord* allocate_new_tlab(size_t size);
duke@435 123
duke@435 124 // Accumulate statistics on all tlabs.
duke@435 125 virtual void accumulate_statistics_all_tlabs();
duke@435 126
duke@435 127 // Reinitialize tlabs before resuming mutators.
duke@435 128 virtual void resize_all_tlabs();
duke@435 129
duke@435 130 // Allocate from the current thread's TLAB, with broken-out slow path.
duke@435 131 inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
duke@435 132 static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
duke@435 133
duke@435 134 // Allocate an uninitialized block of the given size, or returns NULL if
duke@435 135 // this is impossible.
tonyp@2971 136 inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
duke@435 137
duke@435 138 // Like allocate_init, but the block returned by a successful allocation
duke@435 139 // is guaranteed initialized to zeros.
tonyp@2971 140 inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
duke@435 141
duke@435 142 // Helper functions for (VM) allocation.
brutisso@3675 143 inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
duke@435 144 inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
brutisso@3675 145 HeapWord* objPtr);
duke@435 146
brutisso@3675 147 inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj);
duke@435 148
duke@435 149 inline static void post_allocation_setup_array(KlassHandle klass,
brutisso@3675 150 HeapWord* obj, int length);
duke@435 151
duke@435 152 // Clears an allocated object.
duke@435 153 inline static void init_obj(HeapWord* obj, size_t size);
duke@435 154
jcoomes@916 155 // Filler object utilities.
jcoomes@916 156 static inline size_t filler_array_hdr_size();
jcoomes@916 157 static inline size_t filler_array_min_size();
jcoomes@916 158
jcoomes@916 159 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
johnc@1600 160 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
jcoomes@916 161
jcoomes@916 162 // Fill with a single array; caller must ensure filler_array_min_size() <=
jcoomes@916 163 // words <= filler_array_max_size().
johnc@1600 164 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 165
jcoomes@916 166 // Fill with a single object (either an int array or a java.lang.Object).
johnc@1600 167 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 168
duke@435 169 // Verification functions
duke@435 170 virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 171 PRODUCT_RETURN;
duke@435 172 virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 173 PRODUCT_RETURN;
jmasa@977 174 debug_only(static void check_for_valid_allocation_state();)
duke@435 175
duke@435 176 public:
duke@435 177 enum Name {
duke@435 178 Abstract,
duke@435 179 SharedHeap,
duke@435 180 GenCollectedHeap,
duke@435 181 ParallelScavengeHeap,
duke@435 182 G1CollectedHeap
duke@435 183 };
duke@435 184
brutisso@3668 185 static inline size_t filler_array_max_size() {
brutisso@3668 186 return _filler_array_max_size;
brutisso@3668 187 }
brutisso@3668 188
duke@435 189 virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
duke@435 190
duke@435 191 /**
duke@435 192 * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
duke@435 193 * and JNI_OK on success.
duke@435 194 */
duke@435 195 virtual jint initialize() = 0;
duke@435 196
duke@435 197 // In many heaps, there will be a need to perform some initialization activities
duke@435 198 // after the Universe is fully formed, but before general heap allocation is allowed.
duke@435 199 // This is the correct place to place such initialization methods.
duke@435 200 virtual void post_initialize() = 0;
duke@435 201
duke@435 202 MemRegion reserved_region() const { return _reserved; }
coleenp@548 203 address base() const { return (address)reserved_region().start(); }
duke@435 204
duke@435 205 // Future cleanup here. The following functions should specify bytes or
duke@435 206 // heapwords as part of their signature.
duke@435 207 virtual size_t capacity() const = 0;
duke@435 208 virtual size_t used() const = 0;
duke@435 209
duke@435 210 // Return "true" if the part of the heap that allocates Java
duke@435 211 // objects has reached the maximal committed limit that it can
duke@435 212 // reach, without a garbage collection.
duke@435 213 virtual bool is_maximal_no_gc() const = 0;
duke@435 214
duke@435 215 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of
duke@435 216 // memory that the vm could make available for storing 'normal' java objects.
duke@435 217 // This is based on the reserved address space, but should not include space
coleenp@4037 218 // that the vm uses internally for bookkeeping or temporary storage
coleenp@4037 219 // (e.g., in the case of the young gen, one of the survivor
duke@435 220 // spaces).
duke@435 221 virtual size_t max_capacity() const = 0;
duke@435 222
duke@435 223 // Returns "TRUE" if "p" points into the reserved area of the heap.
duke@435 224 bool is_in_reserved(const void* p) const {
duke@435 225 return _reserved.contains(p);
duke@435 226 }
duke@435 227
duke@435 228 bool is_in_reserved_or_null(const void* p) const {
duke@435 229 return p == NULL || is_in_reserved(p);
duke@435 230 }
duke@435 231
stefank@3335 232 // Returns "TRUE" iff "p" points into the committed areas of the heap.
stefank@3335 233 // Since this method can be expensive in general, we restrict its
duke@435 234 // use to assertion checking only.
duke@435 235 virtual bool is_in(const void* p) const = 0;
duke@435 236
duke@435 237 bool is_in_or_null(const void* p) const {
duke@435 238 return p == NULL || is_in(p);
duke@435 239 }
duke@435 240
coleenp@4037 241 bool is_in_place(Metadata** p) {
coleenp@4037 242 return !Universe::heap()->is_in(p);
coleenp@4037 243 }
coleenp@4037 244 bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
coleenp@4037 245 bool is_in_place(narrowOop* p) {
coleenp@4037 246 oop o = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@4037 247 return Universe::heap()->is_in((const void*)o);
coleenp@4037 248 }
coleenp@4037 249
duke@435 250 // Let's define some terms: a "closed" subset of a heap is one that
duke@435 251 //
duke@435 252 // 1) contains all currently-allocated objects, and
duke@435 253 //
duke@435 254 // 2) is closed under reference: no object in the closed subset
duke@435 255 // references one outside the closed subset.
duke@435 256 //
duke@435 257 // Membership in a heap's closed subset is useful for assertions.
duke@435 258 // Clearly, the entire heap is a closed subset, so the default
duke@435 259 // implementation is to use "is_in_reserved". But this may not be too
duke@435 260 // liberal to perform useful checking. Also, the "is_in" predicate
duke@435 261 // defines a closed subset, but may be too expensive, since "is_in"
duke@435 262 // verifies that its argument points to an object head. The
duke@435 263 // "closed_subset" method allows a heap to define an intermediate
duke@435 264 // predicate, allowing more precise checking than "is_in_reserved" at
duke@435 265 // lower cost than "is_in."
duke@435 266
duke@435 267 // One important case is a heap composed of disjoint contiguous spaces,
duke@435 268 // such as the Garbage-First collector. Such heaps have a convenient
duke@435 269 // closed subset consisting of the allocated portions of those
duke@435 270 // contiguous spaces.
duke@435 271
duke@435 272 // Return "TRUE" iff the given pointer points into the heap's defined
duke@435 273 // closed subset (which defaults to the entire heap).
duke@435 274 virtual bool is_in_closed_subset(const void* p) const {
duke@435 275 return is_in_reserved(p);
duke@435 276 }
duke@435 277
duke@435 278 bool is_in_closed_subset_or_null(const void* p) const {
duke@435 279 return p == NULL || is_in_closed_subset(p);
duke@435 280 }
duke@435 281
jmasa@2909 282 #ifdef ASSERT
jmasa@2909 283 // Returns true if "p" is in the part of the
jmasa@2909 284 // heap being collected.
jmasa@2909 285 virtual bool is_in_partial_collection(const void *p) = 0;
jmasa@2909 286 #endif
jmasa@2909 287
jrose@1424 288 // An object is scavengable if its location may move during a scavenge.
jrose@1424 289 // (A scavenge is a GC which is not a full GC.)
jmasa@2909 290 virtual bool is_scavengable(const void *p) = 0;
jrose@1424 291
duke@435 292 void set_gc_cause(GCCause::Cause v) {
duke@435 293 if (UsePerfData) {
duke@435 294 _gc_lastcause = _gc_cause;
duke@435 295 _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
duke@435 296 _perf_gc_cause->set_value(GCCause::to_string(v));
duke@435 297 }
duke@435 298 _gc_cause = v;
duke@435 299 }
duke@435 300 GCCause::Cause gc_cause() { return _gc_cause; }
duke@435 301
jmasa@2188 302 // Number of threads currently working on GC tasks.
jmasa@3357 303 uint n_par_threads() { return _n_par_threads; }
jmasa@2188 304
jmasa@2188 305 // May be overridden to set additional parallelism.
jmasa@3357 306 virtual void set_par_threads(uint t) { _n_par_threads = t; };
jmasa@2188 307
never@3205 308 // Allocate and initialize instances of Class
never@3205 309 static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);
never@3205 310
duke@435 311 // General obj/array allocation facilities.
duke@435 312 inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
duke@435 313 inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
kvn@3157 314 inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
duke@435 315
coleenp@4037 316 inline static void post_allocation_install_obj_klass(KlassHandle klass,
coleenp@4037 317 oop obj);
duke@435 318
duke@435 319 // Raw memory allocation facilities
duke@435 320 // The obj and array allocate methods are covers for these methods.
coleenp@4037 321 // mem_allocate() should never be
tonyp@2971 322 // called to allocate TLABs, only individual objects.
duke@435 323 virtual HeapWord* mem_allocate(size_t size,
duke@435 324 bool* gc_overhead_limit_was_exceeded) = 0;
duke@435 325
jcoomes@916 326 // Utilities for turning raw memory into filler objects.
jcoomes@916 327 //
jcoomes@916 328 // min_fill_size() is the smallest region that can be filled.
jcoomes@916 329 // fill_with_objects() can fill arbitrary-sized regions of the heap using
jcoomes@916 330 // multiple objects. fill_with_object() is for regions known to be smaller
jcoomes@916 331 // than the largest array of integers; it uses a single object to fill the
jcoomes@916 332 // region and has slightly less overhead.
jcoomes@916 333 static size_t min_fill_size() {
jcoomes@916 334 return size_t(align_object_size(oopDesc::header_size()));
jcoomes@916 335 }
jcoomes@916 336
johnc@1600 337 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
jcoomes@916 338
johnc@1600 339 static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
johnc@1600 340 static void fill_with_object(MemRegion region, bool zap = true) {
johnc@1600 341 fill_with_object(region.start(), region.word_size(), zap);
jcoomes@916 342 }
johnc@1600 343 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
johnc@1600 344 fill_with_object(start, pointer_delta(end, start), zap);
jcoomes@916 345 }
jcoomes@916 346
duke@435 347 // Some heaps may offer a contiguous region for shared non-blocking
duke@435 348 // allocation, via inlined code (by exporting the address of the top and
duke@435 349 // end fields defining the extent of the contiguous allocation region.)
duke@435 350
duke@435 351 // This function returns "true" iff the heap supports this kind of
duke@435 352 // allocation. (Default is "no".)
duke@435 353 virtual bool supports_inline_contig_alloc() const {
duke@435 354 return false;
duke@435 355 }
duke@435 356 // These functions return the addresses of the fields that define the
duke@435 357 // boundaries of the contiguous allocation area. (These fields should be
duke@435 358 // physically near to one another.)
duke@435 359 virtual HeapWord** top_addr() const {
duke@435 360 guarantee(false, "inline contiguous allocation not supported");
duke@435 361 return NULL;
duke@435 362 }
duke@435 363 virtual HeapWord** end_addr() const {
duke@435 364 guarantee(false, "inline contiguous allocation not supported");
duke@435 365 return NULL;
duke@435 366 }
duke@435 367
duke@435 368 // Some heaps may be in an unparseable state at certain times between
duke@435 369 // collections. This may be necessary for efficient implementation of
duke@435 370 // certain allocation-related activities. Calling this function before
duke@435 371 // attempting to parse a heap ensures that the heap is in a parsable
duke@435 372 // state (provided other concurrent activity does not introduce
duke@435 373 // unparsability). It is normally expected, therefore, that this
duke@435 374 // method is invoked with the world stopped.
duke@435 375 // NOTE: if you override this method, make sure you call
duke@435 376 // super::ensure_parsability so that the non-generational
duke@435 377 // part of the work gets done. See implementation of
duke@435 378 // CollectedHeap::ensure_parsability and, for instance,
duke@435 379 // that of GenCollectedHeap::ensure_parsability().
duke@435 380 // The argument "retire_tlabs" controls whether existing TLABs
duke@435 381 // are merely filled or also retired, thus preventing further
duke@435 382 // allocation from them and necessitating allocation of new TLABs.
duke@435 383 virtual void ensure_parsability(bool retire_tlabs);
duke@435 384
duke@435 385 // Return an estimate of the maximum allocation that could be performed
duke@435 386 // without triggering any collection or expansion activity. In a
duke@435 387 // generational collector, for example, this is probably the largest
duke@435 388 // allocation that could be supported (without expansion) in the youngest
duke@435 389 // generation. It is "unsafe" because no locks are taken; the result
duke@435 390 // should be treated as an approximation, not a guarantee, for use in
duke@435 391 // heuristic resizing decisions.
duke@435 392 virtual size_t unsafe_max_alloc() = 0;
duke@435 393
duke@435 394 // Section on thread-local allocation buffers (TLABs)
duke@435 395 // If the heap supports thread-local allocation buffers, it should override
duke@435 396 // the following methods:
duke@435 397 // Returns "true" iff the heap supports thread-local allocation buffers.
duke@435 398 // The default is "no".
duke@435 399 virtual bool supports_tlab_allocation() const {
duke@435 400 return false;
duke@435 401 }
duke@435 402 // The amount of space available for thread-local allocation buffers.
duke@435 403 virtual size_t tlab_capacity(Thread *thr) const {
duke@435 404 guarantee(false, "thread-local allocation buffers not supported");
duke@435 405 return 0;
duke@435 406 }
duke@435 407 // An estimate of the maximum allocation that could be performed
duke@435 408 // for thread-local allocation buffers without triggering any
duke@435 409 // collection or expansion activity.
duke@435 410 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
duke@435 411 guarantee(false, "thread-local allocation buffers not supported");
duke@435 412 return 0;
duke@435 413 }
ysr@1462 414
duke@435 415 // Can a compiler initialize a new object without store barriers?
duke@435 416 // This permission only extends from the creation of a new object
ysr@1462 417 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 418 // is granted for this heap type, the compiler promises to call
ysr@1462 419 // defer_store_barrier() below on any slow path allocation of
ysr@1462 420 // a new object for which such initializing store barriers will
ysr@1462 421 // have been elided.
ysr@777 422 virtual bool can_elide_tlab_store_barriers() const = 0;
ysr@777 423
duke@435 424 // If a compiler is eliding store barriers for TLAB-allocated objects,
duke@435 425 // there is probably a corresponding slow path which can produce
duke@435 426 // an object allocated anywhere. The compiler's runtime support
duke@435 427 // promises to call this function on such a slow-path-allocated
duke@435 428 // object before performing initializations that have elided
ysr@1462 429 // store barriers. Returns new_obj, or maybe a safer copy thereof.
ysr@1601 430 virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
ysr@1462 431
ysr@1462 432 // Answers whether an initializing store to a new object currently
ysr@1601 433 // allocated at the given address doesn't need a store
ysr@1462 434 // barrier. Returns "true" if it doesn't need an initializing
ysr@1462 435 // store barrier; answers "false" if it does.
ysr@1462 436 virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
ysr@1462 437
ysr@1601 438 // If a compiler is eliding store barriers for TLAB-allocated objects,
ysr@1601 439 // we will be informed of a slow-path allocation by a call
ysr@1601 440 // to new_store_pre_barrier() above. Such a call precedes the
ysr@1601 441 // initialization of the object itself, and no post-store-barriers will
ysr@1601 442 // be issued. Some heap types require that the barrier strictly follows
ysr@1601 443 // the initializing stores. (This is currently implemented by deferring the
ysr@1601 444 // barrier until the next slow-path allocation or gc-related safepoint.)
ysr@1601 445 // This interface answers whether a particular heap type needs the card
ysr@1601 446 // mark to be thus strictly sequenced after the stores.
ysr@1601 447 virtual bool card_mark_must_follow_store() const = 0;
ysr@1601 448
ysr@1462 449 // If the CollectedHeap was asked to defer a store barrier above,
ysr@1462 450 // this informs it to flush such a deferred store barrier to the
ysr@1462 451 // remembered set.
ysr@1462 452 virtual void flush_deferred_store_barrier(JavaThread* thread);
duke@435 453
duke@435 454 // Does this heap support heap inspection (+PrintClassHistogram?)
ysr@777 455 virtual bool supports_heap_inspection() const = 0;
duke@435 456
duke@435 457 // Perform a collection of the heap; intended for use in implementing
duke@435 458 // "System.gc". This probably implies as full a collection as the
duke@435 459 // "CollectedHeap" supports.
duke@435 460 virtual void collect(GCCause::Cause cause) = 0;
duke@435 461
coleenp@4037 462 // Perform a full collection
coleenp@4037 463 virtual void do_full_collection(bool clear_all_soft_refs) = 0;
coleenp@4037 464
duke@435 465 // This interface assumes that it's being called by the
duke@435 466 // vm thread. It collects the heap assuming that the
duke@435 467 // heap lock is already held and that we are executing in
duke@435 468 // the context of the vm thread.
coleenp@4037 469 virtual void collect_as_vm_thread(GCCause::Cause cause);
coleenp@4037 470
coleenp@4037 471 // Callback from VM_CollectForMetadataAllocation operation.
coleenp@4037 472 MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
coleenp@4037 473 size_t size,
coleenp@4037 474 Metaspace::MetadataType mdtype);
duke@435 475
duke@435 476 // Returns the barrier set for this heap
duke@435 477 BarrierSet* barrier_set() { return _barrier_set; }
duke@435 478
duke@435 479 // Returns "true" iff there is a stop-world GC in progress. (I assume
duke@435 480 // that it should answer "false" for the concurrent part of a concurrent
duke@435 481 // collector -- dld).
duke@435 482 bool is_gc_active() const { return _is_gc_active; }
duke@435 483
duke@435 484 // Total number of GC collections (started)
duke@435 485 unsigned int total_collections() const { return _total_collections; }
duke@435 486 unsigned int total_full_collections() const { return _total_full_collections;}
duke@435 487
duke@435 488 // Increment total number of GC collections (started)
duke@435 489 // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
duke@435 490 void increment_total_collections(bool full = false) {
duke@435 491 _total_collections++;
duke@435 492 if (full) {
duke@435 493 increment_total_full_collections();
duke@435 494 }
duke@435 495 }
duke@435 496
duke@435 497 void increment_total_full_collections() { _total_full_collections++; }
duke@435 498
duke@435 499 // Return the AdaptiveSizePolicy for the heap.
duke@435 500 virtual AdaptiveSizePolicy* size_policy() = 0;
duke@435 501
jmasa@1822 502 // Return the CollectorPolicy for the heap
jmasa@1822 503 virtual CollectorPolicy* collector_policy() const = 0;
jmasa@1822 504
coleenp@4037 505 void oop_iterate_no_header(OopClosure* cl);
coleenp@4037 506
duke@435 507 // Iterate over all the ref-containing fields of all objects, calling
coleenp@4037 508 // "cl.do_oop" on each.
coleenp@4037 509 virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
duke@435 510
duke@435 511 // Iterate over all objects, calling "cl.do_object" on each.
duke@435 512 virtual void object_iterate(ObjectClosure* cl) = 0;
duke@435 513
jmasa@952 514 // Similar to object_iterate() except iterates only
jmasa@952 515 // over live objects.
jmasa@952 516 virtual void safe_object_iterate(ObjectClosure* cl) = 0;
jmasa@952 517
duke@435 518 // NOTE! There is no requirement that a collector implement these
duke@435 519 // functions.
duke@435 520 //
duke@435 521 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
duke@435 522 // each address in the (reserved) heap is a member of exactly
duke@435 523 // one block. The defining characteristic of a block is that it is
duke@435 524 // possible to find its size, and thus to progress forward to the next
duke@435 525 // block. (Blocks may be of different sizes.) Thus, blocks may
duke@435 526 // represent Java objects, or they might be free blocks in a
duke@435 527 // free-list-based heap (or subheap), as long as the two kinds are
duke@435 528 // distinguishable and the size of each is determinable.
duke@435 529
duke@435 530 // Returns the address of the start of the "block" that contains the
duke@435 531 // address "addr". We say "blocks" instead of "object" since some heaps
duke@435 532 // may not pack objects densely; a chunk may either be an object or a
duke@435 533 // non-object.
duke@435 534 virtual HeapWord* block_start(const void* addr) const = 0;
duke@435 535
duke@435 536 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 537 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 538 // of the active area of the heap.
duke@435 539 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 540
duke@435 541 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 542 // the block is an object.
duke@435 543 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 544
duke@435 545 // Returns the longest time (in ms) that has elapsed since the last
duke@435 546 // time that any part of the heap was examined by a garbage collection.
duke@435 547 virtual jlong millis_since_last_gc() = 0;
duke@435 548
duke@435 549 // Perform any cleanup actions necessary before allowing a verification.
duke@435 550 virtual void prepare_for_verify() = 0;
duke@435 551
ysr@1050 552 // Generate any dumps preceding or following a full gc
ysr@1050 553 void pre_full_gc_dump();
ysr@1050 554 void post_full_gc_dump();
ysr@1050 555
tonyp@3269 556 // Print heap information on the given outputStream.
duke@435 557 virtual void print_on(outputStream* st) const = 0;
tonyp@3269 558 // The default behavior is to call print_on() on tty.
tonyp@3269 559 virtual void print() const {
tonyp@3269 560 print_on(tty);
tonyp@3269 561 }
tonyp@3269 562 // Print more detailed heap information on the given
tonyp@3269 563 // outputStream. The default behaviour is to call print_on(). It is
tonyp@3269 564 // up to each subclass to override it and add any additional output
tonyp@3269 565 // it needs.
tonyp@3269 566 virtual void print_extended_on(outputStream* st) const {
tonyp@3269 567 print_on(st);
tonyp@3269 568 }
duke@435 569
duke@435 570 // Print all GC threads (other than the VM thread)
duke@435 571 // used by this heap.
duke@435 572 virtual void print_gc_threads_on(outputStream* st) const = 0;
tonyp@3269 573 // The default behavior is to call print_gc_threads_on() on tty.
tonyp@3269 574 void print_gc_threads() {
tonyp@3269 575 print_gc_threads_on(tty);
tonyp@3269 576 }
duke@435 577 // Iterator for all GC threads (other than VM thread)
duke@435 578 virtual void gc_threads_do(ThreadClosure* tc) const = 0;
duke@435 579
duke@435 580 // Print any relevant tracing info that flags imply.
duke@435 581 // Default implementation does nothing.
duke@435 582 virtual void print_tracing_info() const = 0;
duke@435 583
never@3499 584 // If PrintHeapAtGC is set call the appropriate routi
never@3499 585 void print_heap_before_gc() {
never@3499 586 if (PrintHeapAtGC) {
never@3499 587 Universe::print_heap_before_gc();
never@3499 588 }
never@3499 589 if (_gc_heap_log != NULL) {
never@3499 590 _gc_heap_log->log_heap_before();
never@3499 591 }
never@3499 592 }
never@3499 593 void print_heap_after_gc() {
never@3499 594 if (PrintHeapAtGC) {
never@3499 595 Universe::print_heap_after_gc();
never@3499 596 }
never@3499 597 if (_gc_heap_log != NULL) {
never@3499 598 _gc_heap_log->log_heap_after();
never@3499 599 }
never@3499 600 }
never@3499 601
duke@435 602 // Heap verification
brutisso@3711 603 virtual void verify(bool silent, VerifyOption option) = 0;
duke@435 604
duke@435 605 // Non product verification and debugging.
duke@435 606 #ifndef PRODUCT
duke@435 607 // Support for PromotionFailureALot. Return true if it's time to cause a
duke@435 608 // promotion failure. The no-argument version uses
duke@435 609 // this->_promotion_failure_alot_count as the counter.
duke@435 610 inline bool promotion_should_fail(volatile size_t* count);
duke@435 611 inline bool promotion_should_fail();
duke@435 612
duke@435 613 // Reset the PromotionFailureALot counters. Should be called at the end of a
duke@435 614 // GC in which promotion failure ocurred.
duke@435 615 inline void reset_promotion_should_fail(volatile size_t* count);
duke@435 616 inline void reset_promotion_should_fail();
duke@435 617 #endif // #ifndef PRODUCT
duke@435 618
duke@435 619 #ifdef ASSERT
duke@435 620 static int fired_fake_oom() {
duke@435 621 return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
duke@435 622 }
duke@435 623 #endif
jmasa@2188 624
jmasa@2188 625 public:
jmasa@2188 626 // This is a convenience method that is used in cases where
jmasa@2188 627 // the actual number of GC worker threads is not pertinent but
jmasa@2188 628 // only whether there more than 0. Use of this method helps
jmasa@2188 629 // reduce the occurrence of ParallelGCThreads to uses where the
jmasa@2188 630 // actual number may be germane.
jmasa@2188 631 static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
stefank@3335 632
stefank@3335 633 /////////////// Unit tests ///////////////
stefank@3335 634
stefank@3335 635 NOT_PRODUCT(static void test_is_in();)
duke@435 636 };
duke@435 637
duke@435 638 // Class to set and reset the GC cause for a CollectedHeap.
duke@435 639
duke@435 640 class GCCauseSetter : StackObj {
duke@435 641 CollectedHeap* _heap;
duke@435 642 GCCause::Cause _previous_cause;
duke@435 643 public:
duke@435 644 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
duke@435 645 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 646 "This method manipulates heap state without locking");
duke@435 647 _heap = heap;
duke@435 648 _previous_cause = _heap->gc_cause();
duke@435 649 _heap->set_gc_cause(cause);
duke@435 650 }
duke@435 651
duke@435 652 ~GCCauseSetter() {
duke@435 653 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 654 "This method manipulates heap state without locking");
duke@435 655 _heap->set_gc_cause(_previous_cause);
duke@435 656 }
duke@435 657 };
stefank@2314 658
stefank@2314 659 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial