src/os/windows/vm/os_windows.cpp

Mon, 27 Feb 2012 09:17:44 +0100

author
roland
date
Mon, 27 Feb 2012 09:17:44 +0100
changeset 3606
da4be62fb889
parent 3502
379b22e03c32
child 3747
ec15e8f6e4f1
permissions
-rw-r--r--

7147740: add assertions to check stack alignment on VM entry from generated code (x64)
Summary: check stack alignment on VM entry on x64.
Reviewed-by: kvn, never

duke@435 1 /*
never@3499 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
sla@2588 25 // Must be at least Windows 2000 or XP to use VectoredExceptions and IsDebuggerPresent
duke@435 26 #define _WIN32_WINNT 0x500
duke@435 27
stefank@2314 28 // no precompiled headers
stefank@2314 29 #include "classfile/classLoader.hpp"
stefank@2314 30 #include "classfile/systemDictionary.hpp"
stefank@2314 31 #include "classfile/vmSymbols.hpp"
stefank@2314 32 #include "code/icBuffer.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "interpreter/interpreter.hpp"
stefank@2314 36 #include "jvm_windows.h"
stefank@2314 37 #include "memory/allocation.inline.hpp"
stefank@2314 38 #include "memory/filemap.hpp"
stefank@2314 39 #include "mutex_windows.inline.hpp"
stefank@2314 40 #include "oops/oop.inline.hpp"
stefank@2314 41 #include "os_share_windows.hpp"
stefank@2314 42 #include "prims/jniFastGetField.hpp"
stefank@2314 43 #include "prims/jvm.h"
stefank@2314 44 #include "prims/jvm_misc.hpp"
stefank@2314 45 #include "runtime/arguments.hpp"
stefank@2314 46 #include "runtime/extendedPC.hpp"
stefank@2314 47 #include "runtime/globals.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/java.hpp"
stefank@2314 50 #include "runtime/javaCalls.hpp"
stefank@2314 51 #include "runtime/mutexLocker.hpp"
stefank@2314 52 #include "runtime/objectMonitor.hpp"
stefank@2314 53 #include "runtime/osThread.hpp"
stefank@2314 54 #include "runtime/perfMemory.hpp"
stefank@2314 55 #include "runtime/sharedRuntime.hpp"
stefank@2314 56 #include "runtime/statSampler.hpp"
stefank@2314 57 #include "runtime/stubRoutines.hpp"
stefank@2314 58 #include "runtime/threadCritical.hpp"
stefank@2314 59 #include "runtime/timer.hpp"
stefank@2314 60 #include "services/attachListener.hpp"
stefank@2314 61 #include "services/runtimeService.hpp"
stefank@2314 62 #include "thread_windows.inline.hpp"
zgu@2364 63 #include "utilities/decoder.hpp"
stefank@2314 64 #include "utilities/defaultStream.hpp"
stefank@2314 65 #include "utilities/events.hpp"
stefank@2314 66 #include "utilities/growableArray.hpp"
stefank@2314 67 #include "utilities/vmError.hpp"
stefank@2314 68 #ifdef TARGET_ARCH_x86
stefank@2314 69 # include "assembler_x86.inline.hpp"
stefank@2314 70 # include "nativeInst_x86.hpp"
stefank@2314 71 #endif
stefank@2314 72 #ifdef COMPILER1
stefank@2314 73 #include "c1/c1_Runtime1.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef COMPILER2
stefank@2314 76 #include "opto/runtime.hpp"
stefank@2314 77 #endif
duke@435 78
duke@435 79 #ifdef _DEBUG
duke@435 80 #include <crtdbg.h>
duke@435 81 #endif
duke@435 82
duke@435 83
duke@435 84 #include <windows.h>
duke@435 85 #include <sys/types.h>
duke@435 86 #include <sys/stat.h>
duke@435 87 #include <sys/timeb.h>
duke@435 88 #include <objidl.h>
duke@435 89 #include <shlobj.h>
duke@435 90
duke@435 91 #include <malloc.h>
duke@435 92 #include <signal.h>
duke@435 93 #include <direct.h>
duke@435 94 #include <errno.h>
duke@435 95 #include <fcntl.h>
duke@435 96 #include <io.h>
duke@435 97 #include <process.h> // For _beginthreadex(), _endthreadex()
duke@435 98 #include <imagehlp.h> // For os::dll_address_to_function_name
duke@435 99
duke@435 100 /* for enumerating dll libraries */
duke@435 101 #include <vdmdbg.h>
duke@435 102
duke@435 103 // for timer info max values which include all bits
duke@435 104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 105
duke@435 106 // For DLL loading/load error detection
duke@435 107 // Values of PE COFF
duke@435 108 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
duke@435 109 #define IMAGE_FILE_SIGNATURE_LENGTH 4
duke@435 110
duke@435 111 static HANDLE main_process;
duke@435 112 static HANDLE main_thread;
duke@435 113 static int main_thread_id;
duke@435 114
duke@435 115 static FILETIME process_creation_time;
duke@435 116 static FILETIME process_exit_time;
duke@435 117 static FILETIME process_user_time;
duke@435 118 static FILETIME process_kernel_time;
duke@435 119
duke@435 120 #ifdef _WIN64
duke@435 121 PVOID topLevelVectoredExceptionHandler = NULL;
duke@435 122 #endif
duke@435 123
duke@435 124 #ifdef _M_IA64
duke@435 125 #define __CPU__ ia64
duke@435 126 #elif _M_AMD64
duke@435 127 #define __CPU__ amd64
duke@435 128 #else
duke@435 129 #define __CPU__ i486
duke@435 130 #endif
duke@435 131
duke@435 132 // save DLL module handle, used by GetModuleFileName
duke@435 133
duke@435 134 HINSTANCE vm_lib_handle;
duke@435 135
duke@435 136 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
duke@435 137 switch (reason) {
duke@435 138 case DLL_PROCESS_ATTACH:
duke@435 139 vm_lib_handle = hinst;
duke@435 140 if(ForceTimeHighResolution)
duke@435 141 timeBeginPeriod(1L);
duke@435 142 break;
duke@435 143 case DLL_PROCESS_DETACH:
duke@435 144 if(ForceTimeHighResolution)
duke@435 145 timeEndPeriod(1L);
duke@435 146 #ifdef _WIN64
duke@435 147 if (topLevelVectoredExceptionHandler != NULL) {
duke@435 148 RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
duke@435 149 topLevelVectoredExceptionHandler = NULL;
duke@435 150 }
duke@435 151 #endif
duke@435 152 break;
duke@435 153 default:
duke@435 154 break;
duke@435 155 }
duke@435 156 return true;
duke@435 157 }
duke@435 158
duke@435 159 static inline double fileTimeAsDouble(FILETIME* time) {
duke@435 160 const double high = (double) ((unsigned int) ~0);
duke@435 161 const double split = 10000000.0;
duke@435 162 double result = (time->dwLowDateTime / split) +
duke@435 163 time->dwHighDateTime * (high/split);
duke@435 164 return result;
duke@435 165 }
duke@435 166
duke@435 167 // Implementation of os
duke@435 168
duke@435 169 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 170 int result = GetEnvironmentVariable(name, buffer, len);
duke@435 171 return result > 0 && result < len;
duke@435 172 }
duke@435 173
duke@435 174
duke@435 175 // No setuid programs under Windows.
duke@435 176 bool os::have_special_privileges() {
duke@435 177 return false;
duke@435 178 }
duke@435 179
duke@435 180
duke@435 181 // This method is a periodic task to check for misbehaving JNI applications
duke@435 182 // under CheckJNI, we can add any periodic checks here.
duke@435 183 // For Windows at the moment does nothing
duke@435 184 void os::run_periodic_checks() {
duke@435 185 return;
duke@435 186 }
duke@435 187
duke@435 188 #ifndef _WIN64
dcubed@1649 189 // previous UnhandledExceptionFilter, if there is one
dcubed@1649 190 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
dcubed@1649 191
duke@435 192 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 193 #endif
duke@435 194 void os::init_system_properties_values() {
duke@435 195 /* sysclasspath, java_home, dll_dir */
duke@435 196 {
duke@435 197 char *home_path;
duke@435 198 char *dll_path;
duke@435 199 char *pslash;
duke@435 200 char *bin = "\\bin";
duke@435 201 char home_dir[MAX_PATH];
duke@435 202
duke@435 203 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
duke@435 204 os::jvm_path(home_dir, sizeof(home_dir));
duke@435 205 // Found the full path to jvm[_g].dll.
duke@435 206 // Now cut the path to <java_home>/jre if we can.
duke@435 207 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
duke@435 208 pslash = strrchr(home_dir, '\\');
duke@435 209 if (pslash != NULL) {
duke@435 210 *pslash = '\0'; /* get rid of \{client|server} */
duke@435 211 pslash = strrchr(home_dir, '\\');
duke@435 212 if (pslash != NULL)
duke@435 213 *pslash = '\0'; /* get rid of \bin */
duke@435 214 }
duke@435 215 }
duke@435 216
duke@435 217 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
duke@435 218 if (home_path == NULL)
duke@435 219 return;
duke@435 220 strcpy(home_path, home_dir);
duke@435 221 Arguments::set_java_home(home_path);
duke@435 222
duke@435 223 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
duke@435 224 if (dll_path == NULL)
duke@435 225 return;
duke@435 226 strcpy(dll_path, home_dir);
duke@435 227 strcat(dll_path, bin);
duke@435 228 Arguments::set_dll_dir(dll_path);
duke@435 229
duke@435 230 if (!set_boot_path('\\', ';'))
duke@435 231 return;
duke@435 232 }
duke@435 233
duke@435 234 /* library_path */
duke@435 235 #define EXT_DIR "\\lib\\ext"
duke@435 236 #define BIN_DIR "\\bin"
duke@435 237 #define PACKAGE_DIR "\\Sun\\Java"
duke@435 238 {
duke@435 239 /* Win32 library search order (See the documentation for LoadLibrary):
duke@435 240 *
duke@435 241 * 1. The directory from which application is loaded.
zgu@3031 242 * 2. The system wide Java Extensions directory (Java only)
zgu@3031 243 * 3. System directory (GetSystemDirectory)
zgu@3031 244 * 4. Windows directory (GetWindowsDirectory)
zgu@3031 245 * 5. The PATH environment variable
zgu@3031 246 * 6. The current directory
duke@435 247 */
duke@435 248
duke@435 249 char *library_path;
duke@435 250 char tmp[MAX_PATH];
duke@435 251 char *path_str = ::getenv("PATH");
duke@435 252
duke@435 253 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
duke@435 254 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
duke@435 255
duke@435 256 library_path[0] = '\0';
duke@435 257
duke@435 258 GetModuleFileName(NULL, tmp, sizeof(tmp));
duke@435 259 *(strrchr(tmp, '\\')) = '\0';
duke@435 260 strcat(library_path, tmp);
duke@435 261
duke@435 262 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 263 strcat(library_path, ";");
duke@435 264 strcat(library_path, tmp);
duke@435 265 strcat(library_path, PACKAGE_DIR BIN_DIR);
duke@435 266
duke@435 267 GetSystemDirectory(tmp, sizeof(tmp));
duke@435 268 strcat(library_path, ";");
duke@435 269 strcat(library_path, tmp);
duke@435 270
duke@435 271 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 272 strcat(library_path, ";");
duke@435 273 strcat(library_path, tmp);
duke@435 274
duke@435 275 if (path_str) {
duke@435 276 strcat(library_path, ";");
duke@435 277 strcat(library_path, path_str);
duke@435 278 }
duke@435 279
zgu@3031 280 strcat(library_path, ";.");
zgu@3031 281
duke@435 282 Arguments::set_library_path(library_path);
duke@435 283 FREE_C_HEAP_ARRAY(char, library_path);
duke@435 284 }
duke@435 285
duke@435 286 /* Default extensions directory */
duke@435 287 {
duke@435 288 char path[MAX_PATH];
duke@435 289 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
duke@435 290 GetWindowsDirectory(path, MAX_PATH);
duke@435 291 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
duke@435 292 path, PACKAGE_DIR, EXT_DIR);
duke@435 293 Arguments::set_ext_dirs(buf);
duke@435 294 }
duke@435 295 #undef EXT_DIR
duke@435 296 #undef BIN_DIR
duke@435 297 #undef PACKAGE_DIR
duke@435 298
duke@435 299 /* Default endorsed standards directory. */
duke@435 300 {
duke@435 301 #define ENDORSED_DIR "\\lib\\endorsed"
duke@435 302 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
duke@435 303 char * buf = NEW_C_HEAP_ARRAY(char, len);
duke@435 304 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
duke@435 305 Arguments::set_endorsed_dirs(buf);
duke@435 306 #undef ENDORSED_DIR
duke@435 307 }
duke@435 308
duke@435 309 #ifndef _WIN64
dcubed@1649 310 // set our UnhandledExceptionFilter and save any previous one
dcubed@1649 311 prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
duke@435 312 #endif
duke@435 313
duke@435 314 // Done
duke@435 315 return;
duke@435 316 }
duke@435 317
duke@435 318 void os::breakpoint() {
duke@435 319 DebugBreak();
duke@435 320 }
duke@435 321
duke@435 322 // Invoked from the BREAKPOINT Macro
duke@435 323 extern "C" void breakpoint() {
duke@435 324 os::breakpoint();
duke@435 325 }
duke@435 326
duke@435 327 // os::current_stack_base()
duke@435 328 //
duke@435 329 // Returns the base of the stack, which is the stack's
duke@435 330 // starting address. This function must be called
duke@435 331 // while running on the stack of the thread being queried.
duke@435 332
duke@435 333 address os::current_stack_base() {
duke@435 334 MEMORY_BASIC_INFORMATION minfo;
duke@435 335 address stack_bottom;
duke@435 336 size_t stack_size;
duke@435 337
duke@435 338 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 339 stack_bottom = (address)minfo.AllocationBase;
duke@435 340 stack_size = minfo.RegionSize;
duke@435 341
duke@435 342 // Add up the sizes of all the regions with the same
duke@435 343 // AllocationBase.
duke@435 344 while( 1 )
duke@435 345 {
duke@435 346 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
duke@435 347 if ( stack_bottom == (address)minfo.AllocationBase )
duke@435 348 stack_size += minfo.RegionSize;
duke@435 349 else
duke@435 350 break;
duke@435 351 }
duke@435 352
duke@435 353 #ifdef _M_IA64
duke@435 354 // IA64 has memory and register stacks
duke@435 355 stack_size = stack_size / 2;
duke@435 356 #endif
duke@435 357 return stack_bottom + stack_size;
duke@435 358 }
duke@435 359
duke@435 360 size_t os::current_stack_size() {
duke@435 361 size_t sz;
duke@435 362 MEMORY_BASIC_INFORMATION minfo;
duke@435 363 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 364 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
duke@435 365 return sz;
duke@435 366 }
duke@435 367
ysr@983 368 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 369 const struct tm* time_struct_ptr = localtime(clock);
ysr@983 370 if (time_struct_ptr != NULL) {
ysr@983 371 *res = *time_struct_ptr;
ysr@983 372 return res;
ysr@983 373 }
ysr@983 374 return NULL;
ysr@983 375 }
duke@435 376
duke@435 377 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 378
duke@435 379 // Thread start routine for all new Java threads
duke@435 380 static unsigned __stdcall java_start(Thread* thread) {
duke@435 381 // Try to randomize the cache line index of hot stack frames.
duke@435 382 // This helps when threads of the same stack traces evict each other's
duke@435 383 // cache lines. The threads can be either from the same JVM instance, or
duke@435 384 // from different JVM instances. The benefit is especially true for
duke@435 385 // processors with hyperthreading technology.
duke@435 386 static int counter = 0;
duke@435 387 int pid = os::current_process_id();
duke@435 388 _alloca(((pid ^ counter++) & 7) * 128);
duke@435 389
duke@435 390 OSThread* osthr = thread->osthread();
duke@435 391 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 392
duke@435 393 if (UseNUMA) {
duke@435 394 int lgrp_id = os::numa_get_group_id();
duke@435 395 if (lgrp_id != -1) {
duke@435 396 thread->set_lgrp_id(lgrp_id);
duke@435 397 }
duke@435 398 }
duke@435 399
duke@435 400
duke@435 401 if (UseVectoredExceptions) {
duke@435 402 // If we are using vectored exception we don't need to set a SEH
duke@435 403 thread->run();
duke@435 404 }
duke@435 405 else {
duke@435 406 // Install a win32 structured exception handler around every thread created
duke@435 407 // by VM, so VM can genrate error dump when an exception occurred in non-
duke@435 408 // Java thread (e.g. VM thread).
duke@435 409 __try {
duke@435 410 thread->run();
duke@435 411 } __except(topLevelExceptionFilter(
duke@435 412 (_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 413 // Nothing to do.
duke@435 414 }
duke@435 415 }
duke@435 416
duke@435 417 // One less thread is executing
duke@435 418 // When the VMThread gets here, the main thread may have already exited
duke@435 419 // which frees the CodeHeap containing the Atomic::add code
duke@435 420 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 421 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 422 }
duke@435 423
duke@435 424 return 0;
duke@435 425 }
duke@435 426
duke@435 427 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
duke@435 428 // Allocate the OSThread object
duke@435 429 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 430 if (osthread == NULL) return NULL;
duke@435 431
duke@435 432 // Initialize support for Java interrupts
duke@435 433 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 434 if (interrupt_event == NULL) {
duke@435 435 delete osthread;
duke@435 436 return NULL;
duke@435 437 }
duke@435 438 osthread->set_interrupt_event(interrupt_event);
duke@435 439
duke@435 440 // Store info on the Win32 thread into the OSThread
duke@435 441 osthread->set_thread_handle(thread_handle);
duke@435 442 osthread->set_thread_id(thread_id);
duke@435 443
duke@435 444 if (UseNUMA) {
duke@435 445 int lgrp_id = os::numa_get_group_id();
duke@435 446 if (lgrp_id != -1) {
duke@435 447 thread->set_lgrp_id(lgrp_id);
duke@435 448 }
duke@435 449 }
duke@435 450
duke@435 451 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 452 osthread->set_state(INITIALIZED);
duke@435 453
duke@435 454 return osthread;
duke@435 455 }
duke@435 456
duke@435 457
duke@435 458 bool os::create_attached_thread(JavaThread* thread) {
duke@435 459 #ifdef ASSERT
duke@435 460 thread->verify_not_published();
duke@435 461 #endif
duke@435 462 HANDLE thread_h;
duke@435 463 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
duke@435 464 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
duke@435 465 fatal("DuplicateHandle failed\n");
duke@435 466 }
duke@435 467 OSThread* osthread = create_os_thread(thread, thread_h,
duke@435 468 (int)current_thread_id());
duke@435 469 if (osthread == NULL) {
duke@435 470 return false;
duke@435 471 }
duke@435 472
duke@435 473 // Initial thread state is RUNNABLE
duke@435 474 osthread->set_state(RUNNABLE);
duke@435 475
duke@435 476 thread->set_osthread(osthread);
duke@435 477 return true;
duke@435 478 }
duke@435 479
duke@435 480 bool os::create_main_thread(JavaThread* thread) {
duke@435 481 #ifdef ASSERT
duke@435 482 thread->verify_not_published();
duke@435 483 #endif
duke@435 484 if (_starting_thread == NULL) {
duke@435 485 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
duke@435 486 if (_starting_thread == NULL) {
duke@435 487 return false;
duke@435 488 }
duke@435 489 }
duke@435 490
duke@435 491 // The primordial thread is runnable from the start)
duke@435 492 _starting_thread->set_state(RUNNABLE);
duke@435 493
duke@435 494 thread->set_osthread(_starting_thread);
duke@435 495 return true;
duke@435 496 }
duke@435 497
duke@435 498 // Allocate and initialize a new OSThread
duke@435 499 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 500 unsigned thread_id;
duke@435 501
duke@435 502 // Allocate the OSThread object
duke@435 503 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 504 if (osthread == NULL) {
duke@435 505 return false;
duke@435 506 }
duke@435 507
duke@435 508 // Initialize support for Java interrupts
duke@435 509 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 510 if (interrupt_event == NULL) {
duke@435 511 delete osthread;
duke@435 512 return NULL;
duke@435 513 }
duke@435 514 osthread->set_interrupt_event(interrupt_event);
duke@435 515 osthread->set_interrupted(false);
duke@435 516
duke@435 517 thread->set_osthread(osthread);
duke@435 518
duke@435 519 if (stack_size == 0) {
duke@435 520 switch (thr_type) {
duke@435 521 case os::java_thread:
duke@435 522 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 523 if (JavaThread::stack_size_at_create() > 0)
duke@435 524 stack_size = JavaThread::stack_size_at_create();
duke@435 525 break;
duke@435 526 case os::compiler_thread:
duke@435 527 if (CompilerThreadStackSize > 0) {
duke@435 528 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 529 break;
duke@435 530 } // else fall through:
duke@435 531 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 532 case os::vm_thread:
duke@435 533 case os::pgc_thread:
duke@435 534 case os::cgc_thread:
duke@435 535 case os::watcher_thread:
duke@435 536 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 537 break;
duke@435 538 }
duke@435 539 }
duke@435 540
duke@435 541 // Create the Win32 thread
duke@435 542 //
duke@435 543 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
duke@435 544 // does not specify stack size. Instead, it specifies the size of
duke@435 545 // initially committed space. The stack size is determined by
duke@435 546 // PE header in the executable. If the committed "stack_size" is larger
duke@435 547 // than default value in the PE header, the stack is rounded up to the
duke@435 548 // nearest multiple of 1MB. For example if the launcher has default
duke@435 549 // stack size of 320k, specifying any size less than 320k does not
duke@435 550 // affect the actual stack size at all, it only affects the initial
duke@435 551 // commitment. On the other hand, specifying 'stack_size' larger than
duke@435 552 // default value may cause significant increase in memory usage, because
duke@435 553 // not only the stack space will be rounded up to MB, but also the
duke@435 554 // entire space is committed upfront.
duke@435 555 //
duke@435 556 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
duke@435 557 // for CreateThread() that can treat 'stack_size' as stack size. However we
duke@435 558 // are not supposed to call CreateThread() directly according to MSDN
duke@435 559 // document because JVM uses C runtime library. The good news is that the
duke@435 560 // flag appears to work with _beginthredex() as well.
duke@435 561
duke@435 562 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
duke@435 563 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
duke@435 564 #endif
duke@435 565
duke@435 566 HANDLE thread_handle =
duke@435 567 (HANDLE)_beginthreadex(NULL,
duke@435 568 (unsigned)stack_size,
duke@435 569 (unsigned (__stdcall *)(void*)) java_start,
duke@435 570 thread,
duke@435 571 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
duke@435 572 &thread_id);
duke@435 573 if (thread_handle == NULL) {
duke@435 574 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
duke@435 575 // without the flag.
duke@435 576 thread_handle =
duke@435 577 (HANDLE)_beginthreadex(NULL,
duke@435 578 (unsigned)stack_size,
duke@435 579 (unsigned (__stdcall *)(void*)) java_start,
duke@435 580 thread,
duke@435 581 CREATE_SUSPENDED,
duke@435 582 &thread_id);
duke@435 583 }
duke@435 584 if (thread_handle == NULL) {
duke@435 585 // Need to clean up stuff we've allocated so far
duke@435 586 CloseHandle(osthread->interrupt_event());
duke@435 587 thread->set_osthread(NULL);
duke@435 588 delete osthread;
duke@435 589 return NULL;
duke@435 590 }
duke@435 591
duke@435 592 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 593
duke@435 594 // Store info on the Win32 thread into the OSThread
duke@435 595 osthread->set_thread_handle(thread_handle);
duke@435 596 osthread->set_thread_id(thread_id);
duke@435 597
duke@435 598 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 599 osthread->set_state(INITIALIZED);
duke@435 600
duke@435 601 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 602 return true;
duke@435 603 }
duke@435 604
duke@435 605
duke@435 606 // Free Win32 resources related to the OSThread
duke@435 607 void os::free_thread(OSThread* osthread) {
duke@435 608 assert(osthread != NULL, "osthread not set");
duke@435 609 CloseHandle(osthread->thread_handle());
duke@435 610 CloseHandle(osthread->interrupt_event());
duke@435 611 delete osthread;
duke@435 612 }
duke@435 613
duke@435 614
duke@435 615 static int has_performance_count = 0;
duke@435 616 static jlong first_filetime;
duke@435 617 static jlong initial_performance_count;
duke@435 618 static jlong performance_frequency;
duke@435 619
duke@435 620
duke@435 621 jlong as_long(LARGE_INTEGER x) {
duke@435 622 jlong result = 0; // initialization to avoid warning
duke@435 623 set_high(&result, x.HighPart);
duke@435 624 set_low(&result, x.LowPart);
duke@435 625 return result;
duke@435 626 }
duke@435 627
duke@435 628
duke@435 629 jlong os::elapsed_counter() {
duke@435 630 LARGE_INTEGER count;
duke@435 631 if (has_performance_count) {
duke@435 632 QueryPerformanceCounter(&count);
duke@435 633 return as_long(count) - initial_performance_count;
duke@435 634 } else {
duke@435 635 FILETIME wt;
duke@435 636 GetSystemTimeAsFileTime(&wt);
duke@435 637 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
duke@435 638 }
duke@435 639 }
duke@435 640
duke@435 641
duke@435 642 jlong os::elapsed_frequency() {
duke@435 643 if (has_performance_count) {
duke@435 644 return performance_frequency;
duke@435 645 } else {
duke@435 646 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
duke@435 647 return 10000000;
duke@435 648 }
duke@435 649 }
duke@435 650
duke@435 651
duke@435 652 julong os::available_memory() {
duke@435 653 return win32::available_memory();
duke@435 654 }
duke@435 655
duke@435 656 julong os::win32::available_memory() {
poonam@1312 657 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 658 // value if total memory is larger than 4GB
poonam@1312 659 MEMORYSTATUSEX ms;
poonam@1312 660 ms.dwLength = sizeof(ms);
poonam@1312 661 GlobalMemoryStatusEx(&ms);
poonam@1312 662
poonam@1312 663 return (julong)ms.ullAvailPhys;
duke@435 664 }
duke@435 665
duke@435 666 julong os::physical_memory() {
duke@435 667 return win32::physical_memory();
duke@435 668 }
duke@435 669
duke@435 670 julong os::allocatable_physical_memory(julong size) {
phh@455 671 #ifdef _LP64
phh@455 672 return size;
phh@455 673 #else
phh@455 674 // Limit to 1400m because of the 2gb address space wall
duke@435 675 return MIN2(size, (julong)1400*M);
phh@455 676 #endif
duke@435 677 }
duke@435 678
duke@435 679 // VC6 lacks DWORD_PTR
duke@435 680 #if _MSC_VER < 1300
duke@435 681 typedef UINT_PTR DWORD_PTR;
duke@435 682 #endif
duke@435 683
duke@435 684 int os::active_processor_count() {
duke@435 685 DWORD_PTR lpProcessAffinityMask = 0;
duke@435 686 DWORD_PTR lpSystemAffinityMask = 0;
duke@435 687 int proc_count = processor_count();
duke@435 688 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
duke@435 689 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
duke@435 690 // Nof active processors is number of bits in process affinity mask
duke@435 691 int bitcount = 0;
duke@435 692 while (lpProcessAffinityMask != 0) {
duke@435 693 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
duke@435 694 bitcount++;
duke@435 695 }
duke@435 696 return bitcount;
duke@435 697 } else {
duke@435 698 return proc_count;
duke@435 699 }
duke@435 700 }
duke@435 701
dcubed@3202 702 void os::set_native_thread_name(const char *name) {
dcubed@3202 703 // Not yet implemented.
dcubed@3202 704 return;
dcubed@3202 705 }
dcubed@3202 706
duke@435 707 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 708 // Not yet implemented.
duke@435 709 return false;
duke@435 710 }
duke@435 711
duke@435 712 bool os::bind_to_processor(uint processor_id) {
duke@435 713 // Not yet implemented.
duke@435 714 return false;
duke@435 715 }
duke@435 716
duke@435 717 static void initialize_performance_counter() {
duke@435 718 LARGE_INTEGER count;
duke@435 719 if (QueryPerformanceFrequency(&count)) {
duke@435 720 has_performance_count = 1;
duke@435 721 performance_frequency = as_long(count);
duke@435 722 QueryPerformanceCounter(&count);
duke@435 723 initial_performance_count = as_long(count);
duke@435 724 } else {
duke@435 725 has_performance_count = 0;
duke@435 726 FILETIME wt;
duke@435 727 GetSystemTimeAsFileTime(&wt);
duke@435 728 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 729 }
duke@435 730 }
duke@435 731
duke@435 732
duke@435 733 double os::elapsedTime() {
duke@435 734 return (double) elapsed_counter() / (double) elapsed_frequency();
duke@435 735 }
duke@435 736
duke@435 737
duke@435 738 // Windows format:
duke@435 739 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
duke@435 740 // Java format:
duke@435 741 // Java standards require the number of milliseconds since 1/1/1970
duke@435 742
duke@435 743 // Constant offset - calculated using offset()
duke@435 744 static jlong _offset = 116444736000000000;
duke@435 745 // Fake time counter for reproducible results when debugging
duke@435 746 static jlong fake_time = 0;
duke@435 747
duke@435 748 #ifdef ASSERT
duke@435 749 // Just to be safe, recalculate the offset in debug mode
duke@435 750 static jlong _calculated_offset = 0;
duke@435 751 static int _has_calculated_offset = 0;
duke@435 752
duke@435 753 jlong offset() {
duke@435 754 if (_has_calculated_offset) return _calculated_offset;
duke@435 755 SYSTEMTIME java_origin;
duke@435 756 java_origin.wYear = 1970;
duke@435 757 java_origin.wMonth = 1;
duke@435 758 java_origin.wDayOfWeek = 0; // ignored
duke@435 759 java_origin.wDay = 1;
duke@435 760 java_origin.wHour = 0;
duke@435 761 java_origin.wMinute = 0;
duke@435 762 java_origin.wSecond = 0;
duke@435 763 java_origin.wMilliseconds = 0;
duke@435 764 FILETIME jot;
duke@435 765 if (!SystemTimeToFileTime(&java_origin, &jot)) {
jcoomes@1845 766 fatal(err_msg("Error = %d\nWindows error", GetLastError()));
duke@435 767 }
duke@435 768 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
duke@435 769 _has_calculated_offset = 1;
duke@435 770 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
duke@435 771 return _calculated_offset;
duke@435 772 }
duke@435 773 #else
duke@435 774 jlong offset() {
duke@435 775 return _offset;
duke@435 776 }
duke@435 777 #endif
duke@435 778
duke@435 779 jlong windows_to_java_time(FILETIME wt) {
duke@435 780 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 781 return (a - offset()) / 10000;
duke@435 782 }
duke@435 783
duke@435 784 FILETIME java_to_windows_time(jlong l) {
duke@435 785 jlong a = (l * 10000) + offset();
duke@435 786 FILETIME result;
duke@435 787 result.dwHighDateTime = high(a);
duke@435 788 result.dwLowDateTime = low(a);
duke@435 789 return result;
duke@435 790 }
duke@435 791
ysr@777 792 // For now, we say that Windows does not support vtime. I have no idea
ysr@777 793 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 794
ysr@777 795 bool os::supports_vtime() { return false; }
ysr@777 796 bool os::enable_vtime() { return false; }
ysr@777 797 bool os::vtime_enabled() { return false; }
ysr@777 798 double os::elapsedVTime() {
ysr@777 799 // better than nothing, but not much
ysr@777 800 return elapsedTime();
ysr@777 801 }
ysr@777 802
duke@435 803 jlong os::javaTimeMillis() {
duke@435 804 if (UseFakeTimers) {
duke@435 805 return fake_time++;
duke@435 806 } else {
sbohne@496 807 FILETIME wt;
sbohne@496 808 GetSystemTimeAsFileTime(&wt);
sbohne@496 809 return windows_to_java_time(wt);
duke@435 810 }
duke@435 811 }
duke@435 812
duke@435 813 jlong os::javaTimeNanos() {
duke@435 814 if (!has_performance_count) {
johnc@3339 815 return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
duke@435 816 } else {
duke@435 817 LARGE_INTEGER current_count;
duke@435 818 QueryPerformanceCounter(&current_count);
duke@435 819 double current = as_long(current_count);
duke@435 820 double freq = performance_frequency;
johnc@3339 821 jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
duke@435 822 return time;
duke@435 823 }
duke@435 824 }
duke@435 825
duke@435 826 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 827 if (!has_performance_count) {
duke@435 828 // javaTimeMillis() doesn't have much percision,
duke@435 829 // but it is not going to wrap -- so all 64 bits
duke@435 830 info_ptr->max_value = ALL_64_BITS;
duke@435 831
duke@435 832 // this is a wall clock timer, so may skip
duke@435 833 info_ptr->may_skip_backward = true;
duke@435 834 info_ptr->may_skip_forward = true;
duke@435 835 } else {
duke@435 836 jlong freq = performance_frequency;
johnc@3339 837 if (freq < NANOSECS_PER_SEC) {
duke@435 838 // the performance counter is 64 bits and we will
duke@435 839 // be multiplying it -- so no wrap in 64 bits
duke@435 840 info_ptr->max_value = ALL_64_BITS;
johnc@3339 841 } else if (freq > NANOSECS_PER_SEC) {
duke@435 842 // use the max value the counter can reach to
duke@435 843 // determine the max value which could be returned
duke@435 844 julong max_counter = (julong)ALL_64_BITS;
johnc@3339 845 info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
duke@435 846 } else {
duke@435 847 // the performance counter is 64 bits and we will
duke@435 848 // be using it directly -- so no wrap in 64 bits
duke@435 849 info_ptr->max_value = ALL_64_BITS;
duke@435 850 }
duke@435 851
duke@435 852 // using a counter, so no skipping
duke@435 853 info_ptr->may_skip_backward = false;
duke@435 854 info_ptr->may_skip_forward = false;
duke@435 855 }
duke@435 856 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 857 }
duke@435 858
duke@435 859 char* os::local_time_string(char *buf, size_t buflen) {
duke@435 860 SYSTEMTIME st;
duke@435 861 GetLocalTime(&st);
duke@435 862 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 863 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
duke@435 864 return buf;
duke@435 865 }
duke@435 866
duke@435 867 bool os::getTimesSecs(double* process_real_time,
duke@435 868 double* process_user_time,
duke@435 869 double* process_system_time) {
duke@435 870 HANDLE h_process = GetCurrentProcess();
duke@435 871 FILETIME create_time, exit_time, kernel_time, user_time;
duke@435 872 BOOL result = GetProcessTimes(h_process,
duke@435 873 &create_time,
duke@435 874 &exit_time,
duke@435 875 &kernel_time,
duke@435 876 &user_time);
duke@435 877 if (result != 0) {
duke@435 878 FILETIME wt;
duke@435 879 GetSystemTimeAsFileTime(&wt);
duke@435 880 jlong rtc_millis = windows_to_java_time(wt);
duke@435 881 jlong user_millis = windows_to_java_time(user_time);
duke@435 882 jlong system_millis = windows_to_java_time(kernel_time);
duke@435 883 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
duke@435 884 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
duke@435 885 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
duke@435 886 return true;
duke@435 887 } else {
duke@435 888 return false;
duke@435 889 }
duke@435 890 }
duke@435 891
duke@435 892 void os::shutdown() {
duke@435 893
duke@435 894 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 895 perfMemory_exit();
duke@435 896
duke@435 897 // flush buffered output, finish log files
duke@435 898 ostream_abort();
duke@435 899
duke@435 900 // Check for abort hook
duke@435 901 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 902 if (abort_hook != NULL) {
duke@435 903 abort_hook();
duke@435 904 }
duke@435 905 }
duke@435 906
ctornqvi@2520 907
ctornqvi@2520 908 static BOOL (WINAPI *_MiniDumpWriteDump) ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 909 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
ctornqvi@2520 910
ctornqvi@2520 911 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
ctornqvi@2520 912 HINSTANCE dbghelp;
ctornqvi@2520 913 EXCEPTION_POINTERS ep;
ctornqvi@2520 914 MINIDUMP_EXCEPTION_INFORMATION mei;
zgu@2772 915 MINIDUMP_EXCEPTION_INFORMATION* pmei;
zgu@2772 916
ctornqvi@2520 917 HANDLE hProcess = GetCurrentProcess();
ctornqvi@2520 918 DWORD processId = GetCurrentProcessId();
ctornqvi@2520 919 HANDLE dumpFile;
ctornqvi@2520 920 MINIDUMP_TYPE dumpType;
ctornqvi@2520 921 static const char* cwd;
ctornqvi@2520 922
ctornqvi@2520 923 // If running on a client version of Windows and user has not explicitly enabled dumping
ctornqvi@2520 924 if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
ctornqvi@2520 925 VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
ctornqvi@2520 926 return;
ctornqvi@2520 927 // If running on a server version of Windows and user has explictly disabled dumping
ctornqvi@2520 928 } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
ctornqvi@2520 929 VMError::report_coredump_status("Minidump has been disabled from the command line", false);
ctornqvi@2520 930 return;
ctornqvi@2520 931 }
ctornqvi@2520 932
zgu@3031 933 dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
ctornqvi@2520 934
ctornqvi@2520 935 if (dbghelp == NULL) {
ctornqvi@2520 936 VMError::report_coredump_status("Failed to load dbghelp.dll", false);
ctornqvi@2520 937 return;
ctornqvi@2520 938 }
ctornqvi@2520 939
ctornqvi@2520 940 _MiniDumpWriteDump = CAST_TO_FN_PTR(
ctornqvi@2520 941 BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 942 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
ctornqvi@2520 943 GetProcAddress(dbghelp, "MiniDumpWriteDump"));
ctornqvi@2520 944
ctornqvi@2520 945 if (_MiniDumpWriteDump == NULL) {
ctornqvi@2520 946 VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
ctornqvi@2520 947 return;
ctornqvi@2520 948 }
ctornqvi@2520 949
ctornqvi@2521 950 dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
ctornqvi@2521 951
ctornqvi@2521 952 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
ctornqvi@2521 953 // API_VERSION_NUMBER 11 or higher contains the ones we want though
ctornqvi@2521 954 #if API_VERSION_NUMBER >= 11
ctornqvi@2521 955 dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
ctornqvi@2521 956 MiniDumpWithUnloadedModules);
ctornqvi@2521 957 #endif
ctornqvi@2520 958
ctornqvi@2520 959 cwd = get_current_directory(NULL, 0);
ctornqvi@2520 960 jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
ctornqvi@2520 961 dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
ctornqvi@2520 962
ctornqvi@2520 963 if (dumpFile == INVALID_HANDLE_VALUE) {
ctornqvi@2520 964 VMError::report_coredump_status("Failed to create file for dumping", false);
ctornqvi@2520 965 return;
ctornqvi@2520 966 }
zgu@2772 967 if (exceptionRecord != NULL && contextRecord != NULL) {
zgu@2772 968 ep.ContextRecord = (PCONTEXT) contextRecord;
zgu@2772 969 ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
zgu@2772 970
zgu@2772 971 mei.ThreadId = GetCurrentThreadId();
zgu@2772 972 mei.ExceptionPointers = &ep;
zgu@2772 973 pmei = &mei;
zgu@2772 974 } else {
zgu@2772 975 pmei = NULL;
zgu@2772 976 }
zgu@2772 977
ctornqvi@2520 978
ctornqvi@2520 979 // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
ctornqvi@2520 980 // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
zgu@2772 981 if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
zgu@2772 982 _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
ctornqvi@2520 983 VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
ctornqvi@2520 984 } else {
ctornqvi@2520 985 VMError::report_coredump_status(buffer, true);
ctornqvi@2520 986 }
ctornqvi@2520 987
ctornqvi@2520 988 CloseHandle(dumpFile);
ctornqvi@2520 989 }
ctornqvi@2520 990
ctornqvi@2520 991
ctornqvi@2520 992
duke@435 993 void os::abort(bool dump_core)
duke@435 994 {
duke@435 995 os::shutdown();
duke@435 996 // no core dump on Windows
duke@435 997 ::exit(1);
duke@435 998 }
duke@435 999
duke@435 1000 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1001 void os::die() {
duke@435 1002 _exit(-1);
duke@435 1003 }
duke@435 1004
duke@435 1005 // Directory routines copied from src/win32/native/java/io/dirent_md.c
duke@435 1006 // * dirent_md.c 1.15 00/02/02
duke@435 1007 //
duke@435 1008 // The declarations for DIR and struct dirent are in jvm_win32.h.
duke@435 1009
duke@435 1010 /* Caller must have already run dirname through JVM_NativePath, which removes
duke@435 1011 duplicate slashes and converts all instances of '/' into '\\'. */
duke@435 1012
duke@435 1013 DIR *
duke@435 1014 os::opendir(const char *dirname)
duke@435 1015 {
duke@435 1016 assert(dirname != NULL, "just checking"); // hotspot change
duke@435 1017 DIR *dirp = (DIR *)malloc(sizeof(DIR));
duke@435 1018 DWORD fattr; // hotspot change
duke@435 1019 char alt_dirname[4] = { 0, 0, 0, 0 };
duke@435 1020
duke@435 1021 if (dirp == 0) {
duke@435 1022 errno = ENOMEM;
duke@435 1023 return 0;
duke@435 1024 }
duke@435 1025
duke@435 1026 /*
duke@435 1027 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
duke@435 1028 * as a directory in FindFirstFile(). We detect this case here and
duke@435 1029 * prepend the current drive name.
duke@435 1030 */
duke@435 1031 if (dirname[1] == '\0' && dirname[0] == '\\') {
duke@435 1032 alt_dirname[0] = _getdrive() + 'A' - 1;
duke@435 1033 alt_dirname[1] = ':';
duke@435 1034 alt_dirname[2] = '\\';
duke@435 1035 alt_dirname[3] = '\0';
duke@435 1036 dirname = alt_dirname;
duke@435 1037 }
duke@435 1038
duke@435 1039 dirp->path = (char *)malloc(strlen(dirname) + 5);
duke@435 1040 if (dirp->path == 0) {
duke@435 1041 free(dirp);
duke@435 1042 errno = ENOMEM;
duke@435 1043 return 0;
duke@435 1044 }
duke@435 1045 strcpy(dirp->path, dirname);
duke@435 1046
duke@435 1047 fattr = GetFileAttributes(dirp->path);
duke@435 1048 if (fattr == 0xffffffff) {
duke@435 1049 free(dirp->path);
duke@435 1050 free(dirp);
duke@435 1051 errno = ENOENT;
duke@435 1052 return 0;
duke@435 1053 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
duke@435 1054 free(dirp->path);
duke@435 1055 free(dirp);
duke@435 1056 errno = ENOTDIR;
duke@435 1057 return 0;
duke@435 1058 }
duke@435 1059
duke@435 1060 /* Append "*.*", or possibly "\\*.*", to path */
duke@435 1061 if (dirp->path[1] == ':'
duke@435 1062 && (dirp->path[2] == '\0'
duke@435 1063 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
duke@435 1064 /* No '\\' needed for cases like "Z:" or "Z:\" */
duke@435 1065 strcat(dirp->path, "*.*");
duke@435 1066 } else {
duke@435 1067 strcat(dirp->path, "\\*.*");
duke@435 1068 }
duke@435 1069
duke@435 1070 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
duke@435 1071 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1072 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
duke@435 1073 free(dirp->path);
duke@435 1074 free(dirp);
duke@435 1075 errno = EACCES;
duke@435 1076 return 0;
duke@435 1077 }
duke@435 1078 }
duke@435 1079 return dirp;
duke@435 1080 }
duke@435 1081
duke@435 1082 /* parameter dbuf unused on Windows */
duke@435 1083
duke@435 1084 struct dirent *
duke@435 1085 os::readdir(DIR *dirp, dirent *dbuf)
duke@435 1086 {
duke@435 1087 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1088 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1089 return 0;
duke@435 1090 }
duke@435 1091
duke@435 1092 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
duke@435 1093
duke@435 1094 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
duke@435 1095 if (GetLastError() == ERROR_INVALID_HANDLE) {
duke@435 1096 errno = EBADF;
duke@435 1097 return 0;
duke@435 1098 }
duke@435 1099 FindClose(dirp->handle);
duke@435 1100 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1101 }
duke@435 1102
duke@435 1103 return &dirp->dirent;
duke@435 1104 }
duke@435 1105
duke@435 1106 int
duke@435 1107 os::closedir(DIR *dirp)
duke@435 1108 {
duke@435 1109 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1110 if (dirp->handle != INVALID_HANDLE_VALUE) {
duke@435 1111 if (!FindClose(dirp->handle)) {
duke@435 1112 errno = EBADF;
duke@435 1113 return -1;
duke@435 1114 }
duke@435 1115 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1116 }
duke@435 1117 free(dirp->path);
duke@435 1118 free(dirp);
duke@435 1119 return 0;
duke@435 1120 }
duke@435 1121
coleenp@2450 1122 // This must be hard coded because it's the system's temporary
coleenp@2450 1123 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@1788 1124 const char* os::get_temp_directory() {
coleenp@1788 1125 static char path_buf[MAX_PATH];
coleenp@1788 1126 if (GetTempPath(MAX_PATH, path_buf)>0)
coleenp@1788 1127 return path_buf;
coleenp@1788 1128 else{
coleenp@1788 1129 path_buf[0]='\0';
coleenp@1788 1130 return path_buf;
coleenp@1788 1131 }
duke@435 1132 }
duke@435 1133
phh@1126 1134 static bool file_exists(const char* filename) {
phh@1126 1135 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1136 return false;
phh@1126 1137 }
phh@1126 1138 return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
phh@1126 1139 }
phh@1126 1140
phh@1126 1141 void os::dll_build_name(char *buffer, size_t buflen,
phh@1126 1142 const char* pname, const char* fname) {
phh@1126 1143 const size_t pnamelen = pname ? strlen(pname) : 0;
phh@1126 1144 const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
phh@1126 1145
phh@1126 1146 // Quietly truncates on buffer overflow. Should be an error.
phh@1126 1147 if (pnamelen + strlen(fname) + 10 > buflen) {
phh@1126 1148 *buffer = '\0';
phh@1126 1149 return;
phh@1126 1150 }
phh@1126 1151
phh@1126 1152 if (pnamelen == 0) {
phh@1126 1153 jio_snprintf(buffer, buflen, "%s.dll", fname);
phh@1126 1154 } else if (c == ':' || c == '\\') {
phh@1126 1155 jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
phh@1126 1156 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1157 int n;
phh@1126 1158 char** pelements = split_path(pname, &n);
phh@1126 1159 for (int i = 0 ; i < n ; i++) {
phh@1126 1160 char* path = pelements[i];
phh@1126 1161 // Really shouldn't be NULL, but check can't hurt
phh@1126 1162 size_t plen = (path == NULL) ? 0 : strlen(path);
phh@1126 1163 if (plen == 0) {
phh@1126 1164 continue; // skip the empty path values
phh@1126 1165 }
phh@1126 1166 const char lastchar = path[plen - 1];
phh@1126 1167 if (lastchar == ':' || lastchar == '\\') {
phh@1126 1168 jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
phh@1126 1169 } else {
phh@1126 1170 jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
phh@1126 1171 }
phh@1126 1172 if (file_exists(buffer)) {
phh@1126 1173 break;
phh@1126 1174 }
kamg@677 1175 }
phh@1126 1176 // release the storage
phh@1126 1177 for (int i = 0 ; i < n ; i++) {
phh@1126 1178 if (pelements[i] != NULL) {
phh@1126 1179 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1180 }
kamg@677 1181 }
phh@1126 1182 if (pelements != NULL) {
phh@1126 1183 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1184 }
phh@1126 1185 } else {
phh@1126 1186 jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
phh@1126 1187 }
kamg@677 1188 }
kamg@677 1189
duke@435 1190 // Needs to be in os specific directory because windows requires another
duke@435 1191 // header file <direct.h>
duke@435 1192 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1193 return _getcwd(buf, buflen);
duke@435 1194 }
duke@435 1195
duke@435 1196 //-----------------------------------------------------------
duke@435 1197 // Helper functions for fatal error handler
duke@435 1198 #ifdef _WIN64
duke@435 1199 // Helper routine which returns true if address in
duke@435 1200 // within the NTDLL address space.
duke@435 1201 //
duke@435 1202 static bool _addr_in_ntdll( address addr )
duke@435 1203 {
duke@435 1204 HMODULE hmod;
duke@435 1205 MODULEINFO minfo;
duke@435 1206
duke@435 1207 hmod = GetModuleHandle("NTDLL.DLL");
duke@435 1208 if ( hmod == NULL ) return false;
zgu@3031 1209 if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
duke@435 1210 &minfo, sizeof(MODULEINFO)) )
duke@435 1211 return false;
duke@435 1212
duke@435 1213 if ( (addr >= minfo.lpBaseOfDll) &&
duke@435 1214 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
duke@435 1215 return true;
duke@435 1216 else
duke@435 1217 return false;
duke@435 1218 }
duke@435 1219 #endif
duke@435 1220
duke@435 1221
duke@435 1222 // Enumerate all modules for a given process ID
duke@435 1223 //
duke@435 1224 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
duke@435 1225 // different API for doing this. We use PSAPI.DLL on NT based
duke@435 1226 // Windows and ToolHelp on 95/98/Me.
duke@435 1227
duke@435 1228 // Callback function that is called by enumerate_modules() on
duke@435 1229 // every DLL module.
duke@435 1230 // Input parameters:
duke@435 1231 // int pid,
duke@435 1232 // char* module_file_name,
duke@435 1233 // address module_base_addr,
duke@435 1234 // unsigned module_size,
duke@435 1235 // void* param
duke@435 1236 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
duke@435 1237
duke@435 1238 // enumerate_modules for Windows NT, using PSAPI
duke@435 1239 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
duke@435 1240 {
duke@435 1241 HANDLE hProcess ;
duke@435 1242
duke@435 1243 # define MAX_NUM_MODULES 128
duke@435 1244 HMODULE modules[MAX_NUM_MODULES];
duke@435 1245 static char filename[ MAX_PATH ];
duke@435 1246 int result = 0;
duke@435 1247
zgu@3031 1248 if (!os::PSApiDll::PSApiAvailable()) {
zgu@3031 1249 return 0;
zgu@3031 1250 }
duke@435 1251
duke@435 1252 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
duke@435 1253 FALSE, pid ) ;
duke@435 1254 if (hProcess == NULL) return 0;
duke@435 1255
duke@435 1256 DWORD size_needed;
zgu@3031 1257 if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
duke@435 1258 sizeof(modules), &size_needed)) {
duke@435 1259 CloseHandle( hProcess );
duke@435 1260 return 0;
duke@435 1261 }
duke@435 1262
duke@435 1263 // number of modules that are currently loaded
duke@435 1264 int num_modules = size_needed / sizeof(HMODULE);
duke@435 1265
duke@435 1266 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
duke@435 1267 // Get Full pathname:
zgu@3031 1268 if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
duke@435 1269 filename, sizeof(filename))) {
duke@435 1270 filename[0] = '\0';
duke@435 1271 }
duke@435 1272
duke@435 1273 MODULEINFO modinfo;
zgu@3031 1274 if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
duke@435 1275 &modinfo, sizeof(modinfo))) {
duke@435 1276 modinfo.lpBaseOfDll = NULL;
duke@435 1277 modinfo.SizeOfImage = 0;
duke@435 1278 }
duke@435 1279
duke@435 1280 // Invoke callback function
duke@435 1281 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
duke@435 1282 modinfo.SizeOfImage, param);
duke@435 1283 if (result) break;
duke@435 1284 }
duke@435 1285
duke@435 1286 CloseHandle( hProcess ) ;
duke@435 1287 return result;
duke@435 1288 }
duke@435 1289
duke@435 1290
duke@435 1291 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
duke@435 1292 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
duke@435 1293 {
duke@435 1294 HANDLE hSnapShot ;
duke@435 1295 static MODULEENTRY32 modentry ;
duke@435 1296 int result = 0;
duke@435 1297
zgu@3031 1298 if (!os::Kernel32Dll::HelpToolsAvailable()) {
zgu@3031 1299 return 0;
zgu@3031 1300 }
duke@435 1301
duke@435 1302 // Get a handle to a Toolhelp snapshot of the system
zgu@3031 1303 hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
duke@435 1304 if( hSnapShot == INVALID_HANDLE_VALUE ) {
duke@435 1305 return FALSE ;
duke@435 1306 }
duke@435 1307
duke@435 1308 // iterate through all modules
duke@435 1309 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1310 bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
duke@435 1311
duke@435 1312 while( not_done ) {
duke@435 1313 // invoke the callback
duke@435 1314 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
duke@435 1315 modentry.modBaseSize, param);
duke@435 1316 if (result) break;
duke@435 1317
duke@435 1318 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1319 not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
duke@435 1320 }
duke@435 1321
duke@435 1322 CloseHandle(hSnapShot);
duke@435 1323 return result;
duke@435 1324 }
duke@435 1325
duke@435 1326 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
duke@435 1327 {
duke@435 1328 // Get current process ID if caller doesn't provide it.
duke@435 1329 if (!pid) pid = os::current_process_id();
duke@435 1330
duke@435 1331 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
duke@435 1332 else return _enumerate_modules_windows(pid, func, param);
duke@435 1333 }
duke@435 1334
duke@435 1335 struct _modinfo {
duke@435 1336 address addr;
duke@435 1337 char* full_path; // point to a char buffer
duke@435 1338 int buflen; // size of the buffer
duke@435 1339 address base_addr;
duke@435 1340 };
duke@435 1341
duke@435 1342 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
duke@435 1343 unsigned size, void * param) {
duke@435 1344 struct _modinfo *pmod = (struct _modinfo *)param;
duke@435 1345 if (!pmod) return -1;
duke@435 1346
duke@435 1347 if (base_addr <= pmod->addr &&
duke@435 1348 base_addr+size > pmod->addr) {
duke@435 1349 // if a buffer is provided, copy path name to the buffer
duke@435 1350 if (pmod->full_path) {
duke@435 1351 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
duke@435 1352 }
duke@435 1353 pmod->base_addr = base_addr;
duke@435 1354 return 1;
duke@435 1355 }
duke@435 1356 return 0;
duke@435 1357 }
duke@435 1358
duke@435 1359 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1360 int buflen, int* offset) {
duke@435 1361 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
duke@435 1362 // return the full path to the DLL file, sometimes it returns path
duke@435 1363 // to the corresponding PDB file (debug info); sometimes it only
duke@435 1364 // returns partial path, which makes life painful.
duke@435 1365
duke@435 1366 struct _modinfo mi;
duke@435 1367 mi.addr = addr;
duke@435 1368 mi.full_path = buf;
duke@435 1369 mi.buflen = buflen;
duke@435 1370 int pid = os::current_process_id();
duke@435 1371 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
duke@435 1372 // buf already contains path name
duke@435 1373 if (offset) *offset = addr - mi.base_addr;
duke@435 1374 return true;
duke@435 1375 } else {
duke@435 1376 if (buf) buf[0] = '\0';
duke@435 1377 if (offset) *offset = -1;
duke@435 1378 return false;
duke@435 1379 }
duke@435 1380 }
duke@435 1381
duke@435 1382 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1383 int buflen, int *offset) {
zgu@3430 1384 if (Decoder::decode(addr, buf, buflen, offset)) {
zgu@2364 1385 return true;
zgu@2364 1386 }
zgu@2364 1387 if (offset != NULL) *offset = -1;
zgu@2364 1388 if (buf != NULL) buf[0] = '\0';
duke@435 1389 return false;
duke@435 1390 }
duke@435 1391
duke@435 1392 // save the start and end address of jvm.dll into param[0] and param[1]
duke@435 1393 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
duke@435 1394 unsigned size, void * param) {
duke@435 1395 if (!param) return -1;
duke@435 1396
duke@435 1397 if (base_addr <= (address)_locate_jvm_dll &&
duke@435 1398 base_addr+size > (address)_locate_jvm_dll) {
duke@435 1399 ((address*)param)[0] = base_addr;
duke@435 1400 ((address*)param)[1] = base_addr + size;
duke@435 1401 return 1;
duke@435 1402 }
duke@435 1403 return 0;
duke@435 1404 }
duke@435 1405
duke@435 1406 address vm_lib_location[2]; // start and end address of jvm.dll
duke@435 1407
duke@435 1408 // check if addr is inside jvm.dll
duke@435 1409 bool os::address_is_in_vm(address addr) {
duke@435 1410 if (!vm_lib_location[0] || !vm_lib_location[1]) {
duke@435 1411 int pid = os::current_process_id();
duke@435 1412 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
duke@435 1413 assert(false, "Can't find jvm module.");
duke@435 1414 return false;
duke@435 1415 }
duke@435 1416 }
duke@435 1417
duke@435 1418 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
duke@435 1419 }
duke@435 1420
duke@435 1421 // print module info; param is outputStream*
duke@435 1422 static int _print_module(int pid, char* fname, address base,
duke@435 1423 unsigned size, void* param) {
duke@435 1424 if (!param) return -1;
duke@435 1425
duke@435 1426 outputStream* st = (outputStream*)param;
duke@435 1427
duke@435 1428 address end_addr = base + size;
duke@435 1429 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
duke@435 1430 return 0;
duke@435 1431 }
duke@435 1432
duke@435 1433 // Loads .dll/.so and
duke@435 1434 // in case of error it checks if .dll/.so was built for the
duke@435 1435 // same architecture as Hotspot is running on
duke@435 1436 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
duke@435 1437 {
duke@435 1438 void * result = LoadLibrary(name);
duke@435 1439 if (result != NULL)
duke@435 1440 {
duke@435 1441 return result;
duke@435 1442 }
duke@435 1443
phh@3379 1444 DWORD errcode = GetLastError();
duke@435 1445 if (errcode == ERROR_MOD_NOT_FOUND) {
duke@435 1446 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
duke@435 1447 ebuf[ebuflen-1]='\0';
duke@435 1448 return NULL;
duke@435 1449 }
duke@435 1450
duke@435 1451 // Parsing dll below
duke@435 1452 // If we can read dll-info and find that dll was built
duke@435 1453 // for an architecture other than Hotspot is running in
duke@435 1454 // - then print to buffer "DLL was built for a different architecture"
phh@3379 1455 // else call os::lasterror to obtain system error message
duke@435 1456
duke@435 1457 // Read system error message into ebuf
duke@435 1458 // It may or may not be overwritten below (in the for loop and just above)
phh@3379 1459 lasterror(ebuf, (size_t) ebuflen);
duke@435 1460 ebuf[ebuflen-1]='\0';
duke@435 1461 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
duke@435 1462 if (file_descriptor<0)
duke@435 1463 {
duke@435 1464 return NULL;
duke@435 1465 }
duke@435 1466
duke@435 1467 uint32_t signature_offset;
duke@435 1468 uint16_t lib_arch=0;
duke@435 1469 bool failed_to_get_lib_arch=
duke@435 1470 (
duke@435 1471 //Go to position 3c in the dll
duke@435 1472 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
duke@435 1473 ||
duke@435 1474 // Read loacation of signature
duke@435 1475 (sizeof(signature_offset)!=
duke@435 1476 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
duke@435 1477 ||
duke@435 1478 //Go to COFF File Header in dll
duke@435 1479 //that is located after"signature" (4 bytes long)
duke@435 1480 (os::seek_to_file_offset(file_descriptor,
duke@435 1481 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
duke@435 1482 ||
duke@435 1483 //Read field that contains code of architecture
duke@435 1484 // that dll was build for
duke@435 1485 (sizeof(lib_arch)!=
duke@435 1486 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
duke@435 1487 );
duke@435 1488
duke@435 1489 ::close(file_descriptor);
duke@435 1490 if (failed_to_get_lib_arch)
duke@435 1491 {
phh@3379 1492 // file i/o error - report os::lasterror(...) msg
duke@435 1493 return NULL;
duke@435 1494 }
duke@435 1495
duke@435 1496 typedef struct
duke@435 1497 {
duke@435 1498 uint16_t arch_code;
duke@435 1499 char* arch_name;
duke@435 1500 } arch_t;
duke@435 1501
duke@435 1502 static const arch_t arch_array[]={
duke@435 1503 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
duke@435 1504 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
duke@435 1505 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
duke@435 1506 };
duke@435 1507 #if (defined _M_IA64)
duke@435 1508 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
duke@435 1509 #elif (defined _M_AMD64)
duke@435 1510 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
duke@435 1511 #elif (defined _M_IX86)
duke@435 1512 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
duke@435 1513 #else
duke@435 1514 #error Method os::dll_load requires that one of following \
duke@435 1515 is defined :_M_IA64,_M_AMD64 or _M_IX86
duke@435 1516 #endif
duke@435 1517
duke@435 1518
duke@435 1519 // Obtain a string for printf operation
duke@435 1520 // lib_arch_str shall contain string what platform this .dll was built for
duke@435 1521 // running_arch_str shall string contain what platform Hotspot was built for
duke@435 1522 char *running_arch_str=NULL,*lib_arch_str=NULL;
duke@435 1523 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
duke@435 1524 {
duke@435 1525 if (lib_arch==arch_array[i].arch_code)
duke@435 1526 lib_arch_str=arch_array[i].arch_name;
duke@435 1527 if (running_arch==arch_array[i].arch_code)
duke@435 1528 running_arch_str=arch_array[i].arch_name;
duke@435 1529 }
duke@435 1530
duke@435 1531 assert(running_arch_str,
duke@435 1532 "Didn't find runing architecture code in arch_array");
duke@435 1533
duke@435 1534 // If the architure is right
phh@3379 1535 // but some other error took place - report os::lasterror(...) msg
duke@435 1536 if (lib_arch == running_arch)
duke@435 1537 {
duke@435 1538 return NULL;
duke@435 1539 }
duke@435 1540
duke@435 1541 if (lib_arch_str!=NULL)
duke@435 1542 {
duke@435 1543 ::_snprintf(ebuf, ebuflen-1,
duke@435 1544 "Can't load %s-bit .dll on a %s-bit platform",
duke@435 1545 lib_arch_str,running_arch_str);
duke@435 1546 }
duke@435 1547 else
duke@435 1548 {
duke@435 1549 // don't know what architecture this dll was build for
duke@435 1550 ::_snprintf(ebuf, ebuflen-1,
duke@435 1551 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
duke@435 1552 lib_arch,running_arch_str);
duke@435 1553 }
duke@435 1554
duke@435 1555 return NULL;
duke@435 1556 }
duke@435 1557
duke@435 1558
duke@435 1559 void os::print_dll_info(outputStream *st) {
duke@435 1560 int pid = os::current_process_id();
duke@435 1561 st->print_cr("Dynamic libraries:");
duke@435 1562 enumerate_modules(pid, _print_module, (void *)st);
duke@435 1563 }
duke@435 1564
duke@435 1565 void os::print_os_info(outputStream* st) {
xlu@708 1566 st->print("OS:");
xlu@708 1567
xlu@708 1568 OSVERSIONINFOEX osvi;
xlu@708 1569 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
xlu@708 1570 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
xlu@708 1571
xlu@708 1572 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
xlu@708 1573 st->print_cr("N/A");
xlu@708 1574 return;
xlu@708 1575 }
xlu@708 1576
xlu@708 1577 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
xlu@708 1578 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
xlu@708 1579 switch (os_vers) {
xlu@708 1580 case 3051: st->print(" Windows NT 3.51"); break;
xlu@708 1581 case 4000: st->print(" Windows NT 4.0"); break;
xlu@708 1582 case 5000: st->print(" Windows 2000"); break;
xlu@708 1583 case 5001: st->print(" Windows XP"); break;
xlu@708 1584 case 5002:
asaha@1397 1585 case 6000:
asaha@1397 1586 case 6001: {
xlu@708 1587 // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
xlu@708 1588 // find out whether we are running on 64 bit processor or not.
xlu@708 1589 SYSTEM_INFO si;
xlu@708 1590 ZeroMemory(&si, sizeof(SYSTEM_INFO));
zgu@3031 1591 if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
xlu@708 1592 GetSystemInfo(&si);
xlu@708 1593 } else {
zgu@3031 1594 os::Kernel32Dll::GetNativeSystemInfo(&si);
xlu@708 1595 }
xlu@708 1596 if (os_vers == 5002) {
xlu@708 1597 if (osvi.wProductType == VER_NT_WORKSTATION &&
xlu@708 1598 si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1599 st->print(" Windows XP x64 Edition");
xlu@708 1600 else
xlu@708 1601 st->print(" Windows Server 2003 family");
asaha@1397 1602 } else if (os_vers == 6000) {
xlu@708 1603 if (osvi.wProductType == VER_NT_WORKSTATION)
xlu@708 1604 st->print(" Windows Vista");
xlu@708 1605 else
xlu@708 1606 st->print(" Windows Server 2008");
xlu@708 1607 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1608 st->print(" , 64 bit");
asaha@1397 1609 } else if (os_vers == 6001) {
asaha@1397 1610 if (osvi.wProductType == VER_NT_WORKSTATION) {
asaha@1397 1611 st->print(" Windows 7");
asaha@1397 1612 } else {
asaha@1397 1613 // Unrecognized windows, print out its major and minor versions
asaha@1397 1614 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1615 }
asaha@1397 1616 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1617 st->print(" , 64 bit");
asaha@1397 1618 } else { // future os
asaha@1397 1619 // Unrecognized windows, print out its major and minor versions
asaha@1397 1620 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1621 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1622 st->print(" , 64 bit");
xlu@708 1623 }
xlu@708 1624 break;
xlu@708 1625 }
xlu@708 1626 default: // future windows, print out its major and minor versions
xlu@708 1627 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1628 }
xlu@708 1629 } else {
xlu@708 1630 switch (os_vers) {
xlu@708 1631 case 4000: st->print(" Windows 95"); break;
xlu@708 1632 case 4010: st->print(" Windows 98"); break;
xlu@708 1633 case 4090: st->print(" Windows Me"); break;
xlu@708 1634 default: // future windows, print out its major and minor versions
xlu@708 1635 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1636 }
xlu@708 1637 }
xlu@708 1638 st->print(" Build %d", osvi.dwBuildNumber);
xlu@708 1639 st->print(" %s", osvi.szCSDVersion); // service pack
xlu@708 1640 st->cr();
duke@435 1641 }
duke@435 1642
jcoomes@2997 1643 void os::pd_print_cpu_info(outputStream* st) {
jcoomes@2997 1644 // Nothing to do for now.
jcoomes@2997 1645 }
jcoomes@2997 1646
duke@435 1647 void os::print_memory_info(outputStream* st) {
duke@435 1648 st->print("Memory:");
duke@435 1649 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1650
poonam@1312 1651 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 1652 // value if total memory is larger than 4GB
poonam@1312 1653 MEMORYSTATUSEX ms;
poonam@1312 1654 ms.dwLength = sizeof(ms);
poonam@1312 1655 GlobalMemoryStatusEx(&ms);
duke@435 1656
duke@435 1657 st->print(", physical %uk", os::physical_memory() >> 10);
duke@435 1658 st->print("(%uk free)", os::available_memory() >> 10);
duke@435 1659
poonam@1312 1660 st->print(", swap %uk", ms.ullTotalPageFile >> 10);
poonam@1312 1661 st->print("(%uk free)", ms.ullAvailPageFile >> 10);
duke@435 1662 st->cr();
duke@435 1663 }
duke@435 1664
duke@435 1665 void os::print_siginfo(outputStream *st, void *siginfo) {
duke@435 1666 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
duke@435 1667 st->print("siginfo:");
duke@435 1668 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
duke@435 1669
duke@435 1670 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 1671 er->NumberParameters >= 2) {
duke@435 1672 switch (er->ExceptionInformation[0]) {
duke@435 1673 case 0: st->print(", reading address"); break;
duke@435 1674 case 1: st->print(", writing address"); break;
duke@435 1675 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
duke@435 1676 er->ExceptionInformation[0]);
duke@435 1677 }
duke@435 1678 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
duke@435 1679 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
duke@435 1680 er->NumberParameters >= 2 && UseSharedSpaces) {
duke@435 1681 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1682 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
duke@435 1683 st->print("\n\nError accessing class data sharing archive." \
duke@435 1684 " Mapped file inaccessible during execution, " \
duke@435 1685 " possible disk/network problem.");
duke@435 1686 }
duke@435 1687 } else {
duke@435 1688 int num = er->NumberParameters;
duke@435 1689 if (num > 0) {
duke@435 1690 st->print(", ExceptionInformation=");
duke@435 1691 for (int i = 0; i < num; i++) {
duke@435 1692 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
duke@435 1693 }
duke@435 1694 }
duke@435 1695 }
duke@435 1696 st->cr();
duke@435 1697 }
duke@435 1698
duke@435 1699 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1700 // do nothing
duke@435 1701 }
duke@435 1702
duke@435 1703 static char saved_jvm_path[MAX_PATH] = {0};
duke@435 1704
duke@435 1705 // Find the full path to the current module, jvm.dll or jvm_g.dll
duke@435 1706 void os::jvm_path(char *buf, jint buflen) {
duke@435 1707 // Error checking.
duke@435 1708 if (buflen < MAX_PATH) {
duke@435 1709 assert(false, "must use a large-enough buffer");
duke@435 1710 buf[0] = '\0';
duke@435 1711 return;
duke@435 1712 }
duke@435 1713 // Lazy resolve the path to current module.
duke@435 1714 if (saved_jvm_path[0] != 0) {
duke@435 1715 strcpy(buf, saved_jvm_path);
duke@435 1716 return;
duke@435 1717 }
duke@435 1718
sla@2327 1719 buf[0] = '\0';
sla@2584 1720 if (Arguments::created_by_gamma_launcher()) {
sla@2327 1721 // Support for the gamma launcher. Check for an
sla@2369 1722 // JAVA_HOME environment variable
sla@2327 1723 // and fix up the path so it looks like
sla@2327 1724 // libjvm.so is installed there (append a fake suffix
sla@2327 1725 // hotspot/libjvm.so).
sla@2369 1726 char* java_home_var = ::getenv("JAVA_HOME");
sla@2327 1727 if (java_home_var != NULL && java_home_var[0] != 0) {
sla@2327 1728
sla@2327 1729 strncpy(buf, java_home_var, buflen);
sla@2327 1730
sla@2327 1731 // determine if this is a legacy image or modules image
sla@2327 1732 // modules image doesn't have "jre" subdirectory
sla@2327 1733 size_t len = strlen(buf);
sla@2327 1734 char* jrebin_p = buf + len;
sla@2327 1735 jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
sla@2327 1736 if (0 != _access(buf, 0)) {
sla@2327 1737 jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
sla@2327 1738 }
sla@2327 1739 len = strlen(buf);
sla@2327 1740 jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
sla@2327 1741 }
sla@2327 1742 }
sla@2327 1743
sla@2327 1744 if(buf[0] == '\0') {
duke@435 1745 GetModuleFileName(vm_lib_handle, buf, buflen);
sla@2327 1746 }
duke@435 1747 strcpy(saved_jvm_path, buf);
duke@435 1748 }
duke@435 1749
duke@435 1750
duke@435 1751 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 1752 #ifndef _WIN64
duke@435 1753 st->print("_");
duke@435 1754 #endif
duke@435 1755 }
duke@435 1756
duke@435 1757
duke@435 1758 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 1759 #ifndef _WIN64
duke@435 1760 st->print("@%d", args_size * sizeof(int));
duke@435 1761 #endif
duke@435 1762 }
duke@435 1763
ikrylov@2322 1764 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1765 // from src/windows/hpi/src/system_md.c
ikrylov@2322 1766
phh@3379 1767 size_t os::lasterror(char* buf, size_t len) {
phh@3379 1768 DWORD errval;
ikrylov@2322 1769
ikrylov@2322 1770 if ((errval = GetLastError()) != 0) {
phh@3379 1771 // DOS error
phh@3379 1772 size_t n = (size_t)FormatMessage(
ikrylov@2322 1773 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
ikrylov@2322 1774 NULL,
ikrylov@2322 1775 errval,
ikrylov@2322 1776 0,
ikrylov@2322 1777 buf,
ikrylov@2322 1778 (DWORD)len,
ikrylov@2322 1779 NULL);
ikrylov@2322 1780 if (n > 3) {
phh@3379 1781 // Drop final '.', CR, LF
ikrylov@2322 1782 if (buf[n - 1] == '\n') n--;
ikrylov@2322 1783 if (buf[n - 1] == '\r') n--;
ikrylov@2322 1784 if (buf[n - 1] == '.') n--;
ikrylov@2322 1785 buf[n] = '\0';
ikrylov@2322 1786 }
ikrylov@2322 1787 return n;
ikrylov@2322 1788 }
ikrylov@2322 1789
ikrylov@2322 1790 if (errno != 0) {
phh@3379 1791 // C runtime error that has no corresponding DOS error code
phh@3379 1792 const char* s = strerror(errno);
ikrylov@2322 1793 size_t n = strlen(s);
ikrylov@2322 1794 if (n >= len) n = len - 1;
ikrylov@2322 1795 strncpy(buf, s, n);
ikrylov@2322 1796 buf[n] = '\0';
ikrylov@2322 1797 return n;
ikrylov@2322 1798 }
phh@3379 1799
ikrylov@2322 1800 return 0;
ikrylov@2322 1801 }
ikrylov@2322 1802
phh@3379 1803 int os::get_last_error() {
phh@3379 1804 DWORD error = GetLastError();
phh@3379 1805 if (error == 0)
phh@3379 1806 error = errno;
phh@3379 1807 return (int)error;
phh@3379 1808 }
phh@3379 1809
duke@435 1810 // sun.misc.Signal
duke@435 1811 // NOTE that this is a workaround for an apparent kernel bug where if
duke@435 1812 // a signal handler for SIGBREAK is installed then that signal handler
duke@435 1813 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
duke@435 1814 // See bug 4416763.
duke@435 1815 static void (*sigbreakHandler)(int) = NULL;
duke@435 1816
duke@435 1817 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 1818 os::signal_notify(sig);
duke@435 1819 // We need to reinstate the signal handler each time...
duke@435 1820 os::signal(sig, (void*)UserHandler);
duke@435 1821 }
duke@435 1822
duke@435 1823 void* os::user_handler() {
duke@435 1824 return (void*) UserHandler;
duke@435 1825 }
duke@435 1826
duke@435 1827 void* os::signal(int signal_number, void* handler) {
duke@435 1828 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
duke@435 1829 void (*oldHandler)(int) = sigbreakHandler;
duke@435 1830 sigbreakHandler = (void (*)(int)) handler;
duke@435 1831 return (void*) oldHandler;
duke@435 1832 } else {
duke@435 1833 return (void*)::signal(signal_number, (void (*)(int))handler);
duke@435 1834 }
duke@435 1835 }
duke@435 1836
duke@435 1837 void os::signal_raise(int signal_number) {
duke@435 1838 raise(signal_number);
duke@435 1839 }
duke@435 1840
duke@435 1841 // The Win32 C runtime library maps all console control events other than ^C
duke@435 1842 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
duke@435 1843 // logoff, and shutdown events. We therefore install our own console handler
duke@435 1844 // that raises SIGTERM for the latter cases.
duke@435 1845 //
duke@435 1846 static BOOL WINAPI consoleHandler(DWORD event) {
duke@435 1847 switch(event) {
duke@435 1848 case CTRL_C_EVENT:
duke@435 1849 if (is_error_reported()) {
duke@435 1850 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 1851 // handler fails to abort. Let VM die immediately.
duke@435 1852 os::die();
duke@435 1853 }
duke@435 1854
duke@435 1855 os::signal_raise(SIGINT);
duke@435 1856 return TRUE;
duke@435 1857 break;
duke@435 1858 case CTRL_BREAK_EVENT:
duke@435 1859 if (sigbreakHandler != NULL) {
duke@435 1860 (*sigbreakHandler)(SIGBREAK);
duke@435 1861 }
duke@435 1862 return TRUE;
duke@435 1863 break;
duke@435 1864 case CTRL_CLOSE_EVENT:
duke@435 1865 case CTRL_LOGOFF_EVENT:
duke@435 1866 case CTRL_SHUTDOWN_EVENT:
duke@435 1867 os::signal_raise(SIGTERM);
duke@435 1868 return TRUE;
duke@435 1869 break;
duke@435 1870 default:
duke@435 1871 break;
duke@435 1872 }
duke@435 1873 return FALSE;
duke@435 1874 }
duke@435 1875
duke@435 1876 /*
duke@435 1877 * The following code is moved from os.cpp for making this
duke@435 1878 * code platform specific, which it is by its very nature.
duke@435 1879 */
duke@435 1880
duke@435 1881 // Return maximum OS signal used + 1 for internal use only
duke@435 1882 // Used as exit signal for signal_thread
duke@435 1883 int os::sigexitnum_pd(){
duke@435 1884 return NSIG;
duke@435 1885 }
duke@435 1886
duke@435 1887 // a counter for each possible signal value, including signal_thread exit signal
duke@435 1888 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 1889 static HANDLE sig_sem;
duke@435 1890
duke@435 1891 void os::signal_init_pd() {
duke@435 1892 // Initialize signal structures
duke@435 1893 memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 1894
duke@435 1895 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
duke@435 1896
duke@435 1897 // Programs embedding the VM do not want it to attempt to receive
duke@435 1898 // events like CTRL_LOGOFF_EVENT, which are used to implement the
duke@435 1899 // shutdown hooks mechanism introduced in 1.3. For example, when
duke@435 1900 // the VM is run as part of a Windows NT service (i.e., a servlet
duke@435 1901 // engine in a web server), the correct behavior is for any console
duke@435 1902 // control handler to return FALSE, not TRUE, because the OS's
duke@435 1903 // "final" handler for such events allows the process to continue if
duke@435 1904 // it is a service (while terminating it if it is not a service).
duke@435 1905 // To make this behavior uniform and the mechanism simpler, we
duke@435 1906 // completely disable the VM's usage of these console events if -Xrs
duke@435 1907 // (=ReduceSignalUsage) is specified. This means, for example, that
duke@435 1908 // the CTRL-BREAK thread dump mechanism is also disabled in this
duke@435 1909 // case. See bugs 4323062, 4345157, and related bugs.
duke@435 1910
duke@435 1911 if (!ReduceSignalUsage) {
duke@435 1912 // Add a CTRL-C handler
duke@435 1913 SetConsoleCtrlHandler(consoleHandler, TRUE);
duke@435 1914 }
duke@435 1915 }
duke@435 1916
duke@435 1917 void os::signal_notify(int signal_number) {
duke@435 1918 BOOL ret;
duke@435 1919
duke@435 1920 Atomic::inc(&pending_signals[signal_number]);
duke@435 1921 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1922 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1923 }
duke@435 1924
duke@435 1925 static int check_pending_signals(bool wait_for_signal) {
duke@435 1926 DWORD ret;
duke@435 1927 while (true) {
duke@435 1928 for (int i = 0; i < NSIG + 1; i++) {
duke@435 1929 jint n = pending_signals[i];
duke@435 1930 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 1931 return i;
duke@435 1932 }
duke@435 1933 }
duke@435 1934 if (!wait_for_signal) {
duke@435 1935 return -1;
duke@435 1936 }
duke@435 1937
duke@435 1938 JavaThread *thread = JavaThread::current();
duke@435 1939
duke@435 1940 ThreadBlockInVM tbivm(thread);
duke@435 1941
duke@435 1942 bool threadIsSuspended;
duke@435 1943 do {
duke@435 1944 thread->set_suspend_equivalent();
duke@435 1945 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 1946 ret = ::WaitForSingleObject(sig_sem, INFINITE);
duke@435 1947 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
duke@435 1948
duke@435 1949 // were we externally suspended while we were waiting?
duke@435 1950 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 1951 if (threadIsSuspended) {
duke@435 1952 //
duke@435 1953 // The semaphore has been incremented, but while we were waiting
duke@435 1954 // another thread suspended us. We don't want to continue running
duke@435 1955 // while suspended because that would surprise the thread that
duke@435 1956 // suspended us.
duke@435 1957 //
duke@435 1958 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1959 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1960
duke@435 1961 thread->java_suspend_self();
duke@435 1962 }
duke@435 1963 } while (threadIsSuspended);
duke@435 1964 }
duke@435 1965 }
duke@435 1966
duke@435 1967 int os::signal_lookup() {
duke@435 1968 return check_pending_signals(false);
duke@435 1969 }
duke@435 1970
duke@435 1971 int os::signal_wait() {
duke@435 1972 return check_pending_signals(true);
duke@435 1973 }
duke@435 1974
duke@435 1975 // Implicit OS exception handling
duke@435 1976
duke@435 1977 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
duke@435 1978 JavaThread* thread = JavaThread::current();
duke@435 1979 // Save pc in thread
duke@435 1980 #ifdef _M_IA64
duke@435 1981 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
duke@435 1982 // Set pc to handler
duke@435 1983 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
duke@435 1984 #elif _M_AMD64
duke@435 1985 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
duke@435 1986 // Set pc to handler
duke@435 1987 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
duke@435 1988 #else
duke@435 1989 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
duke@435 1990 // Set pc to handler
duke@435 1991 exceptionInfo->ContextRecord->Eip = (LONG)handler;
duke@435 1992 #endif
duke@435 1993
duke@435 1994 // Continue the execution
duke@435 1995 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1996 }
duke@435 1997
duke@435 1998
duke@435 1999 // Used for PostMortemDump
duke@435 2000 extern "C" void safepoints();
duke@435 2001 extern "C" void find(int x);
duke@435 2002 extern "C" void events();
duke@435 2003
duke@435 2004 // According to Windows API documentation, an illegal instruction sequence should generate
duke@435 2005 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
duke@435 2006 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
duke@435 2007 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
duke@435 2008
duke@435 2009 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
duke@435 2010
duke@435 2011 // From "Execution Protection in the Windows Operating System" draft 0.35
duke@435 2012 // Once a system header becomes available, the "real" define should be
duke@435 2013 // included or copied here.
duke@435 2014 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
duke@435 2015
duke@435 2016 #define def_excpt(val) #val, val
duke@435 2017
duke@435 2018 struct siglabel {
duke@435 2019 char *name;
duke@435 2020 int number;
duke@435 2021 };
duke@435 2022
zgu@2391 2023 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
zgu@2391 2024 // C++ compiler contain this error code. Because this is a compiler-generated
zgu@2391 2025 // error, the code is not listed in the Win32 API header files.
zgu@2391 2026 // The code is actually a cryptic mnemonic device, with the initial "E"
zgu@2391 2027 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
zgu@2391 2028 // ASCII values of "msc".
zgu@2391 2029
zgu@2391 2030 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION 0xE06D7363
zgu@2391 2031
zgu@2391 2032
duke@435 2033 struct siglabel exceptlabels[] = {
duke@435 2034 def_excpt(EXCEPTION_ACCESS_VIOLATION),
duke@435 2035 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
duke@435 2036 def_excpt(EXCEPTION_BREAKPOINT),
duke@435 2037 def_excpt(EXCEPTION_SINGLE_STEP),
duke@435 2038 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
duke@435 2039 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
duke@435 2040 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
duke@435 2041 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
duke@435 2042 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
duke@435 2043 def_excpt(EXCEPTION_FLT_OVERFLOW),
duke@435 2044 def_excpt(EXCEPTION_FLT_STACK_CHECK),
duke@435 2045 def_excpt(EXCEPTION_FLT_UNDERFLOW),
duke@435 2046 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
duke@435 2047 def_excpt(EXCEPTION_INT_OVERFLOW),
duke@435 2048 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
duke@435 2049 def_excpt(EXCEPTION_IN_PAGE_ERROR),
duke@435 2050 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
duke@435 2051 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
duke@435 2052 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
duke@435 2053 def_excpt(EXCEPTION_STACK_OVERFLOW),
duke@435 2054 def_excpt(EXCEPTION_INVALID_DISPOSITION),
duke@435 2055 def_excpt(EXCEPTION_GUARD_PAGE),
duke@435 2056 def_excpt(EXCEPTION_INVALID_HANDLE),
zgu@2391 2057 def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
duke@435 2058 NULL, 0
duke@435 2059 };
duke@435 2060
duke@435 2061 const char* os::exception_name(int exception_code, char *buf, size_t size) {
duke@435 2062 for (int i = 0; exceptlabels[i].name != NULL; i++) {
duke@435 2063 if (exceptlabels[i].number == exception_code) {
duke@435 2064 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
duke@435 2065 return buf;
duke@435 2066 }
duke@435 2067 }
duke@435 2068
duke@435 2069 return NULL;
duke@435 2070 }
duke@435 2071
duke@435 2072 //-----------------------------------------------------------------------------
duke@435 2073 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2074 // handle exception caused by idiv; should only happen for -MinInt/-1
duke@435 2075 // (division by zero is handled explicitly)
duke@435 2076 #ifdef _M_IA64
duke@435 2077 assert(0, "Fix Handle_IDiv_Exception");
duke@435 2078 #elif _M_AMD64
duke@435 2079 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2080 address pc = (address)ctx->Rip;
duke@435 2081 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2082 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2083 assert(ctx->Rax == min_jint, "unexpected idiv exception");
duke@435 2084 // set correct result values and continue after idiv instruction
duke@435 2085 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2086 ctx->Rax = (DWORD)min_jint; // result
duke@435 2087 ctx->Rdx = (DWORD)0; // remainder
duke@435 2088 // Continue the execution
duke@435 2089 #else
duke@435 2090 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2091 address pc = (address)ctx->Eip;
duke@435 2092 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2093 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2094 assert(ctx->Eax == min_jint, "unexpected idiv exception");
duke@435 2095 // set correct result values and continue after idiv instruction
duke@435 2096 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2097 ctx->Eax = (DWORD)min_jint; // result
duke@435 2098 ctx->Edx = (DWORD)0; // remainder
duke@435 2099 // Continue the execution
duke@435 2100 #endif
duke@435 2101 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2102 }
duke@435 2103
duke@435 2104 #ifndef _WIN64
duke@435 2105 //-----------------------------------------------------------------------------
duke@435 2106 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
dcubed@1649 2107 // handle exception caused by native method modifying control word
duke@435 2108 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2109 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2110
duke@435 2111 switch (exception_code) {
duke@435 2112 case EXCEPTION_FLT_DENORMAL_OPERAND:
duke@435 2113 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
duke@435 2114 case EXCEPTION_FLT_INEXACT_RESULT:
duke@435 2115 case EXCEPTION_FLT_INVALID_OPERATION:
duke@435 2116 case EXCEPTION_FLT_OVERFLOW:
duke@435 2117 case EXCEPTION_FLT_STACK_CHECK:
duke@435 2118 case EXCEPTION_FLT_UNDERFLOW:
duke@435 2119 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 2120 if (fp_control_word != ctx->FloatSave.ControlWord) {
duke@435 2121 // Restore FPCW and mask out FLT exceptions
duke@435 2122 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
duke@435 2123 // Mask out pending FLT exceptions
duke@435 2124 ctx->FloatSave.StatusWord &= 0xffffff00;
duke@435 2125 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2126 }
duke@435 2127 }
dcubed@1649 2128
dcubed@1649 2129 if (prev_uef_handler != NULL) {
dcubed@1649 2130 // We didn't handle this exception so pass it to the previous
dcubed@1649 2131 // UnhandledExceptionFilter.
dcubed@1649 2132 return (prev_uef_handler)(exceptionInfo);
dcubed@1649 2133 }
dcubed@1649 2134
duke@435 2135 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2136 }
duke@435 2137 #else //_WIN64
duke@435 2138 /*
duke@435 2139 On Windows, the mxcsr control bits are non-volatile across calls
duke@435 2140 See also CR 6192333
duke@435 2141 If EXCEPTION_FLT_* happened after some native method modified
duke@435 2142 mxcsr - it is not a jvm fault.
duke@435 2143 However should we decide to restore of mxcsr after a faulty
duke@435 2144 native method we can uncomment following code
duke@435 2145 jint MxCsr = INITIAL_MXCSR;
duke@435 2146 // we can't use StubRoutines::addr_mxcsr_std()
duke@435 2147 // because in Win64 mxcsr is not saved there
duke@435 2148 if (MxCsr != ctx->MxCsr) {
duke@435 2149 ctx->MxCsr = MxCsr;
duke@435 2150 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2151 }
duke@435 2152
duke@435 2153 */
duke@435 2154 #endif //_WIN64
duke@435 2155
duke@435 2156
duke@435 2157 // Fatal error reporting is single threaded so we can make this a
duke@435 2158 // static and preallocated. If it's more than MAX_PATH silently ignore
duke@435 2159 // it.
duke@435 2160 static char saved_error_file[MAX_PATH] = {0};
duke@435 2161
duke@435 2162 void os::set_error_file(const char *logfile) {
duke@435 2163 if (strlen(logfile) <= MAX_PATH) {
duke@435 2164 strncpy(saved_error_file, logfile, MAX_PATH);
duke@435 2165 }
duke@435 2166 }
duke@435 2167
duke@435 2168 static inline void report_error(Thread* t, DWORD exception_code,
duke@435 2169 address addr, void* siginfo, void* context) {
duke@435 2170 VMError err(t, exception_code, addr, siginfo, context);
duke@435 2171 err.report_and_die();
duke@435 2172
duke@435 2173 // If UseOsErrorReporting, this will return here and save the error file
duke@435 2174 // somewhere where we can find it in the minidump.
duke@435 2175 }
duke@435 2176
duke@435 2177 //-----------------------------------------------------------------------------
duke@435 2178 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2179 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2180 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2181 #ifdef _M_IA64
duke@435 2182 address pc = (address) exceptionInfo->ContextRecord->StIIP;
duke@435 2183 #elif _M_AMD64
duke@435 2184 address pc = (address) exceptionInfo->ContextRecord->Rip;
duke@435 2185 #else
duke@435 2186 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2187 #endif
duke@435 2188 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 2189
duke@435 2190 #ifndef _WIN64
duke@435 2191 // Execution protection violation - win32 running on AMD64 only
duke@435 2192 // Handled first to avoid misdiagnosis as a "normal" access violation;
duke@435 2193 // This is safe to do because we have a new/unique ExceptionInformation
duke@435 2194 // code for this condition.
duke@435 2195 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2196 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2197 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
duke@435 2198 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2199
duke@435 2200 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 2201 int page_size = os::vm_page_size();
duke@435 2202
duke@435 2203 // Make sure the pc and the faulting address are sane.
duke@435 2204 //
duke@435 2205 // If an instruction spans a page boundary, and the page containing
duke@435 2206 // the beginning of the instruction is executable but the following
duke@435 2207 // page is not, the pc and the faulting address might be slightly
duke@435 2208 // different - we still want to unguard the 2nd page in this case.
duke@435 2209 //
duke@435 2210 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 2211 bool pc_is_near_addr =
duke@435 2212 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 2213 bool instr_spans_page_boundary =
duke@435 2214 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 2215 (intptr_t) page_size) > 0);
duke@435 2216
duke@435 2217 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 2218 static volatile address last_addr =
duke@435 2219 (address) os::non_memory_address_word();
duke@435 2220
duke@435 2221 // In conservative mode, don't unguard unless the address is in the VM
duke@435 2222 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
duke@435 2223 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 2224
coleenp@912 2225 // Set memory to RWX and retry
duke@435 2226 address page_start =
duke@435 2227 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 2228 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 2229 os::MEM_PROT_RWX);
duke@435 2230
duke@435 2231 if (PrintMiscellaneous && Verbose) {
duke@435 2232 char buf[256];
duke@435 2233 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 2234 "at " INTPTR_FORMAT
duke@435 2235 ", unguarding " INTPTR_FORMAT ": %s", addr,
duke@435 2236 page_start, (res ? "success" : strerror(errno)));
duke@435 2237 tty->print_raw_cr(buf);
duke@435 2238 }
duke@435 2239
duke@435 2240 // Set last_addr so if we fault again at the same address, we don't
duke@435 2241 // end up in an endless loop.
duke@435 2242 //
duke@435 2243 // There are two potential complications here. Two threads trapping
duke@435 2244 // at the same address at the same time could cause one of the
duke@435 2245 // threads to think it already unguarded, and abort the VM. Likely
duke@435 2246 // very rare.
duke@435 2247 //
duke@435 2248 // The other race involves two threads alternately trapping at
duke@435 2249 // different addresses and failing to unguard the page, resulting in
duke@435 2250 // an endless loop. This condition is probably even more unlikely
duke@435 2251 // than the first.
duke@435 2252 //
duke@435 2253 // Although both cases could be avoided by using locks or thread
duke@435 2254 // local last_addr, these solutions are unnecessary complication:
duke@435 2255 // this handler is a best-effort safety net, not a complete solution.
duke@435 2256 // It is disabled by default and should only be used as a workaround
duke@435 2257 // in case we missed any no-execute-unsafe VM code.
duke@435 2258
duke@435 2259 last_addr = addr;
duke@435 2260
duke@435 2261 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2262 }
duke@435 2263 }
duke@435 2264
duke@435 2265 // Last unguard failed or not unguarding
duke@435 2266 tty->print_raw_cr("Execution protection violation");
duke@435 2267 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
duke@435 2268 exceptionInfo->ContextRecord);
duke@435 2269 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2270 }
duke@435 2271 }
duke@435 2272 #endif // _WIN64
duke@435 2273
duke@435 2274 // Check to see if we caught the safepoint code in the
duke@435 2275 // process of write protecting the memory serialization page.
duke@435 2276 // It write enables the page immediately after protecting it
duke@435 2277 // so just return.
duke@435 2278 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 2279 JavaThread* thread = (JavaThread*) t;
duke@435 2280 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2281 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2282 if ( os::is_memory_serialize_page(thread, addr) ) {
duke@435 2283 // Block current thread until the memory serialize page permission restored.
duke@435 2284 os::block_on_serialize_page_trap();
duke@435 2285 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2286 }
duke@435 2287 }
duke@435 2288
duke@435 2289 if (t != NULL && t->is_Java_thread()) {
duke@435 2290 JavaThread* thread = (JavaThread*) t;
duke@435 2291 bool in_java = thread->thread_state() == _thread_in_Java;
duke@435 2292
duke@435 2293 // Handle potential stack overflows up front.
duke@435 2294 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
duke@435 2295 if (os::uses_stack_guard_pages()) {
duke@435 2296 #ifdef _M_IA64
duke@435 2297 //
duke@435 2298 // If it's a legal stack address continue, Windows will map it in.
duke@435 2299 //
duke@435 2300 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2301 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2302 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
duke@435 2303 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2304
duke@435 2305 // The register save area is the same size as the memory stack
duke@435 2306 // and starts at the page just above the start of the memory stack.
duke@435 2307 // If we get a fault in this area, we've run out of register
duke@435 2308 // stack. If we are in java, try throwing a stack overflow exception.
duke@435 2309 if (addr > thread->stack_base() &&
duke@435 2310 addr <= (thread->stack_base()+thread->stack_size()) ) {
duke@435 2311 char buf[256];
duke@435 2312 jio_snprintf(buf, sizeof(buf),
duke@435 2313 "Register stack overflow, addr:%p, stack_base:%p\n",
duke@435 2314 addr, thread->stack_base() );
duke@435 2315 tty->print_raw_cr(buf);
duke@435 2316 // If not in java code, return and hope for the best.
duke@435 2317 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2318 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2319 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2320 }
duke@435 2321 #endif
duke@435 2322 if (thread->stack_yellow_zone_enabled()) {
duke@435 2323 // Yellow zone violation. The o/s has unprotected the first yellow
duke@435 2324 // zone page for us. Note: must call disable_stack_yellow_zone to
duke@435 2325 // update the enabled status, even if the zone contains only one page.
duke@435 2326 thread->disable_stack_yellow_zone();
duke@435 2327 // If not in java code, return and hope for the best.
duke@435 2328 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2329 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2330 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2331 } else {
duke@435 2332 // Fatal red zone violation.
duke@435 2333 thread->disable_stack_red_zone();
duke@435 2334 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
duke@435 2335 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2336 exceptionInfo->ContextRecord);
duke@435 2337 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2338 }
duke@435 2339 } else if (in_java) {
duke@435 2340 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
duke@435 2341 // a one-time-only guard page, which it has released to us. The next
duke@435 2342 // stack overflow on this thread will result in an ACCESS_VIOLATION.
duke@435 2343 return Handle_Exception(exceptionInfo,
duke@435 2344 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2345 } else {
duke@435 2346 // Can only return and hope for the best. Further stack growth will
duke@435 2347 // result in an ACCESS_VIOLATION.
duke@435 2348 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2349 }
duke@435 2350 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2351 // Either stack overflow or null pointer exception.
duke@435 2352 if (in_java) {
duke@435 2353 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2354 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2355 address stack_end = thread->stack_base() - thread->stack_size();
duke@435 2356 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
duke@435 2357 // Stack overflow.
duke@435 2358 assert(!os::uses_stack_guard_pages(),
duke@435 2359 "should be caught by red zone code above.");
duke@435 2360 return Handle_Exception(exceptionInfo,
duke@435 2361 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2362 }
duke@435 2363 //
duke@435 2364 // Check for safepoint polling and implicit null
duke@435 2365 // We only expect null pointers in the stubs (vtable)
duke@435 2366 // the rest are checked explicitly now.
duke@435 2367 //
duke@435 2368 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 2369 if (cb != NULL) {
duke@435 2370 if (os::is_poll_address(addr)) {
duke@435 2371 address stub = SharedRuntime::get_poll_stub(pc);
duke@435 2372 return Handle_Exception(exceptionInfo, stub);
duke@435 2373 }
duke@435 2374 }
duke@435 2375 {
duke@435 2376 #ifdef _WIN64
duke@435 2377 //
duke@435 2378 // If it's a legal stack address map the entire region in
duke@435 2379 //
duke@435 2380 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2381 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2382 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
duke@435 2383 addr = (address)((uintptr_t)addr &
duke@435 2384 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
coleenp@1091 2385 os::commit_memory((char *)addr, thread->stack_base() - addr,
coleenp@1091 2386 false );
duke@435 2387 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2388 }
duke@435 2389 else
duke@435 2390 #endif
duke@435 2391 {
duke@435 2392 // Null pointer exception.
duke@435 2393 #ifdef _M_IA64
duke@435 2394 // We catch register stack overflows in compiled code by doing
duke@435 2395 // an explicit compare and executing a st8(G0, G0) if the
duke@435 2396 // BSP enters into our guard area. We test for the overflow
duke@435 2397 // condition and fall into the normal null pointer exception
duke@435 2398 // code if BSP hasn't overflowed.
duke@435 2399 if ( in_java ) {
duke@435 2400 if(thread->register_stack_overflow()) {
duke@435 2401 assert((address)exceptionInfo->ContextRecord->IntS3 ==
duke@435 2402 thread->register_stack_limit(),
duke@435 2403 "GR7 doesn't contain register_stack_limit");
duke@435 2404 // Disable the yellow zone which sets the state that
duke@435 2405 // we've got a stack overflow problem.
duke@435 2406 if (thread->stack_yellow_zone_enabled()) {
duke@435 2407 thread->disable_stack_yellow_zone();
duke@435 2408 }
duke@435 2409 // Give us some room to process the exception
duke@435 2410 thread->disable_register_stack_guard();
duke@435 2411 // Update GR7 with the new limit so we can continue running
duke@435 2412 // compiled code.
duke@435 2413 exceptionInfo->ContextRecord->IntS3 =
duke@435 2414 (ULONGLONG)thread->register_stack_limit();
duke@435 2415 return Handle_Exception(exceptionInfo,
duke@435 2416 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2417 } else {
duke@435 2418 //
duke@435 2419 // Check for implicit null
duke@435 2420 // We only expect null pointers in the stubs (vtable)
duke@435 2421 // the rest are checked explicitly now.
duke@435 2422 //
poonam@900 2423 if (((uintptr_t)addr) < os::vm_page_size() ) {
poonam@900 2424 // an access to the first page of VM--assume it is a null pointer
poonam@900 2425 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2426 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2427 }
duke@435 2428 }
duke@435 2429 } // in_java
duke@435 2430
duke@435 2431 // IA64 doesn't use implicit null checking yet. So we shouldn't
duke@435 2432 // get here.
duke@435 2433 tty->print_raw_cr("Access violation, possible null pointer exception");
duke@435 2434 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2435 exceptionInfo->ContextRecord);
duke@435 2436 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2437 #else /* !IA64 */
duke@435 2438
duke@435 2439 // Windows 98 reports faulting addresses incorrectly
duke@435 2440 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
duke@435 2441 !os::win32::is_nt()) {
poonam@900 2442 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2443 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2444 }
duke@435 2445 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2446 exceptionInfo->ContextRecord);
duke@435 2447 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2448 #endif
duke@435 2449 }
duke@435 2450 }
duke@435 2451 }
duke@435 2452
duke@435 2453 #ifdef _WIN64
duke@435 2454 // Special care for fast JNI field accessors.
duke@435 2455 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
duke@435 2456 // in and the heap gets shrunk before the field access.
duke@435 2457 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2458 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2459 if (addr != (address)-1) {
duke@435 2460 return Handle_Exception(exceptionInfo, addr);
duke@435 2461 }
duke@435 2462 }
duke@435 2463 #endif
duke@435 2464
duke@435 2465 #ifdef _WIN64
duke@435 2466 // Windows will sometimes generate an access violation
duke@435 2467 // when we call malloc. Since we use VectoredExceptions
duke@435 2468 // on 64 bit platforms, we see this exception. We must
duke@435 2469 // pass this exception on so Windows can recover.
duke@435 2470 // We check to see if the pc of the fault is in NTDLL.DLL
duke@435 2471 // if so, we pass control on to Windows for handling.
duke@435 2472 if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2473 #endif
duke@435 2474
duke@435 2475 // Stack overflow or null pointer exception in native code.
duke@435 2476 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2477 exceptionInfo->ContextRecord);
duke@435 2478 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2479 }
duke@435 2480
duke@435 2481 if (in_java) {
duke@435 2482 switch (exception_code) {
duke@435 2483 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2484 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
duke@435 2485
duke@435 2486 case EXCEPTION_INT_OVERFLOW:
duke@435 2487 return Handle_IDiv_Exception(exceptionInfo);
duke@435 2488
duke@435 2489 } // switch
duke@435 2490 }
duke@435 2491 #ifndef _WIN64
zgu@2391 2492 if (((thread->thread_state() == _thread_in_Java) ||
zgu@2391 2493 (thread->thread_state() == _thread_in_native)) &&
zgu@2391 2494 exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
duke@435 2495 {
duke@435 2496 LONG result=Handle_FLT_Exception(exceptionInfo);
duke@435 2497 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
duke@435 2498 }
duke@435 2499 #endif //_WIN64
duke@435 2500 }
duke@435 2501
duke@435 2502 if (exception_code != EXCEPTION_BREAKPOINT) {
duke@435 2503 #ifndef _WIN64
duke@435 2504 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2505 exceptionInfo->ContextRecord);
duke@435 2506 #else
duke@435 2507 // Itanium Windows uses a VectoredExceptionHandler
duke@435 2508 // Which means that C++ programatic exception handlers (try/except)
duke@435 2509 // will get here. Continue the search for the right except block if
duke@435 2510 // the exception code is not a fatal code.
duke@435 2511 switch ( exception_code ) {
duke@435 2512 case EXCEPTION_ACCESS_VIOLATION:
duke@435 2513 case EXCEPTION_STACK_OVERFLOW:
duke@435 2514 case EXCEPTION_ILLEGAL_INSTRUCTION:
duke@435 2515 case EXCEPTION_ILLEGAL_INSTRUCTION_2:
duke@435 2516 case EXCEPTION_INT_OVERFLOW:
duke@435 2517 case EXCEPTION_INT_DIVIDE_BY_ZERO:
zgu@2391 2518 case EXCEPTION_UNCAUGHT_CXX_EXCEPTION:
duke@435 2519 { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2520 exceptionInfo->ContextRecord);
duke@435 2521 }
duke@435 2522 break;
duke@435 2523 default:
duke@435 2524 break;
duke@435 2525 }
duke@435 2526 #endif
duke@435 2527 }
duke@435 2528 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2529 }
duke@435 2530
duke@435 2531 #ifndef _WIN64
duke@435 2532 // Special care for fast JNI accessors.
duke@435 2533 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
duke@435 2534 // the heap gets shrunk before the field access.
duke@435 2535 // Need to install our own structured exception handler since native code may
duke@435 2536 // install its own.
duke@435 2537 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2538 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2539 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2540 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2541 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2542 if (addr != (address)-1) {
duke@435 2543 return Handle_Exception(exceptionInfo, addr);
duke@435 2544 }
duke@435 2545 }
duke@435 2546 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2547 }
duke@435 2548
duke@435 2549 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
duke@435 2550 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
duke@435 2551 __try { \
duke@435 2552 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
duke@435 2553 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
duke@435 2554 } \
duke@435 2555 return 0; \
duke@435 2556 }
duke@435 2557
duke@435 2558 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
duke@435 2559 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
duke@435 2560 DEFINE_FAST_GETFIELD(jchar, char, Char)
duke@435 2561 DEFINE_FAST_GETFIELD(jshort, short, Short)
duke@435 2562 DEFINE_FAST_GETFIELD(jint, int, Int)
duke@435 2563 DEFINE_FAST_GETFIELD(jlong, long, Long)
duke@435 2564 DEFINE_FAST_GETFIELD(jfloat, float, Float)
duke@435 2565 DEFINE_FAST_GETFIELD(jdouble, double, Double)
duke@435 2566
duke@435 2567 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
duke@435 2568 switch (type) {
duke@435 2569 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
duke@435 2570 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
duke@435 2571 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
duke@435 2572 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
duke@435 2573 case T_INT: return (address)jni_fast_GetIntField_wrapper;
duke@435 2574 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
duke@435 2575 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
duke@435 2576 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
duke@435 2577 default: ShouldNotReachHere();
duke@435 2578 }
duke@435 2579 return (address)-1;
duke@435 2580 }
duke@435 2581 #endif
duke@435 2582
duke@435 2583 // Virtual Memory
duke@435 2584
duke@435 2585 int os::vm_page_size() { return os::win32::vm_page_size(); }
duke@435 2586 int os::vm_allocation_granularity() {
duke@435 2587 return os::win32::vm_allocation_granularity();
duke@435 2588 }
duke@435 2589
duke@435 2590 // Windows large page support is available on Windows 2003. In order to use
duke@435 2591 // large page memory, the administrator must first assign additional privilege
duke@435 2592 // to the user:
duke@435 2593 // + select Control Panel -> Administrative Tools -> Local Security Policy
duke@435 2594 // + select Local Policies -> User Rights Assignment
duke@435 2595 // + double click "Lock pages in memory", add users and/or groups
duke@435 2596 // + reboot
duke@435 2597 // Note the above steps are needed for administrator as well, as administrators
duke@435 2598 // by default do not have the privilege to lock pages in memory.
duke@435 2599 //
duke@435 2600 // Note about Windows 2003: although the API supports committing large page
duke@435 2601 // memory on a page-by-page basis and VirtualAlloc() returns success under this
duke@435 2602 // scenario, I found through experiment it only uses large page if the entire
duke@435 2603 // memory region is reserved and committed in a single VirtualAlloc() call.
duke@435 2604 // This makes Windows large page support more or less like Solaris ISM, in
duke@435 2605 // that the entire heap must be committed upfront. This probably will change
duke@435 2606 // in the future, if so the code below needs to be revisited.
duke@435 2607
duke@435 2608 #ifndef MEM_LARGE_PAGES
duke@435 2609 #define MEM_LARGE_PAGES 0x20000000
duke@435 2610 #endif
duke@435 2611
duke@435 2612 static HANDLE _hProcess;
duke@435 2613 static HANDLE _hToken;
duke@435 2614
iveresov@3085 2615 // Container for NUMA node list info
iveresov@3085 2616 class NUMANodeListHolder {
iveresov@3085 2617 private:
iveresov@3085 2618 int *_numa_used_node_list; // allocated below
iveresov@3085 2619 int _numa_used_node_count;
iveresov@3085 2620
iveresov@3085 2621 void free_node_list() {
iveresov@3085 2622 if (_numa_used_node_list != NULL) {
iveresov@3085 2623 FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
iveresov@3085 2624 }
iveresov@3085 2625 }
iveresov@3085 2626
iveresov@3085 2627 public:
iveresov@3085 2628 NUMANodeListHolder() {
iveresov@3085 2629 _numa_used_node_count = 0;
iveresov@3085 2630 _numa_used_node_list = NULL;
iveresov@3085 2631 // do rest of initialization in build routine (after function pointers are set up)
iveresov@3085 2632 }
iveresov@3085 2633
iveresov@3085 2634 ~NUMANodeListHolder() {
iveresov@3085 2635 free_node_list();
iveresov@3085 2636 }
iveresov@3085 2637
iveresov@3085 2638 bool build() {
iveresov@3085 2639 DWORD_PTR proc_aff_mask;
iveresov@3085 2640 DWORD_PTR sys_aff_mask;
iveresov@3085 2641 if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
iveresov@3085 2642 ULONG highest_node_number;
iveresov@3085 2643 if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
iveresov@3085 2644 free_node_list();
iveresov@3127 2645 _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1);
iveresov@3085 2646 for (unsigned int i = 0; i <= highest_node_number; i++) {
iveresov@3085 2647 ULONGLONG proc_mask_numa_node;
iveresov@3085 2648 if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
iveresov@3085 2649 if ((proc_aff_mask & proc_mask_numa_node)!=0) {
iveresov@3085 2650 _numa_used_node_list[_numa_used_node_count++] = i;
iveresov@3085 2651 }
iveresov@3085 2652 }
iveresov@3085 2653 return (_numa_used_node_count > 1);
iveresov@3085 2654 }
iveresov@3085 2655
iveresov@3085 2656 int get_count() {return _numa_used_node_count;}
iveresov@3085 2657 int get_node_list_entry(int n) {
iveresov@3085 2658 // for indexes out of range, returns -1
iveresov@3085 2659 return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
iveresov@3085 2660 }
iveresov@3085 2661
iveresov@3085 2662 } numa_node_list_holder;
iveresov@3085 2663
iveresov@3085 2664
iveresov@3085 2665
duke@435 2666 static size_t _large_page_size = 0;
duke@435 2667
duke@435 2668 static bool resolve_functions_for_large_page_init() {
zgu@3031 2669 return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
zgu@3031 2670 os::Advapi32Dll::AdvapiAvailable();
duke@435 2671 }
duke@435 2672
duke@435 2673 static bool request_lock_memory_privilege() {
duke@435 2674 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
duke@435 2675 os::current_process_id());
duke@435 2676
duke@435 2677 LUID luid;
duke@435 2678 if (_hProcess != NULL &&
zgu@3031 2679 os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
zgu@3031 2680 os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
duke@435 2681
duke@435 2682 TOKEN_PRIVILEGES tp;
duke@435 2683 tp.PrivilegeCount = 1;
duke@435 2684 tp.Privileges[0].Luid = luid;
duke@435 2685 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
duke@435 2686
duke@435 2687 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
duke@435 2688 // privilege. Check GetLastError() too. See MSDN document.
zgu@3031 2689 if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
duke@435 2690 (GetLastError() == ERROR_SUCCESS)) {
duke@435 2691 return true;
duke@435 2692 }
duke@435 2693 }
duke@435 2694
duke@435 2695 return false;
duke@435 2696 }
duke@435 2697
duke@435 2698 static void cleanup_after_large_page_init() {
duke@435 2699 if (_hProcess) CloseHandle(_hProcess);
duke@435 2700 _hProcess = NULL;
duke@435 2701 if (_hToken) CloseHandle(_hToken);
duke@435 2702 _hToken = NULL;
duke@435 2703 }
duke@435 2704
iveresov@3085 2705 static bool numa_interleaving_init() {
iveresov@3085 2706 bool success = false;
iveresov@3085 2707 bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
iveresov@3085 2708
iveresov@3118 2709 // print a warning if UseNUMAInterleaving flag is specified on command line
iveresov@3118 2710 bool warn_on_failure = use_numa_interleaving_specified;
iveresov@3085 2711 # define WARN(msg) if (warn_on_failure) { warning(msg); }
iveresov@3085 2712
iveresov@3085 2713 // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
iveresov@3085 2714 size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2715 NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
iveresov@3085 2716
iveresov@3085 2717 if (os::Kernel32Dll::NumaCallsAvailable()) {
iveresov@3085 2718 if (numa_node_list_holder.build()) {
iveresov@3085 2719 if (PrintMiscellaneous && Verbose) {
iveresov@3118 2720 tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
iveresov@3085 2721 for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
iveresov@3085 2722 tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
iveresov@3085 2723 }
iveresov@3085 2724 tty->print("\n");
iveresov@3085 2725 }
iveresov@3085 2726 success = true;
iveresov@3085 2727 } else {
iveresov@3085 2728 WARN("Process does not cover multiple NUMA nodes.");
iveresov@3085 2729 }
iveresov@3085 2730 } else {
iveresov@3085 2731 WARN("NUMA Interleaving is not supported by the operating system.");
iveresov@3085 2732 }
iveresov@3085 2733 if (!success) {
iveresov@3085 2734 if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
iveresov@3085 2735 }
iveresov@3085 2736 return success;
iveresov@3085 2737 #undef WARN
iveresov@3085 2738 }
iveresov@3085 2739
iveresov@3085 2740 // this routine is used whenever we need to reserve a contiguous VA range
iveresov@3085 2741 // but we need to make separate VirtualAlloc calls for each piece of the range
iveresov@3085 2742 // Reasons for doing this:
iveresov@3085 2743 // * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
iveresov@3085 2744 // * UseNUMAInterleaving requires a separate node for each piece
iveresov@3085 2745 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
iveresov@3085 2746 bool should_inject_error=false) {
iveresov@3085 2747 char * p_buf;
iveresov@3085 2748 // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
iveresov@3085 2749 size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2750 size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
iveresov@3085 2751
iveresov@3085 2752 // first reserve enough address space in advance since we want to be
iveresov@3085 2753 // able to break a single contiguous virtual address range into multiple
iveresov@3085 2754 // large page commits but WS2003 does not allow reserving large page space
iveresov@3085 2755 // so we just use 4K pages for reserve, this gives us a legal contiguous
iveresov@3085 2756 // address space. then we will deallocate that reservation, and re alloc
iveresov@3085 2757 // using large pages
iveresov@3085 2758 const size_t size_of_reserve = bytes + chunk_size;
iveresov@3085 2759 if (bytes > size_of_reserve) {
iveresov@3085 2760 // Overflowed.
iveresov@3085 2761 return NULL;
iveresov@3085 2762 }
iveresov@3085 2763 p_buf = (char *) VirtualAlloc(addr,
iveresov@3085 2764 size_of_reserve, // size of Reserve
iveresov@3085 2765 MEM_RESERVE,
iveresov@3085 2766 PAGE_READWRITE);
iveresov@3085 2767 // If reservation failed, return NULL
iveresov@3085 2768 if (p_buf == NULL) return NULL;
iveresov@3085 2769
iveresov@3085 2770 os::release_memory(p_buf, bytes + chunk_size);
iveresov@3085 2771
iveresov@3085 2772 // we still need to round up to a page boundary (in case we are using large pages)
iveresov@3085 2773 // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
iveresov@3085 2774 // instead we handle this in the bytes_to_rq computation below
iveresov@3085 2775 p_buf = (char *) align_size_up((size_t)p_buf, page_size);
iveresov@3085 2776
iveresov@3085 2777 // now go through and allocate one chunk at a time until all bytes are
iveresov@3085 2778 // allocated
iveresov@3085 2779 size_t bytes_remaining = bytes;
iveresov@3085 2780 // An overflow of align_size_up() would have been caught above
iveresov@3085 2781 // in the calculation of size_of_reserve.
iveresov@3085 2782 char * next_alloc_addr = p_buf;
iveresov@3085 2783 HANDLE hProc = GetCurrentProcess();
iveresov@3085 2784
iveresov@3085 2785 #ifdef ASSERT
iveresov@3085 2786 // Variable for the failure injection
iveresov@3085 2787 long ran_num = os::random();
iveresov@3085 2788 size_t fail_after = ran_num % bytes;
iveresov@3085 2789 #endif
iveresov@3085 2790
iveresov@3085 2791 int count=0;
iveresov@3085 2792 while (bytes_remaining) {
iveresov@3085 2793 // select bytes_to_rq to get to the next chunk_size boundary
iveresov@3085 2794
iveresov@3085 2795 size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
iveresov@3085 2796 // Note allocate and commit
iveresov@3085 2797 char * p_new;
iveresov@3085 2798
iveresov@3085 2799 #ifdef ASSERT
iveresov@3085 2800 bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
iveresov@3085 2801 #else
iveresov@3085 2802 const bool inject_error_now = false;
iveresov@3085 2803 #endif
iveresov@3085 2804
iveresov@3085 2805 if (inject_error_now) {
iveresov@3085 2806 p_new = NULL;
iveresov@3085 2807 } else {
iveresov@3085 2808 if (!UseNUMAInterleaving) {
iveresov@3085 2809 p_new = (char *) VirtualAlloc(next_alloc_addr,
iveresov@3085 2810 bytes_to_rq,
iveresov@3085 2811 flags,
iveresov@3085 2812 prot);
iveresov@3085 2813 } else {
iveresov@3085 2814 // get the next node to use from the used_node_list
iveresov@3118 2815 assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
iveresov@3118 2816 DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
iveresov@3085 2817 p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
iveresov@3085 2818 next_alloc_addr,
iveresov@3085 2819 bytes_to_rq,
iveresov@3085 2820 flags,
iveresov@3085 2821 prot,
iveresov@3085 2822 node);
iveresov@3085 2823 }
iveresov@3085 2824 }
iveresov@3085 2825
iveresov@3085 2826 if (p_new == NULL) {
iveresov@3085 2827 // Free any allocated pages
iveresov@3085 2828 if (next_alloc_addr > p_buf) {
iveresov@3085 2829 // Some memory was committed so release it.
iveresov@3085 2830 size_t bytes_to_release = bytes - bytes_remaining;
iveresov@3085 2831 os::release_memory(p_buf, bytes_to_release);
iveresov@3085 2832 }
iveresov@3085 2833 #ifdef ASSERT
iveresov@3085 2834 if (should_inject_error) {
iveresov@3085 2835 if (TracePageSizes && Verbose) {
iveresov@3085 2836 tty->print_cr("Reserving pages individually failed.");
iveresov@3085 2837 }
iveresov@3085 2838 }
iveresov@3085 2839 #endif
iveresov@3085 2840 return NULL;
iveresov@3085 2841 }
iveresov@3085 2842 bytes_remaining -= bytes_to_rq;
iveresov@3085 2843 next_alloc_addr += bytes_to_rq;
iveresov@3085 2844 count++;
iveresov@3085 2845 }
iveresov@3085 2846 // made it this far, success
iveresov@3085 2847 return p_buf;
iveresov@3085 2848 }
iveresov@3085 2849
iveresov@3085 2850
iveresov@3085 2851
iveresov@2850 2852 void os::large_page_init() {
iveresov@2850 2853 if (!UseLargePages) return;
duke@435 2854
duke@435 2855 // print a warning if any large page related flag is specified on command line
duke@435 2856 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2857 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 2858 bool success = false;
duke@435 2859
duke@435 2860 # define WARN(msg) if (warn_on_failure) { warning(msg); }
duke@435 2861 if (resolve_functions_for_large_page_init()) {
duke@435 2862 if (request_lock_memory_privilege()) {
zgu@3031 2863 size_t s = os::Kernel32Dll::GetLargePageMinimum();
duke@435 2864 if (s) {
duke@435 2865 #if defined(IA32) || defined(AMD64)
duke@435 2866 if (s > 4*M || LargePageSizeInBytes > 4*M) {
duke@435 2867 WARN("JVM cannot use large pages bigger than 4mb.");
duke@435 2868 } else {
duke@435 2869 #endif
duke@435 2870 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
duke@435 2871 _large_page_size = LargePageSizeInBytes;
duke@435 2872 } else {
duke@435 2873 _large_page_size = s;
duke@435 2874 }
duke@435 2875 success = true;
duke@435 2876 #if defined(IA32) || defined(AMD64)
duke@435 2877 }
duke@435 2878 #endif
duke@435 2879 } else {
duke@435 2880 WARN("Large page is not supported by the processor.");
duke@435 2881 }
duke@435 2882 } else {
duke@435 2883 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
duke@435 2884 }
duke@435 2885 } else {
duke@435 2886 WARN("Large page is not supported by the operating system.");
duke@435 2887 }
duke@435 2888 #undef WARN
duke@435 2889
duke@435 2890 const size_t default_page_size = (size_t) vm_page_size();
duke@435 2891 if (success && _large_page_size > default_page_size) {
duke@435 2892 _page_sizes[0] = _large_page_size;
duke@435 2893 _page_sizes[1] = default_page_size;
duke@435 2894 _page_sizes[2] = 0;
duke@435 2895 }
duke@435 2896
duke@435 2897 cleanup_after_large_page_init();
iveresov@2850 2898 UseLargePages = success;
duke@435 2899 }
duke@435 2900
duke@435 2901 // On win32, one cannot release just a part of reserved memory, it's an
duke@435 2902 // all or nothing deal. When we split a reservation, we must break the
duke@435 2903 // reservation into two reservations.
duke@435 2904 void os::split_reserved_memory(char *base, size_t size, size_t split,
duke@435 2905 bool realloc) {
duke@435 2906 if (size > 0) {
duke@435 2907 release_memory(base, size);
duke@435 2908 if (realloc) {
duke@435 2909 reserve_memory(split, base);
duke@435 2910 }
duke@435 2911 if (size != split) {
duke@435 2912 reserve_memory(size - split, base + split);
duke@435 2913 }
duke@435 2914 }
duke@435 2915 }
duke@435 2916
duke@435 2917 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
duke@435 2918 assert((size_t)addr % os::vm_allocation_granularity() == 0,
duke@435 2919 "reserve alignment");
duke@435 2920 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
iveresov@3085 2921 char* res;
iveresov@3085 2922 // note that if UseLargePages is on, all the areas that require interleaving
iveresov@3085 2923 // will go thru reserve_memory_special rather than thru here.
iveresov@3085 2924 bool use_individual = (UseNUMAInterleaving && !UseLargePages);
iveresov@3085 2925 if (!use_individual) {
iveresov@3085 2926 res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 2927 } else {
iveresov@3085 2928 elapsedTimer reserveTimer;
iveresov@3085 2929 if( Verbose && PrintMiscellaneous ) reserveTimer.start();
iveresov@3085 2930 // in numa interleaving, we have to allocate pages individually
iveresov@3085 2931 // (well really chunks of NUMAInterleaveGranularity size)
iveresov@3085 2932 res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 2933 if (res == NULL) {
iveresov@3085 2934 warning("NUMA page allocation failed");
iveresov@3085 2935 }
iveresov@3085 2936 if( Verbose && PrintMiscellaneous ) {
iveresov@3085 2937 reserveTimer.stop();
iveresov@3085 2938 tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
iveresov@3085 2939 reserveTimer.milliseconds(), reserveTimer.ticks());
iveresov@3085 2940 }
iveresov@3085 2941 }
duke@435 2942 assert(res == NULL || addr == NULL || addr == res,
duke@435 2943 "Unexpected address from reserve.");
iveresov@3085 2944
duke@435 2945 return res;
duke@435 2946 }
duke@435 2947
duke@435 2948 // Reserve memory at an arbitrary address, only if that area is
duke@435 2949 // available (and not reserved for something else).
duke@435 2950 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2951 // Windows os::reserve_memory() fails of the requested address range is
duke@435 2952 // not avilable.
duke@435 2953 return reserve_memory(bytes, requested_addr);
duke@435 2954 }
duke@435 2955
duke@435 2956 size_t os::large_page_size() {
duke@435 2957 return _large_page_size;
duke@435 2958 }
duke@435 2959
duke@435 2960 bool os::can_commit_large_page_memory() {
duke@435 2961 // Windows only uses large page memory when the entire region is reserved
duke@435 2962 // and committed in a single VirtualAlloc() call. This may change in the
duke@435 2963 // future, but with Windows 2003 it's not possible to commit on demand.
duke@435 2964 return false;
duke@435 2965 }
duke@435 2966
jcoomes@514 2967 bool os::can_execute_large_page_memory() {
jcoomes@514 2968 return true;
jcoomes@514 2969 }
jcoomes@514 2970
coleenp@1091 2971 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
coleenp@912 2972
coleenp@1152 2973 const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
iveresov@3085 2974 const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
iveresov@3085 2975
iveresov@3085 2976 // with large pages, there are two cases where we need to use Individual Allocation
iveresov@3085 2977 // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
iveresov@3085 2978 // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
iveresov@3085 2979 if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
jmasa@824 2980 if (TracePageSizes && Verbose) {
jmasa@824 2981 tty->print_cr("Reserving large pages individually.");
jmasa@824 2982 }
iveresov@3085 2983 char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
iveresov@3085 2984 if (p_buf == NULL) {
iveresov@3085 2985 // give an appropriate warning message
iveresov@3085 2986 if (UseNUMAInterleaving) {
iveresov@3085 2987 warning("NUMA large page allocation failed, UseLargePages flag ignored");
iveresov@3085 2988 }
iveresov@3085 2989 if (UseLargePagesIndividualAllocation) {
iveresov@3085 2990 warning("Individually allocated large pages failed, "
iveresov@3085 2991 "use -XX:-UseLargePagesIndividualAllocation to turn off");
iveresov@3085 2992 }
jmasa@824 2993 return NULL;
jmasa@824 2994 }
jmasa@824 2995
jmasa@824 2996 return p_buf;
jmasa@824 2997
jmasa@824 2998 } else {
jmasa@824 2999 // normal policy just allocate it all at once
jmasa@824 3000 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
coleenp@1152 3001 char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
jmasa@824 3002 return res;
jmasa@824 3003 }
duke@435 3004 }
duke@435 3005
duke@435 3006 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 3007 return release_memory(base, bytes);
duke@435 3008 }
duke@435 3009
duke@435 3010 void os::print_statistics() {
duke@435 3011 }
duke@435 3012
coleenp@1091 3013 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
duke@435 3014 if (bytes == 0) {
duke@435 3015 // Don't bother the OS with noops.
duke@435 3016 return true;
duke@435 3017 }
duke@435 3018 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
duke@435 3019 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
duke@435 3020 // Don't attempt to print anything if the OS call fails. We're
duke@435 3021 // probably low on resources, so the print itself may cause crashes.
iveresov@3085 3022
iveresov@3085 3023 // unless we have NUMAInterleaving enabled, the range of a commit
iveresov@3085 3024 // is always within a reserve covered by a single VirtualAlloc
iveresov@3085 3025 // in that case we can just do a single commit for the requested size
iveresov@3085 3026 if (!UseNUMAInterleaving) {
iveresov@3085 3027 if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
iveresov@3085 3028 if (exec) {
iveresov@3085 3029 DWORD oldprot;
iveresov@3085 3030 // Windows doc says to use VirtualProtect to get execute permissions
iveresov@3085 3031 if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
iveresov@3085 3032 }
iveresov@3085 3033 return true;
coleenp@1091 3034 } else {
iveresov@3085 3035
iveresov@3085 3036 // when NUMAInterleaving is enabled, the commit might cover a range that
iveresov@3085 3037 // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
iveresov@3085 3038 // VirtualQuery can help us determine that. The RegionSize that VirtualQuery
iveresov@3085 3039 // returns represents the number of bytes that can be committed in one step.
iveresov@3085 3040 size_t bytes_remaining = bytes;
iveresov@3085 3041 char * next_alloc_addr = addr;
iveresov@3085 3042 while (bytes_remaining > 0) {
iveresov@3085 3043 MEMORY_BASIC_INFORMATION alloc_info;
iveresov@3085 3044 VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
iveresov@3085 3045 size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
iveresov@3085 3046 if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
iveresov@3085 3047 return false;
iveresov@3085 3048 if (exec) {
iveresov@3085 3049 DWORD oldprot;
iveresov@3085 3050 if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
iveresov@3085 3051 return false;
iveresov@3085 3052 }
iveresov@3085 3053 bytes_remaining -= bytes_to_rq;
iveresov@3085 3054 next_alloc_addr += bytes_to_rq;
iveresov@3085 3055 }
iveresov@3085 3056 }
iveresov@3085 3057 // if we made it this far, return true
iveresov@3085 3058 return true;
duke@435 3059 }
duke@435 3060
coleenp@1091 3061 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 3062 bool exec) {
coleenp@1091 3063 return commit_memory(addr, size, exec);
duke@435 3064 }
duke@435 3065
duke@435 3066 bool os::uncommit_memory(char* addr, size_t bytes) {
duke@435 3067 if (bytes == 0) {
duke@435 3068 // Don't bother the OS with noops.
duke@435 3069 return true;
duke@435 3070 }
duke@435 3071 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
duke@435 3072 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
duke@435 3073 return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
duke@435 3074 }
duke@435 3075
duke@435 3076 bool os::release_memory(char* addr, size_t bytes) {
duke@435 3077 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
duke@435 3078 }
duke@435 3079
coleenp@1755 3080 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 3081 return os::commit_memory(addr, size);
coleenp@1755 3082 }
coleenp@1755 3083
coleenp@1755 3084 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 3085 return os::uncommit_memory(addr, size);
coleenp@1755 3086 }
coleenp@1755 3087
coleenp@672 3088 // Set protections specified
coleenp@672 3089 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 3090 bool is_committed) {
coleenp@672 3091 unsigned int p = 0;
coleenp@672 3092 switch (prot) {
coleenp@672 3093 case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
coleenp@672 3094 case MEM_PROT_READ: p = PAGE_READONLY; break;
coleenp@672 3095 case MEM_PROT_RW: p = PAGE_READWRITE; break;
coleenp@672 3096 case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
coleenp@672 3097 default:
coleenp@672 3098 ShouldNotReachHere();
coleenp@672 3099 }
coleenp@672 3100
duke@435 3101 DWORD old_status;
coleenp@672 3102
coleenp@672 3103 // Strange enough, but on Win32 one can change protection only for committed
coleenp@672 3104 // memory, not a big deal anyway, as bytes less or equal than 64K
coleenp@1091 3105 if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
coleenp@672 3106 fatal("cannot commit protection page");
coleenp@672 3107 }
coleenp@672 3108 // One cannot use os::guard_memory() here, as on Win32 guard page
coleenp@672 3109 // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
coleenp@672 3110 //
coleenp@672 3111 // Pages in the region become guard pages. Any attempt to access a guard page
coleenp@672 3112 // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
coleenp@672 3113 // the guard page status. Guard pages thus act as a one-time access alarm.
coleenp@672 3114 return VirtualProtect(addr, bytes, p, &old_status) != 0;
duke@435 3115 }
duke@435 3116
duke@435 3117 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 3118 DWORD old_status;
coleenp@912 3119 return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
duke@435 3120 }
duke@435 3121
duke@435 3122 bool os::unguard_memory(char* addr, size_t bytes) {
duke@435 3123 DWORD old_status;
coleenp@912 3124 return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
duke@435 3125 }
duke@435 3126
duke@435 3127 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
iveresov@3363 3128 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 3129 void os::numa_make_global(char *addr, size_t bytes) { }
iveresov@576 3130 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
duke@435 3131 bool os::numa_topology_changed() { return false; }
iveresov@3118 3132 size_t os::numa_get_groups_num() { return MAX2(numa_node_list_holder.get_count(), 1); }
duke@435 3133 int os::numa_get_group_id() { return 0; }
duke@435 3134 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@3118 3135 if (numa_node_list_holder.get_count() == 0 && size > 0) {
iveresov@3118 3136 // Provide an answer for UMA systems
iveresov@3118 3137 ids[0] = 0;
iveresov@3118 3138 return 1;
iveresov@3118 3139 } else {
iveresov@3118 3140 // check for size bigger than actual groups_num
iveresov@3118 3141 size = MIN2(size, numa_get_groups_num());
iveresov@3118 3142 for (int i = 0; i < (int)size; i++) {
iveresov@3118 3143 ids[i] = numa_node_list_holder.get_node_list_entry(i);
iveresov@3118 3144 }
iveresov@3118 3145 return size;
iveresov@3118 3146 }
duke@435 3147 }
duke@435 3148
duke@435 3149 bool os::get_page_info(char *start, page_info* info) {
duke@435 3150 return false;
duke@435 3151 }
duke@435 3152
duke@435 3153 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 3154 return end;
duke@435 3155 }
duke@435 3156
duke@435 3157 char* os::non_memory_address_word() {
duke@435 3158 // Must never look like an address returned by reserve_memory,
duke@435 3159 // even in its subfields (as defined by the CPU immediate fields,
duke@435 3160 // if the CPU splits constants across multiple instructions).
duke@435 3161 return (char*)-1;
duke@435 3162 }
duke@435 3163
duke@435 3164 #define MAX_ERROR_COUNT 100
duke@435 3165 #define SYS_THREAD_ERROR 0xffffffffUL
duke@435 3166
duke@435 3167 void os::pd_start_thread(Thread* thread) {
duke@435 3168 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
duke@435 3169 // Returns previous suspend state:
duke@435 3170 // 0: Thread was not suspended
duke@435 3171 // 1: Thread is running now
duke@435 3172 // >1: Thread is still suspended.
duke@435 3173 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
duke@435 3174 }
duke@435 3175
duke@435 3176 class HighResolutionInterval {
duke@435 3177 // The default timer resolution seems to be 10 milliseconds.
duke@435 3178 // (Where is this written down?)
duke@435 3179 // If someone wants to sleep for only a fraction of the default,
duke@435 3180 // then we set the timer resolution down to 1 millisecond for
duke@435 3181 // the duration of their interval.
duke@435 3182 // We carefully set the resolution back, since otherwise we
duke@435 3183 // seem to incur an overhead (3%?) that we don't need.
duke@435 3184 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
duke@435 3185 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
duke@435 3186 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
duke@435 3187 // timeBeginPeriod() if the relative error exceeded some threshold.
duke@435 3188 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
duke@435 3189 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
duke@435 3190 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
duke@435 3191 // resolution timers running.
duke@435 3192 private:
duke@435 3193 jlong resolution;
duke@435 3194 public:
duke@435 3195 HighResolutionInterval(jlong ms) {
duke@435 3196 resolution = ms % 10L;
duke@435 3197 if (resolution != 0) {
duke@435 3198 MMRESULT result = timeBeginPeriod(1L);
duke@435 3199 }
duke@435 3200 }
duke@435 3201 ~HighResolutionInterval() {
duke@435 3202 if (resolution != 0) {
duke@435 3203 MMRESULT result = timeEndPeriod(1L);
duke@435 3204 }
duke@435 3205 resolution = 0L;
duke@435 3206 }
duke@435 3207 };
duke@435 3208
duke@435 3209 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
duke@435 3210 jlong limit = (jlong) MAXDWORD;
duke@435 3211
duke@435 3212 while(ms > limit) {
duke@435 3213 int res;
duke@435 3214 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
duke@435 3215 return res;
duke@435 3216 ms -= limit;
duke@435 3217 }
duke@435 3218
duke@435 3219 assert(thread == Thread::current(), "thread consistency check");
duke@435 3220 OSThread* osthread = thread->osthread();
duke@435 3221 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
duke@435 3222 int result;
duke@435 3223 if (interruptable) {
duke@435 3224 assert(thread->is_Java_thread(), "must be java thread");
duke@435 3225 JavaThread *jt = (JavaThread *) thread;
duke@435 3226 ThreadBlockInVM tbivm(jt);
duke@435 3227
duke@435 3228 jt->set_suspend_equivalent();
duke@435 3229 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3230 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3231
duke@435 3232 HANDLE events[1];
duke@435 3233 events[0] = osthread->interrupt_event();
duke@435 3234 HighResolutionInterval *phri=NULL;
duke@435 3235 if(!ForceTimeHighResolution)
duke@435 3236 phri = new HighResolutionInterval( ms );
duke@435 3237 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
duke@435 3238 result = OS_TIMEOUT;
duke@435 3239 } else {
duke@435 3240 ResetEvent(osthread->interrupt_event());
duke@435 3241 osthread->set_interrupted(false);
duke@435 3242 result = OS_INTRPT;
duke@435 3243 }
duke@435 3244 delete phri; //if it is NULL, harmless
duke@435 3245
duke@435 3246 // were we externally suspended while we were waiting?
duke@435 3247 jt->check_and_wait_while_suspended();
duke@435 3248 } else {
duke@435 3249 assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 3250 Sleep((long) ms);
duke@435 3251 result = OS_TIMEOUT;
duke@435 3252 }
duke@435 3253 return result;
duke@435 3254 }
duke@435 3255
duke@435 3256 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3257 void os::infinite_sleep() {
duke@435 3258 while (true) { // sleep forever ...
duke@435 3259 Sleep(100000); // ... 100 seconds at a time
duke@435 3260 }
duke@435 3261 }
duke@435 3262
duke@435 3263 typedef BOOL (WINAPI * STTSignature)(void) ;
duke@435 3264
duke@435 3265 os::YieldResult os::NakedYield() {
duke@435 3266 // Use either SwitchToThread() or Sleep(0)
duke@435 3267 // Consider passing back the return value from SwitchToThread().
zgu@3031 3268 if (os::Kernel32Dll::SwitchToThreadAvailable()) {
zgu@3031 3269 return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
duke@435 3270 } else {
zgu@3031 3271 Sleep(0);
duke@435 3272 }
duke@435 3273 return os::YIELD_UNKNOWN ;
duke@435 3274 }
duke@435 3275
duke@435 3276 void os::yield() { os::NakedYield(); }
duke@435 3277
duke@435 3278 void os::yield_all(int attempts) {
duke@435 3279 // Yields to all threads, including threads with lower priorities
duke@435 3280 Sleep(1);
duke@435 3281 }
duke@435 3282
duke@435 3283 // Win32 only gives you access to seven real priorities at a time,
duke@435 3284 // so we compress Java's ten down to seven. It would be better
duke@435 3285 // if we dynamically adjusted relative priorities.
duke@435 3286
phh@3481 3287 int os::java_to_os_priority[CriticalPriority + 1] = {
duke@435 3288 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3289 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3290 THREAD_PRIORITY_LOWEST, // 2
duke@435 3291 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3292 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3293 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3294 THREAD_PRIORITY_NORMAL, // 6
duke@435 3295 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3296 THREAD_PRIORITY_ABOVE_NORMAL, // 8
duke@435 3297 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
phh@3481 3298 THREAD_PRIORITY_HIGHEST, // 10 MaxPriority
phh@3481 3299 THREAD_PRIORITY_HIGHEST // 11 CriticalPriority
duke@435 3300 };
duke@435 3301
phh@3481 3302 int prio_policy1[CriticalPriority + 1] = {
duke@435 3303 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3304 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3305 THREAD_PRIORITY_LOWEST, // 2
duke@435 3306 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3307 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3308 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3309 THREAD_PRIORITY_ABOVE_NORMAL, // 6
duke@435 3310 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3311 THREAD_PRIORITY_HIGHEST, // 8
duke@435 3312 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
phh@3481 3313 THREAD_PRIORITY_TIME_CRITICAL, // 10 MaxPriority
phh@3481 3314 THREAD_PRIORITY_TIME_CRITICAL // 11 CriticalPriority
duke@435 3315 };
duke@435 3316
duke@435 3317 static int prio_init() {
duke@435 3318 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3319 if (ThreadPriorityPolicy == 1) {
duke@435 3320 int i;
phh@3481 3321 for (i = 0; i < CriticalPriority + 1; i++) {
duke@435 3322 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3323 }
duke@435 3324 }
phh@3481 3325 if (UseCriticalJavaThreadPriority) {
phh@3481 3326 os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
phh@3481 3327 }
duke@435 3328 return 0;
duke@435 3329 }
duke@435 3330
duke@435 3331 OSReturn os::set_native_priority(Thread* thread, int priority) {
duke@435 3332 if (!UseThreadPriorities) return OS_OK;
duke@435 3333 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
duke@435 3334 return ret ? OS_OK : OS_ERR;
duke@435 3335 }
duke@435 3336
duke@435 3337 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
duke@435 3338 if ( !UseThreadPriorities ) {
duke@435 3339 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3340 return OS_OK;
duke@435 3341 }
duke@435 3342 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
duke@435 3343 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
duke@435 3344 assert(false, "GetThreadPriority failed");
duke@435 3345 return OS_ERR;
duke@435 3346 }
duke@435 3347 *priority_ptr = os_prio;
duke@435 3348 return OS_OK;
duke@435 3349 }
duke@435 3350
duke@435 3351
duke@435 3352 // Hint to the underlying OS that a task switch would not be good.
duke@435 3353 // Void return because it's a hint and can fail.
duke@435 3354 void os::hint_no_preempt() {}
duke@435 3355
duke@435 3356 void os::interrupt(Thread* thread) {
duke@435 3357 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3358 "possibility of dangling Thread pointer");
duke@435 3359
duke@435 3360 OSThread* osthread = thread->osthread();
duke@435 3361 osthread->set_interrupted(true);
duke@435 3362 // More than one thread can get here with the same value of osthread,
duke@435 3363 // resulting in multiple notifications. We do, however, want the store
duke@435 3364 // to interrupted() to be visible to other threads before we post
duke@435 3365 // the interrupt event.
duke@435 3366 OrderAccess::release();
duke@435 3367 SetEvent(osthread->interrupt_event());
duke@435 3368 // For JSR166: unpark after setting status
duke@435 3369 if (thread->is_Java_thread())
duke@435 3370 ((JavaThread*)thread)->parker()->unpark();
duke@435 3371
duke@435 3372 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3373 if (ev != NULL) ev->unpark() ;
duke@435 3374
duke@435 3375 }
duke@435 3376
duke@435 3377
duke@435 3378 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3379 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3380 "possibility of dangling Thread pointer");
duke@435 3381
duke@435 3382 OSThread* osthread = thread->osthread();
dholmes@2668 3383 bool interrupted = osthread->interrupted();
dholmes@2668 3384 // There is no synchronization between the setting of the interrupt
dholmes@2668 3385 // and it being cleared here. It is critical - see 6535709 - that
dholmes@2668 3386 // we only clear the interrupt state, and reset the interrupt event,
dholmes@2668 3387 // if we are going to report that we were indeed interrupted - else
dholmes@2668 3388 // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
dholmes@2668 3389 // depending on the timing
dholmes@2668 3390 if (interrupted && clear_interrupted) {
duke@435 3391 osthread->set_interrupted(false);
duke@435 3392 ResetEvent(osthread->interrupt_event());
duke@435 3393 } // Otherwise leave the interrupted state alone
duke@435 3394
duke@435 3395 return interrupted;
duke@435 3396 }
duke@435 3397
duke@435 3398 // Get's a pc (hint) for a running thread. Currently used only for profiling.
duke@435 3399 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3400 CONTEXT context;
duke@435 3401 context.ContextFlags = CONTEXT_CONTROL;
duke@435 3402 HANDLE handle = thread->osthread()->thread_handle();
duke@435 3403 #ifdef _M_IA64
duke@435 3404 assert(0, "Fix get_thread_pc");
duke@435 3405 return ExtendedPC(NULL);
duke@435 3406 #else
duke@435 3407 if (GetThreadContext(handle, &context)) {
duke@435 3408 #ifdef _M_AMD64
duke@435 3409 return ExtendedPC((address) context.Rip);
duke@435 3410 #else
duke@435 3411 return ExtendedPC((address) context.Eip);
duke@435 3412 #endif
duke@435 3413 } else {
duke@435 3414 return ExtendedPC(NULL);
duke@435 3415 }
duke@435 3416 #endif
duke@435 3417 }
duke@435 3418
duke@435 3419 // GetCurrentThreadId() returns DWORD
duke@435 3420 intx os::current_thread_id() { return GetCurrentThreadId(); }
duke@435 3421
duke@435 3422 static int _initial_pid = 0;
duke@435 3423
duke@435 3424 int os::current_process_id()
duke@435 3425 {
duke@435 3426 return (_initial_pid ? _initial_pid : _getpid());
duke@435 3427 }
duke@435 3428
duke@435 3429 int os::win32::_vm_page_size = 0;
duke@435 3430 int os::win32::_vm_allocation_granularity = 0;
duke@435 3431 int os::win32::_processor_type = 0;
duke@435 3432 // Processor level is not available on non-NT systems, use vm_version instead
duke@435 3433 int os::win32::_processor_level = 0;
duke@435 3434 julong os::win32::_physical_memory = 0;
duke@435 3435 size_t os::win32::_default_stack_size = 0;
duke@435 3436
duke@435 3437 intx os::win32::_os_thread_limit = 0;
duke@435 3438 volatile intx os::win32::_os_thread_count = 0;
duke@435 3439
duke@435 3440 bool os::win32::_is_nt = false;
jmasa@824 3441 bool os::win32::_is_windows_2003 = false;
ctornqvi@2520 3442 bool os::win32::_is_windows_server = false;
duke@435 3443
duke@435 3444 void os::win32::initialize_system_info() {
duke@435 3445 SYSTEM_INFO si;
duke@435 3446 GetSystemInfo(&si);
duke@435 3447 _vm_page_size = si.dwPageSize;
duke@435 3448 _vm_allocation_granularity = si.dwAllocationGranularity;
duke@435 3449 _processor_type = si.dwProcessorType;
duke@435 3450 _processor_level = si.wProcessorLevel;
phh@1558 3451 set_processor_count(si.dwNumberOfProcessors);
coleenp@912 3452
poonam@1312 3453 MEMORYSTATUSEX ms;
poonam@1312 3454 ms.dwLength = sizeof(ms);
poonam@1312 3455
duke@435 3456 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
duke@435 3457 // dwMemoryLoad (% of memory in use)
poonam@1312 3458 GlobalMemoryStatusEx(&ms);
poonam@1312 3459 _physical_memory = ms.ullTotalPhys;
duke@435 3460
ctornqvi@2520 3461 OSVERSIONINFOEX oi;
ctornqvi@2520 3462 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
ctornqvi@2520 3463 GetVersionEx((OSVERSIONINFO*)&oi);
duke@435 3464 switch(oi.dwPlatformId) {
duke@435 3465 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
jmasa@824 3466 case VER_PLATFORM_WIN32_NT:
jmasa@824 3467 _is_nt = true;
jmasa@824 3468 {
jmasa@824 3469 int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
jmasa@824 3470 if (os_vers == 5002) {
jmasa@824 3471 _is_windows_2003 = true;
jmasa@824 3472 }
ctornqvi@2520 3473 if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
ctornqvi@2520 3474 oi.wProductType == VER_NT_SERVER) {
ctornqvi@2520 3475 _is_windows_server = true;
ctornqvi@2520 3476 }
jmasa@824 3477 }
jmasa@824 3478 break;
duke@435 3479 default: fatal("Unknown platform");
duke@435 3480 }
duke@435 3481
duke@435 3482 _default_stack_size = os::current_stack_size();
duke@435 3483 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
duke@435 3484 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
duke@435 3485 "stack size not a multiple of page size");
duke@435 3486
duke@435 3487 initialize_performance_counter();
duke@435 3488
duke@435 3489 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
duke@435 3490 // known to deadlock the system, if the VM issues to thread operations with
duke@435 3491 // a too high frequency, e.g., such as changing the priorities.
duke@435 3492 // The 6000 seems to work well - no deadlocks has been notices on the test
duke@435 3493 // programs that we have seen experience this problem.
duke@435 3494 if (!os::win32::is_nt()) {
duke@435 3495 StarvationMonitorInterval = 6000;
duke@435 3496 }
duke@435 3497 }
duke@435 3498
duke@435 3499
zgu@3031 3500 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
zgu@3031 3501 char path[MAX_PATH];
zgu@3031 3502 DWORD size;
zgu@3031 3503 DWORD pathLen = (DWORD)sizeof(path);
zgu@3031 3504 HINSTANCE result = NULL;
zgu@3031 3505
zgu@3031 3506 // only allow library name without path component
zgu@3031 3507 assert(strchr(name, '\\') == NULL, "path not allowed");
zgu@3031 3508 assert(strchr(name, ':') == NULL, "path not allowed");
zgu@3031 3509 if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
zgu@3031 3510 jio_snprintf(ebuf, ebuflen,
zgu@3031 3511 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
zgu@3031 3512 return NULL;
zgu@3031 3513 }
zgu@3031 3514
zgu@3031 3515 // search system directory
zgu@3031 3516 if ((size = GetSystemDirectory(path, pathLen)) > 0) {
zgu@3031 3517 strcat(path, "\\");
zgu@3031 3518 strcat(path, name);
zgu@3031 3519 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3520 return result;
zgu@3031 3521 }
zgu@3031 3522 }
zgu@3031 3523
zgu@3031 3524 // try Windows directory
zgu@3031 3525 if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
zgu@3031 3526 strcat(path, "\\");
zgu@3031 3527 strcat(path, name);
zgu@3031 3528 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3529 return result;
zgu@3031 3530 }
zgu@3031 3531 }
zgu@3031 3532
zgu@3031 3533 jio_snprintf(ebuf, ebuflen,
zgu@3031 3534 "os::win32::load_windows_dll() cannot load %s from system directories.", name);
zgu@3031 3535 return NULL;
zgu@3031 3536 }
zgu@3031 3537
duke@435 3538 void os::win32::setmode_streams() {
duke@435 3539 _setmode(_fileno(stdin), _O_BINARY);
duke@435 3540 _setmode(_fileno(stdout), _O_BINARY);
duke@435 3541 _setmode(_fileno(stderr), _O_BINARY);
duke@435 3542 }
duke@435 3543
duke@435 3544
sla@2584 3545 bool os::is_debugger_attached() {
sla@2584 3546 return IsDebuggerPresent() ? true : false;
sla@2584 3547 }
sla@2584 3548
sla@2584 3549
sla@2584 3550 void os::wait_for_keypress_at_exit(void) {
sla@2584 3551 if (PauseAtExit) {
sla@2584 3552 fprintf(stderr, "Press any key to continue...\n");
sla@2584 3553 fgetc(stdin);
sla@2584 3554 }
sla@2584 3555 }
sla@2584 3556
sla@2584 3557
duke@435 3558 int os::message_box(const char* title, const char* message) {
duke@435 3559 int result = MessageBox(NULL, message, title,
duke@435 3560 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
duke@435 3561 return result == IDYES;
duke@435 3562 }
duke@435 3563
duke@435 3564 int os::allocate_thread_local_storage() {
duke@435 3565 return TlsAlloc();
duke@435 3566 }
duke@435 3567
duke@435 3568
duke@435 3569 void os::free_thread_local_storage(int index) {
duke@435 3570 TlsFree(index);
duke@435 3571 }
duke@435 3572
duke@435 3573
duke@435 3574 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 3575 TlsSetValue(index, value);
duke@435 3576 assert(thread_local_storage_at(index) == value, "Just checking");
duke@435 3577 }
duke@435 3578
duke@435 3579
duke@435 3580 void* os::thread_local_storage_at(int index) {
duke@435 3581 return TlsGetValue(index);
duke@435 3582 }
duke@435 3583
duke@435 3584
duke@435 3585 #ifndef PRODUCT
duke@435 3586 #ifndef _WIN64
duke@435 3587 // Helpers to check whether NX protection is enabled
duke@435 3588 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
duke@435 3589 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 3590 pex->ExceptionRecord->NumberParameters > 0 &&
duke@435 3591 pex->ExceptionRecord->ExceptionInformation[0] ==
duke@435 3592 EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 3593 return EXCEPTION_EXECUTE_HANDLER;
duke@435 3594 }
duke@435 3595 return EXCEPTION_CONTINUE_SEARCH;
duke@435 3596 }
duke@435 3597
duke@435 3598 void nx_check_protection() {
duke@435 3599 // If NX is enabled we'll get an exception calling into code on the stack
duke@435 3600 char code[] = { (char)0xC3 }; // ret
duke@435 3601 void *code_ptr = (void *)code;
duke@435 3602 __try {
duke@435 3603 __asm call code_ptr
duke@435 3604 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 3605 tty->print_raw_cr("NX protection detected.");
duke@435 3606 }
duke@435 3607 }
duke@435 3608 #endif // _WIN64
duke@435 3609 #endif // PRODUCT
duke@435 3610
duke@435 3611 // this is called _before_ the global arguments have been parsed
duke@435 3612 void os::init(void) {
duke@435 3613 _initial_pid = _getpid();
duke@435 3614
duke@435 3615 init_random(1234567);
duke@435 3616
duke@435 3617 win32::initialize_system_info();
duke@435 3618 win32::setmode_streams();
duke@435 3619 init_page_sizes((size_t) win32::vm_page_size());
duke@435 3620
duke@435 3621 // For better scalability on MP systems (must be called after initialize_system_info)
duke@435 3622 #ifndef PRODUCT
duke@435 3623 if (is_MP()) {
duke@435 3624 NoYieldsInMicrolock = true;
duke@435 3625 }
duke@435 3626 #endif
jmasa@824 3627 // This may be overridden later when argument processing is done.
jmasa@824 3628 FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
jmasa@824 3629 os::win32::is_windows_2003());
jmasa@824 3630
duke@435 3631 // Initialize main_process and main_thread
duke@435 3632 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
jmasa@824 3633 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
duke@435 3634 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
duke@435 3635 fatal("DuplicateHandle failed\n");
duke@435 3636 }
duke@435 3637 main_thread_id = (int) GetCurrentThreadId();
duke@435 3638 }
duke@435 3639
duke@435 3640 // To install functions for atexit processing
duke@435 3641 extern "C" {
duke@435 3642 static void perfMemory_exit_helper() {
duke@435 3643 perfMemory_exit();
duke@435 3644 }
duke@435 3645 }
duke@435 3646
duke@435 3647 // this is called _after_ the global arguments have been parsed
duke@435 3648 jint os::init_2(void) {
duke@435 3649 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3650 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
duke@435 3651 guarantee( polling_page != NULL, "Reserve Failed for polling page");
duke@435 3652
duke@435 3653 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
duke@435 3654 guarantee( return_page != NULL, "Commit Failed for polling page");
duke@435 3655
duke@435 3656 os::set_polling_page( polling_page );
duke@435 3657
duke@435 3658 #ifndef PRODUCT
duke@435 3659 if( Verbose && PrintMiscellaneous )
duke@435 3660 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3661 #endif
duke@435 3662
duke@435 3663 if (!UseMembar) {
coleenp@1091 3664 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
duke@435 3665 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
duke@435 3666
coleenp@1091 3667 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
duke@435 3668 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
duke@435 3669
duke@435 3670 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3671
duke@435 3672 #ifndef PRODUCT
duke@435 3673 if(Verbose && PrintMiscellaneous)
duke@435 3674 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3675 #endif
iveresov@3085 3676 }
duke@435 3677
iveresov@2850 3678 os::large_page_init();
duke@435 3679
duke@435 3680 // Setup Windows Exceptions
duke@435 3681
duke@435 3682 // On Itanium systems, Structured Exception Handling does not
duke@435 3683 // work since stack frames must be walkable by the OS. Since
duke@435 3684 // much of our code is dynamically generated, and we do not have
duke@435 3685 // proper unwind .xdata sections, the system simply exits
duke@435 3686 // rather than delivering the exception. To work around
duke@435 3687 // this we use VectorExceptions instead.
duke@435 3688 #ifdef _WIN64
duke@435 3689 if (UseVectoredExceptions) {
duke@435 3690 topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
duke@435 3691 }
duke@435 3692 #endif
duke@435 3693
duke@435 3694 // for debugging float code generation bugs
duke@435 3695 if (ForceFloatExceptions) {
duke@435 3696 #ifndef _WIN64
duke@435 3697 static long fp_control_word = 0;
duke@435 3698 __asm { fstcw fp_control_word }
duke@435 3699 // see Intel PPro Manual, Vol. 2, p 7-16
duke@435 3700 const long precision = 0x20;
duke@435 3701 const long underflow = 0x10;
duke@435 3702 const long overflow = 0x08;
duke@435 3703 const long zero_div = 0x04;
duke@435 3704 const long denorm = 0x02;
duke@435 3705 const long invalid = 0x01;
duke@435 3706 fp_control_word |= invalid;
duke@435 3707 __asm { fldcw fp_control_word }
duke@435 3708 #endif
duke@435 3709 }
duke@435 3710
duke@435 3711 // If stack_commit_size is 0, windows will reserve the default size,
duke@435 3712 // but only commit a small portion of it.
duke@435 3713 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
duke@435 3714 size_t default_reserve_size = os::win32::default_stack_size();
duke@435 3715 size_t actual_reserve_size = stack_commit_size;
duke@435 3716 if (stack_commit_size < default_reserve_size) {
duke@435 3717 // If stack_commit_size == 0, we want this too
duke@435 3718 actual_reserve_size = default_reserve_size;
duke@435 3719 }
duke@435 3720
coleenp@2222 3721 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 3722 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 3723 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 3724 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 3725 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 3726 size_t min_stack_allowed =
coleenp@2222 3727 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 3728 2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
coleenp@2222 3729 if (actual_reserve_size < min_stack_allowed) {
coleenp@2222 3730 tty->print_cr("\nThe stack size specified is too small, "
coleenp@2222 3731 "Specify at least %dk",
coleenp@2222 3732 min_stack_allowed / K);
coleenp@2222 3733 return JNI_ERR;
coleenp@2222 3734 }
coleenp@2222 3735
duke@435 3736 JavaThread::set_stack_size_at_create(stack_commit_size);
duke@435 3737
duke@435 3738 // Calculate theoretical max. size of Threads to guard gainst artifical
duke@435 3739 // out-of-memory situations, where all available address-space has been
duke@435 3740 // reserved by thread stacks.
duke@435 3741 assert(actual_reserve_size != 0, "Must have a stack");
duke@435 3742
duke@435 3743 // Calculate the thread limit when we should start doing Virtual Memory
duke@435 3744 // banging. Currently when the threads will have used all but 200Mb of space.
duke@435 3745 //
duke@435 3746 // TODO: consider performing a similar calculation for commit size instead
duke@435 3747 // as reserve size, since on a 64-bit platform we'll run into that more
duke@435 3748 // often than running out of virtual memory space. We can use the
duke@435 3749 // lower value of the two calculations as the os_thread_limit.
coleenp@548 3750 size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
duke@435 3751 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
duke@435 3752
duke@435 3753 // at exit methods are called in the reverse order of their registration.
duke@435 3754 // there is no limit to the number of functions registered. atexit does
duke@435 3755 // not set errno.
duke@435 3756
duke@435 3757 if (PerfAllowAtExitRegistration) {
duke@435 3758 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3759 // atexit functions can be delayed until process exit time, which
duke@435 3760 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3761 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3762
duke@435 3763 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3764 // the future if the appropriate cleanup code can be added to the
duke@435 3765 // VM_Exit VMOperation's doit method.
duke@435 3766 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3767 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
duke@435 3768 }
duke@435 3769 }
duke@435 3770
duke@435 3771 #ifndef _WIN64
duke@435 3772 // Print something if NX is enabled (win32 on AMD64)
duke@435 3773 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
duke@435 3774 #endif
duke@435 3775
duke@435 3776 // initialize thread priority policy
duke@435 3777 prio_init();
duke@435 3778
iveresov@3118 3779 if (UseNUMA && !ForceNUMA) {
iveresov@3118 3780 UseNUMA = false; // We don't fully support this yet
iveresov@3118 3781 }
iveresov@3118 3782
iveresov@3085 3783 if (UseNUMAInterleaving) {
iveresov@3085 3784 // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
iveresov@3085 3785 bool success = numa_interleaving_init();
iveresov@3085 3786 if (!success) UseNUMAInterleaving = false;
iveresov@897 3787 }
iveresov@897 3788
duke@435 3789 return JNI_OK;
duke@435 3790 }
duke@435 3791
bobv@2036 3792 void os::init_3(void) {
bobv@2036 3793 return;
bobv@2036 3794 }
duke@435 3795
duke@435 3796 // Mark the polling page as unreadable
duke@435 3797 void os::make_polling_page_unreadable(void) {
duke@435 3798 DWORD old_status;
duke@435 3799 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
duke@435 3800 fatal("Could not disable polling page");
duke@435 3801 };
duke@435 3802
duke@435 3803 // Mark the polling page as readable
duke@435 3804 void os::make_polling_page_readable(void) {
duke@435 3805 DWORD old_status;
duke@435 3806 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
duke@435 3807 fatal("Could not enable polling page");
duke@435 3808 };
duke@435 3809
duke@435 3810
duke@435 3811 int os::stat(const char *path, struct stat *sbuf) {
duke@435 3812 char pathbuf[MAX_PATH];
duke@435 3813 if (strlen(path) > MAX_PATH - 1) {
duke@435 3814 errno = ENAMETOOLONG;
duke@435 3815 return -1;
duke@435 3816 }
ikrylov@2322 3817 os::native_path(strcpy(pathbuf, path));
duke@435 3818 int ret = ::stat(pathbuf, sbuf);
duke@435 3819 if (sbuf != NULL && UseUTCFileTimestamp) {
duke@435 3820 // Fix for 6539723. st_mtime returned from stat() is dependent on
duke@435 3821 // the system timezone and so can return different values for the
duke@435 3822 // same file if/when daylight savings time changes. This adjustment
duke@435 3823 // makes sure the same timestamp is returned regardless of the TZ.
duke@435 3824 //
duke@435 3825 // See:
duke@435 3826 // http://msdn.microsoft.com/library/
duke@435 3827 // default.asp?url=/library/en-us/sysinfo/base/
duke@435 3828 // time_zone_information_str.asp
duke@435 3829 // and
duke@435 3830 // http://msdn.microsoft.com/library/default.asp?url=
duke@435 3831 // /library/en-us/sysinfo/base/settimezoneinformation.asp
duke@435 3832 //
duke@435 3833 // NOTE: there is a insidious bug here: If the timezone is changed
duke@435 3834 // after the call to stat() but before 'GetTimeZoneInformation()', then
duke@435 3835 // the adjustment we do here will be wrong and we'll return the wrong
duke@435 3836 // value (which will likely end up creating an invalid class data
duke@435 3837 // archive). Absent a better API for this, or some time zone locking
duke@435 3838 // mechanism, we'll have to live with this risk.
duke@435 3839 TIME_ZONE_INFORMATION tz;
duke@435 3840 DWORD tzid = GetTimeZoneInformation(&tz);
duke@435 3841 int daylightBias =
duke@435 3842 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
duke@435 3843 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
duke@435 3844 }
duke@435 3845 return ret;
duke@435 3846 }
duke@435 3847
duke@435 3848
duke@435 3849 #define FT2INT64(ft) \
duke@435 3850 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
duke@435 3851
duke@435 3852
duke@435 3853 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 3854 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 3855 // of a thread.
duke@435 3856 //
duke@435 3857 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 3858 // the fast estimate available on the platform.
duke@435 3859
duke@435 3860 // current_thread_cpu_time() is not optimized for Windows yet
duke@435 3861 jlong os::current_thread_cpu_time() {
duke@435 3862 // return user + sys since the cost is the same
duke@435 3863 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
duke@435 3864 }
duke@435 3865
duke@435 3866 jlong os::thread_cpu_time(Thread* thread) {
duke@435 3867 // consistent with what current_thread_cpu_time() returns.
duke@435 3868 return os::thread_cpu_time(thread, true /* user+sys */);
duke@435 3869 }
duke@435 3870
duke@435 3871 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 3872 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 3873 }
duke@435 3874
duke@435 3875 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
duke@435 3876 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
duke@435 3877 // If this function changes, os::is_thread_cpu_time_supported() should too
duke@435 3878 if (os::win32::is_nt()) {
duke@435 3879 FILETIME CreationTime;
duke@435 3880 FILETIME ExitTime;
duke@435 3881 FILETIME KernelTime;
duke@435 3882 FILETIME UserTime;
duke@435 3883
duke@435 3884 if ( GetThreadTimes(thread->osthread()->thread_handle(),
duke@435 3885 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3886 return -1;
duke@435 3887 else
duke@435 3888 if (user_sys_cpu_time) {
duke@435 3889 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
duke@435 3890 } else {
duke@435 3891 return FT2INT64(UserTime) * 100;
duke@435 3892 }
duke@435 3893 } else {
duke@435 3894 return (jlong) timeGetTime() * 1000000;
duke@435 3895 }
duke@435 3896 }
duke@435 3897
duke@435 3898 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3899 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3900 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3901 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3902 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3903 }
duke@435 3904
duke@435 3905 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3906 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3907 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3908 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3909 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3910 }
duke@435 3911
duke@435 3912 bool os::is_thread_cpu_time_supported() {
duke@435 3913 // see os::thread_cpu_time
duke@435 3914 if (os::win32::is_nt()) {
duke@435 3915 FILETIME CreationTime;
duke@435 3916 FILETIME ExitTime;
duke@435 3917 FILETIME KernelTime;
duke@435 3918 FILETIME UserTime;
duke@435 3919
duke@435 3920 if ( GetThreadTimes(GetCurrentThread(),
duke@435 3921 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3922 return false;
duke@435 3923 else
duke@435 3924 return true;
duke@435 3925 } else {
duke@435 3926 return false;
duke@435 3927 }
duke@435 3928 }
duke@435 3929
duke@435 3930 // Windows does't provide a loadavg primitive so this is stubbed out for now.
duke@435 3931 // It does have primitives (PDH API) to get CPU usage and run queue length.
duke@435 3932 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
duke@435 3933 // If we wanted to implement loadavg on Windows, we have a few options:
duke@435 3934 //
duke@435 3935 // a) Query CPU usage and run queue length and "fake" an answer by
duke@435 3936 // returning the CPU usage if it's under 100%, and the run queue
duke@435 3937 // length otherwise. It turns out that querying is pretty slow
duke@435 3938 // on Windows, on the order of 200 microseconds on a fast machine.
duke@435 3939 // Note that on the Windows the CPU usage value is the % usage
duke@435 3940 // since the last time the API was called (and the first call
duke@435 3941 // returns 100%), so we'd have to deal with that as well.
duke@435 3942 //
duke@435 3943 // b) Sample the "fake" answer using a sampling thread and store
duke@435 3944 // the answer in a global variable. The call to loadavg would
duke@435 3945 // just return the value of the global, avoiding the slow query.
duke@435 3946 //
duke@435 3947 // c) Sample a better answer using exponential decay to smooth the
duke@435 3948 // value. This is basically the algorithm used by UNIX kernels.
duke@435 3949 //
duke@435 3950 // Note that sampling thread starvation could affect both (b) and (c).
duke@435 3951 int os::loadavg(double loadavg[], int nelem) {
duke@435 3952 return -1;
duke@435 3953 }
duke@435 3954
duke@435 3955
duke@435 3956 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
duke@435 3957 bool os::dont_yield() {
duke@435 3958 return DontYieldALot;
duke@435 3959 }
duke@435 3960
ikrylov@2322 3961 // This method is a slightly reworked copy of JDK's sysOpen
ikrylov@2322 3962 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 3963
ikrylov@2322 3964 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 3965 char pathbuf[MAX_PATH];
ikrylov@2322 3966
ikrylov@2322 3967 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 3968 errno = ENAMETOOLONG;
ikrylov@2322 3969 return -1;
ikrylov@2322 3970 }
ikrylov@2322 3971 os::native_path(strcpy(pathbuf, path));
ikrylov@2322 3972 return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
ikrylov@2322 3973 }
ikrylov@2322 3974
duke@435 3975 // Is a (classpath) directory empty?
duke@435 3976 bool os::dir_is_empty(const char* path) {
duke@435 3977 WIN32_FIND_DATA fd;
duke@435 3978 HANDLE f = FindFirstFile(path, &fd);
duke@435 3979 if (f == INVALID_HANDLE_VALUE) {
duke@435 3980 return true;
duke@435 3981 }
duke@435 3982 FindClose(f);
duke@435 3983 return false;
duke@435 3984 }
duke@435 3985
duke@435 3986 // create binary file, rewriting existing file if required
duke@435 3987 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 3988 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
duke@435 3989 if (!rewrite_existing) {
duke@435 3990 oflags |= _O_EXCL;
duke@435 3991 }
duke@435 3992 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
duke@435 3993 }
duke@435 3994
duke@435 3995 // return current position of file pointer
duke@435 3996 jlong os::current_file_offset(int fd) {
duke@435 3997 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
duke@435 3998 }
duke@435 3999
duke@435 4000 // move file pointer to the specified offset
duke@435 4001 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4002 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
duke@435 4003 }
duke@435 4004
duke@435 4005
ikrylov@2322 4006 jlong os::lseek(int fd, jlong offset, int whence) {
ikrylov@2322 4007 return (jlong) ::_lseeki64(fd, offset, whence);
ikrylov@2322 4008 }
ikrylov@2322 4009
ikrylov@2322 4010 // This method is a slightly reworked copy of JDK's sysNativePath
ikrylov@2322 4011 // from src/windows/hpi/src/path_md.c
ikrylov@2322 4012
ikrylov@2322 4013 /* Convert a pathname to native format. On win32, this involves forcing all
ikrylov@2322 4014 separators to be '\\' rather than '/' (both are legal inputs, but Win95
ikrylov@2322 4015 sometimes rejects '/') and removing redundant separators. The input path is
ikrylov@2322 4016 assumed to have been converted into the character encoding used by the local
ikrylov@2322 4017 system. Because this might be a double-byte encoding, care is taken to
ikrylov@2322 4018 treat double-byte lead characters correctly.
ikrylov@2322 4019
ikrylov@2322 4020 This procedure modifies the given path in place, as the result is never
ikrylov@2322 4021 longer than the original. There is no error return; this operation always
ikrylov@2322 4022 succeeds. */
ikrylov@2322 4023 char * os::native_path(char *path) {
ikrylov@2322 4024 char *src = path, *dst = path, *end = path;
ikrylov@2322 4025 char *colon = NULL; /* If a drive specifier is found, this will
ikrylov@2322 4026 point to the colon following the drive
ikrylov@2322 4027 letter */
ikrylov@2322 4028
ikrylov@2322 4029 /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
ikrylov@2322 4030 assert(((!::IsDBCSLeadByte('/'))
ikrylov@2322 4031 && (!::IsDBCSLeadByte('\\'))
ikrylov@2322 4032 && (!::IsDBCSLeadByte(':'))),
ikrylov@2322 4033 "Illegal lead byte");
ikrylov@2322 4034
ikrylov@2322 4035 /* Check for leading separators */
ikrylov@2322 4036 #define isfilesep(c) ((c) == '/' || (c) == '\\')
ikrylov@2322 4037 while (isfilesep(*src)) {
ikrylov@2322 4038 src++;
ikrylov@2322 4039 }
ikrylov@2322 4040
ikrylov@2322 4041 if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
ikrylov@2322 4042 /* Remove leading separators if followed by drive specifier. This
ikrylov@2322 4043 hack is necessary to support file URLs containing drive
ikrylov@2322 4044 specifiers (e.g., "file://c:/path"). As a side effect,
ikrylov@2322 4045 "/c:/path" can be used as an alternative to "c:/path". */
ikrylov@2322 4046 *dst++ = *src++;
ikrylov@2322 4047 colon = dst;
ikrylov@2322 4048 *dst++ = ':';
ikrylov@2322 4049 src++;
ikrylov@2322 4050 } else {
ikrylov@2322 4051 src = path;
ikrylov@2322 4052 if (isfilesep(src[0]) && isfilesep(src[1])) {
ikrylov@2322 4053 /* UNC pathname: Retain first separator; leave src pointed at
ikrylov@2322 4054 second separator so that further separators will be collapsed
ikrylov@2322 4055 into the second separator. The result will be a pathname
ikrylov@2322 4056 beginning with "\\\\" followed (most likely) by a host name. */
ikrylov@2322 4057 src = dst = path + 1;
ikrylov@2322 4058 path[0] = '\\'; /* Force first separator to '\\' */
ikrylov@2322 4059 }
ikrylov@2322 4060 }
ikrylov@2322 4061
ikrylov@2322 4062 end = dst;
ikrylov@2322 4063
ikrylov@2322 4064 /* Remove redundant separators from remainder of path, forcing all
ikrylov@2322 4065 separators to be '\\' rather than '/'. Also, single byte space
ikrylov@2322 4066 characters are removed from the end of the path because those
ikrylov@2322 4067 are not legal ending characters on this operating system.
ikrylov@2322 4068 */
ikrylov@2322 4069 while (*src != '\0') {
ikrylov@2322 4070 if (isfilesep(*src)) {
ikrylov@2322 4071 *dst++ = '\\'; src++;
ikrylov@2322 4072 while (isfilesep(*src)) src++;
ikrylov@2322 4073 if (*src == '\0') {
ikrylov@2322 4074 /* Check for trailing separator */
ikrylov@2322 4075 end = dst;
ikrylov@2322 4076 if (colon == dst - 2) break; /* "z:\\" */
ikrylov@2322 4077 if (dst == path + 1) break; /* "\\" */
ikrylov@2322 4078 if (dst == path + 2 && isfilesep(path[0])) {
ikrylov@2322 4079 /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
ikrylov@2322 4080 beginning of a UNC pathname. Even though it is not, by
ikrylov@2322 4081 itself, a valid UNC pathname, we leave it as is in order
ikrylov@2322 4082 to be consistent with the path canonicalizer as well
ikrylov@2322 4083 as the win32 APIs, which treat this case as an invalid
ikrylov@2322 4084 UNC pathname rather than as an alias for the root
ikrylov@2322 4085 directory of the current drive. */
ikrylov@2322 4086 break;
ikrylov@2322 4087 }
ikrylov@2322 4088 end = --dst; /* Path does not denote a root directory, so
ikrylov@2322 4089 remove trailing separator */
ikrylov@2322 4090 break;
ikrylov@2322 4091 }
ikrylov@2322 4092 end = dst;
ikrylov@2322 4093 } else {
ikrylov@2322 4094 if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
ikrylov@2322 4095 *dst++ = *src++;
ikrylov@2322 4096 if (*src) *dst++ = *src++;
ikrylov@2322 4097 end = dst;
ikrylov@2322 4098 } else { /* Copy a single-byte character */
ikrylov@2322 4099 char c = *src++;
ikrylov@2322 4100 *dst++ = c;
ikrylov@2322 4101 /* Space is not a legal ending character */
ikrylov@2322 4102 if (c != ' ') end = dst;
ikrylov@2322 4103 }
ikrylov@2322 4104 }
ikrylov@2322 4105 }
ikrylov@2322 4106
ikrylov@2322 4107 *end = '\0';
ikrylov@2322 4108
ikrylov@2322 4109 /* For "z:", add "." to work around a bug in the C runtime library */
ikrylov@2322 4110 if (colon == dst - 1) {
ikrylov@2322 4111 path[2] = '.';
ikrylov@2322 4112 path[3] = '\0';
ikrylov@2322 4113 }
ikrylov@2322 4114
ikrylov@2322 4115 #ifdef DEBUG
ikrylov@2322 4116 jio_fprintf(stderr, "sysNativePath: %s\n", path);
ikrylov@2322 4117 #endif DEBUG
ikrylov@2322 4118 return path;
ikrylov@2322 4119 }
ikrylov@2322 4120
ikrylov@2322 4121 // This code is a copy of JDK's sysSetLength
ikrylov@2322 4122 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4123
ikrylov@2322 4124 int os::ftruncate(int fd, jlong length) {
ikrylov@2322 4125 HANDLE h = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4126 long high = (long)(length >> 32);
ikrylov@2322 4127 DWORD ret;
ikrylov@2322 4128
ikrylov@2322 4129 if (h == (HANDLE)(-1)) {
ikrylov@2322 4130 return -1;
ikrylov@2322 4131 }
ikrylov@2322 4132
ikrylov@2322 4133 ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
ikrylov@2322 4134 if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
ikrylov@2322 4135 return -1;
ikrylov@2322 4136 }
ikrylov@2322 4137
ikrylov@2322 4138 if (::SetEndOfFile(h) == FALSE) {
ikrylov@2322 4139 return -1;
ikrylov@2322 4140 }
ikrylov@2322 4141
ikrylov@2322 4142 return 0;
ikrylov@2322 4143 }
ikrylov@2322 4144
ikrylov@2322 4145
ikrylov@2322 4146 // This code is a copy of JDK's sysSync
ikrylov@2322 4147 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4148 // except for the legacy workaround for a bug in Win 98
ikrylov@2322 4149
ikrylov@2322 4150 int os::fsync(int fd) {
ikrylov@2322 4151 HANDLE handle = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4152
ikrylov@2322 4153 if ( (!::FlushFileBuffers(handle)) &&
ikrylov@2322 4154 (GetLastError() != ERROR_ACCESS_DENIED) ) {
ikrylov@2322 4155 /* from winerror.h */
ikrylov@2322 4156 return -1;
ikrylov@2322 4157 }
ikrylov@2322 4158 return 0;
ikrylov@2322 4159 }
ikrylov@2322 4160
ikrylov@2322 4161 static int nonSeekAvailable(int, long *);
ikrylov@2322 4162 static int stdinAvailable(int, long *);
ikrylov@2322 4163
ikrylov@2322 4164 #define S_ISCHR(mode) (((mode) & _S_IFCHR) == _S_IFCHR)
ikrylov@2322 4165 #define S_ISFIFO(mode) (((mode) & _S_IFIFO) == _S_IFIFO)
ikrylov@2322 4166
ikrylov@2322 4167 // This code is a copy of JDK's sysAvailable
ikrylov@2322 4168 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4169
ikrylov@2322 4170 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4171 jlong cur, end;
ikrylov@2322 4172 struct _stati64 stbuf64;
ikrylov@2322 4173
ikrylov@2322 4174 if (::_fstati64(fd, &stbuf64) >= 0) {
ikrylov@2322 4175 int mode = stbuf64.st_mode;
ikrylov@2322 4176 if (S_ISCHR(mode) || S_ISFIFO(mode)) {
ikrylov@2322 4177 int ret;
ikrylov@2322 4178 long lpbytes;
ikrylov@2322 4179 if (fd == 0) {
ikrylov@2322 4180 ret = stdinAvailable(fd, &lpbytes);
ikrylov@2322 4181 } else {
ikrylov@2322 4182 ret = nonSeekAvailable(fd, &lpbytes);
ikrylov@2322 4183 }
ikrylov@2322 4184 (*bytes) = (jlong)(lpbytes);
ikrylov@2322 4185 return ret;
ikrylov@2322 4186 }
ikrylov@2322 4187 if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4188 return FALSE;
ikrylov@2322 4189 } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4190 return FALSE;
ikrylov@2322 4191 } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4192 return FALSE;
ikrylov@2322 4193 }
ikrylov@2322 4194 *bytes = end - cur;
ikrylov@2322 4195 return TRUE;
ikrylov@2322 4196 } else {
ikrylov@2322 4197 return FALSE;
ikrylov@2322 4198 }
ikrylov@2322 4199 }
ikrylov@2322 4200
ikrylov@2322 4201 // This code is a copy of JDK's nonSeekAvailable
ikrylov@2322 4202 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4203
ikrylov@2322 4204 static int nonSeekAvailable(int fd, long *pbytes) {
ikrylov@2322 4205 /* This is used for available on non-seekable devices
ikrylov@2322 4206 * (like both named and anonymous pipes, such as pipes
ikrylov@2322 4207 * connected to an exec'd process).
ikrylov@2322 4208 * Standard Input is a special case.
ikrylov@2322 4209 *
ikrylov@2322 4210 */
ikrylov@2322 4211 HANDLE han;
ikrylov@2322 4212
ikrylov@2322 4213 if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
ikrylov@2322 4214 return FALSE;
ikrylov@2322 4215 }
ikrylov@2322 4216
ikrylov@2322 4217 if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
ikrylov@2322 4218 /* PeekNamedPipe fails when at EOF. In that case we
ikrylov@2322 4219 * simply make *pbytes = 0 which is consistent with the
ikrylov@2322 4220 * behavior we get on Solaris when an fd is at EOF.
ikrylov@2322 4221 * The only alternative is to raise an Exception,
ikrylov@2322 4222 * which isn't really warranted.
ikrylov@2322 4223 */
ikrylov@2322 4224 if (::GetLastError() != ERROR_BROKEN_PIPE) {
ikrylov@2322 4225 return FALSE;
ikrylov@2322 4226 }
ikrylov@2322 4227 *pbytes = 0;
ikrylov@2322 4228 }
ikrylov@2322 4229 return TRUE;
ikrylov@2322 4230 }
ikrylov@2322 4231
ikrylov@2322 4232 #define MAX_INPUT_EVENTS 2000
ikrylov@2322 4233
ikrylov@2322 4234 // This code is a copy of JDK's stdinAvailable
ikrylov@2322 4235 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4236
ikrylov@2322 4237 static int stdinAvailable(int fd, long *pbytes) {
ikrylov@2322 4238 HANDLE han;
ikrylov@2322 4239 DWORD numEventsRead = 0; /* Number of events read from buffer */
ikrylov@2322 4240 DWORD numEvents = 0; /* Number of events in buffer */
ikrylov@2322 4241 DWORD i = 0; /* Loop index */
ikrylov@2322 4242 DWORD curLength = 0; /* Position marker */
ikrylov@2322 4243 DWORD actualLength = 0; /* Number of bytes readable */
ikrylov@2322 4244 BOOL error = FALSE; /* Error holder */
ikrylov@2322 4245 INPUT_RECORD *lpBuffer; /* Pointer to records of input events */
ikrylov@2322 4246
ikrylov@2322 4247 if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
ikrylov@2322 4248 return FALSE;
ikrylov@2322 4249 }
ikrylov@2322 4250
ikrylov@2322 4251 /* Construct an array of input records in the console buffer */
ikrylov@2322 4252 error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
ikrylov@2322 4253 if (error == 0) {
ikrylov@2322 4254 return nonSeekAvailable(fd, pbytes);
ikrylov@2322 4255 }
ikrylov@2322 4256
ikrylov@2322 4257 /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
ikrylov@2322 4258 if (numEvents > MAX_INPUT_EVENTS) {
ikrylov@2322 4259 numEvents = MAX_INPUT_EVENTS;
ikrylov@2322 4260 }
ikrylov@2322 4261
ikrylov@2322 4262 lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD));
ikrylov@2322 4263 if (lpBuffer == NULL) {
ikrylov@2322 4264 return FALSE;
ikrylov@2322 4265 }
ikrylov@2322 4266
ikrylov@2322 4267 error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
ikrylov@2322 4268 if (error == 0) {
ikrylov@2322 4269 os::free(lpBuffer);
ikrylov@2322 4270 return FALSE;
ikrylov@2322 4271 }
ikrylov@2322 4272
ikrylov@2322 4273 /* Examine input records for the number of bytes available */
ikrylov@2322 4274 for(i=0; i<numEvents; i++) {
ikrylov@2322 4275 if (lpBuffer[i].EventType == KEY_EVENT) {
ikrylov@2322 4276
ikrylov@2322 4277 KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
ikrylov@2322 4278 &(lpBuffer[i].Event);
ikrylov@2322 4279 if (keyRecord->bKeyDown == TRUE) {
ikrylov@2322 4280 CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
ikrylov@2322 4281 curLength++;
ikrylov@2322 4282 if (*keyPressed == '\r') {
ikrylov@2322 4283 actualLength = curLength;
ikrylov@2322 4284 }
ikrylov@2322 4285 }
ikrylov@2322 4286 }
ikrylov@2322 4287 }
ikrylov@2322 4288
ikrylov@2322 4289 if(lpBuffer != NULL) {
ikrylov@2322 4290 os::free(lpBuffer);
ikrylov@2322 4291 }
ikrylov@2322 4292
ikrylov@2322 4293 *pbytes = (long) actualLength;
ikrylov@2322 4294 return TRUE;
ikrylov@2322 4295 }
ikrylov@2322 4296
duke@435 4297 // Map a block of memory.
duke@435 4298 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4299 char *addr, size_t bytes, bool read_only,
duke@435 4300 bool allow_exec) {
duke@435 4301 HANDLE hFile;
duke@435 4302 char* base;
duke@435 4303
duke@435 4304 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
duke@435 4305 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
duke@435 4306 if (hFile == NULL) {
duke@435 4307 if (PrintMiscellaneous && Verbose) {
duke@435 4308 DWORD err = GetLastError();
duke@435 4309 tty->print_cr("CreateFile() failed: GetLastError->%ld.");
duke@435 4310 }
duke@435 4311 return NULL;
duke@435 4312 }
duke@435 4313
duke@435 4314 if (allow_exec) {
duke@435 4315 // CreateFileMapping/MapViewOfFileEx can't map executable memory
duke@435 4316 // unless it comes from a PE image (which the shared archive is not.)
duke@435 4317 // Even VirtualProtect refuses to give execute access to mapped memory
duke@435 4318 // that was not previously executable.
duke@435 4319 //
duke@435 4320 // Instead, stick the executable region in anonymous memory. Yuck.
duke@435 4321 // Penalty is that ~4 pages will not be shareable - in the future
duke@435 4322 // we might consider DLLizing the shared archive with a proper PE
duke@435 4323 // header so that mapping executable + sharing is possible.
duke@435 4324
duke@435 4325 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
duke@435 4326 PAGE_READWRITE);
duke@435 4327 if (base == NULL) {
duke@435 4328 if (PrintMiscellaneous && Verbose) {
duke@435 4329 DWORD err = GetLastError();
duke@435 4330 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
duke@435 4331 }
duke@435 4332 CloseHandle(hFile);
duke@435 4333 return NULL;
duke@435 4334 }
duke@435 4335
duke@435 4336 DWORD bytes_read;
duke@435 4337 OVERLAPPED overlapped;
duke@435 4338 overlapped.Offset = (DWORD)file_offset;
duke@435 4339 overlapped.OffsetHigh = 0;
duke@435 4340 overlapped.hEvent = NULL;
duke@435 4341 // ReadFile guarantees that if the return value is true, the requested
duke@435 4342 // number of bytes were read before returning.
duke@435 4343 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
duke@435 4344 if (!res) {
duke@435 4345 if (PrintMiscellaneous && Verbose) {
duke@435 4346 DWORD err = GetLastError();
duke@435 4347 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
duke@435 4348 }
duke@435 4349 release_memory(base, bytes);
duke@435 4350 CloseHandle(hFile);
duke@435 4351 return NULL;
duke@435 4352 }
duke@435 4353 } else {
duke@435 4354 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
duke@435 4355 NULL /*file_name*/);
duke@435 4356 if (hMap == NULL) {
duke@435 4357 if (PrintMiscellaneous && Verbose) {
duke@435 4358 DWORD err = GetLastError();
duke@435 4359 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
duke@435 4360 }
duke@435 4361 CloseHandle(hFile);
duke@435 4362 return NULL;
duke@435 4363 }
duke@435 4364
duke@435 4365 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
duke@435 4366 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
duke@435 4367 (DWORD)bytes, addr);
duke@435 4368 if (base == NULL) {
duke@435 4369 if (PrintMiscellaneous && Verbose) {
duke@435 4370 DWORD err = GetLastError();
duke@435 4371 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
duke@435 4372 }
duke@435 4373 CloseHandle(hMap);
duke@435 4374 CloseHandle(hFile);
duke@435 4375 return NULL;
duke@435 4376 }
duke@435 4377
duke@435 4378 if (CloseHandle(hMap) == 0) {
duke@435 4379 if (PrintMiscellaneous && Verbose) {
duke@435 4380 DWORD err = GetLastError();
duke@435 4381 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
duke@435 4382 }
duke@435 4383 CloseHandle(hFile);
duke@435 4384 return base;
duke@435 4385 }
duke@435 4386 }
duke@435 4387
duke@435 4388 if (allow_exec) {
duke@435 4389 DWORD old_protect;
duke@435 4390 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
duke@435 4391 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
duke@435 4392
duke@435 4393 if (!res) {
duke@435 4394 if (PrintMiscellaneous && Verbose) {
duke@435 4395 DWORD err = GetLastError();
duke@435 4396 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
duke@435 4397 }
duke@435 4398 // Don't consider this a hard error, on IA32 even if the
duke@435 4399 // VirtualProtect fails, we should still be able to execute
duke@435 4400 CloseHandle(hFile);
duke@435 4401 return base;
duke@435 4402 }
duke@435 4403 }
duke@435 4404
duke@435 4405 if (CloseHandle(hFile) == 0) {
duke@435 4406 if (PrintMiscellaneous && Verbose) {
duke@435 4407 DWORD err = GetLastError();
duke@435 4408 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
duke@435 4409 }
duke@435 4410 return base;
duke@435 4411 }
duke@435 4412
duke@435 4413 return base;
duke@435 4414 }
duke@435 4415
duke@435 4416
duke@435 4417 // Remap a block of memory.
duke@435 4418 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4419 char *addr, size_t bytes, bool read_only,
duke@435 4420 bool allow_exec) {
duke@435 4421 // This OS does not allow existing memory maps to be remapped so we
duke@435 4422 // have to unmap the memory before we remap it.
duke@435 4423 if (!os::unmap_memory(addr, bytes)) {
duke@435 4424 return NULL;
duke@435 4425 }
duke@435 4426
duke@435 4427 // There is a very small theoretical window between the unmap_memory()
duke@435 4428 // call above and the map_memory() call below where a thread in native
duke@435 4429 // code may be able to access an address that is no longer mapped.
duke@435 4430
duke@435 4431 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4432 allow_exec);
duke@435 4433 }
duke@435 4434
duke@435 4435
duke@435 4436 // Unmap a block of memory.
duke@435 4437 // Returns true=success, otherwise false.
duke@435 4438
duke@435 4439 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4440 BOOL result = UnmapViewOfFile(addr);
duke@435 4441 if (result == 0) {
duke@435 4442 if (PrintMiscellaneous && Verbose) {
duke@435 4443 DWORD err = GetLastError();
duke@435 4444 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
duke@435 4445 }
duke@435 4446 return false;
duke@435 4447 }
duke@435 4448 return true;
duke@435 4449 }
duke@435 4450
duke@435 4451 void os::pause() {
duke@435 4452 char filename[MAX_PATH];
duke@435 4453 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4454 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4455 } else {
duke@435 4456 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4457 }
duke@435 4458
duke@435 4459 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4460 if (fd != -1) {
duke@435 4461 struct stat buf;
ikrylov@2322 4462 ::close(fd);
duke@435 4463 while (::stat(filename, &buf) == 0) {
duke@435 4464 Sleep(100);
duke@435 4465 }
duke@435 4466 } else {
duke@435 4467 jio_fprintf(stderr,
duke@435 4468 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4469 }
duke@435 4470 }
duke@435 4471
duke@435 4472 // An Event wraps a win32 "CreateEvent" kernel handle.
duke@435 4473 //
duke@435 4474 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
duke@435 4475 //
duke@435 4476 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
duke@435 4477 // field, and call CloseHandle() on the win32 event handle. Unpark() would
duke@435 4478 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
duke@435 4479 // In addition, an unpark() operation might fetch the handle field, but the
duke@435 4480 // event could recycle between the fetch and the SetEvent() operation.
duke@435 4481 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
duke@435 4482 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
duke@435 4483 // on an stale but recycled handle would be harmless, but in practice this might
duke@435 4484 // confuse other non-Sun code, so it's not a viable approach.
duke@435 4485 //
duke@435 4486 // 2: Once a win32 event handle is associated with an Event, it remains associated
duke@435 4487 // with the Event. The event handle is never closed. This could be construed
duke@435 4488 // as handle leakage, but only up to the maximum # of threads that have been extant
duke@435 4489 // at any one time. This shouldn't be an issue, as windows platforms typically
duke@435 4490 // permit a process to have hundreds of thousands of open handles.
duke@435 4491 //
duke@435 4492 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
duke@435 4493 // and release unused handles.
duke@435 4494 //
duke@435 4495 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
duke@435 4496 // It's not clear, however, that we wouldn't be trading one type of leak for another.
duke@435 4497 //
duke@435 4498 // 5. Use an RCU-like mechanism (Read-Copy Update).
duke@435 4499 // Or perhaps something similar to Maged Michael's "Hazard pointers".
duke@435 4500 //
duke@435 4501 // We use (2).
duke@435 4502 //
duke@435 4503 // TODO-FIXME:
duke@435 4504 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
duke@435 4505 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
duke@435 4506 // to recover from (or at least detect) the dreaded Windows 841176 bug.
duke@435 4507 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
duke@435 4508 // into a single win32 CreateEvent() handle.
duke@435 4509 //
duke@435 4510 // _Event transitions in park()
duke@435 4511 // -1 => -1 : illegal
duke@435 4512 // 1 => 0 : pass - return immediately
duke@435 4513 // 0 => -1 : block
duke@435 4514 //
duke@435 4515 // _Event serves as a restricted-range semaphore :
duke@435 4516 // -1 : thread is blocked
duke@435 4517 // 0 : neutral - thread is running or ready
duke@435 4518 // 1 : signaled - thread is running or ready
duke@435 4519 //
duke@435 4520 // Another possible encoding of _Event would be
duke@435 4521 // with explicit "PARKED" and "SIGNALED" bits.
duke@435 4522
duke@435 4523 int os::PlatformEvent::park (jlong Millis) {
duke@435 4524 guarantee (_ParkHandle != NULL , "Invariant") ;
duke@435 4525 guarantee (Millis > 0 , "Invariant") ;
duke@435 4526 int v ;
duke@435 4527
duke@435 4528 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
duke@435 4529 // the initial park() operation.
duke@435 4530
duke@435 4531 for (;;) {
duke@435 4532 v = _Event ;
duke@435 4533 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4534 }
duke@435 4535 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4536 if (v != 0) return OS_OK ;
duke@435 4537
duke@435 4538 // Do this the hard way by blocking ...
duke@435 4539 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4540 // spin attempts by this thread.
duke@435 4541 //
duke@435 4542 // We decompose long timeouts into series of shorter timed waits.
duke@435 4543 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
duke@435 4544 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
duke@435 4545 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
duke@435 4546 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
duke@435 4547 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
duke@435 4548 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
duke@435 4549 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
duke@435 4550 // for the already waited time. This policy does not admit any new outcomes.
duke@435 4551 // In the future, however, we might want to track the accumulated wait time and
duke@435 4552 // adjust Millis accordingly if we encounter a spurious wakeup.
duke@435 4553
duke@435 4554 const int MAXTIMEOUT = 0x10000000 ;
duke@435 4555 DWORD rv = WAIT_TIMEOUT ;
duke@435 4556 while (_Event < 0 && Millis > 0) {
duke@435 4557 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
duke@435 4558 if (Millis > MAXTIMEOUT) {
duke@435 4559 prd = MAXTIMEOUT ;
duke@435 4560 }
duke@435 4561 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
duke@435 4562 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
duke@435 4563 if (rv == WAIT_TIMEOUT) {
duke@435 4564 Millis -= prd ;
duke@435 4565 }
duke@435 4566 }
duke@435 4567 v = _Event ;
duke@435 4568 _Event = 0 ;
duke@435 4569 OrderAccess::fence() ;
duke@435 4570 // If we encounter a nearly simultanous timeout expiry and unpark()
duke@435 4571 // we return OS_OK indicating we awoke via unpark().
duke@435 4572 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
duke@435 4573 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
duke@435 4574 }
duke@435 4575
duke@435 4576 void os::PlatformEvent::park () {
duke@435 4577 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 4578 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4579 // may call park().
duke@435 4580 int v ;
duke@435 4581 for (;;) {
duke@435 4582 v = _Event ;
duke@435 4583 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4584 }
duke@435 4585 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4586 if (v != 0) return ;
duke@435 4587
duke@435 4588 // Do this the hard way by blocking ...
duke@435 4589 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4590 // spin attempts by this thread.
duke@435 4591 while (_Event < 0) {
duke@435 4592 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
duke@435 4593 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
duke@435 4594 }
duke@435 4595
duke@435 4596 // Usually we'll find _Event == 0 at this point, but as
duke@435 4597 // an optional optimization we clear it, just in case can
duke@435 4598 // multiple unpark() operations drove _Event up to 1.
duke@435 4599 _Event = 0 ;
duke@435 4600 OrderAccess::fence() ;
duke@435 4601 guarantee (_Event >= 0, "invariant") ;
duke@435 4602 }
duke@435 4603
duke@435 4604 void os::PlatformEvent::unpark() {
duke@435 4605 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 4606 int v ;
duke@435 4607 for (;;) {
duke@435 4608 v = _Event ; // Increment _Event if it's < 1.
duke@435 4609 if (v > 0) {
duke@435 4610 // If it's already signaled just return.
duke@435 4611 // The LD of _Event could have reordered or be satisfied
duke@435 4612 // by a read-aside from this processor's write buffer.
duke@435 4613 // To avoid problems execute a barrier and then
duke@435 4614 // ratify the value. A degenerate CAS() would also work.
duke@435 4615 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 4616 OrderAccess::fence() ;
duke@435 4617 if (_Event == v) return ;
duke@435 4618 continue ;
duke@435 4619 }
duke@435 4620 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4621 }
duke@435 4622 if (v < 0) {
duke@435 4623 ::SetEvent (_ParkHandle) ;
duke@435 4624 }
duke@435 4625 }
duke@435 4626
duke@435 4627
duke@435 4628 // JSR166
duke@435 4629 // -------------------------------------------------------
duke@435 4630
duke@435 4631 /*
duke@435 4632 * The Windows implementation of Park is very straightforward: Basic
duke@435 4633 * operations on Win32 Events turn out to have the right semantics to
duke@435 4634 * use them directly. We opportunistically resuse the event inherited
duke@435 4635 * from Monitor.
duke@435 4636 */
duke@435 4637
duke@435 4638
duke@435 4639 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4640 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4641 // First, demultiplex/decode time arguments
duke@435 4642 if (time < 0) { // don't wait
duke@435 4643 return;
duke@435 4644 }
acorn@2220 4645 else if (time == 0 && !isAbsolute) {
duke@435 4646 time = INFINITE;
duke@435 4647 }
duke@435 4648 else if (isAbsolute) {
duke@435 4649 time -= os::javaTimeMillis(); // convert to relative time
duke@435 4650 if (time <= 0) // already elapsed
duke@435 4651 return;
duke@435 4652 }
duke@435 4653 else { // relative
duke@435 4654 time /= 1000000; // Must coarsen from nanos to millis
duke@435 4655 if (time == 0) // Wait for the minimal time unit if zero
duke@435 4656 time = 1;
duke@435 4657 }
duke@435 4658
duke@435 4659 JavaThread* thread = (JavaThread*)(Thread::current());
duke@435 4660 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4661 JavaThread *jt = (JavaThread *)thread;
duke@435 4662
duke@435 4663 // Don't wait if interrupted or already triggered
duke@435 4664 if (Thread::is_interrupted(thread, false) ||
duke@435 4665 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
duke@435 4666 ResetEvent(_ParkEvent);
duke@435 4667 return;
duke@435 4668 }
duke@435 4669 else {
duke@435 4670 ThreadBlockInVM tbivm(jt);
duke@435 4671 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4672 jt->set_suspend_equivalent();
duke@435 4673
duke@435 4674 WaitForSingleObject(_ParkEvent, time);
duke@435 4675 ResetEvent(_ParkEvent);
duke@435 4676
duke@435 4677 // If externally suspended while waiting, re-suspend
duke@435 4678 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4679 jt->java_suspend_self();
duke@435 4680 }
duke@435 4681 }
duke@435 4682 }
duke@435 4683
duke@435 4684 void Parker::unpark() {
duke@435 4685 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4686 SetEvent(_ParkEvent);
duke@435 4687 }
duke@435 4688
duke@435 4689 // Run the specified command in a separate process. Return its exit value,
duke@435 4690 // or -1 on failure (e.g. can't create a new process).
duke@435 4691 int os::fork_and_exec(char* cmd) {
duke@435 4692 STARTUPINFO si;
duke@435 4693 PROCESS_INFORMATION pi;
duke@435 4694
duke@435 4695 memset(&si, 0, sizeof(si));
duke@435 4696 si.cb = sizeof(si);
duke@435 4697 memset(&pi, 0, sizeof(pi));
duke@435 4698 BOOL rslt = CreateProcess(NULL, // executable name - use command line
duke@435 4699 cmd, // command line
duke@435 4700 NULL, // process security attribute
duke@435 4701 NULL, // thread security attribute
duke@435 4702 TRUE, // inherits system handles
duke@435 4703 0, // no creation flags
duke@435 4704 NULL, // use parent's environment block
duke@435 4705 NULL, // use parent's starting directory
duke@435 4706 &si, // (in) startup information
duke@435 4707 &pi); // (out) process information
duke@435 4708
duke@435 4709 if (rslt) {
duke@435 4710 // Wait until child process exits.
duke@435 4711 WaitForSingleObject(pi.hProcess, INFINITE);
duke@435 4712
duke@435 4713 DWORD exit_code;
duke@435 4714 GetExitCodeProcess(pi.hProcess, &exit_code);
duke@435 4715
duke@435 4716 // Close process and thread handles.
duke@435 4717 CloseHandle(pi.hProcess);
duke@435 4718 CloseHandle(pi.hThread);
duke@435 4719
duke@435 4720 return (int)exit_code;
duke@435 4721 } else {
duke@435 4722 return -1;
duke@435 4723 }
duke@435 4724 }
duke@435 4725
duke@435 4726 //--------------------------------------------------------------------------------------------------
duke@435 4727 // Non-product code
duke@435 4728
duke@435 4729 static int mallocDebugIntervalCounter = 0;
duke@435 4730 static int mallocDebugCounter = 0;
duke@435 4731 bool os::check_heap(bool force) {
duke@435 4732 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
duke@435 4733 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
duke@435 4734 // Note: HeapValidate executes two hardware breakpoints when it finds something
duke@435 4735 // wrong; at these points, eax contains the address of the offending block (I think).
duke@435 4736 // To get to the exlicit error message(s) below, just continue twice.
duke@435 4737 HANDLE heap = GetProcessHeap();
duke@435 4738 { HeapLock(heap);
duke@435 4739 PROCESS_HEAP_ENTRY phe;
duke@435 4740 phe.lpData = NULL;
duke@435 4741 while (HeapWalk(heap, &phe) != 0) {
duke@435 4742 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
duke@435 4743 !HeapValidate(heap, 0, phe.lpData)) {
duke@435 4744 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
duke@435 4745 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
duke@435 4746 fatal("corrupted C heap");
duke@435 4747 }
duke@435 4748 }
phh@3379 4749 DWORD err = GetLastError();
duke@435 4750 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
jcoomes@1845 4751 fatal(err_msg("heap walk aborted with error %d", err));
duke@435 4752 }
duke@435 4753 HeapUnlock(heap);
duke@435 4754 }
duke@435 4755 mallocDebugIntervalCounter = 0;
duke@435 4756 }
duke@435 4757 return true;
duke@435 4758 }
duke@435 4759
duke@435 4760
bobv@2036 4761 bool os::find(address addr, outputStream* st) {
duke@435 4762 // Nothing yet
duke@435 4763 return false;
duke@435 4764 }
duke@435 4765
duke@435 4766 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
duke@435 4767 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
duke@435 4768
duke@435 4769 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 4770 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
duke@435 4771 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
duke@435 4772 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 4773
duke@435 4774 if (os::is_memory_serialize_page(thread, addr))
duke@435 4775 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 4776 }
duke@435 4777
duke@435 4778 return EXCEPTION_CONTINUE_SEARCH;
duke@435 4779 }
duke@435 4780
bobv@2036 4781 // We don't build a headless jre for Windows
bobv@2036 4782 bool os::is_headless_jre() { return false; }
bobv@2036 4783
ikrylov@2322 4784
ikrylov@2322 4785 typedef CRITICAL_SECTION mutex_t;
ikrylov@2322 4786 #define mutexInit(m) InitializeCriticalSection(m)
ikrylov@2322 4787 #define mutexDestroy(m) DeleteCriticalSection(m)
ikrylov@2322 4788 #define mutexLock(m) EnterCriticalSection(m)
ikrylov@2322 4789 #define mutexUnlock(m) LeaveCriticalSection(m)
ikrylov@2322 4790
zgu@3031 4791 static bool sock_initialized = FALSE;
ikrylov@2322 4792 static mutex_t sockFnTableMutex;
ikrylov@2322 4793
zgu@3031 4794 static void initSock() {
ikrylov@2322 4795 WSADATA wsadata;
ikrylov@2322 4796
zgu@3031 4797 if (!os::WinSock2Dll::WinSock2Available()) {
zgu@3031 4798 jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
zgu@3031 4799 ::GetLastError());
zgu@3031 4800 return;
zgu@3031 4801 }
zgu@3031 4802 if (sock_initialized == TRUE) return;
zgu@3031 4803
ikrylov@2322 4804 ::mutexInit(&sockFnTableMutex);
ikrylov@2322 4805 ::mutexLock(&sockFnTableMutex);
zgu@3031 4806 if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
zgu@3031 4807 jio_fprintf(stderr, "Could not initialize Winsock\n");
ikrylov@2322 4808 }
zgu@3031 4809 sock_initialized = TRUE;
ikrylov@2322 4810 ::mutexUnlock(&sockFnTableMutex);
ikrylov@2322 4811 }
ikrylov@2322 4812
phh@3344 4813 struct hostent* os::get_host_by_name(char* name) {
zgu@3031 4814 if (!sock_initialized) {
zgu@3031 4815 initSock();
ikrylov@2322 4816 }
zgu@3031 4817 if (!os::WinSock2Dll::WinSock2Available()) {
zgu@3031 4818 return NULL;
zgu@3031 4819 }
zgu@3031 4820 return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
ikrylov@2322 4821 }
ikrylov@2322 4822
ikrylov@2322 4823
ikrylov@2322 4824 int os::socket_close(int fd) {
ikrylov@2322 4825 ShouldNotReachHere();
ikrylov@2322 4826 return 0;
ikrylov@2322 4827 }
ikrylov@2322 4828
ikrylov@2322 4829 int os::socket_available(int fd, jint *pbytes) {
ikrylov@2322 4830 ShouldNotReachHere();
ikrylov@2322 4831 return 0;
ikrylov@2322 4832 }
ikrylov@2322 4833
ikrylov@2322 4834 int os::socket(int domain, int type, int protocol) {
ikrylov@2322 4835 ShouldNotReachHere();
ikrylov@2322 4836 return 0;
ikrylov@2322 4837 }
ikrylov@2322 4838
ikrylov@2322 4839 int os::listen(int fd, int count) {
ikrylov@2322 4840 ShouldNotReachHere();
ikrylov@2322 4841 return 0;
ikrylov@2322 4842 }
ikrylov@2322 4843
phh@3344 4844 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
ikrylov@2322 4845 ShouldNotReachHere();
ikrylov@2322 4846 return 0;
ikrylov@2322 4847 }
ikrylov@2322 4848
phh@3344 4849 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
ikrylov@2322 4850 ShouldNotReachHere();
ikrylov@2322 4851 return 0;
ikrylov@2322 4852 }
ikrylov@2322 4853
phh@3344 4854 int os::sendto(int fd, char* buf, size_t len, uint flags,
phh@3344 4855 struct sockaddr* to, socklen_t tolen) {
ikrylov@2322 4856 ShouldNotReachHere();
ikrylov@2322 4857 return 0;
ikrylov@2322 4858 }
ikrylov@2322 4859
phh@3344 4860 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
phh@3344 4861 sockaddr* from, socklen_t* fromlen) {
ikrylov@2322 4862 ShouldNotReachHere();
ikrylov@2322 4863 return 0;
ikrylov@2322 4864 }
ikrylov@2322 4865
phh@3344 4866 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
ikrylov@2322 4867 ShouldNotReachHere();
ikrylov@2322 4868 return 0;
ikrylov@2322 4869 }
ikrylov@2322 4870
phh@3344 4871 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
ikrylov@2322 4872 ShouldNotReachHere();
ikrylov@2322 4873 return 0;
ikrylov@2322 4874 }
ikrylov@2322 4875
phh@3344 4876 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
ikrylov@2322 4877 ShouldNotReachHere();
ikrylov@2322 4878 return 0;
ikrylov@2322 4879 }
ikrylov@2322 4880
ikrylov@2322 4881 int os::timeout(int fd, long timeout) {
ikrylov@2322 4882 ShouldNotReachHere();
ikrylov@2322 4883 return 0;
ikrylov@2322 4884 }
ikrylov@2322 4885
ikrylov@2322 4886 int os::get_host_name(char* name, int namelen) {
ikrylov@2322 4887 ShouldNotReachHere();
ikrylov@2322 4888 return 0;
ikrylov@2322 4889 }
ikrylov@2322 4890
ikrylov@2322 4891 int os::socket_shutdown(int fd, int howto) {
ikrylov@2322 4892 ShouldNotReachHere();
ikrylov@2322 4893 return 0;
ikrylov@2322 4894 }
ikrylov@2322 4895
phh@3344 4896 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
ikrylov@2322 4897 ShouldNotReachHere();
ikrylov@2322 4898 return 0;
ikrylov@2322 4899 }
ikrylov@2322 4900
phh@3344 4901 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
ikrylov@2322 4902 ShouldNotReachHere();
ikrylov@2322 4903 return 0;
ikrylov@2322 4904 }
ikrylov@2322 4905
ikrylov@2322 4906 int os::get_sock_opt(int fd, int level, int optname,
phh@3344 4907 char* optval, socklen_t* optlen) {
ikrylov@2322 4908 ShouldNotReachHere();
ikrylov@2322 4909 return 0;
ikrylov@2322 4910 }
ikrylov@2322 4911
ikrylov@2322 4912 int os::set_sock_opt(int fd, int level, int optname,
phh@3344 4913 const char* optval, socklen_t optlen) {
ikrylov@2322 4914 ShouldNotReachHere();
ikrylov@2322 4915 return 0;
ikrylov@2322 4916 }
zgu@3031 4917
zgu@3031 4918
zgu@3031 4919 // Kernel32 API
zgu@3031 4920 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
iveresov@3085 4921 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
iveresov@3085 4922 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
iveresov@3085 4923 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
iveresov@3085 4924
zgu@3031 4925 GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL;
iveresov@3085 4926 VirtualAllocExNuma_Fn os::Kernel32Dll::_VirtualAllocExNuma = NULL;
iveresov@3085 4927 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
iveresov@3085 4928 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
zgu@3031 4929 BOOL os::Kernel32Dll::initialized = FALSE;
zgu@3031 4930 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
zgu@3031 4931 assert(initialized && _GetLargePageMinimum != NULL,
zgu@3031 4932 "GetLargePageMinimumAvailable() not yet called");
zgu@3031 4933 return _GetLargePageMinimum();
zgu@3031 4934 }
zgu@3031 4935
zgu@3031 4936 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
zgu@3031 4937 if (!initialized) {
zgu@3031 4938 initialize();
zgu@3031 4939 }
zgu@3031 4940 return _GetLargePageMinimum != NULL;
zgu@3031 4941 }
zgu@3031 4942
iveresov@3085 4943 BOOL os::Kernel32Dll::NumaCallsAvailable() {
iveresov@3085 4944 if (!initialized) {
iveresov@3085 4945 initialize();
iveresov@3085 4946 }
iveresov@3085 4947 return _VirtualAllocExNuma != NULL;
iveresov@3085 4948 }
iveresov@3085 4949
iveresov@3085 4950 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
iveresov@3085 4951 assert(initialized && _VirtualAllocExNuma != NULL,
iveresov@3085 4952 "NUMACallsAvailable() not yet called");
iveresov@3085 4953
iveresov@3085 4954 return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
iveresov@3085 4955 }
iveresov@3085 4956
iveresov@3085 4957 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
iveresov@3085 4958 assert(initialized && _GetNumaHighestNodeNumber != NULL,
iveresov@3085 4959 "NUMACallsAvailable() not yet called");
iveresov@3085 4960
iveresov@3085 4961 return _GetNumaHighestNodeNumber(ptr_highest_node_number);
iveresov@3085 4962 }
iveresov@3085 4963
iveresov@3085 4964 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
iveresov@3085 4965 assert(initialized && _GetNumaNodeProcessorMask != NULL,
iveresov@3085 4966 "NUMACallsAvailable() not yet called");
iveresov@3085 4967
iveresov@3085 4968 return _GetNumaNodeProcessorMask(node, proc_mask);
iveresov@3085 4969 }
iveresov@3085 4970
iveresov@3085 4971
iveresov@3085 4972 void os::Kernel32Dll::initializeCommon() {
zgu@3031 4973 if (!initialized) {
zgu@3031 4974 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 4975 assert(handle != NULL, "Just check");
zgu@3031 4976 _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
iveresov@3085 4977 _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
iveresov@3085 4978 _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
iveresov@3085 4979 _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
zgu@3031 4980 initialized = TRUE;
zgu@3031 4981 }
zgu@3031 4982 }
zgu@3031 4983
zgu@3031 4984
iveresov@3085 4985
iveresov@3085 4986 #ifndef JDK6_OR_EARLIER
iveresov@3085 4987
iveresov@3085 4988 void os::Kernel32Dll::initialize() {
iveresov@3085 4989 initializeCommon();
iveresov@3085 4990 }
iveresov@3085 4991
iveresov@3085 4992
zgu@3031 4993 // Kernel32 API
zgu@3031 4994 inline BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 4995 return ::SwitchToThread();
zgu@3031 4996 }
zgu@3031 4997
zgu@3031 4998 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 4999 return true;
zgu@3031 5000 }
zgu@3031 5001
zgu@3031 5002 // Help tools
zgu@3031 5003 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5004 return true;
zgu@3031 5005 }
zgu@3031 5006
zgu@3031 5007 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5008 return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5009 }
zgu@3031 5010
zgu@3031 5011 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5012 return ::Module32First(hSnapshot, lpme);
zgu@3031 5013 }
zgu@3031 5014
zgu@3031 5015 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5016 return ::Module32Next(hSnapshot, lpme);
zgu@3031 5017 }
zgu@3031 5018
zgu@3031 5019
zgu@3031 5020 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5021 return true;
zgu@3031 5022 }
zgu@3031 5023
zgu@3031 5024 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5025 ::GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5026 }
zgu@3031 5027
zgu@3031 5028 // PSAPI API
zgu@3031 5029 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5030 return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5031 }
zgu@3031 5032
zgu@3031 5033 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5034 return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5035 }
zgu@3031 5036
zgu@3031 5037 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5038 return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5039 }
zgu@3031 5040
zgu@3031 5041 inline BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5042 return true;
zgu@3031 5043 }
zgu@3031 5044
zgu@3031 5045
zgu@3031 5046 // WinSock2 API
zgu@3031 5047 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5048 return ::WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5049 }
zgu@3031 5050
zgu@3031 5051 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5052 return ::gethostbyname(name);
zgu@3031 5053 }
zgu@3031 5054
zgu@3031 5055 inline BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5056 return true;
zgu@3031 5057 }
zgu@3031 5058
zgu@3031 5059 // Advapi API
zgu@3031 5060 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5061 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5062 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5063 return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5064 BufferLength, PreviousState, ReturnLength);
zgu@3031 5065 }
zgu@3031 5066
zgu@3031 5067 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5068 PHANDLE TokenHandle) {
zgu@3031 5069 return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5070 }
zgu@3031 5071
zgu@3031 5072 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5073 return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5074 }
zgu@3031 5075
zgu@3031 5076 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5077 return true;
zgu@3031 5078 }
zgu@3031 5079
zgu@3031 5080 #else
zgu@3031 5081 // Kernel32 API
zgu@3031 5082 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
zgu@3031 5083 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
zgu@3031 5084 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5085 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5086 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
zgu@3031 5087
zgu@3031 5088 SwitchToThread_Fn os::Kernel32Dll::_SwitchToThread = NULL;
zgu@3031 5089 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
zgu@3031 5090 Module32First_Fn os::Kernel32Dll::_Module32First = NULL;
zgu@3031 5091 Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL;
zgu@3031 5092 GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL;
zgu@3031 5093
iveresov@3085 5094
zgu@3031 5095 void os::Kernel32Dll::initialize() {
zgu@3031 5096 if (!initialized) {
zgu@3031 5097 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 5098 assert(handle != NULL, "Just check");
zgu@3031 5099
zgu@3031 5100 _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
zgu@3031 5101 _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
zgu@3031 5102 ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
zgu@3031 5103 _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
zgu@3031 5104 _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
zgu@3031 5105 _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
iveresov@3085 5106 initializeCommon(); // resolve the functions that always need resolving
zgu@3031 5107
zgu@3031 5108 initialized = TRUE;
zgu@3031 5109 }
zgu@3031 5110 }
zgu@3031 5111
zgu@3031 5112 BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 5113 assert(initialized && _SwitchToThread != NULL,
zgu@3031 5114 "SwitchToThreadAvailable() not yet called");
zgu@3031 5115 return _SwitchToThread();
zgu@3031 5116 }
zgu@3031 5117
zgu@3031 5118
zgu@3031 5119 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 5120 if (!initialized) {
zgu@3031 5121 initialize();
zgu@3031 5122 }
zgu@3031 5123 return _SwitchToThread != NULL;
zgu@3031 5124 }
zgu@3031 5125
zgu@3031 5126 // Help tools
zgu@3031 5127 BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5128 if (!initialized) {
zgu@3031 5129 initialize();
zgu@3031 5130 }
zgu@3031 5131 return _CreateToolhelp32Snapshot != NULL &&
zgu@3031 5132 _Module32First != NULL &&
zgu@3031 5133 _Module32Next != NULL;
zgu@3031 5134 }
zgu@3031 5135
zgu@3031 5136 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5137 assert(initialized && _CreateToolhelp32Snapshot != NULL,
zgu@3031 5138 "HelpToolsAvailable() not yet called");
zgu@3031 5139
zgu@3031 5140 return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5141 }
zgu@3031 5142
zgu@3031 5143 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5144 assert(initialized && _Module32First != NULL,
zgu@3031 5145 "HelpToolsAvailable() not yet called");
zgu@3031 5146
zgu@3031 5147 return _Module32First(hSnapshot, lpme);
zgu@3031 5148 }
zgu@3031 5149
zgu@3031 5150 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5151 assert(initialized && _Module32Next != NULL,
zgu@3031 5152 "HelpToolsAvailable() not yet called");
zgu@3031 5153
zgu@3031 5154 return _Module32Next(hSnapshot, lpme);
zgu@3031 5155 }
zgu@3031 5156
zgu@3031 5157
zgu@3031 5158 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5159 if (!initialized) {
zgu@3031 5160 initialize();
zgu@3031 5161 }
zgu@3031 5162 return _GetNativeSystemInfo != NULL;
zgu@3031 5163 }
zgu@3031 5164
zgu@3031 5165 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5166 assert(initialized && _GetNativeSystemInfo != NULL,
zgu@3031 5167 "GetNativeSystemInfoAvailable() not yet called");
zgu@3031 5168
zgu@3031 5169 _GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5170 }
zgu@3031 5171
iveresov@3085 5172
iveresov@3085 5173
zgu@3031 5174 // PSAPI API
zgu@3031 5175
zgu@3031 5176
zgu@3031 5177 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
zgu@3031 5178 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
zgu@3031 5179 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
zgu@3031 5180
zgu@3031 5181 EnumProcessModules_Fn os::PSApiDll::_EnumProcessModules = NULL;
zgu@3031 5182 GetModuleFileNameEx_Fn os::PSApiDll::_GetModuleFileNameEx = NULL;
zgu@3031 5183 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
zgu@3031 5184 BOOL os::PSApiDll::initialized = FALSE;
zgu@3031 5185
zgu@3031 5186 void os::PSApiDll::initialize() {
zgu@3031 5187 if (!initialized) {
zgu@3031 5188 HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
zgu@3031 5189 if (handle != NULL) {
zgu@3031 5190 _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
zgu@3031 5191 "EnumProcessModules");
zgu@3031 5192 _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
zgu@3031 5193 "GetModuleFileNameExA");
zgu@3031 5194 _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
zgu@3031 5195 "GetModuleInformation");
zgu@3031 5196 }
zgu@3031 5197 initialized = TRUE;
zgu@3031 5198 }
zgu@3031 5199 }
zgu@3031 5200
zgu@3031 5201
zgu@3031 5202
zgu@3031 5203 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5204 assert(initialized && _EnumProcessModules != NULL,
zgu@3031 5205 "PSApiAvailable() not yet called");
zgu@3031 5206 return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5207 }
zgu@3031 5208
zgu@3031 5209 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5210 assert(initialized && _GetModuleFileNameEx != NULL,
zgu@3031 5211 "PSApiAvailable() not yet called");
zgu@3031 5212 return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5213 }
zgu@3031 5214
zgu@3031 5215 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5216 assert(initialized && _GetModuleInformation != NULL,
zgu@3031 5217 "PSApiAvailable() not yet called");
zgu@3031 5218 return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5219 }
zgu@3031 5220
zgu@3031 5221 BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5222 if (!initialized) {
zgu@3031 5223 initialize();
zgu@3031 5224 }
zgu@3031 5225 return _EnumProcessModules != NULL &&
zgu@3031 5226 _GetModuleFileNameEx != NULL &&
zgu@3031 5227 _GetModuleInformation != NULL;
zgu@3031 5228 }
zgu@3031 5229
zgu@3031 5230
zgu@3031 5231 // WinSock2 API
zgu@3031 5232 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
zgu@3031 5233 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
zgu@3031 5234
zgu@3031 5235 WSAStartup_Fn os::WinSock2Dll::_WSAStartup = NULL;
zgu@3031 5236 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
zgu@3031 5237 BOOL os::WinSock2Dll::initialized = FALSE;
zgu@3031 5238
zgu@3031 5239 void os::WinSock2Dll::initialize() {
zgu@3031 5240 if (!initialized) {
zgu@3031 5241 HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
zgu@3031 5242 if (handle != NULL) {
zgu@3031 5243 _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
zgu@3031 5244 _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
zgu@3031 5245 }
zgu@3031 5246 initialized = TRUE;
zgu@3031 5247 }
zgu@3031 5248 }
zgu@3031 5249
zgu@3031 5250
zgu@3031 5251 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5252 assert(initialized && _WSAStartup != NULL,
zgu@3031 5253 "WinSock2Available() not yet called");
zgu@3031 5254 return _WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5255 }
zgu@3031 5256
zgu@3031 5257 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5258 assert(initialized && _gethostbyname != NULL,
zgu@3031 5259 "WinSock2Available() not yet called");
zgu@3031 5260 return _gethostbyname(name);
zgu@3031 5261 }
zgu@3031 5262
zgu@3031 5263 BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5264 if (!initialized) {
zgu@3031 5265 initialize();
zgu@3031 5266 }
zgu@3031 5267 return _WSAStartup != NULL &&
zgu@3031 5268 _gethostbyname != NULL;
zgu@3031 5269 }
zgu@3031 5270
zgu@3031 5271 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
zgu@3031 5272 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
zgu@3031 5273 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
zgu@3031 5274
zgu@3031 5275 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
zgu@3031 5276 OpenProcessToken_Fn os::Advapi32Dll::_OpenProcessToken = NULL;
zgu@3031 5277 LookupPrivilegeValue_Fn os::Advapi32Dll::_LookupPrivilegeValue = NULL;
zgu@3031 5278 BOOL os::Advapi32Dll::initialized = FALSE;
zgu@3031 5279
zgu@3031 5280 void os::Advapi32Dll::initialize() {
zgu@3031 5281 if (!initialized) {
zgu@3031 5282 HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
zgu@3031 5283 if (handle != NULL) {
zgu@3031 5284 _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
zgu@3031 5285 "AdjustTokenPrivileges");
zgu@3031 5286 _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
zgu@3031 5287 "OpenProcessToken");
zgu@3031 5288 _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
zgu@3032 5289 "LookupPrivilegeValueA");
zgu@3031 5290 }
zgu@3031 5291 initialized = TRUE;
zgu@3031 5292 }
zgu@3031 5293 }
zgu@3031 5294
zgu@3031 5295 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5296 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5297 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5298 assert(initialized && _AdjustTokenPrivileges != NULL,
zgu@3031 5299 "AdvapiAvailable() not yet called");
zgu@3031 5300 return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5301 BufferLength, PreviousState, ReturnLength);
zgu@3031 5302 }
zgu@3031 5303
zgu@3031 5304 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5305 PHANDLE TokenHandle) {
zgu@3031 5306 assert(initialized && _OpenProcessToken != NULL,
zgu@3031 5307 "AdvapiAvailable() not yet called");
zgu@3031 5308 return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5309 }
zgu@3031 5310
zgu@3031 5311 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5312 assert(initialized && _LookupPrivilegeValue != NULL,
zgu@3031 5313 "AdvapiAvailable() not yet called");
zgu@3031 5314 return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5315 }
zgu@3031 5316
zgu@3031 5317 BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5318 if (!initialized) {
zgu@3031 5319 initialize();
zgu@3031 5320 }
zgu@3031 5321 return _AdjustTokenPrivileges != NULL &&
zgu@3031 5322 _OpenProcessToken != NULL &&
zgu@3031 5323 _LookupPrivilegeValue != NULL;
zgu@3031 5324 }
zgu@3031 5325
zgu@3031 5326 #endif

mercurial