src/os/windows/vm/os_windows.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1845
f03d0a26bf83
child 2036
126ea7725993
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #ifdef _WIN64
duke@435 26 // Must be at least Windows 2000 or XP to use VectoredExceptions
duke@435 27 #define _WIN32_WINNT 0x500
duke@435 28 #endif
duke@435 29
duke@435 30 // do not include precompiled header file
duke@435 31 # include "incls/_os_windows.cpp.incl"
duke@435 32
duke@435 33 #ifdef _DEBUG
duke@435 34 #include <crtdbg.h>
duke@435 35 #endif
duke@435 36
duke@435 37
duke@435 38 #include <windows.h>
duke@435 39 #include <sys/types.h>
duke@435 40 #include <sys/stat.h>
duke@435 41 #include <sys/timeb.h>
duke@435 42 #include <objidl.h>
duke@435 43 #include <shlobj.h>
duke@435 44
duke@435 45 #include <malloc.h>
duke@435 46 #include <signal.h>
duke@435 47 #include <direct.h>
duke@435 48 #include <errno.h>
duke@435 49 #include <fcntl.h>
duke@435 50 #include <io.h>
duke@435 51 #include <process.h> // For _beginthreadex(), _endthreadex()
duke@435 52 #include <imagehlp.h> // For os::dll_address_to_function_name
duke@435 53
duke@435 54 /* for enumerating dll libraries */
duke@435 55 #include <tlhelp32.h>
duke@435 56 #include <vdmdbg.h>
duke@435 57
duke@435 58 // for timer info max values which include all bits
duke@435 59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 60
duke@435 61 // For DLL loading/load error detection
duke@435 62 // Values of PE COFF
duke@435 63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
duke@435 64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
duke@435 65
duke@435 66 static HANDLE main_process;
duke@435 67 static HANDLE main_thread;
duke@435 68 static int main_thread_id;
duke@435 69
duke@435 70 static FILETIME process_creation_time;
duke@435 71 static FILETIME process_exit_time;
duke@435 72 static FILETIME process_user_time;
duke@435 73 static FILETIME process_kernel_time;
duke@435 74
duke@435 75 #ifdef _WIN64
duke@435 76 PVOID topLevelVectoredExceptionHandler = NULL;
duke@435 77 #endif
duke@435 78
duke@435 79 #ifdef _M_IA64
duke@435 80 #define __CPU__ ia64
duke@435 81 #elif _M_AMD64
duke@435 82 #define __CPU__ amd64
duke@435 83 #else
duke@435 84 #define __CPU__ i486
duke@435 85 #endif
duke@435 86
duke@435 87 // save DLL module handle, used by GetModuleFileName
duke@435 88
duke@435 89 HINSTANCE vm_lib_handle;
duke@435 90 static int getLastErrorString(char *buf, size_t len);
duke@435 91
duke@435 92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
duke@435 93 switch (reason) {
duke@435 94 case DLL_PROCESS_ATTACH:
duke@435 95 vm_lib_handle = hinst;
duke@435 96 if(ForceTimeHighResolution)
duke@435 97 timeBeginPeriod(1L);
duke@435 98 break;
duke@435 99 case DLL_PROCESS_DETACH:
duke@435 100 if(ForceTimeHighResolution)
duke@435 101 timeEndPeriod(1L);
duke@435 102 #ifdef _WIN64
duke@435 103 if (topLevelVectoredExceptionHandler != NULL) {
duke@435 104 RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
duke@435 105 topLevelVectoredExceptionHandler = NULL;
duke@435 106 }
duke@435 107 #endif
duke@435 108 break;
duke@435 109 default:
duke@435 110 break;
duke@435 111 }
duke@435 112 return true;
duke@435 113 }
duke@435 114
duke@435 115 static inline double fileTimeAsDouble(FILETIME* time) {
duke@435 116 const double high = (double) ((unsigned int) ~0);
duke@435 117 const double split = 10000000.0;
duke@435 118 double result = (time->dwLowDateTime / split) +
duke@435 119 time->dwHighDateTime * (high/split);
duke@435 120 return result;
duke@435 121 }
duke@435 122
duke@435 123 // Implementation of os
duke@435 124
duke@435 125 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 126 int result = GetEnvironmentVariable(name, buffer, len);
duke@435 127 return result > 0 && result < len;
duke@435 128 }
duke@435 129
duke@435 130
duke@435 131 // No setuid programs under Windows.
duke@435 132 bool os::have_special_privileges() {
duke@435 133 return false;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 // This method is a periodic task to check for misbehaving JNI applications
duke@435 138 // under CheckJNI, we can add any periodic checks here.
duke@435 139 // For Windows at the moment does nothing
duke@435 140 void os::run_periodic_checks() {
duke@435 141 return;
duke@435 142 }
duke@435 143
duke@435 144 #ifndef _WIN64
dcubed@1649 145 // previous UnhandledExceptionFilter, if there is one
dcubed@1649 146 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
dcubed@1649 147
duke@435 148 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 149 #endif
duke@435 150 void os::init_system_properties_values() {
duke@435 151 /* sysclasspath, java_home, dll_dir */
duke@435 152 {
duke@435 153 char *home_path;
duke@435 154 char *dll_path;
duke@435 155 char *pslash;
duke@435 156 char *bin = "\\bin";
duke@435 157 char home_dir[MAX_PATH];
duke@435 158
duke@435 159 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
duke@435 160 os::jvm_path(home_dir, sizeof(home_dir));
duke@435 161 // Found the full path to jvm[_g].dll.
duke@435 162 // Now cut the path to <java_home>/jre if we can.
duke@435 163 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
duke@435 164 pslash = strrchr(home_dir, '\\');
duke@435 165 if (pslash != NULL) {
duke@435 166 *pslash = '\0'; /* get rid of \{client|server} */
duke@435 167 pslash = strrchr(home_dir, '\\');
duke@435 168 if (pslash != NULL)
duke@435 169 *pslash = '\0'; /* get rid of \bin */
duke@435 170 }
duke@435 171 }
duke@435 172
duke@435 173 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
duke@435 174 if (home_path == NULL)
duke@435 175 return;
duke@435 176 strcpy(home_path, home_dir);
duke@435 177 Arguments::set_java_home(home_path);
duke@435 178
duke@435 179 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
duke@435 180 if (dll_path == NULL)
duke@435 181 return;
duke@435 182 strcpy(dll_path, home_dir);
duke@435 183 strcat(dll_path, bin);
duke@435 184 Arguments::set_dll_dir(dll_path);
duke@435 185
duke@435 186 if (!set_boot_path('\\', ';'))
duke@435 187 return;
duke@435 188 }
duke@435 189
duke@435 190 /* library_path */
duke@435 191 #define EXT_DIR "\\lib\\ext"
duke@435 192 #define BIN_DIR "\\bin"
duke@435 193 #define PACKAGE_DIR "\\Sun\\Java"
duke@435 194 {
duke@435 195 /* Win32 library search order (See the documentation for LoadLibrary):
duke@435 196 *
duke@435 197 * 1. The directory from which application is loaded.
duke@435 198 * 2. The current directory
duke@435 199 * 3. The system wide Java Extensions directory (Java only)
duke@435 200 * 4. System directory (GetSystemDirectory)
duke@435 201 * 5. Windows directory (GetWindowsDirectory)
duke@435 202 * 6. The PATH environment variable
duke@435 203 */
duke@435 204
duke@435 205 char *library_path;
duke@435 206 char tmp[MAX_PATH];
duke@435 207 char *path_str = ::getenv("PATH");
duke@435 208
duke@435 209 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
duke@435 210 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
duke@435 211
duke@435 212 library_path[0] = '\0';
duke@435 213
duke@435 214 GetModuleFileName(NULL, tmp, sizeof(tmp));
duke@435 215 *(strrchr(tmp, '\\')) = '\0';
duke@435 216 strcat(library_path, tmp);
duke@435 217
duke@435 218 strcat(library_path, ";.");
duke@435 219
duke@435 220 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 221 strcat(library_path, ";");
duke@435 222 strcat(library_path, tmp);
duke@435 223 strcat(library_path, PACKAGE_DIR BIN_DIR);
duke@435 224
duke@435 225 GetSystemDirectory(tmp, sizeof(tmp));
duke@435 226 strcat(library_path, ";");
duke@435 227 strcat(library_path, tmp);
duke@435 228
duke@435 229 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 230 strcat(library_path, ";");
duke@435 231 strcat(library_path, tmp);
duke@435 232
duke@435 233 if (path_str) {
duke@435 234 strcat(library_path, ";");
duke@435 235 strcat(library_path, path_str);
duke@435 236 }
duke@435 237
duke@435 238 Arguments::set_library_path(library_path);
duke@435 239 FREE_C_HEAP_ARRAY(char, library_path);
duke@435 240 }
duke@435 241
duke@435 242 /* Default extensions directory */
duke@435 243 {
duke@435 244 char path[MAX_PATH];
duke@435 245 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
duke@435 246 GetWindowsDirectory(path, MAX_PATH);
duke@435 247 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
duke@435 248 path, PACKAGE_DIR, EXT_DIR);
duke@435 249 Arguments::set_ext_dirs(buf);
duke@435 250 }
duke@435 251 #undef EXT_DIR
duke@435 252 #undef BIN_DIR
duke@435 253 #undef PACKAGE_DIR
duke@435 254
duke@435 255 /* Default endorsed standards directory. */
duke@435 256 {
duke@435 257 #define ENDORSED_DIR "\\lib\\endorsed"
duke@435 258 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
duke@435 259 char * buf = NEW_C_HEAP_ARRAY(char, len);
duke@435 260 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
duke@435 261 Arguments::set_endorsed_dirs(buf);
duke@435 262 #undef ENDORSED_DIR
duke@435 263 }
duke@435 264
duke@435 265 #ifndef _WIN64
dcubed@1649 266 // set our UnhandledExceptionFilter and save any previous one
dcubed@1649 267 prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
duke@435 268 #endif
duke@435 269
duke@435 270 // Done
duke@435 271 return;
duke@435 272 }
duke@435 273
duke@435 274 void os::breakpoint() {
duke@435 275 DebugBreak();
duke@435 276 }
duke@435 277
duke@435 278 // Invoked from the BREAKPOINT Macro
duke@435 279 extern "C" void breakpoint() {
duke@435 280 os::breakpoint();
duke@435 281 }
duke@435 282
duke@435 283 // Returns an estimate of the current stack pointer. Result must be guaranteed
duke@435 284 // to point into the calling threads stack, and be no lower than the current
duke@435 285 // stack pointer.
duke@435 286
duke@435 287 address os::current_stack_pointer() {
duke@435 288 int dummy;
duke@435 289 address sp = (address)&dummy;
duke@435 290 return sp;
duke@435 291 }
duke@435 292
duke@435 293 // os::current_stack_base()
duke@435 294 //
duke@435 295 // Returns the base of the stack, which is the stack's
duke@435 296 // starting address. This function must be called
duke@435 297 // while running on the stack of the thread being queried.
duke@435 298
duke@435 299 address os::current_stack_base() {
duke@435 300 MEMORY_BASIC_INFORMATION minfo;
duke@435 301 address stack_bottom;
duke@435 302 size_t stack_size;
duke@435 303
duke@435 304 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 305 stack_bottom = (address)minfo.AllocationBase;
duke@435 306 stack_size = minfo.RegionSize;
duke@435 307
duke@435 308 // Add up the sizes of all the regions with the same
duke@435 309 // AllocationBase.
duke@435 310 while( 1 )
duke@435 311 {
duke@435 312 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
duke@435 313 if ( stack_bottom == (address)minfo.AllocationBase )
duke@435 314 stack_size += minfo.RegionSize;
duke@435 315 else
duke@435 316 break;
duke@435 317 }
duke@435 318
duke@435 319 #ifdef _M_IA64
duke@435 320 // IA64 has memory and register stacks
duke@435 321 stack_size = stack_size / 2;
duke@435 322 #endif
duke@435 323 return stack_bottom + stack_size;
duke@435 324 }
duke@435 325
duke@435 326 size_t os::current_stack_size() {
duke@435 327 size_t sz;
duke@435 328 MEMORY_BASIC_INFORMATION minfo;
duke@435 329 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 330 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
duke@435 331 return sz;
duke@435 332 }
duke@435 333
ysr@983 334 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 335 const struct tm* time_struct_ptr = localtime(clock);
ysr@983 336 if (time_struct_ptr != NULL) {
ysr@983 337 *res = *time_struct_ptr;
ysr@983 338 return res;
ysr@983 339 }
ysr@983 340 return NULL;
ysr@983 341 }
duke@435 342
duke@435 343 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 344
duke@435 345 // Thread start routine for all new Java threads
duke@435 346 static unsigned __stdcall java_start(Thread* thread) {
duke@435 347 // Try to randomize the cache line index of hot stack frames.
duke@435 348 // This helps when threads of the same stack traces evict each other's
duke@435 349 // cache lines. The threads can be either from the same JVM instance, or
duke@435 350 // from different JVM instances. The benefit is especially true for
duke@435 351 // processors with hyperthreading technology.
duke@435 352 static int counter = 0;
duke@435 353 int pid = os::current_process_id();
duke@435 354 _alloca(((pid ^ counter++) & 7) * 128);
duke@435 355
duke@435 356 OSThread* osthr = thread->osthread();
duke@435 357 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 358
duke@435 359 if (UseNUMA) {
duke@435 360 int lgrp_id = os::numa_get_group_id();
duke@435 361 if (lgrp_id != -1) {
duke@435 362 thread->set_lgrp_id(lgrp_id);
duke@435 363 }
duke@435 364 }
duke@435 365
duke@435 366
duke@435 367 if (UseVectoredExceptions) {
duke@435 368 // If we are using vectored exception we don't need to set a SEH
duke@435 369 thread->run();
duke@435 370 }
duke@435 371 else {
duke@435 372 // Install a win32 structured exception handler around every thread created
duke@435 373 // by VM, so VM can genrate error dump when an exception occurred in non-
duke@435 374 // Java thread (e.g. VM thread).
duke@435 375 __try {
duke@435 376 thread->run();
duke@435 377 } __except(topLevelExceptionFilter(
duke@435 378 (_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 379 // Nothing to do.
duke@435 380 }
duke@435 381 }
duke@435 382
duke@435 383 // One less thread is executing
duke@435 384 // When the VMThread gets here, the main thread may have already exited
duke@435 385 // which frees the CodeHeap containing the Atomic::add code
duke@435 386 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 387 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 388 }
duke@435 389
duke@435 390 return 0;
duke@435 391 }
duke@435 392
duke@435 393 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
duke@435 394 // Allocate the OSThread object
duke@435 395 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 396 if (osthread == NULL) return NULL;
duke@435 397
duke@435 398 // Initialize support for Java interrupts
duke@435 399 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 400 if (interrupt_event == NULL) {
duke@435 401 delete osthread;
duke@435 402 return NULL;
duke@435 403 }
duke@435 404 osthread->set_interrupt_event(interrupt_event);
duke@435 405
duke@435 406 // Store info on the Win32 thread into the OSThread
duke@435 407 osthread->set_thread_handle(thread_handle);
duke@435 408 osthread->set_thread_id(thread_id);
duke@435 409
duke@435 410 if (UseNUMA) {
duke@435 411 int lgrp_id = os::numa_get_group_id();
duke@435 412 if (lgrp_id != -1) {
duke@435 413 thread->set_lgrp_id(lgrp_id);
duke@435 414 }
duke@435 415 }
duke@435 416
duke@435 417 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 418 osthread->set_state(INITIALIZED);
duke@435 419
duke@435 420 return osthread;
duke@435 421 }
duke@435 422
duke@435 423
duke@435 424 bool os::create_attached_thread(JavaThread* thread) {
duke@435 425 #ifdef ASSERT
duke@435 426 thread->verify_not_published();
duke@435 427 #endif
duke@435 428 HANDLE thread_h;
duke@435 429 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
duke@435 430 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
duke@435 431 fatal("DuplicateHandle failed\n");
duke@435 432 }
duke@435 433 OSThread* osthread = create_os_thread(thread, thread_h,
duke@435 434 (int)current_thread_id());
duke@435 435 if (osthread == NULL) {
duke@435 436 return false;
duke@435 437 }
duke@435 438
duke@435 439 // Initial thread state is RUNNABLE
duke@435 440 osthread->set_state(RUNNABLE);
duke@435 441
duke@435 442 thread->set_osthread(osthread);
duke@435 443 return true;
duke@435 444 }
duke@435 445
duke@435 446 bool os::create_main_thread(JavaThread* thread) {
duke@435 447 #ifdef ASSERT
duke@435 448 thread->verify_not_published();
duke@435 449 #endif
duke@435 450 if (_starting_thread == NULL) {
duke@435 451 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
duke@435 452 if (_starting_thread == NULL) {
duke@435 453 return false;
duke@435 454 }
duke@435 455 }
duke@435 456
duke@435 457 // The primordial thread is runnable from the start)
duke@435 458 _starting_thread->set_state(RUNNABLE);
duke@435 459
duke@435 460 thread->set_osthread(_starting_thread);
duke@435 461 return true;
duke@435 462 }
duke@435 463
duke@435 464 // Allocate and initialize a new OSThread
duke@435 465 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 466 unsigned thread_id;
duke@435 467
duke@435 468 // Allocate the OSThread object
duke@435 469 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 470 if (osthread == NULL) {
duke@435 471 return false;
duke@435 472 }
duke@435 473
duke@435 474 // Initialize support for Java interrupts
duke@435 475 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 476 if (interrupt_event == NULL) {
duke@435 477 delete osthread;
duke@435 478 return NULL;
duke@435 479 }
duke@435 480 osthread->set_interrupt_event(interrupt_event);
duke@435 481 osthread->set_interrupted(false);
duke@435 482
duke@435 483 thread->set_osthread(osthread);
duke@435 484
duke@435 485 if (stack_size == 0) {
duke@435 486 switch (thr_type) {
duke@435 487 case os::java_thread:
duke@435 488 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 489 if (JavaThread::stack_size_at_create() > 0)
duke@435 490 stack_size = JavaThread::stack_size_at_create();
duke@435 491 break;
duke@435 492 case os::compiler_thread:
duke@435 493 if (CompilerThreadStackSize > 0) {
duke@435 494 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 495 break;
duke@435 496 } // else fall through:
duke@435 497 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 498 case os::vm_thread:
duke@435 499 case os::pgc_thread:
duke@435 500 case os::cgc_thread:
duke@435 501 case os::watcher_thread:
duke@435 502 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 503 break;
duke@435 504 }
duke@435 505 }
duke@435 506
duke@435 507 // Create the Win32 thread
duke@435 508 //
duke@435 509 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
duke@435 510 // does not specify stack size. Instead, it specifies the size of
duke@435 511 // initially committed space. The stack size is determined by
duke@435 512 // PE header in the executable. If the committed "stack_size" is larger
duke@435 513 // than default value in the PE header, the stack is rounded up to the
duke@435 514 // nearest multiple of 1MB. For example if the launcher has default
duke@435 515 // stack size of 320k, specifying any size less than 320k does not
duke@435 516 // affect the actual stack size at all, it only affects the initial
duke@435 517 // commitment. On the other hand, specifying 'stack_size' larger than
duke@435 518 // default value may cause significant increase in memory usage, because
duke@435 519 // not only the stack space will be rounded up to MB, but also the
duke@435 520 // entire space is committed upfront.
duke@435 521 //
duke@435 522 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
duke@435 523 // for CreateThread() that can treat 'stack_size' as stack size. However we
duke@435 524 // are not supposed to call CreateThread() directly according to MSDN
duke@435 525 // document because JVM uses C runtime library. The good news is that the
duke@435 526 // flag appears to work with _beginthredex() as well.
duke@435 527
duke@435 528 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
duke@435 529 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
duke@435 530 #endif
duke@435 531
duke@435 532 HANDLE thread_handle =
duke@435 533 (HANDLE)_beginthreadex(NULL,
duke@435 534 (unsigned)stack_size,
duke@435 535 (unsigned (__stdcall *)(void*)) java_start,
duke@435 536 thread,
duke@435 537 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
duke@435 538 &thread_id);
duke@435 539 if (thread_handle == NULL) {
duke@435 540 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
duke@435 541 // without the flag.
duke@435 542 thread_handle =
duke@435 543 (HANDLE)_beginthreadex(NULL,
duke@435 544 (unsigned)stack_size,
duke@435 545 (unsigned (__stdcall *)(void*)) java_start,
duke@435 546 thread,
duke@435 547 CREATE_SUSPENDED,
duke@435 548 &thread_id);
duke@435 549 }
duke@435 550 if (thread_handle == NULL) {
duke@435 551 // Need to clean up stuff we've allocated so far
duke@435 552 CloseHandle(osthread->interrupt_event());
duke@435 553 thread->set_osthread(NULL);
duke@435 554 delete osthread;
duke@435 555 return NULL;
duke@435 556 }
duke@435 557
duke@435 558 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 559
duke@435 560 // Store info on the Win32 thread into the OSThread
duke@435 561 osthread->set_thread_handle(thread_handle);
duke@435 562 osthread->set_thread_id(thread_id);
duke@435 563
duke@435 564 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 565 osthread->set_state(INITIALIZED);
duke@435 566
duke@435 567 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 568 return true;
duke@435 569 }
duke@435 570
duke@435 571
duke@435 572 // Free Win32 resources related to the OSThread
duke@435 573 void os::free_thread(OSThread* osthread) {
duke@435 574 assert(osthread != NULL, "osthread not set");
duke@435 575 CloseHandle(osthread->thread_handle());
duke@435 576 CloseHandle(osthread->interrupt_event());
duke@435 577 delete osthread;
duke@435 578 }
duke@435 579
duke@435 580
duke@435 581 static int has_performance_count = 0;
duke@435 582 static jlong first_filetime;
duke@435 583 static jlong initial_performance_count;
duke@435 584 static jlong performance_frequency;
duke@435 585
duke@435 586
duke@435 587 jlong as_long(LARGE_INTEGER x) {
duke@435 588 jlong result = 0; // initialization to avoid warning
duke@435 589 set_high(&result, x.HighPart);
duke@435 590 set_low(&result, x.LowPart);
duke@435 591 return result;
duke@435 592 }
duke@435 593
duke@435 594
duke@435 595 jlong os::elapsed_counter() {
duke@435 596 LARGE_INTEGER count;
duke@435 597 if (has_performance_count) {
duke@435 598 QueryPerformanceCounter(&count);
duke@435 599 return as_long(count) - initial_performance_count;
duke@435 600 } else {
duke@435 601 FILETIME wt;
duke@435 602 GetSystemTimeAsFileTime(&wt);
duke@435 603 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
duke@435 604 }
duke@435 605 }
duke@435 606
duke@435 607
duke@435 608 jlong os::elapsed_frequency() {
duke@435 609 if (has_performance_count) {
duke@435 610 return performance_frequency;
duke@435 611 } else {
duke@435 612 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
duke@435 613 return 10000000;
duke@435 614 }
duke@435 615 }
duke@435 616
duke@435 617
duke@435 618 julong os::available_memory() {
duke@435 619 return win32::available_memory();
duke@435 620 }
duke@435 621
duke@435 622 julong os::win32::available_memory() {
poonam@1312 623 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 624 // value if total memory is larger than 4GB
poonam@1312 625 MEMORYSTATUSEX ms;
poonam@1312 626 ms.dwLength = sizeof(ms);
poonam@1312 627 GlobalMemoryStatusEx(&ms);
poonam@1312 628
poonam@1312 629 return (julong)ms.ullAvailPhys;
duke@435 630 }
duke@435 631
duke@435 632 julong os::physical_memory() {
duke@435 633 return win32::physical_memory();
duke@435 634 }
duke@435 635
duke@435 636 julong os::allocatable_physical_memory(julong size) {
phh@455 637 #ifdef _LP64
phh@455 638 return size;
phh@455 639 #else
phh@455 640 // Limit to 1400m because of the 2gb address space wall
duke@435 641 return MIN2(size, (julong)1400*M);
phh@455 642 #endif
duke@435 643 }
duke@435 644
duke@435 645 // VC6 lacks DWORD_PTR
duke@435 646 #if _MSC_VER < 1300
duke@435 647 typedef UINT_PTR DWORD_PTR;
duke@435 648 #endif
duke@435 649
duke@435 650 int os::active_processor_count() {
duke@435 651 DWORD_PTR lpProcessAffinityMask = 0;
duke@435 652 DWORD_PTR lpSystemAffinityMask = 0;
duke@435 653 int proc_count = processor_count();
duke@435 654 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
duke@435 655 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
duke@435 656 // Nof active processors is number of bits in process affinity mask
duke@435 657 int bitcount = 0;
duke@435 658 while (lpProcessAffinityMask != 0) {
duke@435 659 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
duke@435 660 bitcount++;
duke@435 661 }
duke@435 662 return bitcount;
duke@435 663 } else {
duke@435 664 return proc_count;
duke@435 665 }
duke@435 666 }
duke@435 667
duke@435 668 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 669 // Not yet implemented.
duke@435 670 return false;
duke@435 671 }
duke@435 672
duke@435 673 bool os::bind_to_processor(uint processor_id) {
duke@435 674 // Not yet implemented.
duke@435 675 return false;
duke@435 676 }
duke@435 677
duke@435 678 static void initialize_performance_counter() {
duke@435 679 LARGE_INTEGER count;
duke@435 680 if (QueryPerformanceFrequency(&count)) {
duke@435 681 has_performance_count = 1;
duke@435 682 performance_frequency = as_long(count);
duke@435 683 QueryPerformanceCounter(&count);
duke@435 684 initial_performance_count = as_long(count);
duke@435 685 } else {
duke@435 686 has_performance_count = 0;
duke@435 687 FILETIME wt;
duke@435 688 GetSystemTimeAsFileTime(&wt);
duke@435 689 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 690 }
duke@435 691 }
duke@435 692
duke@435 693
duke@435 694 double os::elapsedTime() {
duke@435 695 return (double) elapsed_counter() / (double) elapsed_frequency();
duke@435 696 }
duke@435 697
duke@435 698
duke@435 699 // Windows format:
duke@435 700 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
duke@435 701 // Java format:
duke@435 702 // Java standards require the number of milliseconds since 1/1/1970
duke@435 703
duke@435 704 // Constant offset - calculated using offset()
duke@435 705 static jlong _offset = 116444736000000000;
duke@435 706 // Fake time counter for reproducible results when debugging
duke@435 707 static jlong fake_time = 0;
duke@435 708
duke@435 709 #ifdef ASSERT
duke@435 710 // Just to be safe, recalculate the offset in debug mode
duke@435 711 static jlong _calculated_offset = 0;
duke@435 712 static int _has_calculated_offset = 0;
duke@435 713
duke@435 714 jlong offset() {
duke@435 715 if (_has_calculated_offset) return _calculated_offset;
duke@435 716 SYSTEMTIME java_origin;
duke@435 717 java_origin.wYear = 1970;
duke@435 718 java_origin.wMonth = 1;
duke@435 719 java_origin.wDayOfWeek = 0; // ignored
duke@435 720 java_origin.wDay = 1;
duke@435 721 java_origin.wHour = 0;
duke@435 722 java_origin.wMinute = 0;
duke@435 723 java_origin.wSecond = 0;
duke@435 724 java_origin.wMilliseconds = 0;
duke@435 725 FILETIME jot;
duke@435 726 if (!SystemTimeToFileTime(&java_origin, &jot)) {
jcoomes@1845 727 fatal(err_msg("Error = %d\nWindows error", GetLastError()));
duke@435 728 }
duke@435 729 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
duke@435 730 _has_calculated_offset = 1;
duke@435 731 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
duke@435 732 return _calculated_offset;
duke@435 733 }
duke@435 734 #else
duke@435 735 jlong offset() {
duke@435 736 return _offset;
duke@435 737 }
duke@435 738 #endif
duke@435 739
duke@435 740 jlong windows_to_java_time(FILETIME wt) {
duke@435 741 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 742 return (a - offset()) / 10000;
duke@435 743 }
duke@435 744
duke@435 745 FILETIME java_to_windows_time(jlong l) {
duke@435 746 jlong a = (l * 10000) + offset();
duke@435 747 FILETIME result;
duke@435 748 result.dwHighDateTime = high(a);
duke@435 749 result.dwLowDateTime = low(a);
duke@435 750 return result;
duke@435 751 }
duke@435 752
ysr@777 753 // For now, we say that Windows does not support vtime. I have no idea
ysr@777 754 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 755
ysr@777 756 bool os::supports_vtime() { return false; }
ysr@777 757 bool os::enable_vtime() { return false; }
ysr@777 758 bool os::vtime_enabled() { return false; }
ysr@777 759 double os::elapsedVTime() {
ysr@777 760 // better than nothing, but not much
ysr@777 761 return elapsedTime();
ysr@777 762 }
ysr@777 763
duke@435 764 jlong os::javaTimeMillis() {
duke@435 765 if (UseFakeTimers) {
duke@435 766 return fake_time++;
duke@435 767 } else {
sbohne@496 768 FILETIME wt;
sbohne@496 769 GetSystemTimeAsFileTime(&wt);
sbohne@496 770 return windows_to_java_time(wt);
duke@435 771 }
duke@435 772 }
duke@435 773
duke@435 774 #define NANOS_PER_SEC CONST64(1000000000)
duke@435 775 #define NANOS_PER_MILLISEC 1000000
duke@435 776 jlong os::javaTimeNanos() {
duke@435 777 if (!has_performance_count) {
duke@435 778 return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
duke@435 779 } else {
duke@435 780 LARGE_INTEGER current_count;
duke@435 781 QueryPerformanceCounter(&current_count);
duke@435 782 double current = as_long(current_count);
duke@435 783 double freq = performance_frequency;
duke@435 784 jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
duke@435 785 return time;
duke@435 786 }
duke@435 787 }
duke@435 788
duke@435 789 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 790 if (!has_performance_count) {
duke@435 791 // javaTimeMillis() doesn't have much percision,
duke@435 792 // but it is not going to wrap -- so all 64 bits
duke@435 793 info_ptr->max_value = ALL_64_BITS;
duke@435 794
duke@435 795 // this is a wall clock timer, so may skip
duke@435 796 info_ptr->may_skip_backward = true;
duke@435 797 info_ptr->may_skip_forward = true;
duke@435 798 } else {
duke@435 799 jlong freq = performance_frequency;
duke@435 800 if (freq < NANOS_PER_SEC) {
duke@435 801 // the performance counter is 64 bits and we will
duke@435 802 // be multiplying it -- so no wrap in 64 bits
duke@435 803 info_ptr->max_value = ALL_64_BITS;
duke@435 804 } else if (freq > NANOS_PER_SEC) {
duke@435 805 // use the max value the counter can reach to
duke@435 806 // determine the max value which could be returned
duke@435 807 julong max_counter = (julong)ALL_64_BITS;
duke@435 808 info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
duke@435 809 } else {
duke@435 810 // the performance counter is 64 bits and we will
duke@435 811 // be using it directly -- so no wrap in 64 bits
duke@435 812 info_ptr->max_value = ALL_64_BITS;
duke@435 813 }
duke@435 814
duke@435 815 // using a counter, so no skipping
duke@435 816 info_ptr->may_skip_backward = false;
duke@435 817 info_ptr->may_skip_forward = false;
duke@435 818 }
duke@435 819 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 820 }
duke@435 821
duke@435 822 char* os::local_time_string(char *buf, size_t buflen) {
duke@435 823 SYSTEMTIME st;
duke@435 824 GetLocalTime(&st);
duke@435 825 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 826 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
duke@435 827 return buf;
duke@435 828 }
duke@435 829
duke@435 830 bool os::getTimesSecs(double* process_real_time,
duke@435 831 double* process_user_time,
duke@435 832 double* process_system_time) {
duke@435 833 HANDLE h_process = GetCurrentProcess();
duke@435 834 FILETIME create_time, exit_time, kernel_time, user_time;
duke@435 835 BOOL result = GetProcessTimes(h_process,
duke@435 836 &create_time,
duke@435 837 &exit_time,
duke@435 838 &kernel_time,
duke@435 839 &user_time);
duke@435 840 if (result != 0) {
duke@435 841 FILETIME wt;
duke@435 842 GetSystemTimeAsFileTime(&wt);
duke@435 843 jlong rtc_millis = windows_to_java_time(wt);
duke@435 844 jlong user_millis = windows_to_java_time(user_time);
duke@435 845 jlong system_millis = windows_to_java_time(kernel_time);
duke@435 846 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
duke@435 847 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
duke@435 848 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
duke@435 849 return true;
duke@435 850 } else {
duke@435 851 return false;
duke@435 852 }
duke@435 853 }
duke@435 854
duke@435 855 void os::shutdown() {
duke@435 856
duke@435 857 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 858 perfMemory_exit();
duke@435 859
duke@435 860 // flush buffered output, finish log files
duke@435 861 ostream_abort();
duke@435 862
duke@435 863 // Check for abort hook
duke@435 864 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 865 if (abort_hook != NULL) {
duke@435 866 abort_hook();
duke@435 867 }
duke@435 868 }
duke@435 869
duke@435 870 void os::abort(bool dump_core)
duke@435 871 {
duke@435 872 os::shutdown();
duke@435 873 // no core dump on Windows
duke@435 874 ::exit(1);
duke@435 875 }
duke@435 876
duke@435 877 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 878 void os::die() {
duke@435 879 _exit(-1);
duke@435 880 }
duke@435 881
duke@435 882 // Directory routines copied from src/win32/native/java/io/dirent_md.c
duke@435 883 // * dirent_md.c 1.15 00/02/02
duke@435 884 //
duke@435 885 // The declarations for DIR and struct dirent are in jvm_win32.h.
duke@435 886
duke@435 887 /* Caller must have already run dirname through JVM_NativePath, which removes
duke@435 888 duplicate slashes and converts all instances of '/' into '\\'. */
duke@435 889
duke@435 890 DIR *
duke@435 891 os::opendir(const char *dirname)
duke@435 892 {
duke@435 893 assert(dirname != NULL, "just checking"); // hotspot change
duke@435 894 DIR *dirp = (DIR *)malloc(sizeof(DIR));
duke@435 895 DWORD fattr; // hotspot change
duke@435 896 char alt_dirname[4] = { 0, 0, 0, 0 };
duke@435 897
duke@435 898 if (dirp == 0) {
duke@435 899 errno = ENOMEM;
duke@435 900 return 0;
duke@435 901 }
duke@435 902
duke@435 903 /*
duke@435 904 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
duke@435 905 * as a directory in FindFirstFile(). We detect this case here and
duke@435 906 * prepend the current drive name.
duke@435 907 */
duke@435 908 if (dirname[1] == '\0' && dirname[0] == '\\') {
duke@435 909 alt_dirname[0] = _getdrive() + 'A' - 1;
duke@435 910 alt_dirname[1] = ':';
duke@435 911 alt_dirname[2] = '\\';
duke@435 912 alt_dirname[3] = '\0';
duke@435 913 dirname = alt_dirname;
duke@435 914 }
duke@435 915
duke@435 916 dirp->path = (char *)malloc(strlen(dirname) + 5);
duke@435 917 if (dirp->path == 0) {
duke@435 918 free(dirp);
duke@435 919 errno = ENOMEM;
duke@435 920 return 0;
duke@435 921 }
duke@435 922 strcpy(dirp->path, dirname);
duke@435 923
duke@435 924 fattr = GetFileAttributes(dirp->path);
duke@435 925 if (fattr == 0xffffffff) {
duke@435 926 free(dirp->path);
duke@435 927 free(dirp);
duke@435 928 errno = ENOENT;
duke@435 929 return 0;
duke@435 930 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
duke@435 931 free(dirp->path);
duke@435 932 free(dirp);
duke@435 933 errno = ENOTDIR;
duke@435 934 return 0;
duke@435 935 }
duke@435 936
duke@435 937 /* Append "*.*", or possibly "\\*.*", to path */
duke@435 938 if (dirp->path[1] == ':'
duke@435 939 && (dirp->path[2] == '\0'
duke@435 940 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
duke@435 941 /* No '\\' needed for cases like "Z:" or "Z:\" */
duke@435 942 strcat(dirp->path, "*.*");
duke@435 943 } else {
duke@435 944 strcat(dirp->path, "\\*.*");
duke@435 945 }
duke@435 946
duke@435 947 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
duke@435 948 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 949 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
duke@435 950 free(dirp->path);
duke@435 951 free(dirp);
duke@435 952 errno = EACCES;
duke@435 953 return 0;
duke@435 954 }
duke@435 955 }
duke@435 956 return dirp;
duke@435 957 }
duke@435 958
duke@435 959 /* parameter dbuf unused on Windows */
duke@435 960
duke@435 961 struct dirent *
duke@435 962 os::readdir(DIR *dirp, dirent *dbuf)
duke@435 963 {
duke@435 964 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 965 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 966 return 0;
duke@435 967 }
duke@435 968
duke@435 969 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
duke@435 970
duke@435 971 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
duke@435 972 if (GetLastError() == ERROR_INVALID_HANDLE) {
duke@435 973 errno = EBADF;
duke@435 974 return 0;
duke@435 975 }
duke@435 976 FindClose(dirp->handle);
duke@435 977 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 978 }
duke@435 979
duke@435 980 return &dirp->dirent;
duke@435 981 }
duke@435 982
duke@435 983 int
duke@435 984 os::closedir(DIR *dirp)
duke@435 985 {
duke@435 986 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 987 if (dirp->handle != INVALID_HANDLE_VALUE) {
duke@435 988 if (!FindClose(dirp->handle)) {
duke@435 989 errno = EBADF;
duke@435 990 return -1;
duke@435 991 }
duke@435 992 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 993 }
duke@435 994 free(dirp->path);
duke@435 995 free(dirp);
duke@435 996 return 0;
duke@435 997 }
duke@435 998
duke@435 999 const char* os::dll_file_extension() { return ".dll"; }
duke@435 1000
coleenp@1788 1001 const char* os::get_temp_directory() {
coleenp@1788 1002 const char *prop = Arguments::get_property("java.io.tmpdir");
coleenp@1788 1003 if (prop != 0) return prop;
coleenp@1788 1004 static char path_buf[MAX_PATH];
coleenp@1788 1005 if (GetTempPath(MAX_PATH, path_buf)>0)
coleenp@1788 1006 return path_buf;
coleenp@1788 1007 else{
coleenp@1788 1008 path_buf[0]='\0';
coleenp@1788 1009 return path_buf;
coleenp@1788 1010 }
duke@435 1011 }
duke@435 1012
phh@1126 1013 static bool file_exists(const char* filename) {
phh@1126 1014 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1015 return false;
phh@1126 1016 }
phh@1126 1017 return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
phh@1126 1018 }
phh@1126 1019
phh@1126 1020 void os::dll_build_name(char *buffer, size_t buflen,
phh@1126 1021 const char* pname, const char* fname) {
phh@1126 1022 // Copied from libhpi
phh@1126 1023 const size_t pnamelen = pname ? strlen(pname) : 0;
phh@1126 1024 const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
phh@1126 1025
phh@1126 1026 // Quietly truncates on buffer overflow. Should be an error.
phh@1126 1027 if (pnamelen + strlen(fname) + 10 > buflen) {
phh@1126 1028 *buffer = '\0';
phh@1126 1029 return;
phh@1126 1030 }
phh@1126 1031
phh@1126 1032 if (pnamelen == 0) {
phh@1126 1033 jio_snprintf(buffer, buflen, "%s.dll", fname);
phh@1126 1034 } else if (c == ':' || c == '\\') {
phh@1126 1035 jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
phh@1126 1036 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1037 int n;
phh@1126 1038 char** pelements = split_path(pname, &n);
phh@1126 1039 for (int i = 0 ; i < n ; i++) {
phh@1126 1040 char* path = pelements[i];
phh@1126 1041 // Really shouldn't be NULL, but check can't hurt
phh@1126 1042 size_t plen = (path == NULL) ? 0 : strlen(path);
phh@1126 1043 if (plen == 0) {
phh@1126 1044 continue; // skip the empty path values
phh@1126 1045 }
phh@1126 1046 const char lastchar = path[plen - 1];
phh@1126 1047 if (lastchar == ':' || lastchar == '\\') {
phh@1126 1048 jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
phh@1126 1049 } else {
phh@1126 1050 jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
phh@1126 1051 }
phh@1126 1052 if (file_exists(buffer)) {
phh@1126 1053 break;
phh@1126 1054 }
kamg@677 1055 }
phh@1126 1056 // release the storage
phh@1126 1057 for (int i = 0 ; i < n ; i++) {
phh@1126 1058 if (pelements[i] != NULL) {
phh@1126 1059 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1060 }
kamg@677 1061 }
phh@1126 1062 if (pelements != NULL) {
phh@1126 1063 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1064 }
phh@1126 1065 } else {
phh@1126 1066 jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
phh@1126 1067 }
kamg@677 1068 }
kamg@677 1069
duke@435 1070 // Needs to be in os specific directory because windows requires another
duke@435 1071 // header file <direct.h>
duke@435 1072 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1073 return _getcwd(buf, buflen);
duke@435 1074 }
duke@435 1075
duke@435 1076 //-----------------------------------------------------------
duke@435 1077 // Helper functions for fatal error handler
duke@435 1078
duke@435 1079 // The following library functions are resolved dynamically at runtime:
duke@435 1080
duke@435 1081 // PSAPI functions, for Windows NT, 2000, XP
duke@435 1082
duke@435 1083 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
duke@435 1084 // SDK from Microsoft. Here are the definitions copied from psapi.h
duke@435 1085 typedef struct _MODULEINFO {
duke@435 1086 LPVOID lpBaseOfDll;
duke@435 1087 DWORD SizeOfImage;
duke@435 1088 LPVOID EntryPoint;
duke@435 1089 } MODULEINFO, *LPMODULEINFO;
duke@435 1090
duke@435 1091 static BOOL (WINAPI *_EnumProcessModules) ( HANDLE, HMODULE *, DWORD, LPDWORD );
duke@435 1092 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
duke@435 1093 static BOOL (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
duke@435 1094
duke@435 1095 // ToolHelp Functions, for Windows 95, 98 and ME
duke@435 1096
duke@435 1097 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
duke@435 1098 static BOOL (WINAPI *_Module32First) (HANDLE,LPMODULEENTRY32) ;
duke@435 1099 static BOOL (WINAPI *_Module32Next) (HANDLE,LPMODULEENTRY32) ;
duke@435 1100
duke@435 1101 bool _has_psapi;
duke@435 1102 bool _psapi_init = false;
duke@435 1103 bool _has_toolhelp;
duke@435 1104
duke@435 1105 static bool _init_psapi() {
duke@435 1106 HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
duke@435 1107 if( psapi == NULL ) return false ;
duke@435 1108
duke@435 1109 _EnumProcessModules = CAST_TO_FN_PTR(
duke@435 1110 BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
duke@435 1111 GetProcAddress(psapi, "EnumProcessModules")) ;
duke@435 1112 _GetModuleFileNameEx = CAST_TO_FN_PTR(
duke@435 1113 DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
duke@435 1114 GetProcAddress(psapi, "GetModuleFileNameExA"));
duke@435 1115 _GetModuleInformation = CAST_TO_FN_PTR(
duke@435 1116 BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
duke@435 1117 GetProcAddress(psapi, "GetModuleInformation"));
duke@435 1118
duke@435 1119 _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
duke@435 1120 _psapi_init = true;
duke@435 1121 return _has_psapi;
duke@435 1122 }
duke@435 1123
duke@435 1124 static bool _init_toolhelp() {
duke@435 1125 HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
duke@435 1126 if (kernel32 == NULL) return false ;
duke@435 1127
duke@435 1128 _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
duke@435 1129 HANDLE(WINAPI *)(DWORD,DWORD),
duke@435 1130 GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
duke@435 1131 _Module32First = CAST_TO_FN_PTR(
duke@435 1132 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
duke@435 1133 GetProcAddress(kernel32, "Module32First" ));
duke@435 1134 _Module32Next = CAST_TO_FN_PTR(
duke@435 1135 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
duke@435 1136 GetProcAddress(kernel32, "Module32Next" ));
duke@435 1137
duke@435 1138 _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
duke@435 1139 return _has_toolhelp;
duke@435 1140 }
duke@435 1141
duke@435 1142 #ifdef _WIN64
duke@435 1143 // Helper routine which returns true if address in
duke@435 1144 // within the NTDLL address space.
duke@435 1145 //
duke@435 1146 static bool _addr_in_ntdll( address addr )
duke@435 1147 {
duke@435 1148 HMODULE hmod;
duke@435 1149 MODULEINFO minfo;
duke@435 1150
duke@435 1151 hmod = GetModuleHandle("NTDLL.DLL");
duke@435 1152 if ( hmod == NULL ) return false;
duke@435 1153 if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
duke@435 1154 &minfo, sizeof(MODULEINFO)) )
duke@435 1155 return false;
duke@435 1156
duke@435 1157 if ( (addr >= minfo.lpBaseOfDll) &&
duke@435 1158 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
duke@435 1159 return true;
duke@435 1160 else
duke@435 1161 return false;
duke@435 1162 }
duke@435 1163 #endif
duke@435 1164
duke@435 1165
duke@435 1166 // Enumerate all modules for a given process ID
duke@435 1167 //
duke@435 1168 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
duke@435 1169 // different API for doing this. We use PSAPI.DLL on NT based
duke@435 1170 // Windows and ToolHelp on 95/98/Me.
duke@435 1171
duke@435 1172 // Callback function that is called by enumerate_modules() on
duke@435 1173 // every DLL module.
duke@435 1174 // Input parameters:
duke@435 1175 // int pid,
duke@435 1176 // char* module_file_name,
duke@435 1177 // address module_base_addr,
duke@435 1178 // unsigned module_size,
duke@435 1179 // void* param
duke@435 1180 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
duke@435 1181
duke@435 1182 // enumerate_modules for Windows NT, using PSAPI
duke@435 1183 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
duke@435 1184 {
duke@435 1185 HANDLE hProcess ;
duke@435 1186
duke@435 1187 # define MAX_NUM_MODULES 128
duke@435 1188 HMODULE modules[MAX_NUM_MODULES];
duke@435 1189 static char filename[ MAX_PATH ];
duke@435 1190 int result = 0;
duke@435 1191
duke@435 1192 if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
duke@435 1193
duke@435 1194 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
duke@435 1195 FALSE, pid ) ;
duke@435 1196 if (hProcess == NULL) return 0;
duke@435 1197
duke@435 1198 DWORD size_needed;
duke@435 1199 if (!_EnumProcessModules(hProcess, modules,
duke@435 1200 sizeof(modules), &size_needed)) {
duke@435 1201 CloseHandle( hProcess );
duke@435 1202 return 0;
duke@435 1203 }
duke@435 1204
duke@435 1205 // number of modules that are currently loaded
duke@435 1206 int num_modules = size_needed / sizeof(HMODULE);
duke@435 1207
duke@435 1208 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
duke@435 1209 // Get Full pathname:
duke@435 1210 if(!_GetModuleFileNameEx(hProcess, modules[i],
duke@435 1211 filename, sizeof(filename))) {
duke@435 1212 filename[0] = '\0';
duke@435 1213 }
duke@435 1214
duke@435 1215 MODULEINFO modinfo;
duke@435 1216 if (!_GetModuleInformation(hProcess, modules[i],
duke@435 1217 &modinfo, sizeof(modinfo))) {
duke@435 1218 modinfo.lpBaseOfDll = NULL;
duke@435 1219 modinfo.SizeOfImage = 0;
duke@435 1220 }
duke@435 1221
duke@435 1222 // Invoke callback function
duke@435 1223 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
duke@435 1224 modinfo.SizeOfImage, param);
duke@435 1225 if (result) break;
duke@435 1226 }
duke@435 1227
duke@435 1228 CloseHandle( hProcess ) ;
duke@435 1229 return result;
duke@435 1230 }
duke@435 1231
duke@435 1232
duke@435 1233 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
duke@435 1234 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
duke@435 1235 {
duke@435 1236 HANDLE hSnapShot ;
duke@435 1237 static MODULEENTRY32 modentry ;
duke@435 1238 int result = 0;
duke@435 1239
duke@435 1240 if (!_has_toolhelp) return 0;
duke@435 1241
duke@435 1242 // Get a handle to a Toolhelp snapshot of the system
duke@435 1243 hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
duke@435 1244 if( hSnapShot == INVALID_HANDLE_VALUE ) {
duke@435 1245 return FALSE ;
duke@435 1246 }
duke@435 1247
duke@435 1248 // iterate through all modules
duke@435 1249 modentry.dwSize = sizeof(MODULEENTRY32) ;
duke@435 1250 bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
duke@435 1251
duke@435 1252 while( not_done ) {
duke@435 1253 // invoke the callback
duke@435 1254 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
duke@435 1255 modentry.modBaseSize, param);
duke@435 1256 if (result) break;
duke@435 1257
duke@435 1258 modentry.dwSize = sizeof(MODULEENTRY32) ;
duke@435 1259 not_done = _Module32Next( hSnapShot, &modentry ) != 0;
duke@435 1260 }
duke@435 1261
duke@435 1262 CloseHandle(hSnapShot);
duke@435 1263 return result;
duke@435 1264 }
duke@435 1265
duke@435 1266 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
duke@435 1267 {
duke@435 1268 // Get current process ID if caller doesn't provide it.
duke@435 1269 if (!pid) pid = os::current_process_id();
duke@435 1270
duke@435 1271 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
duke@435 1272 else return _enumerate_modules_windows(pid, func, param);
duke@435 1273 }
duke@435 1274
duke@435 1275 struct _modinfo {
duke@435 1276 address addr;
duke@435 1277 char* full_path; // point to a char buffer
duke@435 1278 int buflen; // size of the buffer
duke@435 1279 address base_addr;
duke@435 1280 };
duke@435 1281
duke@435 1282 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
duke@435 1283 unsigned size, void * param) {
duke@435 1284 struct _modinfo *pmod = (struct _modinfo *)param;
duke@435 1285 if (!pmod) return -1;
duke@435 1286
duke@435 1287 if (base_addr <= pmod->addr &&
duke@435 1288 base_addr+size > pmod->addr) {
duke@435 1289 // if a buffer is provided, copy path name to the buffer
duke@435 1290 if (pmod->full_path) {
duke@435 1291 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
duke@435 1292 }
duke@435 1293 pmod->base_addr = base_addr;
duke@435 1294 return 1;
duke@435 1295 }
duke@435 1296 return 0;
duke@435 1297 }
duke@435 1298
duke@435 1299 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1300 int buflen, int* offset) {
duke@435 1301 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
duke@435 1302 // return the full path to the DLL file, sometimes it returns path
duke@435 1303 // to the corresponding PDB file (debug info); sometimes it only
duke@435 1304 // returns partial path, which makes life painful.
duke@435 1305
duke@435 1306 struct _modinfo mi;
duke@435 1307 mi.addr = addr;
duke@435 1308 mi.full_path = buf;
duke@435 1309 mi.buflen = buflen;
duke@435 1310 int pid = os::current_process_id();
duke@435 1311 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
duke@435 1312 // buf already contains path name
duke@435 1313 if (offset) *offset = addr - mi.base_addr;
duke@435 1314 return true;
duke@435 1315 } else {
duke@435 1316 if (buf) buf[0] = '\0';
duke@435 1317 if (offset) *offset = -1;
duke@435 1318 return false;
duke@435 1319 }
duke@435 1320 }
duke@435 1321
duke@435 1322 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1323 int buflen, int *offset) {
duke@435 1324 // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
duke@435 1325 // we need to initialize imagehlp/dbghelp, then load symbol table
duke@435 1326 // for every module. That's too much work to do after a fatal error.
duke@435 1327 // For an example on how to implement this function, see 1.4.2.
duke@435 1328 if (offset) *offset = -1;
duke@435 1329 if (buf) buf[0] = '\0';
duke@435 1330 return false;
duke@435 1331 }
duke@435 1332
kamg@677 1333 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 1334 return GetProcAddress((HMODULE)handle, name);
kamg@677 1335 }
kamg@677 1336
duke@435 1337 // save the start and end address of jvm.dll into param[0] and param[1]
duke@435 1338 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
duke@435 1339 unsigned size, void * param) {
duke@435 1340 if (!param) return -1;
duke@435 1341
duke@435 1342 if (base_addr <= (address)_locate_jvm_dll &&
duke@435 1343 base_addr+size > (address)_locate_jvm_dll) {
duke@435 1344 ((address*)param)[0] = base_addr;
duke@435 1345 ((address*)param)[1] = base_addr + size;
duke@435 1346 return 1;
duke@435 1347 }
duke@435 1348 return 0;
duke@435 1349 }
duke@435 1350
duke@435 1351 address vm_lib_location[2]; // start and end address of jvm.dll
duke@435 1352
duke@435 1353 // check if addr is inside jvm.dll
duke@435 1354 bool os::address_is_in_vm(address addr) {
duke@435 1355 if (!vm_lib_location[0] || !vm_lib_location[1]) {
duke@435 1356 int pid = os::current_process_id();
duke@435 1357 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
duke@435 1358 assert(false, "Can't find jvm module.");
duke@435 1359 return false;
duke@435 1360 }
duke@435 1361 }
duke@435 1362
duke@435 1363 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
duke@435 1364 }
duke@435 1365
duke@435 1366 // print module info; param is outputStream*
duke@435 1367 static int _print_module(int pid, char* fname, address base,
duke@435 1368 unsigned size, void* param) {
duke@435 1369 if (!param) return -1;
duke@435 1370
duke@435 1371 outputStream* st = (outputStream*)param;
duke@435 1372
duke@435 1373 address end_addr = base + size;
duke@435 1374 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
duke@435 1375 return 0;
duke@435 1376 }
duke@435 1377
duke@435 1378 // Loads .dll/.so and
duke@435 1379 // in case of error it checks if .dll/.so was built for the
duke@435 1380 // same architecture as Hotspot is running on
duke@435 1381 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
duke@435 1382 {
duke@435 1383 void * result = LoadLibrary(name);
duke@435 1384 if (result != NULL)
duke@435 1385 {
duke@435 1386 return result;
duke@435 1387 }
duke@435 1388
duke@435 1389 long errcode = GetLastError();
duke@435 1390 if (errcode == ERROR_MOD_NOT_FOUND) {
duke@435 1391 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
duke@435 1392 ebuf[ebuflen-1]='\0';
duke@435 1393 return NULL;
duke@435 1394 }
duke@435 1395
duke@435 1396 // Parsing dll below
duke@435 1397 // If we can read dll-info and find that dll was built
duke@435 1398 // for an architecture other than Hotspot is running in
duke@435 1399 // - then print to buffer "DLL was built for a different architecture"
duke@435 1400 // else call getLastErrorString to obtain system error message
duke@435 1401
duke@435 1402 // Read system error message into ebuf
duke@435 1403 // It may or may not be overwritten below (in the for loop and just above)
duke@435 1404 getLastErrorString(ebuf, (size_t) ebuflen);
duke@435 1405 ebuf[ebuflen-1]='\0';
duke@435 1406 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
duke@435 1407 if (file_descriptor<0)
duke@435 1408 {
duke@435 1409 return NULL;
duke@435 1410 }
duke@435 1411
duke@435 1412 uint32_t signature_offset;
duke@435 1413 uint16_t lib_arch=0;
duke@435 1414 bool failed_to_get_lib_arch=
duke@435 1415 (
duke@435 1416 //Go to position 3c in the dll
duke@435 1417 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
duke@435 1418 ||
duke@435 1419 // Read loacation of signature
duke@435 1420 (sizeof(signature_offset)!=
duke@435 1421 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
duke@435 1422 ||
duke@435 1423 //Go to COFF File Header in dll
duke@435 1424 //that is located after"signature" (4 bytes long)
duke@435 1425 (os::seek_to_file_offset(file_descriptor,
duke@435 1426 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
duke@435 1427 ||
duke@435 1428 //Read field that contains code of architecture
duke@435 1429 // that dll was build for
duke@435 1430 (sizeof(lib_arch)!=
duke@435 1431 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
duke@435 1432 );
duke@435 1433
duke@435 1434 ::close(file_descriptor);
duke@435 1435 if (failed_to_get_lib_arch)
duke@435 1436 {
duke@435 1437 // file i/o error - report getLastErrorString(...) msg
duke@435 1438 return NULL;
duke@435 1439 }
duke@435 1440
duke@435 1441 typedef struct
duke@435 1442 {
duke@435 1443 uint16_t arch_code;
duke@435 1444 char* arch_name;
duke@435 1445 } arch_t;
duke@435 1446
duke@435 1447 static const arch_t arch_array[]={
duke@435 1448 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
duke@435 1449 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
duke@435 1450 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
duke@435 1451 };
duke@435 1452 #if (defined _M_IA64)
duke@435 1453 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
duke@435 1454 #elif (defined _M_AMD64)
duke@435 1455 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
duke@435 1456 #elif (defined _M_IX86)
duke@435 1457 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
duke@435 1458 #else
duke@435 1459 #error Method os::dll_load requires that one of following \
duke@435 1460 is defined :_M_IA64,_M_AMD64 or _M_IX86
duke@435 1461 #endif
duke@435 1462
duke@435 1463
duke@435 1464 // Obtain a string for printf operation
duke@435 1465 // lib_arch_str shall contain string what platform this .dll was built for
duke@435 1466 // running_arch_str shall string contain what platform Hotspot was built for
duke@435 1467 char *running_arch_str=NULL,*lib_arch_str=NULL;
duke@435 1468 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
duke@435 1469 {
duke@435 1470 if (lib_arch==arch_array[i].arch_code)
duke@435 1471 lib_arch_str=arch_array[i].arch_name;
duke@435 1472 if (running_arch==arch_array[i].arch_code)
duke@435 1473 running_arch_str=arch_array[i].arch_name;
duke@435 1474 }
duke@435 1475
duke@435 1476 assert(running_arch_str,
duke@435 1477 "Didn't find runing architecture code in arch_array");
duke@435 1478
duke@435 1479 // If the architure is right
duke@435 1480 // but some other error took place - report getLastErrorString(...) msg
duke@435 1481 if (lib_arch == running_arch)
duke@435 1482 {
duke@435 1483 return NULL;
duke@435 1484 }
duke@435 1485
duke@435 1486 if (lib_arch_str!=NULL)
duke@435 1487 {
duke@435 1488 ::_snprintf(ebuf, ebuflen-1,
duke@435 1489 "Can't load %s-bit .dll on a %s-bit platform",
duke@435 1490 lib_arch_str,running_arch_str);
duke@435 1491 }
duke@435 1492 else
duke@435 1493 {
duke@435 1494 // don't know what architecture this dll was build for
duke@435 1495 ::_snprintf(ebuf, ebuflen-1,
duke@435 1496 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
duke@435 1497 lib_arch,running_arch_str);
duke@435 1498 }
duke@435 1499
duke@435 1500 return NULL;
duke@435 1501 }
duke@435 1502
duke@435 1503
duke@435 1504 void os::print_dll_info(outputStream *st) {
duke@435 1505 int pid = os::current_process_id();
duke@435 1506 st->print_cr("Dynamic libraries:");
duke@435 1507 enumerate_modules(pid, _print_module, (void *)st);
duke@435 1508 }
duke@435 1509
xlu@708 1510 // function pointer to Windows API "GetNativeSystemInfo".
xlu@708 1511 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
xlu@708 1512 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
xlu@708 1513
duke@435 1514 void os::print_os_info(outputStream* st) {
xlu@708 1515 st->print("OS:");
xlu@708 1516
xlu@708 1517 OSVERSIONINFOEX osvi;
xlu@708 1518 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
xlu@708 1519 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
xlu@708 1520
xlu@708 1521 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
xlu@708 1522 st->print_cr("N/A");
xlu@708 1523 return;
xlu@708 1524 }
xlu@708 1525
xlu@708 1526 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
xlu@708 1527 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
xlu@708 1528 switch (os_vers) {
xlu@708 1529 case 3051: st->print(" Windows NT 3.51"); break;
xlu@708 1530 case 4000: st->print(" Windows NT 4.0"); break;
xlu@708 1531 case 5000: st->print(" Windows 2000"); break;
xlu@708 1532 case 5001: st->print(" Windows XP"); break;
xlu@708 1533 case 5002:
asaha@1397 1534 case 6000:
asaha@1397 1535 case 6001: {
xlu@708 1536 // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
xlu@708 1537 // find out whether we are running on 64 bit processor or not.
xlu@708 1538 SYSTEM_INFO si;
xlu@708 1539 ZeroMemory(&si, sizeof(SYSTEM_INFO));
xlu@708 1540 // Check to see if _GetNativeSystemInfo has been initialized.
xlu@708 1541 if (_GetNativeSystemInfo == NULL) {
xlu@708 1542 HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
xlu@708 1543 _GetNativeSystemInfo =
xlu@708 1544 CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
xlu@708 1545 GetProcAddress(hKernel32,
xlu@708 1546 "GetNativeSystemInfo"));
xlu@708 1547 if (_GetNativeSystemInfo == NULL)
xlu@708 1548 GetSystemInfo(&si);
xlu@708 1549 } else {
xlu@708 1550 _GetNativeSystemInfo(&si);
xlu@708 1551 }
xlu@708 1552 if (os_vers == 5002) {
xlu@708 1553 if (osvi.wProductType == VER_NT_WORKSTATION &&
xlu@708 1554 si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1555 st->print(" Windows XP x64 Edition");
xlu@708 1556 else
xlu@708 1557 st->print(" Windows Server 2003 family");
asaha@1397 1558 } else if (os_vers == 6000) {
xlu@708 1559 if (osvi.wProductType == VER_NT_WORKSTATION)
xlu@708 1560 st->print(" Windows Vista");
xlu@708 1561 else
xlu@708 1562 st->print(" Windows Server 2008");
xlu@708 1563 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1564 st->print(" , 64 bit");
asaha@1397 1565 } else if (os_vers == 6001) {
asaha@1397 1566 if (osvi.wProductType == VER_NT_WORKSTATION) {
asaha@1397 1567 st->print(" Windows 7");
asaha@1397 1568 } else {
asaha@1397 1569 // Unrecognized windows, print out its major and minor versions
asaha@1397 1570 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1571 }
asaha@1397 1572 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1573 st->print(" , 64 bit");
asaha@1397 1574 } else { // future os
asaha@1397 1575 // Unrecognized windows, print out its major and minor versions
asaha@1397 1576 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1577 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1578 st->print(" , 64 bit");
xlu@708 1579 }
xlu@708 1580 break;
xlu@708 1581 }
xlu@708 1582 default: // future windows, print out its major and minor versions
xlu@708 1583 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1584 }
xlu@708 1585 } else {
xlu@708 1586 switch (os_vers) {
xlu@708 1587 case 4000: st->print(" Windows 95"); break;
xlu@708 1588 case 4010: st->print(" Windows 98"); break;
xlu@708 1589 case 4090: st->print(" Windows Me"); break;
xlu@708 1590 default: // future windows, print out its major and minor versions
xlu@708 1591 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1592 }
xlu@708 1593 }
xlu@708 1594 st->print(" Build %d", osvi.dwBuildNumber);
xlu@708 1595 st->print(" %s", osvi.szCSDVersion); // service pack
xlu@708 1596 st->cr();
duke@435 1597 }
duke@435 1598
duke@435 1599 void os::print_memory_info(outputStream* st) {
duke@435 1600 st->print("Memory:");
duke@435 1601 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1602
poonam@1312 1603 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 1604 // value if total memory is larger than 4GB
poonam@1312 1605 MEMORYSTATUSEX ms;
poonam@1312 1606 ms.dwLength = sizeof(ms);
poonam@1312 1607 GlobalMemoryStatusEx(&ms);
duke@435 1608
duke@435 1609 st->print(", physical %uk", os::physical_memory() >> 10);
duke@435 1610 st->print("(%uk free)", os::available_memory() >> 10);
duke@435 1611
poonam@1312 1612 st->print(", swap %uk", ms.ullTotalPageFile >> 10);
poonam@1312 1613 st->print("(%uk free)", ms.ullAvailPageFile >> 10);
duke@435 1614 st->cr();
duke@435 1615 }
duke@435 1616
duke@435 1617 void os::print_siginfo(outputStream *st, void *siginfo) {
duke@435 1618 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
duke@435 1619 st->print("siginfo:");
duke@435 1620 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
duke@435 1621
duke@435 1622 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 1623 er->NumberParameters >= 2) {
duke@435 1624 switch (er->ExceptionInformation[0]) {
duke@435 1625 case 0: st->print(", reading address"); break;
duke@435 1626 case 1: st->print(", writing address"); break;
duke@435 1627 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
duke@435 1628 er->ExceptionInformation[0]);
duke@435 1629 }
duke@435 1630 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
duke@435 1631 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
duke@435 1632 er->NumberParameters >= 2 && UseSharedSpaces) {
duke@435 1633 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1634 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
duke@435 1635 st->print("\n\nError accessing class data sharing archive." \
duke@435 1636 " Mapped file inaccessible during execution, " \
duke@435 1637 " possible disk/network problem.");
duke@435 1638 }
duke@435 1639 } else {
duke@435 1640 int num = er->NumberParameters;
duke@435 1641 if (num > 0) {
duke@435 1642 st->print(", ExceptionInformation=");
duke@435 1643 for (int i = 0; i < num; i++) {
duke@435 1644 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
duke@435 1645 }
duke@435 1646 }
duke@435 1647 }
duke@435 1648 st->cr();
duke@435 1649 }
duke@435 1650
duke@435 1651 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1652 // do nothing
duke@435 1653 }
duke@435 1654
duke@435 1655 static char saved_jvm_path[MAX_PATH] = {0};
duke@435 1656
duke@435 1657 // Find the full path to the current module, jvm.dll or jvm_g.dll
duke@435 1658 void os::jvm_path(char *buf, jint buflen) {
duke@435 1659 // Error checking.
duke@435 1660 if (buflen < MAX_PATH) {
duke@435 1661 assert(false, "must use a large-enough buffer");
duke@435 1662 buf[0] = '\0';
duke@435 1663 return;
duke@435 1664 }
duke@435 1665 // Lazy resolve the path to current module.
duke@435 1666 if (saved_jvm_path[0] != 0) {
duke@435 1667 strcpy(buf, saved_jvm_path);
duke@435 1668 return;
duke@435 1669 }
duke@435 1670
duke@435 1671 GetModuleFileName(vm_lib_handle, buf, buflen);
duke@435 1672 strcpy(saved_jvm_path, buf);
duke@435 1673 }
duke@435 1674
duke@435 1675
duke@435 1676 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 1677 #ifndef _WIN64
duke@435 1678 st->print("_");
duke@435 1679 #endif
duke@435 1680 }
duke@435 1681
duke@435 1682
duke@435 1683 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 1684 #ifndef _WIN64
duke@435 1685 st->print("@%d", args_size * sizeof(int));
duke@435 1686 #endif
duke@435 1687 }
duke@435 1688
duke@435 1689 // sun.misc.Signal
duke@435 1690 // NOTE that this is a workaround for an apparent kernel bug where if
duke@435 1691 // a signal handler for SIGBREAK is installed then that signal handler
duke@435 1692 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
duke@435 1693 // See bug 4416763.
duke@435 1694 static void (*sigbreakHandler)(int) = NULL;
duke@435 1695
duke@435 1696 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 1697 os::signal_notify(sig);
duke@435 1698 // We need to reinstate the signal handler each time...
duke@435 1699 os::signal(sig, (void*)UserHandler);
duke@435 1700 }
duke@435 1701
duke@435 1702 void* os::user_handler() {
duke@435 1703 return (void*) UserHandler;
duke@435 1704 }
duke@435 1705
duke@435 1706 void* os::signal(int signal_number, void* handler) {
duke@435 1707 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
duke@435 1708 void (*oldHandler)(int) = sigbreakHandler;
duke@435 1709 sigbreakHandler = (void (*)(int)) handler;
duke@435 1710 return (void*) oldHandler;
duke@435 1711 } else {
duke@435 1712 return (void*)::signal(signal_number, (void (*)(int))handler);
duke@435 1713 }
duke@435 1714 }
duke@435 1715
duke@435 1716 void os::signal_raise(int signal_number) {
duke@435 1717 raise(signal_number);
duke@435 1718 }
duke@435 1719
duke@435 1720 // The Win32 C runtime library maps all console control events other than ^C
duke@435 1721 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
duke@435 1722 // logoff, and shutdown events. We therefore install our own console handler
duke@435 1723 // that raises SIGTERM for the latter cases.
duke@435 1724 //
duke@435 1725 static BOOL WINAPI consoleHandler(DWORD event) {
duke@435 1726 switch(event) {
duke@435 1727 case CTRL_C_EVENT:
duke@435 1728 if (is_error_reported()) {
duke@435 1729 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 1730 // handler fails to abort. Let VM die immediately.
duke@435 1731 os::die();
duke@435 1732 }
duke@435 1733
duke@435 1734 os::signal_raise(SIGINT);
duke@435 1735 return TRUE;
duke@435 1736 break;
duke@435 1737 case CTRL_BREAK_EVENT:
duke@435 1738 if (sigbreakHandler != NULL) {
duke@435 1739 (*sigbreakHandler)(SIGBREAK);
duke@435 1740 }
duke@435 1741 return TRUE;
duke@435 1742 break;
duke@435 1743 case CTRL_CLOSE_EVENT:
duke@435 1744 case CTRL_LOGOFF_EVENT:
duke@435 1745 case CTRL_SHUTDOWN_EVENT:
duke@435 1746 os::signal_raise(SIGTERM);
duke@435 1747 return TRUE;
duke@435 1748 break;
duke@435 1749 default:
duke@435 1750 break;
duke@435 1751 }
duke@435 1752 return FALSE;
duke@435 1753 }
duke@435 1754
duke@435 1755 /*
duke@435 1756 * The following code is moved from os.cpp for making this
duke@435 1757 * code platform specific, which it is by its very nature.
duke@435 1758 */
duke@435 1759
duke@435 1760 // Return maximum OS signal used + 1 for internal use only
duke@435 1761 // Used as exit signal for signal_thread
duke@435 1762 int os::sigexitnum_pd(){
duke@435 1763 return NSIG;
duke@435 1764 }
duke@435 1765
duke@435 1766 // a counter for each possible signal value, including signal_thread exit signal
duke@435 1767 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 1768 static HANDLE sig_sem;
duke@435 1769
duke@435 1770 void os::signal_init_pd() {
duke@435 1771 // Initialize signal structures
duke@435 1772 memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 1773
duke@435 1774 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
duke@435 1775
duke@435 1776 // Programs embedding the VM do not want it to attempt to receive
duke@435 1777 // events like CTRL_LOGOFF_EVENT, which are used to implement the
duke@435 1778 // shutdown hooks mechanism introduced in 1.3. For example, when
duke@435 1779 // the VM is run as part of a Windows NT service (i.e., a servlet
duke@435 1780 // engine in a web server), the correct behavior is for any console
duke@435 1781 // control handler to return FALSE, not TRUE, because the OS's
duke@435 1782 // "final" handler for such events allows the process to continue if
duke@435 1783 // it is a service (while terminating it if it is not a service).
duke@435 1784 // To make this behavior uniform and the mechanism simpler, we
duke@435 1785 // completely disable the VM's usage of these console events if -Xrs
duke@435 1786 // (=ReduceSignalUsage) is specified. This means, for example, that
duke@435 1787 // the CTRL-BREAK thread dump mechanism is also disabled in this
duke@435 1788 // case. See bugs 4323062, 4345157, and related bugs.
duke@435 1789
duke@435 1790 if (!ReduceSignalUsage) {
duke@435 1791 // Add a CTRL-C handler
duke@435 1792 SetConsoleCtrlHandler(consoleHandler, TRUE);
duke@435 1793 }
duke@435 1794 }
duke@435 1795
duke@435 1796 void os::signal_notify(int signal_number) {
duke@435 1797 BOOL ret;
duke@435 1798
duke@435 1799 Atomic::inc(&pending_signals[signal_number]);
duke@435 1800 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1801 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1802 }
duke@435 1803
duke@435 1804 static int check_pending_signals(bool wait_for_signal) {
duke@435 1805 DWORD ret;
duke@435 1806 while (true) {
duke@435 1807 for (int i = 0; i < NSIG + 1; i++) {
duke@435 1808 jint n = pending_signals[i];
duke@435 1809 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 1810 return i;
duke@435 1811 }
duke@435 1812 }
duke@435 1813 if (!wait_for_signal) {
duke@435 1814 return -1;
duke@435 1815 }
duke@435 1816
duke@435 1817 JavaThread *thread = JavaThread::current();
duke@435 1818
duke@435 1819 ThreadBlockInVM tbivm(thread);
duke@435 1820
duke@435 1821 bool threadIsSuspended;
duke@435 1822 do {
duke@435 1823 thread->set_suspend_equivalent();
duke@435 1824 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 1825 ret = ::WaitForSingleObject(sig_sem, INFINITE);
duke@435 1826 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
duke@435 1827
duke@435 1828 // were we externally suspended while we were waiting?
duke@435 1829 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 1830 if (threadIsSuspended) {
duke@435 1831 //
duke@435 1832 // The semaphore has been incremented, but while we were waiting
duke@435 1833 // another thread suspended us. We don't want to continue running
duke@435 1834 // while suspended because that would surprise the thread that
duke@435 1835 // suspended us.
duke@435 1836 //
duke@435 1837 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1838 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1839
duke@435 1840 thread->java_suspend_self();
duke@435 1841 }
duke@435 1842 } while (threadIsSuspended);
duke@435 1843 }
duke@435 1844 }
duke@435 1845
duke@435 1846 int os::signal_lookup() {
duke@435 1847 return check_pending_signals(false);
duke@435 1848 }
duke@435 1849
duke@435 1850 int os::signal_wait() {
duke@435 1851 return check_pending_signals(true);
duke@435 1852 }
duke@435 1853
duke@435 1854 // Implicit OS exception handling
duke@435 1855
duke@435 1856 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
duke@435 1857 JavaThread* thread = JavaThread::current();
duke@435 1858 // Save pc in thread
duke@435 1859 #ifdef _M_IA64
duke@435 1860 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
duke@435 1861 // Set pc to handler
duke@435 1862 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
duke@435 1863 #elif _M_AMD64
duke@435 1864 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
duke@435 1865 // Set pc to handler
duke@435 1866 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
duke@435 1867 #else
duke@435 1868 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
duke@435 1869 // Set pc to handler
duke@435 1870 exceptionInfo->ContextRecord->Eip = (LONG)handler;
duke@435 1871 #endif
duke@435 1872
duke@435 1873 // Continue the execution
duke@435 1874 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1875 }
duke@435 1876
duke@435 1877
duke@435 1878 // Used for PostMortemDump
duke@435 1879 extern "C" void safepoints();
duke@435 1880 extern "C" void find(int x);
duke@435 1881 extern "C" void events();
duke@435 1882
duke@435 1883 // According to Windows API documentation, an illegal instruction sequence should generate
duke@435 1884 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
duke@435 1885 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
duke@435 1886 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
duke@435 1887
duke@435 1888 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
duke@435 1889
duke@435 1890 // From "Execution Protection in the Windows Operating System" draft 0.35
duke@435 1891 // Once a system header becomes available, the "real" define should be
duke@435 1892 // included or copied here.
duke@435 1893 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
duke@435 1894
duke@435 1895 #define def_excpt(val) #val, val
duke@435 1896
duke@435 1897 struct siglabel {
duke@435 1898 char *name;
duke@435 1899 int number;
duke@435 1900 };
duke@435 1901
duke@435 1902 struct siglabel exceptlabels[] = {
duke@435 1903 def_excpt(EXCEPTION_ACCESS_VIOLATION),
duke@435 1904 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
duke@435 1905 def_excpt(EXCEPTION_BREAKPOINT),
duke@435 1906 def_excpt(EXCEPTION_SINGLE_STEP),
duke@435 1907 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
duke@435 1908 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
duke@435 1909 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
duke@435 1910 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
duke@435 1911 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
duke@435 1912 def_excpt(EXCEPTION_FLT_OVERFLOW),
duke@435 1913 def_excpt(EXCEPTION_FLT_STACK_CHECK),
duke@435 1914 def_excpt(EXCEPTION_FLT_UNDERFLOW),
duke@435 1915 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
duke@435 1916 def_excpt(EXCEPTION_INT_OVERFLOW),
duke@435 1917 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
duke@435 1918 def_excpt(EXCEPTION_IN_PAGE_ERROR),
duke@435 1919 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
duke@435 1920 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
duke@435 1921 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
duke@435 1922 def_excpt(EXCEPTION_STACK_OVERFLOW),
duke@435 1923 def_excpt(EXCEPTION_INVALID_DISPOSITION),
duke@435 1924 def_excpt(EXCEPTION_GUARD_PAGE),
duke@435 1925 def_excpt(EXCEPTION_INVALID_HANDLE),
duke@435 1926 NULL, 0
duke@435 1927 };
duke@435 1928
duke@435 1929 const char* os::exception_name(int exception_code, char *buf, size_t size) {
duke@435 1930 for (int i = 0; exceptlabels[i].name != NULL; i++) {
duke@435 1931 if (exceptlabels[i].number == exception_code) {
duke@435 1932 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
duke@435 1933 return buf;
duke@435 1934 }
duke@435 1935 }
duke@435 1936
duke@435 1937 return NULL;
duke@435 1938 }
duke@435 1939
duke@435 1940 //-----------------------------------------------------------------------------
duke@435 1941 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 1942 // handle exception caused by idiv; should only happen for -MinInt/-1
duke@435 1943 // (division by zero is handled explicitly)
duke@435 1944 #ifdef _M_IA64
duke@435 1945 assert(0, "Fix Handle_IDiv_Exception");
duke@435 1946 #elif _M_AMD64
duke@435 1947 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1948 address pc = (address)ctx->Rip;
duke@435 1949 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 1950 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 1951 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 1952 assert(ctx->Rax == min_jint, "unexpected idiv exception");
duke@435 1953 // set correct result values and continue after idiv instruction
duke@435 1954 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 1955 ctx->Rax = (DWORD)min_jint; // result
duke@435 1956 ctx->Rdx = (DWORD)0; // remainder
duke@435 1957 // Continue the execution
duke@435 1958 #else
duke@435 1959 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1960 address pc = (address)ctx->Eip;
duke@435 1961 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 1962 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 1963 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 1964 assert(ctx->Eax == min_jint, "unexpected idiv exception");
duke@435 1965 // set correct result values and continue after idiv instruction
duke@435 1966 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 1967 ctx->Eax = (DWORD)min_jint; // result
duke@435 1968 ctx->Edx = (DWORD)0; // remainder
duke@435 1969 // Continue the execution
duke@435 1970 #endif
duke@435 1971 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1972 }
duke@435 1973
duke@435 1974 #ifndef _WIN64
duke@435 1975 //-----------------------------------------------------------------------------
duke@435 1976 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
dcubed@1649 1977 // handle exception caused by native method modifying control word
duke@435 1978 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 1979 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 1980
duke@435 1981 switch (exception_code) {
duke@435 1982 case EXCEPTION_FLT_DENORMAL_OPERAND:
duke@435 1983 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
duke@435 1984 case EXCEPTION_FLT_INEXACT_RESULT:
duke@435 1985 case EXCEPTION_FLT_INVALID_OPERATION:
duke@435 1986 case EXCEPTION_FLT_OVERFLOW:
duke@435 1987 case EXCEPTION_FLT_STACK_CHECK:
duke@435 1988 case EXCEPTION_FLT_UNDERFLOW:
duke@435 1989 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 1990 if (fp_control_word != ctx->FloatSave.ControlWord) {
duke@435 1991 // Restore FPCW and mask out FLT exceptions
duke@435 1992 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
duke@435 1993 // Mask out pending FLT exceptions
duke@435 1994 ctx->FloatSave.StatusWord &= 0xffffff00;
duke@435 1995 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1996 }
duke@435 1997 }
dcubed@1649 1998
dcubed@1649 1999 if (prev_uef_handler != NULL) {
dcubed@1649 2000 // We didn't handle this exception so pass it to the previous
dcubed@1649 2001 // UnhandledExceptionFilter.
dcubed@1649 2002 return (prev_uef_handler)(exceptionInfo);
dcubed@1649 2003 }
dcubed@1649 2004
duke@435 2005 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2006 }
duke@435 2007 #else //_WIN64
duke@435 2008 /*
duke@435 2009 On Windows, the mxcsr control bits are non-volatile across calls
duke@435 2010 See also CR 6192333
duke@435 2011 If EXCEPTION_FLT_* happened after some native method modified
duke@435 2012 mxcsr - it is not a jvm fault.
duke@435 2013 However should we decide to restore of mxcsr after a faulty
duke@435 2014 native method we can uncomment following code
duke@435 2015 jint MxCsr = INITIAL_MXCSR;
duke@435 2016 // we can't use StubRoutines::addr_mxcsr_std()
duke@435 2017 // because in Win64 mxcsr is not saved there
duke@435 2018 if (MxCsr != ctx->MxCsr) {
duke@435 2019 ctx->MxCsr = MxCsr;
duke@435 2020 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2021 }
duke@435 2022
duke@435 2023 */
duke@435 2024 #endif //_WIN64
duke@435 2025
duke@435 2026
duke@435 2027 // Fatal error reporting is single threaded so we can make this a
duke@435 2028 // static and preallocated. If it's more than MAX_PATH silently ignore
duke@435 2029 // it.
duke@435 2030 static char saved_error_file[MAX_PATH] = {0};
duke@435 2031
duke@435 2032 void os::set_error_file(const char *logfile) {
duke@435 2033 if (strlen(logfile) <= MAX_PATH) {
duke@435 2034 strncpy(saved_error_file, logfile, MAX_PATH);
duke@435 2035 }
duke@435 2036 }
duke@435 2037
duke@435 2038 static inline void report_error(Thread* t, DWORD exception_code,
duke@435 2039 address addr, void* siginfo, void* context) {
duke@435 2040 VMError err(t, exception_code, addr, siginfo, context);
duke@435 2041 err.report_and_die();
duke@435 2042
duke@435 2043 // If UseOsErrorReporting, this will return here and save the error file
duke@435 2044 // somewhere where we can find it in the minidump.
duke@435 2045 }
duke@435 2046
duke@435 2047 //-----------------------------------------------------------------------------
duke@435 2048 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2049 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2050 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2051 #ifdef _M_IA64
duke@435 2052 address pc = (address) exceptionInfo->ContextRecord->StIIP;
duke@435 2053 #elif _M_AMD64
duke@435 2054 address pc = (address) exceptionInfo->ContextRecord->Rip;
duke@435 2055 #else
duke@435 2056 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2057 #endif
duke@435 2058 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 2059
duke@435 2060 #ifndef _WIN64
duke@435 2061 // Execution protection violation - win32 running on AMD64 only
duke@435 2062 // Handled first to avoid misdiagnosis as a "normal" access violation;
duke@435 2063 // This is safe to do because we have a new/unique ExceptionInformation
duke@435 2064 // code for this condition.
duke@435 2065 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2066 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2067 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
duke@435 2068 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2069
duke@435 2070 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 2071 int page_size = os::vm_page_size();
duke@435 2072
duke@435 2073 // Make sure the pc and the faulting address are sane.
duke@435 2074 //
duke@435 2075 // If an instruction spans a page boundary, and the page containing
duke@435 2076 // the beginning of the instruction is executable but the following
duke@435 2077 // page is not, the pc and the faulting address might be slightly
duke@435 2078 // different - we still want to unguard the 2nd page in this case.
duke@435 2079 //
duke@435 2080 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 2081 bool pc_is_near_addr =
duke@435 2082 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 2083 bool instr_spans_page_boundary =
duke@435 2084 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 2085 (intptr_t) page_size) > 0);
duke@435 2086
duke@435 2087 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 2088 static volatile address last_addr =
duke@435 2089 (address) os::non_memory_address_word();
duke@435 2090
duke@435 2091 // In conservative mode, don't unguard unless the address is in the VM
duke@435 2092 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
duke@435 2093 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 2094
coleenp@912 2095 // Set memory to RWX and retry
duke@435 2096 address page_start =
duke@435 2097 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 2098 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 2099 os::MEM_PROT_RWX);
duke@435 2100
duke@435 2101 if (PrintMiscellaneous && Verbose) {
duke@435 2102 char buf[256];
duke@435 2103 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 2104 "at " INTPTR_FORMAT
duke@435 2105 ", unguarding " INTPTR_FORMAT ": %s", addr,
duke@435 2106 page_start, (res ? "success" : strerror(errno)));
duke@435 2107 tty->print_raw_cr(buf);
duke@435 2108 }
duke@435 2109
duke@435 2110 // Set last_addr so if we fault again at the same address, we don't
duke@435 2111 // end up in an endless loop.
duke@435 2112 //
duke@435 2113 // There are two potential complications here. Two threads trapping
duke@435 2114 // at the same address at the same time could cause one of the
duke@435 2115 // threads to think it already unguarded, and abort the VM. Likely
duke@435 2116 // very rare.
duke@435 2117 //
duke@435 2118 // The other race involves two threads alternately trapping at
duke@435 2119 // different addresses and failing to unguard the page, resulting in
duke@435 2120 // an endless loop. This condition is probably even more unlikely
duke@435 2121 // than the first.
duke@435 2122 //
duke@435 2123 // Although both cases could be avoided by using locks or thread
duke@435 2124 // local last_addr, these solutions are unnecessary complication:
duke@435 2125 // this handler is a best-effort safety net, not a complete solution.
duke@435 2126 // It is disabled by default and should only be used as a workaround
duke@435 2127 // in case we missed any no-execute-unsafe VM code.
duke@435 2128
duke@435 2129 last_addr = addr;
duke@435 2130
duke@435 2131 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2132 }
duke@435 2133 }
duke@435 2134
duke@435 2135 // Last unguard failed or not unguarding
duke@435 2136 tty->print_raw_cr("Execution protection violation");
duke@435 2137 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
duke@435 2138 exceptionInfo->ContextRecord);
duke@435 2139 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2140 }
duke@435 2141 }
duke@435 2142 #endif // _WIN64
duke@435 2143
duke@435 2144 // Check to see if we caught the safepoint code in the
duke@435 2145 // process of write protecting the memory serialization page.
duke@435 2146 // It write enables the page immediately after protecting it
duke@435 2147 // so just return.
duke@435 2148 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 2149 JavaThread* thread = (JavaThread*) t;
duke@435 2150 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2151 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2152 if ( os::is_memory_serialize_page(thread, addr) ) {
duke@435 2153 // Block current thread until the memory serialize page permission restored.
duke@435 2154 os::block_on_serialize_page_trap();
duke@435 2155 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2156 }
duke@435 2157 }
duke@435 2158
duke@435 2159
duke@435 2160 if (t != NULL && t->is_Java_thread()) {
duke@435 2161 JavaThread* thread = (JavaThread*) t;
duke@435 2162 bool in_java = thread->thread_state() == _thread_in_Java;
duke@435 2163
duke@435 2164 // Handle potential stack overflows up front.
duke@435 2165 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
duke@435 2166 if (os::uses_stack_guard_pages()) {
duke@435 2167 #ifdef _M_IA64
duke@435 2168 //
duke@435 2169 // If it's a legal stack address continue, Windows will map it in.
duke@435 2170 //
duke@435 2171 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2172 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2173 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
duke@435 2174 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2175
duke@435 2176 // The register save area is the same size as the memory stack
duke@435 2177 // and starts at the page just above the start of the memory stack.
duke@435 2178 // If we get a fault in this area, we've run out of register
duke@435 2179 // stack. If we are in java, try throwing a stack overflow exception.
duke@435 2180 if (addr > thread->stack_base() &&
duke@435 2181 addr <= (thread->stack_base()+thread->stack_size()) ) {
duke@435 2182 char buf[256];
duke@435 2183 jio_snprintf(buf, sizeof(buf),
duke@435 2184 "Register stack overflow, addr:%p, stack_base:%p\n",
duke@435 2185 addr, thread->stack_base() );
duke@435 2186 tty->print_raw_cr(buf);
duke@435 2187 // If not in java code, return and hope for the best.
duke@435 2188 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2189 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2190 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2191 }
duke@435 2192 #endif
duke@435 2193 if (thread->stack_yellow_zone_enabled()) {
duke@435 2194 // Yellow zone violation. The o/s has unprotected the first yellow
duke@435 2195 // zone page for us. Note: must call disable_stack_yellow_zone to
duke@435 2196 // update the enabled status, even if the zone contains only one page.
duke@435 2197 thread->disable_stack_yellow_zone();
duke@435 2198 // If not in java code, return and hope for the best.
duke@435 2199 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2200 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2201 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2202 } else {
duke@435 2203 // Fatal red zone violation.
duke@435 2204 thread->disable_stack_red_zone();
duke@435 2205 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
duke@435 2206 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2207 exceptionInfo->ContextRecord);
duke@435 2208 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2209 }
duke@435 2210 } else if (in_java) {
duke@435 2211 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
duke@435 2212 // a one-time-only guard page, which it has released to us. The next
duke@435 2213 // stack overflow on this thread will result in an ACCESS_VIOLATION.
duke@435 2214 return Handle_Exception(exceptionInfo,
duke@435 2215 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2216 } else {
duke@435 2217 // Can only return and hope for the best. Further stack growth will
duke@435 2218 // result in an ACCESS_VIOLATION.
duke@435 2219 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2220 }
duke@435 2221 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2222 // Either stack overflow or null pointer exception.
duke@435 2223 if (in_java) {
duke@435 2224 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2225 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2226 address stack_end = thread->stack_base() - thread->stack_size();
duke@435 2227 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
duke@435 2228 // Stack overflow.
duke@435 2229 assert(!os::uses_stack_guard_pages(),
duke@435 2230 "should be caught by red zone code above.");
duke@435 2231 return Handle_Exception(exceptionInfo,
duke@435 2232 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2233 }
duke@435 2234 //
duke@435 2235 // Check for safepoint polling and implicit null
duke@435 2236 // We only expect null pointers in the stubs (vtable)
duke@435 2237 // the rest are checked explicitly now.
duke@435 2238 //
duke@435 2239 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 2240 if (cb != NULL) {
duke@435 2241 if (os::is_poll_address(addr)) {
duke@435 2242 address stub = SharedRuntime::get_poll_stub(pc);
duke@435 2243 return Handle_Exception(exceptionInfo, stub);
duke@435 2244 }
duke@435 2245 }
duke@435 2246 {
duke@435 2247 #ifdef _WIN64
duke@435 2248 //
duke@435 2249 // If it's a legal stack address map the entire region in
duke@435 2250 //
duke@435 2251 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2252 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2253 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
duke@435 2254 addr = (address)((uintptr_t)addr &
duke@435 2255 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
coleenp@1091 2256 os::commit_memory((char *)addr, thread->stack_base() - addr,
coleenp@1091 2257 false );
duke@435 2258 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2259 }
duke@435 2260 else
duke@435 2261 #endif
duke@435 2262 {
duke@435 2263 // Null pointer exception.
duke@435 2264 #ifdef _M_IA64
duke@435 2265 // We catch register stack overflows in compiled code by doing
duke@435 2266 // an explicit compare and executing a st8(G0, G0) if the
duke@435 2267 // BSP enters into our guard area. We test for the overflow
duke@435 2268 // condition and fall into the normal null pointer exception
duke@435 2269 // code if BSP hasn't overflowed.
duke@435 2270 if ( in_java ) {
duke@435 2271 if(thread->register_stack_overflow()) {
duke@435 2272 assert((address)exceptionInfo->ContextRecord->IntS3 ==
duke@435 2273 thread->register_stack_limit(),
duke@435 2274 "GR7 doesn't contain register_stack_limit");
duke@435 2275 // Disable the yellow zone which sets the state that
duke@435 2276 // we've got a stack overflow problem.
duke@435 2277 if (thread->stack_yellow_zone_enabled()) {
duke@435 2278 thread->disable_stack_yellow_zone();
duke@435 2279 }
duke@435 2280 // Give us some room to process the exception
duke@435 2281 thread->disable_register_stack_guard();
duke@435 2282 // Update GR7 with the new limit so we can continue running
duke@435 2283 // compiled code.
duke@435 2284 exceptionInfo->ContextRecord->IntS3 =
duke@435 2285 (ULONGLONG)thread->register_stack_limit();
duke@435 2286 return Handle_Exception(exceptionInfo,
duke@435 2287 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2288 } else {
duke@435 2289 //
duke@435 2290 // Check for implicit null
duke@435 2291 // We only expect null pointers in the stubs (vtable)
duke@435 2292 // the rest are checked explicitly now.
duke@435 2293 //
poonam@900 2294 if (((uintptr_t)addr) < os::vm_page_size() ) {
poonam@900 2295 // an access to the first page of VM--assume it is a null pointer
poonam@900 2296 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2297 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2298 }
duke@435 2299 }
duke@435 2300 } // in_java
duke@435 2301
duke@435 2302 // IA64 doesn't use implicit null checking yet. So we shouldn't
duke@435 2303 // get here.
duke@435 2304 tty->print_raw_cr("Access violation, possible null pointer exception");
duke@435 2305 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2306 exceptionInfo->ContextRecord);
duke@435 2307 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2308 #else /* !IA64 */
duke@435 2309
duke@435 2310 // Windows 98 reports faulting addresses incorrectly
duke@435 2311 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
duke@435 2312 !os::win32::is_nt()) {
poonam@900 2313 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2314 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2315 }
duke@435 2316 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2317 exceptionInfo->ContextRecord);
duke@435 2318 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2319 #endif
duke@435 2320 }
duke@435 2321 }
duke@435 2322 }
duke@435 2323
duke@435 2324 #ifdef _WIN64
duke@435 2325 // Special care for fast JNI field accessors.
duke@435 2326 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
duke@435 2327 // in and the heap gets shrunk before the field access.
duke@435 2328 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2329 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2330 if (addr != (address)-1) {
duke@435 2331 return Handle_Exception(exceptionInfo, addr);
duke@435 2332 }
duke@435 2333 }
duke@435 2334 #endif
duke@435 2335
duke@435 2336 #ifdef _WIN64
duke@435 2337 // Windows will sometimes generate an access violation
duke@435 2338 // when we call malloc. Since we use VectoredExceptions
duke@435 2339 // on 64 bit platforms, we see this exception. We must
duke@435 2340 // pass this exception on so Windows can recover.
duke@435 2341 // We check to see if the pc of the fault is in NTDLL.DLL
duke@435 2342 // if so, we pass control on to Windows for handling.
duke@435 2343 if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2344 #endif
duke@435 2345
duke@435 2346 // Stack overflow or null pointer exception in native code.
duke@435 2347 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2348 exceptionInfo->ContextRecord);
duke@435 2349 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2350 }
duke@435 2351
duke@435 2352 if (in_java) {
duke@435 2353 switch (exception_code) {
duke@435 2354 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2355 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
duke@435 2356
duke@435 2357 case EXCEPTION_INT_OVERFLOW:
duke@435 2358 return Handle_IDiv_Exception(exceptionInfo);
duke@435 2359
duke@435 2360 } // switch
duke@435 2361 }
duke@435 2362 #ifndef _WIN64
duke@435 2363 if ((thread->thread_state() == _thread_in_Java) ||
duke@435 2364 (thread->thread_state() == _thread_in_native) )
duke@435 2365 {
duke@435 2366 LONG result=Handle_FLT_Exception(exceptionInfo);
duke@435 2367 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
duke@435 2368 }
duke@435 2369 #endif //_WIN64
duke@435 2370 }
duke@435 2371
duke@435 2372 if (exception_code != EXCEPTION_BREAKPOINT) {
duke@435 2373 #ifndef _WIN64
duke@435 2374 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2375 exceptionInfo->ContextRecord);
duke@435 2376 #else
duke@435 2377 // Itanium Windows uses a VectoredExceptionHandler
duke@435 2378 // Which means that C++ programatic exception handlers (try/except)
duke@435 2379 // will get here. Continue the search for the right except block if
duke@435 2380 // the exception code is not a fatal code.
duke@435 2381 switch ( exception_code ) {
duke@435 2382 case EXCEPTION_ACCESS_VIOLATION:
duke@435 2383 case EXCEPTION_STACK_OVERFLOW:
duke@435 2384 case EXCEPTION_ILLEGAL_INSTRUCTION:
duke@435 2385 case EXCEPTION_ILLEGAL_INSTRUCTION_2:
duke@435 2386 case EXCEPTION_INT_OVERFLOW:
duke@435 2387 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2388 { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2389 exceptionInfo->ContextRecord);
duke@435 2390 }
duke@435 2391 break;
duke@435 2392 default:
duke@435 2393 break;
duke@435 2394 }
duke@435 2395 #endif
duke@435 2396 }
duke@435 2397 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2398 }
duke@435 2399
duke@435 2400 #ifndef _WIN64
duke@435 2401 // Special care for fast JNI accessors.
duke@435 2402 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
duke@435 2403 // the heap gets shrunk before the field access.
duke@435 2404 // Need to install our own structured exception handler since native code may
duke@435 2405 // install its own.
duke@435 2406 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2407 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2408 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2409 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2410 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2411 if (addr != (address)-1) {
duke@435 2412 return Handle_Exception(exceptionInfo, addr);
duke@435 2413 }
duke@435 2414 }
duke@435 2415 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2416 }
duke@435 2417
duke@435 2418 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
duke@435 2419 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
duke@435 2420 __try { \
duke@435 2421 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
duke@435 2422 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
duke@435 2423 } \
duke@435 2424 return 0; \
duke@435 2425 }
duke@435 2426
duke@435 2427 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
duke@435 2428 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
duke@435 2429 DEFINE_FAST_GETFIELD(jchar, char, Char)
duke@435 2430 DEFINE_FAST_GETFIELD(jshort, short, Short)
duke@435 2431 DEFINE_FAST_GETFIELD(jint, int, Int)
duke@435 2432 DEFINE_FAST_GETFIELD(jlong, long, Long)
duke@435 2433 DEFINE_FAST_GETFIELD(jfloat, float, Float)
duke@435 2434 DEFINE_FAST_GETFIELD(jdouble, double, Double)
duke@435 2435
duke@435 2436 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
duke@435 2437 switch (type) {
duke@435 2438 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
duke@435 2439 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
duke@435 2440 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
duke@435 2441 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
duke@435 2442 case T_INT: return (address)jni_fast_GetIntField_wrapper;
duke@435 2443 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
duke@435 2444 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
duke@435 2445 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
duke@435 2446 default: ShouldNotReachHere();
duke@435 2447 }
duke@435 2448 return (address)-1;
duke@435 2449 }
duke@435 2450 #endif
duke@435 2451
duke@435 2452 // Virtual Memory
duke@435 2453
duke@435 2454 int os::vm_page_size() { return os::win32::vm_page_size(); }
duke@435 2455 int os::vm_allocation_granularity() {
duke@435 2456 return os::win32::vm_allocation_granularity();
duke@435 2457 }
duke@435 2458
duke@435 2459 // Windows large page support is available on Windows 2003. In order to use
duke@435 2460 // large page memory, the administrator must first assign additional privilege
duke@435 2461 // to the user:
duke@435 2462 // + select Control Panel -> Administrative Tools -> Local Security Policy
duke@435 2463 // + select Local Policies -> User Rights Assignment
duke@435 2464 // + double click "Lock pages in memory", add users and/or groups
duke@435 2465 // + reboot
duke@435 2466 // Note the above steps are needed for administrator as well, as administrators
duke@435 2467 // by default do not have the privilege to lock pages in memory.
duke@435 2468 //
duke@435 2469 // Note about Windows 2003: although the API supports committing large page
duke@435 2470 // memory on a page-by-page basis and VirtualAlloc() returns success under this
duke@435 2471 // scenario, I found through experiment it only uses large page if the entire
duke@435 2472 // memory region is reserved and committed in a single VirtualAlloc() call.
duke@435 2473 // This makes Windows large page support more or less like Solaris ISM, in
duke@435 2474 // that the entire heap must be committed upfront. This probably will change
duke@435 2475 // in the future, if so the code below needs to be revisited.
duke@435 2476
duke@435 2477 #ifndef MEM_LARGE_PAGES
duke@435 2478 #define MEM_LARGE_PAGES 0x20000000
duke@435 2479 #endif
duke@435 2480
duke@435 2481 // GetLargePageMinimum is only available on Windows 2003. The other functions
duke@435 2482 // are available on NT but not on Windows 98/Me. We have to resolve them at
duke@435 2483 // runtime.
duke@435 2484 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
duke@435 2485 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
duke@435 2486 (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
duke@435 2487 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
duke@435 2488 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
duke@435 2489
duke@435 2490 static GetLargePageMinimum_func_type _GetLargePageMinimum;
duke@435 2491 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
duke@435 2492 static OpenProcessToken_func_type _OpenProcessToken;
duke@435 2493 static LookupPrivilegeValue_func_type _LookupPrivilegeValue;
duke@435 2494
duke@435 2495 static HINSTANCE _kernel32;
duke@435 2496 static HINSTANCE _advapi32;
duke@435 2497 static HANDLE _hProcess;
duke@435 2498 static HANDLE _hToken;
duke@435 2499
duke@435 2500 static size_t _large_page_size = 0;
duke@435 2501
duke@435 2502 static bool resolve_functions_for_large_page_init() {
duke@435 2503 _kernel32 = LoadLibrary("kernel32.dll");
duke@435 2504 if (_kernel32 == NULL) return false;
duke@435 2505
duke@435 2506 _GetLargePageMinimum = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
duke@435 2507 GetProcAddress(_kernel32, "GetLargePageMinimum"));
duke@435 2508 if (_GetLargePageMinimum == NULL) return false;
duke@435 2509
duke@435 2510 _advapi32 = LoadLibrary("advapi32.dll");
duke@435 2511 if (_advapi32 == NULL) return false;
duke@435 2512
duke@435 2513 _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
duke@435 2514 GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
duke@435 2515 _OpenProcessToken = CAST_TO_FN_PTR(OpenProcessToken_func_type,
duke@435 2516 GetProcAddress(_advapi32, "OpenProcessToken"));
duke@435 2517 _LookupPrivilegeValue = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
duke@435 2518 GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
duke@435 2519 return _AdjustTokenPrivileges != NULL &&
duke@435 2520 _OpenProcessToken != NULL &&
duke@435 2521 _LookupPrivilegeValue != NULL;
duke@435 2522 }
duke@435 2523
duke@435 2524 static bool request_lock_memory_privilege() {
duke@435 2525 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
duke@435 2526 os::current_process_id());
duke@435 2527
duke@435 2528 LUID luid;
duke@435 2529 if (_hProcess != NULL &&
duke@435 2530 _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
duke@435 2531 _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
duke@435 2532
duke@435 2533 TOKEN_PRIVILEGES tp;
duke@435 2534 tp.PrivilegeCount = 1;
duke@435 2535 tp.Privileges[0].Luid = luid;
duke@435 2536 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
duke@435 2537
duke@435 2538 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
duke@435 2539 // privilege. Check GetLastError() too. See MSDN document.
duke@435 2540 if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
duke@435 2541 (GetLastError() == ERROR_SUCCESS)) {
duke@435 2542 return true;
duke@435 2543 }
duke@435 2544 }
duke@435 2545
duke@435 2546 return false;
duke@435 2547 }
duke@435 2548
duke@435 2549 static void cleanup_after_large_page_init() {
duke@435 2550 _GetLargePageMinimum = NULL;
duke@435 2551 _AdjustTokenPrivileges = NULL;
duke@435 2552 _OpenProcessToken = NULL;
duke@435 2553 _LookupPrivilegeValue = NULL;
duke@435 2554 if (_kernel32) FreeLibrary(_kernel32);
duke@435 2555 _kernel32 = NULL;
duke@435 2556 if (_advapi32) FreeLibrary(_advapi32);
duke@435 2557 _advapi32 = NULL;
duke@435 2558 if (_hProcess) CloseHandle(_hProcess);
duke@435 2559 _hProcess = NULL;
duke@435 2560 if (_hToken) CloseHandle(_hToken);
duke@435 2561 _hToken = NULL;
duke@435 2562 }
duke@435 2563
duke@435 2564 bool os::large_page_init() {
duke@435 2565 if (!UseLargePages) return false;
duke@435 2566
duke@435 2567 // print a warning if any large page related flag is specified on command line
duke@435 2568 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2569 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 2570 bool success = false;
duke@435 2571
duke@435 2572 # define WARN(msg) if (warn_on_failure) { warning(msg); }
duke@435 2573 if (resolve_functions_for_large_page_init()) {
duke@435 2574 if (request_lock_memory_privilege()) {
duke@435 2575 size_t s = _GetLargePageMinimum();
duke@435 2576 if (s) {
duke@435 2577 #if defined(IA32) || defined(AMD64)
duke@435 2578 if (s > 4*M || LargePageSizeInBytes > 4*M) {
duke@435 2579 WARN("JVM cannot use large pages bigger than 4mb.");
duke@435 2580 } else {
duke@435 2581 #endif
duke@435 2582 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
duke@435 2583 _large_page_size = LargePageSizeInBytes;
duke@435 2584 } else {
duke@435 2585 _large_page_size = s;
duke@435 2586 }
duke@435 2587 success = true;
duke@435 2588 #if defined(IA32) || defined(AMD64)
duke@435 2589 }
duke@435 2590 #endif
duke@435 2591 } else {
duke@435 2592 WARN("Large page is not supported by the processor.");
duke@435 2593 }
duke@435 2594 } else {
duke@435 2595 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
duke@435 2596 }
duke@435 2597 } else {
duke@435 2598 WARN("Large page is not supported by the operating system.");
duke@435 2599 }
duke@435 2600 #undef WARN
duke@435 2601
duke@435 2602 const size_t default_page_size = (size_t) vm_page_size();
duke@435 2603 if (success && _large_page_size > default_page_size) {
duke@435 2604 _page_sizes[0] = _large_page_size;
duke@435 2605 _page_sizes[1] = default_page_size;
duke@435 2606 _page_sizes[2] = 0;
duke@435 2607 }
duke@435 2608
duke@435 2609 cleanup_after_large_page_init();
duke@435 2610 return success;
duke@435 2611 }
duke@435 2612
duke@435 2613 // On win32, one cannot release just a part of reserved memory, it's an
duke@435 2614 // all or nothing deal. When we split a reservation, we must break the
duke@435 2615 // reservation into two reservations.
duke@435 2616 void os::split_reserved_memory(char *base, size_t size, size_t split,
duke@435 2617 bool realloc) {
duke@435 2618 if (size > 0) {
duke@435 2619 release_memory(base, size);
duke@435 2620 if (realloc) {
duke@435 2621 reserve_memory(split, base);
duke@435 2622 }
duke@435 2623 if (size != split) {
duke@435 2624 reserve_memory(size - split, base + split);
duke@435 2625 }
duke@435 2626 }
duke@435 2627 }
duke@435 2628
duke@435 2629 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
duke@435 2630 assert((size_t)addr % os::vm_allocation_granularity() == 0,
duke@435 2631 "reserve alignment");
duke@435 2632 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
coleenp@1091 2633 char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
duke@435 2634 assert(res == NULL || addr == NULL || addr == res,
duke@435 2635 "Unexpected address from reserve.");
duke@435 2636 return res;
duke@435 2637 }
duke@435 2638
duke@435 2639 // Reserve memory at an arbitrary address, only if that area is
duke@435 2640 // available (and not reserved for something else).
duke@435 2641 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2642 // Windows os::reserve_memory() fails of the requested address range is
duke@435 2643 // not avilable.
duke@435 2644 return reserve_memory(bytes, requested_addr);
duke@435 2645 }
duke@435 2646
duke@435 2647 size_t os::large_page_size() {
duke@435 2648 return _large_page_size;
duke@435 2649 }
duke@435 2650
duke@435 2651 bool os::can_commit_large_page_memory() {
duke@435 2652 // Windows only uses large page memory when the entire region is reserved
duke@435 2653 // and committed in a single VirtualAlloc() call. This may change in the
duke@435 2654 // future, but with Windows 2003 it's not possible to commit on demand.
duke@435 2655 return false;
duke@435 2656 }
duke@435 2657
jcoomes@514 2658 bool os::can_execute_large_page_memory() {
jcoomes@514 2659 return true;
jcoomes@514 2660 }
jcoomes@514 2661
coleenp@1091 2662 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
coleenp@912 2663
coleenp@1152 2664 const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
jmasa@824 2665
jmasa@824 2666 if (UseLargePagesIndividualAllocation) {
jmasa@824 2667 if (TracePageSizes && Verbose) {
jmasa@824 2668 tty->print_cr("Reserving large pages individually.");
jmasa@824 2669 }
jmasa@824 2670 char * p_buf;
jmasa@824 2671 // first reserve enough address space in advance since we want to be
jmasa@824 2672 // able to break a single contiguous virtual address range into multiple
jmasa@824 2673 // large page commits but WS2003 does not allow reserving large page space
jmasa@824 2674 // so we just use 4K pages for reserve, this gives us a legal contiguous
jmasa@824 2675 // address space. then we will deallocate that reservation, and re alloc
jmasa@824 2676 // using large pages
jmasa@824 2677 const size_t size_of_reserve = bytes + _large_page_size;
jmasa@824 2678 if (bytes > size_of_reserve) {
jmasa@824 2679 // Overflowed.
jmasa@824 2680 warning("Individually allocated large pages failed, "
jmasa@824 2681 "use -XX:-UseLargePagesIndividualAllocation to turn off");
jmasa@824 2682 return NULL;
jmasa@824 2683 }
kvn@1077 2684 p_buf = (char *) VirtualAlloc(addr,
jmasa@824 2685 size_of_reserve, // size of Reserve
jmasa@824 2686 MEM_RESERVE,
coleenp@1091 2687 PAGE_READWRITE);
jmasa@824 2688 // If reservation failed, return NULL
jmasa@824 2689 if (p_buf == NULL) return NULL;
jmasa@824 2690
jmasa@824 2691 release_memory(p_buf, bytes + _large_page_size);
jmasa@824 2692 // round up to page boundary. If the size_of_reserve did not
jmasa@824 2693 // overflow and the reservation did not fail, this align up
jmasa@824 2694 // should not overflow.
jmasa@824 2695 p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
jmasa@824 2696
jmasa@824 2697 // now go through and allocate one page at a time until all bytes are
jmasa@824 2698 // allocated
jmasa@824 2699 size_t bytes_remaining = align_size_up(bytes, _large_page_size);
jmasa@824 2700 // An overflow of align_size_up() would have been caught above
jmasa@824 2701 // in the calculation of size_of_reserve.
jmasa@824 2702 char * next_alloc_addr = p_buf;
jmasa@824 2703
jmasa@824 2704 #ifdef ASSERT
jmasa@824 2705 // Variable for the failure injection
jmasa@824 2706 long ran_num = os::random();
jmasa@824 2707 size_t fail_after = ran_num % bytes;
jmasa@824 2708 #endif
jmasa@824 2709
jmasa@824 2710 while (bytes_remaining) {
jmasa@824 2711 size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
jmasa@824 2712 // Note allocate and commit
jmasa@824 2713 char * p_new;
jmasa@824 2714
jmasa@824 2715 #ifdef ASSERT
jmasa@824 2716 bool inject_error = LargePagesIndividualAllocationInjectError &&
jmasa@824 2717 (bytes_remaining <= fail_after);
jmasa@824 2718 #else
jmasa@824 2719 const bool inject_error = false;
jmasa@824 2720 #endif
jmasa@824 2721
jmasa@824 2722 if (inject_error) {
jmasa@824 2723 p_new = NULL;
jmasa@824 2724 } else {
jmasa@824 2725 p_new = (char *) VirtualAlloc(next_alloc_addr,
jmasa@824 2726 bytes_to_rq,
jmasa@824 2727 MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
coleenp@1152 2728 prot);
jmasa@824 2729 }
jmasa@824 2730
jmasa@824 2731 if (p_new == NULL) {
jmasa@824 2732 // Free any allocated pages
jmasa@824 2733 if (next_alloc_addr > p_buf) {
jmasa@824 2734 // Some memory was committed so release it.
jmasa@824 2735 size_t bytes_to_release = bytes - bytes_remaining;
jmasa@824 2736 release_memory(p_buf, bytes_to_release);
jmasa@824 2737 }
jmasa@824 2738 #ifdef ASSERT
jmasa@824 2739 if (UseLargePagesIndividualAllocation &&
jmasa@824 2740 LargePagesIndividualAllocationInjectError) {
jmasa@824 2741 if (TracePageSizes && Verbose) {
jmasa@824 2742 tty->print_cr("Reserving large pages individually failed.");
jmasa@824 2743 }
jmasa@824 2744 }
jmasa@824 2745 #endif
jmasa@824 2746 return NULL;
jmasa@824 2747 }
jmasa@824 2748 bytes_remaining -= bytes_to_rq;
jmasa@824 2749 next_alloc_addr += bytes_to_rq;
jmasa@824 2750 }
jmasa@824 2751
jmasa@824 2752 return p_buf;
jmasa@824 2753
jmasa@824 2754 } else {
jmasa@824 2755 // normal policy just allocate it all at once
jmasa@824 2756 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
coleenp@1152 2757 char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
jmasa@824 2758 return res;
jmasa@824 2759 }
duke@435 2760 }
duke@435 2761
duke@435 2762 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 2763 return release_memory(base, bytes);
duke@435 2764 }
duke@435 2765
duke@435 2766 void os::print_statistics() {
duke@435 2767 }
duke@435 2768
coleenp@1091 2769 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
duke@435 2770 if (bytes == 0) {
duke@435 2771 // Don't bother the OS with noops.
duke@435 2772 return true;
duke@435 2773 }
duke@435 2774 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
duke@435 2775 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
duke@435 2776 // Don't attempt to print anything if the OS call fails. We're
duke@435 2777 // probably low on resources, so the print itself may cause crashes.
coleenp@1091 2778 bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
coleenp@1091 2779 if (result != NULL && exec) {
coleenp@1091 2780 DWORD oldprot;
coleenp@1091 2781 // Windows doc says to use VirtualProtect to get execute permissions
coleenp@1091 2782 return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
coleenp@1091 2783 } else {
coleenp@1091 2784 return result;
coleenp@1091 2785 }
duke@435 2786 }
duke@435 2787
coleenp@1091 2788 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 2789 bool exec) {
coleenp@1091 2790 return commit_memory(addr, size, exec);
duke@435 2791 }
duke@435 2792
duke@435 2793 bool os::uncommit_memory(char* addr, size_t bytes) {
duke@435 2794 if (bytes == 0) {
duke@435 2795 // Don't bother the OS with noops.
duke@435 2796 return true;
duke@435 2797 }
duke@435 2798 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
duke@435 2799 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
duke@435 2800 return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
duke@435 2801 }
duke@435 2802
duke@435 2803 bool os::release_memory(char* addr, size_t bytes) {
duke@435 2804 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
duke@435 2805 }
duke@435 2806
coleenp@1755 2807 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2808 return os::commit_memory(addr, size);
coleenp@1755 2809 }
coleenp@1755 2810
coleenp@1755 2811 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2812 return os::uncommit_memory(addr, size);
coleenp@1755 2813 }
coleenp@1755 2814
coleenp@672 2815 // Set protections specified
coleenp@672 2816 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 2817 bool is_committed) {
coleenp@672 2818 unsigned int p = 0;
coleenp@672 2819 switch (prot) {
coleenp@672 2820 case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
coleenp@672 2821 case MEM_PROT_READ: p = PAGE_READONLY; break;
coleenp@672 2822 case MEM_PROT_RW: p = PAGE_READWRITE; break;
coleenp@672 2823 case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
coleenp@672 2824 default:
coleenp@672 2825 ShouldNotReachHere();
coleenp@672 2826 }
coleenp@672 2827
duke@435 2828 DWORD old_status;
coleenp@672 2829
coleenp@672 2830 // Strange enough, but on Win32 one can change protection only for committed
coleenp@672 2831 // memory, not a big deal anyway, as bytes less or equal than 64K
coleenp@1091 2832 if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
coleenp@672 2833 fatal("cannot commit protection page");
coleenp@672 2834 }
coleenp@672 2835 // One cannot use os::guard_memory() here, as on Win32 guard page
coleenp@672 2836 // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
coleenp@672 2837 //
coleenp@672 2838 // Pages in the region become guard pages. Any attempt to access a guard page
coleenp@672 2839 // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
coleenp@672 2840 // the guard page status. Guard pages thus act as a one-time access alarm.
coleenp@672 2841 return VirtualProtect(addr, bytes, p, &old_status) != 0;
duke@435 2842 }
duke@435 2843
duke@435 2844 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 2845 DWORD old_status;
coleenp@912 2846 return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
duke@435 2847 }
duke@435 2848
duke@435 2849 bool os::unguard_memory(char* addr, size_t bytes) {
duke@435 2850 DWORD old_status;
coleenp@912 2851 return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
duke@435 2852 }
duke@435 2853
duke@435 2854 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 2855 void os::free_memory(char *addr, size_t bytes) { }
duke@435 2856 void os::numa_make_global(char *addr, size_t bytes) { }
iveresov@576 2857 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
duke@435 2858 bool os::numa_topology_changed() { return false; }
duke@435 2859 size_t os::numa_get_groups_num() { return 1; }
duke@435 2860 int os::numa_get_group_id() { return 0; }
duke@435 2861 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
duke@435 2862 if (size > 0) {
duke@435 2863 ids[0] = 0;
duke@435 2864 return 1;
duke@435 2865 }
duke@435 2866 return 0;
duke@435 2867 }
duke@435 2868
duke@435 2869 bool os::get_page_info(char *start, page_info* info) {
duke@435 2870 return false;
duke@435 2871 }
duke@435 2872
duke@435 2873 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2874 return end;
duke@435 2875 }
duke@435 2876
duke@435 2877 char* os::non_memory_address_word() {
duke@435 2878 // Must never look like an address returned by reserve_memory,
duke@435 2879 // even in its subfields (as defined by the CPU immediate fields,
duke@435 2880 // if the CPU splits constants across multiple instructions).
duke@435 2881 return (char*)-1;
duke@435 2882 }
duke@435 2883
duke@435 2884 #define MAX_ERROR_COUNT 100
duke@435 2885 #define SYS_THREAD_ERROR 0xffffffffUL
duke@435 2886
duke@435 2887 void os::pd_start_thread(Thread* thread) {
duke@435 2888 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
duke@435 2889 // Returns previous suspend state:
duke@435 2890 // 0: Thread was not suspended
duke@435 2891 // 1: Thread is running now
duke@435 2892 // >1: Thread is still suspended.
duke@435 2893 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
duke@435 2894 }
duke@435 2895
duke@435 2896 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 2897 return ::read(fd, buf, nBytes);
duke@435 2898 }
duke@435 2899
duke@435 2900 class HighResolutionInterval {
duke@435 2901 // The default timer resolution seems to be 10 milliseconds.
duke@435 2902 // (Where is this written down?)
duke@435 2903 // If someone wants to sleep for only a fraction of the default,
duke@435 2904 // then we set the timer resolution down to 1 millisecond for
duke@435 2905 // the duration of their interval.
duke@435 2906 // We carefully set the resolution back, since otherwise we
duke@435 2907 // seem to incur an overhead (3%?) that we don't need.
duke@435 2908 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
duke@435 2909 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
duke@435 2910 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
duke@435 2911 // timeBeginPeriod() if the relative error exceeded some threshold.
duke@435 2912 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
duke@435 2913 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
duke@435 2914 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
duke@435 2915 // resolution timers running.
duke@435 2916 private:
duke@435 2917 jlong resolution;
duke@435 2918 public:
duke@435 2919 HighResolutionInterval(jlong ms) {
duke@435 2920 resolution = ms % 10L;
duke@435 2921 if (resolution != 0) {
duke@435 2922 MMRESULT result = timeBeginPeriod(1L);
duke@435 2923 }
duke@435 2924 }
duke@435 2925 ~HighResolutionInterval() {
duke@435 2926 if (resolution != 0) {
duke@435 2927 MMRESULT result = timeEndPeriod(1L);
duke@435 2928 }
duke@435 2929 resolution = 0L;
duke@435 2930 }
duke@435 2931 };
duke@435 2932
duke@435 2933 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
duke@435 2934 jlong limit = (jlong) MAXDWORD;
duke@435 2935
duke@435 2936 while(ms > limit) {
duke@435 2937 int res;
duke@435 2938 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
duke@435 2939 return res;
duke@435 2940 ms -= limit;
duke@435 2941 }
duke@435 2942
duke@435 2943 assert(thread == Thread::current(), "thread consistency check");
duke@435 2944 OSThread* osthread = thread->osthread();
duke@435 2945 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
duke@435 2946 int result;
duke@435 2947 if (interruptable) {
duke@435 2948 assert(thread->is_Java_thread(), "must be java thread");
duke@435 2949 JavaThread *jt = (JavaThread *) thread;
duke@435 2950 ThreadBlockInVM tbivm(jt);
duke@435 2951
duke@435 2952 jt->set_suspend_equivalent();
duke@435 2953 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 2954 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 2955
duke@435 2956 HANDLE events[1];
duke@435 2957 events[0] = osthread->interrupt_event();
duke@435 2958 HighResolutionInterval *phri=NULL;
duke@435 2959 if(!ForceTimeHighResolution)
duke@435 2960 phri = new HighResolutionInterval( ms );
duke@435 2961 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
duke@435 2962 result = OS_TIMEOUT;
duke@435 2963 } else {
duke@435 2964 ResetEvent(osthread->interrupt_event());
duke@435 2965 osthread->set_interrupted(false);
duke@435 2966 result = OS_INTRPT;
duke@435 2967 }
duke@435 2968 delete phri; //if it is NULL, harmless
duke@435 2969
duke@435 2970 // were we externally suspended while we were waiting?
duke@435 2971 jt->check_and_wait_while_suspended();
duke@435 2972 } else {
duke@435 2973 assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 2974 Sleep((long) ms);
duke@435 2975 result = OS_TIMEOUT;
duke@435 2976 }
duke@435 2977 return result;
duke@435 2978 }
duke@435 2979
duke@435 2980 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 2981 void os::infinite_sleep() {
duke@435 2982 while (true) { // sleep forever ...
duke@435 2983 Sleep(100000); // ... 100 seconds at a time
duke@435 2984 }
duke@435 2985 }
duke@435 2986
duke@435 2987 typedef BOOL (WINAPI * STTSignature)(void) ;
duke@435 2988
duke@435 2989 os::YieldResult os::NakedYield() {
duke@435 2990 // Use either SwitchToThread() or Sleep(0)
duke@435 2991 // Consider passing back the return value from SwitchToThread().
duke@435 2992 // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
duke@435 2993 // In that case we revert to Sleep(0).
duke@435 2994 static volatile STTSignature stt = (STTSignature) 1 ;
duke@435 2995
duke@435 2996 if (stt == ((STTSignature) 1)) {
duke@435 2997 stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
duke@435 2998 // It's OK if threads race during initialization as the operation above is idempotent.
duke@435 2999 }
duke@435 3000 if (stt != NULL) {
duke@435 3001 return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
duke@435 3002 } else {
duke@435 3003 Sleep (0) ;
duke@435 3004 }
duke@435 3005 return os::YIELD_UNKNOWN ;
duke@435 3006 }
duke@435 3007
duke@435 3008 void os::yield() { os::NakedYield(); }
duke@435 3009
duke@435 3010 void os::yield_all(int attempts) {
duke@435 3011 // Yields to all threads, including threads with lower priorities
duke@435 3012 Sleep(1);
duke@435 3013 }
duke@435 3014
duke@435 3015 // Win32 only gives you access to seven real priorities at a time,
duke@435 3016 // so we compress Java's ten down to seven. It would be better
duke@435 3017 // if we dynamically adjusted relative priorities.
duke@435 3018
duke@435 3019 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3020 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3021 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3022 THREAD_PRIORITY_LOWEST, // 2
duke@435 3023 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3024 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3025 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3026 THREAD_PRIORITY_NORMAL, // 6
duke@435 3027 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3028 THREAD_PRIORITY_ABOVE_NORMAL, // 8
duke@435 3029 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 3030 THREAD_PRIORITY_HIGHEST // 10 MaxPriority
duke@435 3031 };
duke@435 3032
duke@435 3033 int prio_policy1[MaxPriority + 1] = {
duke@435 3034 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3035 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3036 THREAD_PRIORITY_LOWEST, // 2
duke@435 3037 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3038 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3039 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3040 THREAD_PRIORITY_ABOVE_NORMAL, // 6
duke@435 3041 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3042 THREAD_PRIORITY_HIGHEST, // 8
duke@435 3043 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 3044 THREAD_PRIORITY_TIME_CRITICAL // 10 MaxPriority
duke@435 3045 };
duke@435 3046
duke@435 3047 static int prio_init() {
duke@435 3048 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3049 if (ThreadPriorityPolicy == 1) {
duke@435 3050 int i;
duke@435 3051 for (i = 0; i < MaxPriority + 1; i++) {
duke@435 3052 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3053 }
duke@435 3054 }
duke@435 3055 return 0;
duke@435 3056 }
duke@435 3057
duke@435 3058 OSReturn os::set_native_priority(Thread* thread, int priority) {
duke@435 3059 if (!UseThreadPriorities) return OS_OK;
duke@435 3060 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
duke@435 3061 return ret ? OS_OK : OS_ERR;
duke@435 3062 }
duke@435 3063
duke@435 3064 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
duke@435 3065 if ( !UseThreadPriorities ) {
duke@435 3066 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3067 return OS_OK;
duke@435 3068 }
duke@435 3069 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
duke@435 3070 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
duke@435 3071 assert(false, "GetThreadPriority failed");
duke@435 3072 return OS_ERR;
duke@435 3073 }
duke@435 3074 *priority_ptr = os_prio;
duke@435 3075 return OS_OK;
duke@435 3076 }
duke@435 3077
duke@435 3078
duke@435 3079 // Hint to the underlying OS that a task switch would not be good.
duke@435 3080 // Void return because it's a hint and can fail.
duke@435 3081 void os::hint_no_preempt() {}
duke@435 3082
duke@435 3083 void os::interrupt(Thread* thread) {
duke@435 3084 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3085 "possibility of dangling Thread pointer");
duke@435 3086
duke@435 3087 OSThread* osthread = thread->osthread();
duke@435 3088 osthread->set_interrupted(true);
duke@435 3089 // More than one thread can get here with the same value of osthread,
duke@435 3090 // resulting in multiple notifications. We do, however, want the store
duke@435 3091 // to interrupted() to be visible to other threads before we post
duke@435 3092 // the interrupt event.
duke@435 3093 OrderAccess::release();
duke@435 3094 SetEvent(osthread->interrupt_event());
duke@435 3095 // For JSR166: unpark after setting status
duke@435 3096 if (thread->is_Java_thread())
duke@435 3097 ((JavaThread*)thread)->parker()->unpark();
duke@435 3098
duke@435 3099 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3100 if (ev != NULL) ev->unpark() ;
duke@435 3101
duke@435 3102 }
duke@435 3103
duke@435 3104
duke@435 3105 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3106 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3107 "possibility of dangling Thread pointer");
duke@435 3108
duke@435 3109 OSThread* osthread = thread->osthread();
duke@435 3110 bool interrupted;
duke@435 3111 interrupted = osthread->interrupted();
duke@435 3112 if (clear_interrupted == true) {
duke@435 3113 osthread->set_interrupted(false);
duke@435 3114 ResetEvent(osthread->interrupt_event());
duke@435 3115 } // Otherwise leave the interrupted state alone
duke@435 3116
duke@435 3117 return interrupted;
duke@435 3118 }
duke@435 3119
duke@435 3120 // Get's a pc (hint) for a running thread. Currently used only for profiling.
duke@435 3121 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3122 CONTEXT context;
duke@435 3123 context.ContextFlags = CONTEXT_CONTROL;
duke@435 3124 HANDLE handle = thread->osthread()->thread_handle();
duke@435 3125 #ifdef _M_IA64
duke@435 3126 assert(0, "Fix get_thread_pc");
duke@435 3127 return ExtendedPC(NULL);
duke@435 3128 #else
duke@435 3129 if (GetThreadContext(handle, &context)) {
duke@435 3130 #ifdef _M_AMD64
duke@435 3131 return ExtendedPC((address) context.Rip);
duke@435 3132 #else
duke@435 3133 return ExtendedPC((address) context.Eip);
duke@435 3134 #endif
duke@435 3135 } else {
duke@435 3136 return ExtendedPC(NULL);
duke@435 3137 }
duke@435 3138 #endif
duke@435 3139 }
duke@435 3140
duke@435 3141 // GetCurrentThreadId() returns DWORD
duke@435 3142 intx os::current_thread_id() { return GetCurrentThreadId(); }
duke@435 3143
duke@435 3144 static int _initial_pid = 0;
duke@435 3145
duke@435 3146 int os::current_process_id()
duke@435 3147 {
duke@435 3148 return (_initial_pid ? _initial_pid : _getpid());
duke@435 3149 }
duke@435 3150
duke@435 3151 int os::win32::_vm_page_size = 0;
duke@435 3152 int os::win32::_vm_allocation_granularity = 0;
duke@435 3153 int os::win32::_processor_type = 0;
duke@435 3154 // Processor level is not available on non-NT systems, use vm_version instead
duke@435 3155 int os::win32::_processor_level = 0;
duke@435 3156 julong os::win32::_physical_memory = 0;
duke@435 3157 size_t os::win32::_default_stack_size = 0;
duke@435 3158
duke@435 3159 intx os::win32::_os_thread_limit = 0;
duke@435 3160 volatile intx os::win32::_os_thread_count = 0;
duke@435 3161
duke@435 3162 bool os::win32::_is_nt = false;
jmasa@824 3163 bool os::win32::_is_windows_2003 = false;
duke@435 3164
duke@435 3165
duke@435 3166 void os::win32::initialize_system_info() {
duke@435 3167 SYSTEM_INFO si;
duke@435 3168 GetSystemInfo(&si);
duke@435 3169 _vm_page_size = si.dwPageSize;
duke@435 3170 _vm_allocation_granularity = si.dwAllocationGranularity;
duke@435 3171 _processor_type = si.dwProcessorType;
duke@435 3172 _processor_level = si.wProcessorLevel;
phh@1558 3173 set_processor_count(si.dwNumberOfProcessors);
coleenp@912 3174
poonam@1312 3175 MEMORYSTATUSEX ms;
poonam@1312 3176 ms.dwLength = sizeof(ms);
poonam@1312 3177
duke@435 3178 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
duke@435 3179 // dwMemoryLoad (% of memory in use)
poonam@1312 3180 GlobalMemoryStatusEx(&ms);
poonam@1312 3181 _physical_memory = ms.ullTotalPhys;
duke@435 3182
duke@435 3183 OSVERSIONINFO oi;
duke@435 3184 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
duke@435 3185 GetVersionEx(&oi);
duke@435 3186 switch(oi.dwPlatformId) {
duke@435 3187 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
jmasa@824 3188 case VER_PLATFORM_WIN32_NT:
jmasa@824 3189 _is_nt = true;
jmasa@824 3190 {
jmasa@824 3191 int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
jmasa@824 3192 if (os_vers == 5002) {
jmasa@824 3193 _is_windows_2003 = true;
jmasa@824 3194 }
jmasa@824 3195 }
jmasa@824 3196 break;
duke@435 3197 default: fatal("Unknown platform");
duke@435 3198 }
duke@435 3199
duke@435 3200 _default_stack_size = os::current_stack_size();
duke@435 3201 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
duke@435 3202 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
duke@435 3203 "stack size not a multiple of page size");
duke@435 3204
duke@435 3205 initialize_performance_counter();
duke@435 3206
duke@435 3207 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
duke@435 3208 // known to deadlock the system, if the VM issues to thread operations with
duke@435 3209 // a too high frequency, e.g., such as changing the priorities.
duke@435 3210 // The 6000 seems to work well - no deadlocks has been notices on the test
duke@435 3211 // programs that we have seen experience this problem.
duke@435 3212 if (!os::win32::is_nt()) {
duke@435 3213 StarvationMonitorInterval = 6000;
duke@435 3214 }
duke@435 3215 }
duke@435 3216
duke@435 3217
duke@435 3218 void os::win32::setmode_streams() {
duke@435 3219 _setmode(_fileno(stdin), _O_BINARY);
duke@435 3220 _setmode(_fileno(stdout), _O_BINARY);
duke@435 3221 _setmode(_fileno(stderr), _O_BINARY);
duke@435 3222 }
duke@435 3223
duke@435 3224
duke@435 3225 int os::message_box(const char* title, const char* message) {
duke@435 3226 int result = MessageBox(NULL, message, title,
duke@435 3227 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
duke@435 3228 return result == IDYES;
duke@435 3229 }
duke@435 3230
duke@435 3231 int os::allocate_thread_local_storage() {
duke@435 3232 return TlsAlloc();
duke@435 3233 }
duke@435 3234
duke@435 3235
duke@435 3236 void os::free_thread_local_storage(int index) {
duke@435 3237 TlsFree(index);
duke@435 3238 }
duke@435 3239
duke@435 3240
duke@435 3241 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 3242 TlsSetValue(index, value);
duke@435 3243 assert(thread_local_storage_at(index) == value, "Just checking");
duke@435 3244 }
duke@435 3245
duke@435 3246
duke@435 3247 void* os::thread_local_storage_at(int index) {
duke@435 3248 return TlsGetValue(index);
duke@435 3249 }
duke@435 3250
duke@435 3251
duke@435 3252 #ifndef PRODUCT
duke@435 3253 #ifndef _WIN64
duke@435 3254 // Helpers to check whether NX protection is enabled
duke@435 3255 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
duke@435 3256 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 3257 pex->ExceptionRecord->NumberParameters > 0 &&
duke@435 3258 pex->ExceptionRecord->ExceptionInformation[0] ==
duke@435 3259 EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 3260 return EXCEPTION_EXECUTE_HANDLER;
duke@435 3261 }
duke@435 3262 return EXCEPTION_CONTINUE_SEARCH;
duke@435 3263 }
duke@435 3264
duke@435 3265 void nx_check_protection() {
duke@435 3266 // If NX is enabled we'll get an exception calling into code on the stack
duke@435 3267 char code[] = { (char)0xC3 }; // ret
duke@435 3268 void *code_ptr = (void *)code;
duke@435 3269 __try {
duke@435 3270 __asm call code_ptr
duke@435 3271 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 3272 tty->print_raw_cr("NX protection detected.");
duke@435 3273 }
duke@435 3274 }
duke@435 3275 #endif // _WIN64
duke@435 3276 #endif // PRODUCT
duke@435 3277
duke@435 3278 // this is called _before_ the global arguments have been parsed
duke@435 3279 void os::init(void) {
duke@435 3280 _initial_pid = _getpid();
duke@435 3281
duke@435 3282 init_random(1234567);
duke@435 3283
duke@435 3284 win32::initialize_system_info();
duke@435 3285 win32::setmode_streams();
duke@435 3286 init_page_sizes((size_t) win32::vm_page_size());
duke@435 3287
duke@435 3288 // For better scalability on MP systems (must be called after initialize_system_info)
duke@435 3289 #ifndef PRODUCT
duke@435 3290 if (is_MP()) {
duke@435 3291 NoYieldsInMicrolock = true;
duke@435 3292 }
duke@435 3293 #endif
jmasa@824 3294 // This may be overridden later when argument processing is done.
jmasa@824 3295 FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
jmasa@824 3296 os::win32::is_windows_2003());
jmasa@824 3297
duke@435 3298 // Initialize main_process and main_thread
duke@435 3299 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
jmasa@824 3300 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
duke@435 3301 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
duke@435 3302 fatal("DuplicateHandle failed\n");
duke@435 3303 }
duke@435 3304 main_thread_id = (int) GetCurrentThreadId();
duke@435 3305 }
duke@435 3306
duke@435 3307 // To install functions for atexit processing
duke@435 3308 extern "C" {
duke@435 3309 static void perfMemory_exit_helper() {
duke@435 3310 perfMemory_exit();
duke@435 3311 }
duke@435 3312 }
duke@435 3313
duke@435 3314
duke@435 3315 // this is called _after_ the global arguments have been parsed
duke@435 3316 jint os::init_2(void) {
duke@435 3317 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3318 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
duke@435 3319 guarantee( polling_page != NULL, "Reserve Failed for polling page");
duke@435 3320
duke@435 3321 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
duke@435 3322 guarantee( return_page != NULL, "Commit Failed for polling page");
duke@435 3323
duke@435 3324 os::set_polling_page( polling_page );
duke@435 3325
duke@435 3326 #ifndef PRODUCT
duke@435 3327 if( Verbose && PrintMiscellaneous )
duke@435 3328 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3329 #endif
duke@435 3330
duke@435 3331 if (!UseMembar) {
coleenp@1091 3332 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
duke@435 3333 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
duke@435 3334
coleenp@1091 3335 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
duke@435 3336 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
duke@435 3337
duke@435 3338 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3339
duke@435 3340 #ifndef PRODUCT
duke@435 3341 if(Verbose && PrintMiscellaneous)
duke@435 3342 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3343 #endif
duke@435 3344 }
duke@435 3345
duke@435 3346 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 3347
duke@435 3348 // Setup Windows Exceptions
duke@435 3349
duke@435 3350 // On Itanium systems, Structured Exception Handling does not
duke@435 3351 // work since stack frames must be walkable by the OS. Since
duke@435 3352 // much of our code is dynamically generated, and we do not have
duke@435 3353 // proper unwind .xdata sections, the system simply exits
duke@435 3354 // rather than delivering the exception. To work around
duke@435 3355 // this we use VectorExceptions instead.
duke@435 3356 #ifdef _WIN64
duke@435 3357 if (UseVectoredExceptions) {
duke@435 3358 topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
duke@435 3359 }
duke@435 3360 #endif
duke@435 3361
duke@435 3362 // for debugging float code generation bugs
duke@435 3363 if (ForceFloatExceptions) {
duke@435 3364 #ifndef _WIN64
duke@435 3365 static long fp_control_word = 0;
duke@435 3366 __asm { fstcw fp_control_word }
duke@435 3367 // see Intel PPro Manual, Vol. 2, p 7-16
duke@435 3368 const long precision = 0x20;
duke@435 3369 const long underflow = 0x10;
duke@435 3370 const long overflow = 0x08;
duke@435 3371 const long zero_div = 0x04;
duke@435 3372 const long denorm = 0x02;
duke@435 3373 const long invalid = 0x01;
duke@435 3374 fp_control_word |= invalid;
duke@435 3375 __asm { fldcw fp_control_word }
duke@435 3376 #endif
duke@435 3377 }
duke@435 3378
duke@435 3379 // Initialize HPI.
duke@435 3380 jint hpi_result = hpi::initialize();
duke@435 3381 if (hpi_result != JNI_OK) { return hpi_result; }
duke@435 3382
duke@435 3383 // If stack_commit_size is 0, windows will reserve the default size,
duke@435 3384 // but only commit a small portion of it.
duke@435 3385 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
duke@435 3386 size_t default_reserve_size = os::win32::default_stack_size();
duke@435 3387 size_t actual_reserve_size = stack_commit_size;
duke@435 3388 if (stack_commit_size < default_reserve_size) {
duke@435 3389 // If stack_commit_size == 0, we want this too
duke@435 3390 actual_reserve_size = default_reserve_size;
duke@435 3391 }
duke@435 3392
duke@435 3393 JavaThread::set_stack_size_at_create(stack_commit_size);
duke@435 3394
duke@435 3395 // Calculate theoretical max. size of Threads to guard gainst artifical
duke@435 3396 // out-of-memory situations, where all available address-space has been
duke@435 3397 // reserved by thread stacks.
duke@435 3398 assert(actual_reserve_size != 0, "Must have a stack");
duke@435 3399
duke@435 3400 // Calculate the thread limit when we should start doing Virtual Memory
duke@435 3401 // banging. Currently when the threads will have used all but 200Mb of space.
duke@435 3402 //
duke@435 3403 // TODO: consider performing a similar calculation for commit size instead
duke@435 3404 // as reserve size, since on a 64-bit platform we'll run into that more
duke@435 3405 // often than running out of virtual memory space. We can use the
duke@435 3406 // lower value of the two calculations as the os_thread_limit.
coleenp@548 3407 size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
duke@435 3408 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
duke@435 3409
duke@435 3410 // at exit methods are called in the reverse order of their registration.
duke@435 3411 // there is no limit to the number of functions registered. atexit does
duke@435 3412 // not set errno.
duke@435 3413
duke@435 3414 if (PerfAllowAtExitRegistration) {
duke@435 3415 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3416 // atexit functions can be delayed until process exit time, which
duke@435 3417 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3418 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3419
duke@435 3420 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3421 // the future if the appropriate cleanup code can be added to the
duke@435 3422 // VM_Exit VMOperation's doit method.
duke@435 3423 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3424 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
duke@435 3425 }
duke@435 3426 }
duke@435 3427
duke@435 3428 // initialize PSAPI or ToolHelp for fatal error handler
duke@435 3429 if (win32::is_nt()) _init_psapi();
duke@435 3430 else _init_toolhelp();
duke@435 3431
duke@435 3432 #ifndef _WIN64
duke@435 3433 // Print something if NX is enabled (win32 on AMD64)
duke@435 3434 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
duke@435 3435 #endif
duke@435 3436
duke@435 3437 // initialize thread priority policy
duke@435 3438 prio_init();
duke@435 3439
iveresov@897 3440 if (UseNUMA && !ForceNUMA) {
iveresov@897 3441 UseNUMA = false; // Currently unsupported.
iveresov@897 3442 }
iveresov@897 3443
duke@435 3444 return JNI_OK;
duke@435 3445 }
duke@435 3446
duke@435 3447
duke@435 3448 // Mark the polling page as unreadable
duke@435 3449 void os::make_polling_page_unreadable(void) {
duke@435 3450 DWORD old_status;
duke@435 3451 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
duke@435 3452 fatal("Could not disable polling page");
duke@435 3453 };
duke@435 3454
duke@435 3455 // Mark the polling page as readable
duke@435 3456 void os::make_polling_page_readable(void) {
duke@435 3457 DWORD old_status;
duke@435 3458 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
duke@435 3459 fatal("Could not enable polling page");
duke@435 3460 };
duke@435 3461
duke@435 3462
duke@435 3463 int os::stat(const char *path, struct stat *sbuf) {
duke@435 3464 char pathbuf[MAX_PATH];
duke@435 3465 if (strlen(path) > MAX_PATH - 1) {
duke@435 3466 errno = ENAMETOOLONG;
duke@435 3467 return -1;
duke@435 3468 }
duke@435 3469 hpi::native_path(strcpy(pathbuf, path));
duke@435 3470 int ret = ::stat(pathbuf, sbuf);
duke@435 3471 if (sbuf != NULL && UseUTCFileTimestamp) {
duke@435 3472 // Fix for 6539723. st_mtime returned from stat() is dependent on
duke@435 3473 // the system timezone and so can return different values for the
duke@435 3474 // same file if/when daylight savings time changes. This adjustment
duke@435 3475 // makes sure the same timestamp is returned regardless of the TZ.
duke@435 3476 //
duke@435 3477 // See:
duke@435 3478 // http://msdn.microsoft.com/library/
duke@435 3479 // default.asp?url=/library/en-us/sysinfo/base/
duke@435 3480 // time_zone_information_str.asp
duke@435 3481 // and
duke@435 3482 // http://msdn.microsoft.com/library/default.asp?url=
duke@435 3483 // /library/en-us/sysinfo/base/settimezoneinformation.asp
duke@435 3484 //
duke@435 3485 // NOTE: there is a insidious bug here: If the timezone is changed
duke@435 3486 // after the call to stat() but before 'GetTimeZoneInformation()', then
duke@435 3487 // the adjustment we do here will be wrong and we'll return the wrong
duke@435 3488 // value (which will likely end up creating an invalid class data
duke@435 3489 // archive). Absent a better API for this, or some time zone locking
duke@435 3490 // mechanism, we'll have to live with this risk.
duke@435 3491 TIME_ZONE_INFORMATION tz;
duke@435 3492 DWORD tzid = GetTimeZoneInformation(&tz);
duke@435 3493 int daylightBias =
duke@435 3494 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
duke@435 3495 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
duke@435 3496 }
duke@435 3497 return ret;
duke@435 3498 }
duke@435 3499
duke@435 3500
duke@435 3501 #define FT2INT64(ft) \
duke@435 3502 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
duke@435 3503
duke@435 3504
duke@435 3505 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 3506 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 3507 // of a thread.
duke@435 3508 //
duke@435 3509 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 3510 // the fast estimate available on the platform.
duke@435 3511
duke@435 3512 // current_thread_cpu_time() is not optimized for Windows yet
duke@435 3513 jlong os::current_thread_cpu_time() {
duke@435 3514 // return user + sys since the cost is the same
duke@435 3515 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
duke@435 3516 }
duke@435 3517
duke@435 3518 jlong os::thread_cpu_time(Thread* thread) {
duke@435 3519 // consistent with what current_thread_cpu_time() returns.
duke@435 3520 return os::thread_cpu_time(thread, true /* user+sys */);
duke@435 3521 }
duke@435 3522
duke@435 3523 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 3524 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 3525 }
duke@435 3526
duke@435 3527 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
duke@435 3528 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
duke@435 3529 // If this function changes, os::is_thread_cpu_time_supported() should too
duke@435 3530 if (os::win32::is_nt()) {
duke@435 3531 FILETIME CreationTime;
duke@435 3532 FILETIME ExitTime;
duke@435 3533 FILETIME KernelTime;
duke@435 3534 FILETIME UserTime;
duke@435 3535
duke@435 3536 if ( GetThreadTimes(thread->osthread()->thread_handle(),
duke@435 3537 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3538 return -1;
duke@435 3539 else
duke@435 3540 if (user_sys_cpu_time) {
duke@435 3541 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
duke@435 3542 } else {
duke@435 3543 return FT2INT64(UserTime) * 100;
duke@435 3544 }
duke@435 3545 } else {
duke@435 3546 return (jlong) timeGetTime() * 1000000;
duke@435 3547 }
duke@435 3548 }
duke@435 3549
duke@435 3550 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3551 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3552 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3553 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3554 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3555 }
duke@435 3556
duke@435 3557 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3558 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3559 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3560 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3561 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3562 }
duke@435 3563
duke@435 3564 bool os::is_thread_cpu_time_supported() {
duke@435 3565 // see os::thread_cpu_time
duke@435 3566 if (os::win32::is_nt()) {
duke@435 3567 FILETIME CreationTime;
duke@435 3568 FILETIME ExitTime;
duke@435 3569 FILETIME KernelTime;
duke@435 3570 FILETIME UserTime;
duke@435 3571
duke@435 3572 if ( GetThreadTimes(GetCurrentThread(),
duke@435 3573 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3574 return false;
duke@435 3575 else
duke@435 3576 return true;
duke@435 3577 } else {
duke@435 3578 return false;
duke@435 3579 }
duke@435 3580 }
duke@435 3581
duke@435 3582 // Windows does't provide a loadavg primitive so this is stubbed out for now.
duke@435 3583 // It does have primitives (PDH API) to get CPU usage and run queue length.
duke@435 3584 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
duke@435 3585 // If we wanted to implement loadavg on Windows, we have a few options:
duke@435 3586 //
duke@435 3587 // a) Query CPU usage and run queue length and "fake" an answer by
duke@435 3588 // returning the CPU usage if it's under 100%, and the run queue
duke@435 3589 // length otherwise. It turns out that querying is pretty slow
duke@435 3590 // on Windows, on the order of 200 microseconds on a fast machine.
duke@435 3591 // Note that on the Windows the CPU usage value is the % usage
duke@435 3592 // since the last time the API was called (and the first call
duke@435 3593 // returns 100%), so we'd have to deal with that as well.
duke@435 3594 //
duke@435 3595 // b) Sample the "fake" answer using a sampling thread and store
duke@435 3596 // the answer in a global variable. The call to loadavg would
duke@435 3597 // just return the value of the global, avoiding the slow query.
duke@435 3598 //
duke@435 3599 // c) Sample a better answer using exponential decay to smooth the
duke@435 3600 // value. This is basically the algorithm used by UNIX kernels.
duke@435 3601 //
duke@435 3602 // Note that sampling thread starvation could affect both (b) and (c).
duke@435 3603 int os::loadavg(double loadavg[], int nelem) {
duke@435 3604 return -1;
duke@435 3605 }
duke@435 3606
duke@435 3607
duke@435 3608 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
duke@435 3609 bool os::dont_yield() {
duke@435 3610 return DontYieldALot;
duke@435 3611 }
duke@435 3612
duke@435 3613 // Is a (classpath) directory empty?
duke@435 3614 bool os::dir_is_empty(const char* path) {
duke@435 3615 WIN32_FIND_DATA fd;
duke@435 3616 HANDLE f = FindFirstFile(path, &fd);
duke@435 3617 if (f == INVALID_HANDLE_VALUE) {
duke@435 3618 return true;
duke@435 3619 }
duke@435 3620 FindClose(f);
duke@435 3621 return false;
duke@435 3622 }
duke@435 3623
duke@435 3624 // create binary file, rewriting existing file if required
duke@435 3625 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 3626 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
duke@435 3627 if (!rewrite_existing) {
duke@435 3628 oflags |= _O_EXCL;
duke@435 3629 }
duke@435 3630 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
duke@435 3631 }
duke@435 3632
duke@435 3633 // return current position of file pointer
duke@435 3634 jlong os::current_file_offset(int fd) {
duke@435 3635 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
duke@435 3636 }
duke@435 3637
duke@435 3638 // move file pointer to the specified offset
duke@435 3639 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 3640 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
duke@435 3641 }
duke@435 3642
duke@435 3643
duke@435 3644 // Map a block of memory.
duke@435 3645 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3646 char *addr, size_t bytes, bool read_only,
duke@435 3647 bool allow_exec) {
duke@435 3648 HANDLE hFile;
duke@435 3649 char* base;
duke@435 3650
duke@435 3651 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
duke@435 3652 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
duke@435 3653 if (hFile == NULL) {
duke@435 3654 if (PrintMiscellaneous && Verbose) {
duke@435 3655 DWORD err = GetLastError();
duke@435 3656 tty->print_cr("CreateFile() failed: GetLastError->%ld.");
duke@435 3657 }
duke@435 3658 return NULL;
duke@435 3659 }
duke@435 3660
duke@435 3661 if (allow_exec) {
duke@435 3662 // CreateFileMapping/MapViewOfFileEx can't map executable memory
duke@435 3663 // unless it comes from a PE image (which the shared archive is not.)
duke@435 3664 // Even VirtualProtect refuses to give execute access to mapped memory
duke@435 3665 // that was not previously executable.
duke@435 3666 //
duke@435 3667 // Instead, stick the executable region in anonymous memory. Yuck.
duke@435 3668 // Penalty is that ~4 pages will not be shareable - in the future
duke@435 3669 // we might consider DLLizing the shared archive with a proper PE
duke@435 3670 // header so that mapping executable + sharing is possible.
duke@435 3671
duke@435 3672 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
duke@435 3673 PAGE_READWRITE);
duke@435 3674 if (base == NULL) {
duke@435 3675 if (PrintMiscellaneous && Verbose) {
duke@435 3676 DWORD err = GetLastError();
duke@435 3677 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
duke@435 3678 }
duke@435 3679 CloseHandle(hFile);
duke@435 3680 return NULL;
duke@435 3681 }
duke@435 3682
duke@435 3683 DWORD bytes_read;
duke@435 3684 OVERLAPPED overlapped;
duke@435 3685 overlapped.Offset = (DWORD)file_offset;
duke@435 3686 overlapped.OffsetHigh = 0;
duke@435 3687 overlapped.hEvent = NULL;
duke@435 3688 // ReadFile guarantees that if the return value is true, the requested
duke@435 3689 // number of bytes were read before returning.
duke@435 3690 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
duke@435 3691 if (!res) {
duke@435 3692 if (PrintMiscellaneous && Verbose) {
duke@435 3693 DWORD err = GetLastError();
duke@435 3694 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
duke@435 3695 }
duke@435 3696 release_memory(base, bytes);
duke@435 3697 CloseHandle(hFile);
duke@435 3698 return NULL;
duke@435 3699 }
duke@435 3700 } else {
duke@435 3701 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
duke@435 3702 NULL /*file_name*/);
duke@435 3703 if (hMap == NULL) {
duke@435 3704 if (PrintMiscellaneous && Verbose) {
duke@435 3705 DWORD err = GetLastError();
duke@435 3706 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
duke@435 3707 }
duke@435 3708 CloseHandle(hFile);
duke@435 3709 return NULL;
duke@435 3710 }
duke@435 3711
duke@435 3712 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
duke@435 3713 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
duke@435 3714 (DWORD)bytes, addr);
duke@435 3715 if (base == NULL) {
duke@435 3716 if (PrintMiscellaneous && Verbose) {
duke@435 3717 DWORD err = GetLastError();
duke@435 3718 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
duke@435 3719 }
duke@435 3720 CloseHandle(hMap);
duke@435 3721 CloseHandle(hFile);
duke@435 3722 return NULL;
duke@435 3723 }
duke@435 3724
duke@435 3725 if (CloseHandle(hMap) == 0) {
duke@435 3726 if (PrintMiscellaneous && Verbose) {
duke@435 3727 DWORD err = GetLastError();
duke@435 3728 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
duke@435 3729 }
duke@435 3730 CloseHandle(hFile);
duke@435 3731 return base;
duke@435 3732 }
duke@435 3733 }
duke@435 3734
duke@435 3735 if (allow_exec) {
duke@435 3736 DWORD old_protect;
duke@435 3737 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
duke@435 3738 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
duke@435 3739
duke@435 3740 if (!res) {
duke@435 3741 if (PrintMiscellaneous && Verbose) {
duke@435 3742 DWORD err = GetLastError();
duke@435 3743 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
duke@435 3744 }
duke@435 3745 // Don't consider this a hard error, on IA32 even if the
duke@435 3746 // VirtualProtect fails, we should still be able to execute
duke@435 3747 CloseHandle(hFile);
duke@435 3748 return base;
duke@435 3749 }
duke@435 3750 }
duke@435 3751
duke@435 3752 if (CloseHandle(hFile) == 0) {
duke@435 3753 if (PrintMiscellaneous && Verbose) {
duke@435 3754 DWORD err = GetLastError();
duke@435 3755 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
duke@435 3756 }
duke@435 3757 return base;
duke@435 3758 }
duke@435 3759
duke@435 3760 return base;
duke@435 3761 }
duke@435 3762
duke@435 3763
duke@435 3764 // Remap a block of memory.
duke@435 3765 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 3766 char *addr, size_t bytes, bool read_only,
duke@435 3767 bool allow_exec) {
duke@435 3768 // This OS does not allow existing memory maps to be remapped so we
duke@435 3769 // have to unmap the memory before we remap it.
duke@435 3770 if (!os::unmap_memory(addr, bytes)) {
duke@435 3771 return NULL;
duke@435 3772 }
duke@435 3773
duke@435 3774 // There is a very small theoretical window between the unmap_memory()
duke@435 3775 // call above and the map_memory() call below where a thread in native
duke@435 3776 // code may be able to access an address that is no longer mapped.
duke@435 3777
duke@435 3778 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 3779 allow_exec);
duke@435 3780 }
duke@435 3781
duke@435 3782
duke@435 3783 // Unmap a block of memory.
duke@435 3784 // Returns true=success, otherwise false.
duke@435 3785
duke@435 3786 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 3787 BOOL result = UnmapViewOfFile(addr);
duke@435 3788 if (result == 0) {
duke@435 3789 if (PrintMiscellaneous && Verbose) {
duke@435 3790 DWORD err = GetLastError();
duke@435 3791 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
duke@435 3792 }
duke@435 3793 return false;
duke@435 3794 }
duke@435 3795 return true;
duke@435 3796 }
duke@435 3797
duke@435 3798 void os::pause() {
duke@435 3799 char filename[MAX_PATH];
duke@435 3800 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 3801 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 3802 } else {
duke@435 3803 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 3804 }
duke@435 3805
duke@435 3806 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 3807 if (fd != -1) {
duke@435 3808 struct stat buf;
duke@435 3809 close(fd);
duke@435 3810 while (::stat(filename, &buf) == 0) {
duke@435 3811 Sleep(100);
duke@435 3812 }
duke@435 3813 } else {
duke@435 3814 jio_fprintf(stderr,
duke@435 3815 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 3816 }
duke@435 3817 }
duke@435 3818
duke@435 3819 // An Event wraps a win32 "CreateEvent" kernel handle.
duke@435 3820 //
duke@435 3821 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
duke@435 3822 //
duke@435 3823 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
duke@435 3824 // field, and call CloseHandle() on the win32 event handle. Unpark() would
duke@435 3825 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
duke@435 3826 // In addition, an unpark() operation might fetch the handle field, but the
duke@435 3827 // event could recycle between the fetch and the SetEvent() operation.
duke@435 3828 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
duke@435 3829 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
duke@435 3830 // on an stale but recycled handle would be harmless, but in practice this might
duke@435 3831 // confuse other non-Sun code, so it's not a viable approach.
duke@435 3832 //
duke@435 3833 // 2: Once a win32 event handle is associated with an Event, it remains associated
duke@435 3834 // with the Event. The event handle is never closed. This could be construed
duke@435 3835 // as handle leakage, but only up to the maximum # of threads that have been extant
duke@435 3836 // at any one time. This shouldn't be an issue, as windows platforms typically
duke@435 3837 // permit a process to have hundreds of thousands of open handles.
duke@435 3838 //
duke@435 3839 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
duke@435 3840 // and release unused handles.
duke@435 3841 //
duke@435 3842 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
duke@435 3843 // It's not clear, however, that we wouldn't be trading one type of leak for another.
duke@435 3844 //
duke@435 3845 // 5. Use an RCU-like mechanism (Read-Copy Update).
duke@435 3846 // Or perhaps something similar to Maged Michael's "Hazard pointers".
duke@435 3847 //
duke@435 3848 // We use (2).
duke@435 3849 //
duke@435 3850 // TODO-FIXME:
duke@435 3851 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
duke@435 3852 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
duke@435 3853 // to recover from (or at least detect) the dreaded Windows 841176 bug.
duke@435 3854 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
duke@435 3855 // into a single win32 CreateEvent() handle.
duke@435 3856 //
duke@435 3857 // _Event transitions in park()
duke@435 3858 // -1 => -1 : illegal
duke@435 3859 // 1 => 0 : pass - return immediately
duke@435 3860 // 0 => -1 : block
duke@435 3861 //
duke@435 3862 // _Event serves as a restricted-range semaphore :
duke@435 3863 // -1 : thread is blocked
duke@435 3864 // 0 : neutral - thread is running or ready
duke@435 3865 // 1 : signaled - thread is running or ready
duke@435 3866 //
duke@435 3867 // Another possible encoding of _Event would be
duke@435 3868 // with explicit "PARKED" and "SIGNALED" bits.
duke@435 3869
duke@435 3870 int os::PlatformEvent::park (jlong Millis) {
duke@435 3871 guarantee (_ParkHandle != NULL , "Invariant") ;
duke@435 3872 guarantee (Millis > 0 , "Invariant") ;
duke@435 3873 int v ;
duke@435 3874
duke@435 3875 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
duke@435 3876 // the initial park() operation.
duke@435 3877
duke@435 3878 for (;;) {
duke@435 3879 v = _Event ;
duke@435 3880 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 3881 }
duke@435 3882 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 3883 if (v != 0) return OS_OK ;
duke@435 3884
duke@435 3885 // Do this the hard way by blocking ...
duke@435 3886 // TODO: consider a brief spin here, gated on the success of recent
duke@435 3887 // spin attempts by this thread.
duke@435 3888 //
duke@435 3889 // We decompose long timeouts into series of shorter timed waits.
duke@435 3890 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
duke@435 3891 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
duke@435 3892 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
duke@435 3893 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
duke@435 3894 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
duke@435 3895 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
duke@435 3896 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
duke@435 3897 // for the already waited time. This policy does not admit any new outcomes.
duke@435 3898 // In the future, however, we might want to track the accumulated wait time and
duke@435 3899 // adjust Millis accordingly if we encounter a spurious wakeup.
duke@435 3900
duke@435 3901 const int MAXTIMEOUT = 0x10000000 ;
duke@435 3902 DWORD rv = WAIT_TIMEOUT ;
duke@435 3903 while (_Event < 0 && Millis > 0) {
duke@435 3904 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
duke@435 3905 if (Millis > MAXTIMEOUT) {
duke@435 3906 prd = MAXTIMEOUT ;
duke@435 3907 }
duke@435 3908 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
duke@435 3909 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
duke@435 3910 if (rv == WAIT_TIMEOUT) {
duke@435 3911 Millis -= prd ;
duke@435 3912 }
duke@435 3913 }
duke@435 3914 v = _Event ;
duke@435 3915 _Event = 0 ;
duke@435 3916 OrderAccess::fence() ;
duke@435 3917 // If we encounter a nearly simultanous timeout expiry and unpark()
duke@435 3918 // we return OS_OK indicating we awoke via unpark().
duke@435 3919 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
duke@435 3920 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
duke@435 3921 }
duke@435 3922
duke@435 3923 void os::PlatformEvent::park () {
duke@435 3924 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 3925 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 3926 // may call park().
duke@435 3927 int v ;
duke@435 3928 for (;;) {
duke@435 3929 v = _Event ;
duke@435 3930 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 3931 }
duke@435 3932 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 3933 if (v != 0) return ;
duke@435 3934
duke@435 3935 // Do this the hard way by blocking ...
duke@435 3936 // TODO: consider a brief spin here, gated on the success of recent
duke@435 3937 // spin attempts by this thread.
duke@435 3938 while (_Event < 0) {
duke@435 3939 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
duke@435 3940 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
duke@435 3941 }
duke@435 3942
duke@435 3943 // Usually we'll find _Event == 0 at this point, but as
duke@435 3944 // an optional optimization we clear it, just in case can
duke@435 3945 // multiple unpark() operations drove _Event up to 1.
duke@435 3946 _Event = 0 ;
duke@435 3947 OrderAccess::fence() ;
duke@435 3948 guarantee (_Event >= 0, "invariant") ;
duke@435 3949 }
duke@435 3950
duke@435 3951 void os::PlatformEvent::unpark() {
duke@435 3952 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 3953 int v ;
duke@435 3954 for (;;) {
duke@435 3955 v = _Event ; // Increment _Event if it's < 1.
duke@435 3956 if (v > 0) {
duke@435 3957 // If it's already signaled just return.
duke@435 3958 // The LD of _Event could have reordered or be satisfied
duke@435 3959 // by a read-aside from this processor's write buffer.
duke@435 3960 // To avoid problems execute a barrier and then
duke@435 3961 // ratify the value. A degenerate CAS() would also work.
duke@435 3962 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 3963 OrderAccess::fence() ;
duke@435 3964 if (_Event == v) return ;
duke@435 3965 continue ;
duke@435 3966 }
duke@435 3967 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 3968 }
duke@435 3969 if (v < 0) {
duke@435 3970 ::SetEvent (_ParkHandle) ;
duke@435 3971 }
duke@435 3972 }
duke@435 3973
duke@435 3974
duke@435 3975 // JSR166
duke@435 3976 // -------------------------------------------------------
duke@435 3977
duke@435 3978 /*
duke@435 3979 * The Windows implementation of Park is very straightforward: Basic
duke@435 3980 * operations on Win32 Events turn out to have the right semantics to
duke@435 3981 * use them directly. We opportunistically resuse the event inherited
duke@435 3982 * from Monitor.
duke@435 3983 */
duke@435 3984
duke@435 3985
duke@435 3986 void Parker::park(bool isAbsolute, jlong time) {
duke@435 3987 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 3988 // First, demultiplex/decode time arguments
duke@435 3989 if (time < 0) { // don't wait
duke@435 3990 return;
duke@435 3991 }
duke@435 3992 else if (time == 0) {
duke@435 3993 time = INFINITE;
duke@435 3994 }
duke@435 3995 else if (isAbsolute) {
duke@435 3996 time -= os::javaTimeMillis(); // convert to relative time
duke@435 3997 if (time <= 0) // already elapsed
duke@435 3998 return;
duke@435 3999 }
duke@435 4000 else { // relative
duke@435 4001 time /= 1000000; // Must coarsen from nanos to millis
duke@435 4002 if (time == 0) // Wait for the minimal time unit if zero
duke@435 4003 time = 1;
duke@435 4004 }
duke@435 4005
duke@435 4006 JavaThread* thread = (JavaThread*)(Thread::current());
duke@435 4007 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4008 JavaThread *jt = (JavaThread *)thread;
duke@435 4009
duke@435 4010 // Don't wait if interrupted or already triggered
duke@435 4011 if (Thread::is_interrupted(thread, false) ||
duke@435 4012 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
duke@435 4013 ResetEvent(_ParkEvent);
duke@435 4014 return;
duke@435 4015 }
duke@435 4016 else {
duke@435 4017 ThreadBlockInVM tbivm(jt);
duke@435 4018 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4019 jt->set_suspend_equivalent();
duke@435 4020
duke@435 4021 WaitForSingleObject(_ParkEvent, time);
duke@435 4022 ResetEvent(_ParkEvent);
duke@435 4023
duke@435 4024 // If externally suspended while waiting, re-suspend
duke@435 4025 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4026 jt->java_suspend_self();
duke@435 4027 }
duke@435 4028 }
duke@435 4029 }
duke@435 4030
duke@435 4031 void Parker::unpark() {
duke@435 4032 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4033 SetEvent(_ParkEvent);
duke@435 4034 }
duke@435 4035
duke@435 4036 // Run the specified command in a separate process. Return its exit value,
duke@435 4037 // or -1 on failure (e.g. can't create a new process).
duke@435 4038 int os::fork_and_exec(char* cmd) {
duke@435 4039 STARTUPINFO si;
duke@435 4040 PROCESS_INFORMATION pi;
duke@435 4041
duke@435 4042 memset(&si, 0, sizeof(si));
duke@435 4043 si.cb = sizeof(si);
duke@435 4044 memset(&pi, 0, sizeof(pi));
duke@435 4045 BOOL rslt = CreateProcess(NULL, // executable name - use command line
duke@435 4046 cmd, // command line
duke@435 4047 NULL, // process security attribute
duke@435 4048 NULL, // thread security attribute
duke@435 4049 TRUE, // inherits system handles
duke@435 4050 0, // no creation flags
duke@435 4051 NULL, // use parent's environment block
duke@435 4052 NULL, // use parent's starting directory
duke@435 4053 &si, // (in) startup information
duke@435 4054 &pi); // (out) process information
duke@435 4055
duke@435 4056 if (rslt) {
duke@435 4057 // Wait until child process exits.
duke@435 4058 WaitForSingleObject(pi.hProcess, INFINITE);
duke@435 4059
duke@435 4060 DWORD exit_code;
duke@435 4061 GetExitCodeProcess(pi.hProcess, &exit_code);
duke@435 4062
duke@435 4063 // Close process and thread handles.
duke@435 4064 CloseHandle(pi.hProcess);
duke@435 4065 CloseHandle(pi.hThread);
duke@435 4066
duke@435 4067 return (int)exit_code;
duke@435 4068 } else {
duke@435 4069 return -1;
duke@435 4070 }
duke@435 4071 }
duke@435 4072
duke@435 4073 //--------------------------------------------------------------------------------------------------
duke@435 4074 // Non-product code
duke@435 4075
duke@435 4076 static int mallocDebugIntervalCounter = 0;
duke@435 4077 static int mallocDebugCounter = 0;
duke@435 4078 bool os::check_heap(bool force) {
duke@435 4079 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
duke@435 4080 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
duke@435 4081 // Note: HeapValidate executes two hardware breakpoints when it finds something
duke@435 4082 // wrong; at these points, eax contains the address of the offending block (I think).
duke@435 4083 // To get to the exlicit error message(s) below, just continue twice.
duke@435 4084 HANDLE heap = GetProcessHeap();
duke@435 4085 { HeapLock(heap);
duke@435 4086 PROCESS_HEAP_ENTRY phe;
duke@435 4087 phe.lpData = NULL;
duke@435 4088 while (HeapWalk(heap, &phe) != 0) {
duke@435 4089 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
duke@435 4090 !HeapValidate(heap, 0, phe.lpData)) {
duke@435 4091 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
duke@435 4092 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
duke@435 4093 fatal("corrupted C heap");
duke@435 4094 }
duke@435 4095 }
duke@435 4096 int err = GetLastError();
duke@435 4097 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
jcoomes@1845 4098 fatal(err_msg("heap walk aborted with error %d", err));
duke@435 4099 }
duke@435 4100 HeapUnlock(heap);
duke@435 4101 }
duke@435 4102 mallocDebugIntervalCounter = 0;
duke@435 4103 }
duke@435 4104 return true;
duke@435 4105 }
duke@435 4106
duke@435 4107
duke@435 4108 #ifndef PRODUCT
duke@435 4109 bool os::find(address addr) {
duke@435 4110 // Nothing yet
duke@435 4111 return false;
duke@435 4112 }
duke@435 4113 #endif
duke@435 4114
duke@435 4115 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
duke@435 4116 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
duke@435 4117
duke@435 4118 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 4119 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
duke@435 4120 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
duke@435 4121 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 4122
duke@435 4123 if (os::is_memory_serialize_page(thread, addr))
duke@435 4124 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 4125 }
duke@435 4126
duke@435 4127 return EXCEPTION_CONTINUE_SEARCH;
duke@435 4128 }
duke@435 4129
duke@435 4130 static int getLastErrorString(char *buf, size_t len)
duke@435 4131 {
duke@435 4132 long errval;
duke@435 4133
duke@435 4134 if ((errval = GetLastError()) != 0)
duke@435 4135 {
duke@435 4136 /* DOS error */
duke@435 4137 size_t n = (size_t)FormatMessage(
duke@435 4138 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
duke@435 4139 NULL,
duke@435 4140 errval,
duke@435 4141 0,
duke@435 4142 buf,
duke@435 4143 (DWORD)len,
duke@435 4144 NULL);
duke@435 4145 if (n > 3) {
duke@435 4146 /* Drop final '.', CR, LF */
duke@435 4147 if (buf[n - 1] == '\n') n--;
duke@435 4148 if (buf[n - 1] == '\r') n--;
duke@435 4149 if (buf[n - 1] == '.') n--;
duke@435 4150 buf[n] = '\0';
duke@435 4151 }
duke@435 4152 return (int)n;
duke@435 4153 }
duke@435 4154
duke@435 4155 if (errno != 0)
duke@435 4156 {
duke@435 4157 /* C runtime error that has no corresponding DOS error code */
duke@435 4158 const char *s = strerror(errno);
duke@435 4159 size_t n = strlen(s);
duke@435 4160 if (n >= len) n = len - 1;
duke@435 4161 strncpy(buf, s, n);
duke@435 4162 buf[n] = '\0';
duke@435 4163 return (int)n;
duke@435 4164 }
duke@435 4165 return 0;
duke@435 4166 }

mercurial