src/os/windows/vm/os_windows.cpp

Wed, 01 Apr 2009 16:38:01 -0400

author
phh
date
Wed, 01 Apr 2009 16:38:01 -0400
changeset 1126
956304450e80
parent 1091
6bdd6923ba16
child 1152
c8152ae3f339
permissions
-rw-r--r--

6819213: revive sun.boot.library.path
Summary: Support multiplex and mutable sun.boot.library.path
Reviewed-by: acorn, dcubed, xlu

duke@435 1 /*
xdono@1014 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #ifdef _WIN64
duke@435 26 // Must be at least Windows 2000 or XP to use VectoredExceptions
duke@435 27 #define _WIN32_WINNT 0x500
duke@435 28 #endif
duke@435 29
duke@435 30 // do not include precompiled header file
duke@435 31 # include "incls/_os_windows.cpp.incl"
duke@435 32
duke@435 33 #ifdef _DEBUG
duke@435 34 #include <crtdbg.h>
duke@435 35 #endif
duke@435 36
duke@435 37
duke@435 38 #include <windows.h>
duke@435 39 #include <sys/types.h>
duke@435 40 #include <sys/stat.h>
duke@435 41 #include <sys/timeb.h>
duke@435 42 #include <objidl.h>
duke@435 43 #include <shlobj.h>
duke@435 44
duke@435 45 #include <malloc.h>
duke@435 46 #include <signal.h>
duke@435 47 #include <direct.h>
duke@435 48 #include <errno.h>
duke@435 49 #include <fcntl.h>
duke@435 50 #include <io.h>
duke@435 51 #include <process.h> // For _beginthreadex(), _endthreadex()
duke@435 52 #include <imagehlp.h> // For os::dll_address_to_function_name
duke@435 53
duke@435 54 /* for enumerating dll libraries */
duke@435 55 #include <tlhelp32.h>
duke@435 56 #include <vdmdbg.h>
duke@435 57
duke@435 58 // for timer info max values which include all bits
duke@435 59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 60
duke@435 61 // For DLL loading/load error detection
duke@435 62 // Values of PE COFF
duke@435 63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
duke@435 64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
duke@435 65
duke@435 66 static HANDLE main_process;
duke@435 67 static HANDLE main_thread;
duke@435 68 static int main_thread_id;
duke@435 69
duke@435 70 static FILETIME process_creation_time;
duke@435 71 static FILETIME process_exit_time;
duke@435 72 static FILETIME process_user_time;
duke@435 73 static FILETIME process_kernel_time;
duke@435 74
duke@435 75 #ifdef _WIN64
duke@435 76 PVOID topLevelVectoredExceptionHandler = NULL;
duke@435 77 #endif
duke@435 78
duke@435 79 #ifdef _M_IA64
duke@435 80 #define __CPU__ ia64
duke@435 81 #elif _M_AMD64
duke@435 82 #define __CPU__ amd64
duke@435 83 #else
duke@435 84 #define __CPU__ i486
duke@435 85 #endif
duke@435 86
duke@435 87 // save DLL module handle, used by GetModuleFileName
duke@435 88
duke@435 89 HINSTANCE vm_lib_handle;
duke@435 90 static int getLastErrorString(char *buf, size_t len);
duke@435 91
duke@435 92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
duke@435 93 switch (reason) {
duke@435 94 case DLL_PROCESS_ATTACH:
duke@435 95 vm_lib_handle = hinst;
duke@435 96 if(ForceTimeHighResolution)
duke@435 97 timeBeginPeriod(1L);
duke@435 98 break;
duke@435 99 case DLL_PROCESS_DETACH:
duke@435 100 if(ForceTimeHighResolution)
duke@435 101 timeEndPeriod(1L);
duke@435 102 #ifdef _WIN64
duke@435 103 if (topLevelVectoredExceptionHandler != NULL) {
duke@435 104 RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
duke@435 105 topLevelVectoredExceptionHandler = NULL;
duke@435 106 }
duke@435 107 #endif
duke@435 108 break;
duke@435 109 default:
duke@435 110 break;
duke@435 111 }
duke@435 112 return true;
duke@435 113 }
duke@435 114
duke@435 115 static inline double fileTimeAsDouble(FILETIME* time) {
duke@435 116 const double high = (double) ((unsigned int) ~0);
duke@435 117 const double split = 10000000.0;
duke@435 118 double result = (time->dwLowDateTime / split) +
duke@435 119 time->dwHighDateTime * (high/split);
duke@435 120 return result;
duke@435 121 }
duke@435 122
duke@435 123 // Implementation of os
duke@435 124
duke@435 125 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 126 int result = GetEnvironmentVariable(name, buffer, len);
duke@435 127 return result > 0 && result < len;
duke@435 128 }
duke@435 129
duke@435 130
duke@435 131 // No setuid programs under Windows.
duke@435 132 bool os::have_special_privileges() {
duke@435 133 return false;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 // This method is a periodic task to check for misbehaving JNI applications
duke@435 138 // under CheckJNI, we can add any periodic checks here.
duke@435 139 // For Windows at the moment does nothing
duke@435 140 void os::run_periodic_checks() {
duke@435 141 return;
duke@435 142 }
duke@435 143
duke@435 144 #ifndef _WIN64
duke@435 145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 146 #endif
duke@435 147 void os::init_system_properties_values() {
duke@435 148 /* sysclasspath, java_home, dll_dir */
duke@435 149 {
duke@435 150 char *home_path;
duke@435 151 char *dll_path;
duke@435 152 char *pslash;
duke@435 153 char *bin = "\\bin";
duke@435 154 char home_dir[MAX_PATH];
duke@435 155
duke@435 156 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
duke@435 157 os::jvm_path(home_dir, sizeof(home_dir));
duke@435 158 // Found the full path to jvm[_g].dll.
duke@435 159 // Now cut the path to <java_home>/jre if we can.
duke@435 160 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
duke@435 161 pslash = strrchr(home_dir, '\\');
duke@435 162 if (pslash != NULL) {
duke@435 163 *pslash = '\0'; /* get rid of \{client|server} */
duke@435 164 pslash = strrchr(home_dir, '\\');
duke@435 165 if (pslash != NULL)
duke@435 166 *pslash = '\0'; /* get rid of \bin */
duke@435 167 }
duke@435 168 }
duke@435 169
duke@435 170 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
duke@435 171 if (home_path == NULL)
duke@435 172 return;
duke@435 173 strcpy(home_path, home_dir);
duke@435 174 Arguments::set_java_home(home_path);
duke@435 175
duke@435 176 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
duke@435 177 if (dll_path == NULL)
duke@435 178 return;
duke@435 179 strcpy(dll_path, home_dir);
duke@435 180 strcat(dll_path, bin);
duke@435 181 Arguments::set_dll_dir(dll_path);
duke@435 182
duke@435 183 if (!set_boot_path('\\', ';'))
duke@435 184 return;
duke@435 185 }
duke@435 186
duke@435 187 /* library_path */
duke@435 188 #define EXT_DIR "\\lib\\ext"
duke@435 189 #define BIN_DIR "\\bin"
duke@435 190 #define PACKAGE_DIR "\\Sun\\Java"
duke@435 191 {
duke@435 192 /* Win32 library search order (See the documentation for LoadLibrary):
duke@435 193 *
duke@435 194 * 1. The directory from which application is loaded.
duke@435 195 * 2. The current directory
duke@435 196 * 3. The system wide Java Extensions directory (Java only)
duke@435 197 * 4. System directory (GetSystemDirectory)
duke@435 198 * 5. Windows directory (GetWindowsDirectory)
duke@435 199 * 6. The PATH environment variable
duke@435 200 */
duke@435 201
duke@435 202 char *library_path;
duke@435 203 char tmp[MAX_PATH];
duke@435 204 char *path_str = ::getenv("PATH");
duke@435 205
duke@435 206 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
duke@435 207 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
duke@435 208
duke@435 209 library_path[0] = '\0';
duke@435 210
duke@435 211 GetModuleFileName(NULL, tmp, sizeof(tmp));
duke@435 212 *(strrchr(tmp, '\\')) = '\0';
duke@435 213 strcat(library_path, tmp);
duke@435 214
duke@435 215 strcat(library_path, ";.");
duke@435 216
duke@435 217 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 218 strcat(library_path, ";");
duke@435 219 strcat(library_path, tmp);
duke@435 220 strcat(library_path, PACKAGE_DIR BIN_DIR);
duke@435 221
duke@435 222 GetSystemDirectory(tmp, sizeof(tmp));
duke@435 223 strcat(library_path, ";");
duke@435 224 strcat(library_path, tmp);
duke@435 225
duke@435 226 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 227 strcat(library_path, ";");
duke@435 228 strcat(library_path, tmp);
duke@435 229
duke@435 230 if (path_str) {
duke@435 231 strcat(library_path, ";");
duke@435 232 strcat(library_path, path_str);
duke@435 233 }
duke@435 234
duke@435 235 Arguments::set_library_path(library_path);
duke@435 236 FREE_C_HEAP_ARRAY(char, library_path);
duke@435 237 }
duke@435 238
duke@435 239 /* Default extensions directory */
duke@435 240 {
duke@435 241 char path[MAX_PATH];
duke@435 242 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
duke@435 243 GetWindowsDirectory(path, MAX_PATH);
duke@435 244 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
duke@435 245 path, PACKAGE_DIR, EXT_DIR);
duke@435 246 Arguments::set_ext_dirs(buf);
duke@435 247 }
duke@435 248 #undef EXT_DIR
duke@435 249 #undef BIN_DIR
duke@435 250 #undef PACKAGE_DIR
duke@435 251
duke@435 252 /* Default endorsed standards directory. */
duke@435 253 {
duke@435 254 #define ENDORSED_DIR "\\lib\\endorsed"
duke@435 255 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
duke@435 256 char * buf = NEW_C_HEAP_ARRAY(char, len);
duke@435 257 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
duke@435 258 Arguments::set_endorsed_dirs(buf);
duke@435 259 #undef ENDORSED_DIR
duke@435 260 }
duke@435 261
duke@435 262 #ifndef _WIN64
duke@435 263 SetUnhandledExceptionFilter(Handle_FLT_Exception);
duke@435 264 #endif
duke@435 265
duke@435 266 // Done
duke@435 267 return;
duke@435 268 }
duke@435 269
duke@435 270 void os::breakpoint() {
duke@435 271 DebugBreak();
duke@435 272 }
duke@435 273
duke@435 274 // Invoked from the BREAKPOINT Macro
duke@435 275 extern "C" void breakpoint() {
duke@435 276 os::breakpoint();
duke@435 277 }
duke@435 278
duke@435 279 // Returns an estimate of the current stack pointer. Result must be guaranteed
duke@435 280 // to point into the calling threads stack, and be no lower than the current
duke@435 281 // stack pointer.
duke@435 282
duke@435 283 address os::current_stack_pointer() {
duke@435 284 int dummy;
duke@435 285 address sp = (address)&dummy;
duke@435 286 return sp;
duke@435 287 }
duke@435 288
duke@435 289 // os::current_stack_base()
duke@435 290 //
duke@435 291 // Returns the base of the stack, which is the stack's
duke@435 292 // starting address. This function must be called
duke@435 293 // while running on the stack of the thread being queried.
duke@435 294
duke@435 295 address os::current_stack_base() {
duke@435 296 MEMORY_BASIC_INFORMATION minfo;
duke@435 297 address stack_bottom;
duke@435 298 size_t stack_size;
duke@435 299
duke@435 300 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 301 stack_bottom = (address)minfo.AllocationBase;
duke@435 302 stack_size = minfo.RegionSize;
duke@435 303
duke@435 304 // Add up the sizes of all the regions with the same
duke@435 305 // AllocationBase.
duke@435 306 while( 1 )
duke@435 307 {
duke@435 308 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
duke@435 309 if ( stack_bottom == (address)minfo.AllocationBase )
duke@435 310 stack_size += minfo.RegionSize;
duke@435 311 else
duke@435 312 break;
duke@435 313 }
duke@435 314
duke@435 315 #ifdef _M_IA64
duke@435 316 // IA64 has memory and register stacks
duke@435 317 stack_size = stack_size / 2;
duke@435 318 #endif
duke@435 319 return stack_bottom + stack_size;
duke@435 320 }
duke@435 321
duke@435 322 size_t os::current_stack_size() {
duke@435 323 size_t sz;
duke@435 324 MEMORY_BASIC_INFORMATION minfo;
duke@435 325 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 326 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
duke@435 327 return sz;
duke@435 328 }
duke@435 329
ysr@983 330 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 331 const struct tm* time_struct_ptr = localtime(clock);
ysr@983 332 if (time_struct_ptr != NULL) {
ysr@983 333 *res = *time_struct_ptr;
ysr@983 334 return res;
ysr@983 335 }
ysr@983 336 return NULL;
ysr@983 337 }
duke@435 338
duke@435 339 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 340
duke@435 341 // Thread start routine for all new Java threads
duke@435 342 static unsigned __stdcall java_start(Thread* thread) {
duke@435 343 // Try to randomize the cache line index of hot stack frames.
duke@435 344 // This helps when threads of the same stack traces evict each other's
duke@435 345 // cache lines. The threads can be either from the same JVM instance, or
duke@435 346 // from different JVM instances. The benefit is especially true for
duke@435 347 // processors with hyperthreading technology.
duke@435 348 static int counter = 0;
duke@435 349 int pid = os::current_process_id();
duke@435 350 _alloca(((pid ^ counter++) & 7) * 128);
duke@435 351
duke@435 352 OSThread* osthr = thread->osthread();
duke@435 353 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 354
duke@435 355 if (UseNUMA) {
duke@435 356 int lgrp_id = os::numa_get_group_id();
duke@435 357 if (lgrp_id != -1) {
duke@435 358 thread->set_lgrp_id(lgrp_id);
duke@435 359 }
duke@435 360 }
duke@435 361
duke@435 362
duke@435 363 if (UseVectoredExceptions) {
duke@435 364 // If we are using vectored exception we don't need to set a SEH
duke@435 365 thread->run();
duke@435 366 }
duke@435 367 else {
duke@435 368 // Install a win32 structured exception handler around every thread created
duke@435 369 // by VM, so VM can genrate error dump when an exception occurred in non-
duke@435 370 // Java thread (e.g. VM thread).
duke@435 371 __try {
duke@435 372 thread->run();
duke@435 373 } __except(topLevelExceptionFilter(
duke@435 374 (_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 375 // Nothing to do.
duke@435 376 }
duke@435 377 }
duke@435 378
duke@435 379 // One less thread is executing
duke@435 380 // When the VMThread gets here, the main thread may have already exited
duke@435 381 // which frees the CodeHeap containing the Atomic::add code
duke@435 382 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 383 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 384 }
duke@435 385
duke@435 386 return 0;
duke@435 387 }
duke@435 388
duke@435 389 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
duke@435 390 // Allocate the OSThread object
duke@435 391 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 392 if (osthread == NULL) return NULL;
duke@435 393
duke@435 394 // Initialize support for Java interrupts
duke@435 395 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 396 if (interrupt_event == NULL) {
duke@435 397 delete osthread;
duke@435 398 return NULL;
duke@435 399 }
duke@435 400 osthread->set_interrupt_event(interrupt_event);
duke@435 401
duke@435 402 // Store info on the Win32 thread into the OSThread
duke@435 403 osthread->set_thread_handle(thread_handle);
duke@435 404 osthread->set_thread_id(thread_id);
duke@435 405
duke@435 406 if (UseNUMA) {
duke@435 407 int lgrp_id = os::numa_get_group_id();
duke@435 408 if (lgrp_id != -1) {
duke@435 409 thread->set_lgrp_id(lgrp_id);
duke@435 410 }
duke@435 411 }
duke@435 412
duke@435 413 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 414 osthread->set_state(INITIALIZED);
duke@435 415
duke@435 416 return osthread;
duke@435 417 }
duke@435 418
duke@435 419
duke@435 420 bool os::create_attached_thread(JavaThread* thread) {
duke@435 421 #ifdef ASSERT
duke@435 422 thread->verify_not_published();
duke@435 423 #endif
duke@435 424 HANDLE thread_h;
duke@435 425 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
duke@435 426 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
duke@435 427 fatal("DuplicateHandle failed\n");
duke@435 428 }
duke@435 429 OSThread* osthread = create_os_thread(thread, thread_h,
duke@435 430 (int)current_thread_id());
duke@435 431 if (osthread == NULL) {
duke@435 432 return false;
duke@435 433 }
duke@435 434
duke@435 435 // Initial thread state is RUNNABLE
duke@435 436 osthread->set_state(RUNNABLE);
duke@435 437
duke@435 438 thread->set_osthread(osthread);
duke@435 439 return true;
duke@435 440 }
duke@435 441
duke@435 442 bool os::create_main_thread(JavaThread* thread) {
duke@435 443 #ifdef ASSERT
duke@435 444 thread->verify_not_published();
duke@435 445 #endif
duke@435 446 if (_starting_thread == NULL) {
duke@435 447 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
duke@435 448 if (_starting_thread == NULL) {
duke@435 449 return false;
duke@435 450 }
duke@435 451 }
duke@435 452
duke@435 453 // The primordial thread is runnable from the start)
duke@435 454 _starting_thread->set_state(RUNNABLE);
duke@435 455
duke@435 456 thread->set_osthread(_starting_thread);
duke@435 457 return true;
duke@435 458 }
duke@435 459
duke@435 460 // Allocate and initialize a new OSThread
duke@435 461 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 462 unsigned thread_id;
duke@435 463
duke@435 464 // Allocate the OSThread object
duke@435 465 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 466 if (osthread == NULL) {
duke@435 467 return false;
duke@435 468 }
duke@435 469
duke@435 470 // Initialize support for Java interrupts
duke@435 471 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 472 if (interrupt_event == NULL) {
duke@435 473 delete osthread;
duke@435 474 return NULL;
duke@435 475 }
duke@435 476 osthread->set_interrupt_event(interrupt_event);
duke@435 477 osthread->set_interrupted(false);
duke@435 478
duke@435 479 thread->set_osthread(osthread);
duke@435 480
duke@435 481 if (stack_size == 0) {
duke@435 482 switch (thr_type) {
duke@435 483 case os::java_thread:
duke@435 484 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 485 if (JavaThread::stack_size_at_create() > 0)
duke@435 486 stack_size = JavaThread::stack_size_at_create();
duke@435 487 break;
duke@435 488 case os::compiler_thread:
duke@435 489 if (CompilerThreadStackSize > 0) {
duke@435 490 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 491 break;
duke@435 492 } // else fall through:
duke@435 493 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 494 case os::vm_thread:
duke@435 495 case os::pgc_thread:
duke@435 496 case os::cgc_thread:
duke@435 497 case os::watcher_thread:
duke@435 498 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 499 break;
duke@435 500 }
duke@435 501 }
duke@435 502
duke@435 503 // Create the Win32 thread
duke@435 504 //
duke@435 505 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
duke@435 506 // does not specify stack size. Instead, it specifies the size of
duke@435 507 // initially committed space. The stack size is determined by
duke@435 508 // PE header in the executable. If the committed "stack_size" is larger
duke@435 509 // than default value in the PE header, the stack is rounded up to the
duke@435 510 // nearest multiple of 1MB. For example if the launcher has default
duke@435 511 // stack size of 320k, specifying any size less than 320k does not
duke@435 512 // affect the actual stack size at all, it only affects the initial
duke@435 513 // commitment. On the other hand, specifying 'stack_size' larger than
duke@435 514 // default value may cause significant increase in memory usage, because
duke@435 515 // not only the stack space will be rounded up to MB, but also the
duke@435 516 // entire space is committed upfront.
duke@435 517 //
duke@435 518 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
duke@435 519 // for CreateThread() that can treat 'stack_size' as stack size. However we
duke@435 520 // are not supposed to call CreateThread() directly according to MSDN
duke@435 521 // document because JVM uses C runtime library. The good news is that the
duke@435 522 // flag appears to work with _beginthredex() as well.
duke@435 523
duke@435 524 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
duke@435 525 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
duke@435 526 #endif
duke@435 527
duke@435 528 HANDLE thread_handle =
duke@435 529 (HANDLE)_beginthreadex(NULL,
duke@435 530 (unsigned)stack_size,
duke@435 531 (unsigned (__stdcall *)(void*)) java_start,
duke@435 532 thread,
duke@435 533 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
duke@435 534 &thread_id);
duke@435 535 if (thread_handle == NULL) {
duke@435 536 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
duke@435 537 // without the flag.
duke@435 538 thread_handle =
duke@435 539 (HANDLE)_beginthreadex(NULL,
duke@435 540 (unsigned)stack_size,
duke@435 541 (unsigned (__stdcall *)(void*)) java_start,
duke@435 542 thread,
duke@435 543 CREATE_SUSPENDED,
duke@435 544 &thread_id);
duke@435 545 }
duke@435 546 if (thread_handle == NULL) {
duke@435 547 // Need to clean up stuff we've allocated so far
duke@435 548 CloseHandle(osthread->interrupt_event());
duke@435 549 thread->set_osthread(NULL);
duke@435 550 delete osthread;
duke@435 551 return NULL;
duke@435 552 }
duke@435 553
duke@435 554 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 555
duke@435 556 // Store info on the Win32 thread into the OSThread
duke@435 557 osthread->set_thread_handle(thread_handle);
duke@435 558 osthread->set_thread_id(thread_id);
duke@435 559
duke@435 560 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 561 osthread->set_state(INITIALIZED);
duke@435 562
duke@435 563 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 564 return true;
duke@435 565 }
duke@435 566
duke@435 567
duke@435 568 // Free Win32 resources related to the OSThread
duke@435 569 void os::free_thread(OSThread* osthread) {
duke@435 570 assert(osthread != NULL, "osthread not set");
duke@435 571 CloseHandle(osthread->thread_handle());
duke@435 572 CloseHandle(osthread->interrupt_event());
duke@435 573 delete osthread;
duke@435 574 }
duke@435 575
duke@435 576
duke@435 577 static int has_performance_count = 0;
duke@435 578 static jlong first_filetime;
duke@435 579 static jlong initial_performance_count;
duke@435 580 static jlong performance_frequency;
duke@435 581
duke@435 582
duke@435 583 jlong as_long(LARGE_INTEGER x) {
duke@435 584 jlong result = 0; // initialization to avoid warning
duke@435 585 set_high(&result, x.HighPart);
duke@435 586 set_low(&result, x.LowPart);
duke@435 587 return result;
duke@435 588 }
duke@435 589
duke@435 590
duke@435 591 jlong os::elapsed_counter() {
duke@435 592 LARGE_INTEGER count;
duke@435 593 if (has_performance_count) {
duke@435 594 QueryPerformanceCounter(&count);
duke@435 595 return as_long(count) - initial_performance_count;
duke@435 596 } else {
duke@435 597 FILETIME wt;
duke@435 598 GetSystemTimeAsFileTime(&wt);
duke@435 599 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
duke@435 600 }
duke@435 601 }
duke@435 602
duke@435 603
duke@435 604 jlong os::elapsed_frequency() {
duke@435 605 if (has_performance_count) {
duke@435 606 return performance_frequency;
duke@435 607 } else {
duke@435 608 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
duke@435 609 return 10000000;
duke@435 610 }
duke@435 611 }
duke@435 612
duke@435 613
duke@435 614 julong os::available_memory() {
duke@435 615 return win32::available_memory();
duke@435 616 }
duke@435 617
duke@435 618 julong os::win32::available_memory() {
duke@435 619 // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
duke@435 620 // is larger than 4GB
duke@435 621 MEMORYSTATUS ms;
duke@435 622 GlobalMemoryStatus(&ms);
duke@435 623
duke@435 624 return (julong)ms.dwAvailPhys;
duke@435 625 }
duke@435 626
duke@435 627 julong os::physical_memory() {
duke@435 628 return win32::physical_memory();
duke@435 629 }
duke@435 630
duke@435 631 julong os::allocatable_physical_memory(julong size) {
phh@455 632 #ifdef _LP64
phh@455 633 return size;
phh@455 634 #else
phh@455 635 // Limit to 1400m because of the 2gb address space wall
duke@435 636 return MIN2(size, (julong)1400*M);
phh@455 637 #endif
duke@435 638 }
duke@435 639
duke@435 640 // VC6 lacks DWORD_PTR
duke@435 641 #if _MSC_VER < 1300
duke@435 642 typedef UINT_PTR DWORD_PTR;
duke@435 643 #endif
duke@435 644
duke@435 645 int os::active_processor_count() {
duke@435 646 DWORD_PTR lpProcessAffinityMask = 0;
duke@435 647 DWORD_PTR lpSystemAffinityMask = 0;
duke@435 648 int proc_count = processor_count();
duke@435 649 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
duke@435 650 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
duke@435 651 // Nof active processors is number of bits in process affinity mask
duke@435 652 int bitcount = 0;
duke@435 653 while (lpProcessAffinityMask != 0) {
duke@435 654 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
duke@435 655 bitcount++;
duke@435 656 }
duke@435 657 return bitcount;
duke@435 658 } else {
duke@435 659 return proc_count;
duke@435 660 }
duke@435 661 }
duke@435 662
duke@435 663 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 664 // Not yet implemented.
duke@435 665 return false;
duke@435 666 }
duke@435 667
duke@435 668 bool os::bind_to_processor(uint processor_id) {
duke@435 669 // Not yet implemented.
duke@435 670 return false;
duke@435 671 }
duke@435 672
duke@435 673 static void initialize_performance_counter() {
duke@435 674 LARGE_INTEGER count;
duke@435 675 if (QueryPerformanceFrequency(&count)) {
duke@435 676 has_performance_count = 1;
duke@435 677 performance_frequency = as_long(count);
duke@435 678 QueryPerformanceCounter(&count);
duke@435 679 initial_performance_count = as_long(count);
duke@435 680 } else {
duke@435 681 has_performance_count = 0;
duke@435 682 FILETIME wt;
duke@435 683 GetSystemTimeAsFileTime(&wt);
duke@435 684 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688
duke@435 689 double os::elapsedTime() {
duke@435 690 return (double) elapsed_counter() / (double) elapsed_frequency();
duke@435 691 }
duke@435 692
duke@435 693
duke@435 694 // Windows format:
duke@435 695 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
duke@435 696 // Java format:
duke@435 697 // Java standards require the number of milliseconds since 1/1/1970
duke@435 698
duke@435 699 // Constant offset - calculated using offset()
duke@435 700 static jlong _offset = 116444736000000000;
duke@435 701 // Fake time counter for reproducible results when debugging
duke@435 702 static jlong fake_time = 0;
duke@435 703
duke@435 704 #ifdef ASSERT
duke@435 705 // Just to be safe, recalculate the offset in debug mode
duke@435 706 static jlong _calculated_offset = 0;
duke@435 707 static int _has_calculated_offset = 0;
duke@435 708
duke@435 709 jlong offset() {
duke@435 710 if (_has_calculated_offset) return _calculated_offset;
duke@435 711 SYSTEMTIME java_origin;
duke@435 712 java_origin.wYear = 1970;
duke@435 713 java_origin.wMonth = 1;
duke@435 714 java_origin.wDayOfWeek = 0; // ignored
duke@435 715 java_origin.wDay = 1;
duke@435 716 java_origin.wHour = 0;
duke@435 717 java_origin.wMinute = 0;
duke@435 718 java_origin.wSecond = 0;
duke@435 719 java_origin.wMilliseconds = 0;
duke@435 720 FILETIME jot;
duke@435 721 if (!SystemTimeToFileTime(&java_origin, &jot)) {
duke@435 722 fatal1("Error = %d\nWindows error", GetLastError());
duke@435 723 }
duke@435 724 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
duke@435 725 _has_calculated_offset = 1;
duke@435 726 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
duke@435 727 return _calculated_offset;
duke@435 728 }
duke@435 729 #else
duke@435 730 jlong offset() {
duke@435 731 return _offset;
duke@435 732 }
duke@435 733 #endif
duke@435 734
duke@435 735 jlong windows_to_java_time(FILETIME wt) {
duke@435 736 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 737 return (a - offset()) / 10000;
duke@435 738 }
duke@435 739
duke@435 740 FILETIME java_to_windows_time(jlong l) {
duke@435 741 jlong a = (l * 10000) + offset();
duke@435 742 FILETIME result;
duke@435 743 result.dwHighDateTime = high(a);
duke@435 744 result.dwLowDateTime = low(a);
duke@435 745 return result;
duke@435 746 }
duke@435 747
ysr@777 748 // For now, we say that Windows does not support vtime. I have no idea
ysr@777 749 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 750
ysr@777 751 bool os::supports_vtime() { return false; }
ysr@777 752 bool os::enable_vtime() { return false; }
ysr@777 753 bool os::vtime_enabled() { return false; }
ysr@777 754 double os::elapsedVTime() {
ysr@777 755 // better than nothing, but not much
ysr@777 756 return elapsedTime();
ysr@777 757 }
ysr@777 758
duke@435 759 jlong os::javaTimeMillis() {
duke@435 760 if (UseFakeTimers) {
duke@435 761 return fake_time++;
duke@435 762 } else {
sbohne@496 763 FILETIME wt;
sbohne@496 764 GetSystemTimeAsFileTime(&wt);
sbohne@496 765 return windows_to_java_time(wt);
duke@435 766 }
duke@435 767 }
duke@435 768
duke@435 769 #define NANOS_PER_SEC CONST64(1000000000)
duke@435 770 #define NANOS_PER_MILLISEC 1000000
duke@435 771 jlong os::javaTimeNanos() {
duke@435 772 if (!has_performance_count) {
duke@435 773 return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
duke@435 774 } else {
duke@435 775 LARGE_INTEGER current_count;
duke@435 776 QueryPerformanceCounter(&current_count);
duke@435 777 double current = as_long(current_count);
duke@435 778 double freq = performance_frequency;
duke@435 779 jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
duke@435 780 return time;
duke@435 781 }
duke@435 782 }
duke@435 783
duke@435 784 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 785 if (!has_performance_count) {
duke@435 786 // javaTimeMillis() doesn't have much percision,
duke@435 787 // but it is not going to wrap -- so all 64 bits
duke@435 788 info_ptr->max_value = ALL_64_BITS;
duke@435 789
duke@435 790 // this is a wall clock timer, so may skip
duke@435 791 info_ptr->may_skip_backward = true;
duke@435 792 info_ptr->may_skip_forward = true;
duke@435 793 } else {
duke@435 794 jlong freq = performance_frequency;
duke@435 795 if (freq < NANOS_PER_SEC) {
duke@435 796 // the performance counter is 64 bits and we will
duke@435 797 // be multiplying it -- so no wrap in 64 bits
duke@435 798 info_ptr->max_value = ALL_64_BITS;
duke@435 799 } else if (freq > NANOS_PER_SEC) {
duke@435 800 // use the max value the counter can reach to
duke@435 801 // determine the max value which could be returned
duke@435 802 julong max_counter = (julong)ALL_64_BITS;
duke@435 803 info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
duke@435 804 } else {
duke@435 805 // the performance counter is 64 bits and we will
duke@435 806 // be using it directly -- so no wrap in 64 bits
duke@435 807 info_ptr->max_value = ALL_64_BITS;
duke@435 808 }
duke@435 809
duke@435 810 // using a counter, so no skipping
duke@435 811 info_ptr->may_skip_backward = false;
duke@435 812 info_ptr->may_skip_forward = false;
duke@435 813 }
duke@435 814 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 815 }
duke@435 816
duke@435 817 char* os::local_time_string(char *buf, size_t buflen) {
duke@435 818 SYSTEMTIME st;
duke@435 819 GetLocalTime(&st);
duke@435 820 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 821 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
duke@435 822 return buf;
duke@435 823 }
duke@435 824
duke@435 825 bool os::getTimesSecs(double* process_real_time,
duke@435 826 double* process_user_time,
duke@435 827 double* process_system_time) {
duke@435 828 HANDLE h_process = GetCurrentProcess();
duke@435 829 FILETIME create_time, exit_time, kernel_time, user_time;
duke@435 830 BOOL result = GetProcessTimes(h_process,
duke@435 831 &create_time,
duke@435 832 &exit_time,
duke@435 833 &kernel_time,
duke@435 834 &user_time);
duke@435 835 if (result != 0) {
duke@435 836 FILETIME wt;
duke@435 837 GetSystemTimeAsFileTime(&wt);
duke@435 838 jlong rtc_millis = windows_to_java_time(wt);
duke@435 839 jlong user_millis = windows_to_java_time(user_time);
duke@435 840 jlong system_millis = windows_to_java_time(kernel_time);
duke@435 841 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
duke@435 842 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
duke@435 843 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
duke@435 844 return true;
duke@435 845 } else {
duke@435 846 return false;
duke@435 847 }
duke@435 848 }
duke@435 849
duke@435 850 void os::shutdown() {
duke@435 851
duke@435 852 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 853 perfMemory_exit();
duke@435 854
duke@435 855 // flush buffered output, finish log files
duke@435 856 ostream_abort();
duke@435 857
duke@435 858 // Check for abort hook
duke@435 859 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 860 if (abort_hook != NULL) {
duke@435 861 abort_hook();
duke@435 862 }
duke@435 863 }
duke@435 864
duke@435 865 void os::abort(bool dump_core)
duke@435 866 {
duke@435 867 os::shutdown();
duke@435 868 // no core dump on Windows
duke@435 869 ::exit(1);
duke@435 870 }
duke@435 871
duke@435 872 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 873 void os::die() {
duke@435 874 _exit(-1);
duke@435 875 }
duke@435 876
duke@435 877 // Directory routines copied from src/win32/native/java/io/dirent_md.c
duke@435 878 // * dirent_md.c 1.15 00/02/02
duke@435 879 //
duke@435 880 // The declarations for DIR and struct dirent are in jvm_win32.h.
duke@435 881
duke@435 882 /* Caller must have already run dirname through JVM_NativePath, which removes
duke@435 883 duplicate slashes and converts all instances of '/' into '\\'. */
duke@435 884
duke@435 885 DIR *
duke@435 886 os::opendir(const char *dirname)
duke@435 887 {
duke@435 888 assert(dirname != NULL, "just checking"); // hotspot change
duke@435 889 DIR *dirp = (DIR *)malloc(sizeof(DIR));
duke@435 890 DWORD fattr; // hotspot change
duke@435 891 char alt_dirname[4] = { 0, 0, 0, 0 };
duke@435 892
duke@435 893 if (dirp == 0) {
duke@435 894 errno = ENOMEM;
duke@435 895 return 0;
duke@435 896 }
duke@435 897
duke@435 898 /*
duke@435 899 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
duke@435 900 * as a directory in FindFirstFile(). We detect this case here and
duke@435 901 * prepend the current drive name.
duke@435 902 */
duke@435 903 if (dirname[1] == '\0' && dirname[0] == '\\') {
duke@435 904 alt_dirname[0] = _getdrive() + 'A' - 1;
duke@435 905 alt_dirname[1] = ':';
duke@435 906 alt_dirname[2] = '\\';
duke@435 907 alt_dirname[3] = '\0';
duke@435 908 dirname = alt_dirname;
duke@435 909 }
duke@435 910
duke@435 911 dirp->path = (char *)malloc(strlen(dirname) + 5);
duke@435 912 if (dirp->path == 0) {
duke@435 913 free(dirp);
duke@435 914 errno = ENOMEM;
duke@435 915 return 0;
duke@435 916 }
duke@435 917 strcpy(dirp->path, dirname);
duke@435 918
duke@435 919 fattr = GetFileAttributes(dirp->path);
duke@435 920 if (fattr == 0xffffffff) {
duke@435 921 free(dirp->path);
duke@435 922 free(dirp);
duke@435 923 errno = ENOENT;
duke@435 924 return 0;
duke@435 925 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
duke@435 926 free(dirp->path);
duke@435 927 free(dirp);
duke@435 928 errno = ENOTDIR;
duke@435 929 return 0;
duke@435 930 }
duke@435 931
duke@435 932 /* Append "*.*", or possibly "\\*.*", to path */
duke@435 933 if (dirp->path[1] == ':'
duke@435 934 && (dirp->path[2] == '\0'
duke@435 935 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
duke@435 936 /* No '\\' needed for cases like "Z:" or "Z:\" */
duke@435 937 strcat(dirp->path, "*.*");
duke@435 938 } else {
duke@435 939 strcat(dirp->path, "\\*.*");
duke@435 940 }
duke@435 941
duke@435 942 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
duke@435 943 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 944 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
duke@435 945 free(dirp->path);
duke@435 946 free(dirp);
duke@435 947 errno = EACCES;
duke@435 948 return 0;
duke@435 949 }
duke@435 950 }
duke@435 951 return dirp;
duke@435 952 }
duke@435 953
duke@435 954 /* parameter dbuf unused on Windows */
duke@435 955
duke@435 956 struct dirent *
duke@435 957 os::readdir(DIR *dirp, dirent *dbuf)
duke@435 958 {
duke@435 959 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 960 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 961 return 0;
duke@435 962 }
duke@435 963
duke@435 964 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
duke@435 965
duke@435 966 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
duke@435 967 if (GetLastError() == ERROR_INVALID_HANDLE) {
duke@435 968 errno = EBADF;
duke@435 969 return 0;
duke@435 970 }
duke@435 971 FindClose(dirp->handle);
duke@435 972 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 973 }
duke@435 974
duke@435 975 return &dirp->dirent;
duke@435 976 }
duke@435 977
duke@435 978 int
duke@435 979 os::closedir(DIR *dirp)
duke@435 980 {
duke@435 981 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 982 if (dirp->handle != INVALID_HANDLE_VALUE) {
duke@435 983 if (!FindClose(dirp->handle)) {
duke@435 984 errno = EBADF;
duke@435 985 return -1;
duke@435 986 }
duke@435 987 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 988 }
duke@435 989 free(dirp->path);
duke@435 990 free(dirp);
duke@435 991 return 0;
duke@435 992 }
duke@435 993
duke@435 994 const char* os::dll_file_extension() { return ".dll"; }
duke@435 995
duke@435 996 const char * os::get_temp_directory()
duke@435 997 {
duke@435 998 static char path_buf[MAX_PATH];
duke@435 999 if (GetTempPath(MAX_PATH, path_buf)>0)
duke@435 1000 return path_buf;
duke@435 1001 else{
duke@435 1002 path_buf[0]='\0';
duke@435 1003 return path_buf;
duke@435 1004 }
duke@435 1005 }
duke@435 1006
phh@1126 1007 static bool file_exists(const char* filename) {
phh@1126 1008 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1009 return false;
phh@1126 1010 }
phh@1126 1011 return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
phh@1126 1012 }
phh@1126 1013
phh@1126 1014 void os::dll_build_name(char *buffer, size_t buflen,
phh@1126 1015 const char* pname, const char* fname) {
phh@1126 1016 // Copied from libhpi
phh@1126 1017 const size_t pnamelen = pname ? strlen(pname) : 0;
phh@1126 1018 const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
phh@1126 1019
phh@1126 1020 // Quietly truncates on buffer overflow. Should be an error.
phh@1126 1021 if (pnamelen + strlen(fname) + 10 > buflen) {
phh@1126 1022 *buffer = '\0';
phh@1126 1023 return;
phh@1126 1024 }
phh@1126 1025
phh@1126 1026 if (pnamelen == 0) {
phh@1126 1027 jio_snprintf(buffer, buflen, "%s.dll", fname);
phh@1126 1028 } else if (c == ':' || c == '\\') {
phh@1126 1029 jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
phh@1126 1030 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1031 int n;
phh@1126 1032 char** pelements = split_path(pname, &n);
phh@1126 1033 for (int i = 0 ; i < n ; i++) {
phh@1126 1034 char* path = pelements[i];
phh@1126 1035 // Really shouldn't be NULL, but check can't hurt
phh@1126 1036 size_t plen = (path == NULL) ? 0 : strlen(path);
phh@1126 1037 if (plen == 0) {
phh@1126 1038 continue; // skip the empty path values
phh@1126 1039 }
phh@1126 1040 const char lastchar = path[plen - 1];
phh@1126 1041 if (lastchar == ':' || lastchar == '\\') {
phh@1126 1042 jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
phh@1126 1043 } else {
phh@1126 1044 jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
phh@1126 1045 }
phh@1126 1046 if (file_exists(buffer)) {
phh@1126 1047 break;
phh@1126 1048 }
kamg@677 1049 }
phh@1126 1050 // release the storage
phh@1126 1051 for (int i = 0 ; i < n ; i++) {
phh@1126 1052 if (pelements[i] != NULL) {
phh@1126 1053 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1054 }
kamg@677 1055 }
phh@1126 1056 if (pelements != NULL) {
phh@1126 1057 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1058 }
phh@1126 1059 } else {
phh@1126 1060 jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
phh@1126 1061 }
kamg@677 1062 }
kamg@677 1063
duke@435 1064 // Needs to be in os specific directory because windows requires another
duke@435 1065 // header file <direct.h>
duke@435 1066 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1067 return _getcwd(buf, buflen);
duke@435 1068 }
duke@435 1069
duke@435 1070 //-----------------------------------------------------------
duke@435 1071 // Helper functions for fatal error handler
duke@435 1072
duke@435 1073 // The following library functions are resolved dynamically at runtime:
duke@435 1074
duke@435 1075 // PSAPI functions, for Windows NT, 2000, XP
duke@435 1076
duke@435 1077 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
duke@435 1078 // SDK from Microsoft. Here are the definitions copied from psapi.h
duke@435 1079 typedef struct _MODULEINFO {
duke@435 1080 LPVOID lpBaseOfDll;
duke@435 1081 DWORD SizeOfImage;
duke@435 1082 LPVOID EntryPoint;
duke@435 1083 } MODULEINFO, *LPMODULEINFO;
duke@435 1084
duke@435 1085 static BOOL (WINAPI *_EnumProcessModules) ( HANDLE, HMODULE *, DWORD, LPDWORD );
duke@435 1086 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
duke@435 1087 static BOOL (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
duke@435 1088
duke@435 1089 // ToolHelp Functions, for Windows 95, 98 and ME
duke@435 1090
duke@435 1091 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
duke@435 1092 static BOOL (WINAPI *_Module32First) (HANDLE,LPMODULEENTRY32) ;
duke@435 1093 static BOOL (WINAPI *_Module32Next) (HANDLE,LPMODULEENTRY32) ;
duke@435 1094
duke@435 1095 bool _has_psapi;
duke@435 1096 bool _psapi_init = false;
duke@435 1097 bool _has_toolhelp;
duke@435 1098
duke@435 1099 static bool _init_psapi() {
duke@435 1100 HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
duke@435 1101 if( psapi == NULL ) return false ;
duke@435 1102
duke@435 1103 _EnumProcessModules = CAST_TO_FN_PTR(
duke@435 1104 BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
duke@435 1105 GetProcAddress(psapi, "EnumProcessModules")) ;
duke@435 1106 _GetModuleFileNameEx = CAST_TO_FN_PTR(
duke@435 1107 DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
duke@435 1108 GetProcAddress(psapi, "GetModuleFileNameExA"));
duke@435 1109 _GetModuleInformation = CAST_TO_FN_PTR(
duke@435 1110 BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
duke@435 1111 GetProcAddress(psapi, "GetModuleInformation"));
duke@435 1112
duke@435 1113 _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
duke@435 1114 _psapi_init = true;
duke@435 1115 return _has_psapi;
duke@435 1116 }
duke@435 1117
duke@435 1118 static bool _init_toolhelp() {
duke@435 1119 HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
duke@435 1120 if (kernel32 == NULL) return false ;
duke@435 1121
duke@435 1122 _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
duke@435 1123 HANDLE(WINAPI *)(DWORD,DWORD),
duke@435 1124 GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
duke@435 1125 _Module32First = CAST_TO_FN_PTR(
duke@435 1126 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
duke@435 1127 GetProcAddress(kernel32, "Module32First" ));
duke@435 1128 _Module32Next = CAST_TO_FN_PTR(
duke@435 1129 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
duke@435 1130 GetProcAddress(kernel32, "Module32Next" ));
duke@435 1131
duke@435 1132 _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
duke@435 1133 return _has_toolhelp;
duke@435 1134 }
duke@435 1135
duke@435 1136 #ifdef _WIN64
duke@435 1137 // Helper routine which returns true if address in
duke@435 1138 // within the NTDLL address space.
duke@435 1139 //
duke@435 1140 static bool _addr_in_ntdll( address addr )
duke@435 1141 {
duke@435 1142 HMODULE hmod;
duke@435 1143 MODULEINFO minfo;
duke@435 1144
duke@435 1145 hmod = GetModuleHandle("NTDLL.DLL");
duke@435 1146 if ( hmod == NULL ) return false;
duke@435 1147 if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
duke@435 1148 &minfo, sizeof(MODULEINFO)) )
duke@435 1149 return false;
duke@435 1150
duke@435 1151 if ( (addr >= minfo.lpBaseOfDll) &&
duke@435 1152 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
duke@435 1153 return true;
duke@435 1154 else
duke@435 1155 return false;
duke@435 1156 }
duke@435 1157 #endif
duke@435 1158
duke@435 1159
duke@435 1160 // Enumerate all modules for a given process ID
duke@435 1161 //
duke@435 1162 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
duke@435 1163 // different API for doing this. We use PSAPI.DLL on NT based
duke@435 1164 // Windows and ToolHelp on 95/98/Me.
duke@435 1165
duke@435 1166 // Callback function that is called by enumerate_modules() on
duke@435 1167 // every DLL module.
duke@435 1168 // Input parameters:
duke@435 1169 // int pid,
duke@435 1170 // char* module_file_name,
duke@435 1171 // address module_base_addr,
duke@435 1172 // unsigned module_size,
duke@435 1173 // void* param
duke@435 1174 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
duke@435 1175
duke@435 1176 // enumerate_modules for Windows NT, using PSAPI
duke@435 1177 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
duke@435 1178 {
duke@435 1179 HANDLE hProcess ;
duke@435 1180
duke@435 1181 # define MAX_NUM_MODULES 128
duke@435 1182 HMODULE modules[MAX_NUM_MODULES];
duke@435 1183 static char filename[ MAX_PATH ];
duke@435 1184 int result = 0;
duke@435 1185
duke@435 1186 if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
duke@435 1187
duke@435 1188 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
duke@435 1189 FALSE, pid ) ;
duke@435 1190 if (hProcess == NULL) return 0;
duke@435 1191
duke@435 1192 DWORD size_needed;
duke@435 1193 if (!_EnumProcessModules(hProcess, modules,
duke@435 1194 sizeof(modules), &size_needed)) {
duke@435 1195 CloseHandle( hProcess );
duke@435 1196 return 0;
duke@435 1197 }
duke@435 1198
duke@435 1199 // number of modules that are currently loaded
duke@435 1200 int num_modules = size_needed / sizeof(HMODULE);
duke@435 1201
duke@435 1202 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
duke@435 1203 // Get Full pathname:
duke@435 1204 if(!_GetModuleFileNameEx(hProcess, modules[i],
duke@435 1205 filename, sizeof(filename))) {
duke@435 1206 filename[0] = '\0';
duke@435 1207 }
duke@435 1208
duke@435 1209 MODULEINFO modinfo;
duke@435 1210 if (!_GetModuleInformation(hProcess, modules[i],
duke@435 1211 &modinfo, sizeof(modinfo))) {
duke@435 1212 modinfo.lpBaseOfDll = NULL;
duke@435 1213 modinfo.SizeOfImage = 0;
duke@435 1214 }
duke@435 1215
duke@435 1216 // Invoke callback function
duke@435 1217 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
duke@435 1218 modinfo.SizeOfImage, param);
duke@435 1219 if (result) break;
duke@435 1220 }
duke@435 1221
duke@435 1222 CloseHandle( hProcess ) ;
duke@435 1223 return result;
duke@435 1224 }
duke@435 1225
duke@435 1226
duke@435 1227 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
duke@435 1228 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
duke@435 1229 {
duke@435 1230 HANDLE hSnapShot ;
duke@435 1231 static MODULEENTRY32 modentry ;
duke@435 1232 int result = 0;
duke@435 1233
duke@435 1234 if (!_has_toolhelp) return 0;
duke@435 1235
duke@435 1236 // Get a handle to a Toolhelp snapshot of the system
duke@435 1237 hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
duke@435 1238 if( hSnapShot == INVALID_HANDLE_VALUE ) {
duke@435 1239 return FALSE ;
duke@435 1240 }
duke@435 1241
duke@435 1242 // iterate through all modules
duke@435 1243 modentry.dwSize = sizeof(MODULEENTRY32) ;
duke@435 1244 bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
duke@435 1245
duke@435 1246 while( not_done ) {
duke@435 1247 // invoke the callback
duke@435 1248 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
duke@435 1249 modentry.modBaseSize, param);
duke@435 1250 if (result) break;
duke@435 1251
duke@435 1252 modentry.dwSize = sizeof(MODULEENTRY32) ;
duke@435 1253 not_done = _Module32Next( hSnapShot, &modentry ) != 0;
duke@435 1254 }
duke@435 1255
duke@435 1256 CloseHandle(hSnapShot);
duke@435 1257 return result;
duke@435 1258 }
duke@435 1259
duke@435 1260 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
duke@435 1261 {
duke@435 1262 // Get current process ID if caller doesn't provide it.
duke@435 1263 if (!pid) pid = os::current_process_id();
duke@435 1264
duke@435 1265 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
duke@435 1266 else return _enumerate_modules_windows(pid, func, param);
duke@435 1267 }
duke@435 1268
duke@435 1269 struct _modinfo {
duke@435 1270 address addr;
duke@435 1271 char* full_path; // point to a char buffer
duke@435 1272 int buflen; // size of the buffer
duke@435 1273 address base_addr;
duke@435 1274 };
duke@435 1275
duke@435 1276 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
duke@435 1277 unsigned size, void * param) {
duke@435 1278 struct _modinfo *pmod = (struct _modinfo *)param;
duke@435 1279 if (!pmod) return -1;
duke@435 1280
duke@435 1281 if (base_addr <= pmod->addr &&
duke@435 1282 base_addr+size > pmod->addr) {
duke@435 1283 // if a buffer is provided, copy path name to the buffer
duke@435 1284 if (pmod->full_path) {
duke@435 1285 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
duke@435 1286 }
duke@435 1287 pmod->base_addr = base_addr;
duke@435 1288 return 1;
duke@435 1289 }
duke@435 1290 return 0;
duke@435 1291 }
duke@435 1292
duke@435 1293 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1294 int buflen, int* offset) {
duke@435 1295 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
duke@435 1296 // return the full path to the DLL file, sometimes it returns path
duke@435 1297 // to the corresponding PDB file (debug info); sometimes it only
duke@435 1298 // returns partial path, which makes life painful.
duke@435 1299
duke@435 1300 struct _modinfo mi;
duke@435 1301 mi.addr = addr;
duke@435 1302 mi.full_path = buf;
duke@435 1303 mi.buflen = buflen;
duke@435 1304 int pid = os::current_process_id();
duke@435 1305 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
duke@435 1306 // buf already contains path name
duke@435 1307 if (offset) *offset = addr - mi.base_addr;
duke@435 1308 return true;
duke@435 1309 } else {
duke@435 1310 if (buf) buf[0] = '\0';
duke@435 1311 if (offset) *offset = -1;
duke@435 1312 return false;
duke@435 1313 }
duke@435 1314 }
duke@435 1315
duke@435 1316 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1317 int buflen, int *offset) {
duke@435 1318 // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
duke@435 1319 // we need to initialize imagehlp/dbghelp, then load symbol table
duke@435 1320 // for every module. That's too much work to do after a fatal error.
duke@435 1321 // For an example on how to implement this function, see 1.4.2.
duke@435 1322 if (offset) *offset = -1;
duke@435 1323 if (buf) buf[0] = '\0';
duke@435 1324 return false;
duke@435 1325 }
duke@435 1326
kamg@677 1327 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1328 return GetProcAddress((HMODULE)handle, name);
kamg@677 1329 }
kamg@677 1330
duke@435 1331 // save the start and end address of jvm.dll into param[0] and param[1]
duke@435 1332 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
duke@435 1333 unsigned size, void * param) {
duke@435 1334 if (!param) return -1;
duke@435 1335
duke@435 1336 if (base_addr <= (address)_locate_jvm_dll &&
duke@435 1337 base_addr+size > (address)_locate_jvm_dll) {
duke@435 1338 ((address*)param)[0] = base_addr;
duke@435 1339 ((address*)param)[1] = base_addr + size;
duke@435 1340 return 1;
duke@435 1341 }
duke@435 1342 return 0;
duke@435 1343 }
duke@435 1344
duke@435 1345 address vm_lib_location[2]; // start and end address of jvm.dll
duke@435 1346
duke@435 1347 // check if addr is inside jvm.dll
duke@435 1348 bool os::address_is_in_vm(address addr) {
duke@435 1349 if (!vm_lib_location[0] || !vm_lib_location[1]) {
duke@435 1350 int pid = os::current_process_id();
duke@435 1351 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
duke@435 1352 assert(false, "Can't find jvm module.");
duke@435 1353 return false;
duke@435 1354 }
duke@435 1355 }
duke@435 1356
duke@435 1357 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
duke@435 1358 }
duke@435 1359
duke@435 1360 // print module info; param is outputStream*
duke@435 1361 static int _print_module(int pid, char* fname, address base,
duke@435 1362 unsigned size, void* param) {
duke@435 1363 if (!param) return -1;
duke@435 1364
duke@435 1365 outputStream* st = (outputStream*)param;
duke@435 1366
duke@435 1367 address end_addr = base + size;
duke@435 1368 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
duke@435 1369 return 0;
duke@435 1370 }
duke@435 1371
duke@435 1372 // Loads .dll/.so and
duke@435 1373 // in case of error it checks if .dll/.so was built for the
duke@435 1374 // same architecture as Hotspot is running on
duke@435 1375 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
duke@435 1376 {
duke@435 1377 void * result = LoadLibrary(name);
duke@435 1378 if (result != NULL)
duke@435 1379 {
duke@435 1380 return result;
duke@435 1381 }
duke@435 1382
duke@435 1383 long errcode = GetLastError();
duke@435 1384 if (errcode == ERROR_MOD_NOT_FOUND) {
duke@435 1385 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
duke@435 1386 ebuf[ebuflen-1]='\0';
duke@435 1387 return NULL;
duke@435 1388 }
duke@435 1389
duke@435 1390 // Parsing dll below
duke@435 1391 // If we can read dll-info and find that dll was built
duke@435 1392 // for an architecture other than Hotspot is running in
duke@435 1393 // - then print to buffer "DLL was built for a different architecture"
duke@435 1394 // else call getLastErrorString to obtain system error message
duke@435 1395
duke@435 1396 // Read system error message into ebuf
duke@435 1397 // It may or may not be overwritten below (in the for loop and just above)
duke@435 1398 getLastErrorString(ebuf, (size_t) ebuflen);
duke@435 1399 ebuf[ebuflen-1]='\0';
duke@435 1400 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
duke@435 1401 if (file_descriptor<0)
duke@435 1402 {
duke@435 1403 return NULL;
duke@435 1404 }
duke@435 1405
duke@435 1406 uint32_t signature_offset;
duke@435 1407 uint16_t lib_arch=0;
duke@435 1408 bool failed_to_get_lib_arch=
duke@435 1409 (
duke@435 1410 //Go to position 3c in the dll
duke@435 1411 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
duke@435 1412 ||
duke@435 1413 // Read loacation of signature
duke@435 1414 (sizeof(signature_offset)!=
duke@435 1415 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
duke@435 1416 ||
duke@435 1417 //Go to COFF File Header in dll
duke@435 1418 //that is located after"signature" (4 bytes long)
duke@435 1419 (os::seek_to_file_offset(file_descriptor,
duke@435 1420 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
duke@435 1421 ||
duke@435 1422 //Read field that contains code of architecture
duke@435 1423 // that dll was build for
duke@435 1424 (sizeof(lib_arch)!=
duke@435 1425 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
duke@435 1426 );
duke@435 1427
duke@435 1428 ::close(file_descriptor);
duke@435 1429 if (failed_to_get_lib_arch)
duke@435 1430 {
duke@435 1431 // file i/o error - report getLastErrorString(...) msg
duke@435 1432 return NULL;
duke@435 1433 }
duke@435 1434
duke@435 1435 typedef struct
duke@435 1436 {
duke@435 1437 uint16_t arch_code;
duke@435 1438 char* arch_name;
duke@435 1439 } arch_t;
duke@435 1440
duke@435 1441 static const arch_t arch_array[]={
duke@435 1442 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
duke@435 1443 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
duke@435 1444 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
duke@435 1445 };
duke@435 1446 #if (defined _M_IA64)
duke@435 1447 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
duke@435 1448 #elif (defined _M_AMD64)
duke@435 1449 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
duke@435 1450 #elif (defined _M_IX86)
duke@435 1451 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
duke@435 1452 #else
duke@435 1453 #error Method os::dll_load requires that one of following \
duke@435 1454 is defined :_M_IA64,_M_AMD64 or _M_IX86
duke@435 1455 #endif
duke@435 1456
duke@435 1457
duke@435 1458 // Obtain a string for printf operation
duke@435 1459 // lib_arch_str shall contain string what platform this .dll was built for
duke@435 1460 // running_arch_str shall string contain what platform Hotspot was built for
duke@435 1461 char *running_arch_str=NULL,*lib_arch_str=NULL;
duke@435 1462 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
duke@435 1463 {
duke@435 1464 if (lib_arch==arch_array[i].arch_code)
duke@435 1465 lib_arch_str=arch_array[i].arch_name;
duke@435 1466 if (running_arch==arch_array[i].arch_code)
duke@435 1467 running_arch_str=arch_array[i].arch_name;
duke@435 1468 }
duke@435 1469
duke@435 1470 assert(running_arch_str,
duke@435 1471 "Didn't find runing architecture code in arch_array");
duke@435 1472
duke@435 1473 // If the architure is right
duke@435 1474 // but some other error took place - report getLastErrorString(...) msg
duke@435 1475 if (lib_arch == running_arch)
duke@435 1476 {
duke@435 1477 return NULL;
duke@435 1478 }
duke@435 1479
duke@435 1480 if (lib_arch_str!=NULL)
duke@435 1481 {
duke@435 1482 ::_snprintf(ebuf, ebuflen-1,
duke@435 1483 "Can't load %s-bit .dll on a %s-bit platform",
duke@435 1484 lib_arch_str,running_arch_str);
duke@435 1485 }
duke@435 1486 else
duke@435 1487 {
duke@435 1488 // don't know what architecture this dll was build for
duke@435 1489 ::_snprintf(ebuf, ebuflen-1,
duke@435 1490 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
duke@435 1491 lib_arch,running_arch_str);
duke@435 1492 }
duke@435 1493
duke@435 1494 return NULL;
duke@435 1495 }
duke@435 1496
duke@435 1497
duke@435 1498 void os::print_dll_info(outputStream *st) {
duke@435 1499 int pid = os::current_process_id();
duke@435 1500 st->print_cr("Dynamic libraries:");
duke@435 1501 enumerate_modules(pid, _print_module, (void *)st);
duke@435 1502 }
duke@435 1503
xlu@708 1504 // function pointer to Windows API "GetNativeSystemInfo".
xlu@708 1505 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
xlu@708 1506 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
xlu@708 1507
duke@435 1508 void os::print_os_info(outputStream* st) {
xlu@708 1509 st->print("OS:");
xlu@708 1510
xlu@708 1511 OSVERSIONINFOEX osvi;
xlu@708 1512 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
xlu@708 1513 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
xlu@708 1514
xlu@708 1515 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
xlu@708 1516 st->print_cr("N/A");
xlu@708 1517 return;
xlu@708 1518 }
xlu@708 1519
xlu@708 1520 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
xlu@708 1521 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
xlu@708 1522 switch (os_vers) {
xlu@708 1523 case 3051: st->print(" Windows NT 3.51"); break;
xlu@708 1524 case 4000: st->print(" Windows NT 4.0"); break;
xlu@708 1525 case 5000: st->print(" Windows 2000"); break;
xlu@708 1526 case 5001: st->print(" Windows XP"); break;
xlu@708 1527 case 5002:
xlu@708 1528 case 6000: {
xlu@708 1529 // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
xlu@708 1530 // find out whether we are running on 64 bit processor or not.
xlu@708 1531 SYSTEM_INFO si;
xlu@708 1532 ZeroMemory(&si, sizeof(SYSTEM_INFO));
xlu@708 1533 // Check to see if _GetNativeSystemInfo has been initialized.
xlu@708 1534 if (_GetNativeSystemInfo == NULL) {
xlu@708 1535 HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
xlu@708 1536 _GetNativeSystemInfo =
xlu@708 1537 CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
xlu@708 1538 GetProcAddress(hKernel32,
xlu@708 1539 "GetNativeSystemInfo"));
xlu@708 1540 if (_GetNativeSystemInfo == NULL)
xlu@708 1541 GetSystemInfo(&si);
xlu@708 1542 } else {
xlu@708 1543 _GetNativeSystemInfo(&si);
xlu@708 1544 }
xlu@708 1545 if (os_vers == 5002) {
xlu@708 1546 if (osvi.wProductType == VER_NT_WORKSTATION &&
xlu@708 1547 si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1548 st->print(" Windows XP x64 Edition");
xlu@708 1549 else
xlu@708 1550 st->print(" Windows Server 2003 family");
xlu@708 1551 } else { // os_vers == 6000
xlu@708 1552 if (osvi.wProductType == VER_NT_WORKSTATION)
xlu@708 1553 st->print(" Windows Vista");
xlu@708 1554 else
xlu@708 1555 st->print(" Windows Server 2008");
xlu@708 1556 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1557 st->print(" , 64 bit");
xlu@708 1558 }
xlu@708 1559 break;
xlu@708 1560 }
xlu@708 1561 default: // future windows, print out its major and minor versions
xlu@708 1562 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1563 }
xlu@708 1564 } else {
xlu@708 1565 switch (os_vers) {
xlu@708 1566 case 4000: st->print(" Windows 95"); break;
xlu@708 1567 case 4010: st->print(" Windows 98"); break;
xlu@708 1568 case 4090: st->print(" Windows Me"); break;
xlu@708 1569 default: // future windows, print out its major and minor versions
xlu@708 1570 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1571 }
xlu@708 1572 }
xlu@708 1573 st->print(" Build %d", osvi.dwBuildNumber);
xlu@708 1574 st->print(" %s", osvi.szCSDVersion); // service pack
xlu@708 1575 st->cr();
duke@435 1576 }
duke@435 1577
duke@435 1578 void os::print_memory_info(outputStream* st) {
duke@435 1579 st->print("Memory:");
duke@435 1580 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1581
duke@435 1582 // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
duke@435 1583 // is larger than 4GB
duke@435 1584 MEMORYSTATUS ms;
duke@435 1585 GlobalMemoryStatus(&ms);
duke@435 1586
duke@435 1587 st->print(", physical %uk", os::physical_memory() >> 10);
duke@435 1588 st->print("(%uk free)", os::available_memory() >> 10);
duke@435 1589
duke@435 1590 st->print(", swap %uk", ms.dwTotalPageFile >> 10);
duke@435 1591 st->print("(%uk free)", ms.dwAvailPageFile >> 10);
duke@435 1592 st->cr();
duke@435 1593 }
duke@435 1594
duke@435 1595 void os::print_siginfo(outputStream *st, void *siginfo) {
duke@435 1596 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
duke@435 1597 st->print("siginfo:");
duke@435 1598 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
duke@435 1599
duke@435 1600 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 1601 er->NumberParameters >= 2) {
duke@435 1602 switch (er->ExceptionInformation[0]) {
duke@435 1603 case 0: st->print(", reading address"); break;
duke@435 1604 case 1: st->print(", writing address"); break;
duke@435 1605 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
duke@435 1606 er->ExceptionInformation[0]);
duke@435 1607 }
duke@435 1608 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
duke@435 1609 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
duke@435 1610 er->NumberParameters >= 2 && UseSharedSpaces) {
duke@435 1611 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1612 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
duke@435 1613 st->print("\n\nError accessing class data sharing archive." \
duke@435 1614 " Mapped file inaccessible during execution, " \
duke@435 1615 " possible disk/network problem.");
duke@435 1616 }
duke@435 1617 } else {
duke@435 1618 int num = er->NumberParameters;
duke@435 1619 if (num > 0) {
duke@435 1620 st->print(", ExceptionInformation=");
duke@435 1621 for (int i = 0; i < num; i++) {
duke@435 1622 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
duke@435 1623 }
duke@435 1624 }
duke@435 1625 }
duke@435 1626 st->cr();
duke@435 1627 }
duke@435 1628
duke@435 1629 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1630 // do nothing
duke@435 1631 }
duke@435 1632
duke@435 1633 static char saved_jvm_path[MAX_PATH] = {0};
duke@435 1634
duke@435 1635 // Find the full path to the current module, jvm.dll or jvm_g.dll
duke@435 1636 void os::jvm_path(char *buf, jint buflen) {
duke@435 1637 // Error checking.
duke@435 1638 if (buflen < MAX_PATH) {
duke@435 1639 assert(false, "must use a large-enough buffer");
duke@435 1640 buf[0] = '\0';
duke@435 1641 return;
duke@435 1642 }
duke@435 1643 // Lazy resolve the path to current module.
duke@435 1644 if (saved_jvm_path[0] != 0) {
duke@435 1645 strcpy(buf, saved_jvm_path);
duke@435 1646 return;
duke@435 1647 }
duke@435 1648
duke@435 1649 GetModuleFileName(vm_lib_handle, buf, buflen);
duke@435 1650 strcpy(saved_jvm_path, buf);
duke@435 1651 }
duke@435 1652
duke@435 1653
duke@435 1654 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 1655 #ifndef _WIN64
duke@435 1656 st->print("_");
duke@435 1657 #endif
duke@435 1658 }
duke@435 1659
duke@435 1660
duke@435 1661 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 1662 #ifndef _WIN64
duke@435 1663 st->print("@%d", args_size * sizeof(int));
duke@435 1664 #endif
duke@435 1665 }
duke@435 1666
duke@435 1667 // sun.misc.Signal
duke@435 1668 // NOTE that this is a workaround for an apparent kernel bug where if
duke@435 1669 // a signal handler for SIGBREAK is installed then that signal handler
duke@435 1670 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
duke@435 1671 // See bug 4416763.
duke@435 1672 static void (*sigbreakHandler)(int) = NULL;
duke@435 1673
duke@435 1674 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 1675 os::signal_notify(sig);
duke@435 1676 // We need to reinstate the signal handler each time...
duke@435 1677 os::signal(sig, (void*)UserHandler);
duke@435 1678 }
duke@435 1679
duke@435 1680 void* os::user_handler() {
duke@435 1681 return (void*) UserHandler;
duke@435 1682 }
duke@435 1683
duke@435 1684 void* os::signal(int signal_number, void* handler) {
duke@435 1685 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
duke@435 1686 void (*oldHandler)(int) = sigbreakHandler;
duke@435 1687 sigbreakHandler = (void (*)(int)) handler;
duke@435 1688 return (void*) oldHandler;
duke@435 1689 } else {
duke@435 1690 return (void*)::signal(signal_number, (void (*)(int))handler);
duke@435 1691 }
duke@435 1692 }
duke@435 1693
duke@435 1694 void os::signal_raise(int signal_number) {
duke@435 1695 raise(signal_number);
duke@435 1696 }
duke@435 1697
duke@435 1698 // The Win32 C runtime library maps all console control events other than ^C
duke@435 1699 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
duke@435 1700 // logoff, and shutdown events. We therefore install our own console handler
duke@435 1701 // that raises SIGTERM for the latter cases.
duke@435 1702 //
duke@435 1703 static BOOL WINAPI consoleHandler(DWORD event) {
duke@435 1704 switch(event) {
duke@435 1705 case CTRL_C_EVENT:
duke@435 1706 if (is_error_reported()) {
duke@435 1707 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 1708 // handler fails to abort. Let VM die immediately.
duke@435 1709 os::die();
duke@435 1710 }
duke@435 1711
duke@435 1712 os::signal_raise(SIGINT);
duke@435 1713 return TRUE;
duke@435 1714 break;
duke@435 1715 case CTRL_BREAK_EVENT:
duke@435 1716 if (sigbreakHandler != NULL) {
duke@435 1717 (*sigbreakHandler)(SIGBREAK);
duke@435 1718 }
duke@435 1719 return TRUE;
duke@435 1720 break;
duke@435 1721 case CTRL_CLOSE_EVENT:
duke@435 1722 case CTRL_LOGOFF_EVENT:
duke@435 1723 case CTRL_SHUTDOWN_EVENT:
duke@435 1724 os::signal_raise(SIGTERM);
duke@435 1725 return TRUE;
duke@435 1726 break;
duke@435 1727 default:
duke@435 1728 break;
duke@435 1729 }
duke@435 1730 return FALSE;
duke@435 1731 }
duke@435 1732
duke@435 1733 /*
duke@435 1734 * The following code is moved from os.cpp for making this
duke@435 1735 * code platform specific, which it is by its very nature.
duke@435 1736 */
duke@435 1737
duke@435 1738 // Return maximum OS signal used + 1 for internal use only
duke@435 1739 // Used as exit signal for signal_thread
duke@435 1740 int os::sigexitnum_pd(){
duke@435 1741 return NSIG;
duke@435 1742 }
duke@435 1743
duke@435 1744 // a counter for each possible signal value, including signal_thread exit signal
duke@435 1745 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 1746 static HANDLE sig_sem;
duke@435 1747
duke@435 1748 void os::signal_init_pd() {
duke@435 1749 // Initialize signal structures
duke@435 1750 memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 1751
duke@435 1752 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
duke@435 1753
duke@435 1754 // Programs embedding the VM do not want it to attempt to receive
duke@435 1755 // events like CTRL_LOGOFF_EVENT, which are used to implement the
duke@435 1756 // shutdown hooks mechanism introduced in 1.3. For example, when
duke@435 1757 // the VM is run as part of a Windows NT service (i.e., a servlet
duke@435 1758 // engine in a web server), the correct behavior is for any console
duke@435 1759 // control handler to return FALSE, not TRUE, because the OS's
duke@435 1760 // "final" handler for such events allows the process to continue if
duke@435 1761 // it is a service (while terminating it if it is not a service).
duke@435 1762 // To make this behavior uniform and the mechanism simpler, we
duke@435 1763 // completely disable the VM's usage of these console events if -Xrs
duke@435 1764 // (=ReduceSignalUsage) is specified. This means, for example, that
duke@435 1765 // the CTRL-BREAK thread dump mechanism is also disabled in this
duke@435 1766 // case. See bugs 4323062, 4345157, and related bugs.
duke@435 1767
duke@435 1768 if (!ReduceSignalUsage) {
duke@435 1769 // Add a CTRL-C handler
duke@435 1770 SetConsoleCtrlHandler(consoleHandler, TRUE);
duke@435 1771 }
duke@435 1772 }
duke@435 1773
duke@435 1774 void os::signal_notify(int signal_number) {
duke@435 1775 BOOL ret;
duke@435 1776
duke@435 1777 Atomic::inc(&pending_signals[signal_number]);
duke@435 1778 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1779 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1780 }
duke@435 1781
duke@435 1782 static int check_pending_signals(bool wait_for_signal) {
duke@435 1783 DWORD ret;
duke@435 1784 while (true) {
duke@435 1785 for (int i = 0; i < NSIG + 1; i++) {
duke@435 1786 jint n = pending_signals[i];
duke@435 1787 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 1788 return i;
duke@435 1789 }
duke@435 1790 }
duke@435 1791 if (!wait_for_signal) {
duke@435 1792 return -1;
duke@435 1793 }
duke@435 1794
duke@435 1795 JavaThread *thread = JavaThread::current();
duke@435 1796
duke@435 1797 ThreadBlockInVM tbivm(thread);
duke@435 1798
duke@435 1799 bool threadIsSuspended;
duke@435 1800 do {
duke@435 1801 thread->set_suspend_equivalent();
duke@435 1802 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 1803 ret = ::WaitForSingleObject(sig_sem, INFINITE);
duke@435 1804 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
duke@435 1805
duke@435 1806 // were we externally suspended while we were waiting?
duke@435 1807 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 1808 if (threadIsSuspended) {
duke@435 1809 //
duke@435 1810 // The semaphore has been incremented, but while we were waiting
duke@435 1811 // another thread suspended us. We don't want to continue running
duke@435 1812 // while suspended because that would surprise the thread that
duke@435 1813 // suspended us.
duke@435 1814 //
duke@435 1815 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1816 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1817
duke@435 1818 thread->java_suspend_self();
duke@435 1819 }
duke@435 1820 } while (threadIsSuspended);
duke@435 1821 }
duke@435 1822 }
duke@435 1823
duke@435 1824 int os::signal_lookup() {
duke@435 1825 return check_pending_signals(false);
duke@435 1826 }
duke@435 1827
duke@435 1828 int os::signal_wait() {
duke@435 1829 return check_pending_signals(true);
duke@435 1830 }
duke@435 1831
duke@435 1832 // Implicit OS exception handling
duke@435 1833
duke@435 1834 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
duke@435 1835 JavaThread* thread = JavaThread::current();
duke@435 1836 // Save pc in thread
duke@435 1837 #ifdef _M_IA64
duke@435 1838 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
duke@435 1839 // Set pc to handler
duke@435 1840 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
duke@435 1841 #elif _M_AMD64
duke@435 1842 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
duke@435 1843 // Set pc to handler
duke@435 1844 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
duke@435 1845 #else
duke@435 1846 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
duke@435 1847 // Set pc to handler
duke@435 1848 exceptionInfo->ContextRecord->Eip = (LONG)handler;
duke@435 1849 #endif
duke@435 1850
duke@435 1851 // Continue the execution
duke@435 1852 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1853 }
duke@435 1854
duke@435 1855
duke@435 1856 // Used for PostMortemDump
duke@435 1857 extern "C" void safepoints();
duke@435 1858 extern "C" void find(int x);
duke@435 1859 extern "C" void events();
duke@435 1860
duke@435 1861 // According to Windows API documentation, an illegal instruction sequence should generate
duke@435 1862 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
duke@435 1863 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
duke@435 1864 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
duke@435 1865
duke@435 1866 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
duke@435 1867
duke@435 1868 // From "Execution Protection in the Windows Operating System" draft 0.35
duke@435 1869 // Once a system header becomes available, the "real" define should be
duke@435 1870 // included or copied here.
duke@435 1871 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
duke@435 1872
duke@435 1873 #define def_excpt(val) #val, val
duke@435 1874
duke@435 1875 struct siglabel {
duke@435 1876 char *name;
duke@435 1877 int number;
duke@435 1878 };
duke@435 1879
duke@435 1880 struct siglabel exceptlabels[] = {
duke@435 1881 def_excpt(EXCEPTION_ACCESS_VIOLATION),
duke@435 1882 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
duke@435 1883 def_excpt(EXCEPTION_BREAKPOINT),
duke@435 1884 def_excpt(EXCEPTION_SINGLE_STEP),
duke@435 1885 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
duke@435 1886 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
duke@435 1887 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
duke@435 1888 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
duke@435 1889 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
duke@435 1890 def_excpt(EXCEPTION_FLT_OVERFLOW),
duke@435 1891 def_excpt(EXCEPTION_FLT_STACK_CHECK),
duke@435 1892 def_excpt(EXCEPTION_FLT_UNDERFLOW),
duke@435 1893 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
duke@435 1894 def_excpt(EXCEPTION_INT_OVERFLOW),
duke@435 1895 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
duke@435 1896 def_excpt(EXCEPTION_IN_PAGE_ERROR),
duke@435 1897 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
duke@435 1898 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
duke@435 1899 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
duke@435 1900 def_excpt(EXCEPTION_STACK_OVERFLOW),
duke@435 1901 def_excpt(EXCEPTION_INVALID_DISPOSITION),
duke@435 1902 def_excpt(EXCEPTION_GUARD_PAGE),
duke@435 1903 def_excpt(EXCEPTION_INVALID_HANDLE),
duke@435 1904 NULL, 0
duke@435 1905 };
duke@435 1906
duke@435 1907 const char* os::exception_name(int exception_code, char *buf, size_t size) {
duke@435 1908 for (int i = 0; exceptlabels[i].name != NULL; i++) {
duke@435 1909 if (exceptlabels[i].number == exception_code) {
duke@435 1910 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
duke@435 1911 return buf;
duke@435 1912 }
duke@435 1913 }
duke@435 1914
duke@435 1915 return NULL;
duke@435 1916 }
duke@435 1917
duke@435 1918 //-----------------------------------------------------------------------------
duke@435 1919 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 1920 // handle exception caused by idiv; should only happen for -MinInt/-1
duke@435 1921 // (division by zero is handled explicitly)
duke@435 1922 #ifdef _M_IA64
duke@435 1923 assert(0, "Fix Handle_IDiv_Exception");
duke@435 1924 #elif _M_AMD64
duke@435 1925 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1926 address pc = (address)ctx->Rip;
duke@435 1927 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 1928 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 1929 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 1930 assert(ctx->Rax == min_jint, "unexpected idiv exception");
duke@435 1931 // set correct result values and continue after idiv instruction
duke@435 1932 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 1933 ctx->Rax = (DWORD)min_jint; // result
duke@435 1934 ctx->Rdx = (DWORD)0; // remainder
duke@435 1935 // Continue the execution
duke@435 1936 #else
duke@435 1937 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1938 address pc = (address)ctx->Eip;
duke@435 1939 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 1940 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 1941 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 1942 assert(ctx->Eax == min_jint, "unexpected idiv exception");
duke@435 1943 // set correct result values and continue after idiv instruction
duke@435 1944 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 1945 ctx->Eax = (DWORD)min_jint; // result
duke@435 1946 ctx->Edx = (DWORD)0; // remainder
duke@435 1947 // Continue the execution
duke@435 1948 #endif
duke@435 1949 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1950 }
duke@435 1951
duke@435 1952 #ifndef _WIN64
duke@435 1953 //-----------------------------------------------------------------------------
duke@435 1954 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 1955 // handle exception caused by native mothod modifying control word
duke@435 1956 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1957 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 1958
duke@435 1959 switch (exception_code) {
duke@435 1960 case EXCEPTION_FLT_DENORMAL_OPERAND:
duke@435 1961 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
duke@435 1962 case EXCEPTION_FLT_INEXACT_RESULT:
duke@435 1963 case EXCEPTION_FLT_INVALID_OPERATION:
duke@435 1964 case EXCEPTION_FLT_OVERFLOW:
duke@435 1965 case EXCEPTION_FLT_STACK_CHECK:
duke@435 1966 case EXCEPTION_FLT_UNDERFLOW:
duke@435 1967 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 1968 if (fp_control_word != ctx->FloatSave.ControlWord) {
duke@435 1969 // Restore FPCW and mask out FLT exceptions
duke@435 1970 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
duke@435 1971 // Mask out pending FLT exceptions
duke@435 1972 ctx->FloatSave.StatusWord &= 0xffffff00;
duke@435 1973 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1974 }
duke@435 1975 }
duke@435 1976 return EXCEPTION_CONTINUE_SEARCH;
duke@435 1977 }
duke@435 1978 #else //_WIN64
duke@435 1979 /*
duke@435 1980 On Windows, the mxcsr control bits are non-volatile across calls
duke@435 1981 See also CR 6192333
duke@435 1982 If EXCEPTION_FLT_* happened after some native method modified
duke@435 1983 mxcsr - it is not a jvm fault.
duke@435 1984 However should we decide to restore of mxcsr after a faulty
duke@435 1985 native method we can uncomment following code
duke@435 1986 jint MxCsr = INITIAL_MXCSR;
duke@435 1987 // we can't use StubRoutines::addr_mxcsr_std()
duke@435 1988 // because in Win64 mxcsr is not saved there
duke@435 1989 if (MxCsr != ctx->MxCsr) {
duke@435 1990 ctx->MxCsr = MxCsr;
duke@435 1991 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1992 }
duke@435 1993
duke@435 1994 */
duke@435 1995 #endif //_WIN64
duke@435 1996
duke@435 1997
duke@435 1998 // Fatal error reporting is single threaded so we can make this a
duke@435 1999 // static and preallocated. If it's more than MAX_PATH silently ignore
duke@435 2000 // it.
duke@435 2001 static char saved_error_file[MAX_PATH] = {0};
duke@435 2002
duke@435 2003 void os::set_error_file(const char *logfile) {
duke@435 2004 if (strlen(logfile) <= MAX_PATH) {
duke@435 2005 strncpy(saved_error_file, logfile, MAX_PATH);
duke@435 2006 }
duke@435 2007 }
duke@435 2008
duke@435 2009 static inline void report_error(Thread* t, DWORD exception_code,
duke@435 2010 address addr, void* siginfo, void* context) {
duke@435 2011 VMError err(t, exception_code, addr, siginfo, context);
duke@435 2012 err.report_and_die();
duke@435 2013
duke@435 2014 // If UseOsErrorReporting, this will return here and save the error file
duke@435 2015 // somewhere where we can find it in the minidump.
duke@435 2016 }
duke@435 2017
duke@435 2018 //-----------------------------------------------------------------------------
duke@435 2019 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2020 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2021 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2022 #ifdef _M_IA64
duke@435 2023 address pc = (address) exceptionInfo->ContextRecord->StIIP;
duke@435 2024 #elif _M_AMD64
duke@435 2025 address pc = (address) exceptionInfo->ContextRecord->Rip;
duke@435 2026 #else
duke@435 2027 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2028 #endif
duke@435 2029 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 2030
duke@435 2031 #ifndef _WIN64
duke@435 2032 // Execution protection violation - win32 running on AMD64 only
duke@435 2033 // Handled first to avoid misdiagnosis as a "normal" access violation;
duke@435 2034 // This is safe to do because we have a new/unique ExceptionInformation
duke@435 2035 // code for this condition.
duke@435 2036 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2037 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2038 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
duke@435 2039 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2040
duke@435 2041 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 2042 int page_size = os::vm_page_size();
duke@435 2043
duke@435 2044 // Make sure the pc and the faulting address are sane.
duke@435 2045 //
duke@435 2046 // If an instruction spans a page boundary, and the page containing
duke@435 2047 // the beginning of the instruction is executable but the following
duke@435 2048 // page is not, the pc and the faulting address might be slightly
duke@435 2049 // different - we still want to unguard the 2nd page in this case.
duke@435 2050 //
duke@435 2051 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 2052 bool pc_is_near_addr =
duke@435 2053 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 2054 bool instr_spans_page_boundary =
duke@435 2055 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 2056 (intptr_t) page_size) > 0);
duke@435 2057
duke@435 2058 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 2059 static volatile address last_addr =
duke@435 2060 (address) os::non_memory_address_word();
duke@435 2061
duke@435 2062 // In conservative mode, don't unguard unless the address is in the VM
duke@435 2063 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
duke@435 2064 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 2065
coleenp@912 2066 // Set memory to RWX and retry
duke@435 2067 address page_start =
duke@435 2068 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 2069 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 2070 os::MEM_PROT_RWX);
duke@435 2071
duke@435 2072 if (PrintMiscellaneous && Verbose) {
duke@435 2073 char buf[256];
duke@435 2074 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 2075 "at " INTPTR_FORMAT
duke@435 2076 ", unguarding " INTPTR_FORMAT ": %s", addr,
duke@435 2077 page_start, (res ? "success" : strerror(errno)));
duke@435 2078 tty->print_raw_cr(buf);
duke@435 2079 }
duke@435 2080
duke@435 2081 // Set last_addr so if we fault again at the same address, we don't
duke@435 2082 // end up in an endless loop.
duke@435 2083 //
duke@435 2084 // There are two potential complications here. Two threads trapping
duke@435 2085 // at the same address at the same time could cause one of the
duke@435 2086 // threads to think it already unguarded, and abort the VM. Likely
duke@435 2087 // very rare.
duke@435 2088 //
duke@435 2089 // The other race involves two threads alternately trapping at
duke@435 2090 // different addresses and failing to unguard the page, resulting in
duke@435 2091 // an endless loop. This condition is probably even more unlikely
duke@435 2092 // than the first.
duke@435 2093 //
duke@435 2094 // Although both cases could be avoided by using locks or thread
duke@435 2095 // local last_addr, these solutions are unnecessary complication:
duke@435 2096 // this handler is a best-effort safety net, not a complete solution.
duke@435 2097 // It is disabled by default and should only be used as a workaround
duke@435 2098 // in case we missed any no-execute-unsafe VM code.
duke@435 2099
duke@435 2100 last_addr = addr;
duke@435 2101
duke@435 2102 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2103 }
duke@435 2104 }
duke@435 2105
duke@435 2106 // Last unguard failed or not unguarding
duke@435 2107 tty->print_raw_cr("Execution protection violation");
duke@435 2108 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
duke@435 2109 exceptionInfo->ContextRecord);
duke@435 2110 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2111 }
duke@435 2112 }
duke@435 2113 #endif // _WIN64
duke@435 2114
duke@435 2115 // Check to see if we caught the safepoint code in the
duke@435 2116 // process of write protecting the memory serialization page.
duke@435 2117 // It write enables the page immediately after protecting it
duke@435 2118 // so just return.
duke@435 2119 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 2120 JavaThread* thread = (JavaThread*) t;
duke@435 2121 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2122 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2123 if ( os::is_memory_serialize_page(thread, addr) ) {
duke@435 2124 // Block current thread until the memory serialize page permission restored.
duke@435 2125 os::block_on_serialize_page_trap();
duke@435 2126 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2127 }
duke@435 2128 }
duke@435 2129
duke@435 2130
duke@435 2131 if (t != NULL && t->is_Java_thread()) {
duke@435 2132 JavaThread* thread = (JavaThread*) t;
duke@435 2133 bool in_java = thread->thread_state() == _thread_in_Java;
duke@435 2134
duke@435 2135 // Handle potential stack overflows up front.
duke@435 2136 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
duke@435 2137 if (os::uses_stack_guard_pages()) {
duke@435 2138 #ifdef _M_IA64
duke@435 2139 //
duke@435 2140 // If it's a legal stack address continue, Windows will map it in.
duke@435 2141 //
duke@435 2142 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2143 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2144 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
duke@435 2145 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2146
duke@435 2147 // The register save area is the same size as the memory stack
duke@435 2148 // and starts at the page just above the start of the memory stack.
duke@435 2149 // If we get a fault in this area, we've run out of register
duke@435 2150 // stack. If we are in java, try throwing a stack overflow exception.
duke@435 2151 if (addr > thread->stack_base() &&
duke@435 2152 addr <= (thread->stack_base()+thread->stack_size()) ) {
duke@435 2153 char buf[256];
duke@435 2154 jio_snprintf(buf, sizeof(buf),
duke@435 2155 "Register stack overflow, addr:%p, stack_base:%p\n",
duke@435 2156 addr, thread->stack_base() );
duke@435 2157 tty->print_raw_cr(buf);
duke@435 2158 // If not in java code, return and hope for the best.
duke@435 2159 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2160 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2161 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2162 }
duke@435 2163 #endif
duke@435 2164 if (thread->stack_yellow_zone_enabled()) {
duke@435 2165 // Yellow zone violation. The o/s has unprotected the first yellow
duke@435 2166 // zone page for us. Note: must call disable_stack_yellow_zone to
duke@435 2167 // update the enabled status, even if the zone contains only one page.
duke@435 2168 thread->disable_stack_yellow_zone();
duke@435 2169 // If not in java code, return and hope for the best.
duke@435 2170 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2171 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2172 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2173 } else {
duke@435 2174 // Fatal red zone violation.
duke@435 2175 thread->disable_stack_red_zone();
duke@435 2176 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
duke@435 2177 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2178 exceptionInfo->ContextRecord);
duke@435 2179 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2180 }
duke@435 2181 } else if (in_java) {
duke@435 2182 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
duke@435 2183 // a one-time-only guard page, which it has released to us. The next
duke@435 2184 // stack overflow on this thread will result in an ACCESS_VIOLATION.
duke@435 2185 return Handle_Exception(exceptionInfo,
duke@435 2186 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2187 } else {
duke@435 2188 // Can only return and hope for the best. Further stack growth will
duke@435 2189 // result in an ACCESS_VIOLATION.
duke@435 2190 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2191 }
duke@435 2192 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2193 // Either stack overflow or null pointer exception.
duke@435 2194 if (in_java) {
duke@435 2195 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2196 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2197 address stack_end = thread->stack_base() - thread->stack_size();
duke@435 2198 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
duke@435 2199 // Stack overflow.
duke@435 2200 assert(!os::uses_stack_guard_pages(),
duke@435 2201 "should be caught by red zone code above.");
duke@435 2202 return Handle_Exception(exceptionInfo,
duke@435 2203 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2204 }
duke@435 2205 //
duke@435 2206 // Check for safepoint polling and implicit null
duke@435 2207 // We only expect null pointers in the stubs (vtable)
duke@435 2208 // the rest are checked explicitly now.
duke@435 2209 //
duke@435 2210 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 2211 if (cb != NULL) {
duke@435 2212 if (os::is_poll_address(addr)) {
duke@435 2213 address stub = SharedRuntime::get_poll_stub(pc);
duke@435 2214 return Handle_Exception(exceptionInfo, stub);
duke@435 2215 }
duke@435 2216 }
duke@435 2217 {
duke@435 2218 #ifdef _WIN64
duke@435 2219 //
duke@435 2220 // If it's a legal stack address map the entire region in
duke@435 2221 //
duke@435 2222 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2223 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2224 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
duke@435 2225 addr = (address)((uintptr_t)addr &
duke@435 2226 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
coleenp@1091 2227 os::commit_memory((char *)addr, thread->stack_base() - addr,
coleenp@1091 2228 false );
duke@435 2229 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2230 }
duke@435 2231 else
duke@435 2232 #endif
duke@435 2233 {
duke@435 2234 // Null pointer exception.
duke@435 2235 #ifdef _M_IA64
duke@435 2236 // We catch register stack overflows in compiled code by doing
duke@435 2237 // an explicit compare and executing a st8(G0, G0) if the
duke@435 2238 // BSP enters into our guard area. We test for the overflow
duke@435 2239 // condition and fall into the normal null pointer exception
duke@435 2240 // code if BSP hasn't overflowed.
duke@435 2241 if ( in_java ) {
duke@435 2242 if(thread->register_stack_overflow()) {
duke@435 2243 assert((address)exceptionInfo->ContextRecord->IntS3 ==
duke@435 2244 thread->register_stack_limit(),
duke@435 2245 "GR7 doesn't contain register_stack_limit");
duke@435 2246 // Disable the yellow zone which sets the state that
duke@435 2247 // we've got a stack overflow problem.
duke@435 2248 if (thread->stack_yellow_zone_enabled()) {
duke@435 2249 thread->disable_stack_yellow_zone();
duke@435 2250 }
duke@435 2251 // Give us some room to process the exception
duke@435 2252 thread->disable_register_stack_guard();
duke@435 2253 // Update GR7 with the new limit so we can continue running
duke@435 2254 // compiled code.
duke@435 2255 exceptionInfo->ContextRecord->IntS3 =
duke@435 2256 (ULONGLONG)thread->register_stack_limit();
duke@435 2257 return Handle_Exception(exceptionInfo,
duke@435 2258 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2259 } else {
duke@435 2260 //
duke@435 2261 // Check for implicit null
duke@435 2262 // We only expect null pointers in the stubs (vtable)
duke@435 2263 // the rest are checked explicitly now.
duke@435 2264 //
poonam@900 2265 if (((uintptr_t)addr) < os::vm_page_size() ) {
poonam@900 2266 // an access to the first page of VM--assume it is a null pointer
poonam@900 2267 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2268 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2269 }
duke@435 2270 }
duke@435 2271 } // in_java
duke@435 2272
duke@435 2273 // IA64 doesn't use implicit null checking yet. So we shouldn't
duke@435 2274 // get here.
duke@435 2275 tty->print_raw_cr("Access violation, possible null pointer exception");
duke@435 2276 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2277 exceptionInfo->ContextRecord);
duke@435 2278 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2279 #else /* !IA64 */
duke@435 2280
duke@435 2281 // Windows 98 reports faulting addresses incorrectly
duke@435 2282 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
duke@435 2283 !os::win32::is_nt()) {
poonam@900 2284 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2285 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2286 }
duke@435 2287 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2288 exceptionInfo->ContextRecord);
duke@435 2289 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2290 #endif
duke@435 2291 }
duke@435 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 #ifdef _WIN64
duke@435 2296 // Special care for fast JNI field accessors.
duke@435 2297 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
duke@435 2298 // in and the heap gets shrunk before the field access.
duke@435 2299 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2300 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2301 if (addr != (address)-1) {
duke@435 2302 return Handle_Exception(exceptionInfo, addr);
duke@435 2303 }
duke@435 2304 }
duke@435 2305 #endif
duke@435 2306
duke@435 2307 #ifdef _WIN64
duke@435 2308 // Windows will sometimes generate an access violation
duke@435 2309 // when we call malloc. Since we use VectoredExceptions
duke@435 2310 // on 64 bit platforms, we see this exception. We must
duke@435 2311 // pass this exception on so Windows can recover.
duke@435 2312 // We check to see if the pc of the fault is in NTDLL.DLL
duke@435 2313 // if so, we pass control on to Windows for handling.
duke@435 2314 if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2315 #endif
duke@435 2316
duke@435 2317 // Stack overflow or null pointer exception in native code.
duke@435 2318 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2319 exceptionInfo->ContextRecord);
duke@435 2320 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2321 }
duke@435 2322
duke@435 2323 if (in_java) {
duke@435 2324 switch (exception_code) {
duke@435 2325 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2326 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
duke@435 2327
duke@435 2328 case EXCEPTION_INT_OVERFLOW:
duke@435 2329 return Handle_IDiv_Exception(exceptionInfo);
duke@435 2330
duke@435 2331 } // switch
duke@435 2332 }
duke@435 2333 #ifndef _WIN64
duke@435 2334 if ((thread->thread_state() == _thread_in_Java) ||
duke@435 2335 (thread->thread_state() == _thread_in_native) )
duke@435 2336 {
duke@435 2337 LONG result=Handle_FLT_Exception(exceptionInfo);
duke@435 2338 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
duke@435 2339 }
duke@435 2340 #endif //_WIN64
duke@435 2341 }
duke@435 2342
duke@435 2343 if (exception_code != EXCEPTION_BREAKPOINT) {
duke@435 2344 #ifndef _WIN64
duke@435 2345 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2346 exceptionInfo->ContextRecord);
duke@435 2347 #else
duke@435 2348 // Itanium Windows uses a VectoredExceptionHandler
duke@435 2349 // Which means that C++ programatic exception handlers (try/except)
duke@435 2350 // will get here. Continue the search for the right except block if
duke@435 2351 // the exception code is not a fatal code.
duke@435 2352 switch ( exception_code ) {
duke@435 2353 case EXCEPTION_ACCESS_VIOLATION:
duke@435 2354 case EXCEPTION_STACK_OVERFLOW:
duke@435 2355 case EXCEPTION_ILLEGAL_INSTRUCTION:
duke@435 2356 case EXCEPTION_ILLEGAL_INSTRUCTION_2:
duke@435 2357 case EXCEPTION_INT_OVERFLOW:
duke@435 2358 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2359 { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2360 exceptionInfo->ContextRecord);
duke@435 2361 }
duke@435 2362 break;
duke@435 2363 default:
duke@435 2364 break;
duke@435 2365 }
duke@435 2366 #endif
duke@435 2367 }
duke@435 2368 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2369 }
duke@435 2370
duke@435 2371 #ifndef _WIN64
duke@435 2372 // Special care for fast JNI accessors.
duke@435 2373 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
duke@435 2374 // the heap gets shrunk before the field access.
duke@435 2375 // Need to install our own structured exception handler since native code may
duke@435 2376 // install its own.
duke@435 2377 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2378 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2379 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2380 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2381 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2382 if (addr != (address)-1) {
duke@435 2383 return Handle_Exception(exceptionInfo, addr);
duke@435 2384 }
duke@435 2385 }
duke@435 2386 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2387 }
duke@435 2388
duke@435 2389 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
duke@435 2390 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
duke@435 2391 __try { \
duke@435 2392 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
duke@435 2393 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
duke@435 2394 } \
duke@435 2395 return 0; \
duke@435 2396 }
duke@435 2397
duke@435 2398 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
duke@435 2399 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
duke@435 2400 DEFINE_FAST_GETFIELD(jchar, char, Char)
duke@435 2401 DEFINE_FAST_GETFIELD(jshort, short, Short)
duke@435 2402 DEFINE_FAST_GETFIELD(jint, int, Int)
duke@435 2403 DEFINE_FAST_GETFIELD(jlong, long, Long)
duke@435 2404 DEFINE_FAST_GETFIELD(jfloat, float, Float)
duke@435 2405 DEFINE_FAST_GETFIELD(jdouble, double, Double)
duke@435 2406
duke@435 2407 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
duke@435 2408 switch (type) {
duke@435 2409 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
duke@435 2410 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
duke@435 2411 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
duke@435 2412 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
duke@435 2413 case T_INT: return (address)jni_fast_GetIntField_wrapper;
duke@435 2414 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
duke@435 2415 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
duke@435 2416 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
duke@435 2417 default: ShouldNotReachHere();
duke@435 2418 }
duke@435 2419 return (address)-1;
duke@435 2420 }
duke@435 2421 #endif
duke@435 2422
duke@435 2423 // Virtual Memory
duke@435 2424
duke@435 2425 int os::vm_page_size() { return os::win32::vm_page_size(); }
duke@435 2426 int os::vm_allocation_granularity() {
duke@435 2427 return os::win32::vm_allocation_granularity();
duke@435 2428 }
duke@435 2429
duke@435 2430 // Windows large page support is available on Windows 2003. In order to use
duke@435 2431 // large page memory, the administrator must first assign additional privilege
duke@435 2432 // to the user:
duke@435 2433 // + select Control Panel -> Administrative Tools -> Local Security Policy
duke@435 2434 // + select Local Policies -> User Rights Assignment
duke@435 2435 // + double click "Lock pages in memory", add users and/or groups
duke@435 2436 // + reboot
duke@435 2437 // Note the above steps are needed for administrator as well, as administrators
duke@435 2438 // by default do not have the privilege to lock pages in memory.
duke@435 2439 //
duke@435 2440 // Note about Windows 2003: although the API supports committing large page
duke@435 2441 // memory on a page-by-page basis and VirtualAlloc() returns success under this
duke@435 2442 // scenario, I found through experiment it only uses large page if the entire
duke@435 2443 // memory region is reserved and committed in a single VirtualAlloc() call.
duke@435 2444 // This makes Windows large page support more or less like Solaris ISM, in
duke@435 2445 // that the entire heap must be committed upfront. This probably will change
duke@435 2446 // in the future, if so the code below needs to be revisited.
duke@435 2447
duke@435 2448 #ifndef MEM_LARGE_PAGES
duke@435 2449 #define MEM_LARGE_PAGES 0x20000000
duke@435 2450 #endif
duke@435 2451
duke@435 2452 // GetLargePageMinimum is only available on Windows 2003. The other functions
duke@435 2453 // are available on NT but not on Windows 98/Me. We have to resolve them at
duke@435 2454 // runtime.
duke@435 2455 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
duke@435 2456 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
duke@435 2457 (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
duke@435 2458 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
duke@435 2459 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
duke@435 2460
duke@435 2461 static GetLargePageMinimum_func_type _GetLargePageMinimum;
duke@435 2462 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
duke@435 2463 static OpenProcessToken_func_type _OpenProcessToken;
duke@435 2464 static LookupPrivilegeValue_func_type _LookupPrivilegeValue;
duke@435 2465
duke@435 2466 static HINSTANCE _kernel32;
duke@435 2467 static HINSTANCE _advapi32;
duke@435 2468 static HANDLE _hProcess;
duke@435 2469 static HANDLE _hToken;
duke@435 2470
duke@435 2471 static size_t _large_page_size = 0;
duke@435 2472
duke@435 2473 static bool resolve_functions_for_large_page_init() {
duke@435 2474 _kernel32 = LoadLibrary("kernel32.dll");
duke@435 2475 if (_kernel32 == NULL) return false;
duke@435 2476
duke@435 2477 _GetLargePageMinimum = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
duke@435 2478 GetProcAddress(_kernel32, "GetLargePageMinimum"));
duke@435 2479 if (_GetLargePageMinimum == NULL) return false;
duke@435 2480
duke@435 2481 _advapi32 = LoadLibrary("advapi32.dll");
duke@435 2482 if (_advapi32 == NULL) return false;
duke@435 2483
duke@435 2484 _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
duke@435 2485 GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
duke@435 2486 _OpenProcessToken = CAST_TO_FN_PTR(OpenProcessToken_func_type,
duke@435 2487 GetProcAddress(_advapi32, "OpenProcessToken"));
duke@435 2488 _LookupPrivilegeValue = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
duke@435 2489 GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
duke@435 2490 return _AdjustTokenPrivileges != NULL &&
duke@435 2491 _OpenProcessToken != NULL &&
duke@435 2492 _LookupPrivilegeValue != NULL;
duke@435 2493 }
duke@435 2494
duke@435 2495 static bool request_lock_memory_privilege() {
duke@435 2496 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
duke@435 2497 os::current_process_id());
duke@435 2498
duke@435 2499 LUID luid;
duke@435 2500 if (_hProcess != NULL &&
duke@435 2501 _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
duke@435 2502 _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
duke@435 2503
duke@435 2504 TOKEN_PRIVILEGES tp;
duke@435 2505 tp.PrivilegeCount = 1;
duke@435 2506 tp.Privileges[0].Luid = luid;
duke@435 2507 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
duke@435 2508
duke@435 2509 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
duke@435 2510 // privilege. Check GetLastError() too. See MSDN document.
duke@435 2511 if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
duke@435 2512 (GetLastError() == ERROR_SUCCESS)) {
duke@435 2513 return true;
duke@435 2514 }
duke@435 2515 }
duke@435 2516
duke@435 2517 return false;
duke@435 2518 }
duke@435 2519
duke@435 2520 static void cleanup_after_large_page_init() {
duke@435 2521 _GetLargePageMinimum = NULL;
duke@435 2522 _AdjustTokenPrivileges = NULL;
duke@435 2523 _OpenProcessToken = NULL;
duke@435 2524 _LookupPrivilegeValue = NULL;
duke@435 2525 if (_kernel32) FreeLibrary(_kernel32);
duke@435 2526 _kernel32 = NULL;
duke@435 2527 if (_advapi32) FreeLibrary(_advapi32);
duke@435 2528 _advapi32 = NULL;
duke@435 2529 if (_hProcess) CloseHandle(_hProcess);
duke@435 2530 _hProcess = NULL;
duke@435 2531 if (_hToken) CloseHandle(_hToken);
duke@435 2532 _hToken = NULL;
duke@435 2533 }
duke@435 2534
duke@435 2535 bool os::large_page_init() {
duke@435 2536 if (!UseLargePages) return false;
duke@435 2537
duke@435 2538 // print a warning if any large page related flag is specified on command line
duke@435 2539 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2540 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 2541 bool success = false;
duke@435 2542
duke@435 2543 # define WARN(msg) if (warn_on_failure) { warning(msg); }
duke@435 2544 if (resolve_functions_for_large_page_init()) {
duke@435 2545 if (request_lock_memory_privilege()) {
duke@435 2546 size_t s = _GetLargePageMinimum();
duke@435 2547 if (s) {
duke@435 2548 #if defined(IA32) || defined(AMD64)
duke@435 2549 if (s > 4*M || LargePageSizeInBytes > 4*M) {
duke@435 2550 WARN("JVM cannot use large pages bigger than 4mb.");
duke@435 2551 } else {
duke@435 2552 #endif
duke@435 2553 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
duke@435 2554 _large_page_size = LargePageSizeInBytes;
duke@435 2555 } else {
duke@435 2556 _large_page_size = s;
duke@435 2557 }
duke@435 2558 success = true;
duke@435 2559 #if defined(IA32) || defined(AMD64)
duke@435 2560 }
duke@435 2561 #endif
duke@435 2562 } else {
duke@435 2563 WARN("Large page is not supported by the processor.");
duke@435 2564 }
duke@435 2565 } else {
duke@435 2566 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
duke@435 2567 }
duke@435 2568 } else {
duke@435 2569 WARN("Large page is not supported by the operating system.");
duke@435 2570 }
duke@435 2571 #undef WARN
duke@435 2572
duke@435 2573 const size_t default_page_size = (size_t) vm_page_size();
duke@435 2574 if (success && _large_page_size > default_page_size) {
duke@435 2575 _page_sizes[0] = _large_page_size;
duke@435 2576 _page_sizes[1] = default_page_size;
duke@435 2577 _page_sizes[2] = 0;
duke@435 2578 }
duke@435 2579
duke@435 2580 cleanup_after_large_page_init();
duke@435 2581 return success;
duke@435 2582 }
duke@435 2583
duke@435 2584 // On win32, one cannot release just a part of reserved memory, it's an
duke@435 2585 // all or nothing deal. When we split a reservation, we must break the
duke@435 2586 // reservation into two reservations.
duke@435 2587 void os::split_reserved_memory(char *base, size_t size, size_t split,
duke@435 2588 bool realloc) {
duke@435 2589 if (size > 0) {
duke@435 2590 release_memory(base, size);
duke@435 2591 if (realloc) {
duke@435 2592 reserve_memory(split, base);
duke@435 2593 }
duke@435 2594 if (size != split) {
duke@435 2595 reserve_memory(size - split, base + split);
duke@435 2596 }
duke@435 2597 }
duke@435 2598 }
duke@435 2599
duke@435 2600 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
duke@435 2601 assert((size_t)addr % os::vm_allocation_granularity() == 0,
duke@435 2602 "reserve alignment");
duke@435 2603 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
coleenp@1091 2604 char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
duke@435 2605 assert(res == NULL || addr == NULL || addr == res,
duke@435 2606 "Unexpected address from reserve.");
duke@435 2607 return res;
duke@435 2608 }
duke@435 2609
duke@435 2610 // Reserve memory at an arbitrary address, only if that area is
duke@435 2611 // available (and not reserved for something else).
duke@435 2612 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2613 // Windows os::reserve_memory() fails of the requested address range is
duke@435 2614 // not avilable.
duke@435 2615 return reserve_memory(bytes, requested_addr);
duke@435 2616 }
duke@435 2617
duke@435 2618 size_t os::large_page_size() {
duke@435 2619 return _large_page_size;
duke@435 2620 }
duke@435 2621
duke@435 2622 bool os::can_commit_large_page_memory() {
duke@435 2623 // Windows only uses large page memory when the entire region is reserved
duke@435 2624 // and committed in a single VirtualAlloc() call. This may change in the
duke@435 2625 // future, but with Windows 2003 it's not possible to commit on demand.
duke@435 2626 return false;
duke@435 2627 }
duke@435 2628
jcoomes@514 2629 bool os::can_execute_large_page_memory() {
jcoomes@514 2630 return true;
jcoomes@514 2631 }
jcoomes@514 2632
coleenp@1091 2633 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
jmasa@824 2634
jmasa@824 2635 if (UseLargePagesIndividualAllocation) {
jmasa@824 2636 if (TracePageSizes && Verbose) {
jmasa@824 2637 tty->print_cr("Reserving large pages individually.");
jmasa@824 2638 }
jmasa@824 2639 char * p_buf;
jmasa@824 2640 // first reserve enough address space in advance since we want to be
jmasa@824 2641 // able to break a single contiguous virtual address range into multiple
jmasa@824 2642 // large page commits but WS2003 does not allow reserving large page space
jmasa@824 2643 // so we just use 4K pages for reserve, this gives us a legal contiguous
jmasa@824 2644 // address space. then we will deallocate that reservation, and re alloc
jmasa@824 2645 // using large pages
jmasa@824 2646 const size_t size_of_reserve = bytes + _large_page_size;
jmasa@824 2647 if (bytes > size_of_reserve) {
jmasa@824 2648 // Overflowed.
jmasa@824 2649 warning("Individually allocated large pages failed, "
jmasa@824 2650 "use -XX:-UseLargePagesIndividualAllocation to turn off");
jmasa@824 2651 return NULL;
jmasa@824 2652 }
kvn@1077 2653 p_buf = (char *) VirtualAlloc(addr,
jmasa@824 2654 size_of_reserve, // size of Reserve
jmasa@824 2655 MEM_RESERVE,
coleenp@1091 2656 PAGE_READWRITE);
jmasa@824 2657 // If reservation failed, return NULL
jmasa@824 2658 if (p_buf == NULL) return NULL;
jmasa@824 2659
jmasa@824 2660 release_memory(p_buf, bytes + _large_page_size);
jmasa@824 2661 // round up to page boundary. If the size_of_reserve did not
jmasa@824 2662 // overflow and the reservation did not fail, this align up
jmasa@824 2663 // should not overflow.
jmasa@824 2664 p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
jmasa@824 2665
jmasa@824 2666 // now go through and allocate one page at a time until all bytes are
jmasa@824 2667 // allocated
jmasa@824 2668 size_t bytes_remaining = align_size_up(bytes, _large_page_size);
jmasa@824 2669 // An overflow of align_size_up() would have been caught above
jmasa@824 2670 // in the calculation of size_of_reserve.
jmasa@824 2671 char * next_alloc_addr = p_buf;
jmasa@824 2672
jmasa@824 2673 #ifdef ASSERT
jmasa@824 2674 // Variable for the failure injection
jmasa@824 2675 long ran_num = os::random();
jmasa@824 2676 size_t fail_after = ran_num % bytes;
jmasa@824 2677 #endif
jmasa@824 2678
jmasa@824 2679 while (bytes_remaining) {
jmasa@824 2680 size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
jmasa@824 2681 // Note allocate and commit
jmasa@824 2682 char * p_new;
jmasa@824 2683
jmasa@824 2684 #ifdef ASSERT
jmasa@824 2685 bool inject_error = LargePagesIndividualAllocationInjectError &&
jmasa@824 2686 (bytes_remaining <= fail_after);
jmasa@824 2687 #else
jmasa@824 2688 const bool inject_error = false;
jmasa@824 2689 #endif
jmasa@824 2690
jmasa@824 2691 if (inject_error) {
jmasa@824 2692 p_new = NULL;
jmasa@824 2693 } else {
jmasa@824 2694 p_new = (char *) VirtualAlloc(next_alloc_addr,
jmasa@824 2695 bytes_to_rq,
jmasa@824 2696 MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
coleenp@1091 2697 PAGE_READWRITE);
coleenp@1091 2698 if (p_new != NULL && exec) {
coleenp@1091 2699 DWORD oldprot;
coleenp@1091 2700 // Windows doc says to use VirtualProtect to get execute permissions
coleenp@1091 2701 VirtualProtect(next_alloc_addr, bytes_to_rq,
coleenp@1091 2702 PAGE_EXECUTE_READWRITE, &oldprot);
coleenp@1091 2703 }
jmasa@824 2704 }
jmasa@824 2705
jmasa@824 2706 if (p_new == NULL) {
jmasa@824 2707 // Free any allocated pages
jmasa@824 2708 if (next_alloc_addr > p_buf) {
jmasa@824 2709 // Some memory was committed so release it.
jmasa@824 2710 size_t bytes_to_release = bytes - bytes_remaining;
jmasa@824 2711 release_memory(p_buf, bytes_to_release);
jmasa@824 2712 }
jmasa@824 2713 #ifdef ASSERT
jmasa@824 2714 if (UseLargePagesIndividualAllocation &&
jmasa@824 2715 LargePagesIndividualAllocationInjectError) {
jmasa@824 2716 if (TracePageSizes && Verbose) {
jmasa@824 2717 tty->print_cr("Reserving large pages individually failed.");
jmasa@824 2718 }
jmasa@824 2719 }
jmasa@824 2720 #endif
jmasa@824 2721 return NULL;
jmasa@824 2722 }
jmasa@824 2723 bytes_remaining -= bytes_to_rq;
jmasa@824 2724 next_alloc_addr += bytes_to_rq;
jmasa@824 2725 }
jmasa@824 2726
jmasa@824 2727 return p_buf;
jmasa@824 2728
jmasa@824 2729 } else {
jmasa@824 2730 // normal policy just allocate it all at once
jmasa@824 2731 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
coleenp@1091 2732 char * res = (char *)VirtualAlloc(NULL, bytes, flag, PAGE_READWRITE);
coleenp@1091 2733 if (res != NULL && exec) {
coleenp@1091 2734 DWORD oldprot;
coleenp@1091 2735 // Windows doc says to use VirtualProtect to get execute permissions
coleenp@1091 2736 VirtualProtect(res, bytes, PAGE_EXECUTE_READWRITE, &oldprot);
coleenp@1091 2737 }
jmasa@824 2738 return res;
jmasa@824 2739 }
duke@435 2740 }
duke@435 2741
duke@435 2742 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2743 return release_memory(base, bytes);
duke@435 2744 }
duke@435 2745
duke@435 2746 void os::print_statistics() {
duke@435 2747 }
duke@435 2748
coleenp@1091 2749 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
duke@435 2750 if (bytes == 0) {
duke@435 2751 // Don't bother the OS with noops.
duke@435 2752 return true;
duke@435 2753 }
duke@435 2754 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
duke@435 2755 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
duke@435 2756 // Don't attempt to print anything if the OS call fails. We're
duke@435 2757 // probably low on resources, so the print itself may cause crashes.
coleenp@1091 2758 bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
coleenp@1091 2759 if (result != NULL && exec) {
coleenp@1091 2760 DWORD oldprot;
coleenp@1091 2761 // Windows doc says to use VirtualProtect to get execute permissions
coleenp@1091 2762 return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
coleenp@1091 2763 } else {
coleenp@1091 2764 return result;
coleenp@1091 2765 }
duke@435 2766 }
duke@435 2767
coleenp@1091 2768 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2769 bool exec) {
coleenp@1091 2770 return commit_memory(addr, size, exec);
duke@435 2771 }
duke@435 2772
duke@435 2773 bool os::uncommit_memory(char* addr, size_t bytes) {
duke@435 2774 if (bytes == 0) {
duke@435 2775 // Don't bother the OS with noops.
duke@435 2776 return true;
duke@435 2777 }
duke@435 2778 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
duke@435 2779 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
duke@435 2780 return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
duke@435 2781 }
duke@435 2782
duke@435 2783 bool os::release_memory(char* addr, size_t bytes) {
duke@435 2784 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
duke@435 2785 }
duke@435 2786
coleenp@672 2787 // Set protections specified
coleenp@672 2788 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2789 bool is_committed) {
coleenp@672 2790 unsigned int p = 0;
coleenp@672 2791 switch (prot) {
coleenp@672 2792 case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
coleenp@672 2793 case MEM_PROT_READ: p = PAGE_READONLY; break;
coleenp@672 2794 case MEM_PROT_RW: p = PAGE_READWRITE; break;
coleenp@672 2795 case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
coleenp@672 2796 default:
coleenp@672 2797 ShouldNotReachHere();
coleenp@672 2798 }
coleenp@672 2799
duke@435 2800 DWORD old_status;
coleenp@672 2801
coleenp@672 2802 // Strange enough, but on Win32 one can change protection only for committed
coleenp@672 2803 // memory, not a big deal anyway, as bytes less or equal than 64K
coleenp@1091 2804 if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
coleenp@672 2805 fatal("cannot commit protection page");
coleenp@672 2806 }
coleenp@672 2807 // One cannot use os::guard_memory() here, as on Win32 guard page
coleenp@672 2808 // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
coleenp@672 2809 //
coleenp@672 2810 // Pages in the region become guard pages. Any attempt to access a guard page
coleenp@672 2811 // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
coleenp@672 2812 // the guard page status. Guard pages thus act as a one-time access alarm.
coleenp@672 2813 return VirtualProtect(addr, bytes, p, &old_status) != 0;
duke@435 2814 }
duke@435 2815
duke@435 2816 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 2817 DWORD old_status;
coleenp@912 2818 return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
duke@435 2819 }
duke@435 2820
duke@435 2821 bool os::unguard_memory(char* addr, size_t bytes) {
duke@435 2822 DWORD old_status;
coleenp@912 2823 return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
duke@435 2824 }
duke@435 2825
duke@435 2826 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 2827 void os::free_memory(char *addr, size_t bytes) { }
duke@435 2828 void os::numa_make_global(char *addr, size_t bytes) { }
iveresov@576 2829 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
duke@435 2830 bool os::numa_topology_changed() { return false; }
duke@435 2831 size_t os::numa_get_groups_num() { return 1; }
duke@435 2832 int os::numa_get_group_id() { return 0; }
duke@435 2833 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
duke@435 2834 if (size > 0) {
duke@435 2835 ids[0] = 0;
duke@435 2836 return 1;
duke@435 2837 }
duke@435 2838 return 0;
duke@435 2839 }
duke@435 2840
duke@435 2841 bool os::get_page_info(char *start, page_info* info) {
duke@435 2842 return false;
duke@435 2843 }
duke@435 2844
duke@435 2845 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2846 return end;
duke@435 2847 }
duke@435 2848
duke@435 2849 char* os::non_memory_address_word() {
duke@435 2850 // Must never look like an address returned by reserve_memory,
duke@435 2851 // even in its subfields (as defined by the CPU immediate fields,
duke@435 2852 // if the CPU splits constants across multiple instructions).
duke@435 2853 return (char*)-1;
duke@435 2854 }
duke@435 2855
duke@435 2856 #define MAX_ERROR_COUNT 100
duke@435 2857 #define SYS_THREAD_ERROR 0xffffffffUL
duke@435 2858
duke@435 2859 void os::pd_start_thread(Thread* thread) {
duke@435 2860 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
duke@435 2861 // Returns previous suspend state:
duke@435 2862 // 0: Thread was not suspended
duke@435 2863 // 1: Thread is running now
duke@435 2864 // >1: Thread is still suspended.
duke@435 2865 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
duke@435 2866 }
duke@435 2867
duke@435 2868 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 2869 return ::read(fd, buf, nBytes);
duke@435 2870 }
duke@435 2871
duke@435 2872 class HighResolutionInterval {
duke@435 2873 // The default timer resolution seems to be 10 milliseconds.
duke@435 2874 // (Where is this written down?)
duke@435 2875 // If someone wants to sleep for only a fraction of the default,
duke@435 2876 // then we set the timer resolution down to 1 millisecond for
duke@435 2877 // the duration of their interval.
duke@435 2878 // We carefully set the resolution back, since otherwise we
duke@435 2879 // seem to incur an overhead (3%?) that we don't need.
duke@435 2880 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
duke@435 2881 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
duke@435 2882 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
duke@435 2883 // timeBeginPeriod() if the relative error exceeded some threshold.
duke@435 2884 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
duke@435 2885 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
duke@435 2886 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
duke@435 2887 // resolution timers running.
duke@435 2888 private:
duke@435 2889 jlong resolution;
duke@435 2890 public:
duke@435 2891 HighResolutionInterval(jlong ms) {
duke@435 2892 resolution = ms % 10L;
duke@435 2893 if (resolution != 0) {
duke@435 2894 MMRESULT result = timeBeginPeriod(1L);
duke@435 2895 }
duke@435 2896 }
duke@435 2897 ~HighResolutionInterval() {
duke@435 2898 if (resolution != 0) {
duke@435 2899 MMRESULT result = timeEndPeriod(1L);
duke@435 2900 }
duke@435 2901 resolution = 0L;
duke@435 2902 }
duke@435 2903 };
duke@435 2904
duke@435 2905 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
duke@435 2906 jlong limit = (jlong) MAXDWORD;
duke@435 2907
duke@435 2908 while(ms > limit) {
duke@435 2909 int res;
duke@435 2910 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
duke@435 2911 return res;
duke@435 2912 ms -= limit;
duke@435 2913 }
duke@435 2914
duke@435 2915 assert(thread == Thread::current(), "thread consistency check");
duke@435 2916 OSThread* osthread = thread->osthread();
duke@435 2917 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
duke@435 2918 int result;
duke@435 2919 if (interruptable) {
duke@435 2920 assert(thread->is_Java_thread(), "must be java thread");
duke@435 2921 JavaThread *jt = (JavaThread *) thread;
duke@435 2922 ThreadBlockInVM tbivm(jt);
duke@435 2923
duke@435 2924 jt->set_suspend_equivalent();
duke@435 2925 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 2926 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 2927
duke@435 2928 HANDLE events[1];
duke@435 2929 events[0] = osthread->interrupt_event();
duke@435 2930 HighResolutionInterval *phri=NULL;
duke@435 2931 if(!ForceTimeHighResolution)
duke@435 2932 phri = new HighResolutionInterval( ms );
duke@435 2933 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
duke@435 2934 result = OS_TIMEOUT;
duke@435 2935 } else {
duke@435 2936 ResetEvent(osthread->interrupt_event());
duke@435 2937 osthread->set_interrupted(false);
duke@435 2938 result = OS_INTRPT;
duke@435 2939 }
duke@435 2940 delete phri; //if it is NULL, harmless
duke@435 2941
duke@435 2942 // were we externally suspended while we were waiting?
duke@435 2943 jt->check_and_wait_while_suspended();
duke@435 2944 } else {
duke@435 2945 assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 2946 Sleep((long) ms);
duke@435 2947 result = OS_TIMEOUT;
duke@435 2948 }
duke@435 2949 return result;
duke@435 2950 }
duke@435 2951
duke@435 2952 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 2953 void os::infinite_sleep() {
duke@435 2954 while (true) { // sleep forever ...
duke@435 2955 Sleep(100000); // ... 100 seconds at a time
duke@435 2956 }
duke@435 2957 }
duke@435 2958
duke@435 2959 typedef BOOL (WINAPI * STTSignature)(void) ;
duke@435 2960
duke@435 2961 os::YieldResult os::NakedYield() {
duke@435 2962 // Use either SwitchToThread() or Sleep(0)
duke@435 2963 // Consider passing back the return value from SwitchToThread().
duke@435 2964 // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
duke@435 2965 // In that case we revert to Sleep(0).
duke@435 2966 static volatile STTSignature stt = (STTSignature) 1 ;
duke@435 2967
duke@435 2968 if (stt == ((STTSignature) 1)) {
duke@435 2969 stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
duke@435 2970 // It's OK if threads race during initialization as the operation above is idempotent.
duke@435 2971 }
duke@435 2972 if (stt != NULL) {
duke@435 2973 return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
duke@435 2974 } else {
duke@435 2975 Sleep (0) ;
duke@435 2976 }
duke@435 2977 return os::YIELD_UNKNOWN ;
duke@435 2978 }
duke@435 2979
duke@435 2980 void os::yield() { os::NakedYield(); }
duke@435 2981
duke@435 2982 void os::yield_all(int attempts) {
duke@435 2983 // Yields to all threads, including threads with lower priorities
duke@435 2984 Sleep(1);
duke@435 2985 }
duke@435 2986
duke@435 2987 // Win32 only gives you access to seven real priorities at a time,
duke@435 2988 // so we compress Java's ten down to seven. It would be better
duke@435 2989 // if we dynamically adjusted relative priorities.
duke@435 2990
duke@435 2991 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 2992 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 2993 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 2994 THREAD_PRIORITY_LOWEST, // 2
duke@435 2995 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 2996 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 2997 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 2998 THREAD_PRIORITY_NORMAL, // 6
duke@435 2999 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3000 THREAD_PRIORITY_ABOVE_NORMAL, // 8
duke@435 3001 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 3002 THREAD_PRIORITY_HIGHEST // 10 MaxPriority
duke@435 3003 };
duke@435 3004
duke@435 3005 int prio_policy1[MaxPriority + 1] = {
duke@435 3006 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3007 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3008 THREAD_PRIORITY_LOWEST, // 2
duke@435 3009 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3010 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3011 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3012 THREAD_PRIORITY_ABOVE_NORMAL, // 6
duke@435 3013 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3014 THREAD_PRIORITY_HIGHEST, // 8
duke@435 3015 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 3016 THREAD_PRIORITY_TIME_CRITICAL // 10 MaxPriority
duke@435 3017 };
duke@435 3018
duke@435 3019 static int prio_init() {
duke@435 3020 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3021 if (ThreadPriorityPolicy == 1) {
duke@435 3022 int i;
duke@435 3023 for (i = 0; i < MaxPriority + 1; i++) {
duke@435 3024 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3025 }
duke@435 3026 }
duke@435 3027 return 0;
duke@435 3028 }
duke@435 3029
duke@435 3030 OSReturn os::set_native_priority(Thread* thread, int priority) {
duke@435 3031 if (!UseThreadPriorities) return OS_OK;
duke@435 3032 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
duke@435 3033 return ret ? OS_OK : OS_ERR;
duke@435 3034 }
duke@435 3035
duke@435 3036 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
duke@435 3037 if ( !UseThreadPriorities ) {
duke@435 3038 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3039 return OS_OK;
duke@435 3040 }
duke@435 3041 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
duke@435 3042 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
duke@435 3043 assert(false, "GetThreadPriority failed");
duke@435 3044 return OS_ERR;
duke@435 3045 }
duke@435 3046 *priority_ptr = os_prio;
duke@435 3047 return OS_OK;
duke@435 3048 }
duke@435 3049
duke@435 3050
duke@435 3051 // Hint to the underlying OS that a task switch would not be good.
duke@435 3052 // Void return because it's a hint and can fail.
duke@435 3053 void os::hint_no_preempt() {}
duke@435 3054
duke@435 3055 void os::interrupt(Thread* thread) {
duke@435 3056 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3057 "possibility of dangling Thread pointer");
duke@435 3058
duke@435 3059 OSThread* osthread = thread->osthread();
duke@435 3060 osthread->set_interrupted(true);
duke@435 3061 // More than one thread can get here with the same value of osthread,
duke@435 3062 // resulting in multiple notifications. We do, however, want the store
duke@435 3063 // to interrupted() to be visible to other threads before we post
duke@435 3064 // the interrupt event.
duke@435 3065 OrderAccess::release();
duke@435 3066 SetEvent(osthread->interrupt_event());
duke@435 3067 // For JSR166: unpark after setting status
duke@435 3068 if (thread->is_Java_thread())
duke@435 3069 ((JavaThread*)thread)->parker()->unpark();
duke@435 3070
duke@435 3071 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3072 if (ev != NULL) ev->unpark() ;
duke@435 3073
duke@435 3074 }
duke@435 3075
duke@435 3076
duke@435 3077 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3078 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3079 "possibility of dangling Thread pointer");
duke@435 3080
duke@435 3081 OSThread* osthread = thread->osthread();
duke@435 3082 bool interrupted;
duke@435 3083 interrupted = osthread->interrupted();
duke@435 3084 if (clear_interrupted == true) {
duke@435 3085 osthread->set_interrupted(false);
duke@435 3086 ResetEvent(osthread->interrupt_event());
duke@435 3087 } // Otherwise leave the interrupted state alone
duke@435 3088
duke@435 3089 return interrupted;
duke@435 3090 }
duke@435 3091
duke@435 3092 // Get's a pc (hint) for a running thread. Currently used only for profiling.
duke@435 3093 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3094 CONTEXT context;
duke@435 3095 context.ContextFlags = CONTEXT_CONTROL;
duke@435 3096 HANDLE handle = thread->osthread()->thread_handle();
duke@435 3097 #ifdef _M_IA64
duke@435 3098 assert(0, "Fix get_thread_pc");
duke@435 3099 return ExtendedPC(NULL);
duke@435 3100 #else
duke@435 3101 if (GetThreadContext(handle, &context)) {
duke@435 3102 #ifdef _M_AMD64
duke@435 3103 return ExtendedPC((address) context.Rip);
duke@435 3104 #else
duke@435 3105 return ExtendedPC((address) context.Eip);
duke@435 3106 #endif
duke@435 3107 } else {
duke@435 3108 return ExtendedPC(NULL);
duke@435 3109 }
duke@435 3110 #endif
duke@435 3111 }
duke@435 3112
duke@435 3113 // GetCurrentThreadId() returns DWORD
duke@435 3114 intx os::current_thread_id() { return GetCurrentThreadId(); }
duke@435 3115
duke@435 3116 static int _initial_pid = 0;
duke@435 3117
duke@435 3118 int os::current_process_id()
duke@435 3119 {
duke@435 3120 return (_initial_pid ? _initial_pid : _getpid());
duke@435 3121 }
duke@435 3122
duke@435 3123 int os::win32::_vm_page_size = 0;
duke@435 3124 int os::win32::_vm_allocation_granularity = 0;
duke@435 3125 int os::win32::_processor_type = 0;
duke@435 3126 // Processor level is not available on non-NT systems, use vm_version instead
duke@435 3127 int os::win32::_processor_level = 0;
duke@435 3128 julong os::win32::_physical_memory = 0;
duke@435 3129 size_t os::win32::_default_stack_size = 0;
duke@435 3130
duke@435 3131 intx os::win32::_os_thread_limit = 0;
duke@435 3132 volatile intx os::win32::_os_thread_count = 0;
duke@435 3133
duke@435 3134 bool os::win32::_is_nt = false;
jmasa@824 3135 bool os::win32::_is_windows_2003 = false;
duke@435 3136
duke@435 3137
duke@435 3138 void os::win32::initialize_system_info() {
duke@435 3139 SYSTEM_INFO si;
duke@435 3140 GetSystemInfo(&si);
duke@435 3141 _vm_page_size = si.dwPageSize;
duke@435 3142 _vm_allocation_granularity = si.dwAllocationGranularity;
duke@435 3143 _processor_type = si.dwProcessorType;
duke@435 3144 _processor_level = si.wProcessorLevel;
duke@435 3145 _processor_count = si.dwNumberOfProcessors;
duke@435 3146
duke@435 3147 MEMORYSTATUS ms;
duke@435 3148 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
duke@435 3149 // dwMemoryLoad (% of memory in use)
duke@435 3150 GlobalMemoryStatus(&ms);
duke@435 3151 _physical_memory = ms.dwTotalPhys;
duke@435 3152
duke@435 3153 OSVERSIONINFO oi;
duke@435 3154 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
duke@435 3155 GetVersionEx(&oi);
duke@435 3156 switch(oi.dwPlatformId) {
duke@435 3157 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
jmasa@824 3158 case VER_PLATFORM_WIN32_NT:
jmasa@824 3159 _is_nt = true;
jmasa@824 3160 {
jmasa@824 3161 int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
jmasa@824 3162 if (os_vers == 5002) {
jmasa@824 3163 _is_windows_2003 = true;
jmasa@824 3164 }
jmasa@824 3165 }
jmasa@824 3166 break;
duke@435 3167 default: fatal("Unknown platform");
duke@435 3168 }
duke@435 3169
duke@435 3170 _default_stack_size = os::current_stack_size();
duke@435 3171 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
duke@435 3172 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
duke@435 3173 "stack size not a multiple of page size");
duke@435 3174
duke@435 3175 initialize_performance_counter();
duke@435 3176
duke@435 3177 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
duke@435 3178 // known to deadlock the system, if the VM issues to thread operations with
duke@435 3179 // a too high frequency, e.g., such as changing the priorities.
duke@435 3180 // The 6000 seems to work well - no deadlocks has been notices on the test
duke@435 3181 // programs that we have seen experience this problem.
duke@435 3182 if (!os::win32::is_nt()) {
duke@435 3183 StarvationMonitorInterval = 6000;
duke@435 3184 }
duke@435 3185 }
duke@435 3186
duke@435 3187
duke@435 3188 void os::win32::setmode_streams() {
duke@435 3189 _setmode(_fileno(stdin), _O_BINARY);
duke@435 3190 _setmode(_fileno(stdout), _O_BINARY);
duke@435 3191 _setmode(_fileno(stderr), _O_BINARY);
duke@435 3192 }
duke@435 3193
duke@435 3194
duke@435 3195 int os::message_box(const char* title, const char* message) {
duke@435 3196 int result = MessageBox(NULL, message, title,
duke@435 3197 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
duke@435 3198 return result == IDYES;
duke@435 3199 }
duke@435 3200
duke@435 3201 int os::allocate_thread_local_storage() {
duke@435 3202 return TlsAlloc();
duke@435 3203 }
duke@435 3204
duke@435 3205
duke@435 3206 void os::free_thread_local_storage(int index) {
duke@435 3207 TlsFree(index);
duke@435 3208 }
duke@435 3209
duke@435 3210
duke@435 3211 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 3212 TlsSetValue(index, value);
duke@435 3213 assert(thread_local_storage_at(index) == value, "Just checking");
duke@435 3214 }
duke@435 3215
duke@435 3216
duke@435 3217 void* os::thread_local_storage_at(int index) {
duke@435 3218 return TlsGetValue(index);
duke@435 3219 }
duke@435 3220
duke@435 3221
duke@435 3222 #ifndef PRODUCT
duke@435 3223 #ifndef _WIN64
duke@435 3224 // Helpers to check whether NX protection is enabled
duke@435 3225 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
duke@435 3226 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 3227 pex->ExceptionRecord->NumberParameters > 0 &&
duke@435 3228 pex->ExceptionRecord->ExceptionInformation[0] ==
duke@435 3229 EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 3230 return EXCEPTION_EXECUTE_HANDLER;
duke@435 3231 }
duke@435 3232 return EXCEPTION_CONTINUE_SEARCH;
duke@435 3233 }
duke@435 3234
duke@435 3235 void nx_check_protection() {
duke@435 3236 // If NX is enabled we'll get an exception calling into code on the stack
duke@435 3237 char code[] = { (char)0xC3 }; // ret
duke@435 3238 void *code_ptr = (void *)code;
duke@435 3239 __try {
duke@435 3240 __asm call code_ptr
duke@435 3241 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 3242 tty->print_raw_cr("NX protection detected.");
duke@435 3243 }
duke@435 3244 }
duke@435 3245 #endif // _WIN64
duke@435 3246 #endif // PRODUCT
duke@435 3247
duke@435 3248 // this is called _before_ the global arguments have been parsed
duke@435 3249 void os::init(void) {
duke@435 3250 _initial_pid = _getpid();
duke@435 3251
duke@435 3252 init_random(1234567);
duke@435 3253
duke@435 3254 win32::initialize_system_info();
duke@435 3255 win32::setmode_streams();
duke@435 3256 init_page_sizes((size_t) win32::vm_page_size());
duke@435 3257
duke@435 3258 // For better scalability on MP systems (must be called after initialize_system_info)
duke@435 3259 #ifndef PRODUCT
duke@435 3260 if (is_MP()) {
duke@435 3261 NoYieldsInMicrolock = true;
duke@435 3262 }
duke@435 3263 #endif
jmasa@824 3264 // This may be overridden later when argument processing is done.
jmasa@824 3265 FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
jmasa@824 3266 os::win32::is_windows_2003());
jmasa@824 3267
duke@435 3268 // Initialize main_process and main_thread
duke@435 3269 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
jmasa@824 3270 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
duke@435 3271 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
duke@435 3272 fatal("DuplicateHandle failed\n");
duke@435 3273 }
duke@435 3274 main_thread_id = (int) GetCurrentThreadId();
duke@435 3275 }
duke@435 3276
duke@435 3277 // To install functions for atexit processing
duke@435 3278 extern "C" {
duke@435 3279 static void perfMemory_exit_helper() {
duke@435 3280 perfMemory_exit();
duke@435 3281 }
duke@435 3282 }
duke@435 3283
duke@435 3284
duke@435 3285 // this is called _after_ the global arguments have been parsed
duke@435 3286 jint os::init_2(void) {
duke@435 3287 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3288 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
duke@435 3289 guarantee( polling_page != NULL, "Reserve Failed for polling page");
duke@435 3290
duke@435 3291 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
duke@435 3292 guarantee( return_page != NULL, "Commit Failed for polling page");
duke@435 3293
duke@435 3294 os::set_polling_page( polling_page );
duke@435 3295
duke@435 3296 #ifndef PRODUCT
duke@435 3297 if( Verbose && PrintMiscellaneous )
duke@435 3298 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3299 #endif
duke@435 3300
duke@435 3301 if (!UseMembar) {
coleenp@1091 3302 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
duke@435 3303 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
duke@435 3304
coleenp@1091 3305 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
duke@435 3306 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
duke@435 3307
duke@435 3308 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3309
duke@435 3310 #ifndef PRODUCT
duke@435 3311 if(Verbose && PrintMiscellaneous)
duke@435 3312 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3313 #endif
duke@435 3314 }
duke@435 3315
duke@435 3316 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 3317
duke@435 3318 // Setup Windows Exceptions
duke@435 3319
duke@435 3320 // On Itanium systems, Structured Exception Handling does not
duke@435 3321 // work since stack frames must be walkable by the OS. Since
duke@435 3322 // much of our code is dynamically generated, and we do not have
duke@435 3323 // proper unwind .xdata sections, the system simply exits
duke@435 3324 // rather than delivering the exception. To work around
duke@435 3325 // this we use VectorExceptions instead.
duke@435 3326 #ifdef _WIN64
duke@435 3327 if (UseVectoredExceptions) {
duke@435 3328 topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
duke@435 3329 }
duke@435 3330 #endif
duke@435 3331
duke@435 3332 // for debugging float code generation bugs
duke@435 3333 if (ForceFloatExceptions) {
duke@435 3334 #ifndef _WIN64
duke@435 3335 static long fp_control_word = 0;
duke@435 3336 __asm { fstcw fp_control_word }
duke@435 3337 // see Intel PPro Manual, Vol. 2, p 7-16
duke@435 3338 const long precision = 0x20;
duke@435 3339 const long underflow = 0x10;
duke@435 3340 const long overflow = 0x08;
duke@435 3341 const long zero_div = 0x04;
duke@435 3342 const long denorm = 0x02;
duke@435 3343 const long invalid = 0x01;
duke@435 3344 fp_control_word |= invalid;
duke@435 3345 __asm { fldcw fp_control_word }
duke@435 3346 #endif
duke@435 3347 }
duke@435 3348
duke@435 3349 // Initialize HPI.
duke@435 3350 jint hpi_result = hpi::initialize();
duke@435 3351 if (hpi_result != JNI_OK) { return hpi_result; }
duke@435 3352
duke@435 3353 // If stack_commit_size is 0, windows will reserve the default size,
duke@435 3354 // but only commit a small portion of it.
duke@435 3355 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
duke@435 3356 size_t default_reserve_size = os::win32::default_stack_size();
duke@435 3357 size_t actual_reserve_size = stack_commit_size;
duke@435 3358 if (stack_commit_size < default_reserve_size) {
duke@435 3359 // If stack_commit_size == 0, we want this too
duke@435 3360 actual_reserve_size = default_reserve_size;
duke@435 3361 }
duke@435 3362
duke@435 3363 JavaThread::set_stack_size_at_create(stack_commit_size);
duke@435 3364
duke@435 3365 // Calculate theoretical max. size of Threads to guard gainst artifical
duke@435 3366 // out-of-memory situations, where all available address-space has been
duke@435 3367 // reserved by thread stacks.
duke@435 3368 assert(actual_reserve_size != 0, "Must have a stack");
duke@435 3369
duke@435 3370 // Calculate the thread limit when we should start doing Virtual Memory
duke@435 3371 // banging. Currently when the threads will have used all but 200Mb of space.
duke@435 3372 //
duke@435 3373 // TODO: consider performing a similar calculation for commit size instead
duke@435 3374 // as reserve size, since on a 64-bit platform we'll run into that more
duke@435 3375 // often than running out of virtual memory space. We can use the
duke@435 3376 // lower value of the two calculations as the os_thread_limit.
coleenp@548 3377 size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
duke@435 3378 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
duke@435 3379
duke@435 3380 // at exit methods are called in the reverse order of their registration.
duke@435 3381 // there is no limit to the number of functions registered. atexit does
duke@435 3382 // not set errno.
duke@435 3383
duke@435 3384 if (PerfAllowAtExitRegistration) {
duke@435 3385 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3386 // atexit functions can be delayed until process exit time, which
duke@435 3387 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3388 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3389
duke@435 3390 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3391 // the future if the appropriate cleanup code can be added to the
duke@435 3392 // VM_Exit VMOperation's doit method.
duke@435 3393 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3394 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
duke@435 3395 }
duke@435 3396 }
duke@435 3397
duke@435 3398 // initialize PSAPI or ToolHelp for fatal error handler
duke@435 3399 if (win32::is_nt()) _init_psapi();
duke@435 3400 else _init_toolhelp();
duke@435 3401
duke@435 3402 #ifndef _WIN64
duke@435 3403 // Print something if NX is enabled (win32 on AMD64)
duke@435 3404 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
duke@435 3405 #endif
duke@435 3406
duke@435 3407 // initialize thread priority policy
duke@435 3408 prio_init();
duke@435 3409
iveresov@897 3410 if (UseNUMA && !ForceNUMA) {
iveresov@897 3411 UseNUMA = false; // Currently unsupported.
iveresov@897 3412 }
iveresov@897 3413
duke@435 3414 return JNI_OK;
duke@435 3415 }
duke@435 3416
duke@435 3417
duke@435 3418 // Mark the polling page as unreadable
duke@435 3419 void os::make_polling_page_unreadable(void) {
duke@435 3420 DWORD old_status;
duke@435 3421 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
duke@435 3422 fatal("Could not disable polling page");
duke@435 3423 };
duke@435 3424
duke@435 3425 // Mark the polling page as readable
duke@435 3426 void os::make_polling_page_readable(void) {
duke@435 3427 DWORD old_status;
duke@435 3428 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
duke@435 3429 fatal("Could not enable polling page");
duke@435 3430 };
duke@435 3431
duke@435 3432
duke@435 3433 int os::stat(const char *path, struct stat *sbuf) {
duke@435 3434 char pathbuf[MAX_PATH];
duke@435 3435 if (strlen(path) > MAX_PATH - 1) {
duke@435 3436 errno = ENAMETOOLONG;
duke@435 3437 return -1;
duke@435 3438 }
duke@435 3439 hpi::native_path(strcpy(pathbuf, path));
duke@435 3440 int ret = ::stat(pathbuf, sbuf);
duke@435 3441 if (sbuf != NULL && UseUTCFileTimestamp) {
duke@435 3442 // Fix for 6539723. st_mtime returned from stat() is dependent on
duke@435 3443 // the system timezone and so can return different values for the
duke@435 3444 // same file if/when daylight savings time changes. This adjustment
duke@435 3445 // makes sure the same timestamp is returned regardless of the TZ.
duke@435 3446 //
duke@435 3447 // See:
duke@435 3448 // http://msdn.microsoft.com/library/
duke@435 3449 // default.asp?url=/library/en-us/sysinfo/base/
duke@435 3450 // time_zone_information_str.asp
duke@435 3451 // and
duke@435 3452 // http://msdn.microsoft.com/library/default.asp?url=
duke@435 3453 // /library/en-us/sysinfo/base/settimezoneinformation.asp
duke@435 3454 //
duke@435 3455 // NOTE: there is a insidious bug here: If the timezone is changed
duke@435 3456 // after the call to stat() but before 'GetTimeZoneInformation()', then
duke@435 3457 // the adjustment we do here will be wrong and we'll return the wrong
duke@435 3458 // value (which will likely end up creating an invalid class data
duke@435 3459 // archive). Absent a better API for this, or some time zone locking
duke@435 3460 // mechanism, we'll have to live with this risk.
duke@435 3461 TIME_ZONE_INFORMATION tz;
duke@435 3462 DWORD tzid = GetTimeZoneInformation(&tz);
duke@435 3463 int daylightBias =
duke@435 3464 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
duke@435 3465 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
duke@435 3466 }
duke@435 3467 return ret;
duke@435 3468 }
duke@435 3469
duke@435 3470
duke@435 3471 #define FT2INT64(ft) \
duke@435 3472 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
duke@435 3473
duke@435 3474
duke@435 3475 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 3476 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 3477 // of a thread.
duke@435 3478 //
duke@435 3479 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 3480 // the fast estimate available on the platform.
duke@435 3481
duke@435 3482 // current_thread_cpu_time() is not optimized for Windows yet
duke@435 3483 jlong os::current_thread_cpu_time() {
duke@435 3484 // return user + sys since the cost is the same
duke@435 3485 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
duke@435 3486 }
duke@435 3487
duke@435 3488 jlong os::thread_cpu_time(Thread* thread) {
duke@435 3489 // consistent with what current_thread_cpu_time() returns.
duke@435 3490 return os::thread_cpu_time(thread, true /* user+sys */);
duke@435 3491 }
duke@435 3492
duke@435 3493 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 3494 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 3495 }
duke@435 3496
duke@435 3497 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
duke@435 3498 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
duke@435 3499 // If this function changes, os::is_thread_cpu_time_supported() should too
duke@435 3500 if (os::win32::is_nt()) {
duke@435 3501 FILETIME CreationTime;
duke@435 3502 FILETIME ExitTime;
duke@435 3503 FILETIME KernelTime;
duke@435 3504 FILETIME UserTime;
duke@435 3505
duke@435 3506 if ( GetThreadTimes(thread->osthread()->thread_handle(),
duke@435 3507 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3508 return -1;
duke@435 3509 else
duke@435 3510 if (user_sys_cpu_time) {
duke@435 3511 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
duke@435 3512 } else {
duke@435 3513 return FT2INT64(UserTime) * 100;
duke@435 3514 }
duke@435 3515 } else {
duke@435 3516 return (jlong) timeGetTime() * 1000000;
duke@435 3517 }
duke@435 3518 }
duke@435 3519
duke@435 3520 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3521 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3522 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3523 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3524 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3525 }
duke@435 3526
duke@435 3527 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3528 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3529 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3530 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3531 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3532 }
duke@435 3533
duke@435 3534 bool os::is_thread_cpu_time_supported() {
duke@435 3535 // see os::thread_cpu_time
duke@435 3536 if (os::win32::is_nt()) {
duke@435 3537 FILETIME CreationTime;
duke@435 3538 FILETIME ExitTime;
duke@435 3539 FILETIME KernelTime;
duke@435 3540 FILETIME UserTime;
duke@435 3541
duke@435 3542 if ( GetThreadTimes(GetCurrentThread(),
duke@435 3543 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3544 return false;
duke@435 3545 else
duke@435 3546 return true;
duke@435 3547 } else {
duke@435 3548 return false;
duke@435 3549 }
duke@435 3550 }
duke@435 3551
duke@435 3552 // Windows does't provide a loadavg primitive so this is stubbed out for now.
duke@435 3553 // It does have primitives (PDH API) to get CPU usage and run queue length.
duke@435 3554 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
duke@435 3555 // If we wanted to implement loadavg on Windows, we have a few options:
duke@435 3556 //
duke@435 3557 // a) Query CPU usage and run queue length and "fake" an answer by
duke@435 3558 // returning the CPU usage if it's under 100%, and the run queue
duke@435 3559 // length otherwise. It turns out that querying is pretty slow
duke@435 3560 // on Windows, on the order of 200 microseconds on a fast machine.
duke@435 3561 // Note that on the Windows the CPU usage value is the % usage
duke@435 3562 // since the last time the API was called (and the first call
duke@435 3563 // returns 100%), so we'd have to deal with that as well.
duke@435 3564 //
duke@435 3565 // b) Sample the "fake" answer using a sampling thread and store
duke@435 3566 // the answer in a global variable. The call to loadavg would
duke@435 3567 // just return the value of the global, avoiding the slow query.
duke@435 3568 //
duke@435 3569 // c) Sample a better answer using exponential decay to smooth the
duke@435 3570 // value. This is basically the algorithm used by UNIX kernels.
duke@435 3571 //
duke@435 3572 // Note that sampling thread starvation could affect both (b) and (c).
duke@435 3573 int os::loadavg(double loadavg[], int nelem) {
duke@435 3574 return -1;
duke@435 3575 }
duke@435 3576
duke@435 3577
duke@435 3578 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
duke@435 3579 bool os::dont_yield() {
duke@435 3580 return DontYieldALot;
duke@435 3581 }
duke@435 3582
duke@435 3583 // Is a (classpath) directory empty?
duke@435 3584 bool os::dir_is_empty(const char* path) {
duke@435 3585 WIN32_FIND_DATA fd;
duke@435 3586 HANDLE f = FindFirstFile(path, &fd);
duke@435 3587 if (f == INVALID_HANDLE_VALUE) {
duke@435 3588 return true;
duke@435 3589 }
duke@435 3590 FindClose(f);
duke@435 3591 return false;
duke@435 3592 }
duke@435 3593
duke@435 3594 // create binary file, rewriting existing file if required
duke@435 3595 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 3596 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
duke@435 3597 if (!rewrite_existing) {
duke@435 3598 oflags |= _O_EXCL;
duke@435 3599 }
duke@435 3600 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
duke@435 3601 }
duke@435 3602
duke@435 3603 // return current position of file pointer
duke@435 3604 jlong os::current_file_offset(int fd) {
duke@435 3605 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
duke@435 3606 }
duke@435 3607
duke@435 3608 // move file pointer to the specified offset
duke@435 3609 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 3610 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
duke@435 3611 }
duke@435 3612
duke@435 3613
duke@435 3614 // Map a block of memory.
duke@435 3615 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3616 char *addr, size_t bytes, bool read_only,
duke@435 3617 bool allow_exec) {
duke@435 3618 HANDLE hFile;
duke@435 3619 char* base;
duke@435 3620
duke@435 3621 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
duke@435 3622 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
duke@435 3623 if (hFile == NULL) {
duke@435 3624 if (PrintMiscellaneous && Verbose) {
duke@435 3625 DWORD err = GetLastError();
duke@435 3626 tty->print_cr("CreateFile() failed: GetLastError->%ld.");
duke@435 3627 }
duke@435 3628 return NULL;
duke@435 3629 }
duke@435 3630
duke@435 3631 if (allow_exec) {
duke@435 3632 // CreateFileMapping/MapViewOfFileEx can't map executable memory
duke@435 3633 // unless it comes from a PE image (which the shared archive is not.)
duke@435 3634 // Even VirtualProtect refuses to give execute access to mapped memory
duke@435 3635 // that was not previously executable.
duke@435 3636 //
duke@435 3637 // Instead, stick the executable region in anonymous memory. Yuck.
duke@435 3638 // Penalty is that ~4 pages will not be shareable - in the future
duke@435 3639 // we might consider DLLizing the shared archive with a proper PE
duke@435 3640 // header so that mapping executable + sharing is possible.
duke@435 3641
duke@435 3642 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
duke@435 3643 PAGE_READWRITE);
duke@435 3644 if (base == NULL) {
duke@435 3645 if (PrintMiscellaneous && Verbose) {
duke@435 3646 DWORD err = GetLastError();
duke@435 3647 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
duke@435 3648 }
duke@435 3649 CloseHandle(hFile);
duke@435 3650 return NULL;
duke@435 3651 }
duke@435 3652
duke@435 3653 DWORD bytes_read;
duke@435 3654 OVERLAPPED overlapped;
duke@435 3655 overlapped.Offset = (DWORD)file_offset;
duke@435 3656 overlapped.OffsetHigh = 0;
duke@435 3657 overlapped.hEvent = NULL;
duke@435 3658 // ReadFile guarantees that if the return value is true, the requested
duke@435 3659 // number of bytes were read before returning.
duke@435 3660 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
duke@435 3661 if (!res) {
duke@435 3662 if (PrintMiscellaneous && Verbose) {
duke@435 3663 DWORD err = GetLastError();
duke@435 3664 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
duke@435 3665 }
duke@435 3666 release_memory(base, bytes);
duke@435 3667 CloseHandle(hFile);
duke@435 3668 return NULL;
duke@435 3669 }
duke@435 3670 } else {
duke@435 3671 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
duke@435 3672 NULL /*file_name*/);
duke@435 3673 if (hMap == NULL) {
duke@435 3674 if (PrintMiscellaneous && Verbose) {
duke@435 3675 DWORD err = GetLastError();
duke@435 3676 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
duke@435 3677 }
duke@435 3678 CloseHandle(hFile);
duke@435 3679 return NULL;
duke@435 3680 }
duke@435 3681
duke@435 3682 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
duke@435 3683 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
duke@435 3684 (DWORD)bytes, addr);
duke@435 3685 if (base == NULL) {
duke@435 3686 if (PrintMiscellaneous && Verbose) {
duke@435 3687 DWORD err = GetLastError();
duke@435 3688 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
duke@435 3689 }
duke@435 3690 CloseHandle(hMap);
duke@435 3691 CloseHandle(hFile);
duke@435 3692 return NULL;
duke@435 3693 }
duke@435 3694
duke@435 3695 if (CloseHandle(hMap) == 0) {
duke@435 3696 if (PrintMiscellaneous && Verbose) {
duke@435 3697 DWORD err = GetLastError();
duke@435 3698 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
duke@435 3699 }
duke@435 3700 CloseHandle(hFile);
duke@435 3701 return base;
duke@435 3702 }
duke@435 3703 }
duke@435 3704
duke@435 3705 if (allow_exec) {
duke@435 3706 DWORD old_protect;
duke@435 3707 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
duke@435 3708 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
duke@435 3709
duke@435 3710 if (!res) {
duke@435 3711 if (PrintMiscellaneous && Verbose) {
duke@435 3712 DWORD err = GetLastError();
duke@435 3713 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
duke@435 3714 }
duke@435 3715 // Don't consider this a hard error, on IA32 even if the
duke@435 3716 // VirtualProtect fails, we should still be able to execute
duke@435 3717 CloseHandle(hFile);
duke@435 3718 return base;
duke@435 3719 }
duke@435 3720 }
duke@435 3721
duke@435 3722 if (CloseHandle(hFile) == 0) {
duke@435 3723 if (PrintMiscellaneous && Verbose) {
duke@435 3724 DWORD err = GetLastError();
duke@435 3725 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
duke@435 3726 }
duke@435 3727 return base;
duke@435 3728 }
duke@435 3729
duke@435 3730 return base;
duke@435 3731 }
duke@435 3732
duke@435 3733
duke@435 3734 // Remap a block of memory.
duke@435 3735 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3736 char *addr, size_t bytes, bool read_only,
duke@435 3737 bool allow_exec) {
duke@435 3738 // This OS does not allow existing memory maps to be remapped so we
duke@435 3739 // have to unmap the memory before we remap it.
duke@435 3740 if (!os::unmap_memory(addr, bytes)) {
duke@435 3741 return NULL;
duke@435 3742 }
duke@435 3743
duke@435 3744 // There is a very small theoretical window between the unmap_memory()
duke@435 3745 // call above and the map_memory() call below where a thread in native
duke@435 3746 // code may be able to access an address that is no longer mapped.
duke@435 3747
duke@435 3748 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 3749 allow_exec);
duke@435 3750 }
duke@435 3751
duke@435 3752
duke@435 3753 // Unmap a block of memory.
duke@435 3754 // Returns true=success, otherwise false.
duke@435 3755
duke@435 3756 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 3757 BOOL result = UnmapViewOfFile(addr);
duke@435 3758 if (result == 0) {
duke@435 3759 if (PrintMiscellaneous && Verbose) {
duke@435 3760 DWORD err = GetLastError();
duke@435 3761 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
duke@435 3762 }
duke@435 3763 return false;
duke@435 3764 }
duke@435 3765 return true;
duke@435 3766 }
duke@435 3767
duke@435 3768 void os::pause() {
duke@435 3769 char filename[MAX_PATH];
duke@435 3770 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 3771 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 3772 } else {
duke@435 3773 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 3774 }
duke@435 3775
duke@435 3776 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 3777 if (fd != -1) {
duke@435 3778 struct stat buf;
duke@435 3779 close(fd);
duke@435 3780 while (::stat(filename, &buf) == 0) {
duke@435 3781 Sleep(100);
duke@435 3782 }
duke@435 3783 } else {
duke@435 3784 jio_fprintf(stderr,
duke@435 3785 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 3786 }
duke@435 3787 }
duke@435 3788
duke@435 3789 // An Event wraps a win32 "CreateEvent" kernel handle.
duke@435 3790 //
duke@435 3791 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
duke@435 3792 //
duke@435 3793 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
duke@435 3794 // field, and call CloseHandle() on the win32 event handle. Unpark() would
duke@435 3795 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
duke@435 3796 // In addition, an unpark() operation might fetch the handle field, but the
duke@435 3797 // event could recycle between the fetch and the SetEvent() operation.
duke@435 3798 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
duke@435 3799 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
duke@435 3800 // on an stale but recycled handle would be harmless, but in practice this might
duke@435 3801 // confuse other non-Sun code, so it's not a viable approach.
duke@435 3802 //
duke@435 3803 // 2: Once a win32 event handle is associated with an Event, it remains associated
duke@435 3804 // with the Event. The event handle is never closed. This could be construed
duke@435 3805 // as handle leakage, but only up to the maximum # of threads that have been extant
duke@435 3806 // at any one time. This shouldn't be an issue, as windows platforms typically
duke@435 3807 // permit a process to have hundreds of thousands of open handles.
duke@435 3808 //
duke@435 3809 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
duke@435 3810 // and release unused handles.
duke@435 3811 //
duke@435 3812 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
duke@435 3813 // It's not clear, however, that we wouldn't be trading one type of leak for another.
duke@435 3814 //
duke@435 3815 // 5. Use an RCU-like mechanism (Read-Copy Update).
duke@435 3816 // Or perhaps something similar to Maged Michael's "Hazard pointers".
duke@435 3817 //
duke@435 3818 // We use (2).
duke@435 3819 //
duke@435 3820 // TODO-FIXME:
duke@435 3821 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
duke@435 3822 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
duke@435 3823 // to recover from (or at least detect) the dreaded Windows 841176 bug.
duke@435 3824 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
duke@435 3825 // into a single win32 CreateEvent() handle.
duke@435 3826 //
duke@435 3827 // _Event transitions in park()
duke@435 3828 // -1 => -1 : illegal
duke@435 3829 // 1 => 0 : pass - return immediately
duke@435 3830 // 0 => -1 : block
duke@435 3831 //
duke@435 3832 // _Event serves as a restricted-range semaphore :
duke@435 3833 // -1 : thread is blocked
duke@435 3834 // 0 : neutral - thread is running or ready
duke@435 3835 // 1 : signaled - thread is running or ready
duke@435 3836 //
duke@435 3837 // Another possible encoding of _Event would be
duke@435 3838 // with explicit "PARKED" and "SIGNALED" bits.
duke@435 3839
duke@435 3840 int os::PlatformEvent::park (jlong Millis) {
duke@435 3841 guarantee (_ParkHandle != NULL , "Invariant") ;
duke@435 3842 guarantee (Millis > 0 , "Invariant") ;
duke@435 3843 int v ;
duke@435 3844
duke@435 3845 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
duke@435 3846 // the initial park() operation.
duke@435 3847
duke@435 3848 for (;;) {
duke@435 3849 v = _Event ;
duke@435 3850 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 3851 }
duke@435 3852 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 3853 if (v != 0) return OS_OK ;
duke@435 3854
duke@435 3855 // Do this the hard way by blocking ...
duke@435 3856 // TODO: consider a brief spin here, gated on the success of recent
duke@435 3857 // spin attempts by this thread.
duke@435 3858 //
duke@435 3859 // We decompose long timeouts into series of shorter timed waits.
duke@435 3860 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
duke@435 3861 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
duke@435 3862 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
duke@435 3863 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
duke@435 3864 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
duke@435 3865 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
duke@435 3866 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
duke@435 3867 // for the already waited time. This policy does not admit any new outcomes.
duke@435 3868 // In the future, however, we might want to track the accumulated wait time and
duke@435 3869 // adjust Millis accordingly if we encounter a spurious wakeup.
duke@435 3870
duke@435 3871 const int MAXTIMEOUT = 0x10000000 ;
duke@435 3872 DWORD rv = WAIT_TIMEOUT ;
duke@435 3873 while (_Event < 0 && Millis > 0) {
duke@435 3874 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
duke@435 3875 if (Millis > MAXTIMEOUT) {
duke@435 3876 prd = MAXTIMEOUT ;
duke@435 3877 }
duke@435 3878 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
duke@435 3879 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
duke@435 3880 if (rv == WAIT_TIMEOUT) {
duke@435 3881 Millis -= prd ;
duke@435 3882 }
duke@435 3883 }
duke@435 3884 v = _Event ;
duke@435 3885 _Event = 0 ;
duke@435 3886 OrderAccess::fence() ;
duke@435 3887 // If we encounter a nearly simultanous timeout expiry and unpark()
duke@435 3888 // we return OS_OK indicating we awoke via unpark().
duke@435 3889 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
duke@435 3890 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
duke@435 3891 }
duke@435 3892
duke@435 3893 void os::PlatformEvent::park () {
duke@435 3894 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 3895 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 3896 // may call park().
duke@435 3897 int v ;
duke@435 3898 for (;;) {
duke@435 3899 v = _Event ;
duke@435 3900 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 3901 }
duke@435 3902 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 3903 if (v != 0) return ;
duke@435 3904
duke@435 3905 // Do this the hard way by blocking ...
duke@435 3906 // TODO: consider a brief spin here, gated on the success of recent
duke@435 3907 // spin attempts by this thread.
duke@435 3908 while (_Event < 0) {
duke@435 3909 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
duke@435 3910 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
duke@435 3911 }
duke@435 3912
duke@435 3913 // Usually we'll find _Event == 0 at this point, but as
duke@435 3914 // an optional optimization we clear it, just in case can
duke@435 3915 // multiple unpark() operations drove _Event up to 1.
duke@435 3916 _Event = 0 ;
duke@435 3917 OrderAccess::fence() ;
duke@435 3918 guarantee (_Event >= 0, "invariant") ;
duke@435 3919 }
duke@435 3920
duke@435 3921 void os::PlatformEvent::unpark() {
duke@435 3922 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 3923 int v ;
duke@435 3924 for (;;) {
duke@435 3925 v = _Event ; // Increment _Event if it's < 1.
duke@435 3926 if (v > 0) {
duke@435 3927 // If it's already signaled just return.
duke@435 3928 // The LD of _Event could have reordered or be satisfied
duke@435 3929 // by a read-aside from this processor's write buffer.
duke@435 3930 // To avoid problems execute a barrier and then
duke@435 3931 // ratify the value. A degenerate CAS() would also work.
duke@435 3932 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 3933 OrderAccess::fence() ;
duke@435 3934 if (_Event == v) return ;
duke@435 3935 continue ;
duke@435 3936 }
duke@435 3937 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 3938 }
duke@435 3939 if (v < 0) {
duke@435 3940 ::SetEvent (_ParkHandle) ;
duke@435 3941 }
duke@435 3942 }
duke@435 3943
duke@435 3944
duke@435 3945 // JSR166
duke@435 3946 // -------------------------------------------------------
duke@435 3947
duke@435 3948 /*
duke@435 3949 * The Windows implementation of Park is very straightforward: Basic
duke@435 3950 * operations on Win32 Events turn out to have the right semantics to
duke@435 3951 * use them directly. We opportunistically resuse the event inherited
duke@435 3952 * from Monitor.
duke@435 3953 */
duke@435 3954
duke@435 3955
duke@435 3956 void Parker::park(bool isAbsolute, jlong time) {
duke@435 3957 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 3958 // First, demultiplex/decode time arguments
duke@435 3959 if (time < 0) { // don't wait
duke@435 3960 return;
duke@435 3961 }
duke@435 3962 else if (time == 0) {
duke@435 3963 time = INFINITE;
duke@435 3964 }
duke@435 3965 else if (isAbsolute) {
duke@435 3966 time -= os::javaTimeMillis(); // convert to relative time
duke@435 3967 if (time <= 0) // already elapsed
duke@435 3968 return;
duke@435 3969 }
duke@435 3970 else { // relative
duke@435 3971 time /= 1000000; // Must coarsen from nanos to millis
duke@435 3972 if (time == 0) // Wait for the minimal time unit if zero
duke@435 3973 time = 1;
duke@435 3974 }
duke@435 3975
duke@435 3976 JavaThread* thread = (JavaThread*)(Thread::current());
duke@435 3977 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 3978 JavaThread *jt = (JavaThread *)thread;
duke@435 3979
duke@435 3980 // Don't wait if interrupted or already triggered
duke@435 3981 if (Thread::is_interrupted(thread, false) ||
duke@435 3982 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
duke@435 3983 ResetEvent(_ParkEvent);
duke@435 3984 return;
duke@435 3985 }
duke@435 3986 else {
duke@435 3987 ThreadBlockInVM tbivm(jt);
duke@435 3988 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3989 jt->set_suspend_equivalent();
duke@435 3990
duke@435 3991 WaitForSingleObject(_ParkEvent, time);
duke@435 3992 ResetEvent(_ParkEvent);
duke@435 3993
duke@435 3994 // If externally suspended while waiting, re-suspend
duke@435 3995 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 3996 jt->java_suspend_self();
duke@435 3997 }
duke@435 3998 }
duke@435 3999 }
duke@435 4000
duke@435 4001 void Parker::unpark() {
duke@435 4002 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4003 SetEvent(_ParkEvent);
duke@435 4004 }
duke@435 4005
duke@435 4006 // Run the specified command in a separate process. Return its exit value,
duke@435 4007 // or -1 on failure (e.g. can't create a new process).
duke@435 4008 int os::fork_and_exec(char* cmd) {
duke@435 4009 STARTUPINFO si;
duke@435 4010 PROCESS_INFORMATION pi;
duke@435 4011
duke@435 4012 memset(&si, 0, sizeof(si));
duke@435 4013 si.cb = sizeof(si);
duke@435 4014 memset(&pi, 0, sizeof(pi));
duke@435 4015 BOOL rslt = CreateProcess(NULL, // executable name - use command line
duke@435 4016 cmd, // command line
duke@435 4017 NULL, // process security attribute
duke@435 4018 NULL, // thread security attribute
duke@435 4019 TRUE, // inherits system handles
duke@435 4020 0, // no creation flags
duke@435 4021 NULL, // use parent's environment block
duke@435 4022 NULL, // use parent's starting directory
duke@435 4023 &si, // (in) startup information
duke@435 4024 &pi); // (out) process information
duke@435 4025
duke@435 4026 if (rslt) {
duke@435 4027 // Wait until child process exits.
duke@435 4028 WaitForSingleObject(pi.hProcess, INFINITE);
duke@435 4029
duke@435 4030 DWORD exit_code;
duke@435 4031 GetExitCodeProcess(pi.hProcess, &exit_code);
duke@435 4032
duke@435 4033 // Close process and thread handles.
duke@435 4034 CloseHandle(pi.hProcess);
duke@435 4035 CloseHandle(pi.hThread);
duke@435 4036
duke@435 4037 return (int)exit_code;
duke@435 4038 } else {
duke@435 4039 return -1;
duke@435 4040 }
duke@435 4041 }
duke@435 4042
duke@435 4043 //--------------------------------------------------------------------------------------------------
duke@435 4044 // Non-product code
duke@435 4045
duke@435 4046 static int mallocDebugIntervalCounter = 0;
duke@435 4047 static int mallocDebugCounter = 0;
duke@435 4048 bool os::check_heap(bool force) {
duke@435 4049 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
duke@435 4050 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
duke@435 4051 // Note: HeapValidate executes two hardware breakpoints when it finds something
duke@435 4052 // wrong; at these points, eax contains the address of the offending block (I think).
duke@435 4053 // To get to the exlicit error message(s) below, just continue twice.
duke@435 4054 HANDLE heap = GetProcessHeap();
duke@435 4055 { HeapLock(heap);
duke@435 4056 PROCESS_HEAP_ENTRY phe;
duke@435 4057 phe.lpData = NULL;
duke@435 4058 while (HeapWalk(heap, &phe) != 0) {
duke@435 4059 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
duke@435 4060 !HeapValidate(heap, 0, phe.lpData)) {
duke@435 4061 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
duke@435 4062 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
duke@435 4063 fatal("corrupted C heap");
duke@435 4064 }
duke@435 4065 }
duke@435 4066 int err = GetLastError();
duke@435 4067 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
duke@435 4068 fatal1("heap walk aborted with error %d", err);
duke@435 4069 }
duke@435 4070 HeapUnlock(heap);
duke@435 4071 }
duke@435 4072 mallocDebugIntervalCounter = 0;
duke@435 4073 }
duke@435 4074 return true;
duke@435 4075 }
duke@435 4076
duke@435 4077
duke@435 4078 #ifndef PRODUCT
duke@435 4079 bool os::find(address addr) {
duke@435 4080 // Nothing yet
duke@435 4081 return false;
duke@435 4082 }
duke@435 4083 #endif
duke@435 4084
duke@435 4085 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
duke@435 4086 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
duke@435 4087
duke@435 4088 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 4089 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
duke@435 4090 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
duke@435 4091 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 4092
duke@435 4093 if (os::is_memory_serialize_page(thread, addr))
duke@435 4094 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 4095 }
duke@435 4096
duke@435 4097 return EXCEPTION_CONTINUE_SEARCH;
duke@435 4098 }
duke@435 4099
duke@435 4100 static int getLastErrorString(char *buf, size_t len)
duke@435 4101 {
duke@435 4102 long errval;
duke@435 4103
duke@435 4104 if ((errval = GetLastError()) != 0)
duke@435 4105 {
duke@435 4106 /* DOS error */
duke@435 4107 size_t n = (size_t)FormatMessage(
duke@435 4108 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
duke@435 4109 NULL,
duke@435 4110 errval,
duke@435 4111 0,
duke@435 4112 buf,
duke@435 4113 (DWORD)len,
duke@435 4114 NULL);
duke@435 4115 if (n > 3) {
duke@435 4116 /* Drop final '.', CR, LF */
duke@435 4117 if (buf[n - 1] == '\n') n--;
duke@435 4118 if (buf[n - 1] == '\r') n--;
duke@435 4119 if (buf[n - 1] == '.') n--;
duke@435 4120 buf[n] = '\0';
duke@435 4121 }
duke@435 4122 return (int)n;
duke@435 4123 }
duke@435 4124
duke@435 4125 if (errno != 0)
duke@435 4126 {
duke@435 4127 /* C runtime error that has no corresponding DOS error code */
duke@435 4128 const char *s = strerror(errno);
duke@435 4129 size_t n = strlen(s);
duke@435 4130 if (n >= len) n = len - 1;
duke@435 4131 strncpy(buf, s, n);
duke@435 4132 buf[n] = '\0';
duke@435 4133 return (int)n;
duke@435 4134 }
duke@435 4135 return 0;
duke@435 4136 }

mercurial