src/os/windows/vm/os_windows.cpp

Thu, 04 Dec 2008 17:29:56 -0800

author
poonam
date
Thu, 04 Dec 2008 17:29:56 -0800
changeset 900
dc16daa0329d
parent 824
ee21eaa8ffe1
child 902
8724fb00c422
permissions
-rw-r--r--

6739363: Xcheck jni doesn't check native function arguments
Summary: Fix adds support for verifying arguments with -Xcheck:jni.
Reviewed-by: coleenp

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #ifdef _WIN64
duke@435 26 // Must be at least Windows 2000 or XP to use VectoredExceptions
duke@435 27 #define _WIN32_WINNT 0x500
duke@435 28 #endif
duke@435 29
duke@435 30 // do not include precompiled header file
duke@435 31 # include "incls/_os_windows.cpp.incl"
duke@435 32
duke@435 33 #ifdef _DEBUG
duke@435 34 #include <crtdbg.h>
duke@435 35 #endif
duke@435 36
duke@435 37
duke@435 38 #include <windows.h>
duke@435 39 #include <sys/types.h>
duke@435 40 #include <sys/stat.h>
duke@435 41 #include <sys/timeb.h>
duke@435 42 #include <objidl.h>
duke@435 43 #include <shlobj.h>
duke@435 44
duke@435 45 #include <malloc.h>
duke@435 46 #include <signal.h>
duke@435 47 #include <direct.h>
duke@435 48 #include <errno.h>
duke@435 49 #include <fcntl.h>
duke@435 50 #include <io.h>
duke@435 51 #include <process.h> // For _beginthreadex(), _endthreadex()
duke@435 52 #include <imagehlp.h> // For os::dll_address_to_function_name
duke@435 53
duke@435 54 /* for enumerating dll libraries */
duke@435 55 #include <tlhelp32.h>
duke@435 56 #include <vdmdbg.h>
duke@435 57
duke@435 58 // for timer info max values which include all bits
duke@435 59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 60
duke@435 61 // For DLL loading/load error detection
duke@435 62 // Values of PE COFF
duke@435 63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
duke@435 64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
duke@435 65
duke@435 66 static HANDLE main_process;
duke@435 67 static HANDLE main_thread;
duke@435 68 static int main_thread_id;
duke@435 69
duke@435 70 static FILETIME process_creation_time;
duke@435 71 static FILETIME process_exit_time;
duke@435 72 static FILETIME process_user_time;
duke@435 73 static FILETIME process_kernel_time;
duke@435 74
duke@435 75 #ifdef _WIN64
duke@435 76 PVOID topLevelVectoredExceptionHandler = NULL;
duke@435 77 #endif
duke@435 78
duke@435 79 #ifdef _M_IA64
duke@435 80 #define __CPU__ ia64
duke@435 81 #elif _M_AMD64
duke@435 82 #define __CPU__ amd64
duke@435 83 #else
duke@435 84 #define __CPU__ i486
duke@435 85 #endif
duke@435 86
duke@435 87 // save DLL module handle, used by GetModuleFileName
duke@435 88
duke@435 89 HINSTANCE vm_lib_handle;
duke@435 90 static int getLastErrorString(char *buf, size_t len);
duke@435 91
duke@435 92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
duke@435 93 switch (reason) {
duke@435 94 case DLL_PROCESS_ATTACH:
duke@435 95 vm_lib_handle = hinst;
duke@435 96 if(ForceTimeHighResolution)
duke@435 97 timeBeginPeriod(1L);
duke@435 98 break;
duke@435 99 case DLL_PROCESS_DETACH:
duke@435 100 if(ForceTimeHighResolution)
duke@435 101 timeEndPeriod(1L);
duke@435 102 #ifdef _WIN64
duke@435 103 if (topLevelVectoredExceptionHandler != NULL) {
duke@435 104 RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
duke@435 105 topLevelVectoredExceptionHandler = NULL;
duke@435 106 }
duke@435 107 #endif
duke@435 108 break;
duke@435 109 default:
duke@435 110 break;
duke@435 111 }
duke@435 112 return true;
duke@435 113 }
duke@435 114
duke@435 115 static inline double fileTimeAsDouble(FILETIME* time) {
duke@435 116 const double high = (double) ((unsigned int) ~0);
duke@435 117 const double split = 10000000.0;
duke@435 118 double result = (time->dwLowDateTime / split) +
duke@435 119 time->dwHighDateTime * (high/split);
duke@435 120 return result;
duke@435 121 }
duke@435 122
duke@435 123 // Implementation of os
duke@435 124
duke@435 125 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 126 int result = GetEnvironmentVariable(name, buffer, len);
duke@435 127 return result > 0 && result < len;
duke@435 128 }
duke@435 129
duke@435 130
duke@435 131 // No setuid programs under Windows.
duke@435 132 bool os::have_special_privileges() {
duke@435 133 return false;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 // This method is a periodic task to check for misbehaving JNI applications
duke@435 138 // under CheckJNI, we can add any periodic checks here.
duke@435 139 // For Windows at the moment does nothing
duke@435 140 void os::run_periodic_checks() {
duke@435 141 return;
duke@435 142 }
duke@435 143
duke@435 144 #ifndef _WIN64
duke@435 145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 146 #endif
duke@435 147 void os::init_system_properties_values() {
duke@435 148 /* sysclasspath, java_home, dll_dir */
duke@435 149 {
duke@435 150 char *home_path;
duke@435 151 char *dll_path;
duke@435 152 char *pslash;
duke@435 153 char *bin = "\\bin";
duke@435 154 char home_dir[MAX_PATH];
duke@435 155
duke@435 156 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
duke@435 157 os::jvm_path(home_dir, sizeof(home_dir));
duke@435 158 // Found the full path to jvm[_g].dll.
duke@435 159 // Now cut the path to <java_home>/jre if we can.
duke@435 160 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
duke@435 161 pslash = strrchr(home_dir, '\\');
duke@435 162 if (pslash != NULL) {
duke@435 163 *pslash = '\0'; /* get rid of \{client|server} */
duke@435 164 pslash = strrchr(home_dir, '\\');
duke@435 165 if (pslash != NULL)
duke@435 166 *pslash = '\0'; /* get rid of \bin */
duke@435 167 }
duke@435 168 }
duke@435 169
duke@435 170 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
duke@435 171 if (home_path == NULL)
duke@435 172 return;
duke@435 173 strcpy(home_path, home_dir);
duke@435 174 Arguments::set_java_home(home_path);
duke@435 175
duke@435 176 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
duke@435 177 if (dll_path == NULL)
duke@435 178 return;
duke@435 179 strcpy(dll_path, home_dir);
duke@435 180 strcat(dll_path, bin);
duke@435 181 Arguments::set_dll_dir(dll_path);
duke@435 182
duke@435 183 if (!set_boot_path('\\', ';'))
duke@435 184 return;
duke@435 185 }
duke@435 186
duke@435 187 /* library_path */
duke@435 188 #define EXT_DIR "\\lib\\ext"
duke@435 189 #define BIN_DIR "\\bin"
duke@435 190 #define PACKAGE_DIR "\\Sun\\Java"
duke@435 191 {
duke@435 192 /* Win32 library search order (See the documentation for LoadLibrary):
duke@435 193 *
duke@435 194 * 1. The directory from which application is loaded.
duke@435 195 * 2. The current directory
duke@435 196 * 3. The system wide Java Extensions directory (Java only)
duke@435 197 * 4. System directory (GetSystemDirectory)
duke@435 198 * 5. Windows directory (GetWindowsDirectory)
duke@435 199 * 6. The PATH environment variable
duke@435 200 */
duke@435 201
duke@435 202 char *library_path;
duke@435 203 char tmp[MAX_PATH];
duke@435 204 char *path_str = ::getenv("PATH");
duke@435 205
duke@435 206 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
duke@435 207 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
duke@435 208
duke@435 209 library_path[0] = '\0';
duke@435 210
duke@435 211 GetModuleFileName(NULL, tmp, sizeof(tmp));
duke@435 212 *(strrchr(tmp, '\\')) = '\0';
duke@435 213 strcat(library_path, tmp);
duke@435 214
duke@435 215 strcat(library_path, ";.");
duke@435 216
duke@435 217 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 218 strcat(library_path, ";");
duke@435 219 strcat(library_path, tmp);
duke@435 220 strcat(library_path, PACKAGE_DIR BIN_DIR);
duke@435 221
duke@435 222 GetSystemDirectory(tmp, sizeof(tmp));
duke@435 223 strcat(library_path, ";");
duke@435 224 strcat(library_path, tmp);
duke@435 225
duke@435 226 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 227 strcat(library_path, ";");
duke@435 228 strcat(library_path, tmp);
duke@435 229
duke@435 230 if (path_str) {
duke@435 231 strcat(library_path, ";");
duke@435 232 strcat(library_path, path_str);
duke@435 233 }
duke@435 234
duke@435 235 Arguments::set_library_path(library_path);
duke@435 236 FREE_C_HEAP_ARRAY(char, library_path);
duke@435 237 }
duke@435 238
duke@435 239 /* Default extensions directory */
duke@435 240 {
duke@435 241 char path[MAX_PATH];
duke@435 242 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
duke@435 243 GetWindowsDirectory(path, MAX_PATH);
duke@435 244 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
duke@435 245 path, PACKAGE_DIR, EXT_DIR);
duke@435 246 Arguments::set_ext_dirs(buf);
duke@435 247 }
duke@435 248 #undef EXT_DIR
duke@435 249 #undef BIN_DIR
duke@435 250 #undef PACKAGE_DIR
duke@435 251
duke@435 252 /* Default endorsed standards directory. */
duke@435 253 {
duke@435 254 #define ENDORSED_DIR "\\lib\\endorsed"
duke@435 255 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
duke@435 256 char * buf = NEW_C_HEAP_ARRAY(char, len);
duke@435 257 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
duke@435 258 Arguments::set_endorsed_dirs(buf);
duke@435 259 #undef ENDORSED_DIR
duke@435 260 }
duke@435 261
duke@435 262 #ifndef _WIN64
duke@435 263 SetUnhandledExceptionFilter(Handle_FLT_Exception);
duke@435 264 #endif
duke@435 265
duke@435 266 // Done
duke@435 267 return;
duke@435 268 }
duke@435 269
duke@435 270 void os::breakpoint() {
duke@435 271 DebugBreak();
duke@435 272 }
duke@435 273
duke@435 274 // Invoked from the BREAKPOINT Macro
duke@435 275 extern "C" void breakpoint() {
duke@435 276 os::breakpoint();
duke@435 277 }
duke@435 278
duke@435 279 // Returns an estimate of the current stack pointer. Result must be guaranteed
duke@435 280 // to point into the calling threads stack, and be no lower than the current
duke@435 281 // stack pointer.
duke@435 282
duke@435 283 address os::current_stack_pointer() {
duke@435 284 int dummy;
duke@435 285 address sp = (address)&dummy;
duke@435 286 return sp;
duke@435 287 }
duke@435 288
duke@435 289 // os::current_stack_base()
duke@435 290 //
duke@435 291 // Returns the base of the stack, which is the stack's
duke@435 292 // starting address. This function must be called
duke@435 293 // while running on the stack of the thread being queried.
duke@435 294
duke@435 295 address os::current_stack_base() {
duke@435 296 MEMORY_BASIC_INFORMATION minfo;
duke@435 297 address stack_bottom;
duke@435 298 size_t stack_size;
duke@435 299
duke@435 300 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 301 stack_bottom = (address)minfo.AllocationBase;
duke@435 302 stack_size = minfo.RegionSize;
duke@435 303
duke@435 304 // Add up the sizes of all the regions with the same
duke@435 305 // AllocationBase.
duke@435 306 while( 1 )
duke@435 307 {
duke@435 308 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
duke@435 309 if ( stack_bottom == (address)minfo.AllocationBase )
duke@435 310 stack_size += minfo.RegionSize;
duke@435 311 else
duke@435 312 break;
duke@435 313 }
duke@435 314
duke@435 315 #ifdef _M_IA64
duke@435 316 // IA64 has memory and register stacks
duke@435 317 stack_size = stack_size / 2;
duke@435 318 #endif
duke@435 319 return stack_bottom + stack_size;
duke@435 320 }
duke@435 321
duke@435 322 size_t os::current_stack_size() {
duke@435 323 size_t sz;
duke@435 324 MEMORY_BASIC_INFORMATION minfo;
duke@435 325 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 326 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
duke@435 327 return sz;
duke@435 328 }
duke@435 329
duke@435 330
duke@435 331 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 332
duke@435 333 // Thread start routine for all new Java threads
duke@435 334 static unsigned __stdcall java_start(Thread* thread) {
duke@435 335 // Try to randomize the cache line index of hot stack frames.
duke@435 336 // This helps when threads of the same stack traces evict each other's
duke@435 337 // cache lines. The threads can be either from the same JVM instance, or
duke@435 338 // from different JVM instances. The benefit is especially true for
duke@435 339 // processors with hyperthreading technology.
duke@435 340 static int counter = 0;
duke@435 341 int pid = os::current_process_id();
duke@435 342 _alloca(((pid ^ counter++) & 7) * 128);
duke@435 343
duke@435 344 OSThread* osthr = thread->osthread();
duke@435 345 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 346
duke@435 347 if (UseNUMA) {
duke@435 348 int lgrp_id = os::numa_get_group_id();
duke@435 349 if (lgrp_id != -1) {
duke@435 350 thread->set_lgrp_id(lgrp_id);
duke@435 351 }
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 if (UseVectoredExceptions) {
duke@435 356 // If we are using vectored exception we don't need to set a SEH
duke@435 357 thread->run();
duke@435 358 }
duke@435 359 else {
duke@435 360 // Install a win32 structured exception handler around every thread created
duke@435 361 // by VM, so VM can genrate error dump when an exception occurred in non-
duke@435 362 // Java thread (e.g. VM thread).
duke@435 363 __try {
duke@435 364 thread->run();
duke@435 365 } __except(topLevelExceptionFilter(
duke@435 366 (_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 367 // Nothing to do.
duke@435 368 }
duke@435 369 }
duke@435 370
duke@435 371 // One less thread is executing
duke@435 372 // When the VMThread gets here, the main thread may have already exited
duke@435 373 // which frees the CodeHeap containing the Atomic::add code
duke@435 374 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 375 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 376 }
duke@435 377
duke@435 378 return 0;
duke@435 379 }
duke@435 380
duke@435 381 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
duke@435 382 // Allocate the OSThread object
duke@435 383 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 384 if (osthread == NULL) return NULL;
duke@435 385
duke@435 386 // Initialize support for Java interrupts
duke@435 387 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 388 if (interrupt_event == NULL) {
duke@435 389 delete osthread;
duke@435 390 return NULL;
duke@435 391 }
duke@435 392 osthread->set_interrupt_event(interrupt_event);
duke@435 393
duke@435 394 // Store info on the Win32 thread into the OSThread
duke@435 395 osthread->set_thread_handle(thread_handle);
duke@435 396 osthread->set_thread_id(thread_id);
duke@435 397
duke@435 398 if (UseNUMA) {
duke@435 399 int lgrp_id = os::numa_get_group_id();
duke@435 400 if (lgrp_id != -1) {
duke@435 401 thread->set_lgrp_id(lgrp_id);
duke@435 402 }
duke@435 403 }
duke@435 404
duke@435 405 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 406 osthread->set_state(INITIALIZED);
duke@435 407
duke@435 408 return osthread;
duke@435 409 }
duke@435 410
duke@435 411
duke@435 412 bool os::create_attached_thread(JavaThread* thread) {
duke@435 413 #ifdef ASSERT
duke@435 414 thread->verify_not_published();
duke@435 415 #endif
duke@435 416 HANDLE thread_h;
duke@435 417 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
duke@435 418 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
duke@435 419 fatal("DuplicateHandle failed\n");
duke@435 420 }
duke@435 421 OSThread* osthread = create_os_thread(thread, thread_h,
duke@435 422 (int)current_thread_id());
duke@435 423 if (osthread == NULL) {
duke@435 424 return false;
duke@435 425 }
duke@435 426
duke@435 427 // Initial thread state is RUNNABLE
duke@435 428 osthread->set_state(RUNNABLE);
duke@435 429
duke@435 430 thread->set_osthread(osthread);
duke@435 431 return true;
duke@435 432 }
duke@435 433
duke@435 434 bool os::create_main_thread(JavaThread* thread) {
duke@435 435 #ifdef ASSERT
duke@435 436 thread->verify_not_published();
duke@435 437 #endif
duke@435 438 if (_starting_thread == NULL) {
duke@435 439 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
duke@435 440 if (_starting_thread == NULL) {
duke@435 441 return false;
duke@435 442 }
duke@435 443 }
duke@435 444
duke@435 445 // The primordial thread is runnable from the start)
duke@435 446 _starting_thread->set_state(RUNNABLE);
duke@435 447
duke@435 448 thread->set_osthread(_starting_thread);
duke@435 449 return true;
duke@435 450 }
duke@435 451
duke@435 452 // Allocate and initialize a new OSThread
duke@435 453 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 454 unsigned thread_id;
duke@435 455
duke@435 456 // Allocate the OSThread object
duke@435 457 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 458 if (osthread == NULL) {
duke@435 459 return false;
duke@435 460 }
duke@435 461
duke@435 462 // Initialize support for Java interrupts
duke@435 463 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 464 if (interrupt_event == NULL) {
duke@435 465 delete osthread;
duke@435 466 return NULL;
duke@435 467 }
duke@435 468 osthread->set_interrupt_event(interrupt_event);
duke@435 469 osthread->set_interrupted(false);
duke@435 470
duke@435 471 thread->set_osthread(osthread);
duke@435 472
duke@435 473 if (stack_size == 0) {
duke@435 474 switch (thr_type) {
duke@435 475 case os::java_thread:
duke@435 476 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 477 if (JavaThread::stack_size_at_create() > 0)
duke@435 478 stack_size = JavaThread::stack_size_at_create();
duke@435 479 break;
duke@435 480 case os::compiler_thread:
duke@435 481 if (CompilerThreadStackSize > 0) {
duke@435 482 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 483 break;
duke@435 484 } // else fall through:
duke@435 485 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 486 case os::vm_thread:
duke@435 487 case os::pgc_thread:
duke@435 488 case os::cgc_thread:
duke@435 489 case os::watcher_thread:
duke@435 490 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 491 break;
duke@435 492 }
duke@435 493 }
duke@435 494
duke@435 495 // Create the Win32 thread
duke@435 496 //
duke@435 497 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
duke@435 498 // does not specify stack size. Instead, it specifies the size of
duke@435 499 // initially committed space. The stack size is determined by
duke@435 500 // PE header in the executable. If the committed "stack_size" is larger
duke@435 501 // than default value in the PE header, the stack is rounded up to the
duke@435 502 // nearest multiple of 1MB. For example if the launcher has default
duke@435 503 // stack size of 320k, specifying any size less than 320k does not
duke@435 504 // affect the actual stack size at all, it only affects the initial
duke@435 505 // commitment. On the other hand, specifying 'stack_size' larger than
duke@435 506 // default value may cause significant increase in memory usage, because
duke@435 507 // not only the stack space will be rounded up to MB, but also the
duke@435 508 // entire space is committed upfront.
duke@435 509 //
duke@435 510 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
duke@435 511 // for CreateThread() that can treat 'stack_size' as stack size. However we
duke@435 512 // are not supposed to call CreateThread() directly according to MSDN
duke@435 513 // document because JVM uses C runtime library. The good news is that the
duke@435 514 // flag appears to work with _beginthredex() as well.
duke@435 515
duke@435 516 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
duke@435 517 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
duke@435 518 #endif
duke@435 519
duke@435 520 HANDLE thread_handle =
duke@435 521 (HANDLE)_beginthreadex(NULL,
duke@435 522 (unsigned)stack_size,
duke@435 523 (unsigned (__stdcall *)(void*)) java_start,
duke@435 524 thread,
duke@435 525 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
duke@435 526 &thread_id);
duke@435 527 if (thread_handle == NULL) {
duke@435 528 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
duke@435 529 // without the flag.
duke@435 530 thread_handle =
duke@435 531 (HANDLE)_beginthreadex(NULL,
duke@435 532 (unsigned)stack_size,
duke@435 533 (unsigned (__stdcall *)(void*)) java_start,
duke@435 534 thread,
duke@435 535 CREATE_SUSPENDED,
duke@435 536 &thread_id);
duke@435 537 }
duke@435 538 if (thread_handle == NULL) {
duke@435 539 // Need to clean up stuff we've allocated so far
duke@435 540 CloseHandle(osthread->interrupt_event());
duke@435 541 thread->set_osthread(NULL);
duke@435 542 delete osthread;
duke@435 543 return NULL;
duke@435 544 }
duke@435 545
duke@435 546 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 547
duke@435 548 // Store info on the Win32 thread into the OSThread
duke@435 549 osthread->set_thread_handle(thread_handle);
duke@435 550 osthread->set_thread_id(thread_id);
duke@435 551
duke@435 552 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 553 osthread->set_state(INITIALIZED);
duke@435 554
duke@435 555 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 556 return true;
duke@435 557 }
duke@435 558
duke@435 559
duke@435 560 // Free Win32 resources related to the OSThread
duke@435 561 void os::free_thread(OSThread* osthread) {
duke@435 562 assert(osthread != NULL, "osthread not set");
duke@435 563 CloseHandle(osthread->thread_handle());
duke@435 564 CloseHandle(osthread->interrupt_event());
duke@435 565 delete osthread;
duke@435 566 }
duke@435 567
duke@435 568
duke@435 569 static int has_performance_count = 0;
duke@435 570 static jlong first_filetime;
duke@435 571 static jlong initial_performance_count;
duke@435 572 static jlong performance_frequency;
duke@435 573
duke@435 574
duke@435 575 jlong as_long(LARGE_INTEGER x) {
duke@435 576 jlong result = 0; // initialization to avoid warning
duke@435 577 set_high(&result, x.HighPart);
duke@435 578 set_low(&result, x.LowPart);
duke@435 579 return result;
duke@435 580 }
duke@435 581
duke@435 582
duke@435 583 jlong os::elapsed_counter() {
duke@435 584 LARGE_INTEGER count;
duke@435 585 if (has_performance_count) {
duke@435 586 QueryPerformanceCounter(&count);
duke@435 587 return as_long(count) - initial_performance_count;
duke@435 588 } else {
duke@435 589 FILETIME wt;
duke@435 590 GetSystemTimeAsFileTime(&wt);
duke@435 591 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
duke@435 592 }
duke@435 593 }
duke@435 594
duke@435 595
duke@435 596 jlong os::elapsed_frequency() {
duke@435 597 if (has_performance_count) {
duke@435 598 return performance_frequency;
duke@435 599 } else {
duke@435 600 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
duke@435 601 return 10000000;
duke@435 602 }
duke@435 603 }
duke@435 604
duke@435 605
duke@435 606 julong os::available_memory() {
duke@435 607 return win32::available_memory();
duke@435 608 }
duke@435 609
duke@435 610 julong os::win32::available_memory() {
duke@435 611 // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
duke@435 612 // is larger than 4GB
duke@435 613 MEMORYSTATUS ms;
duke@435 614 GlobalMemoryStatus(&ms);
duke@435 615
duke@435 616 return (julong)ms.dwAvailPhys;
duke@435 617 }
duke@435 618
duke@435 619 julong os::physical_memory() {
duke@435 620 return win32::physical_memory();
duke@435 621 }
duke@435 622
duke@435 623 julong os::allocatable_physical_memory(julong size) {
phh@455 624 #ifdef _LP64
phh@455 625 return size;
phh@455 626 #else
phh@455 627 // Limit to 1400m because of the 2gb address space wall
duke@435 628 return MIN2(size, (julong)1400*M);
phh@455 629 #endif
duke@435 630 }
duke@435 631
duke@435 632 // VC6 lacks DWORD_PTR
duke@435 633 #if _MSC_VER < 1300
duke@435 634 typedef UINT_PTR DWORD_PTR;
duke@435 635 #endif
duke@435 636
duke@435 637 int os::active_processor_count() {
duke@435 638 DWORD_PTR lpProcessAffinityMask = 0;
duke@435 639 DWORD_PTR lpSystemAffinityMask = 0;
duke@435 640 int proc_count = processor_count();
duke@435 641 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
duke@435 642 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
duke@435 643 // Nof active processors is number of bits in process affinity mask
duke@435 644 int bitcount = 0;
duke@435 645 while (lpProcessAffinityMask != 0) {
duke@435 646 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
duke@435 647 bitcount++;
duke@435 648 }
duke@435 649 return bitcount;
duke@435 650 } else {
duke@435 651 return proc_count;
duke@435 652 }
duke@435 653 }
duke@435 654
duke@435 655 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 656 // Not yet implemented.
duke@435 657 return false;
duke@435 658 }
duke@435 659
duke@435 660 bool os::bind_to_processor(uint processor_id) {
duke@435 661 // Not yet implemented.
duke@435 662 return false;
duke@435 663 }
duke@435 664
duke@435 665 static void initialize_performance_counter() {
duke@435 666 LARGE_INTEGER count;
duke@435 667 if (QueryPerformanceFrequency(&count)) {
duke@435 668 has_performance_count = 1;
duke@435 669 performance_frequency = as_long(count);
duke@435 670 QueryPerformanceCounter(&count);
duke@435 671 initial_performance_count = as_long(count);
duke@435 672 } else {
duke@435 673 has_performance_count = 0;
duke@435 674 FILETIME wt;
duke@435 675 GetSystemTimeAsFileTime(&wt);
duke@435 676 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 677 }
duke@435 678 }
duke@435 679
duke@435 680
duke@435 681 double os::elapsedTime() {
duke@435 682 return (double) elapsed_counter() / (double) elapsed_frequency();
duke@435 683 }
duke@435 684
duke@435 685
duke@435 686 // Windows format:
duke@435 687 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
duke@435 688 // Java format:
duke@435 689 // Java standards require the number of milliseconds since 1/1/1970
duke@435 690
duke@435 691 // Constant offset - calculated using offset()
duke@435 692 static jlong _offset = 116444736000000000;
duke@435 693 // Fake time counter for reproducible results when debugging
duke@435 694 static jlong fake_time = 0;
duke@435 695
duke@435 696 #ifdef ASSERT
duke@435 697 // Just to be safe, recalculate the offset in debug mode
duke@435 698 static jlong _calculated_offset = 0;
duke@435 699 static int _has_calculated_offset = 0;
duke@435 700
duke@435 701 jlong offset() {
duke@435 702 if (_has_calculated_offset) return _calculated_offset;
duke@435 703 SYSTEMTIME java_origin;
duke@435 704 java_origin.wYear = 1970;
duke@435 705 java_origin.wMonth = 1;
duke@435 706 java_origin.wDayOfWeek = 0; // ignored
duke@435 707 java_origin.wDay = 1;
duke@435 708 java_origin.wHour = 0;
duke@435 709 java_origin.wMinute = 0;
duke@435 710 java_origin.wSecond = 0;
duke@435 711 java_origin.wMilliseconds = 0;
duke@435 712 FILETIME jot;
duke@435 713 if (!SystemTimeToFileTime(&java_origin, &jot)) {
duke@435 714 fatal1("Error = %d\nWindows error", GetLastError());
duke@435 715 }
duke@435 716 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
duke@435 717 _has_calculated_offset = 1;
duke@435 718 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
duke@435 719 return _calculated_offset;
duke@435 720 }
duke@435 721 #else
duke@435 722 jlong offset() {
duke@435 723 return _offset;
duke@435 724 }
duke@435 725 #endif
duke@435 726
duke@435 727 jlong windows_to_java_time(FILETIME wt) {
duke@435 728 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 729 return (a - offset()) / 10000;
duke@435 730 }
duke@435 731
duke@435 732 FILETIME java_to_windows_time(jlong l) {
duke@435 733 jlong a = (l * 10000) + offset();
duke@435 734 FILETIME result;
duke@435 735 result.dwHighDateTime = high(a);
duke@435 736 result.dwLowDateTime = low(a);
duke@435 737 return result;
duke@435 738 }
duke@435 739
ysr@777 740 // For now, we say that Windows does not support vtime. I have no idea
ysr@777 741 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 742
ysr@777 743 bool os::supports_vtime() { return false; }
ysr@777 744 bool os::enable_vtime() { return false; }
ysr@777 745 bool os::vtime_enabled() { return false; }
ysr@777 746 double os::elapsedVTime() {
ysr@777 747 // better than nothing, but not much
ysr@777 748 return elapsedTime();
ysr@777 749 }
ysr@777 750
duke@435 751 jlong os::javaTimeMillis() {
duke@435 752 if (UseFakeTimers) {
duke@435 753 return fake_time++;
duke@435 754 } else {
sbohne@496 755 FILETIME wt;
sbohne@496 756 GetSystemTimeAsFileTime(&wt);
sbohne@496 757 return windows_to_java_time(wt);
duke@435 758 }
duke@435 759 }
duke@435 760
duke@435 761 #define NANOS_PER_SEC CONST64(1000000000)
duke@435 762 #define NANOS_PER_MILLISEC 1000000
duke@435 763 jlong os::javaTimeNanos() {
duke@435 764 if (!has_performance_count) {
duke@435 765 return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
duke@435 766 } else {
duke@435 767 LARGE_INTEGER current_count;
duke@435 768 QueryPerformanceCounter(&current_count);
duke@435 769 double current = as_long(current_count);
duke@435 770 double freq = performance_frequency;
duke@435 771 jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
duke@435 772 return time;
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 777 if (!has_performance_count) {
duke@435 778 // javaTimeMillis() doesn't have much percision,
duke@435 779 // but it is not going to wrap -- so all 64 bits
duke@435 780 info_ptr->max_value = ALL_64_BITS;
duke@435 781
duke@435 782 // this is a wall clock timer, so may skip
duke@435 783 info_ptr->may_skip_backward = true;
duke@435 784 info_ptr->may_skip_forward = true;
duke@435 785 } else {
duke@435 786 jlong freq = performance_frequency;
duke@435 787 if (freq < NANOS_PER_SEC) {
duke@435 788 // the performance counter is 64 bits and we will
duke@435 789 // be multiplying it -- so no wrap in 64 bits
duke@435 790 info_ptr->max_value = ALL_64_BITS;
duke@435 791 } else if (freq > NANOS_PER_SEC) {
duke@435 792 // use the max value the counter can reach to
duke@435 793 // determine the max value which could be returned
duke@435 794 julong max_counter = (julong)ALL_64_BITS;
duke@435 795 info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
duke@435 796 } else {
duke@435 797 // the performance counter is 64 bits and we will
duke@435 798 // be using it directly -- so no wrap in 64 bits
duke@435 799 info_ptr->max_value = ALL_64_BITS;
duke@435 800 }
duke@435 801
duke@435 802 // using a counter, so no skipping
duke@435 803 info_ptr->may_skip_backward = false;
duke@435 804 info_ptr->may_skip_forward = false;
duke@435 805 }
duke@435 806 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 807 }
duke@435 808
duke@435 809 char* os::local_time_string(char *buf, size_t buflen) {
duke@435 810 SYSTEMTIME st;
duke@435 811 GetLocalTime(&st);
duke@435 812 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 813 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
duke@435 814 return buf;
duke@435 815 }
duke@435 816
duke@435 817 bool os::getTimesSecs(double* process_real_time,
duke@435 818 double* process_user_time,
duke@435 819 double* process_system_time) {
duke@435 820 HANDLE h_process = GetCurrentProcess();
duke@435 821 FILETIME create_time, exit_time, kernel_time, user_time;
duke@435 822 BOOL result = GetProcessTimes(h_process,
duke@435 823 &create_time,
duke@435 824 &exit_time,
duke@435 825 &kernel_time,
duke@435 826 &user_time);
duke@435 827 if (result != 0) {
duke@435 828 FILETIME wt;
duke@435 829 GetSystemTimeAsFileTime(&wt);
duke@435 830 jlong rtc_millis = windows_to_java_time(wt);
duke@435 831 jlong user_millis = windows_to_java_time(user_time);
duke@435 832 jlong system_millis = windows_to_java_time(kernel_time);
duke@435 833 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
duke@435 834 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
duke@435 835 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
duke@435 836 return true;
duke@435 837 } else {
duke@435 838 return false;
duke@435 839 }
duke@435 840 }
duke@435 841
duke@435 842 void os::shutdown() {
duke@435 843
duke@435 844 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 845 perfMemory_exit();
duke@435 846
duke@435 847 // flush buffered output, finish log files
duke@435 848 ostream_abort();
duke@435 849
duke@435 850 // Check for abort hook
duke@435 851 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 852 if (abort_hook != NULL) {
duke@435 853 abort_hook();
duke@435 854 }
duke@435 855 }
duke@435 856
duke@435 857 void os::abort(bool dump_core)
duke@435 858 {
duke@435 859 os::shutdown();
duke@435 860 // no core dump on Windows
duke@435 861 ::exit(1);
duke@435 862 }
duke@435 863
duke@435 864 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 865 void os::die() {
duke@435 866 _exit(-1);
duke@435 867 }
duke@435 868
duke@435 869 // Directory routines copied from src/win32/native/java/io/dirent_md.c
duke@435 870 // * dirent_md.c 1.15 00/02/02
duke@435 871 //
duke@435 872 // The declarations for DIR and struct dirent are in jvm_win32.h.
duke@435 873
duke@435 874 /* Caller must have already run dirname through JVM_NativePath, which removes
duke@435 875 duplicate slashes and converts all instances of '/' into '\\'. */
duke@435 876
duke@435 877 DIR *
duke@435 878 os::opendir(const char *dirname)
duke@435 879 {
duke@435 880 assert(dirname != NULL, "just checking"); // hotspot change
duke@435 881 DIR *dirp = (DIR *)malloc(sizeof(DIR));
duke@435 882 DWORD fattr; // hotspot change
duke@435 883 char alt_dirname[4] = { 0, 0, 0, 0 };
duke@435 884
duke@435 885 if (dirp == 0) {
duke@435 886 errno = ENOMEM;
duke@435 887 return 0;
duke@435 888 }
duke@435 889
duke@435 890 /*
duke@435 891 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
duke@435 892 * as a directory in FindFirstFile(). We detect this case here and
duke@435 893 * prepend the current drive name.
duke@435 894 */
duke@435 895 if (dirname[1] == '\0' && dirname[0] == '\\') {
duke@435 896 alt_dirname[0] = _getdrive() + 'A' - 1;
duke@435 897 alt_dirname[1] = ':';
duke@435 898 alt_dirname[2] = '\\';
duke@435 899 alt_dirname[3] = '\0';
duke@435 900 dirname = alt_dirname;
duke@435 901 }
duke@435 902
duke@435 903 dirp->path = (char *)malloc(strlen(dirname) + 5);
duke@435 904 if (dirp->path == 0) {
duke@435 905 free(dirp);
duke@435 906 errno = ENOMEM;
duke@435 907 return 0;
duke@435 908 }
duke@435 909 strcpy(dirp->path, dirname);
duke@435 910
duke@435 911 fattr = GetFileAttributes(dirp->path);
duke@435 912 if (fattr == 0xffffffff) {
duke@435 913 free(dirp->path);
duke@435 914 free(dirp);
duke@435 915 errno = ENOENT;
duke@435 916 return 0;
duke@435 917 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
duke@435 918 free(dirp->path);
duke@435 919 free(dirp);
duke@435 920 errno = ENOTDIR;
duke@435 921 return 0;
duke@435 922 }
duke@435 923
duke@435 924 /* Append "*.*", or possibly "\\*.*", to path */
duke@435 925 if (dirp->path[1] == ':'
duke@435 926 && (dirp->path[2] == '\0'
duke@435 927 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
duke@435 928 /* No '\\' needed for cases like "Z:" or "Z:\" */
duke@435 929 strcat(dirp->path, "*.*");
duke@435 930 } else {
duke@435 931 strcat(dirp->path, "\\*.*");
duke@435 932 }
duke@435 933
duke@435 934 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
duke@435 935 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 936 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
duke@435 937 free(dirp->path);
duke@435 938 free(dirp);
duke@435 939 errno = EACCES;
duke@435 940 return 0;
duke@435 941 }
duke@435 942 }
duke@435 943 return dirp;
duke@435 944 }
duke@435 945
duke@435 946 /* parameter dbuf unused on Windows */
duke@435 947
duke@435 948 struct dirent *
duke@435 949 os::readdir(DIR *dirp, dirent *dbuf)
duke@435 950 {
duke@435 951 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 952 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 953 return 0;
duke@435 954 }
duke@435 955
duke@435 956 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
duke@435 957
duke@435 958 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
duke@435 959 if (GetLastError() == ERROR_INVALID_HANDLE) {
duke@435 960 errno = EBADF;
duke@435 961 return 0;
duke@435 962 }
duke@435 963 FindClose(dirp->handle);
duke@435 964 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 965 }
duke@435 966
duke@435 967 return &dirp->dirent;
duke@435 968 }
duke@435 969
duke@435 970 int
duke@435 971 os::closedir(DIR *dirp)
duke@435 972 {
duke@435 973 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 974 if (dirp->handle != INVALID_HANDLE_VALUE) {
duke@435 975 if (!FindClose(dirp->handle)) {
duke@435 976 errno = EBADF;
duke@435 977 return -1;
duke@435 978 }
duke@435 979 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 980 }
duke@435 981 free(dirp->path);
duke@435 982 free(dirp);
duke@435 983 return 0;
duke@435 984 }
duke@435 985
duke@435 986 const char* os::dll_file_extension() { return ".dll"; }
duke@435 987
duke@435 988 const char * os::get_temp_directory()
duke@435 989 {
duke@435 990 static char path_buf[MAX_PATH];
duke@435 991 if (GetTempPath(MAX_PATH, path_buf)>0)
duke@435 992 return path_buf;
duke@435 993 else{
duke@435 994 path_buf[0]='\0';
duke@435 995 return path_buf;
duke@435 996 }
duke@435 997 }
duke@435 998
kamg@677 999 void os::dll_build_name(char *holder, size_t holderlen,
kamg@677 1000 const char* pname, const char* fname)
kamg@677 1001 {
kamg@677 1002 // copied from libhpi
kamg@677 1003 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1004 const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
kamg@677 1005
kamg@677 1006 /* Quietly truncates on buffer overflow. Should be an error. */
kamg@677 1007 if (pnamelen + strlen(fname) + 10 > holderlen) {
kamg@677 1008 *holder = '\0';
kamg@677 1009 return;
kamg@677 1010 }
kamg@677 1011
kamg@677 1012 if (pnamelen == 0) {
kamg@677 1013 sprintf(holder, "%s.dll", fname);
kamg@677 1014 } else if (c == ':' || c == '\\') {
kamg@677 1015 sprintf(holder, "%s%s.dll", pname, fname);
kamg@677 1016 } else {
kamg@677 1017 sprintf(holder, "%s\\%s.dll", pname, fname);
kamg@677 1018 }
kamg@677 1019 }
kamg@677 1020
duke@435 1021 // Needs to be in os specific directory because windows requires another
duke@435 1022 // header file <direct.h>
duke@435 1023 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1024 return _getcwd(buf, buflen);
duke@435 1025 }
duke@435 1026
duke@435 1027 //-----------------------------------------------------------
duke@435 1028 // Helper functions for fatal error handler
duke@435 1029
duke@435 1030 // The following library functions are resolved dynamically at runtime:
duke@435 1031
duke@435 1032 // PSAPI functions, for Windows NT, 2000, XP
duke@435 1033
duke@435 1034 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
duke@435 1035 // SDK from Microsoft. Here are the definitions copied from psapi.h
duke@435 1036 typedef struct _MODULEINFO {
duke@435 1037 LPVOID lpBaseOfDll;
duke@435 1038 DWORD SizeOfImage;
duke@435 1039 LPVOID EntryPoint;
duke@435 1040 } MODULEINFO, *LPMODULEINFO;
duke@435 1041
duke@435 1042 static BOOL (WINAPI *_EnumProcessModules) ( HANDLE, HMODULE *, DWORD, LPDWORD );
duke@435 1043 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
duke@435 1044 static BOOL (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
duke@435 1045
duke@435 1046 // ToolHelp Functions, for Windows 95, 98 and ME
duke@435 1047
duke@435 1048 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
duke@435 1049 static BOOL (WINAPI *_Module32First) (HANDLE,LPMODULEENTRY32) ;
duke@435 1050 static BOOL (WINAPI *_Module32Next) (HANDLE,LPMODULEENTRY32) ;
duke@435 1051
duke@435 1052 bool _has_psapi;
duke@435 1053 bool _psapi_init = false;
duke@435 1054 bool _has_toolhelp;
duke@435 1055
duke@435 1056 static bool _init_psapi() {
duke@435 1057 HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
duke@435 1058 if( psapi == NULL ) return false ;
duke@435 1059
duke@435 1060 _EnumProcessModules = CAST_TO_FN_PTR(
duke@435 1061 BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
duke@435 1062 GetProcAddress(psapi, "EnumProcessModules")) ;
duke@435 1063 _GetModuleFileNameEx = CAST_TO_FN_PTR(
duke@435 1064 DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
duke@435 1065 GetProcAddress(psapi, "GetModuleFileNameExA"));
duke@435 1066 _GetModuleInformation = CAST_TO_FN_PTR(
duke@435 1067 BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
duke@435 1068 GetProcAddress(psapi, "GetModuleInformation"));
duke@435 1069
duke@435 1070 _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
duke@435 1071 _psapi_init = true;
duke@435 1072 return _has_psapi;
duke@435 1073 }
duke@435 1074
duke@435 1075 static bool _init_toolhelp() {
duke@435 1076 HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
duke@435 1077 if (kernel32 == NULL) return false ;
duke@435 1078
duke@435 1079 _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
duke@435 1080 HANDLE(WINAPI *)(DWORD,DWORD),
duke@435 1081 GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
duke@435 1082 _Module32First = CAST_TO_FN_PTR(
duke@435 1083 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
duke@435 1084 GetProcAddress(kernel32, "Module32First" ));
duke@435 1085 _Module32Next = CAST_TO_FN_PTR(
duke@435 1086 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
duke@435 1087 GetProcAddress(kernel32, "Module32Next" ));
duke@435 1088
duke@435 1089 _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
duke@435 1090 return _has_toolhelp;
duke@435 1091 }
duke@435 1092
duke@435 1093 #ifdef _WIN64
duke@435 1094 // Helper routine which returns true if address in
duke@435 1095 // within the NTDLL address space.
duke@435 1096 //
duke@435 1097 static bool _addr_in_ntdll( address addr )
duke@435 1098 {
duke@435 1099 HMODULE hmod;
duke@435 1100 MODULEINFO minfo;
duke@435 1101
duke@435 1102 hmod = GetModuleHandle("NTDLL.DLL");
duke@435 1103 if ( hmod == NULL ) return false;
duke@435 1104 if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
duke@435 1105 &minfo, sizeof(MODULEINFO)) )
duke@435 1106 return false;
duke@435 1107
duke@435 1108 if ( (addr >= minfo.lpBaseOfDll) &&
duke@435 1109 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
duke@435 1110 return true;
duke@435 1111 else
duke@435 1112 return false;
duke@435 1113 }
duke@435 1114 #endif
duke@435 1115
duke@435 1116
duke@435 1117 // Enumerate all modules for a given process ID
duke@435 1118 //
duke@435 1119 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
duke@435 1120 // different API for doing this. We use PSAPI.DLL on NT based
duke@435 1121 // Windows and ToolHelp on 95/98/Me.
duke@435 1122
duke@435 1123 // Callback function that is called by enumerate_modules() on
duke@435 1124 // every DLL module.
duke@435 1125 // Input parameters:
duke@435 1126 // int pid,
duke@435 1127 // char* module_file_name,
duke@435 1128 // address module_base_addr,
duke@435 1129 // unsigned module_size,
duke@435 1130 // void* param
duke@435 1131 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
duke@435 1132
duke@435 1133 // enumerate_modules for Windows NT, using PSAPI
duke@435 1134 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
duke@435 1135 {
duke@435 1136 HANDLE hProcess ;
duke@435 1137
duke@435 1138 # define MAX_NUM_MODULES 128
duke@435 1139 HMODULE modules[MAX_NUM_MODULES];
duke@435 1140 static char filename[ MAX_PATH ];
duke@435 1141 int result = 0;
duke@435 1142
duke@435 1143 if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
duke@435 1144
duke@435 1145 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
duke@435 1146 FALSE, pid ) ;
duke@435 1147 if (hProcess == NULL) return 0;
duke@435 1148
duke@435 1149 DWORD size_needed;
duke@435 1150 if (!_EnumProcessModules(hProcess, modules,
duke@435 1151 sizeof(modules), &size_needed)) {
duke@435 1152 CloseHandle( hProcess );
duke@435 1153 return 0;
duke@435 1154 }
duke@435 1155
duke@435 1156 // number of modules that are currently loaded
duke@435 1157 int num_modules = size_needed / sizeof(HMODULE);
duke@435 1158
duke@435 1159 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
duke@435 1160 // Get Full pathname:
duke@435 1161 if(!_GetModuleFileNameEx(hProcess, modules[i],
duke@435 1162 filename, sizeof(filename))) {
duke@435 1163 filename[0] = '\0';
duke@435 1164 }
duke@435 1165
duke@435 1166 MODULEINFO modinfo;
duke@435 1167 if (!_GetModuleInformation(hProcess, modules[i],
duke@435 1168 &modinfo, sizeof(modinfo))) {
duke@435 1169 modinfo.lpBaseOfDll = NULL;
duke@435 1170 modinfo.SizeOfImage = 0;
duke@435 1171 }
duke@435 1172
duke@435 1173 // Invoke callback function
duke@435 1174 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
duke@435 1175 modinfo.SizeOfImage, param);
duke@435 1176 if (result) break;
duke@435 1177 }
duke@435 1178
duke@435 1179 CloseHandle( hProcess ) ;
duke@435 1180 return result;
duke@435 1181 }
duke@435 1182
duke@435 1183
duke@435 1184 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
duke@435 1185 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
duke@435 1186 {
duke@435 1187 HANDLE hSnapShot ;
duke@435 1188 static MODULEENTRY32 modentry ;
duke@435 1189 int result = 0;
duke@435 1190
duke@435 1191 if (!_has_toolhelp) return 0;
duke@435 1192
duke@435 1193 // Get a handle to a Toolhelp snapshot of the system
duke@435 1194 hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
duke@435 1195 if( hSnapShot == INVALID_HANDLE_VALUE ) {
duke@435 1196 return FALSE ;
duke@435 1197 }
duke@435 1198
duke@435 1199 // iterate through all modules
duke@435 1200 modentry.dwSize = sizeof(MODULEENTRY32) ;
duke@435 1201 bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
duke@435 1202
duke@435 1203 while( not_done ) {
duke@435 1204 // invoke the callback
duke@435 1205 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
duke@435 1206 modentry.modBaseSize, param);
duke@435 1207 if (result) break;
duke@435 1208
duke@435 1209 modentry.dwSize = sizeof(MODULEENTRY32) ;
duke@435 1210 not_done = _Module32Next( hSnapShot, &modentry ) != 0;
duke@435 1211 }
duke@435 1212
duke@435 1213 CloseHandle(hSnapShot);
duke@435 1214 return result;
duke@435 1215 }
duke@435 1216
duke@435 1217 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
duke@435 1218 {
duke@435 1219 // Get current process ID if caller doesn't provide it.
duke@435 1220 if (!pid) pid = os::current_process_id();
duke@435 1221
duke@435 1222 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
duke@435 1223 else return _enumerate_modules_windows(pid, func, param);
duke@435 1224 }
duke@435 1225
duke@435 1226 struct _modinfo {
duke@435 1227 address addr;
duke@435 1228 char* full_path; // point to a char buffer
duke@435 1229 int buflen; // size of the buffer
duke@435 1230 address base_addr;
duke@435 1231 };
duke@435 1232
duke@435 1233 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
duke@435 1234 unsigned size, void * param) {
duke@435 1235 struct _modinfo *pmod = (struct _modinfo *)param;
duke@435 1236 if (!pmod) return -1;
duke@435 1237
duke@435 1238 if (base_addr <= pmod->addr &&
duke@435 1239 base_addr+size > pmod->addr) {
duke@435 1240 // if a buffer is provided, copy path name to the buffer
duke@435 1241 if (pmod->full_path) {
duke@435 1242 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
duke@435 1243 }
duke@435 1244 pmod->base_addr = base_addr;
duke@435 1245 return 1;
duke@435 1246 }
duke@435 1247 return 0;
duke@435 1248 }
duke@435 1249
duke@435 1250 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1251 int buflen, int* offset) {
duke@435 1252 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
duke@435 1253 // return the full path to the DLL file, sometimes it returns path
duke@435 1254 // to the corresponding PDB file (debug info); sometimes it only
duke@435 1255 // returns partial path, which makes life painful.
duke@435 1256
duke@435 1257 struct _modinfo mi;
duke@435 1258 mi.addr = addr;
duke@435 1259 mi.full_path = buf;
duke@435 1260 mi.buflen = buflen;
duke@435 1261 int pid = os::current_process_id();
duke@435 1262 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
duke@435 1263 // buf already contains path name
duke@435 1264 if (offset) *offset = addr - mi.base_addr;
duke@435 1265 return true;
duke@435 1266 } else {
duke@435 1267 if (buf) buf[0] = '\0';
duke@435 1268 if (offset) *offset = -1;
duke@435 1269 return false;
duke@435 1270 }
duke@435 1271 }
duke@435 1272
duke@435 1273 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1274 int buflen, int *offset) {
duke@435 1275 // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
duke@435 1276 // we need to initialize imagehlp/dbghelp, then load symbol table
duke@435 1277 // for every module. That's too much work to do after a fatal error.
duke@435 1278 // For an example on how to implement this function, see 1.4.2.
duke@435 1279 if (offset) *offset = -1;
duke@435 1280 if (buf) buf[0] = '\0';
duke@435 1281 return false;
duke@435 1282 }
duke@435 1283
kamg@677 1284 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1285 return GetProcAddress((HMODULE)handle, name);
kamg@677 1286 }
kamg@677 1287
duke@435 1288 // save the start and end address of jvm.dll into param[0] and param[1]
duke@435 1289 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
duke@435 1290 unsigned size, void * param) {
duke@435 1291 if (!param) return -1;
duke@435 1292
duke@435 1293 if (base_addr <= (address)_locate_jvm_dll &&
duke@435 1294 base_addr+size > (address)_locate_jvm_dll) {
duke@435 1295 ((address*)param)[0] = base_addr;
duke@435 1296 ((address*)param)[1] = base_addr + size;
duke@435 1297 return 1;
duke@435 1298 }
duke@435 1299 return 0;
duke@435 1300 }
duke@435 1301
duke@435 1302 address vm_lib_location[2]; // start and end address of jvm.dll
duke@435 1303
duke@435 1304 // check if addr is inside jvm.dll
duke@435 1305 bool os::address_is_in_vm(address addr) {
duke@435 1306 if (!vm_lib_location[0] || !vm_lib_location[1]) {
duke@435 1307 int pid = os::current_process_id();
duke@435 1308 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
duke@435 1309 assert(false, "Can't find jvm module.");
duke@435 1310 return false;
duke@435 1311 }
duke@435 1312 }
duke@435 1313
duke@435 1314 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
duke@435 1315 }
duke@435 1316
duke@435 1317 // print module info; param is outputStream*
duke@435 1318 static int _print_module(int pid, char* fname, address base,
duke@435 1319 unsigned size, void* param) {
duke@435 1320 if (!param) return -1;
duke@435 1321
duke@435 1322 outputStream* st = (outputStream*)param;
duke@435 1323
duke@435 1324 address end_addr = base + size;
duke@435 1325 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
duke@435 1326 return 0;
duke@435 1327 }
duke@435 1328
duke@435 1329 // Loads .dll/.so and
duke@435 1330 // in case of error it checks if .dll/.so was built for the
duke@435 1331 // same architecture as Hotspot is running on
duke@435 1332 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
duke@435 1333 {
duke@435 1334 void * result = LoadLibrary(name);
duke@435 1335 if (result != NULL)
duke@435 1336 {
duke@435 1337 return result;
duke@435 1338 }
duke@435 1339
duke@435 1340 long errcode = GetLastError();
duke@435 1341 if (errcode == ERROR_MOD_NOT_FOUND) {
duke@435 1342 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
duke@435 1343 ebuf[ebuflen-1]='\0';
duke@435 1344 return NULL;
duke@435 1345 }
duke@435 1346
duke@435 1347 // Parsing dll below
duke@435 1348 // If we can read dll-info and find that dll was built
duke@435 1349 // for an architecture other than Hotspot is running in
duke@435 1350 // - then print to buffer "DLL was built for a different architecture"
duke@435 1351 // else call getLastErrorString to obtain system error message
duke@435 1352
duke@435 1353 // Read system error message into ebuf
duke@435 1354 // It may or may not be overwritten below (in the for loop and just above)
duke@435 1355 getLastErrorString(ebuf, (size_t) ebuflen);
duke@435 1356 ebuf[ebuflen-1]='\0';
duke@435 1357 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
duke@435 1358 if (file_descriptor<0)
duke@435 1359 {
duke@435 1360 return NULL;
duke@435 1361 }
duke@435 1362
duke@435 1363 uint32_t signature_offset;
duke@435 1364 uint16_t lib_arch=0;
duke@435 1365 bool failed_to_get_lib_arch=
duke@435 1366 (
duke@435 1367 //Go to position 3c in the dll
duke@435 1368 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
duke@435 1369 ||
duke@435 1370 // Read loacation of signature
duke@435 1371 (sizeof(signature_offset)!=
duke@435 1372 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
duke@435 1373 ||
duke@435 1374 //Go to COFF File Header in dll
duke@435 1375 //that is located after"signature" (4 bytes long)
duke@435 1376 (os::seek_to_file_offset(file_descriptor,
duke@435 1377 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
duke@435 1378 ||
duke@435 1379 //Read field that contains code of architecture
duke@435 1380 // that dll was build for
duke@435 1381 (sizeof(lib_arch)!=
duke@435 1382 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
duke@435 1383 );
duke@435 1384
duke@435 1385 ::close(file_descriptor);
duke@435 1386 if (failed_to_get_lib_arch)
duke@435 1387 {
duke@435 1388 // file i/o error - report getLastErrorString(...) msg
duke@435 1389 return NULL;
duke@435 1390 }
duke@435 1391
duke@435 1392 typedef struct
duke@435 1393 {
duke@435 1394 uint16_t arch_code;
duke@435 1395 char* arch_name;
duke@435 1396 } arch_t;
duke@435 1397
duke@435 1398 static const arch_t arch_array[]={
duke@435 1399 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
duke@435 1400 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
duke@435 1401 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
duke@435 1402 };
duke@435 1403 #if (defined _M_IA64)
duke@435 1404 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
duke@435 1405 #elif (defined _M_AMD64)
duke@435 1406 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
duke@435 1407 #elif (defined _M_IX86)
duke@435 1408 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
duke@435 1409 #else
duke@435 1410 #error Method os::dll_load requires that one of following \
duke@435 1411 is defined :_M_IA64,_M_AMD64 or _M_IX86
duke@435 1412 #endif
duke@435 1413
duke@435 1414
duke@435 1415 // Obtain a string for printf operation
duke@435 1416 // lib_arch_str shall contain string what platform this .dll was built for
duke@435 1417 // running_arch_str shall string contain what platform Hotspot was built for
duke@435 1418 char *running_arch_str=NULL,*lib_arch_str=NULL;
duke@435 1419 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
duke@435 1420 {
duke@435 1421 if (lib_arch==arch_array[i].arch_code)
duke@435 1422 lib_arch_str=arch_array[i].arch_name;
duke@435 1423 if (running_arch==arch_array[i].arch_code)
duke@435 1424 running_arch_str=arch_array[i].arch_name;
duke@435 1425 }
duke@435 1426
duke@435 1427 assert(running_arch_str,
duke@435 1428 "Didn't find runing architecture code in arch_array");
duke@435 1429
duke@435 1430 // If the architure is right
duke@435 1431 // but some other error took place - report getLastErrorString(...) msg
duke@435 1432 if (lib_arch == running_arch)
duke@435 1433 {
duke@435 1434 return NULL;
duke@435 1435 }
duke@435 1436
duke@435 1437 if (lib_arch_str!=NULL)
duke@435 1438 {
duke@435 1439 ::_snprintf(ebuf, ebuflen-1,
duke@435 1440 "Can't load %s-bit .dll on a %s-bit platform",
duke@435 1441 lib_arch_str,running_arch_str);
duke@435 1442 }
duke@435 1443 else
duke@435 1444 {
duke@435 1445 // don't know what architecture this dll was build for
duke@435 1446 ::_snprintf(ebuf, ebuflen-1,
duke@435 1447 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
duke@435 1448 lib_arch,running_arch_str);
duke@435 1449 }
duke@435 1450
duke@435 1451 return NULL;
duke@435 1452 }
duke@435 1453
duke@435 1454
duke@435 1455 void os::print_dll_info(outputStream *st) {
duke@435 1456 int pid = os::current_process_id();
duke@435 1457 st->print_cr("Dynamic libraries:");
duke@435 1458 enumerate_modules(pid, _print_module, (void *)st);
duke@435 1459 }
duke@435 1460
xlu@708 1461 // function pointer to Windows API "GetNativeSystemInfo".
xlu@708 1462 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
xlu@708 1463 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
xlu@708 1464
duke@435 1465 void os::print_os_info(outputStream* st) {
xlu@708 1466 st->print("OS:");
xlu@708 1467
xlu@708 1468 OSVERSIONINFOEX osvi;
xlu@708 1469 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
xlu@708 1470 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
xlu@708 1471
xlu@708 1472 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
xlu@708 1473 st->print_cr("N/A");
xlu@708 1474 return;
xlu@708 1475 }
xlu@708 1476
xlu@708 1477 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
xlu@708 1478 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
xlu@708 1479 switch (os_vers) {
xlu@708 1480 case 3051: st->print(" Windows NT 3.51"); break;
xlu@708 1481 case 4000: st->print(" Windows NT 4.0"); break;
xlu@708 1482 case 5000: st->print(" Windows 2000"); break;
xlu@708 1483 case 5001: st->print(" Windows XP"); break;
xlu@708 1484 case 5002:
xlu@708 1485 case 6000: {
xlu@708 1486 // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
xlu@708 1487 // find out whether we are running on 64 bit processor or not.
xlu@708 1488 SYSTEM_INFO si;
xlu@708 1489 ZeroMemory(&si, sizeof(SYSTEM_INFO));
xlu@708 1490 // Check to see if _GetNativeSystemInfo has been initialized.
xlu@708 1491 if (_GetNativeSystemInfo == NULL) {
xlu@708 1492 HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
xlu@708 1493 _GetNativeSystemInfo =
xlu@708 1494 CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
xlu@708 1495 GetProcAddress(hKernel32,
xlu@708 1496 "GetNativeSystemInfo"));
xlu@708 1497 if (_GetNativeSystemInfo == NULL)
xlu@708 1498 GetSystemInfo(&si);
xlu@708 1499 } else {
xlu@708 1500 _GetNativeSystemInfo(&si);
xlu@708 1501 }
xlu@708 1502 if (os_vers == 5002) {
xlu@708 1503 if (osvi.wProductType == VER_NT_WORKSTATION &&
xlu@708 1504 si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1505 st->print(" Windows XP x64 Edition");
xlu@708 1506 else
xlu@708 1507 st->print(" Windows Server 2003 family");
xlu@708 1508 } else { // os_vers == 6000
xlu@708 1509 if (osvi.wProductType == VER_NT_WORKSTATION)
xlu@708 1510 st->print(" Windows Vista");
xlu@708 1511 else
xlu@708 1512 st->print(" Windows Server 2008");
xlu@708 1513 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1514 st->print(" , 64 bit");
xlu@708 1515 }
xlu@708 1516 break;
xlu@708 1517 }
xlu@708 1518 default: // future windows, print out its major and minor versions
xlu@708 1519 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1520 }
xlu@708 1521 } else {
xlu@708 1522 switch (os_vers) {
xlu@708 1523 case 4000: st->print(" Windows 95"); break;
xlu@708 1524 case 4010: st->print(" Windows 98"); break;
xlu@708 1525 case 4090: st->print(" Windows Me"); break;
xlu@708 1526 default: // future windows, print out its major and minor versions
xlu@708 1527 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1528 }
xlu@708 1529 }
xlu@708 1530 st->print(" Build %d", osvi.dwBuildNumber);
xlu@708 1531 st->print(" %s", osvi.szCSDVersion); // service pack
xlu@708 1532 st->cr();
duke@435 1533 }
duke@435 1534
duke@435 1535 void os::print_memory_info(outputStream* st) {
duke@435 1536 st->print("Memory:");
duke@435 1537 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1538
duke@435 1539 // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
duke@435 1540 // is larger than 4GB
duke@435 1541 MEMORYSTATUS ms;
duke@435 1542 GlobalMemoryStatus(&ms);
duke@435 1543
duke@435 1544 st->print(", physical %uk", os::physical_memory() >> 10);
duke@435 1545 st->print("(%uk free)", os::available_memory() >> 10);
duke@435 1546
duke@435 1547 st->print(", swap %uk", ms.dwTotalPageFile >> 10);
duke@435 1548 st->print("(%uk free)", ms.dwAvailPageFile >> 10);
duke@435 1549 st->cr();
duke@435 1550 }
duke@435 1551
duke@435 1552 void os::print_siginfo(outputStream *st, void *siginfo) {
duke@435 1553 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
duke@435 1554 st->print("siginfo:");
duke@435 1555 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
duke@435 1556
duke@435 1557 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 1558 er->NumberParameters >= 2) {
duke@435 1559 switch (er->ExceptionInformation[0]) {
duke@435 1560 case 0: st->print(", reading address"); break;
duke@435 1561 case 1: st->print(", writing address"); break;
duke@435 1562 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
duke@435 1563 er->ExceptionInformation[0]);
duke@435 1564 }
duke@435 1565 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
duke@435 1566 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
duke@435 1567 er->NumberParameters >= 2 && UseSharedSpaces) {
duke@435 1568 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1569 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
duke@435 1570 st->print("\n\nError accessing class data sharing archive." \
duke@435 1571 " Mapped file inaccessible during execution, " \
duke@435 1572 " possible disk/network problem.");
duke@435 1573 }
duke@435 1574 } else {
duke@435 1575 int num = er->NumberParameters;
duke@435 1576 if (num > 0) {
duke@435 1577 st->print(", ExceptionInformation=");
duke@435 1578 for (int i = 0; i < num; i++) {
duke@435 1579 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
duke@435 1580 }
duke@435 1581 }
duke@435 1582 }
duke@435 1583 st->cr();
duke@435 1584 }
duke@435 1585
duke@435 1586 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1587 // do nothing
duke@435 1588 }
duke@435 1589
duke@435 1590 static char saved_jvm_path[MAX_PATH] = {0};
duke@435 1591
duke@435 1592 // Find the full path to the current module, jvm.dll or jvm_g.dll
duke@435 1593 void os::jvm_path(char *buf, jint buflen) {
duke@435 1594 // Error checking.
duke@435 1595 if (buflen < MAX_PATH) {
duke@435 1596 assert(false, "must use a large-enough buffer");
duke@435 1597 buf[0] = '\0';
duke@435 1598 return;
duke@435 1599 }
duke@435 1600 // Lazy resolve the path to current module.
duke@435 1601 if (saved_jvm_path[0] != 0) {
duke@435 1602 strcpy(buf, saved_jvm_path);
duke@435 1603 return;
duke@435 1604 }
duke@435 1605
duke@435 1606 GetModuleFileName(vm_lib_handle, buf, buflen);
duke@435 1607 strcpy(saved_jvm_path, buf);
duke@435 1608 }
duke@435 1609
duke@435 1610
duke@435 1611 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 1612 #ifndef _WIN64
duke@435 1613 st->print("_");
duke@435 1614 #endif
duke@435 1615 }
duke@435 1616
duke@435 1617
duke@435 1618 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 1619 #ifndef _WIN64
duke@435 1620 st->print("@%d", args_size * sizeof(int));
duke@435 1621 #endif
duke@435 1622 }
duke@435 1623
duke@435 1624 // sun.misc.Signal
duke@435 1625 // NOTE that this is a workaround for an apparent kernel bug where if
duke@435 1626 // a signal handler for SIGBREAK is installed then that signal handler
duke@435 1627 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
duke@435 1628 // See bug 4416763.
duke@435 1629 static void (*sigbreakHandler)(int) = NULL;
duke@435 1630
duke@435 1631 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 1632 os::signal_notify(sig);
duke@435 1633 // We need to reinstate the signal handler each time...
duke@435 1634 os::signal(sig, (void*)UserHandler);
duke@435 1635 }
duke@435 1636
duke@435 1637 void* os::user_handler() {
duke@435 1638 return (void*) UserHandler;
duke@435 1639 }
duke@435 1640
duke@435 1641 void* os::signal(int signal_number, void* handler) {
duke@435 1642 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
duke@435 1643 void (*oldHandler)(int) = sigbreakHandler;
duke@435 1644 sigbreakHandler = (void (*)(int)) handler;
duke@435 1645 return (void*) oldHandler;
duke@435 1646 } else {
duke@435 1647 return (void*)::signal(signal_number, (void (*)(int))handler);
duke@435 1648 }
duke@435 1649 }
duke@435 1650
duke@435 1651 void os::signal_raise(int signal_number) {
duke@435 1652 raise(signal_number);
duke@435 1653 }
duke@435 1654
duke@435 1655 // The Win32 C runtime library maps all console control events other than ^C
duke@435 1656 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
duke@435 1657 // logoff, and shutdown events. We therefore install our own console handler
duke@435 1658 // that raises SIGTERM for the latter cases.
duke@435 1659 //
duke@435 1660 static BOOL WINAPI consoleHandler(DWORD event) {
duke@435 1661 switch(event) {
duke@435 1662 case CTRL_C_EVENT:
duke@435 1663 if (is_error_reported()) {
duke@435 1664 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 1665 // handler fails to abort. Let VM die immediately.
duke@435 1666 os::die();
duke@435 1667 }
duke@435 1668
duke@435 1669 os::signal_raise(SIGINT);
duke@435 1670 return TRUE;
duke@435 1671 break;
duke@435 1672 case CTRL_BREAK_EVENT:
duke@435 1673 if (sigbreakHandler != NULL) {
duke@435 1674 (*sigbreakHandler)(SIGBREAK);
duke@435 1675 }
duke@435 1676 return TRUE;
duke@435 1677 break;
duke@435 1678 case CTRL_CLOSE_EVENT:
duke@435 1679 case CTRL_LOGOFF_EVENT:
duke@435 1680 case CTRL_SHUTDOWN_EVENT:
duke@435 1681 os::signal_raise(SIGTERM);
duke@435 1682 return TRUE;
duke@435 1683 break;
duke@435 1684 default:
duke@435 1685 break;
duke@435 1686 }
duke@435 1687 return FALSE;
duke@435 1688 }
duke@435 1689
duke@435 1690 /*
duke@435 1691 * The following code is moved from os.cpp for making this
duke@435 1692 * code platform specific, which it is by its very nature.
duke@435 1693 */
duke@435 1694
duke@435 1695 // Return maximum OS signal used + 1 for internal use only
duke@435 1696 // Used as exit signal for signal_thread
duke@435 1697 int os::sigexitnum_pd(){
duke@435 1698 return NSIG;
duke@435 1699 }
duke@435 1700
duke@435 1701 // a counter for each possible signal value, including signal_thread exit signal
duke@435 1702 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 1703 static HANDLE sig_sem;
duke@435 1704
duke@435 1705 void os::signal_init_pd() {
duke@435 1706 // Initialize signal structures
duke@435 1707 memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 1708
duke@435 1709 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
duke@435 1710
duke@435 1711 // Programs embedding the VM do not want it to attempt to receive
duke@435 1712 // events like CTRL_LOGOFF_EVENT, which are used to implement the
duke@435 1713 // shutdown hooks mechanism introduced in 1.3. For example, when
duke@435 1714 // the VM is run as part of a Windows NT service (i.e., a servlet
duke@435 1715 // engine in a web server), the correct behavior is for any console
duke@435 1716 // control handler to return FALSE, not TRUE, because the OS's
duke@435 1717 // "final" handler for such events allows the process to continue if
duke@435 1718 // it is a service (while terminating it if it is not a service).
duke@435 1719 // To make this behavior uniform and the mechanism simpler, we
duke@435 1720 // completely disable the VM's usage of these console events if -Xrs
duke@435 1721 // (=ReduceSignalUsage) is specified. This means, for example, that
duke@435 1722 // the CTRL-BREAK thread dump mechanism is also disabled in this
duke@435 1723 // case. See bugs 4323062, 4345157, and related bugs.
duke@435 1724
duke@435 1725 if (!ReduceSignalUsage) {
duke@435 1726 // Add a CTRL-C handler
duke@435 1727 SetConsoleCtrlHandler(consoleHandler, TRUE);
duke@435 1728 }
duke@435 1729 }
duke@435 1730
duke@435 1731 void os::signal_notify(int signal_number) {
duke@435 1732 BOOL ret;
duke@435 1733
duke@435 1734 Atomic::inc(&pending_signals[signal_number]);
duke@435 1735 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1736 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1737 }
duke@435 1738
duke@435 1739 static int check_pending_signals(bool wait_for_signal) {
duke@435 1740 DWORD ret;
duke@435 1741 while (true) {
duke@435 1742 for (int i = 0; i < NSIG + 1; i++) {
duke@435 1743 jint n = pending_signals[i];
duke@435 1744 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 1745 return i;
duke@435 1746 }
duke@435 1747 }
duke@435 1748 if (!wait_for_signal) {
duke@435 1749 return -1;
duke@435 1750 }
duke@435 1751
duke@435 1752 JavaThread *thread = JavaThread::current();
duke@435 1753
duke@435 1754 ThreadBlockInVM tbivm(thread);
duke@435 1755
duke@435 1756 bool threadIsSuspended;
duke@435 1757 do {
duke@435 1758 thread->set_suspend_equivalent();
duke@435 1759 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 1760 ret = ::WaitForSingleObject(sig_sem, INFINITE);
duke@435 1761 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
duke@435 1762
duke@435 1763 // were we externally suspended while we were waiting?
duke@435 1764 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 1765 if (threadIsSuspended) {
duke@435 1766 //
duke@435 1767 // The semaphore has been incremented, but while we were waiting
duke@435 1768 // another thread suspended us. We don't want to continue running
duke@435 1769 // while suspended because that would surprise the thread that
duke@435 1770 // suspended us.
duke@435 1771 //
duke@435 1772 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1773 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1774
duke@435 1775 thread->java_suspend_self();
duke@435 1776 }
duke@435 1777 } while (threadIsSuspended);
duke@435 1778 }
duke@435 1779 }
duke@435 1780
duke@435 1781 int os::signal_lookup() {
duke@435 1782 return check_pending_signals(false);
duke@435 1783 }
duke@435 1784
duke@435 1785 int os::signal_wait() {
duke@435 1786 return check_pending_signals(true);
duke@435 1787 }
duke@435 1788
duke@435 1789 // Implicit OS exception handling
duke@435 1790
duke@435 1791 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
duke@435 1792 JavaThread* thread = JavaThread::current();
duke@435 1793 // Save pc in thread
duke@435 1794 #ifdef _M_IA64
duke@435 1795 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
duke@435 1796 // Set pc to handler
duke@435 1797 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
duke@435 1798 #elif _M_AMD64
duke@435 1799 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
duke@435 1800 // Set pc to handler
duke@435 1801 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
duke@435 1802 #else
duke@435 1803 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
duke@435 1804 // Set pc to handler
duke@435 1805 exceptionInfo->ContextRecord->Eip = (LONG)handler;
duke@435 1806 #endif
duke@435 1807
duke@435 1808 // Continue the execution
duke@435 1809 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1810 }
duke@435 1811
duke@435 1812
duke@435 1813 // Used for PostMortemDump
duke@435 1814 extern "C" void safepoints();
duke@435 1815 extern "C" void find(int x);
duke@435 1816 extern "C" void events();
duke@435 1817
duke@435 1818 // According to Windows API documentation, an illegal instruction sequence should generate
duke@435 1819 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
duke@435 1820 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
duke@435 1821 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
duke@435 1822
duke@435 1823 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
duke@435 1824
duke@435 1825 // From "Execution Protection in the Windows Operating System" draft 0.35
duke@435 1826 // Once a system header becomes available, the "real" define should be
duke@435 1827 // included or copied here.
duke@435 1828 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
duke@435 1829
duke@435 1830 #define def_excpt(val) #val, val
duke@435 1831
duke@435 1832 struct siglabel {
duke@435 1833 char *name;
duke@435 1834 int number;
duke@435 1835 };
duke@435 1836
duke@435 1837 struct siglabel exceptlabels[] = {
duke@435 1838 def_excpt(EXCEPTION_ACCESS_VIOLATION),
duke@435 1839 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
duke@435 1840 def_excpt(EXCEPTION_BREAKPOINT),
duke@435 1841 def_excpt(EXCEPTION_SINGLE_STEP),
duke@435 1842 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
duke@435 1843 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
duke@435 1844 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
duke@435 1845 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
duke@435 1846 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
duke@435 1847 def_excpt(EXCEPTION_FLT_OVERFLOW),
duke@435 1848 def_excpt(EXCEPTION_FLT_STACK_CHECK),
duke@435 1849 def_excpt(EXCEPTION_FLT_UNDERFLOW),
duke@435 1850 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
duke@435 1851 def_excpt(EXCEPTION_INT_OVERFLOW),
duke@435 1852 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
duke@435 1853 def_excpt(EXCEPTION_IN_PAGE_ERROR),
duke@435 1854 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
duke@435 1855 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
duke@435 1856 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
duke@435 1857 def_excpt(EXCEPTION_STACK_OVERFLOW),
duke@435 1858 def_excpt(EXCEPTION_INVALID_DISPOSITION),
duke@435 1859 def_excpt(EXCEPTION_GUARD_PAGE),
duke@435 1860 def_excpt(EXCEPTION_INVALID_HANDLE),
duke@435 1861 NULL, 0
duke@435 1862 };
duke@435 1863
duke@435 1864 const char* os::exception_name(int exception_code, char *buf, size_t size) {
duke@435 1865 for (int i = 0; exceptlabels[i].name != NULL; i++) {
duke@435 1866 if (exceptlabels[i].number == exception_code) {
duke@435 1867 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
duke@435 1868 return buf;
duke@435 1869 }
duke@435 1870 }
duke@435 1871
duke@435 1872 return NULL;
duke@435 1873 }
duke@435 1874
duke@435 1875 //-----------------------------------------------------------------------------
duke@435 1876 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 1877 // handle exception caused by idiv; should only happen for -MinInt/-1
duke@435 1878 // (division by zero is handled explicitly)
duke@435 1879 #ifdef _M_IA64
duke@435 1880 assert(0, "Fix Handle_IDiv_Exception");
duke@435 1881 #elif _M_AMD64
duke@435 1882 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1883 address pc = (address)ctx->Rip;
duke@435 1884 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 1885 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 1886 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 1887 assert(ctx->Rax == min_jint, "unexpected idiv exception");
duke@435 1888 // set correct result values and continue after idiv instruction
duke@435 1889 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 1890 ctx->Rax = (DWORD)min_jint; // result
duke@435 1891 ctx->Rdx = (DWORD)0; // remainder
duke@435 1892 // Continue the execution
duke@435 1893 #else
duke@435 1894 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1895 address pc = (address)ctx->Eip;
duke@435 1896 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 1897 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 1898 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 1899 assert(ctx->Eax == min_jint, "unexpected idiv exception");
duke@435 1900 // set correct result values and continue after idiv instruction
duke@435 1901 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 1902 ctx->Eax = (DWORD)min_jint; // result
duke@435 1903 ctx->Edx = (DWORD)0; // remainder
duke@435 1904 // Continue the execution
duke@435 1905 #endif
duke@435 1906 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1907 }
duke@435 1908
duke@435 1909 #ifndef _WIN64
duke@435 1910 //-----------------------------------------------------------------------------
duke@435 1911 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 1912 // handle exception caused by native mothod modifying control word
duke@435 1913 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1914 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 1915
duke@435 1916 switch (exception_code) {
duke@435 1917 case EXCEPTION_FLT_DENORMAL_OPERAND:
duke@435 1918 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
duke@435 1919 case EXCEPTION_FLT_INEXACT_RESULT:
duke@435 1920 case EXCEPTION_FLT_INVALID_OPERATION:
duke@435 1921 case EXCEPTION_FLT_OVERFLOW:
duke@435 1922 case EXCEPTION_FLT_STACK_CHECK:
duke@435 1923 case EXCEPTION_FLT_UNDERFLOW:
duke@435 1924 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 1925 if (fp_control_word != ctx->FloatSave.ControlWord) {
duke@435 1926 // Restore FPCW and mask out FLT exceptions
duke@435 1927 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
duke@435 1928 // Mask out pending FLT exceptions
duke@435 1929 ctx->FloatSave.StatusWord &= 0xffffff00;
duke@435 1930 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1931 }
duke@435 1932 }
duke@435 1933 return EXCEPTION_CONTINUE_SEARCH;
duke@435 1934 }
duke@435 1935 #else //_WIN64
duke@435 1936 /*
duke@435 1937 On Windows, the mxcsr control bits are non-volatile across calls
duke@435 1938 See also CR 6192333
duke@435 1939 If EXCEPTION_FLT_* happened after some native method modified
duke@435 1940 mxcsr - it is not a jvm fault.
duke@435 1941 However should we decide to restore of mxcsr after a faulty
duke@435 1942 native method we can uncomment following code
duke@435 1943 jint MxCsr = INITIAL_MXCSR;
duke@435 1944 // we can't use StubRoutines::addr_mxcsr_std()
duke@435 1945 // because in Win64 mxcsr is not saved there
duke@435 1946 if (MxCsr != ctx->MxCsr) {
duke@435 1947 ctx->MxCsr = MxCsr;
duke@435 1948 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1949 }
duke@435 1950
duke@435 1951 */
duke@435 1952 #endif //_WIN64
duke@435 1953
duke@435 1954
duke@435 1955 // Fatal error reporting is single threaded so we can make this a
duke@435 1956 // static and preallocated. If it's more than MAX_PATH silently ignore
duke@435 1957 // it.
duke@435 1958 static char saved_error_file[MAX_PATH] = {0};
duke@435 1959
duke@435 1960 void os::set_error_file(const char *logfile) {
duke@435 1961 if (strlen(logfile) <= MAX_PATH) {
duke@435 1962 strncpy(saved_error_file, logfile, MAX_PATH);
duke@435 1963 }
duke@435 1964 }
duke@435 1965
duke@435 1966 static inline void report_error(Thread* t, DWORD exception_code,
duke@435 1967 address addr, void* siginfo, void* context) {
duke@435 1968 VMError err(t, exception_code, addr, siginfo, context);
duke@435 1969 err.report_and_die();
duke@435 1970
duke@435 1971 // If UseOsErrorReporting, this will return here and save the error file
duke@435 1972 // somewhere where we can find it in the minidump.
duke@435 1973 }
duke@435 1974
duke@435 1975 //-----------------------------------------------------------------------------
duke@435 1976 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 1977 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
duke@435 1978 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 1979 #ifdef _M_IA64
duke@435 1980 address pc = (address) exceptionInfo->ContextRecord->StIIP;
duke@435 1981 #elif _M_AMD64
duke@435 1982 address pc = (address) exceptionInfo->ContextRecord->Rip;
duke@435 1983 #else
duke@435 1984 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 1985 #endif
duke@435 1986 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 1987
duke@435 1988 #ifndef _WIN64
duke@435 1989 // Execution protection violation - win32 running on AMD64 only
duke@435 1990 // Handled first to avoid misdiagnosis as a "normal" access violation;
duke@435 1991 // This is safe to do because we have a new/unique ExceptionInformation
duke@435 1992 // code for this condition.
duke@435 1993 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 1994 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 1995 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
duke@435 1996 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 1997
duke@435 1998 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 1999 int page_size = os::vm_page_size();
duke@435 2000
duke@435 2001 // Make sure the pc and the faulting address are sane.
duke@435 2002 //
duke@435 2003 // If an instruction spans a page boundary, and the page containing
duke@435 2004 // the beginning of the instruction is executable but the following
duke@435 2005 // page is not, the pc and the faulting address might be slightly
duke@435 2006 // different - we still want to unguard the 2nd page in this case.
duke@435 2007 //
duke@435 2008 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 2009 bool pc_is_near_addr =
duke@435 2010 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 2011 bool instr_spans_page_boundary =
duke@435 2012 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 2013 (intptr_t) page_size) > 0);
duke@435 2014
duke@435 2015 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 2016 static volatile address last_addr =
duke@435 2017 (address) os::non_memory_address_word();
duke@435 2018
duke@435 2019 // In conservative mode, don't unguard unless the address is in the VM
duke@435 2020 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
duke@435 2021 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 2022
duke@435 2023 // Unguard and retry
duke@435 2024 address page_start =
duke@435 2025 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
duke@435 2026 bool res = os::unguard_memory((char*) page_start, page_size);
duke@435 2027
duke@435 2028 if (PrintMiscellaneous && Verbose) {
duke@435 2029 char buf[256];
duke@435 2030 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 2031 "at " INTPTR_FORMAT
duke@435 2032 ", unguarding " INTPTR_FORMAT ": %s", addr,
duke@435 2033 page_start, (res ? "success" : strerror(errno)));
duke@435 2034 tty->print_raw_cr(buf);
duke@435 2035 }
duke@435 2036
duke@435 2037 // Set last_addr so if we fault again at the same address, we don't
duke@435 2038 // end up in an endless loop.
duke@435 2039 //
duke@435 2040 // There are two potential complications here. Two threads trapping
duke@435 2041 // at the same address at the same time could cause one of the
duke@435 2042 // threads to think it already unguarded, and abort the VM. Likely
duke@435 2043 // very rare.
duke@435 2044 //
duke@435 2045 // The other race involves two threads alternately trapping at
duke@435 2046 // different addresses and failing to unguard the page, resulting in
duke@435 2047 // an endless loop. This condition is probably even more unlikely
duke@435 2048 // than the first.
duke@435 2049 //
duke@435 2050 // Although both cases could be avoided by using locks or thread
duke@435 2051 // local last_addr, these solutions are unnecessary complication:
duke@435 2052 // this handler is a best-effort safety net, not a complete solution.
duke@435 2053 // It is disabled by default and should only be used as a workaround
duke@435 2054 // in case we missed any no-execute-unsafe VM code.
duke@435 2055
duke@435 2056 last_addr = addr;
duke@435 2057
duke@435 2058 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2059 }
duke@435 2060 }
duke@435 2061
duke@435 2062 // Last unguard failed or not unguarding
duke@435 2063 tty->print_raw_cr("Execution protection violation");
duke@435 2064 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
duke@435 2065 exceptionInfo->ContextRecord);
duke@435 2066 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2067 }
duke@435 2068 }
duke@435 2069 #endif // _WIN64
duke@435 2070
duke@435 2071 // Check to see if we caught the safepoint code in the
duke@435 2072 // process of write protecting the memory serialization page.
duke@435 2073 // It write enables the page immediately after protecting it
duke@435 2074 // so just return.
duke@435 2075 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 2076 JavaThread* thread = (JavaThread*) t;
duke@435 2077 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2078 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2079 if ( os::is_memory_serialize_page(thread, addr) ) {
duke@435 2080 // Block current thread until the memory serialize page permission restored.
duke@435 2081 os::block_on_serialize_page_trap();
duke@435 2082 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2083 }
duke@435 2084 }
duke@435 2085
duke@435 2086
duke@435 2087 if (t != NULL && t->is_Java_thread()) {
duke@435 2088 JavaThread* thread = (JavaThread*) t;
duke@435 2089 bool in_java = thread->thread_state() == _thread_in_Java;
duke@435 2090
duke@435 2091 // Handle potential stack overflows up front.
duke@435 2092 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
duke@435 2093 if (os::uses_stack_guard_pages()) {
duke@435 2094 #ifdef _M_IA64
duke@435 2095 //
duke@435 2096 // If it's a legal stack address continue, Windows will map it in.
duke@435 2097 //
duke@435 2098 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2099 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2100 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
duke@435 2101 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2102
duke@435 2103 // The register save area is the same size as the memory stack
duke@435 2104 // and starts at the page just above the start of the memory stack.
duke@435 2105 // If we get a fault in this area, we've run out of register
duke@435 2106 // stack. If we are in java, try throwing a stack overflow exception.
duke@435 2107 if (addr > thread->stack_base() &&
duke@435 2108 addr <= (thread->stack_base()+thread->stack_size()) ) {
duke@435 2109 char buf[256];
duke@435 2110 jio_snprintf(buf, sizeof(buf),
duke@435 2111 "Register stack overflow, addr:%p, stack_base:%p\n",
duke@435 2112 addr, thread->stack_base() );
duke@435 2113 tty->print_raw_cr(buf);
duke@435 2114 // If not in java code, return and hope for the best.
duke@435 2115 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2116 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2117 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2118 }
duke@435 2119 #endif
duke@435 2120 if (thread->stack_yellow_zone_enabled()) {
duke@435 2121 // Yellow zone violation. The o/s has unprotected the first yellow
duke@435 2122 // zone page for us. Note: must call disable_stack_yellow_zone to
duke@435 2123 // update the enabled status, even if the zone contains only one page.
duke@435 2124 thread->disable_stack_yellow_zone();
duke@435 2125 // If not in java code, return and hope for the best.
duke@435 2126 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2127 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2128 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2129 } else {
duke@435 2130 // Fatal red zone violation.
duke@435 2131 thread->disable_stack_red_zone();
duke@435 2132 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
duke@435 2133 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2134 exceptionInfo->ContextRecord);
duke@435 2135 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2136 }
duke@435 2137 } else if (in_java) {
duke@435 2138 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
duke@435 2139 // a one-time-only guard page, which it has released to us. The next
duke@435 2140 // stack overflow on this thread will result in an ACCESS_VIOLATION.
duke@435 2141 return Handle_Exception(exceptionInfo,
duke@435 2142 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2143 } else {
duke@435 2144 // Can only return and hope for the best. Further stack growth will
duke@435 2145 // result in an ACCESS_VIOLATION.
duke@435 2146 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2147 }
duke@435 2148 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2149 // Either stack overflow or null pointer exception.
duke@435 2150 if (in_java) {
duke@435 2151 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2152 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2153 address stack_end = thread->stack_base() - thread->stack_size();
duke@435 2154 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
duke@435 2155 // Stack overflow.
duke@435 2156 assert(!os::uses_stack_guard_pages(),
duke@435 2157 "should be caught by red zone code above.");
duke@435 2158 return Handle_Exception(exceptionInfo,
duke@435 2159 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2160 }
duke@435 2161 //
duke@435 2162 // Check for safepoint polling and implicit null
duke@435 2163 // We only expect null pointers in the stubs (vtable)
duke@435 2164 // the rest are checked explicitly now.
duke@435 2165 //
duke@435 2166 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 2167 if (cb != NULL) {
duke@435 2168 if (os::is_poll_address(addr)) {
duke@435 2169 address stub = SharedRuntime::get_poll_stub(pc);
duke@435 2170 return Handle_Exception(exceptionInfo, stub);
duke@435 2171 }
duke@435 2172 }
duke@435 2173 {
duke@435 2174 #ifdef _WIN64
duke@435 2175 //
duke@435 2176 // If it's a legal stack address map the entire region in
duke@435 2177 //
duke@435 2178 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2179 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2180 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
duke@435 2181 addr = (address)((uintptr_t)addr &
duke@435 2182 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
duke@435 2183 os::commit_memory( (char *)addr, thread->stack_base() - addr );
duke@435 2184 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2185 }
duke@435 2186 else
duke@435 2187 #endif
duke@435 2188 {
duke@435 2189 // Null pointer exception.
duke@435 2190 #ifdef _M_IA64
duke@435 2191 // We catch register stack overflows in compiled code by doing
duke@435 2192 // an explicit compare and executing a st8(G0, G0) if the
duke@435 2193 // BSP enters into our guard area. We test for the overflow
duke@435 2194 // condition and fall into the normal null pointer exception
duke@435 2195 // code if BSP hasn't overflowed.
duke@435 2196 if ( in_java ) {
duke@435 2197 if(thread->register_stack_overflow()) {
duke@435 2198 assert((address)exceptionInfo->ContextRecord->IntS3 ==
duke@435 2199 thread->register_stack_limit(),
duke@435 2200 "GR7 doesn't contain register_stack_limit");
duke@435 2201 // Disable the yellow zone which sets the state that
duke@435 2202 // we've got a stack overflow problem.
duke@435 2203 if (thread->stack_yellow_zone_enabled()) {
duke@435 2204 thread->disable_stack_yellow_zone();
duke@435 2205 }
duke@435 2206 // Give us some room to process the exception
duke@435 2207 thread->disable_register_stack_guard();
duke@435 2208 // Update GR7 with the new limit so we can continue running
duke@435 2209 // compiled code.
duke@435 2210 exceptionInfo->ContextRecord->IntS3 =
duke@435 2211 (ULONGLONG)thread->register_stack_limit();
duke@435 2212 return Handle_Exception(exceptionInfo,
duke@435 2213 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2214 } else {
duke@435 2215 //
duke@435 2216 // Check for implicit null
duke@435 2217 // We only expect null pointers in the stubs (vtable)
duke@435 2218 // the rest are checked explicitly now.
duke@435 2219 //
poonam@900 2220 if (((uintptr_t)addr) < os::vm_page_size() ) {
poonam@900 2221 // an access to the first page of VM--assume it is a null pointer
poonam@900 2222 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2223 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2224 }
duke@435 2225 }
duke@435 2226 } // in_java
duke@435 2227
duke@435 2228 // IA64 doesn't use implicit null checking yet. So we shouldn't
duke@435 2229 // get here.
duke@435 2230 tty->print_raw_cr("Access violation, possible null pointer exception");
duke@435 2231 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2232 exceptionInfo->ContextRecord);
duke@435 2233 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2234 #else /* !IA64 */
duke@435 2235
duke@435 2236 // Windows 98 reports faulting addresses incorrectly
duke@435 2237 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
duke@435 2238 !os::win32::is_nt()) {
poonam@900 2239 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2240 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2241 }
duke@435 2242 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2243 exceptionInfo->ContextRecord);
duke@435 2244 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2245 #endif
duke@435 2246 }
duke@435 2247 }
duke@435 2248 }
duke@435 2249
duke@435 2250 #ifdef _WIN64
duke@435 2251 // Special care for fast JNI field accessors.
duke@435 2252 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
duke@435 2253 // in and the heap gets shrunk before the field access.
duke@435 2254 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2255 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2256 if (addr != (address)-1) {
duke@435 2257 return Handle_Exception(exceptionInfo, addr);
duke@435 2258 }
duke@435 2259 }
duke@435 2260 #endif
duke@435 2261
duke@435 2262 #ifdef _WIN64
duke@435 2263 // Windows will sometimes generate an access violation
duke@435 2264 // when we call malloc. Since we use VectoredExceptions
duke@435 2265 // on 64 bit platforms, we see this exception. We must
duke@435 2266 // pass this exception on so Windows can recover.
duke@435 2267 // We check to see if the pc of the fault is in NTDLL.DLL
duke@435 2268 // if so, we pass control on to Windows for handling.
duke@435 2269 if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2270 #endif
duke@435 2271
duke@435 2272 // Stack overflow or null pointer exception in native code.
duke@435 2273 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2274 exceptionInfo->ContextRecord);
duke@435 2275 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2276 }
duke@435 2277
duke@435 2278 if (in_java) {
duke@435 2279 switch (exception_code) {
duke@435 2280 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2281 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
duke@435 2282
duke@435 2283 case EXCEPTION_INT_OVERFLOW:
duke@435 2284 return Handle_IDiv_Exception(exceptionInfo);
duke@435 2285
duke@435 2286 } // switch
duke@435 2287 }
duke@435 2288 #ifndef _WIN64
duke@435 2289 if ((thread->thread_state() == _thread_in_Java) ||
duke@435 2290 (thread->thread_state() == _thread_in_native) )
duke@435 2291 {
duke@435 2292 LONG result=Handle_FLT_Exception(exceptionInfo);
duke@435 2293 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
duke@435 2294 }
duke@435 2295 #endif //_WIN64
duke@435 2296 }
duke@435 2297
duke@435 2298 if (exception_code != EXCEPTION_BREAKPOINT) {
duke@435 2299 #ifndef _WIN64
duke@435 2300 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2301 exceptionInfo->ContextRecord);
duke@435 2302 #else
duke@435 2303 // Itanium Windows uses a VectoredExceptionHandler
duke@435 2304 // Which means that C++ programatic exception handlers (try/except)
duke@435 2305 // will get here. Continue the search for the right except block if
duke@435 2306 // the exception code is not a fatal code.
duke@435 2307 switch ( exception_code ) {
duke@435 2308 case EXCEPTION_ACCESS_VIOLATION:
duke@435 2309 case EXCEPTION_STACK_OVERFLOW:
duke@435 2310 case EXCEPTION_ILLEGAL_INSTRUCTION:
duke@435 2311 case EXCEPTION_ILLEGAL_INSTRUCTION_2:
duke@435 2312 case EXCEPTION_INT_OVERFLOW:
duke@435 2313 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2314 { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2315 exceptionInfo->ContextRecord);
duke@435 2316 }
duke@435 2317 break;
duke@435 2318 default:
duke@435 2319 break;
duke@435 2320 }
duke@435 2321 #endif
duke@435 2322 }
duke@435 2323 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2324 }
duke@435 2325
duke@435 2326 #ifndef _WIN64
duke@435 2327 // Special care for fast JNI accessors.
duke@435 2328 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
duke@435 2329 // the heap gets shrunk before the field access.
duke@435 2330 // Need to install our own structured exception handler since native code may
duke@435 2331 // install its own.
duke@435 2332 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2333 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2334 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2335 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2336 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2337 if (addr != (address)-1) {
duke@435 2338 return Handle_Exception(exceptionInfo, addr);
duke@435 2339 }
duke@435 2340 }
duke@435 2341 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2342 }
duke@435 2343
duke@435 2344 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
duke@435 2345 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
duke@435 2346 __try { \
duke@435 2347 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
duke@435 2348 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
duke@435 2349 } \
duke@435 2350 return 0; \
duke@435 2351 }
duke@435 2352
duke@435 2353 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
duke@435 2354 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
duke@435 2355 DEFINE_FAST_GETFIELD(jchar, char, Char)
duke@435 2356 DEFINE_FAST_GETFIELD(jshort, short, Short)
duke@435 2357 DEFINE_FAST_GETFIELD(jint, int, Int)
duke@435 2358 DEFINE_FAST_GETFIELD(jlong, long, Long)
duke@435 2359 DEFINE_FAST_GETFIELD(jfloat, float, Float)
duke@435 2360 DEFINE_FAST_GETFIELD(jdouble, double, Double)
duke@435 2361
duke@435 2362 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
duke@435 2363 switch (type) {
duke@435 2364 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
duke@435 2365 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
duke@435 2366 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
duke@435 2367 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
duke@435 2368 case T_INT: return (address)jni_fast_GetIntField_wrapper;
duke@435 2369 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
duke@435 2370 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
duke@435 2371 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
duke@435 2372 default: ShouldNotReachHere();
duke@435 2373 }
duke@435 2374 return (address)-1;
duke@435 2375 }
duke@435 2376 #endif
duke@435 2377
duke@435 2378 // Virtual Memory
duke@435 2379
duke@435 2380 int os::vm_page_size() { return os::win32::vm_page_size(); }
duke@435 2381 int os::vm_allocation_granularity() {
duke@435 2382 return os::win32::vm_allocation_granularity();
duke@435 2383 }
duke@435 2384
duke@435 2385 // Windows large page support is available on Windows 2003. In order to use
duke@435 2386 // large page memory, the administrator must first assign additional privilege
duke@435 2387 // to the user:
duke@435 2388 // + select Control Panel -> Administrative Tools -> Local Security Policy
duke@435 2389 // + select Local Policies -> User Rights Assignment
duke@435 2390 // + double click "Lock pages in memory", add users and/or groups
duke@435 2391 // + reboot
duke@435 2392 // Note the above steps are needed for administrator as well, as administrators
duke@435 2393 // by default do not have the privilege to lock pages in memory.
duke@435 2394 //
duke@435 2395 // Note about Windows 2003: although the API supports committing large page
duke@435 2396 // memory on a page-by-page basis and VirtualAlloc() returns success under this
duke@435 2397 // scenario, I found through experiment it only uses large page if the entire
duke@435 2398 // memory region is reserved and committed in a single VirtualAlloc() call.
duke@435 2399 // This makes Windows large page support more or less like Solaris ISM, in
duke@435 2400 // that the entire heap must be committed upfront. This probably will change
duke@435 2401 // in the future, if so the code below needs to be revisited.
duke@435 2402
duke@435 2403 #ifndef MEM_LARGE_PAGES
duke@435 2404 #define MEM_LARGE_PAGES 0x20000000
duke@435 2405 #endif
duke@435 2406
duke@435 2407 // GetLargePageMinimum is only available on Windows 2003. The other functions
duke@435 2408 // are available on NT but not on Windows 98/Me. We have to resolve them at
duke@435 2409 // runtime.
duke@435 2410 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
duke@435 2411 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
duke@435 2412 (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
duke@435 2413 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
duke@435 2414 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
duke@435 2415
duke@435 2416 static GetLargePageMinimum_func_type _GetLargePageMinimum;
duke@435 2417 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
duke@435 2418 static OpenProcessToken_func_type _OpenProcessToken;
duke@435 2419 static LookupPrivilegeValue_func_type _LookupPrivilegeValue;
duke@435 2420
duke@435 2421 static HINSTANCE _kernel32;
duke@435 2422 static HINSTANCE _advapi32;
duke@435 2423 static HANDLE _hProcess;
duke@435 2424 static HANDLE _hToken;
duke@435 2425
duke@435 2426 static size_t _large_page_size = 0;
duke@435 2427
duke@435 2428 static bool resolve_functions_for_large_page_init() {
duke@435 2429 _kernel32 = LoadLibrary("kernel32.dll");
duke@435 2430 if (_kernel32 == NULL) return false;
duke@435 2431
duke@435 2432 _GetLargePageMinimum = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
duke@435 2433 GetProcAddress(_kernel32, "GetLargePageMinimum"));
duke@435 2434 if (_GetLargePageMinimum == NULL) return false;
duke@435 2435
duke@435 2436 _advapi32 = LoadLibrary("advapi32.dll");
duke@435 2437 if (_advapi32 == NULL) return false;
duke@435 2438
duke@435 2439 _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
duke@435 2440 GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
duke@435 2441 _OpenProcessToken = CAST_TO_FN_PTR(OpenProcessToken_func_type,
duke@435 2442 GetProcAddress(_advapi32, "OpenProcessToken"));
duke@435 2443 _LookupPrivilegeValue = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
duke@435 2444 GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
duke@435 2445 return _AdjustTokenPrivileges != NULL &&
duke@435 2446 _OpenProcessToken != NULL &&
duke@435 2447 _LookupPrivilegeValue != NULL;
duke@435 2448 }
duke@435 2449
duke@435 2450 static bool request_lock_memory_privilege() {
duke@435 2451 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
duke@435 2452 os::current_process_id());
duke@435 2453
duke@435 2454 LUID luid;
duke@435 2455 if (_hProcess != NULL &&
duke@435 2456 _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
duke@435 2457 _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
duke@435 2458
duke@435 2459 TOKEN_PRIVILEGES tp;
duke@435 2460 tp.PrivilegeCount = 1;
duke@435 2461 tp.Privileges[0].Luid = luid;
duke@435 2462 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
duke@435 2463
duke@435 2464 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
duke@435 2465 // privilege. Check GetLastError() too. See MSDN document.
duke@435 2466 if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
duke@435 2467 (GetLastError() == ERROR_SUCCESS)) {
duke@435 2468 return true;
duke@435 2469 }
duke@435 2470 }
duke@435 2471
duke@435 2472 return false;
duke@435 2473 }
duke@435 2474
duke@435 2475 static void cleanup_after_large_page_init() {
duke@435 2476 _GetLargePageMinimum = NULL;
duke@435 2477 _AdjustTokenPrivileges = NULL;
duke@435 2478 _OpenProcessToken = NULL;
duke@435 2479 _LookupPrivilegeValue = NULL;
duke@435 2480 if (_kernel32) FreeLibrary(_kernel32);
duke@435 2481 _kernel32 = NULL;
duke@435 2482 if (_advapi32) FreeLibrary(_advapi32);
duke@435 2483 _advapi32 = NULL;
duke@435 2484 if (_hProcess) CloseHandle(_hProcess);
duke@435 2485 _hProcess = NULL;
duke@435 2486 if (_hToken) CloseHandle(_hToken);
duke@435 2487 _hToken = NULL;
duke@435 2488 }
duke@435 2489
duke@435 2490 bool os::large_page_init() {
duke@435 2491 if (!UseLargePages) return false;
duke@435 2492
duke@435 2493 // print a warning if any large page related flag is specified on command line
duke@435 2494 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2495 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 2496 bool success = false;
duke@435 2497
duke@435 2498 # define WARN(msg) if (warn_on_failure) { warning(msg); }
duke@435 2499 if (resolve_functions_for_large_page_init()) {
duke@435 2500 if (request_lock_memory_privilege()) {
duke@435 2501 size_t s = _GetLargePageMinimum();
duke@435 2502 if (s) {
duke@435 2503 #if defined(IA32) || defined(AMD64)
duke@435 2504 if (s > 4*M || LargePageSizeInBytes > 4*M) {
duke@435 2505 WARN("JVM cannot use large pages bigger than 4mb.");
duke@435 2506 } else {
duke@435 2507 #endif
duke@435 2508 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
duke@435 2509 _large_page_size = LargePageSizeInBytes;
duke@435 2510 } else {
duke@435 2511 _large_page_size = s;
duke@435 2512 }
duke@435 2513 success = true;
duke@435 2514 #if defined(IA32) || defined(AMD64)
duke@435 2515 }
duke@435 2516 #endif
duke@435 2517 } else {
duke@435 2518 WARN("Large page is not supported by the processor.");
duke@435 2519 }
duke@435 2520 } else {
duke@435 2521 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
duke@435 2522 }
duke@435 2523 } else {
duke@435 2524 WARN("Large page is not supported by the operating system.");
duke@435 2525 }
duke@435 2526 #undef WARN
duke@435 2527
duke@435 2528 const size_t default_page_size = (size_t) vm_page_size();
duke@435 2529 if (success && _large_page_size > default_page_size) {
duke@435 2530 _page_sizes[0] = _large_page_size;
duke@435 2531 _page_sizes[1] = default_page_size;
duke@435 2532 _page_sizes[2] = 0;
duke@435 2533 }
duke@435 2534
duke@435 2535 cleanup_after_large_page_init();
duke@435 2536 return success;
duke@435 2537 }
duke@435 2538
duke@435 2539 // On win32, one cannot release just a part of reserved memory, it's an
duke@435 2540 // all or nothing deal. When we split a reservation, we must break the
duke@435 2541 // reservation into two reservations.
duke@435 2542 void os::split_reserved_memory(char *base, size_t size, size_t split,
duke@435 2543 bool realloc) {
duke@435 2544 if (size > 0) {
duke@435 2545 release_memory(base, size);
duke@435 2546 if (realloc) {
duke@435 2547 reserve_memory(split, base);
duke@435 2548 }
duke@435 2549 if (size != split) {
duke@435 2550 reserve_memory(size - split, base + split);
duke@435 2551 }
duke@435 2552 }
duke@435 2553 }
duke@435 2554
duke@435 2555 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
duke@435 2556 assert((size_t)addr % os::vm_allocation_granularity() == 0,
duke@435 2557 "reserve alignment");
duke@435 2558 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
duke@435 2559 char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE,
duke@435 2560 PAGE_EXECUTE_READWRITE);
duke@435 2561 assert(res == NULL || addr == NULL || addr == res,
duke@435 2562 "Unexpected address from reserve.");
duke@435 2563 return res;
duke@435 2564 }
duke@435 2565
duke@435 2566 // Reserve memory at an arbitrary address, only if that area is
duke@435 2567 // available (and not reserved for something else).
duke@435 2568 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2569 // Windows os::reserve_memory() fails of the requested address range is
duke@435 2570 // not avilable.
duke@435 2571 return reserve_memory(bytes, requested_addr);
duke@435 2572 }
duke@435 2573
duke@435 2574 size_t os::large_page_size() {
duke@435 2575 return _large_page_size;
duke@435 2576 }
duke@435 2577
duke@435 2578 bool os::can_commit_large_page_memory() {
duke@435 2579 // Windows only uses large page memory when the entire region is reserved
duke@435 2580 // and committed in a single VirtualAlloc() call. This may change in the
duke@435 2581 // future, but with Windows 2003 it's not possible to commit on demand.
duke@435 2582 return false;
duke@435 2583 }
duke@435 2584
jcoomes@514 2585 bool os::can_execute_large_page_memory() {
jcoomes@514 2586 return true;
jcoomes@514 2587 }
jcoomes@514 2588
duke@435 2589 char* os::reserve_memory_special(size_t bytes) {
jmasa@824 2590
jmasa@824 2591 if (UseLargePagesIndividualAllocation) {
jmasa@824 2592 if (TracePageSizes && Verbose) {
jmasa@824 2593 tty->print_cr("Reserving large pages individually.");
jmasa@824 2594 }
jmasa@824 2595 char * p_buf;
jmasa@824 2596 // first reserve enough address space in advance since we want to be
jmasa@824 2597 // able to break a single contiguous virtual address range into multiple
jmasa@824 2598 // large page commits but WS2003 does not allow reserving large page space
jmasa@824 2599 // so we just use 4K pages for reserve, this gives us a legal contiguous
jmasa@824 2600 // address space. then we will deallocate that reservation, and re alloc
jmasa@824 2601 // using large pages
jmasa@824 2602 const size_t size_of_reserve = bytes + _large_page_size;
jmasa@824 2603 if (bytes > size_of_reserve) {
jmasa@824 2604 // Overflowed.
jmasa@824 2605 warning("Individually allocated large pages failed, "
jmasa@824 2606 "use -XX:-UseLargePagesIndividualAllocation to turn off");
jmasa@824 2607 return NULL;
jmasa@824 2608 }
jmasa@824 2609 p_buf = (char *) VirtualAlloc(NULL,
jmasa@824 2610 size_of_reserve, // size of Reserve
jmasa@824 2611 MEM_RESERVE,
jmasa@824 2612 PAGE_EXECUTE_READWRITE);
jmasa@824 2613 // If reservation failed, return NULL
jmasa@824 2614 if (p_buf == NULL) return NULL;
jmasa@824 2615
jmasa@824 2616 release_memory(p_buf, bytes + _large_page_size);
jmasa@824 2617 // round up to page boundary. If the size_of_reserve did not
jmasa@824 2618 // overflow and the reservation did not fail, this align up
jmasa@824 2619 // should not overflow.
jmasa@824 2620 p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
jmasa@824 2621
jmasa@824 2622 // now go through and allocate one page at a time until all bytes are
jmasa@824 2623 // allocated
jmasa@824 2624 size_t bytes_remaining = align_size_up(bytes, _large_page_size);
jmasa@824 2625 // An overflow of align_size_up() would have been caught above
jmasa@824 2626 // in the calculation of size_of_reserve.
jmasa@824 2627 char * next_alloc_addr = p_buf;
jmasa@824 2628
jmasa@824 2629 #ifdef ASSERT
jmasa@824 2630 // Variable for the failure injection
jmasa@824 2631 long ran_num = os::random();
jmasa@824 2632 size_t fail_after = ran_num % bytes;
jmasa@824 2633 #endif
jmasa@824 2634
jmasa@824 2635 while (bytes_remaining) {
jmasa@824 2636 size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
jmasa@824 2637 // Note allocate and commit
jmasa@824 2638 char * p_new;
jmasa@824 2639
jmasa@824 2640 #ifdef ASSERT
jmasa@824 2641 bool inject_error = LargePagesIndividualAllocationInjectError &&
jmasa@824 2642 (bytes_remaining <= fail_after);
jmasa@824 2643 #else
jmasa@824 2644 const bool inject_error = false;
jmasa@824 2645 #endif
jmasa@824 2646
jmasa@824 2647 if (inject_error) {
jmasa@824 2648 p_new = NULL;
jmasa@824 2649 } else {
jmasa@824 2650 p_new = (char *) VirtualAlloc(next_alloc_addr,
jmasa@824 2651 bytes_to_rq,
jmasa@824 2652 MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
jmasa@824 2653 PAGE_EXECUTE_READWRITE);
jmasa@824 2654 }
jmasa@824 2655
jmasa@824 2656 if (p_new == NULL) {
jmasa@824 2657 // Free any allocated pages
jmasa@824 2658 if (next_alloc_addr > p_buf) {
jmasa@824 2659 // Some memory was committed so release it.
jmasa@824 2660 size_t bytes_to_release = bytes - bytes_remaining;
jmasa@824 2661 release_memory(p_buf, bytes_to_release);
jmasa@824 2662 }
jmasa@824 2663 #ifdef ASSERT
jmasa@824 2664 if (UseLargePagesIndividualAllocation &&
jmasa@824 2665 LargePagesIndividualAllocationInjectError) {
jmasa@824 2666 if (TracePageSizes && Verbose) {
jmasa@824 2667 tty->print_cr("Reserving large pages individually failed.");
jmasa@824 2668 }
jmasa@824 2669 }
jmasa@824 2670 #endif
jmasa@824 2671 return NULL;
jmasa@824 2672 }
jmasa@824 2673 bytes_remaining -= bytes_to_rq;
jmasa@824 2674 next_alloc_addr += bytes_to_rq;
jmasa@824 2675 }
jmasa@824 2676
jmasa@824 2677 return p_buf;
jmasa@824 2678
jmasa@824 2679 } else {
jmasa@824 2680 // normal policy just allocate it all at once
jmasa@824 2681 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
jmasa@824 2682 char * res = (char *)VirtualAlloc(NULL,
jmasa@824 2683 bytes,
jmasa@824 2684 flag,
jmasa@824 2685 PAGE_EXECUTE_READWRITE);
jmasa@824 2686 return res;
jmasa@824 2687 }
duke@435 2688 }
duke@435 2689
duke@435 2690 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2691 return release_memory(base, bytes);
duke@435 2692 }
duke@435 2693
duke@435 2694 void os::print_statistics() {
duke@435 2695 }
duke@435 2696
duke@435 2697 bool os::commit_memory(char* addr, size_t bytes) {
duke@435 2698 if (bytes == 0) {
duke@435 2699 // Don't bother the OS with noops.
duke@435 2700 return true;
duke@435 2701 }
duke@435 2702 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
duke@435 2703 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
duke@435 2704 // Don't attempt to print anything if the OS call fails. We're
duke@435 2705 // probably low on resources, so the print itself may cause crashes.
duke@435 2706 return VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE) != NULL;
duke@435 2707 }
duke@435 2708
duke@435 2709 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
duke@435 2710 return commit_memory(addr, size);
duke@435 2711 }
duke@435 2712
duke@435 2713 bool os::uncommit_memory(char* addr, size_t bytes) {
duke@435 2714 if (bytes == 0) {
duke@435 2715 // Don't bother the OS with noops.
duke@435 2716 return true;
duke@435 2717 }
duke@435 2718 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
duke@435 2719 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
duke@435 2720 return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
duke@435 2721 }
duke@435 2722
duke@435 2723 bool os::release_memory(char* addr, size_t bytes) {
duke@435 2724 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
duke@435 2725 }
duke@435 2726
coleenp@672 2727 // Set protections specified
coleenp@672 2728 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2729 bool is_committed) {
coleenp@672 2730 unsigned int p = 0;
coleenp@672 2731 switch (prot) {
coleenp@672 2732 case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
coleenp@672 2733 case MEM_PROT_READ: p = PAGE_READONLY; break;
coleenp@672 2734 case MEM_PROT_RW: p = PAGE_READWRITE; break;
coleenp@672 2735 case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
coleenp@672 2736 default:
coleenp@672 2737 ShouldNotReachHere();
coleenp@672 2738 }
coleenp@672 2739
duke@435 2740 DWORD old_status;
coleenp@672 2741
coleenp@672 2742 // Strange enough, but on Win32 one can change protection only for committed
coleenp@672 2743 // memory, not a big deal anyway, as bytes less or equal than 64K
coleenp@672 2744 if (!is_committed && !commit_memory(addr, bytes)) {
coleenp@672 2745 fatal("cannot commit protection page");
coleenp@672 2746 }
coleenp@672 2747 // One cannot use os::guard_memory() here, as on Win32 guard page
coleenp@672 2748 // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
coleenp@672 2749 //
coleenp@672 2750 // Pages in the region become guard pages. Any attempt to access a guard page
coleenp@672 2751 // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
coleenp@672 2752 // the guard page status. Guard pages thus act as a one-time access alarm.
coleenp@672 2753 return VirtualProtect(addr, bytes, p, &old_status) != 0;
duke@435 2754 }
duke@435 2755
duke@435 2756 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 2757 DWORD old_status;
duke@435 2758 return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE | PAGE_GUARD, &old_status) != 0;
duke@435 2759 }
duke@435 2760
duke@435 2761 bool os::unguard_memory(char* addr, size_t bytes) {
duke@435 2762 DWORD old_status;
duke@435 2763 return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &old_status) != 0;
duke@435 2764 }
duke@435 2765
duke@435 2766 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 2767 void os::free_memory(char *addr, size_t bytes) { }
duke@435 2768 void os::numa_make_global(char *addr, size_t bytes) { }
iveresov@576 2769 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
duke@435 2770 bool os::numa_topology_changed() { return false; }
duke@435 2771 size_t os::numa_get_groups_num() { return 1; }
duke@435 2772 int os::numa_get_group_id() { return 0; }
duke@435 2773 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
duke@435 2774 if (size > 0) {
duke@435 2775 ids[0] = 0;
duke@435 2776 return 1;
duke@435 2777 }
duke@435 2778 return 0;
duke@435 2779 }
duke@435 2780
duke@435 2781 bool os::get_page_info(char *start, page_info* info) {
duke@435 2782 return false;
duke@435 2783 }
duke@435 2784
duke@435 2785 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2786 return end;
duke@435 2787 }
duke@435 2788
duke@435 2789 char* os::non_memory_address_word() {
duke@435 2790 // Must never look like an address returned by reserve_memory,
duke@435 2791 // even in its subfields (as defined by the CPU immediate fields,
duke@435 2792 // if the CPU splits constants across multiple instructions).
duke@435 2793 return (char*)-1;
duke@435 2794 }
duke@435 2795
duke@435 2796 #define MAX_ERROR_COUNT 100
duke@435 2797 #define SYS_THREAD_ERROR 0xffffffffUL
duke@435 2798
duke@435 2799 void os::pd_start_thread(Thread* thread) {
duke@435 2800 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
duke@435 2801 // Returns previous suspend state:
duke@435 2802 // 0: Thread was not suspended
duke@435 2803 // 1: Thread is running now
duke@435 2804 // >1: Thread is still suspended.
duke@435 2805 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
duke@435 2806 }
duke@435 2807
duke@435 2808 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 2809 return ::read(fd, buf, nBytes);
duke@435 2810 }
duke@435 2811
duke@435 2812 class HighResolutionInterval {
duke@435 2813 // The default timer resolution seems to be 10 milliseconds.
duke@435 2814 // (Where is this written down?)
duke@435 2815 // If someone wants to sleep for only a fraction of the default,
duke@435 2816 // then we set the timer resolution down to 1 millisecond for
duke@435 2817 // the duration of their interval.
duke@435 2818 // We carefully set the resolution back, since otherwise we
duke@435 2819 // seem to incur an overhead (3%?) that we don't need.
duke@435 2820 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
duke@435 2821 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
duke@435 2822 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
duke@435 2823 // timeBeginPeriod() if the relative error exceeded some threshold.
duke@435 2824 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
duke@435 2825 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
duke@435 2826 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
duke@435 2827 // resolution timers running.
duke@435 2828 private:
duke@435 2829 jlong resolution;
duke@435 2830 public:
duke@435 2831 HighResolutionInterval(jlong ms) {
duke@435 2832 resolution = ms % 10L;
duke@435 2833 if (resolution != 0) {
duke@435 2834 MMRESULT result = timeBeginPeriod(1L);
duke@435 2835 }
duke@435 2836 }
duke@435 2837 ~HighResolutionInterval() {
duke@435 2838 if (resolution != 0) {
duke@435 2839 MMRESULT result = timeEndPeriod(1L);
duke@435 2840 }
duke@435 2841 resolution = 0L;
duke@435 2842 }
duke@435 2843 };
duke@435 2844
duke@435 2845 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
duke@435 2846 jlong limit = (jlong) MAXDWORD;
duke@435 2847
duke@435 2848 while(ms > limit) {
duke@435 2849 int res;
duke@435 2850 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
duke@435 2851 return res;
duke@435 2852 ms -= limit;
duke@435 2853 }
duke@435 2854
duke@435 2855 assert(thread == Thread::current(), "thread consistency check");
duke@435 2856 OSThread* osthread = thread->osthread();
duke@435 2857 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
duke@435 2858 int result;
duke@435 2859 if (interruptable) {
duke@435 2860 assert(thread->is_Java_thread(), "must be java thread");
duke@435 2861 JavaThread *jt = (JavaThread *) thread;
duke@435 2862 ThreadBlockInVM tbivm(jt);
duke@435 2863
duke@435 2864 jt->set_suspend_equivalent();
duke@435 2865 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 2866 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 2867
duke@435 2868 HANDLE events[1];
duke@435 2869 events[0] = osthread->interrupt_event();
duke@435 2870 HighResolutionInterval *phri=NULL;
duke@435 2871 if(!ForceTimeHighResolution)
duke@435 2872 phri = new HighResolutionInterval( ms );
duke@435 2873 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
duke@435 2874 result = OS_TIMEOUT;
duke@435 2875 } else {
duke@435 2876 ResetEvent(osthread->interrupt_event());
duke@435 2877 osthread->set_interrupted(false);
duke@435 2878 result = OS_INTRPT;
duke@435 2879 }
duke@435 2880 delete phri; //if it is NULL, harmless
duke@435 2881
duke@435 2882 // were we externally suspended while we were waiting?
duke@435 2883 jt->check_and_wait_while_suspended();
duke@435 2884 } else {
duke@435 2885 assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 2886 Sleep((long) ms);
duke@435 2887 result = OS_TIMEOUT;
duke@435 2888 }
duke@435 2889 return result;
duke@435 2890 }
duke@435 2891
duke@435 2892 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 2893 void os::infinite_sleep() {
duke@435 2894 while (true) { // sleep forever ...
duke@435 2895 Sleep(100000); // ... 100 seconds at a time
duke@435 2896 }
duke@435 2897 }
duke@435 2898
duke@435 2899 typedef BOOL (WINAPI * STTSignature)(void) ;
duke@435 2900
duke@435 2901 os::YieldResult os::NakedYield() {
duke@435 2902 // Use either SwitchToThread() or Sleep(0)
duke@435 2903 // Consider passing back the return value from SwitchToThread().
duke@435 2904 // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
duke@435 2905 // In that case we revert to Sleep(0).
duke@435 2906 static volatile STTSignature stt = (STTSignature) 1 ;
duke@435 2907
duke@435 2908 if (stt == ((STTSignature) 1)) {
duke@435 2909 stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
duke@435 2910 // It's OK if threads race during initialization as the operation above is idempotent.
duke@435 2911 }
duke@435 2912 if (stt != NULL) {
duke@435 2913 return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
duke@435 2914 } else {
duke@435 2915 Sleep (0) ;
duke@435 2916 }
duke@435 2917 return os::YIELD_UNKNOWN ;
duke@435 2918 }
duke@435 2919
duke@435 2920 void os::yield() { os::NakedYield(); }
duke@435 2921
duke@435 2922 void os::yield_all(int attempts) {
duke@435 2923 // Yields to all threads, including threads with lower priorities
duke@435 2924 Sleep(1);
duke@435 2925 }
duke@435 2926
duke@435 2927 // Win32 only gives you access to seven real priorities at a time,
duke@435 2928 // so we compress Java's ten down to seven. It would be better
duke@435 2929 // if we dynamically adjusted relative priorities.
duke@435 2930
duke@435 2931 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 2932 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 2933 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 2934 THREAD_PRIORITY_LOWEST, // 2
duke@435 2935 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 2936 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 2937 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 2938 THREAD_PRIORITY_NORMAL, // 6
duke@435 2939 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 2940 THREAD_PRIORITY_ABOVE_NORMAL, // 8
duke@435 2941 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 2942 THREAD_PRIORITY_HIGHEST // 10 MaxPriority
duke@435 2943 };
duke@435 2944
duke@435 2945 int prio_policy1[MaxPriority + 1] = {
duke@435 2946 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 2947 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 2948 THREAD_PRIORITY_LOWEST, // 2
duke@435 2949 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 2950 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 2951 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 2952 THREAD_PRIORITY_ABOVE_NORMAL, // 6
duke@435 2953 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 2954 THREAD_PRIORITY_HIGHEST, // 8
duke@435 2955 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 2956 THREAD_PRIORITY_TIME_CRITICAL // 10 MaxPriority
duke@435 2957 };
duke@435 2958
duke@435 2959 static int prio_init() {
duke@435 2960 // If ThreadPriorityPolicy is 1, switch tables
duke@435 2961 if (ThreadPriorityPolicy == 1) {
duke@435 2962 int i;
duke@435 2963 for (i = 0; i < MaxPriority + 1; i++) {
duke@435 2964 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 2965 }
duke@435 2966 }
duke@435 2967 return 0;
duke@435 2968 }
duke@435 2969
duke@435 2970 OSReturn os::set_native_priority(Thread* thread, int priority) {
duke@435 2971 if (!UseThreadPriorities) return OS_OK;
duke@435 2972 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
duke@435 2973 return ret ? OS_OK : OS_ERR;
duke@435 2974 }
duke@435 2975
duke@435 2976 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
duke@435 2977 if ( !UseThreadPriorities ) {
duke@435 2978 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 2979 return OS_OK;
duke@435 2980 }
duke@435 2981 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
duke@435 2982 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
duke@435 2983 assert(false, "GetThreadPriority failed");
duke@435 2984 return OS_ERR;
duke@435 2985 }
duke@435 2986 *priority_ptr = os_prio;
duke@435 2987 return OS_OK;
duke@435 2988 }
duke@435 2989
duke@435 2990
duke@435 2991 // Hint to the underlying OS that a task switch would not be good.
duke@435 2992 // Void return because it's a hint and can fail.
duke@435 2993 void os::hint_no_preempt() {}
duke@435 2994
duke@435 2995 void os::interrupt(Thread* thread) {
duke@435 2996 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 2997 "possibility of dangling Thread pointer");
duke@435 2998
duke@435 2999 OSThread* osthread = thread->osthread();
duke@435 3000 osthread->set_interrupted(true);
duke@435 3001 // More than one thread can get here with the same value of osthread,
duke@435 3002 // resulting in multiple notifications. We do, however, want the store
duke@435 3003 // to interrupted() to be visible to other threads before we post
duke@435 3004 // the interrupt event.
duke@435 3005 OrderAccess::release();
duke@435 3006 SetEvent(osthread->interrupt_event());
duke@435 3007 // For JSR166: unpark after setting status
duke@435 3008 if (thread->is_Java_thread())
duke@435 3009 ((JavaThread*)thread)->parker()->unpark();
duke@435 3010
duke@435 3011 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3012 if (ev != NULL) ev->unpark() ;
duke@435 3013
duke@435 3014 }
duke@435 3015
duke@435 3016
duke@435 3017 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3018 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3019 "possibility of dangling Thread pointer");
duke@435 3020
duke@435 3021 OSThread* osthread = thread->osthread();
duke@435 3022 bool interrupted;
duke@435 3023 interrupted = osthread->interrupted();
duke@435 3024 if (clear_interrupted == true) {
duke@435 3025 osthread->set_interrupted(false);
duke@435 3026 ResetEvent(osthread->interrupt_event());
duke@435 3027 } // Otherwise leave the interrupted state alone
duke@435 3028
duke@435 3029 return interrupted;
duke@435 3030 }
duke@435 3031
duke@435 3032 // Get's a pc (hint) for a running thread. Currently used only for profiling.
duke@435 3033 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3034 CONTEXT context;
duke@435 3035 context.ContextFlags = CONTEXT_CONTROL;
duke@435 3036 HANDLE handle = thread->osthread()->thread_handle();
duke@435 3037 #ifdef _M_IA64
duke@435 3038 assert(0, "Fix get_thread_pc");
duke@435 3039 return ExtendedPC(NULL);
duke@435 3040 #else
duke@435 3041 if (GetThreadContext(handle, &context)) {
duke@435 3042 #ifdef _M_AMD64
duke@435 3043 return ExtendedPC((address) context.Rip);
duke@435 3044 #else
duke@435 3045 return ExtendedPC((address) context.Eip);
duke@435 3046 #endif
duke@435 3047 } else {
duke@435 3048 return ExtendedPC(NULL);
duke@435 3049 }
duke@435 3050 #endif
duke@435 3051 }
duke@435 3052
duke@435 3053 // GetCurrentThreadId() returns DWORD
duke@435 3054 intx os::current_thread_id() { return GetCurrentThreadId(); }
duke@435 3055
duke@435 3056 static int _initial_pid = 0;
duke@435 3057
duke@435 3058 int os::current_process_id()
duke@435 3059 {
duke@435 3060 return (_initial_pid ? _initial_pid : _getpid());
duke@435 3061 }
duke@435 3062
duke@435 3063 int os::win32::_vm_page_size = 0;
duke@435 3064 int os::win32::_vm_allocation_granularity = 0;
duke@435 3065 int os::win32::_processor_type = 0;
duke@435 3066 // Processor level is not available on non-NT systems, use vm_version instead
duke@435 3067 int os::win32::_processor_level = 0;
duke@435 3068 julong os::win32::_physical_memory = 0;
duke@435 3069 size_t os::win32::_default_stack_size = 0;
duke@435 3070
duke@435 3071 intx os::win32::_os_thread_limit = 0;
duke@435 3072 volatile intx os::win32::_os_thread_count = 0;
duke@435 3073
duke@435 3074 bool os::win32::_is_nt = false;
jmasa@824 3075 bool os::win32::_is_windows_2003 = false;
duke@435 3076
duke@435 3077
duke@435 3078 void os::win32::initialize_system_info() {
duke@435 3079 SYSTEM_INFO si;
duke@435 3080 GetSystemInfo(&si);
duke@435 3081 _vm_page_size = si.dwPageSize;
duke@435 3082 _vm_allocation_granularity = si.dwAllocationGranularity;
duke@435 3083 _processor_type = si.dwProcessorType;
duke@435 3084 _processor_level = si.wProcessorLevel;
duke@435 3085 _processor_count = si.dwNumberOfProcessors;
duke@435 3086
duke@435 3087 MEMORYSTATUS ms;
duke@435 3088 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
duke@435 3089 // dwMemoryLoad (% of memory in use)
duke@435 3090 GlobalMemoryStatus(&ms);
duke@435 3091 _physical_memory = ms.dwTotalPhys;
duke@435 3092
duke@435 3093 OSVERSIONINFO oi;
duke@435 3094 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
duke@435 3095 GetVersionEx(&oi);
duke@435 3096 switch(oi.dwPlatformId) {
duke@435 3097 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
jmasa@824 3098 case VER_PLATFORM_WIN32_NT:
jmasa@824 3099 _is_nt = true;
jmasa@824 3100 {
jmasa@824 3101 int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
jmasa@824 3102 if (os_vers == 5002) {
jmasa@824 3103 _is_windows_2003 = true;
jmasa@824 3104 }
jmasa@824 3105 }
jmasa@824 3106 break;
duke@435 3107 default: fatal("Unknown platform");
duke@435 3108 }
duke@435 3109
duke@435 3110 _default_stack_size = os::current_stack_size();
duke@435 3111 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
duke@435 3112 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
duke@435 3113 "stack size not a multiple of page size");
duke@435 3114
duke@435 3115 initialize_performance_counter();
duke@435 3116
duke@435 3117 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
duke@435 3118 // known to deadlock the system, if the VM issues to thread operations with
duke@435 3119 // a too high frequency, e.g., such as changing the priorities.
duke@435 3120 // The 6000 seems to work well - no deadlocks has been notices on the test
duke@435 3121 // programs that we have seen experience this problem.
duke@435 3122 if (!os::win32::is_nt()) {
duke@435 3123 StarvationMonitorInterval = 6000;
duke@435 3124 }
duke@435 3125 }
duke@435 3126
duke@435 3127
duke@435 3128 void os::win32::setmode_streams() {
duke@435 3129 _setmode(_fileno(stdin), _O_BINARY);
duke@435 3130 _setmode(_fileno(stdout), _O_BINARY);
duke@435 3131 _setmode(_fileno(stderr), _O_BINARY);
duke@435 3132 }
duke@435 3133
duke@435 3134
duke@435 3135 int os::message_box(const char* title, const char* message) {
duke@435 3136 int result = MessageBox(NULL, message, title,
duke@435 3137 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
duke@435 3138 return result == IDYES;
duke@435 3139 }
duke@435 3140
duke@435 3141 int os::allocate_thread_local_storage() {
duke@435 3142 return TlsAlloc();
duke@435 3143 }
duke@435 3144
duke@435 3145
duke@435 3146 void os::free_thread_local_storage(int index) {
duke@435 3147 TlsFree(index);
duke@435 3148 }
duke@435 3149
duke@435 3150
duke@435 3151 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 3152 TlsSetValue(index, value);
duke@435 3153 assert(thread_local_storage_at(index) == value, "Just checking");
duke@435 3154 }
duke@435 3155
duke@435 3156
duke@435 3157 void* os::thread_local_storage_at(int index) {
duke@435 3158 return TlsGetValue(index);
duke@435 3159 }
duke@435 3160
duke@435 3161
duke@435 3162 #ifndef PRODUCT
duke@435 3163 #ifndef _WIN64
duke@435 3164 // Helpers to check whether NX protection is enabled
duke@435 3165 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
duke@435 3166 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 3167 pex->ExceptionRecord->NumberParameters > 0 &&
duke@435 3168 pex->ExceptionRecord->ExceptionInformation[0] ==
duke@435 3169 EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 3170 return EXCEPTION_EXECUTE_HANDLER;
duke@435 3171 }
duke@435 3172 return EXCEPTION_CONTINUE_SEARCH;
duke@435 3173 }
duke@435 3174
duke@435 3175 void nx_check_protection() {
duke@435 3176 // If NX is enabled we'll get an exception calling into code on the stack
duke@435 3177 char code[] = { (char)0xC3 }; // ret
duke@435 3178 void *code_ptr = (void *)code;
duke@435 3179 __try {
duke@435 3180 __asm call code_ptr
duke@435 3181 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 3182 tty->print_raw_cr("NX protection detected.");
duke@435 3183 }
duke@435 3184 }
duke@435 3185 #endif // _WIN64
duke@435 3186 #endif // PRODUCT
duke@435 3187
duke@435 3188 // this is called _before_ the global arguments have been parsed
duke@435 3189 void os::init(void) {
duke@435 3190 _initial_pid = _getpid();
duke@435 3191
duke@435 3192 init_random(1234567);
duke@435 3193
duke@435 3194 win32::initialize_system_info();
duke@435 3195 win32::setmode_streams();
duke@435 3196 init_page_sizes((size_t) win32::vm_page_size());
duke@435 3197
duke@435 3198 // For better scalability on MP systems (must be called after initialize_system_info)
duke@435 3199 #ifndef PRODUCT
duke@435 3200 if (is_MP()) {
duke@435 3201 NoYieldsInMicrolock = true;
duke@435 3202 }
duke@435 3203 #endif
jmasa@824 3204 // This may be overridden later when argument processing is done.
jmasa@824 3205 FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
jmasa@824 3206 os::win32::is_windows_2003());
jmasa@824 3207
duke@435 3208 // Initialize main_process and main_thread
duke@435 3209 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
jmasa@824 3210 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
duke@435 3211 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
duke@435 3212 fatal("DuplicateHandle failed\n");
duke@435 3213 }
duke@435 3214 main_thread_id = (int) GetCurrentThreadId();
duke@435 3215 }
duke@435 3216
duke@435 3217 // To install functions for atexit processing
duke@435 3218 extern "C" {
duke@435 3219 static void perfMemory_exit_helper() {
duke@435 3220 perfMemory_exit();
duke@435 3221 }
duke@435 3222 }
duke@435 3223
duke@435 3224
duke@435 3225 // this is called _after_ the global arguments have been parsed
duke@435 3226 jint os::init_2(void) {
duke@435 3227 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3228 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
duke@435 3229 guarantee( polling_page != NULL, "Reserve Failed for polling page");
duke@435 3230
duke@435 3231 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
duke@435 3232 guarantee( return_page != NULL, "Commit Failed for polling page");
duke@435 3233
duke@435 3234 os::set_polling_page( polling_page );
duke@435 3235
duke@435 3236 #ifndef PRODUCT
duke@435 3237 if( Verbose && PrintMiscellaneous )
duke@435 3238 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3239 #endif
duke@435 3240
duke@435 3241 if (!UseMembar) {
duke@435 3242 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_EXECUTE_READWRITE);
duke@435 3243 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
duke@435 3244
duke@435 3245 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
duke@435 3246 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
duke@435 3247
duke@435 3248 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3249
duke@435 3250 #ifndef PRODUCT
duke@435 3251 if(Verbose && PrintMiscellaneous)
duke@435 3252 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3253 #endif
duke@435 3254 }
duke@435 3255
duke@435 3256 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 3257
duke@435 3258 // Setup Windows Exceptions
duke@435 3259
duke@435 3260 // On Itanium systems, Structured Exception Handling does not
duke@435 3261 // work since stack frames must be walkable by the OS. Since
duke@435 3262 // much of our code is dynamically generated, and we do not have
duke@435 3263 // proper unwind .xdata sections, the system simply exits
duke@435 3264 // rather than delivering the exception. To work around
duke@435 3265 // this we use VectorExceptions instead.
duke@435 3266 #ifdef _WIN64
duke@435 3267 if (UseVectoredExceptions) {
duke@435 3268 topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
duke@435 3269 }
duke@435 3270 #endif
duke@435 3271
duke@435 3272 // for debugging float code generation bugs
duke@435 3273 if (ForceFloatExceptions) {
duke@435 3274 #ifndef _WIN64
duke@435 3275 static long fp_control_word = 0;
duke@435 3276 __asm { fstcw fp_control_word }
duke@435 3277 // see Intel PPro Manual, Vol. 2, p 7-16
duke@435 3278 const long precision = 0x20;
duke@435 3279 const long underflow = 0x10;
duke@435 3280 const long overflow = 0x08;
duke@435 3281 const long zero_div = 0x04;
duke@435 3282 const long denorm = 0x02;
duke@435 3283 const long invalid = 0x01;
duke@435 3284 fp_control_word |= invalid;
duke@435 3285 __asm { fldcw fp_control_word }
duke@435 3286 #endif
duke@435 3287 }
duke@435 3288
duke@435 3289 // Initialize HPI.
duke@435 3290 jint hpi_result = hpi::initialize();
duke@435 3291 if (hpi_result != JNI_OK) { return hpi_result; }
duke@435 3292
duke@435 3293 // If stack_commit_size is 0, windows will reserve the default size,
duke@435 3294 // but only commit a small portion of it.
duke@435 3295 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
duke@435 3296 size_t default_reserve_size = os::win32::default_stack_size();
duke@435 3297 size_t actual_reserve_size = stack_commit_size;
duke@435 3298 if (stack_commit_size < default_reserve_size) {
duke@435 3299 // If stack_commit_size == 0, we want this too
duke@435 3300 actual_reserve_size = default_reserve_size;
duke@435 3301 }
duke@435 3302
duke@435 3303 JavaThread::set_stack_size_at_create(stack_commit_size);
duke@435 3304
duke@435 3305 // Calculate theoretical max. size of Threads to guard gainst artifical
duke@435 3306 // out-of-memory situations, where all available address-space has been
duke@435 3307 // reserved by thread stacks.
duke@435 3308 assert(actual_reserve_size != 0, "Must have a stack");
duke@435 3309
duke@435 3310 // Calculate the thread limit when we should start doing Virtual Memory
duke@435 3311 // banging. Currently when the threads will have used all but 200Mb of space.
duke@435 3312 //
duke@435 3313 // TODO: consider performing a similar calculation for commit size instead
duke@435 3314 // as reserve size, since on a 64-bit platform we'll run into that more
duke@435 3315 // often than running out of virtual memory space. We can use the
duke@435 3316 // lower value of the two calculations as the os_thread_limit.
coleenp@548 3317 size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
duke@435 3318 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
duke@435 3319
duke@435 3320 // at exit methods are called in the reverse order of their registration.
duke@435 3321 // there is no limit to the number of functions registered. atexit does
duke@435 3322 // not set errno.
duke@435 3323
duke@435 3324 if (PerfAllowAtExitRegistration) {
duke@435 3325 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3326 // atexit functions can be delayed until process exit time, which
duke@435 3327 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3328 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3329
duke@435 3330 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3331 // the future if the appropriate cleanup code can be added to the
duke@435 3332 // VM_Exit VMOperation's doit method.
duke@435 3333 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3334 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
duke@435 3335 }
duke@435 3336 }
duke@435 3337
duke@435 3338 // initialize PSAPI or ToolHelp for fatal error handler
duke@435 3339 if (win32::is_nt()) _init_psapi();
duke@435 3340 else _init_toolhelp();
duke@435 3341
duke@435 3342 #ifndef _WIN64
duke@435 3343 // Print something if NX is enabled (win32 on AMD64)
duke@435 3344 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
duke@435 3345 #endif
duke@435 3346
duke@435 3347 // initialize thread priority policy
duke@435 3348 prio_init();
duke@435 3349
duke@435 3350 return JNI_OK;
duke@435 3351 }
duke@435 3352
duke@435 3353
duke@435 3354 // Mark the polling page as unreadable
duke@435 3355 void os::make_polling_page_unreadable(void) {
duke@435 3356 DWORD old_status;
duke@435 3357 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
duke@435 3358 fatal("Could not disable polling page");
duke@435 3359 };
duke@435 3360
duke@435 3361 // Mark the polling page as readable
duke@435 3362 void os::make_polling_page_readable(void) {
duke@435 3363 DWORD old_status;
duke@435 3364 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
duke@435 3365 fatal("Could not enable polling page");
duke@435 3366 };
duke@435 3367
duke@435 3368
duke@435 3369 int os::stat(const char *path, struct stat *sbuf) {
duke@435 3370 char pathbuf[MAX_PATH];
duke@435 3371 if (strlen(path) > MAX_PATH - 1) {
duke@435 3372 errno = ENAMETOOLONG;
duke@435 3373 return -1;
duke@435 3374 }
duke@435 3375 hpi::native_path(strcpy(pathbuf, path));
duke@435 3376 int ret = ::stat(pathbuf, sbuf);
duke@435 3377 if (sbuf != NULL && UseUTCFileTimestamp) {
duke@435 3378 // Fix for 6539723. st_mtime returned from stat() is dependent on
duke@435 3379 // the system timezone and so can return different values for the
duke@435 3380 // same file if/when daylight savings time changes. This adjustment
duke@435 3381 // makes sure the same timestamp is returned regardless of the TZ.
duke@435 3382 //
duke@435 3383 // See:
duke@435 3384 // http://msdn.microsoft.com/library/
duke@435 3385 // default.asp?url=/library/en-us/sysinfo/base/
duke@435 3386 // time_zone_information_str.asp
duke@435 3387 // and
duke@435 3388 // http://msdn.microsoft.com/library/default.asp?url=
duke@435 3389 // /library/en-us/sysinfo/base/settimezoneinformation.asp
duke@435 3390 //
duke@435 3391 // NOTE: there is a insidious bug here: If the timezone is changed
duke@435 3392 // after the call to stat() but before 'GetTimeZoneInformation()', then
duke@435 3393 // the adjustment we do here will be wrong and we'll return the wrong
duke@435 3394 // value (which will likely end up creating an invalid class data
duke@435 3395 // archive). Absent a better API for this, or some time zone locking
duke@435 3396 // mechanism, we'll have to live with this risk.
duke@435 3397 TIME_ZONE_INFORMATION tz;
duke@435 3398 DWORD tzid = GetTimeZoneInformation(&tz);
duke@435 3399 int daylightBias =
duke@435 3400 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
duke@435 3401 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
duke@435 3402 }
duke@435 3403 return ret;
duke@435 3404 }
duke@435 3405
duke@435 3406
duke@435 3407 #define FT2INT64(ft) \
duke@435 3408 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
duke@435 3409
duke@435 3410
duke@435 3411 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 3412 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 3413 // of a thread.
duke@435 3414 //
duke@435 3415 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 3416 // the fast estimate available on the platform.
duke@435 3417
duke@435 3418 // current_thread_cpu_time() is not optimized for Windows yet
duke@435 3419 jlong os::current_thread_cpu_time() {
duke@435 3420 // return user + sys since the cost is the same
duke@435 3421 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
duke@435 3422 }
duke@435 3423
duke@435 3424 jlong os::thread_cpu_time(Thread* thread) {
duke@435 3425 // consistent with what current_thread_cpu_time() returns.
duke@435 3426 return os::thread_cpu_time(thread, true /* user+sys */);
duke@435 3427 }
duke@435 3428
duke@435 3429 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 3430 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 3431 }
duke@435 3432
duke@435 3433 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
duke@435 3434 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
duke@435 3435 // If this function changes, os::is_thread_cpu_time_supported() should too
duke@435 3436 if (os::win32::is_nt()) {
duke@435 3437 FILETIME CreationTime;
duke@435 3438 FILETIME ExitTime;
duke@435 3439 FILETIME KernelTime;
duke@435 3440 FILETIME UserTime;
duke@435 3441
duke@435 3442 if ( GetThreadTimes(thread->osthread()->thread_handle(),
duke@435 3443 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3444 return -1;
duke@435 3445 else
duke@435 3446 if (user_sys_cpu_time) {
duke@435 3447 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
duke@435 3448 } else {
duke@435 3449 return FT2INT64(UserTime) * 100;
duke@435 3450 }
duke@435 3451 } else {
duke@435 3452 return (jlong) timeGetTime() * 1000000;
duke@435 3453 }
duke@435 3454 }
duke@435 3455
duke@435 3456 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3457 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3458 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3459 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3460 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3461 }
duke@435 3462
duke@435 3463 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3464 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3465 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3466 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3467 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3468 }
duke@435 3469
duke@435 3470 bool os::is_thread_cpu_time_supported() {
duke@435 3471 // see os::thread_cpu_time
duke@435 3472 if (os::win32::is_nt()) {
duke@435 3473 FILETIME CreationTime;
duke@435 3474 FILETIME ExitTime;
duke@435 3475 FILETIME KernelTime;
duke@435 3476 FILETIME UserTime;
duke@435 3477
duke@435 3478 if ( GetThreadTimes(GetCurrentThread(),
duke@435 3479 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3480 return false;
duke@435 3481 else
duke@435 3482 return true;
duke@435 3483 } else {
duke@435 3484 return false;
duke@435 3485 }
duke@435 3486 }
duke@435 3487
duke@435 3488 // Windows does't provide a loadavg primitive so this is stubbed out for now.
duke@435 3489 // It does have primitives (PDH API) to get CPU usage and run queue length.
duke@435 3490 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
duke@435 3491 // If we wanted to implement loadavg on Windows, we have a few options:
duke@435 3492 //
duke@435 3493 // a) Query CPU usage and run queue length and "fake" an answer by
duke@435 3494 // returning the CPU usage if it's under 100%, and the run queue
duke@435 3495 // length otherwise. It turns out that querying is pretty slow
duke@435 3496 // on Windows, on the order of 200 microseconds on a fast machine.
duke@435 3497 // Note that on the Windows the CPU usage value is the % usage
duke@435 3498 // since the last time the API was called (and the first call
duke@435 3499 // returns 100%), so we'd have to deal with that as well.
duke@435 3500 //
duke@435 3501 // b) Sample the "fake" answer using a sampling thread and store
duke@435 3502 // the answer in a global variable. The call to loadavg would
duke@435 3503 // just return the value of the global, avoiding the slow query.
duke@435 3504 //
duke@435 3505 // c) Sample a better answer using exponential decay to smooth the
duke@435 3506 // value. This is basically the algorithm used by UNIX kernels.
duke@435 3507 //
duke@435 3508 // Note that sampling thread starvation could affect both (b) and (c).
duke@435 3509 int os::loadavg(double loadavg[], int nelem) {
duke@435 3510 return -1;
duke@435 3511 }
duke@435 3512
duke@435 3513
duke@435 3514 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
duke@435 3515 bool os::dont_yield() {
duke@435 3516 return DontYieldALot;
duke@435 3517 }
duke@435 3518
duke@435 3519 // Is a (classpath) directory empty?
duke@435 3520 bool os::dir_is_empty(const char* path) {
duke@435 3521 WIN32_FIND_DATA fd;
duke@435 3522 HANDLE f = FindFirstFile(path, &fd);
duke@435 3523 if (f == INVALID_HANDLE_VALUE) {
duke@435 3524 return true;
duke@435 3525 }
duke@435 3526 FindClose(f);
duke@435 3527 return false;
duke@435 3528 }
duke@435 3529
duke@435 3530 // create binary file, rewriting existing file if required
duke@435 3531 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 3532 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
duke@435 3533 if (!rewrite_existing) {
duke@435 3534 oflags |= _O_EXCL;
duke@435 3535 }
duke@435 3536 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
duke@435 3537 }
duke@435 3538
duke@435 3539 // return current position of file pointer
duke@435 3540 jlong os::current_file_offset(int fd) {
duke@435 3541 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
duke@435 3542 }
duke@435 3543
duke@435 3544 // move file pointer to the specified offset
duke@435 3545 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 3546 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
duke@435 3547 }
duke@435 3548
duke@435 3549
duke@435 3550 // Map a block of memory.
duke@435 3551 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3552 char *addr, size_t bytes, bool read_only,
duke@435 3553 bool allow_exec) {
duke@435 3554 HANDLE hFile;
duke@435 3555 char* base;
duke@435 3556
duke@435 3557 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
duke@435 3558 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
duke@435 3559 if (hFile == NULL) {
duke@435 3560 if (PrintMiscellaneous && Verbose) {
duke@435 3561 DWORD err = GetLastError();
duke@435 3562 tty->print_cr("CreateFile() failed: GetLastError->%ld.");
duke@435 3563 }
duke@435 3564 return NULL;
duke@435 3565 }
duke@435 3566
duke@435 3567 if (allow_exec) {
duke@435 3568 // CreateFileMapping/MapViewOfFileEx can't map executable memory
duke@435 3569 // unless it comes from a PE image (which the shared archive is not.)
duke@435 3570 // Even VirtualProtect refuses to give execute access to mapped memory
duke@435 3571 // that was not previously executable.
duke@435 3572 //
duke@435 3573 // Instead, stick the executable region in anonymous memory. Yuck.
duke@435 3574 // Penalty is that ~4 pages will not be shareable - in the future
duke@435 3575 // we might consider DLLizing the shared archive with a proper PE
duke@435 3576 // header so that mapping executable + sharing is possible.
duke@435 3577
duke@435 3578 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
duke@435 3579 PAGE_READWRITE);
duke@435 3580 if (base == NULL) {
duke@435 3581 if (PrintMiscellaneous && Verbose) {
duke@435 3582 DWORD err = GetLastError();
duke@435 3583 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
duke@435 3584 }
duke@435 3585 CloseHandle(hFile);
duke@435 3586 return NULL;
duke@435 3587 }
duke@435 3588
duke@435 3589 DWORD bytes_read;
duke@435 3590 OVERLAPPED overlapped;
duke@435 3591 overlapped.Offset = (DWORD)file_offset;
duke@435 3592 overlapped.OffsetHigh = 0;
duke@435 3593 overlapped.hEvent = NULL;
duke@435 3594 // ReadFile guarantees that if the return value is true, the requested
duke@435 3595 // number of bytes were read before returning.
duke@435 3596 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
duke@435 3597 if (!res) {
duke@435 3598 if (PrintMiscellaneous && Verbose) {
duke@435 3599 DWORD err = GetLastError();
duke@435 3600 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
duke@435 3601 }
duke@435 3602 release_memory(base, bytes);
duke@435 3603 CloseHandle(hFile);
duke@435 3604 return NULL;
duke@435 3605 }
duke@435 3606 } else {
duke@435 3607 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
duke@435 3608 NULL /*file_name*/);
duke@435 3609 if (hMap == NULL) {
duke@435 3610 if (PrintMiscellaneous && Verbose) {
duke@435 3611 DWORD err = GetLastError();
duke@435 3612 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
duke@435 3613 }
duke@435 3614 CloseHandle(hFile);
duke@435 3615 return NULL;
duke@435 3616 }
duke@435 3617
duke@435 3618 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
duke@435 3619 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
duke@435 3620 (DWORD)bytes, addr);
duke@435 3621 if (base == NULL) {
duke@435 3622 if (PrintMiscellaneous && Verbose) {
duke@435 3623 DWORD err = GetLastError();
duke@435 3624 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
duke@435 3625 }
duke@435 3626 CloseHandle(hMap);
duke@435 3627 CloseHandle(hFile);
duke@435 3628 return NULL;
duke@435 3629 }
duke@435 3630
duke@435 3631 if (CloseHandle(hMap) == 0) {
duke@435 3632 if (PrintMiscellaneous && Verbose) {
duke@435 3633 DWORD err = GetLastError();
duke@435 3634 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
duke@435 3635 }
duke@435 3636 CloseHandle(hFile);
duke@435 3637 return base;
duke@435 3638 }
duke@435 3639 }
duke@435 3640
duke@435 3641 if (allow_exec) {
duke@435 3642 DWORD old_protect;
duke@435 3643 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
duke@435 3644 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
duke@435 3645
duke@435 3646 if (!res) {
duke@435 3647 if (PrintMiscellaneous && Verbose) {
duke@435 3648 DWORD err = GetLastError();
duke@435 3649 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
duke@435 3650 }
duke@435 3651 // Don't consider this a hard error, on IA32 even if the
duke@435 3652 // VirtualProtect fails, we should still be able to execute
duke@435 3653 CloseHandle(hFile);
duke@435 3654 return base;
duke@435 3655 }
duke@435 3656 }
duke@435 3657
duke@435 3658 if (CloseHandle(hFile) == 0) {
duke@435 3659 if (PrintMiscellaneous && Verbose) {
duke@435 3660 DWORD err = GetLastError();
duke@435 3661 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
duke@435 3662 }
duke@435 3663 return base;
duke@435 3664 }
duke@435 3665
duke@435 3666 return base;
duke@435 3667 }
duke@435 3668
duke@435 3669
duke@435 3670 // Remap a block of memory.
duke@435 3671 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3672 char *addr, size_t bytes, bool read_only,
duke@435 3673 bool allow_exec) {
duke@435 3674 // This OS does not allow existing memory maps to be remapped so we
duke@435 3675 // have to unmap the memory before we remap it.
duke@435 3676 if (!os::unmap_memory(addr, bytes)) {
duke@435 3677 return NULL;
duke@435 3678 }
duke@435 3679
duke@435 3680 // There is a very small theoretical window between the unmap_memory()
duke@435 3681 // call above and the map_memory() call below where a thread in native
duke@435 3682 // code may be able to access an address that is no longer mapped.
duke@435 3683
duke@435 3684 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 3685 allow_exec);
duke@435 3686 }
duke@435 3687
duke@435 3688
duke@435 3689 // Unmap a block of memory.
duke@435 3690 // Returns true=success, otherwise false.
duke@435 3691
duke@435 3692 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 3693 BOOL result = UnmapViewOfFile(addr);
duke@435 3694 if (result == 0) {
duke@435 3695 if (PrintMiscellaneous && Verbose) {
duke@435 3696 DWORD err = GetLastError();
duke@435 3697 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
duke@435 3698 }
duke@435 3699 return false;
duke@435 3700 }
duke@435 3701 return true;
duke@435 3702 }
duke@435 3703
duke@435 3704 void os::pause() {
duke@435 3705 char filename[MAX_PATH];
duke@435 3706 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 3707 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 3708 } else {
duke@435 3709 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 3710 }
duke@435 3711
duke@435 3712 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 3713 if (fd != -1) {
duke@435 3714 struct stat buf;
duke@435 3715 close(fd);
duke@435 3716 while (::stat(filename, &buf) == 0) {
duke@435 3717 Sleep(100);
duke@435 3718 }
duke@435 3719 } else {
duke@435 3720 jio_fprintf(stderr,
duke@435 3721 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 3722 }
duke@435 3723 }
duke@435 3724
duke@435 3725 // An Event wraps a win32 "CreateEvent" kernel handle.
duke@435 3726 //
duke@435 3727 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
duke@435 3728 //
duke@435 3729 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
duke@435 3730 // field, and call CloseHandle() on the win32 event handle. Unpark() would
duke@435 3731 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
duke@435 3732 // In addition, an unpark() operation might fetch the handle field, but the
duke@435 3733 // event could recycle between the fetch and the SetEvent() operation.
duke@435 3734 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
duke@435 3735 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
duke@435 3736 // on an stale but recycled handle would be harmless, but in practice this might
duke@435 3737 // confuse other non-Sun code, so it's not a viable approach.
duke@435 3738 //
duke@435 3739 // 2: Once a win32 event handle is associated with an Event, it remains associated
duke@435 3740 // with the Event. The event handle is never closed. This could be construed
duke@435 3741 // as handle leakage, but only up to the maximum # of threads that have been extant
duke@435 3742 // at any one time. This shouldn't be an issue, as windows platforms typically
duke@435 3743 // permit a process to have hundreds of thousands of open handles.
duke@435 3744 //
duke@435 3745 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
duke@435 3746 // and release unused handles.
duke@435 3747 //
duke@435 3748 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
duke@435 3749 // It's not clear, however, that we wouldn't be trading one type of leak for another.
duke@435 3750 //
duke@435 3751 // 5. Use an RCU-like mechanism (Read-Copy Update).
duke@435 3752 // Or perhaps something similar to Maged Michael's "Hazard pointers".
duke@435 3753 //
duke@435 3754 // We use (2).
duke@435 3755 //
duke@435 3756 // TODO-FIXME:
duke@435 3757 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
duke@435 3758 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
duke@435 3759 // to recover from (or at least detect) the dreaded Windows 841176 bug.
duke@435 3760 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
duke@435 3761 // into a single win32 CreateEvent() handle.
duke@435 3762 //
duke@435 3763 // _Event transitions in park()
duke@435 3764 // -1 => -1 : illegal
duke@435 3765 // 1 => 0 : pass - return immediately
duke@435 3766 // 0 => -1 : block
duke@435 3767 //
duke@435 3768 // _Event serves as a restricted-range semaphore :
duke@435 3769 // -1 : thread is blocked
duke@435 3770 // 0 : neutral - thread is running or ready
duke@435 3771 // 1 : signaled - thread is running or ready
duke@435 3772 //
duke@435 3773 // Another possible encoding of _Event would be
duke@435 3774 // with explicit "PARKED" and "SIGNALED" bits.
duke@435 3775
duke@435 3776 int os::PlatformEvent::park (jlong Millis) {
duke@435 3777 guarantee (_ParkHandle != NULL , "Invariant") ;
duke@435 3778 guarantee (Millis > 0 , "Invariant") ;
duke@435 3779 int v ;
duke@435 3780
duke@435 3781 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
duke@435 3782 // the initial park() operation.
duke@435 3783
duke@435 3784 for (;;) {
duke@435 3785 v = _Event ;
duke@435 3786 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 3787 }
duke@435 3788 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 3789 if (v != 0) return OS_OK ;
duke@435 3790
duke@435 3791 // Do this the hard way by blocking ...
duke@435 3792 // TODO: consider a brief spin here, gated on the success of recent
duke@435 3793 // spin attempts by this thread.
duke@435 3794 //
duke@435 3795 // We decompose long timeouts into series of shorter timed waits.
duke@435 3796 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
duke@435 3797 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
duke@435 3798 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
duke@435 3799 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
duke@435 3800 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
duke@435 3801 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
duke@435 3802 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
duke@435 3803 // for the already waited time. This policy does not admit any new outcomes.
duke@435 3804 // In the future, however, we might want to track the accumulated wait time and
duke@435 3805 // adjust Millis accordingly if we encounter a spurious wakeup.
duke@435 3806
duke@435 3807 const int MAXTIMEOUT = 0x10000000 ;
duke@435 3808 DWORD rv = WAIT_TIMEOUT ;
duke@435 3809 while (_Event < 0 && Millis > 0) {
duke@435 3810 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
duke@435 3811 if (Millis > MAXTIMEOUT) {
duke@435 3812 prd = MAXTIMEOUT ;
duke@435 3813 }
duke@435 3814 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
duke@435 3815 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
duke@435 3816 if (rv == WAIT_TIMEOUT) {
duke@435 3817 Millis -= prd ;
duke@435 3818 }
duke@435 3819 }
duke@435 3820 v = _Event ;
duke@435 3821 _Event = 0 ;
duke@435 3822 OrderAccess::fence() ;
duke@435 3823 // If we encounter a nearly simultanous timeout expiry and unpark()
duke@435 3824 // we return OS_OK indicating we awoke via unpark().
duke@435 3825 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
duke@435 3826 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
duke@435 3827 }
duke@435 3828
duke@435 3829 void os::PlatformEvent::park () {
duke@435 3830 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 3831 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 3832 // may call park().
duke@435 3833 int v ;
duke@435 3834 for (;;) {
duke@435 3835 v = _Event ;
duke@435 3836 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 3837 }
duke@435 3838 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 3839 if (v != 0) return ;
duke@435 3840
duke@435 3841 // Do this the hard way by blocking ...
duke@435 3842 // TODO: consider a brief spin here, gated on the success of recent
duke@435 3843 // spin attempts by this thread.
duke@435 3844 while (_Event < 0) {
duke@435 3845 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
duke@435 3846 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
duke@435 3847 }
duke@435 3848
duke@435 3849 // Usually we'll find _Event == 0 at this point, but as
duke@435 3850 // an optional optimization we clear it, just in case can
duke@435 3851 // multiple unpark() operations drove _Event up to 1.
duke@435 3852 _Event = 0 ;
duke@435 3853 OrderAccess::fence() ;
duke@435 3854 guarantee (_Event >= 0, "invariant") ;
duke@435 3855 }
duke@435 3856
duke@435 3857 void os::PlatformEvent::unpark() {
duke@435 3858 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 3859 int v ;
duke@435 3860 for (;;) {
duke@435 3861 v = _Event ; // Increment _Event if it's < 1.
duke@435 3862 if (v > 0) {
duke@435 3863 // If it's already signaled just return.
duke@435 3864 // The LD of _Event could have reordered or be satisfied
duke@435 3865 // by a read-aside from this processor's write buffer.
duke@435 3866 // To avoid problems execute a barrier and then
duke@435 3867 // ratify the value. A degenerate CAS() would also work.
duke@435 3868 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 3869 OrderAccess::fence() ;
duke@435 3870 if (_Event == v) return ;
duke@435 3871 continue ;
duke@435 3872 }
duke@435 3873 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 3874 }
duke@435 3875 if (v < 0) {
duke@435 3876 ::SetEvent (_ParkHandle) ;
duke@435 3877 }
duke@435 3878 }
duke@435 3879
duke@435 3880
duke@435 3881 // JSR166
duke@435 3882 // -------------------------------------------------------
duke@435 3883
duke@435 3884 /*
duke@435 3885 * The Windows implementation of Park is very straightforward: Basic
duke@435 3886 * operations on Win32 Events turn out to have the right semantics to
duke@435 3887 * use them directly. We opportunistically resuse the event inherited
duke@435 3888 * from Monitor.
duke@435 3889 */
duke@435 3890
duke@435 3891
duke@435 3892 void Parker::park(bool isAbsolute, jlong time) {
duke@435 3893 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 3894 // First, demultiplex/decode time arguments
duke@435 3895 if (time < 0) { // don't wait
duke@435 3896 return;
duke@435 3897 }
duke@435 3898 else if (time == 0) {
duke@435 3899 time = INFINITE;
duke@435 3900 }
duke@435 3901 else if (isAbsolute) {
duke@435 3902 time -= os::javaTimeMillis(); // convert to relative time
duke@435 3903 if (time <= 0) // already elapsed
duke@435 3904 return;
duke@435 3905 }
duke@435 3906 else { // relative
duke@435 3907 time /= 1000000; // Must coarsen from nanos to millis
duke@435 3908 if (time == 0) // Wait for the minimal time unit if zero
duke@435 3909 time = 1;
duke@435 3910 }
duke@435 3911
duke@435 3912 JavaThread* thread = (JavaThread*)(Thread::current());
duke@435 3913 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 3914 JavaThread *jt = (JavaThread *)thread;
duke@435 3915
duke@435 3916 // Don't wait if interrupted or already triggered
duke@435 3917 if (Thread::is_interrupted(thread, false) ||
duke@435 3918 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
duke@435 3919 ResetEvent(_ParkEvent);
duke@435 3920 return;
duke@435 3921 }
duke@435 3922 else {
duke@435 3923 ThreadBlockInVM tbivm(jt);
duke@435 3924 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3925 jt->set_suspend_equivalent();
duke@435 3926
duke@435 3927 WaitForSingleObject(_ParkEvent, time);
duke@435 3928 ResetEvent(_ParkEvent);
duke@435 3929
duke@435 3930 // If externally suspended while waiting, re-suspend
duke@435 3931 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 3932 jt->java_suspend_self();
duke@435 3933 }
duke@435 3934 }
duke@435 3935 }
duke@435 3936
duke@435 3937 void Parker::unpark() {
duke@435 3938 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 3939 SetEvent(_ParkEvent);
duke@435 3940 }
duke@435 3941
duke@435 3942 // Run the specified command in a separate process. Return its exit value,
duke@435 3943 // or -1 on failure (e.g. can't create a new process).
duke@435 3944 int os::fork_and_exec(char* cmd) {
duke@435 3945 STARTUPINFO si;
duke@435 3946 PROCESS_INFORMATION pi;
duke@435 3947
duke@435 3948 memset(&si, 0, sizeof(si));
duke@435 3949 si.cb = sizeof(si);
duke@435 3950 memset(&pi, 0, sizeof(pi));
duke@435 3951 BOOL rslt = CreateProcess(NULL, // executable name - use command line
duke@435 3952 cmd, // command line
duke@435 3953 NULL, // process security attribute
duke@435 3954 NULL, // thread security attribute
duke@435 3955 TRUE, // inherits system handles
duke@435 3956 0, // no creation flags
duke@435 3957 NULL, // use parent's environment block
duke@435 3958 NULL, // use parent's starting directory
duke@435 3959 &si, // (in) startup information
duke@435 3960 &pi); // (out) process information
duke@435 3961
duke@435 3962 if (rslt) {
duke@435 3963 // Wait until child process exits.
duke@435 3964 WaitForSingleObject(pi.hProcess, INFINITE);
duke@435 3965
duke@435 3966 DWORD exit_code;
duke@435 3967 GetExitCodeProcess(pi.hProcess, &exit_code);
duke@435 3968
duke@435 3969 // Close process and thread handles.
duke@435 3970 CloseHandle(pi.hProcess);
duke@435 3971 CloseHandle(pi.hThread);
duke@435 3972
duke@435 3973 return (int)exit_code;
duke@435 3974 } else {
duke@435 3975 return -1;
duke@435 3976 }
duke@435 3977 }
duke@435 3978
duke@435 3979 //--------------------------------------------------------------------------------------------------
duke@435 3980 // Non-product code
duke@435 3981
duke@435 3982 static int mallocDebugIntervalCounter = 0;
duke@435 3983 static int mallocDebugCounter = 0;
duke@435 3984 bool os::check_heap(bool force) {
duke@435 3985 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
duke@435 3986 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
duke@435 3987 // Note: HeapValidate executes two hardware breakpoints when it finds something
duke@435 3988 // wrong; at these points, eax contains the address of the offending block (I think).
duke@435 3989 // To get to the exlicit error message(s) below, just continue twice.
duke@435 3990 HANDLE heap = GetProcessHeap();
duke@435 3991 { HeapLock(heap);
duke@435 3992 PROCESS_HEAP_ENTRY phe;
duke@435 3993 phe.lpData = NULL;
duke@435 3994 while (HeapWalk(heap, &phe) != 0) {
duke@435 3995 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
duke@435 3996 !HeapValidate(heap, 0, phe.lpData)) {
duke@435 3997 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
duke@435 3998 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
duke@435 3999 fatal("corrupted C heap");
duke@435 4000 }
duke@435 4001 }
duke@435 4002 int err = GetLastError();
duke@435 4003 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
duke@435 4004 fatal1("heap walk aborted with error %d", err);
duke@435 4005 }
duke@435 4006 HeapUnlock(heap);
duke@435 4007 }
duke@435 4008 mallocDebugIntervalCounter = 0;
duke@435 4009 }
duke@435 4010 return true;
duke@435 4011 }
duke@435 4012
duke@435 4013
duke@435 4014 #ifndef PRODUCT
duke@435 4015 bool os::find(address addr) {
duke@435 4016 // Nothing yet
duke@435 4017 return false;
duke@435 4018 }
duke@435 4019 #endif
duke@435 4020
duke@435 4021 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
duke@435 4022 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
duke@435 4023
duke@435 4024 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 4025 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
duke@435 4026 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
duke@435 4027 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 4028
duke@435 4029 if (os::is_memory_serialize_page(thread, addr))
duke@435 4030 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 4031 }
duke@435 4032
duke@435 4033 return EXCEPTION_CONTINUE_SEARCH;
duke@435 4034 }
duke@435 4035
duke@435 4036 static int getLastErrorString(char *buf, size_t len)
duke@435 4037 {
duke@435 4038 long errval;
duke@435 4039
duke@435 4040 if ((errval = GetLastError()) != 0)
duke@435 4041 {
duke@435 4042 /* DOS error */
duke@435 4043 size_t n = (size_t)FormatMessage(
duke@435 4044 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
duke@435 4045 NULL,
duke@435 4046 errval,
duke@435 4047 0,
duke@435 4048 buf,
duke@435 4049 (DWORD)len,
duke@435 4050 NULL);
duke@435 4051 if (n > 3) {
duke@435 4052 /* Drop final '.', CR, LF */
duke@435 4053 if (buf[n - 1] == '\n') n--;
duke@435 4054 if (buf[n - 1] == '\r') n--;
duke@435 4055 if (buf[n - 1] == '.') n--;
duke@435 4056 buf[n] = '\0';
duke@435 4057 }
duke@435 4058 return (int)n;
duke@435 4059 }
duke@435 4060
duke@435 4061 if (errno != 0)
duke@435 4062 {
duke@435 4063 /* C runtime error that has no corresponding DOS error code */
duke@435 4064 const char *s = strerror(errno);
duke@435 4065 size_t n = strlen(s);
duke@435 4066 if (n >= len) n = len - 1;
duke@435 4067 strncpy(buf, s, n);
duke@435 4068 buf[n] = '\0';
duke@435 4069 return (int)n;
duke@435 4070 }
duke@435 4071 return 0;
duke@435 4072 }

mercurial