src/os/windows/vm/os_windows.cpp

Tue, 13 Sep 2011 16:58:35 -0700

author
iveresov
date
Tue, 13 Sep 2011 16:58:35 -0700
changeset 3127
0a63380c8ac8
parent 3118
a6128a8ed624
child 3202
436b4a3231bf
permissions
-rw-r--r--

7090069: Java launcher hangs in infinite loop on windows when UseNUMA[Interleaving] is specified
Summary: Fix _numa_used_node_list array size specification
Reviewed-by: kvn, johnc, jmasa, ysr

duke@435 1 /*
ctornqvi@2520 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
sla@2588 25 // Must be at least Windows 2000 or XP to use VectoredExceptions and IsDebuggerPresent
duke@435 26 #define _WIN32_WINNT 0x500
duke@435 27
stefank@2314 28 // no precompiled headers
stefank@2314 29 #include "classfile/classLoader.hpp"
stefank@2314 30 #include "classfile/systemDictionary.hpp"
stefank@2314 31 #include "classfile/vmSymbols.hpp"
stefank@2314 32 #include "code/icBuffer.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "interpreter/interpreter.hpp"
stefank@2314 36 #include "jvm_windows.h"
stefank@2314 37 #include "memory/allocation.inline.hpp"
stefank@2314 38 #include "memory/filemap.hpp"
stefank@2314 39 #include "mutex_windows.inline.hpp"
stefank@2314 40 #include "oops/oop.inline.hpp"
stefank@2314 41 #include "os_share_windows.hpp"
stefank@2314 42 #include "prims/jniFastGetField.hpp"
stefank@2314 43 #include "prims/jvm.h"
stefank@2314 44 #include "prims/jvm_misc.hpp"
stefank@2314 45 #include "runtime/arguments.hpp"
stefank@2314 46 #include "runtime/extendedPC.hpp"
stefank@2314 47 #include "runtime/globals.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/java.hpp"
stefank@2314 50 #include "runtime/javaCalls.hpp"
stefank@2314 51 #include "runtime/mutexLocker.hpp"
stefank@2314 52 #include "runtime/objectMonitor.hpp"
stefank@2314 53 #include "runtime/osThread.hpp"
stefank@2314 54 #include "runtime/perfMemory.hpp"
stefank@2314 55 #include "runtime/sharedRuntime.hpp"
stefank@2314 56 #include "runtime/statSampler.hpp"
stefank@2314 57 #include "runtime/stubRoutines.hpp"
stefank@2314 58 #include "runtime/threadCritical.hpp"
stefank@2314 59 #include "runtime/timer.hpp"
stefank@2314 60 #include "services/attachListener.hpp"
stefank@2314 61 #include "services/runtimeService.hpp"
stefank@2314 62 #include "thread_windows.inline.hpp"
zgu@2364 63 #include "utilities/decoder.hpp"
stefank@2314 64 #include "utilities/defaultStream.hpp"
stefank@2314 65 #include "utilities/events.hpp"
stefank@2314 66 #include "utilities/growableArray.hpp"
stefank@2314 67 #include "utilities/vmError.hpp"
stefank@2314 68 #ifdef TARGET_ARCH_x86
stefank@2314 69 # include "assembler_x86.inline.hpp"
stefank@2314 70 # include "nativeInst_x86.hpp"
stefank@2314 71 #endif
stefank@2314 72 #ifdef COMPILER1
stefank@2314 73 #include "c1/c1_Runtime1.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef COMPILER2
stefank@2314 76 #include "opto/runtime.hpp"
stefank@2314 77 #endif
duke@435 78
duke@435 79 #ifdef _DEBUG
duke@435 80 #include <crtdbg.h>
duke@435 81 #endif
duke@435 82
duke@435 83
duke@435 84 #include <windows.h>
duke@435 85 #include <sys/types.h>
duke@435 86 #include <sys/stat.h>
duke@435 87 #include <sys/timeb.h>
duke@435 88 #include <objidl.h>
duke@435 89 #include <shlobj.h>
duke@435 90
duke@435 91 #include <malloc.h>
duke@435 92 #include <signal.h>
duke@435 93 #include <direct.h>
duke@435 94 #include <errno.h>
duke@435 95 #include <fcntl.h>
duke@435 96 #include <io.h>
duke@435 97 #include <process.h> // For _beginthreadex(), _endthreadex()
duke@435 98 #include <imagehlp.h> // For os::dll_address_to_function_name
duke@435 99
duke@435 100 /* for enumerating dll libraries */
duke@435 101 #include <vdmdbg.h>
duke@435 102
duke@435 103 // for timer info max values which include all bits
duke@435 104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 105
duke@435 106 // For DLL loading/load error detection
duke@435 107 // Values of PE COFF
duke@435 108 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
duke@435 109 #define IMAGE_FILE_SIGNATURE_LENGTH 4
duke@435 110
duke@435 111 static HANDLE main_process;
duke@435 112 static HANDLE main_thread;
duke@435 113 static int main_thread_id;
duke@435 114
duke@435 115 static FILETIME process_creation_time;
duke@435 116 static FILETIME process_exit_time;
duke@435 117 static FILETIME process_user_time;
duke@435 118 static FILETIME process_kernel_time;
duke@435 119
duke@435 120 #ifdef _WIN64
duke@435 121 PVOID topLevelVectoredExceptionHandler = NULL;
duke@435 122 #endif
duke@435 123
duke@435 124 #ifdef _M_IA64
duke@435 125 #define __CPU__ ia64
duke@435 126 #elif _M_AMD64
duke@435 127 #define __CPU__ amd64
duke@435 128 #else
duke@435 129 #define __CPU__ i486
duke@435 130 #endif
duke@435 131
duke@435 132 // save DLL module handle, used by GetModuleFileName
duke@435 133
duke@435 134 HINSTANCE vm_lib_handle;
duke@435 135 static int getLastErrorString(char *buf, size_t len);
duke@435 136
duke@435 137 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
duke@435 138 switch (reason) {
duke@435 139 case DLL_PROCESS_ATTACH:
duke@435 140 vm_lib_handle = hinst;
duke@435 141 if(ForceTimeHighResolution)
duke@435 142 timeBeginPeriod(1L);
duke@435 143 break;
duke@435 144 case DLL_PROCESS_DETACH:
duke@435 145 if(ForceTimeHighResolution)
duke@435 146 timeEndPeriod(1L);
duke@435 147 #ifdef _WIN64
duke@435 148 if (topLevelVectoredExceptionHandler != NULL) {
duke@435 149 RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
duke@435 150 topLevelVectoredExceptionHandler = NULL;
duke@435 151 }
duke@435 152 #endif
duke@435 153 break;
duke@435 154 default:
duke@435 155 break;
duke@435 156 }
duke@435 157 return true;
duke@435 158 }
duke@435 159
duke@435 160 static inline double fileTimeAsDouble(FILETIME* time) {
duke@435 161 const double high = (double) ((unsigned int) ~0);
duke@435 162 const double split = 10000000.0;
duke@435 163 double result = (time->dwLowDateTime / split) +
duke@435 164 time->dwHighDateTime * (high/split);
duke@435 165 return result;
duke@435 166 }
duke@435 167
duke@435 168 // Implementation of os
duke@435 169
duke@435 170 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 171 int result = GetEnvironmentVariable(name, buffer, len);
duke@435 172 return result > 0 && result < len;
duke@435 173 }
duke@435 174
duke@435 175
duke@435 176 // No setuid programs under Windows.
duke@435 177 bool os::have_special_privileges() {
duke@435 178 return false;
duke@435 179 }
duke@435 180
duke@435 181
duke@435 182 // This method is a periodic task to check for misbehaving JNI applications
duke@435 183 // under CheckJNI, we can add any periodic checks here.
duke@435 184 // For Windows at the moment does nothing
duke@435 185 void os::run_periodic_checks() {
duke@435 186 return;
duke@435 187 }
duke@435 188
duke@435 189 #ifndef _WIN64
dcubed@1649 190 // previous UnhandledExceptionFilter, if there is one
dcubed@1649 191 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
dcubed@1649 192
duke@435 193 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 194 #endif
duke@435 195 void os::init_system_properties_values() {
duke@435 196 /* sysclasspath, java_home, dll_dir */
duke@435 197 {
duke@435 198 char *home_path;
duke@435 199 char *dll_path;
duke@435 200 char *pslash;
duke@435 201 char *bin = "\\bin";
duke@435 202 char home_dir[MAX_PATH];
duke@435 203
duke@435 204 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
duke@435 205 os::jvm_path(home_dir, sizeof(home_dir));
duke@435 206 // Found the full path to jvm[_g].dll.
duke@435 207 // Now cut the path to <java_home>/jre if we can.
duke@435 208 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
duke@435 209 pslash = strrchr(home_dir, '\\');
duke@435 210 if (pslash != NULL) {
duke@435 211 *pslash = '\0'; /* get rid of \{client|server} */
duke@435 212 pslash = strrchr(home_dir, '\\');
duke@435 213 if (pslash != NULL)
duke@435 214 *pslash = '\0'; /* get rid of \bin */
duke@435 215 }
duke@435 216 }
duke@435 217
duke@435 218 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
duke@435 219 if (home_path == NULL)
duke@435 220 return;
duke@435 221 strcpy(home_path, home_dir);
duke@435 222 Arguments::set_java_home(home_path);
duke@435 223
duke@435 224 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
duke@435 225 if (dll_path == NULL)
duke@435 226 return;
duke@435 227 strcpy(dll_path, home_dir);
duke@435 228 strcat(dll_path, bin);
duke@435 229 Arguments::set_dll_dir(dll_path);
duke@435 230
duke@435 231 if (!set_boot_path('\\', ';'))
duke@435 232 return;
duke@435 233 }
duke@435 234
duke@435 235 /* library_path */
duke@435 236 #define EXT_DIR "\\lib\\ext"
duke@435 237 #define BIN_DIR "\\bin"
duke@435 238 #define PACKAGE_DIR "\\Sun\\Java"
duke@435 239 {
duke@435 240 /* Win32 library search order (See the documentation for LoadLibrary):
duke@435 241 *
duke@435 242 * 1. The directory from which application is loaded.
zgu@3031 243 * 2. The system wide Java Extensions directory (Java only)
zgu@3031 244 * 3. System directory (GetSystemDirectory)
zgu@3031 245 * 4. Windows directory (GetWindowsDirectory)
zgu@3031 246 * 5. The PATH environment variable
zgu@3031 247 * 6. The current directory
duke@435 248 */
duke@435 249
duke@435 250 char *library_path;
duke@435 251 char tmp[MAX_PATH];
duke@435 252 char *path_str = ::getenv("PATH");
duke@435 253
duke@435 254 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
duke@435 255 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
duke@435 256
duke@435 257 library_path[0] = '\0';
duke@435 258
duke@435 259 GetModuleFileName(NULL, tmp, sizeof(tmp));
duke@435 260 *(strrchr(tmp, '\\')) = '\0';
duke@435 261 strcat(library_path, tmp);
duke@435 262
duke@435 263 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 264 strcat(library_path, ";");
duke@435 265 strcat(library_path, tmp);
duke@435 266 strcat(library_path, PACKAGE_DIR BIN_DIR);
duke@435 267
duke@435 268 GetSystemDirectory(tmp, sizeof(tmp));
duke@435 269 strcat(library_path, ";");
duke@435 270 strcat(library_path, tmp);
duke@435 271
duke@435 272 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 273 strcat(library_path, ";");
duke@435 274 strcat(library_path, tmp);
duke@435 275
duke@435 276 if (path_str) {
duke@435 277 strcat(library_path, ";");
duke@435 278 strcat(library_path, path_str);
duke@435 279 }
duke@435 280
zgu@3031 281 strcat(library_path, ";.");
zgu@3031 282
duke@435 283 Arguments::set_library_path(library_path);
duke@435 284 FREE_C_HEAP_ARRAY(char, library_path);
duke@435 285 }
duke@435 286
duke@435 287 /* Default extensions directory */
duke@435 288 {
duke@435 289 char path[MAX_PATH];
duke@435 290 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
duke@435 291 GetWindowsDirectory(path, MAX_PATH);
duke@435 292 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
duke@435 293 path, PACKAGE_DIR, EXT_DIR);
duke@435 294 Arguments::set_ext_dirs(buf);
duke@435 295 }
duke@435 296 #undef EXT_DIR
duke@435 297 #undef BIN_DIR
duke@435 298 #undef PACKAGE_DIR
duke@435 299
duke@435 300 /* Default endorsed standards directory. */
duke@435 301 {
duke@435 302 #define ENDORSED_DIR "\\lib\\endorsed"
duke@435 303 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
duke@435 304 char * buf = NEW_C_HEAP_ARRAY(char, len);
duke@435 305 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
duke@435 306 Arguments::set_endorsed_dirs(buf);
duke@435 307 #undef ENDORSED_DIR
duke@435 308 }
duke@435 309
duke@435 310 #ifndef _WIN64
dcubed@1649 311 // set our UnhandledExceptionFilter and save any previous one
dcubed@1649 312 prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
duke@435 313 #endif
duke@435 314
duke@435 315 // Done
duke@435 316 return;
duke@435 317 }
duke@435 318
duke@435 319 void os::breakpoint() {
duke@435 320 DebugBreak();
duke@435 321 }
duke@435 322
duke@435 323 // Invoked from the BREAKPOINT Macro
duke@435 324 extern "C" void breakpoint() {
duke@435 325 os::breakpoint();
duke@435 326 }
duke@435 327
duke@435 328 // Returns an estimate of the current stack pointer. Result must be guaranteed
duke@435 329 // to point into the calling threads stack, and be no lower than the current
duke@435 330 // stack pointer.
duke@435 331
duke@435 332 address os::current_stack_pointer() {
duke@435 333 int dummy;
duke@435 334 address sp = (address)&dummy;
duke@435 335 return sp;
duke@435 336 }
duke@435 337
duke@435 338 // os::current_stack_base()
duke@435 339 //
duke@435 340 // Returns the base of the stack, which is the stack's
duke@435 341 // starting address. This function must be called
duke@435 342 // while running on the stack of the thread being queried.
duke@435 343
duke@435 344 address os::current_stack_base() {
duke@435 345 MEMORY_BASIC_INFORMATION minfo;
duke@435 346 address stack_bottom;
duke@435 347 size_t stack_size;
duke@435 348
duke@435 349 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 350 stack_bottom = (address)minfo.AllocationBase;
duke@435 351 stack_size = minfo.RegionSize;
duke@435 352
duke@435 353 // Add up the sizes of all the regions with the same
duke@435 354 // AllocationBase.
duke@435 355 while( 1 )
duke@435 356 {
duke@435 357 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
duke@435 358 if ( stack_bottom == (address)minfo.AllocationBase )
duke@435 359 stack_size += minfo.RegionSize;
duke@435 360 else
duke@435 361 break;
duke@435 362 }
duke@435 363
duke@435 364 #ifdef _M_IA64
duke@435 365 // IA64 has memory and register stacks
duke@435 366 stack_size = stack_size / 2;
duke@435 367 #endif
duke@435 368 return stack_bottom + stack_size;
duke@435 369 }
duke@435 370
duke@435 371 size_t os::current_stack_size() {
duke@435 372 size_t sz;
duke@435 373 MEMORY_BASIC_INFORMATION minfo;
duke@435 374 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 375 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
duke@435 376 return sz;
duke@435 377 }
duke@435 378
ysr@983 379 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 380 const struct tm* time_struct_ptr = localtime(clock);
ysr@983 381 if (time_struct_ptr != NULL) {
ysr@983 382 *res = *time_struct_ptr;
ysr@983 383 return res;
ysr@983 384 }
ysr@983 385 return NULL;
ysr@983 386 }
duke@435 387
duke@435 388 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 389
duke@435 390 // Thread start routine for all new Java threads
duke@435 391 static unsigned __stdcall java_start(Thread* thread) {
duke@435 392 // Try to randomize the cache line index of hot stack frames.
duke@435 393 // This helps when threads of the same stack traces evict each other's
duke@435 394 // cache lines. The threads can be either from the same JVM instance, or
duke@435 395 // from different JVM instances. The benefit is especially true for
duke@435 396 // processors with hyperthreading technology.
duke@435 397 static int counter = 0;
duke@435 398 int pid = os::current_process_id();
duke@435 399 _alloca(((pid ^ counter++) & 7) * 128);
duke@435 400
duke@435 401 OSThread* osthr = thread->osthread();
duke@435 402 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 403
duke@435 404 if (UseNUMA) {
duke@435 405 int lgrp_id = os::numa_get_group_id();
duke@435 406 if (lgrp_id != -1) {
duke@435 407 thread->set_lgrp_id(lgrp_id);
duke@435 408 }
duke@435 409 }
duke@435 410
duke@435 411
duke@435 412 if (UseVectoredExceptions) {
duke@435 413 // If we are using vectored exception we don't need to set a SEH
duke@435 414 thread->run();
duke@435 415 }
duke@435 416 else {
duke@435 417 // Install a win32 structured exception handler around every thread created
duke@435 418 // by VM, so VM can genrate error dump when an exception occurred in non-
duke@435 419 // Java thread (e.g. VM thread).
duke@435 420 __try {
duke@435 421 thread->run();
duke@435 422 } __except(topLevelExceptionFilter(
duke@435 423 (_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 424 // Nothing to do.
duke@435 425 }
duke@435 426 }
duke@435 427
duke@435 428 // One less thread is executing
duke@435 429 // When the VMThread gets here, the main thread may have already exited
duke@435 430 // which frees the CodeHeap containing the Atomic::add code
duke@435 431 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 432 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 433 }
duke@435 434
duke@435 435 return 0;
duke@435 436 }
duke@435 437
duke@435 438 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
duke@435 439 // Allocate the OSThread object
duke@435 440 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 441 if (osthread == NULL) return NULL;
duke@435 442
duke@435 443 // Initialize support for Java interrupts
duke@435 444 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 445 if (interrupt_event == NULL) {
duke@435 446 delete osthread;
duke@435 447 return NULL;
duke@435 448 }
duke@435 449 osthread->set_interrupt_event(interrupt_event);
duke@435 450
duke@435 451 // Store info on the Win32 thread into the OSThread
duke@435 452 osthread->set_thread_handle(thread_handle);
duke@435 453 osthread->set_thread_id(thread_id);
duke@435 454
duke@435 455 if (UseNUMA) {
duke@435 456 int lgrp_id = os::numa_get_group_id();
duke@435 457 if (lgrp_id != -1) {
duke@435 458 thread->set_lgrp_id(lgrp_id);
duke@435 459 }
duke@435 460 }
duke@435 461
duke@435 462 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 463 osthread->set_state(INITIALIZED);
duke@435 464
duke@435 465 return osthread;
duke@435 466 }
duke@435 467
duke@435 468
duke@435 469 bool os::create_attached_thread(JavaThread* thread) {
duke@435 470 #ifdef ASSERT
duke@435 471 thread->verify_not_published();
duke@435 472 #endif
duke@435 473 HANDLE thread_h;
duke@435 474 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
duke@435 475 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
duke@435 476 fatal("DuplicateHandle failed\n");
duke@435 477 }
duke@435 478 OSThread* osthread = create_os_thread(thread, thread_h,
duke@435 479 (int)current_thread_id());
duke@435 480 if (osthread == NULL) {
duke@435 481 return false;
duke@435 482 }
duke@435 483
duke@435 484 // Initial thread state is RUNNABLE
duke@435 485 osthread->set_state(RUNNABLE);
duke@435 486
duke@435 487 thread->set_osthread(osthread);
duke@435 488 return true;
duke@435 489 }
duke@435 490
duke@435 491 bool os::create_main_thread(JavaThread* thread) {
duke@435 492 #ifdef ASSERT
duke@435 493 thread->verify_not_published();
duke@435 494 #endif
duke@435 495 if (_starting_thread == NULL) {
duke@435 496 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
duke@435 497 if (_starting_thread == NULL) {
duke@435 498 return false;
duke@435 499 }
duke@435 500 }
duke@435 501
duke@435 502 // The primordial thread is runnable from the start)
duke@435 503 _starting_thread->set_state(RUNNABLE);
duke@435 504
duke@435 505 thread->set_osthread(_starting_thread);
duke@435 506 return true;
duke@435 507 }
duke@435 508
duke@435 509 // Allocate and initialize a new OSThread
duke@435 510 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 511 unsigned thread_id;
duke@435 512
duke@435 513 // Allocate the OSThread object
duke@435 514 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 515 if (osthread == NULL) {
duke@435 516 return false;
duke@435 517 }
duke@435 518
duke@435 519 // Initialize support for Java interrupts
duke@435 520 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 521 if (interrupt_event == NULL) {
duke@435 522 delete osthread;
duke@435 523 return NULL;
duke@435 524 }
duke@435 525 osthread->set_interrupt_event(interrupt_event);
duke@435 526 osthread->set_interrupted(false);
duke@435 527
duke@435 528 thread->set_osthread(osthread);
duke@435 529
duke@435 530 if (stack_size == 0) {
duke@435 531 switch (thr_type) {
duke@435 532 case os::java_thread:
duke@435 533 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 534 if (JavaThread::stack_size_at_create() > 0)
duke@435 535 stack_size = JavaThread::stack_size_at_create();
duke@435 536 break;
duke@435 537 case os::compiler_thread:
duke@435 538 if (CompilerThreadStackSize > 0) {
duke@435 539 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 540 break;
duke@435 541 } // else fall through:
duke@435 542 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 543 case os::vm_thread:
duke@435 544 case os::pgc_thread:
duke@435 545 case os::cgc_thread:
duke@435 546 case os::watcher_thread:
duke@435 547 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 548 break;
duke@435 549 }
duke@435 550 }
duke@435 551
duke@435 552 // Create the Win32 thread
duke@435 553 //
duke@435 554 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
duke@435 555 // does not specify stack size. Instead, it specifies the size of
duke@435 556 // initially committed space. The stack size is determined by
duke@435 557 // PE header in the executable. If the committed "stack_size" is larger
duke@435 558 // than default value in the PE header, the stack is rounded up to the
duke@435 559 // nearest multiple of 1MB. For example if the launcher has default
duke@435 560 // stack size of 320k, specifying any size less than 320k does not
duke@435 561 // affect the actual stack size at all, it only affects the initial
duke@435 562 // commitment. On the other hand, specifying 'stack_size' larger than
duke@435 563 // default value may cause significant increase in memory usage, because
duke@435 564 // not only the stack space will be rounded up to MB, but also the
duke@435 565 // entire space is committed upfront.
duke@435 566 //
duke@435 567 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
duke@435 568 // for CreateThread() that can treat 'stack_size' as stack size. However we
duke@435 569 // are not supposed to call CreateThread() directly according to MSDN
duke@435 570 // document because JVM uses C runtime library. The good news is that the
duke@435 571 // flag appears to work with _beginthredex() as well.
duke@435 572
duke@435 573 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
duke@435 574 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
duke@435 575 #endif
duke@435 576
duke@435 577 HANDLE thread_handle =
duke@435 578 (HANDLE)_beginthreadex(NULL,
duke@435 579 (unsigned)stack_size,
duke@435 580 (unsigned (__stdcall *)(void*)) java_start,
duke@435 581 thread,
duke@435 582 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
duke@435 583 &thread_id);
duke@435 584 if (thread_handle == NULL) {
duke@435 585 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
duke@435 586 // without the flag.
duke@435 587 thread_handle =
duke@435 588 (HANDLE)_beginthreadex(NULL,
duke@435 589 (unsigned)stack_size,
duke@435 590 (unsigned (__stdcall *)(void*)) java_start,
duke@435 591 thread,
duke@435 592 CREATE_SUSPENDED,
duke@435 593 &thread_id);
duke@435 594 }
duke@435 595 if (thread_handle == NULL) {
duke@435 596 // Need to clean up stuff we've allocated so far
duke@435 597 CloseHandle(osthread->interrupt_event());
duke@435 598 thread->set_osthread(NULL);
duke@435 599 delete osthread;
duke@435 600 return NULL;
duke@435 601 }
duke@435 602
duke@435 603 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 604
duke@435 605 // Store info on the Win32 thread into the OSThread
duke@435 606 osthread->set_thread_handle(thread_handle);
duke@435 607 osthread->set_thread_id(thread_id);
duke@435 608
duke@435 609 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 610 osthread->set_state(INITIALIZED);
duke@435 611
duke@435 612 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 613 return true;
duke@435 614 }
duke@435 615
duke@435 616
duke@435 617 // Free Win32 resources related to the OSThread
duke@435 618 void os::free_thread(OSThread* osthread) {
duke@435 619 assert(osthread != NULL, "osthread not set");
duke@435 620 CloseHandle(osthread->thread_handle());
duke@435 621 CloseHandle(osthread->interrupt_event());
duke@435 622 delete osthread;
duke@435 623 }
duke@435 624
duke@435 625
duke@435 626 static int has_performance_count = 0;
duke@435 627 static jlong first_filetime;
duke@435 628 static jlong initial_performance_count;
duke@435 629 static jlong performance_frequency;
duke@435 630
duke@435 631
duke@435 632 jlong as_long(LARGE_INTEGER x) {
duke@435 633 jlong result = 0; // initialization to avoid warning
duke@435 634 set_high(&result, x.HighPart);
duke@435 635 set_low(&result, x.LowPart);
duke@435 636 return result;
duke@435 637 }
duke@435 638
duke@435 639
duke@435 640 jlong os::elapsed_counter() {
duke@435 641 LARGE_INTEGER count;
duke@435 642 if (has_performance_count) {
duke@435 643 QueryPerformanceCounter(&count);
duke@435 644 return as_long(count) - initial_performance_count;
duke@435 645 } else {
duke@435 646 FILETIME wt;
duke@435 647 GetSystemTimeAsFileTime(&wt);
duke@435 648 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
duke@435 649 }
duke@435 650 }
duke@435 651
duke@435 652
duke@435 653 jlong os::elapsed_frequency() {
duke@435 654 if (has_performance_count) {
duke@435 655 return performance_frequency;
duke@435 656 } else {
duke@435 657 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
duke@435 658 return 10000000;
duke@435 659 }
duke@435 660 }
duke@435 661
duke@435 662
duke@435 663 julong os::available_memory() {
duke@435 664 return win32::available_memory();
duke@435 665 }
duke@435 666
duke@435 667 julong os::win32::available_memory() {
poonam@1312 668 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 669 // value if total memory is larger than 4GB
poonam@1312 670 MEMORYSTATUSEX ms;
poonam@1312 671 ms.dwLength = sizeof(ms);
poonam@1312 672 GlobalMemoryStatusEx(&ms);
poonam@1312 673
poonam@1312 674 return (julong)ms.ullAvailPhys;
duke@435 675 }
duke@435 676
duke@435 677 julong os::physical_memory() {
duke@435 678 return win32::physical_memory();
duke@435 679 }
duke@435 680
duke@435 681 julong os::allocatable_physical_memory(julong size) {
phh@455 682 #ifdef _LP64
phh@455 683 return size;
phh@455 684 #else
phh@455 685 // Limit to 1400m because of the 2gb address space wall
duke@435 686 return MIN2(size, (julong)1400*M);
phh@455 687 #endif
duke@435 688 }
duke@435 689
duke@435 690 // VC6 lacks DWORD_PTR
duke@435 691 #if _MSC_VER < 1300
duke@435 692 typedef UINT_PTR DWORD_PTR;
duke@435 693 #endif
duke@435 694
duke@435 695 int os::active_processor_count() {
duke@435 696 DWORD_PTR lpProcessAffinityMask = 0;
duke@435 697 DWORD_PTR lpSystemAffinityMask = 0;
duke@435 698 int proc_count = processor_count();
duke@435 699 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
duke@435 700 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
duke@435 701 // Nof active processors is number of bits in process affinity mask
duke@435 702 int bitcount = 0;
duke@435 703 while (lpProcessAffinityMask != 0) {
duke@435 704 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
duke@435 705 bitcount++;
duke@435 706 }
duke@435 707 return bitcount;
duke@435 708 } else {
duke@435 709 return proc_count;
duke@435 710 }
duke@435 711 }
duke@435 712
duke@435 713 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 714 // Not yet implemented.
duke@435 715 return false;
duke@435 716 }
duke@435 717
duke@435 718 bool os::bind_to_processor(uint processor_id) {
duke@435 719 // Not yet implemented.
duke@435 720 return false;
duke@435 721 }
duke@435 722
duke@435 723 static void initialize_performance_counter() {
duke@435 724 LARGE_INTEGER count;
duke@435 725 if (QueryPerformanceFrequency(&count)) {
duke@435 726 has_performance_count = 1;
duke@435 727 performance_frequency = as_long(count);
duke@435 728 QueryPerformanceCounter(&count);
duke@435 729 initial_performance_count = as_long(count);
duke@435 730 } else {
duke@435 731 has_performance_count = 0;
duke@435 732 FILETIME wt;
duke@435 733 GetSystemTimeAsFileTime(&wt);
duke@435 734 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 735 }
duke@435 736 }
duke@435 737
duke@435 738
duke@435 739 double os::elapsedTime() {
duke@435 740 return (double) elapsed_counter() / (double) elapsed_frequency();
duke@435 741 }
duke@435 742
duke@435 743
duke@435 744 // Windows format:
duke@435 745 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
duke@435 746 // Java format:
duke@435 747 // Java standards require the number of milliseconds since 1/1/1970
duke@435 748
duke@435 749 // Constant offset - calculated using offset()
duke@435 750 static jlong _offset = 116444736000000000;
duke@435 751 // Fake time counter for reproducible results when debugging
duke@435 752 static jlong fake_time = 0;
duke@435 753
duke@435 754 #ifdef ASSERT
duke@435 755 // Just to be safe, recalculate the offset in debug mode
duke@435 756 static jlong _calculated_offset = 0;
duke@435 757 static int _has_calculated_offset = 0;
duke@435 758
duke@435 759 jlong offset() {
duke@435 760 if (_has_calculated_offset) return _calculated_offset;
duke@435 761 SYSTEMTIME java_origin;
duke@435 762 java_origin.wYear = 1970;
duke@435 763 java_origin.wMonth = 1;
duke@435 764 java_origin.wDayOfWeek = 0; // ignored
duke@435 765 java_origin.wDay = 1;
duke@435 766 java_origin.wHour = 0;
duke@435 767 java_origin.wMinute = 0;
duke@435 768 java_origin.wSecond = 0;
duke@435 769 java_origin.wMilliseconds = 0;
duke@435 770 FILETIME jot;
duke@435 771 if (!SystemTimeToFileTime(&java_origin, &jot)) {
jcoomes@1845 772 fatal(err_msg("Error = %d\nWindows error", GetLastError()));
duke@435 773 }
duke@435 774 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
duke@435 775 _has_calculated_offset = 1;
duke@435 776 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
duke@435 777 return _calculated_offset;
duke@435 778 }
duke@435 779 #else
duke@435 780 jlong offset() {
duke@435 781 return _offset;
duke@435 782 }
duke@435 783 #endif
duke@435 784
duke@435 785 jlong windows_to_java_time(FILETIME wt) {
duke@435 786 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 787 return (a - offset()) / 10000;
duke@435 788 }
duke@435 789
duke@435 790 FILETIME java_to_windows_time(jlong l) {
duke@435 791 jlong a = (l * 10000) + offset();
duke@435 792 FILETIME result;
duke@435 793 result.dwHighDateTime = high(a);
duke@435 794 result.dwLowDateTime = low(a);
duke@435 795 return result;
duke@435 796 }
duke@435 797
ysr@777 798 // For now, we say that Windows does not support vtime. I have no idea
ysr@777 799 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 800
ysr@777 801 bool os::supports_vtime() { return false; }
ysr@777 802 bool os::enable_vtime() { return false; }
ysr@777 803 bool os::vtime_enabled() { return false; }
ysr@777 804 double os::elapsedVTime() {
ysr@777 805 // better than nothing, but not much
ysr@777 806 return elapsedTime();
ysr@777 807 }
ysr@777 808
duke@435 809 jlong os::javaTimeMillis() {
duke@435 810 if (UseFakeTimers) {
duke@435 811 return fake_time++;
duke@435 812 } else {
sbohne@496 813 FILETIME wt;
sbohne@496 814 GetSystemTimeAsFileTime(&wt);
sbohne@496 815 return windows_to_java_time(wt);
duke@435 816 }
duke@435 817 }
duke@435 818
duke@435 819 #define NANOS_PER_SEC CONST64(1000000000)
duke@435 820 #define NANOS_PER_MILLISEC 1000000
duke@435 821 jlong os::javaTimeNanos() {
duke@435 822 if (!has_performance_count) {
duke@435 823 return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
duke@435 824 } else {
duke@435 825 LARGE_INTEGER current_count;
duke@435 826 QueryPerformanceCounter(&current_count);
duke@435 827 double current = as_long(current_count);
duke@435 828 double freq = performance_frequency;
duke@435 829 jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
duke@435 830 return time;
duke@435 831 }
duke@435 832 }
duke@435 833
duke@435 834 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 835 if (!has_performance_count) {
duke@435 836 // javaTimeMillis() doesn't have much percision,
duke@435 837 // but it is not going to wrap -- so all 64 bits
duke@435 838 info_ptr->max_value = ALL_64_BITS;
duke@435 839
duke@435 840 // this is a wall clock timer, so may skip
duke@435 841 info_ptr->may_skip_backward = true;
duke@435 842 info_ptr->may_skip_forward = true;
duke@435 843 } else {
duke@435 844 jlong freq = performance_frequency;
duke@435 845 if (freq < NANOS_PER_SEC) {
duke@435 846 // the performance counter is 64 bits and we will
duke@435 847 // be multiplying it -- so no wrap in 64 bits
duke@435 848 info_ptr->max_value = ALL_64_BITS;
duke@435 849 } else if (freq > NANOS_PER_SEC) {
duke@435 850 // use the max value the counter can reach to
duke@435 851 // determine the max value which could be returned
duke@435 852 julong max_counter = (julong)ALL_64_BITS;
duke@435 853 info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
duke@435 854 } else {
duke@435 855 // the performance counter is 64 bits and we will
duke@435 856 // be using it directly -- so no wrap in 64 bits
duke@435 857 info_ptr->max_value = ALL_64_BITS;
duke@435 858 }
duke@435 859
duke@435 860 // using a counter, so no skipping
duke@435 861 info_ptr->may_skip_backward = false;
duke@435 862 info_ptr->may_skip_forward = false;
duke@435 863 }
duke@435 864 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 865 }
duke@435 866
duke@435 867 char* os::local_time_string(char *buf, size_t buflen) {
duke@435 868 SYSTEMTIME st;
duke@435 869 GetLocalTime(&st);
duke@435 870 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 871 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
duke@435 872 return buf;
duke@435 873 }
duke@435 874
duke@435 875 bool os::getTimesSecs(double* process_real_time,
duke@435 876 double* process_user_time,
duke@435 877 double* process_system_time) {
duke@435 878 HANDLE h_process = GetCurrentProcess();
duke@435 879 FILETIME create_time, exit_time, kernel_time, user_time;
duke@435 880 BOOL result = GetProcessTimes(h_process,
duke@435 881 &create_time,
duke@435 882 &exit_time,
duke@435 883 &kernel_time,
duke@435 884 &user_time);
duke@435 885 if (result != 0) {
duke@435 886 FILETIME wt;
duke@435 887 GetSystemTimeAsFileTime(&wt);
duke@435 888 jlong rtc_millis = windows_to_java_time(wt);
duke@435 889 jlong user_millis = windows_to_java_time(user_time);
duke@435 890 jlong system_millis = windows_to_java_time(kernel_time);
duke@435 891 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
duke@435 892 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
duke@435 893 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
duke@435 894 return true;
duke@435 895 } else {
duke@435 896 return false;
duke@435 897 }
duke@435 898 }
duke@435 899
duke@435 900 void os::shutdown() {
duke@435 901
duke@435 902 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 903 perfMemory_exit();
duke@435 904
duke@435 905 // flush buffered output, finish log files
duke@435 906 ostream_abort();
duke@435 907
duke@435 908 // Check for abort hook
duke@435 909 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 910 if (abort_hook != NULL) {
duke@435 911 abort_hook();
duke@435 912 }
duke@435 913 }
duke@435 914
ctornqvi@2520 915
ctornqvi@2520 916 static BOOL (WINAPI *_MiniDumpWriteDump) ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 917 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
ctornqvi@2520 918
ctornqvi@2520 919 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
ctornqvi@2520 920 HINSTANCE dbghelp;
ctornqvi@2520 921 EXCEPTION_POINTERS ep;
ctornqvi@2520 922 MINIDUMP_EXCEPTION_INFORMATION mei;
zgu@2772 923 MINIDUMP_EXCEPTION_INFORMATION* pmei;
zgu@2772 924
ctornqvi@2520 925 HANDLE hProcess = GetCurrentProcess();
ctornqvi@2520 926 DWORD processId = GetCurrentProcessId();
ctornqvi@2520 927 HANDLE dumpFile;
ctornqvi@2520 928 MINIDUMP_TYPE dumpType;
ctornqvi@2520 929 static const char* cwd;
ctornqvi@2520 930
ctornqvi@2520 931 // If running on a client version of Windows and user has not explicitly enabled dumping
ctornqvi@2520 932 if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
ctornqvi@2520 933 VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
ctornqvi@2520 934 return;
ctornqvi@2520 935 // If running on a server version of Windows and user has explictly disabled dumping
ctornqvi@2520 936 } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
ctornqvi@2520 937 VMError::report_coredump_status("Minidump has been disabled from the command line", false);
ctornqvi@2520 938 return;
ctornqvi@2520 939 }
ctornqvi@2520 940
zgu@3031 941 dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
ctornqvi@2520 942
ctornqvi@2520 943 if (dbghelp == NULL) {
ctornqvi@2520 944 VMError::report_coredump_status("Failed to load dbghelp.dll", false);
ctornqvi@2520 945 return;
ctornqvi@2520 946 }
ctornqvi@2520 947
ctornqvi@2520 948 _MiniDumpWriteDump = CAST_TO_FN_PTR(
ctornqvi@2520 949 BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 950 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
ctornqvi@2520 951 GetProcAddress(dbghelp, "MiniDumpWriteDump"));
ctornqvi@2520 952
ctornqvi@2520 953 if (_MiniDumpWriteDump == NULL) {
ctornqvi@2520 954 VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
ctornqvi@2520 955 return;
ctornqvi@2520 956 }
ctornqvi@2520 957
ctornqvi@2521 958 dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
ctornqvi@2521 959
ctornqvi@2521 960 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
ctornqvi@2521 961 // API_VERSION_NUMBER 11 or higher contains the ones we want though
ctornqvi@2521 962 #if API_VERSION_NUMBER >= 11
ctornqvi@2521 963 dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
ctornqvi@2521 964 MiniDumpWithUnloadedModules);
ctornqvi@2521 965 #endif
ctornqvi@2520 966
ctornqvi@2520 967 cwd = get_current_directory(NULL, 0);
ctornqvi@2520 968 jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
ctornqvi@2520 969 dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
ctornqvi@2520 970
ctornqvi@2520 971 if (dumpFile == INVALID_HANDLE_VALUE) {
ctornqvi@2520 972 VMError::report_coredump_status("Failed to create file for dumping", false);
ctornqvi@2520 973 return;
ctornqvi@2520 974 }
zgu@2772 975 if (exceptionRecord != NULL && contextRecord != NULL) {
zgu@2772 976 ep.ContextRecord = (PCONTEXT) contextRecord;
zgu@2772 977 ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
zgu@2772 978
zgu@2772 979 mei.ThreadId = GetCurrentThreadId();
zgu@2772 980 mei.ExceptionPointers = &ep;
zgu@2772 981 pmei = &mei;
zgu@2772 982 } else {
zgu@2772 983 pmei = NULL;
zgu@2772 984 }
zgu@2772 985
ctornqvi@2520 986
ctornqvi@2520 987 // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
ctornqvi@2520 988 // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
zgu@2772 989 if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
zgu@2772 990 _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
ctornqvi@2520 991 VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
ctornqvi@2520 992 } else {
ctornqvi@2520 993 VMError::report_coredump_status(buffer, true);
ctornqvi@2520 994 }
ctornqvi@2520 995
ctornqvi@2520 996 CloseHandle(dumpFile);
ctornqvi@2520 997 }
ctornqvi@2520 998
ctornqvi@2520 999
ctornqvi@2520 1000
duke@435 1001 void os::abort(bool dump_core)
duke@435 1002 {
duke@435 1003 os::shutdown();
duke@435 1004 // no core dump on Windows
duke@435 1005 ::exit(1);
duke@435 1006 }
duke@435 1007
duke@435 1008 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1009 void os::die() {
duke@435 1010 _exit(-1);
duke@435 1011 }
duke@435 1012
duke@435 1013 // Directory routines copied from src/win32/native/java/io/dirent_md.c
duke@435 1014 // * dirent_md.c 1.15 00/02/02
duke@435 1015 //
duke@435 1016 // The declarations for DIR and struct dirent are in jvm_win32.h.
duke@435 1017
duke@435 1018 /* Caller must have already run dirname through JVM_NativePath, which removes
duke@435 1019 duplicate slashes and converts all instances of '/' into '\\'. */
duke@435 1020
duke@435 1021 DIR *
duke@435 1022 os::opendir(const char *dirname)
duke@435 1023 {
duke@435 1024 assert(dirname != NULL, "just checking"); // hotspot change
duke@435 1025 DIR *dirp = (DIR *)malloc(sizeof(DIR));
duke@435 1026 DWORD fattr; // hotspot change
duke@435 1027 char alt_dirname[4] = { 0, 0, 0, 0 };
duke@435 1028
duke@435 1029 if (dirp == 0) {
duke@435 1030 errno = ENOMEM;
duke@435 1031 return 0;
duke@435 1032 }
duke@435 1033
duke@435 1034 /*
duke@435 1035 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
duke@435 1036 * as a directory in FindFirstFile(). We detect this case here and
duke@435 1037 * prepend the current drive name.
duke@435 1038 */
duke@435 1039 if (dirname[1] == '\0' && dirname[0] == '\\') {
duke@435 1040 alt_dirname[0] = _getdrive() + 'A' - 1;
duke@435 1041 alt_dirname[1] = ':';
duke@435 1042 alt_dirname[2] = '\\';
duke@435 1043 alt_dirname[3] = '\0';
duke@435 1044 dirname = alt_dirname;
duke@435 1045 }
duke@435 1046
duke@435 1047 dirp->path = (char *)malloc(strlen(dirname) + 5);
duke@435 1048 if (dirp->path == 0) {
duke@435 1049 free(dirp);
duke@435 1050 errno = ENOMEM;
duke@435 1051 return 0;
duke@435 1052 }
duke@435 1053 strcpy(dirp->path, dirname);
duke@435 1054
duke@435 1055 fattr = GetFileAttributes(dirp->path);
duke@435 1056 if (fattr == 0xffffffff) {
duke@435 1057 free(dirp->path);
duke@435 1058 free(dirp);
duke@435 1059 errno = ENOENT;
duke@435 1060 return 0;
duke@435 1061 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
duke@435 1062 free(dirp->path);
duke@435 1063 free(dirp);
duke@435 1064 errno = ENOTDIR;
duke@435 1065 return 0;
duke@435 1066 }
duke@435 1067
duke@435 1068 /* Append "*.*", or possibly "\\*.*", to path */
duke@435 1069 if (dirp->path[1] == ':'
duke@435 1070 && (dirp->path[2] == '\0'
duke@435 1071 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
duke@435 1072 /* No '\\' needed for cases like "Z:" or "Z:\" */
duke@435 1073 strcat(dirp->path, "*.*");
duke@435 1074 } else {
duke@435 1075 strcat(dirp->path, "\\*.*");
duke@435 1076 }
duke@435 1077
duke@435 1078 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
duke@435 1079 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1080 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
duke@435 1081 free(dirp->path);
duke@435 1082 free(dirp);
duke@435 1083 errno = EACCES;
duke@435 1084 return 0;
duke@435 1085 }
duke@435 1086 }
duke@435 1087 return dirp;
duke@435 1088 }
duke@435 1089
duke@435 1090 /* parameter dbuf unused on Windows */
duke@435 1091
duke@435 1092 struct dirent *
duke@435 1093 os::readdir(DIR *dirp, dirent *dbuf)
duke@435 1094 {
duke@435 1095 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1096 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1097 return 0;
duke@435 1098 }
duke@435 1099
duke@435 1100 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
duke@435 1101
duke@435 1102 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
duke@435 1103 if (GetLastError() == ERROR_INVALID_HANDLE) {
duke@435 1104 errno = EBADF;
duke@435 1105 return 0;
duke@435 1106 }
duke@435 1107 FindClose(dirp->handle);
duke@435 1108 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1109 }
duke@435 1110
duke@435 1111 return &dirp->dirent;
duke@435 1112 }
duke@435 1113
duke@435 1114 int
duke@435 1115 os::closedir(DIR *dirp)
duke@435 1116 {
duke@435 1117 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1118 if (dirp->handle != INVALID_HANDLE_VALUE) {
duke@435 1119 if (!FindClose(dirp->handle)) {
duke@435 1120 errno = EBADF;
duke@435 1121 return -1;
duke@435 1122 }
duke@435 1123 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1124 }
duke@435 1125 free(dirp->path);
duke@435 1126 free(dirp);
duke@435 1127 return 0;
duke@435 1128 }
duke@435 1129
coleenp@2450 1130 // This must be hard coded because it's the system's temporary
coleenp@2450 1131 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@1788 1132 const char* os::get_temp_directory() {
coleenp@1788 1133 static char path_buf[MAX_PATH];
coleenp@1788 1134 if (GetTempPath(MAX_PATH, path_buf)>0)
coleenp@1788 1135 return path_buf;
coleenp@1788 1136 else{
coleenp@1788 1137 path_buf[0]='\0';
coleenp@1788 1138 return path_buf;
coleenp@1788 1139 }
duke@435 1140 }
duke@435 1141
phh@1126 1142 static bool file_exists(const char* filename) {
phh@1126 1143 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1144 return false;
phh@1126 1145 }
phh@1126 1146 return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
phh@1126 1147 }
phh@1126 1148
phh@1126 1149 void os::dll_build_name(char *buffer, size_t buflen,
phh@1126 1150 const char* pname, const char* fname) {
phh@1126 1151 const size_t pnamelen = pname ? strlen(pname) : 0;
phh@1126 1152 const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
phh@1126 1153
phh@1126 1154 // Quietly truncates on buffer overflow. Should be an error.
phh@1126 1155 if (pnamelen + strlen(fname) + 10 > buflen) {
phh@1126 1156 *buffer = '\0';
phh@1126 1157 return;
phh@1126 1158 }
phh@1126 1159
phh@1126 1160 if (pnamelen == 0) {
phh@1126 1161 jio_snprintf(buffer, buflen, "%s.dll", fname);
phh@1126 1162 } else if (c == ':' || c == '\\') {
phh@1126 1163 jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
phh@1126 1164 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1165 int n;
phh@1126 1166 char** pelements = split_path(pname, &n);
phh@1126 1167 for (int i = 0 ; i < n ; i++) {
phh@1126 1168 char* path = pelements[i];
phh@1126 1169 // Really shouldn't be NULL, but check can't hurt
phh@1126 1170 size_t plen = (path == NULL) ? 0 : strlen(path);
phh@1126 1171 if (plen == 0) {
phh@1126 1172 continue; // skip the empty path values
phh@1126 1173 }
phh@1126 1174 const char lastchar = path[plen - 1];
phh@1126 1175 if (lastchar == ':' || lastchar == '\\') {
phh@1126 1176 jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
phh@1126 1177 } else {
phh@1126 1178 jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
phh@1126 1179 }
phh@1126 1180 if (file_exists(buffer)) {
phh@1126 1181 break;
phh@1126 1182 }
kamg@677 1183 }
phh@1126 1184 // release the storage
phh@1126 1185 for (int i = 0 ; i < n ; i++) {
phh@1126 1186 if (pelements[i] != NULL) {
phh@1126 1187 FREE_C_HEAP_ARRAY(char, pelements[i]);
phh@1126 1188 }
kamg@677 1189 }
phh@1126 1190 if (pelements != NULL) {
phh@1126 1191 FREE_C_HEAP_ARRAY(char*, pelements);
phh@1126 1192 }
phh@1126 1193 } else {
phh@1126 1194 jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
phh@1126 1195 }
kamg@677 1196 }
kamg@677 1197
duke@435 1198 // Needs to be in os specific directory because windows requires another
duke@435 1199 // header file <direct.h>
duke@435 1200 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1201 return _getcwd(buf, buflen);
duke@435 1202 }
duke@435 1203
duke@435 1204 //-----------------------------------------------------------
duke@435 1205 // Helper functions for fatal error handler
duke@435 1206 #ifdef _WIN64
duke@435 1207 // Helper routine which returns true if address in
duke@435 1208 // within the NTDLL address space.
duke@435 1209 //
duke@435 1210 static bool _addr_in_ntdll( address addr )
duke@435 1211 {
duke@435 1212 HMODULE hmod;
duke@435 1213 MODULEINFO minfo;
duke@435 1214
duke@435 1215 hmod = GetModuleHandle("NTDLL.DLL");
duke@435 1216 if ( hmod == NULL ) return false;
zgu@3031 1217 if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
duke@435 1218 &minfo, sizeof(MODULEINFO)) )
duke@435 1219 return false;
duke@435 1220
duke@435 1221 if ( (addr >= minfo.lpBaseOfDll) &&
duke@435 1222 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
duke@435 1223 return true;
duke@435 1224 else
duke@435 1225 return false;
duke@435 1226 }
duke@435 1227 #endif
duke@435 1228
duke@435 1229
duke@435 1230 // Enumerate all modules for a given process ID
duke@435 1231 //
duke@435 1232 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
duke@435 1233 // different API for doing this. We use PSAPI.DLL on NT based
duke@435 1234 // Windows and ToolHelp on 95/98/Me.
duke@435 1235
duke@435 1236 // Callback function that is called by enumerate_modules() on
duke@435 1237 // every DLL module.
duke@435 1238 // Input parameters:
duke@435 1239 // int pid,
duke@435 1240 // char* module_file_name,
duke@435 1241 // address module_base_addr,
duke@435 1242 // unsigned module_size,
duke@435 1243 // void* param
duke@435 1244 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
duke@435 1245
duke@435 1246 // enumerate_modules for Windows NT, using PSAPI
duke@435 1247 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
duke@435 1248 {
duke@435 1249 HANDLE hProcess ;
duke@435 1250
duke@435 1251 # define MAX_NUM_MODULES 128
duke@435 1252 HMODULE modules[MAX_NUM_MODULES];
duke@435 1253 static char filename[ MAX_PATH ];
duke@435 1254 int result = 0;
duke@435 1255
zgu@3031 1256 if (!os::PSApiDll::PSApiAvailable()) {
zgu@3031 1257 return 0;
zgu@3031 1258 }
duke@435 1259
duke@435 1260 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
duke@435 1261 FALSE, pid ) ;
duke@435 1262 if (hProcess == NULL) return 0;
duke@435 1263
duke@435 1264 DWORD size_needed;
zgu@3031 1265 if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
duke@435 1266 sizeof(modules), &size_needed)) {
duke@435 1267 CloseHandle( hProcess );
duke@435 1268 return 0;
duke@435 1269 }
duke@435 1270
duke@435 1271 // number of modules that are currently loaded
duke@435 1272 int num_modules = size_needed / sizeof(HMODULE);
duke@435 1273
duke@435 1274 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
duke@435 1275 // Get Full pathname:
zgu@3031 1276 if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
duke@435 1277 filename, sizeof(filename))) {
duke@435 1278 filename[0] = '\0';
duke@435 1279 }
duke@435 1280
duke@435 1281 MODULEINFO modinfo;
zgu@3031 1282 if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
duke@435 1283 &modinfo, sizeof(modinfo))) {
duke@435 1284 modinfo.lpBaseOfDll = NULL;
duke@435 1285 modinfo.SizeOfImage = 0;
duke@435 1286 }
duke@435 1287
duke@435 1288 // Invoke callback function
duke@435 1289 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
duke@435 1290 modinfo.SizeOfImage, param);
duke@435 1291 if (result) break;
duke@435 1292 }
duke@435 1293
duke@435 1294 CloseHandle( hProcess ) ;
duke@435 1295 return result;
duke@435 1296 }
duke@435 1297
duke@435 1298
duke@435 1299 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
duke@435 1300 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
duke@435 1301 {
duke@435 1302 HANDLE hSnapShot ;
duke@435 1303 static MODULEENTRY32 modentry ;
duke@435 1304 int result = 0;
duke@435 1305
zgu@3031 1306 if (!os::Kernel32Dll::HelpToolsAvailable()) {
zgu@3031 1307 return 0;
zgu@3031 1308 }
duke@435 1309
duke@435 1310 // Get a handle to a Toolhelp snapshot of the system
zgu@3031 1311 hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
duke@435 1312 if( hSnapShot == INVALID_HANDLE_VALUE ) {
duke@435 1313 return FALSE ;
duke@435 1314 }
duke@435 1315
duke@435 1316 // iterate through all modules
duke@435 1317 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1318 bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
duke@435 1319
duke@435 1320 while( not_done ) {
duke@435 1321 // invoke the callback
duke@435 1322 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
duke@435 1323 modentry.modBaseSize, param);
duke@435 1324 if (result) break;
duke@435 1325
duke@435 1326 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1327 not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
duke@435 1328 }
duke@435 1329
duke@435 1330 CloseHandle(hSnapShot);
duke@435 1331 return result;
duke@435 1332 }
duke@435 1333
duke@435 1334 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
duke@435 1335 {
duke@435 1336 // Get current process ID if caller doesn't provide it.
duke@435 1337 if (!pid) pid = os::current_process_id();
duke@435 1338
duke@435 1339 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
duke@435 1340 else return _enumerate_modules_windows(pid, func, param);
duke@435 1341 }
duke@435 1342
duke@435 1343 struct _modinfo {
duke@435 1344 address addr;
duke@435 1345 char* full_path; // point to a char buffer
duke@435 1346 int buflen; // size of the buffer
duke@435 1347 address base_addr;
duke@435 1348 };
duke@435 1349
duke@435 1350 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
duke@435 1351 unsigned size, void * param) {
duke@435 1352 struct _modinfo *pmod = (struct _modinfo *)param;
duke@435 1353 if (!pmod) return -1;
duke@435 1354
duke@435 1355 if (base_addr <= pmod->addr &&
duke@435 1356 base_addr+size > pmod->addr) {
duke@435 1357 // if a buffer is provided, copy path name to the buffer
duke@435 1358 if (pmod->full_path) {
duke@435 1359 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
duke@435 1360 }
duke@435 1361 pmod->base_addr = base_addr;
duke@435 1362 return 1;
duke@435 1363 }
duke@435 1364 return 0;
duke@435 1365 }
duke@435 1366
duke@435 1367 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1368 int buflen, int* offset) {
duke@435 1369 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
duke@435 1370 // return the full path to the DLL file, sometimes it returns path
duke@435 1371 // to the corresponding PDB file (debug info); sometimes it only
duke@435 1372 // returns partial path, which makes life painful.
duke@435 1373
duke@435 1374 struct _modinfo mi;
duke@435 1375 mi.addr = addr;
duke@435 1376 mi.full_path = buf;
duke@435 1377 mi.buflen = buflen;
duke@435 1378 int pid = os::current_process_id();
duke@435 1379 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
duke@435 1380 // buf already contains path name
duke@435 1381 if (offset) *offset = addr - mi.base_addr;
duke@435 1382 return true;
duke@435 1383 } else {
duke@435 1384 if (buf) buf[0] = '\0';
duke@435 1385 if (offset) *offset = -1;
duke@435 1386 return false;
duke@435 1387 }
duke@435 1388 }
duke@435 1389
duke@435 1390 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1391 int buflen, int *offset) {
zgu@2364 1392 if (Decoder::decode(addr, buf, buflen, offset) == Decoder::no_error) {
zgu@2364 1393 return true;
zgu@2364 1394 }
zgu@2364 1395 if (offset != NULL) *offset = -1;
zgu@2364 1396 if (buf != NULL) buf[0] = '\0';
duke@435 1397 return false;
duke@435 1398 }
duke@435 1399
duke@435 1400 // save the start and end address of jvm.dll into param[0] and param[1]
duke@435 1401 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
duke@435 1402 unsigned size, void * param) {
duke@435 1403 if (!param) return -1;
duke@435 1404
duke@435 1405 if (base_addr <= (address)_locate_jvm_dll &&
duke@435 1406 base_addr+size > (address)_locate_jvm_dll) {
duke@435 1407 ((address*)param)[0] = base_addr;
duke@435 1408 ((address*)param)[1] = base_addr + size;
duke@435 1409 return 1;
duke@435 1410 }
duke@435 1411 return 0;
duke@435 1412 }
duke@435 1413
duke@435 1414 address vm_lib_location[2]; // start and end address of jvm.dll
duke@435 1415
duke@435 1416 // check if addr is inside jvm.dll
duke@435 1417 bool os::address_is_in_vm(address addr) {
duke@435 1418 if (!vm_lib_location[0] || !vm_lib_location[1]) {
duke@435 1419 int pid = os::current_process_id();
duke@435 1420 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
duke@435 1421 assert(false, "Can't find jvm module.");
duke@435 1422 return false;
duke@435 1423 }
duke@435 1424 }
duke@435 1425
duke@435 1426 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
duke@435 1427 }
duke@435 1428
duke@435 1429 // print module info; param is outputStream*
duke@435 1430 static int _print_module(int pid, char* fname, address base,
duke@435 1431 unsigned size, void* param) {
duke@435 1432 if (!param) return -1;
duke@435 1433
duke@435 1434 outputStream* st = (outputStream*)param;
duke@435 1435
duke@435 1436 address end_addr = base + size;
duke@435 1437 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
duke@435 1438 return 0;
duke@435 1439 }
duke@435 1440
duke@435 1441 // Loads .dll/.so and
duke@435 1442 // in case of error it checks if .dll/.so was built for the
duke@435 1443 // same architecture as Hotspot is running on
duke@435 1444 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
duke@435 1445 {
duke@435 1446 void * result = LoadLibrary(name);
duke@435 1447 if (result != NULL)
duke@435 1448 {
duke@435 1449 return result;
duke@435 1450 }
duke@435 1451
duke@435 1452 long errcode = GetLastError();
duke@435 1453 if (errcode == ERROR_MOD_NOT_FOUND) {
duke@435 1454 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
duke@435 1455 ebuf[ebuflen-1]='\0';
duke@435 1456 return NULL;
duke@435 1457 }
duke@435 1458
duke@435 1459 // Parsing dll below
duke@435 1460 // If we can read dll-info and find that dll was built
duke@435 1461 // for an architecture other than Hotspot is running in
duke@435 1462 // - then print to buffer "DLL was built for a different architecture"
duke@435 1463 // else call getLastErrorString to obtain system error message
duke@435 1464
duke@435 1465 // Read system error message into ebuf
duke@435 1466 // It may or may not be overwritten below (in the for loop and just above)
duke@435 1467 getLastErrorString(ebuf, (size_t) ebuflen);
duke@435 1468 ebuf[ebuflen-1]='\0';
duke@435 1469 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
duke@435 1470 if (file_descriptor<0)
duke@435 1471 {
duke@435 1472 return NULL;
duke@435 1473 }
duke@435 1474
duke@435 1475 uint32_t signature_offset;
duke@435 1476 uint16_t lib_arch=0;
duke@435 1477 bool failed_to_get_lib_arch=
duke@435 1478 (
duke@435 1479 //Go to position 3c in the dll
duke@435 1480 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
duke@435 1481 ||
duke@435 1482 // Read loacation of signature
duke@435 1483 (sizeof(signature_offset)!=
duke@435 1484 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
duke@435 1485 ||
duke@435 1486 //Go to COFF File Header in dll
duke@435 1487 //that is located after"signature" (4 bytes long)
duke@435 1488 (os::seek_to_file_offset(file_descriptor,
duke@435 1489 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
duke@435 1490 ||
duke@435 1491 //Read field that contains code of architecture
duke@435 1492 // that dll was build for
duke@435 1493 (sizeof(lib_arch)!=
duke@435 1494 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
duke@435 1495 );
duke@435 1496
duke@435 1497 ::close(file_descriptor);
duke@435 1498 if (failed_to_get_lib_arch)
duke@435 1499 {
duke@435 1500 // file i/o error - report getLastErrorString(...) msg
duke@435 1501 return NULL;
duke@435 1502 }
duke@435 1503
duke@435 1504 typedef struct
duke@435 1505 {
duke@435 1506 uint16_t arch_code;
duke@435 1507 char* arch_name;
duke@435 1508 } arch_t;
duke@435 1509
duke@435 1510 static const arch_t arch_array[]={
duke@435 1511 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
duke@435 1512 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
duke@435 1513 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
duke@435 1514 };
duke@435 1515 #if (defined _M_IA64)
duke@435 1516 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
duke@435 1517 #elif (defined _M_AMD64)
duke@435 1518 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
duke@435 1519 #elif (defined _M_IX86)
duke@435 1520 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
duke@435 1521 #else
duke@435 1522 #error Method os::dll_load requires that one of following \
duke@435 1523 is defined :_M_IA64,_M_AMD64 or _M_IX86
duke@435 1524 #endif
duke@435 1525
duke@435 1526
duke@435 1527 // Obtain a string for printf operation
duke@435 1528 // lib_arch_str shall contain string what platform this .dll was built for
duke@435 1529 // running_arch_str shall string contain what platform Hotspot was built for
duke@435 1530 char *running_arch_str=NULL,*lib_arch_str=NULL;
duke@435 1531 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
duke@435 1532 {
duke@435 1533 if (lib_arch==arch_array[i].arch_code)
duke@435 1534 lib_arch_str=arch_array[i].arch_name;
duke@435 1535 if (running_arch==arch_array[i].arch_code)
duke@435 1536 running_arch_str=arch_array[i].arch_name;
duke@435 1537 }
duke@435 1538
duke@435 1539 assert(running_arch_str,
duke@435 1540 "Didn't find runing architecture code in arch_array");
duke@435 1541
duke@435 1542 // If the architure is right
duke@435 1543 // but some other error took place - report getLastErrorString(...) msg
duke@435 1544 if (lib_arch == running_arch)
duke@435 1545 {
duke@435 1546 return NULL;
duke@435 1547 }
duke@435 1548
duke@435 1549 if (lib_arch_str!=NULL)
duke@435 1550 {
duke@435 1551 ::_snprintf(ebuf, ebuflen-1,
duke@435 1552 "Can't load %s-bit .dll on a %s-bit platform",
duke@435 1553 lib_arch_str,running_arch_str);
duke@435 1554 }
duke@435 1555 else
duke@435 1556 {
duke@435 1557 // don't know what architecture this dll was build for
duke@435 1558 ::_snprintf(ebuf, ebuflen-1,
duke@435 1559 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
duke@435 1560 lib_arch,running_arch_str);
duke@435 1561 }
duke@435 1562
duke@435 1563 return NULL;
duke@435 1564 }
duke@435 1565
duke@435 1566
duke@435 1567 void os::print_dll_info(outputStream *st) {
duke@435 1568 int pid = os::current_process_id();
duke@435 1569 st->print_cr("Dynamic libraries:");
duke@435 1570 enumerate_modules(pid, _print_module, (void *)st);
duke@435 1571 }
duke@435 1572
duke@435 1573 void os::print_os_info(outputStream* st) {
xlu@708 1574 st->print("OS:");
xlu@708 1575
xlu@708 1576 OSVERSIONINFOEX osvi;
xlu@708 1577 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
xlu@708 1578 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
xlu@708 1579
xlu@708 1580 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
xlu@708 1581 st->print_cr("N/A");
xlu@708 1582 return;
xlu@708 1583 }
xlu@708 1584
xlu@708 1585 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
xlu@708 1586 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
xlu@708 1587 switch (os_vers) {
xlu@708 1588 case 3051: st->print(" Windows NT 3.51"); break;
xlu@708 1589 case 4000: st->print(" Windows NT 4.0"); break;
xlu@708 1590 case 5000: st->print(" Windows 2000"); break;
xlu@708 1591 case 5001: st->print(" Windows XP"); break;
xlu@708 1592 case 5002:
asaha@1397 1593 case 6000:
asaha@1397 1594 case 6001: {
xlu@708 1595 // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
xlu@708 1596 // find out whether we are running on 64 bit processor or not.
xlu@708 1597 SYSTEM_INFO si;
xlu@708 1598 ZeroMemory(&si, sizeof(SYSTEM_INFO));
zgu@3031 1599 if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
xlu@708 1600 GetSystemInfo(&si);
xlu@708 1601 } else {
zgu@3031 1602 os::Kernel32Dll::GetNativeSystemInfo(&si);
xlu@708 1603 }
xlu@708 1604 if (os_vers == 5002) {
xlu@708 1605 if (osvi.wProductType == VER_NT_WORKSTATION &&
xlu@708 1606 si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1607 st->print(" Windows XP x64 Edition");
xlu@708 1608 else
xlu@708 1609 st->print(" Windows Server 2003 family");
asaha@1397 1610 } else if (os_vers == 6000) {
xlu@708 1611 if (osvi.wProductType == VER_NT_WORKSTATION)
xlu@708 1612 st->print(" Windows Vista");
xlu@708 1613 else
xlu@708 1614 st->print(" Windows Server 2008");
xlu@708 1615 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1616 st->print(" , 64 bit");
asaha@1397 1617 } else if (os_vers == 6001) {
asaha@1397 1618 if (osvi.wProductType == VER_NT_WORKSTATION) {
asaha@1397 1619 st->print(" Windows 7");
asaha@1397 1620 } else {
asaha@1397 1621 // Unrecognized windows, print out its major and minor versions
asaha@1397 1622 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1623 }
asaha@1397 1624 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1625 st->print(" , 64 bit");
asaha@1397 1626 } else { // future os
asaha@1397 1627 // Unrecognized windows, print out its major and minor versions
asaha@1397 1628 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1629 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1630 st->print(" , 64 bit");
xlu@708 1631 }
xlu@708 1632 break;
xlu@708 1633 }
xlu@708 1634 default: // future windows, print out its major and minor versions
xlu@708 1635 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1636 }
xlu@708 1637 } else {
xlu@708 1638 switch (os_vers) {
xlu@708 1639 case 4000: st->print(" Windows 95"); break;
xlu@708 1640 case 4010: st->print(" Windows 98"); break;
xlu@708 1641 case 4090: st->print(" Windows Me"); break;
xlu@708 1642 default: // future windows, print out its major and minor versions
xlu@708 1643 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1644 }
xlu@708 1645 }
xlu@708 1646 st->print(" Build %d", osvi.dwBuildNumber);
xlu@708 1647 st->print(" %s", osvi.szCSDVersion); // service pack
xlu@708 1648 st->cr();
duke@435 1649 }
duke@435 1650
jcoomes@2997 1651 void os::pd_print_cpu_info(outputStream* st) {
jcoomes@2997 1652 // Nothing to do for now.
jcoomes@2997 1653 }
jcoomes@2997 1654
duke@435 1655 void os::print_memory_info(outputStream* st) {
duke@435 1656 st->print("Memory:");
duke@435 1657 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1658
poonam@1312 1659 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 1660 // value if total memory is larger than 4GB
poonam@1312 1661 MEMORYSTATUSEX ms;
poonam@1312 1662 ms.dwLength = sizeof(ms);
poonam@1312 1663 GlobalMemoryStatusEx(&ms);
duke@435 1664
duke@435 1665 st->print(", physical %uk", os::physical_memory() >> 10);
duke@435 1666 st->print("(%uk free)", os::available_memory() >> 10);
duke@435 1667
poonam@1312 1668 st->print(", swap %uk", ms.ullTotalPageFile >> 10);
poonam@1312 1669 st->print("(%uk free)", ms.ullAvailPageFile >> 10);
duke@435 1670 st->cr();
duke@435 1671 }
duke@435 1672
duke@435 1673 void os::print_siginfo(outputStream *st, void *siginfo) {
duke@435 1674 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
duke@435 1675 st->print("siginfo:");
duke@435 1676 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
duke@435 1677
duke@435 1678 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 1679 er->NumberParameters >= 2) {
duke@435 1680 switch (er->ExceptionInformation[0]) {
duke@435 1681 case 0: st->print(", reading address"); break;
duke@435 1682 case 1: st->print(", writing address"); break;
duke@435 1683 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
duke@435 1684 er->ExceptionInformation[0]);
duke@435 1685 }
duke@435 1686 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
duke@435 1687 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
duke@435 1688 er->NumberParameters >= 2 && UseSharedSpaces) {
duke@435 1689 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1690 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
duke@435 1691 st->print("\n\nError accessing class data sharing archive." \
duke@435 1692 " Mapped file inaccessible during execution, " \
duke@435 1693 " possible disk/network problem.");
duke@435 1694 }
duke@435 1695 } else {
duke@435 1696 int num = er->NumberParameters;
duke@435 1697 if (num > 0) {
duke@435 1698 st->print(", ExceptionInformation=");
duke@435 1699 for (int i = 0; i < num; i++) {
duke@435 1700 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
duke@435 1701 }
duke@435 1702 }
duke@435 1703 }
duke@435 1704 st->cr();
duke@435 1705 }
duke@435 1706
duke@435 1707 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1708 // do nothing
duke@435 1709 }
duke@435 1710
duke@435 1711 static char saved_jvm_path[MAX_PATH] = {0};
duke@435 1712
duke@435 1713 // Find the full path to the current module, jvm.dll or jvm_g.dll
duke@435 1714 void os::jvm_path(char *buf, jint buflen) {
duke@435 1715 // Error checking.
duke@435 1716 if (buflen < MAX_PATH) {
duke@435 1717 assert(false, "must use a large-enough buffer");
duke@435 1718 buf[0] = '\0';
duke@435 1719 return;
duke@435 1720 }
duke@435 1721 // Lazy resolve the path to current module.
duke@435 1722 if (saved_jvm_path[0] != 0) {
duke@435 1723 strcpy(buf, saved_jvm_path);
duke@435 1724 return;
duke@435 1725 }
duke@435 1726
sla@2327 1727 buf[0] = '\0';
sla@2584 1728 if (Arguments::created_by_gamma_launcher()) {
sla@2327 1729 // Support for the gamma launcher. Check for an
sla@2369 1730 // JAVA_HOME environment variable
sla@2327 1731 // and fix up the path so it looks like
sla@2327 1732 // libjvm.so is installed there (append a fake suffix
sla@2327 1733 // hotspot/libjvm.so).
sla@2369 1734 char* java_home_var = ::getenv("JAVA_HOME");
sla@2327 1735 if (java_home_var != NULL && java_home_var[0] != 0) {
sla@2327 1736
sla@2327 1737 strncpy(buf, java_home_var, buflen);
sla@2327 1738
sla@2327 1739 // determine if this is a legacy image or modules image
sla@2327 1740 // modules image doesn't have "jre" subdirectory
sla@2327 1741 size_t len = strlen(buf);
sla@2327 1742 char* jrebin_p = buf + len;
sla@2327 1743 jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
sla@2327 1744 if (0 != _access(buf, 0)) {
sla@2327 1745 jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
sla@2327 1746 }
sla@2327 1747 len = strlen(buf);
sla@2327 1748 jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
sla@2327 1749 }
sla@2327 1750 }
sla@2327 1751
sla@2327 1752 if(buf[0] == '\0') {
duke@435 1753 GetModuleFileName(vm_lib_handle, buf, buflen);
sla@2327 1754 }
duke@435 1755 strcpy(saved_jvm_path, buf);
duke@435 1756 }
duke@435 1757
duke@435 1758
duke@435 1759 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 1760 #ifndef _WIN64
duke@435 1761 st->print("_");
duke@435 1762 #endif
duke@435 1763 }
duke@435 1764
duke@435 1765
duke@435 1766 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 1767 #ifndef _WIN64
duke@435 1768 st->print("@%d", args_size * sizeof(int));
duke@435 1769 #endif
duke@435 1770 }
duke@435 1771
ikrylov@2322 1772 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1773 // from src/windows/hpi/src/system_md.c
ikrylov@2322 1774
ikrylov@2322 1775 size_t os::lasterror(char *buf, size_t len) {
ikrylov@2322 1776 long errval;
ikrylov@2322 1777
ikrylov@2322 1778 if ((errval = GetLastError()) != 0) {
ikrylov@2322 1779 /* DOS error */
ikrylov@2322 1780 int n = (int)FormatMessage(
ikrylov@2322 1781 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
ikrylov@2322 1782 NULL,
ikrylov@2322 1783 errval,
ikrylov@2322 1784 0,
ikrylov@2322 1785 buf,
ikrylov@2322 1786 (DWORD)len,
ikrylov@2322 1787 NULL);
ikrylov@2322 1788 if (n > 3) {
ikrylov@2322 1789 /* Drop final '.', CR, LF */
ikrylov@2322 1790 if (buf[n - 1] == '\n') n--;
ikrylov@2322 1791 if (buf[n - 1] == '\r') n--;
ikrylov@2322 1792 if (buf[n - 1] == '.') n--;
ikrylov@2322 1793 buf[n] = '\0';
ikrylov@2322 1794 }
ikrylov@2322 1795 return n;
ikrylov@2322 1796 }
ikrylov@2322 1797
ikrylov@2322 1798 if (errno != 0) {
ikrylov@2322 1799 /* C runtime error that has no corresponding DOS error code */
ikrylov@2322 1800 const char *s = strerror(errno);
ikrylov@2322 1801 size_t n = strlen(s);
ikrylov@2322 1802 if (n >= len) n = len - 1;
ikrylov@2322 1803 strncpy(buf, s, n);
ikrylov@2322 1804 buf[n] = '\0';
ikrylov@2322 1805 return n;
ikrylov@2322 1806 }
ikrylov@2322 1807 return 0;
ikrylov@2322 1808 }
ikrylov@2322 1809
duke@435 1810 // sun.misc.Signal
duke@435 1811 // NOTE that this is a workaround for an apparent kernel bug where if
duke@435 1812 // a signal handler for SIGBREAK is installed then that signal handler
duke@435 1813 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
duke@435 1814 // See bug 4416763.
duke@435 1815 static void (*sigbreakHandler)(int) = NULL;
duke@435 1816
duke@435 1817 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 1818 os::signal_notify(sig);
duke@435 1819 // We need to reinstate the signal handler each time...
duke@435 1820 os::signal(sig, (void*)UserHandler);
duke@435 1821 }
duke@435 1822
duke@435 1823 void* os::user_handler() {
duke@435 1824 return (void*) UserHandler;
duke@435 1825 }
duke@435 1826
duke@435 1827 void* os::signal(int signal_number, void* handler) {
duke@435 1828 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
duke@435 1829 void (*oldHandler)(int) = sigbreakHandler;
duke@435 1830 sigbreakHandler = (void (*)(int)) handler;
duke@435 1831 return (void*) oldHandler;
duke@435 1832 } else {
duke@435 1833 return (void*)::signal(signal_number, (void (*)(int))handler);
duke@435 1834 }
duke@435 1835 }
duke@435 1836
duke@435 1837 void os::signal_raise(int signal_number) {
duke@435 1838 raise(signal_number);
duke@435 1839 }
duke@435 1840
duke@435 1841 // The Win32 C runtime library maps all console control events other than ^C
duke@435 1842 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
duke@435 1843 // logoff, and shutdown events. We therefore install our own console handler
duke@435 1844 // that raises SIGTERM for the latter cases.
duke@435 1845 //
duke@435 1846 static BOOL WINAPI consoleHandler(DWORD event) {
duke@435 1847 switch(event) {
duke@435 1848 case CTRL_C_EVENT:
duke@435 1849 if (is_error_reported()) {
duke@435 1850 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 1851 // handler fails to abort. Let VM die immediately.
duke@435 1852 os::die();
duke@435 1853 }
duke@435 1854
duke@435 1855 os::signal_raise(SIGINT);
duke@435 1856 return TRUE;
duke@435 1857 break;
duke@435 1858 case CTRL_BREAK_EVENT:
duke@435 1859 if (sigbreakHandler != NULL) {
duke@435 1860 (*sigbreakHandler)(SIGBREAK);
duke@435 1861 }
duke@435 1862 return TRUE;
duke@435 1863 break;
duke@435 1864 case CTRL_CLOSE_EVENT:
duke@435 1865 case CTRL_LOGOFF_EVENT:
duke@435 1866 case CTRL_SHUTDOWN_EVENT:
duke@435 1867 os::signal_raise(SIGTERM);
duke@435 1868 return TRUE;
duke@435 1869 break;
duke@435 1870 default:
duke@435 1871 break;
duke@435 1872 }
duke@435 1873 return FALSE;
duke@435 1874 }
duke@435 1875
duke@435 1876 /*
duke@435 1877 * The following code is moved from os.cpp for making this
duke@435 1878 * code platform specific, which it is by its very nature.
duke@435 1879 */
duke@435 1880
duke@435 1881 // Return maximum OS signal used + 1 for internal use only
duke@435 1882 // Used as exit signal for signal_thread
duke@435 1883 int os::sigexitnum_pd(){
duke@435 1884 return NSIG;
duke@435 1885 }
duke@435 1886
duke@435 1887 // a counter for each possible signal value, including signal_thread exit signal
duke@435 1888 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 1889 static HANDLE sig_sem;
duke@435 1890
duke@435 1891 void os::signal_init_pd() {
duke@435 1892 // Initialize signal structures
duke@435 1893 memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 1894
duke@435 1895 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
duke@435 1896
duke@435 1897 // Programs embedding the VM do not want it to attempt to receive
duke@435 1898 // events like CTRL_LOGOFF_EVENT, which are used to implement the
duke@435 1899 // shutdown hooks mechanism introduced in 1.3. For example, when
duke@435 1900 // the VM is run as part of a Windows NT service (i.e., a servlet
duke@435 1901 // engine in a web server), the correct behavior is for any console
duke@435 1902 // control handler to return FALSE, not TRUE, because the OS's
duke@435 1903 // "final" handler for such events allows the process to continue if
duke@435 1904 // it is a service (while terminating it if it is not a service).
duke@435 1905 // To make this behavior uniform and the mechanism simpler, we
duke@435 1906 // completely disable the VM's usage of these console events if -Xrs
duke@435 1907 // (=ReduceSignalUsage) is specified. This means, for example, that
duke@435 1908 // the CTRL-BREAK thread dump mechanism is also disabled in this
duke@435 1909 // case. See bugs 4323062, 4345157, and related bugs.
duke@435 1910
duke@435 1911 if (!ReduceSignalUsage) {
duke@435 1912 // Add a CTRL-C handler
duke@435 1913 SetConsoleCtrlHandler(consoleHandler, TRUE);
duke@435 1914 }
duke@435 1915 }
duke@435 1916
duke@435 1917 void os::signal_notify(int signal_number) {
duke@435 1918 BOOL ret;
duke@435 1919
duke@435 1920 Atomic::inc(&pending_signals[signal_number]);
duke@435 1921 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1922 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1923 }
duke@435 1924
duke@435 1925 static int check_pending_signals(bool wait_for_signal) {
duke@435 1926 DWORD ret;
duke@435 1927 while (true) {
duke@435 1928 for (int i = 0; i < NSIG + 1; i++) {
duke@435 1929 jint n = pending_signals[i];
duke@435 1930 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 1931 return i;
duke@435 1932 }
duke@435 1933 }
duke@435 1934 if (!wait_for_signal) {
duke@435 1935 return -1;
duke@435 1936 }
duke@435 1937
duke@435 1938 JavaThread *thread = JavaThread::current();
duke@435 1939
duke@435 1940 ThreadBlockInVM tbivm(thread);
duke@435 1941
duke@435 1942 bool threadIsSuspended;
duke@435 1943 do {
duke@435 1944 thread->set_suspend_equivalent();
duke@435 1945 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 1946 ret = ::WaitForSingleObject(sig_sem, INFINITE);
duke@435 1947 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
duke@435 1948
duke@435 1949 // were we externally suspended while we were waiting?
duke@435 1950 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 1951 if (threadIsSuspended) {
duke@435 1952 //
duke@435 1953 // The semaphore has been incremented, but while we were waiting
duke@435 1954 // another thread suspended us. We don't want to continue running
duke@435 1955 // while suspended because that would surprise the thread that
duke@435 1956 // suspended us.
duke@435 1957 //
duke@435 1958 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1959 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1960
duke@435 1961 thread->java_suspend_self();
duke@435 1962 }
duke@435 1963 } while (threadIsSuspended);
duke@435 1964 }
duke@435 1965 }
duke@435 1966
duke@435 1967 int os::signal_lookup() {
duke@435 1968 return check_pending_signals(false);
duke@435 1969 }
duke@435 1970
duke@435 1971 int os::signal_wait() {
duke@435 1972 return check_pending_signals(true);
duke@435 1973 }
duke@435 1974
duke@435 1975 // Implicit OS exception handling
duke@435 1976
duke@435 1977 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
duke@435 1978 JavaThread* thread = JavaThread::current();
duke@435 1979 // Save pc in thread
duke@435 1980 #ifdef _M_IA64
duke@435 1981 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
duke@435 1982 // Set pc to handler
duke@435 1983 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
duke@435 1984 #elif _M_AMD64
duke@435 1985 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
duke@435 1986 // Set pc to handler
duke@435 1987 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
duke@435 1988 #else
duke@435 1989 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
duke@435 1990 // Set pc to handler
duke@435 1991 exceptionInfo->ContextRecord->Eip = (LONG)handler;
duke@435 1992 #endif
duke@435 1993
duke@435 1994 // Continue the execution
duke@435 1995 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 1996 }
duke@435 1997
duke@435 1998
duke@435 1999 // Used for PostMortemDump
duke@435 2000 extern "C" void safepoints();
duke@435 2001 extern "C" void find(int x);
duke@435 2002 extern "C" void events();
duke@435 2003
duke@435 2004 // According to Windows API documentation, an illegal instruction sequence should generate
duke@435 2005 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
duke@435 2006 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
duke@435 2007 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
duke@435 2008
duke@435 2009 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
duke@435 2010
duke@435 2011 // From "Execution Protection in the Windows Operating System" draft 0.35
duke@435 2012 // Once a system header becomes available, the "real" define should be
duke@435 2013 // included or copied here.
duke@435 2014 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
duke@435 2015
duke@435 2016 #define def_excpt(val) #val, val
duke@435 2017
duke@435 2018 struct siglabel {
duke@435 2019 char *name;
duke@435 2020 int number;
duke@435 2021 };
duke@435 2022
zgu@2391 2023 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
zgu@2391 2024 // C++ compiler contain this error code. Because this is a compiler-generated
zgu@2391 2025 // error, the code is not listed in the Win32 API header files.
zgu@2391 2026 // The code is actually a cryptic mnemonic device, with the initial "E"
zgu@2391 2027 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
zgu@2391 2028 // ASCII values of "msc".
zgu@2391 2029
zgu@2391 2030 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION 0xE06D7363
zgu@2391 2031
zgu@2391 2032
duke@435 2033 struct siglabel exceptlabels[] = {
duke@435 2034 def_excpt(EXCEPTION_ACCESS_VIOLATION),
duke@435 2035 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
duke@435 2036 def_excpt(EXCEPTION_BREAKPOINT),
duke@435 2037 def_excpt(EXCEPTION_SINGLE_STEP),
duke@435 2038 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
duke@435 2039 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
duke@435 2040 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
duke@435 2041 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
duke@435 2042 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
duke@435 2043 def_excpt(EXCEPTION_FLT_OVERFLOW),
duke@435 2044 def_excpt(EXCEPTION_FLT_STACK_CHECK),
duke@435 2045 def_excpt(EXCEPTION_FLT_UNDERFLOW),
duke@435 2046 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
duke@435 2047 def_excpt(EXCEPTION_INT_OVERFLOW),
duke@435 2048 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
duke@435 2049 def_excpt(EXCEPTION_IN_PAGE_ERROR),
duke@435 2050 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
duke@435 2051 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
duke@435 2052 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
duke@435 2053 def_excpt(EXCEPTION_STACK_OVERFLOW),
duke@435 2054 def_excpt(EXCEPTION_INVALID_DISPOSITION),
duke@435 2055 def_excpt(EXCEPTION_GUARD_PAGE),
duke@435 2056 def_excpt(EXCEPTION_INVALID_HANDLE),
zgu@2391 2057 def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
duke@435 2058 NULL, 0
duke@435 2059 };
duke@435 2060
duke@435 2061 const char* os::exception_name(int exception_code, char *buf, size_t size) {
duke@435 2062 for (int i = 0; exceptlabels[i].name != NULL; i++) {
duke@435 2063 if (exceptlabels[i].number == exception_code) {
duke@435 2064 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
duke@435 2065 return buf;
duke@435 2066 }
duke@435 2067 }
duke@435 2068
duke@435 2069 return NULL;
duke@435 2070 }
duke@435 2071
duke@435 2072 //-----------------------------------------------------------------------------
duke@435 2073 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2074 // handle exception caused by idiv; should only happen for -MinInt/-1
duke@435 2075 // (division by zero is handled explicitly)
duke@435 2076 #ifdef _M_IA64
duke@435 2077 assert(0, "Fix Handle_IDiv_Exception");
duke@435 2078 #elif _M_AMD64
duke@435 2079 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2080 address pc = (address)ctx->Rip;
duke@435 2081 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 2082 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2083 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2084 assert(ctx->Rax == min_jint, "unexpected idiv exception");
duke@435 2085 // set correct result values and continue after idiv instruction
duke@435 2086 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2087 ctx->Rax = (DWORD)min_jint; // result
duke@435 2088 ctx->Rdx = (DWORD)0; // remainder
duke@435 2089 // Continue the execution
duke@435 2090 #else
duke@435 2091 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2092 address pc = (address)ctx->Eip;
duke@435 2093 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
duke@435 2094 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2095 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2096 assert(ctx->Eax == min_jint, "unexpected idiv exception");
duke@435 2097 // set correct result values and continue after idiv instruction
duke@435 2098 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2099 ctx->Eax = (DWORD)min_jint; // result
duke@435 2100 ctx->Edx = (DWORD)0; // remainder
duke@435 2101 // Continue the execution
duke@435 2102 #endif
duke@435 2103 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2104 }
duke@435 2105
duke@435 2106 #ifndef _WIN64
duke@435 2107 //-----------------------------------------------------------------------------
duke@435 2108 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
dcubed@1649 2109 // handle exception caused by native method modifying control word
duke@435 2110 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2111 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2112
duke@435 2113 switch (exception_code) {
duke@435 2114 case EXCEPTION_FLT_DENORMAL_OPERAND:
duke@435 2115 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
duke@435 2116 case EXCEPTION_FLT_INEXACT_RESULT:
duke@435 2117 case EXCEPTION_FLT_INVALID_OPERATION:
duke@435 2118 case EXCEPTION_FLT_OVERFLOW:
duke@435 2119 case EXCEPTION_FLT_STACK_CHECK:
duke@435 2120 case EXCEPTION_FLT_UNDERFLOW:
duke@435 2121 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 2122 if (fp_control_word != ctx->FloatSave.ControlWord) {
duke@435 2123 // Restore FPCW and mask out FLT exceptions
duke@435 2124 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
duke@435 2125 // Mask out pending FLT exceptions
duke@435 2126 ctx->FloatSave.StatusWord &= 0xffffff00;
duke@435 2127 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2128 }
duke@435 2129 }
dcubed@1649 2130
dcubed@1649 2131 if (prev_uef_handler != NULL) {
dcubed@1649 2132 // We didn't handle this exception so pass it to the previous
dcubed@1649 2133 // UnhandledExceptionFilter.
dcubed@1649 2134 return (prev_uef_handler)(exceptionInfo);
dcubed@1649 2135 }
dcubed@1649 2136
duke@435 2137 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2138 }
duke@435 2139 #else //_WIN64
duke@435 2140 /*
duke@435 2141 On Windows, the mxcsr control bits are non-volatile across calls
duke@435 2142 See also CR 6192333
duke@435 2143 If EXCEPTION_FLT_* happened after some native method modified
duke@435 2144 mxcsr - it is not a jvm fault.
duke@435 2145 However should we decide to restore of mxcsr after a faulty
duke@435 2146 native method we can uncomment following code
duke@435 2147 jint MxCsr = INITIAL_MXCSR;
duke@435 2148 // we can't use StubRoutines::addr_mxcsr_std()
duke@435 2149 // because in Win64 mxcsr is not saved there
duke@435 2150 if (MxCsr != ctx->MxCsr) {
duke@435 2151 ctx->MxCsr = MxCsr;
duke@435 2152 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2153 }
duke@435 2154
duke@435 2155 */
duke@435 2156 #endif //_WIN64
duke@435 2157
duke@435 2158
duke@435 2159 // Fatal error reporting is single threaded so we can make this a
duke@435 2160 // static and preallocated. If it's more than MAX_PATH silently ignore
duke@435 2161 // it.
duke@435 2162 static char saved_error_file[MAX_PATH] = {0};
duke@435 2163
duke@435 2164 void os::set_error_file(const char *logfile) {
duke@435 2165 if (strlen(logfile) <= MAX_PATH) {
duke@435 2166 strncpy(saved_error_file, logfile, MAX_PATH);
duke@435 2167 }
duke@435 2168 }
duke@435 2169
duke@435 2170 static inline void report_error(Thread* t, DWORD exception_code,
duke@435 2171 address addr, void* siginfo, void* context) {
duke@435 2172 VMError err(t, exception_code, addr, siginfo, context);
duke@435 2173 err.report_and_die();
duke@435 2174
duke@435 2175 // If UseOsErrorReporting, this will return here and save the error file
duke@435 2176 // somewhere where we can find it in the minidump.
duke@435 2177 }
duke@435 2178
duke@435 2179 //-----------------------------------------------------------------------------
duke@435 2180 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2181 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2182 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2183 #ifdef _M_IA64
duke@435 2184 address pc = (address) exceptionInfo->ContextRecord->StIIP;
duke@435 2185 #elif _M_AMD64
duke@435 2186 address pc = (address) exceptionInfo->ContextRecord->Rip;
duke@435 2187 #else
duke@435 2188 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2189 #endif
duke@435 2190 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 2191
duke@435 2192 #ifndef _WIN64
duke@435 2193 // Execution protection violation - win32 running on AMD64 only
duke@435 2194 // Handled first to avoid misdiagnosis as a "normal" access violation;
duke@435 2195 // This is safe to do because we have a new/unique ExceptionInformation
duke@435 2196 // code for this condition.
duke@435 2197 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2198 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2199 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
duke@435 2200 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2201
duke@435 2202 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 2203 int page_size = os::vm_page_size();
duke@435 2204
duke@435 2205 // Make sure the pc and the faulting address are sane.
duke@435 2206 //
duke@435 2207 // If an instruction spans a page boundary, and the page containing
duke@435 2208 // the beginning of the instruction is executable but the following
duke@435 2209 // page is not, the pc and the faulting address might be slightly
duke@435 2210 // different - we still want to unguard the 2nd page in this case.
duke@435 2211 //
duke@435 2212 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 2213 bool pc_is_near_addr =
duke@435 2214 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 2215 bool instr_spans_page_boundary =
duke@435 2216 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 2217 (intptr_t) page_size) > 0);
duke@435 2218
duke@435 2219 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 2220 static volatile address last_addr =
duke@435 2221 (address) os::non_memory_address_word();
duke@435 2222
duke@435 2223 // In conservative mode, don't unguard unless the address is in the VM
duke@435 2224 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
duke@435 2225 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 2226
coleenp@912 2227 // Set memory to RWX and retry
duke@435 2228 address page_start =
duke@435 2229 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 2230 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 2231 os::MEM_PROT_RWX);
duke@435 2232
duke@435 2233 if (PrintMiscellaneous && Verbose) {
duke@435 2234 char buf[256];
duke@435 2235 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 2236 "at " INTPTR_FORMAT
duke@435 2237 ", unguarding " INTPTR_FORMAT ": %s", addr,
duke@435 2238 page_start, (res ? "success" : strerror(errno)));
duke@435 2239 tty->print_raw_cr(buf);
duke@435 2240 }
duke@435 2241
duke@435 2242 // Set last_addr so if we fault again at the same address, we don't
duke@435 2243 // end up in an endless loop.
duke@435 2244 //
duke@435 2245 // There are two potential complications here. Two threads trapping
duke@435 2246 // at the same address at the same time could cause one of the
duke@435 2247 // threads to think it already unguarded, and abort the VM. Likely
duke@435 2248 // very rare.
duke@435 2249 //
duke@435 2250 // The other race involves two threads alternately trapping at
duke@435 2251 // different addresses and failing to unguard the page, resulting in
duke@435 2252 // an endless loop. This condition is probably even more unlikely
duke@435 2253 // than the first.
duke@435 2254 //
duke@435 2255 // Although both cases could be avoided by using locks or thread
duke@435 2256 // local last_addr, these solutions are unnecessary complication:
duke@435 2257 // this handler is a best-effort safety net, not a complete solution.
duke@435 2258 // It is disabled by default and should only be used as a workaround
duke@435 2259 // in case we missed any no-execute-unsafe VM code.
duke@435 2260
duke@435 2261 last_addr = addr;
duke@435 2262
duke@435 2263 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2264 }
duke@435 2265 }
duke@435 2266
duke@435 2267 // Last unguard failed or not unguarding
duke@435 2268 tty->print_raw_cr("Execution protection violation");
duke@435 2269 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
duke@435 2270 exceptionInfo->ContextRecord);
duke@435 2271 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2272 }
duke@435 2273 }
duke@435 2274 #endif // _WIN64
duke@435 2275
duke@435 2276 // Check to see if we caught the safepoint code in the
duke@435 2277 // process of write protecting the memory serialization page.
duke@435 2278 // It write enables the page immediately after protecting it
duke@435 2279 // so just return.
duke@435 2280 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 2281 JavaThread* thread = (JavaThread*) t;
duke@435 2282 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2283 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2284 if ( os::is_memory_serialize_page(thread, addr) ) {
duke@435 2285 // Block current thread until the memory serialize page permission restored.
duke@435 2286 os::block_on_serialize_page_trap();
duke@435 2287 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2288 }
duke@435 2289 }
duke@435 2290
duke@435 2291 if (t != NULL && t->is_Java_thread()) {
duke@435 2292 JavaThread* thread = (JavaThread*) t;
duke@435 2293 bool in_java = thread->thread_state() == _thread_in_Java;
duke@435 2294
duke@435 2295 // Handle potential stack overflows up front.
duke@435 2296 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
duke@435 2297 if (os::uses_stack_guard_pages()) {
duke@435 2298 #ifdef _M_IA64
duke@435 2299 //
duke@435 2300 // If it's a legal stack address continue, Windows will map it in.
duke@435 2301 //
duke@435 2302 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2303 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2304 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
duke@435 2305 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2306
duke@435 2307 // The register save area is the same size as the memory stack
duke@435 2308 // and starts at the page just above the start of the memory stack.
duke@435 2309 // If we get a fault in this area, we've run out of register
duke@435 2310 // stack. If we are in java, try throwing a stack overflow exception.
duke@435 2311 if (addr > thread->stack_base() &&
duke@435 2312 addr <= (thread->stack_base()+thread->stack_size()) ) {
duke@435 2313 char buf[256];
duke@435 2314 jio_snprintf(buf, sizeof(buf),
duke@435 2315 "Register stack overflow, addr:%p, stack_base:%p\n",
duke@435 2316 addr, thread->stack_base() );
duke@435 2317 tty->print_raw_cr(buf);
duke@435 2318 // If not in java code, return and hope for the best.
duke@435 2319 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2320 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2321 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2322 }
duke@435 2323 #endif
duke@435 2324 if (thread->stack_yellow_zone_enabled()) {
duke@435 2325 // Yellow zone violation. The o/s has unprotected the first yellow
duke@435 2326 // zone page for us. Note: must call disable_stack_yellow_zone to
duke@435 2327 // update the enabled status, even if the zone contains only one page.
duke@435 2328 thread->disable_stack_yellow_zone();
duke@435 2329 // If not in java code, return and hope for the best.
duke@435 2330 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2331 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2332 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2333 } else {
duke@435 2334 // Fatal red zone violation.
duke@435 2335 thread->disable_stack_red_zone();
duke@435 2336 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
duke@435 2337 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2338 exceptionInfo->ContextRecord);
duke@435 2339 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2340 }
duke@435 2341 } else if (in_java) {
duke@435 2342 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
duke@435 2343 // a one-time-only guard page, which it has released to us. The next
duke@435 2344 // stack overflow on this thread will result in an ACCESS_VIOLATION.
duke@435 2345 return Handle_Exception(exceptionInfo,
duke@435 2346 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2347 } else {
duke@435 2348 // Can only return and hope for the best. Further stack growth will
duke@435 2349 // result in an ACCESS_VIOLATION.
duke@435 2350 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2351 }
duke@435 2352 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2353 // Either stack overflow or null pointer exception.
duke@435 2354 if (in_java) {
duke@435 2355 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2356 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2357 address stack_end = thread->stack_base() - thread->stack_size();
duke@435 2358 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
duke@435 2359 // Stack overflow.
duke@435 2360 assert(!os::uses_stack_guard_pages(),
duke@435 2361 "should be caught by red zone code above.");
duke@435 2362 return Handle_Exception(exceptionInfo,
duke@435 2363 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2364 }
duke@435 2365 //
duke@435 2366 // Check for safepoint polling and implicit null
duke@435 2367 // We only expect null pointers in the stubs (vtable)
duke@435 2368 // the rest are checked explicitly now.
duke@435 2369 //
duke@435 2370 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 2371 if (cb != NULL) {
duke@435 2372 if (os::is_poll_address(addr)) {
duke@435 2373 address stub = SharedRuntime::get_poll_stub(pc);
duke@435 2374 return Handle_Exception(exceptionInfo, stub);
duke@435 2375 }
duke@435 2376 }
duke@435 2377 {
duke@435 2378 #ifdef _WIN64
duke@435 2379 //
duke@435 2380 // If it's a legal stack address map the entire region in
duke@435 2381 //
duke@435 2382 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2383 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2384 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
duke@435 2385 addr = (address)((uintptr_t)addr &
duke@435 2386 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
coleenp@1091 2387 os::commit_memory((char *)addr, thread->stack_base() - addr,
coleenp@1091 2388 false );
duke@435 2389 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2390 }
duke@435 2391 else
duke@435 2392 #endif
duke@435 2393 {
duke@435 2394 // Null pointer exception.
duke@435 2395 #ifdef _M_IA64
duke@435 2396 // We catch register stack overflows in compiled code by doing
duke@435 2397 // an explicit compare and executing a st8(G0, G0) if the
duke@435 2398 // BSP enters into our guard area. We test for the overflow
duke@435 2399 // condition and fall into the normal null pointer exception
duke@435 2400 // code if BSP hasn't overflowed.
duke@435 2401 if ( in_java ) {
duke@435 2402 if(thread->register_stack_overflow()) {
duke@435 2403 assert((address)exceptionInfo->ContextRecord->IntS3 ==
duke@435 2404 thread->register_stack_limit(),
duke@435 2405 "GR7 doesn't contain register_stack_limit");
duke@435 2406 // Disable the yellow zone which sets the state that
duke@435 2407 // we've got a stack overflow problem.
duke@435 2408 if (thread->stack_yellow_zone_enabled()) {
duke@435 2409 thread->disable_stack_yellow_zone();
duke@435 2410 }
duke@435 2411 // Give us some room to process the exception
duke@435 2412 thread->disable_register_stack_guard();
duke@435 2413 // Update GR7 with the new limit so we can continue running
duke@435 2414 // compiled code.
duke@435 2415 exceptionInfo->ContextRecord->IntS3 =
duke@435 2416 (ULONGLONG)thread->register_stack_limit();
duke@435 2417 return Handle_Exception(exceptionInfo,
duke@435 2418 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2419 } else {
duke@435 2420 //
duke@435 2421 // Check for implicit null
duke@435 2422 // We only expect null pointers in the stubs (vtable)
duke@435 2423 // the rest are checked explicitly now.
duke@435 2424 //
poonam@900 2425 if (((uintptr_t)addr) < os::vm_page_size() ) {
poonam@900 2426 // an access to the first page of VM--assume it is a null pointer
poonam@900 2427 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2428 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2429 }
duke@435 2430 }
duke@435 2431 } // in_java
duke@435 2432
duke@435 2433 // IA64 doesn't use implicit null checking yet. So we shouldn't
duke@435 2434 // get here.
duke@435 2435 tty->print_raw_cr("Access violation, possible null pointer exception");
duke@435 2436 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2437 exceptionInfo->ContextRecord);
duke@435 2438 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2439 #else /* !IA64 */
duke@435 2440
duke@435 2441 // Windows 98 reports faulting addresses incorrectly
duke@435 2442 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
duke@435 2443 !os::win32::is_nt()) {
poonam@900 2444 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2445 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2446 }
duke@435 2447 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2448 exceptionInfo->ContextRecord);
duke@435 2449 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2450 #endif
duke@435 2451 }
duke@435 2452 }
duke@435 2453 }
duke@435 2454
duke@435 2455 #ifdef _WIN64
duke@435 2456 // Special care for fast JNI field accessors.
duke@435 2457 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
duke@435 2458 // in and the heap gets shrunk before the field access.
duke@435 2459 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2460 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2461 if (addr != (address)-1) {
duke@435 2462 return Handle_Exception(exceptionInfo, addr);
duke@435 2463 }
duke@435 2464 }
duke@435 2465 #endif
duke@435 2466
duke@435 2467 #ifdef _WIN64
duke@435 2468 // Windows will sometimes generate an access violation
duke@435 2469 // when we call malloc. Since we use VectoredExceptions
duke@435 2470 // on 64 bit platforms, we see this exception. We must
duke@435 2471 // pass this exception on so Windows can recover.
duke@435 2472 // We check to see if the pc of the fault is in NTDLL.DLL
duke@435 2473 // if so, we pass control on to Windows for handling.
duke@435 2474 if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2475 #endif
duke@435 2476
duke@435 2477 // Stack overflow or null pointer exception in native code.
duke@435 2478 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2479 exceptionInfo->ContextRecord);
duke@435 2480 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2481 }
duke@435 2482
duke@435 2483 if (in_java) {
duke@435 2484 switch (exception_code) {
duke@435 2485 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2486 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
duke@435 2487
duke@435 2488 case EXCEPTION_INT_OVERFLOW:
duke@435 2489 return Handle_IDiv_Exception(exceptionInfo);
duke@435 2490
duke@435 2491 } // switch
duke@435 2492 }
duke@435 2493 #ifndef _WIN64
zgu@2391 2494 if (((thread->thread_state() == _thread_in_Java) ||
zgu@2391 2495 (thread->thread_state() == _thread_in_native)) &&
zgu@2391 2496 exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
duke@435 2497 {
duke@435 2498 LONG result=Handle_FLT_Exception(exceptionInfo);
duke@435 2499 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
duke@435 2500 }
duke@435 2501 #endif //_WIN64
duke@435 2502 }
duke@435 2503
duke@435 2504 if (exception_code != EXCEPTION_BREAKPOINT) {
duke@435 2505 #ifndef _WIN64
duke@435 2506 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2507 exceptionInfo->ContextRecord);
duke@435 2508 #else
duke@435 2509 // Itanium Windows uses a VectoredExceptionHandler
duke@435 2510 // Which means that C++ programatic exception handlers (try/except)
duke@435 2511 // will get here. Continue the search for the right except block if
duke@435 2512 // the exception code is not a fatal code.
duke@435 2513 switch ( exception_code ) {
duke@435 2514 case EXCEPTION_ACCESS_VIOLATION:
duke@435 2515 case EXCEPTION_STACK_OVERFLOW:
duke@435 2516 case EXCEPTION_ILLEGAL_INSTRUCTION:
duke@435 2517 case EXCEPTION_ILLEGAL_INSTRUCTION_2:
duke@435 2518 case EXCEPTION_INT_OVERFLOW:
duke@435 2519 case EXCEPTION_INT_DIVIDE_BY_ZERO:
zgu@2391 2520 case EXCEPTION_UNCAUGHT_CXX_EXCEPTION:
duke@435 2521 { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2522 exceptionInfo->ContextRecord);
duke@435 2523 }
duke@435 2524 break;
duke@435 2525 default:
duke@435 2526 break;
duke@435 2527 }
duke@435 2528 #endif
duke@435 2529 }
duke@435 2530 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2531 }
duke@435 2532
duke@435 2533 #ifndef _WIN64
duke@435 2534 // Special care for fast JNI accessors.
duke@435 2535 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
duke@435 2536 // the heap gets shrunk before the field access.
duke@435 2537 // Need to install our own structured exception handler since native code may
duke@435 2538 // install its own.
duke@435 2539 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2540 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2541 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2542 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2543 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2544 if (addr != (address)-1) {
duke@435 2545 return Handle_Exception(exceptionInfo, addr);
duke@435 2546 }
duke@435 2547 }
duke@435 2548 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2549 }
duke@435 2550
duke@435 2551 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
duke@435 2552 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
duke@435 2553 __try { \
duke@435 2554 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
duke@435 2555 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
duke@435 2556 } \
duke@435 2557 return 0; \
duke@435 2558 }
duke@435 2559
duke@435 2560 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
duke@435 2561 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
duke@435 2562 DEFINE_FAST_GETFIELD(jchar, char, Char)
duke@435 2563 DEFINE_FAST_GETFIELD(jshort, short, Short)
duke@435 2564 DEFINE_FAST_GETFIELD(jint, int, Int)
duke@435 2565 DEFINE_FAST_GETFIELD(jlong, long, Long)
duke@435 2566 DEFINE_FAST_GETFIELD(jfloat, float, Float)
duke@435 2567 DEFINE_FAST_GETFIELD(jdouble, double, Double)
duke@435 2568
duke@435 2569 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
duke@435 2570 switch (type) {
duke@435 2571 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
duke@435 2572 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
duke@435 2573 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
duke@435 2574 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
duke@435 2575 case T_INT: return (address)jni_fast_GetIntField_wrapper;
duke@435 2576 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
duke@435 2577 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
duke@435 2578 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
duke@435 2579 default: ShouldNotReachHere();
duke@435 2580 }
duke@435 2581 return (address)-1;
duke@435 2582 }
duke@435 2583 #endif
duke@435 2584
duke@435 2585 // Virtual Memory
duke@435 2586
duke@435 2587 int os::vm_page_size() { return os::win32::vm_page_size(); }
duke@435 2588 int os::vm_allocation_granularity() {
duke@435 2589 return os::win32::vm_allocation_granularity();
duke@435 2590 }
duke@435 2591
duke@435 2592 // Windows large page support is available on Windows 2003. In order to use
duke@435 2593 // large page memory, the administrator must first assign additional privilege
duke@435 2594 // to the user:
duke@435 2595 // + select Control Panel -> Administrative Tools -> Local Security Policy
duke@435 2596 // + select Local Policies -> User Rights Assignment
duke@435 2597 // + double click "Lock pages in memory", add users and/or groups
duke@435 2598 // + reboot
duke@435 2599 // Note the above steps are needed for administrator as well, as administrators
duke@435 2600 // by default do not have the privilege to lock pages in memory.
duke@435 2601 //
duke@435 2602 // Note about Windows 2003: although the API supports committing large page
duke@435 2603 // memory on a page-by-page basis and VirtualAlloc() returns success under this
duke@435 2604 // scenario, I found through experiment it only uses large page if the entire
duke@435 2605 // memory region is reserved and committed in a single VirtualAlloc() call.
duke@435 2606 // This makes Windows large page support more or less like Solaris ISM, in
duke@435 2607 // that the entire heap must be committed upfront. This probably will change
duke@435 2608 // in the future, if so the code below needs to be revisited.
duke@435 2609
duke@435 2610 #ifndef MEM_LARGE_PAGES
duke@435 2611 #define MEM_LARGE_PAGES 0x20000000
duke@435 2612 #endif
duke@435 2613
duke@435 2614 static HANDLE _hProcess;
duke@435 2615 static HANDLE _hToken;
duke@435 2616
iveresov@3085 2617 // Container for NUMA node list info
iveresov@3085 2618 class NUMANodeListHolder {
iveresov@3085 2619 private:
iveresov@3085 2620 int *_numa_used_node_list; // allocated below
iveresov@3085 2621 int _numa_used_node_count;
iveresov@3085 2622
iveresov@3085 2623 void free_node_list() {
iveresov@3085 2624 if (_numa_used_node_list != NULL) {
iveresov@3085 2625 FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
iveresov@3085 2626 }
iveresov@3085 2627 }
iveresov@3085 2628
iveresov@3085 2629 public:
iveresov@3085 2630 NUMANodeListHolder() {
iveresov@3085 2631 _numa_used_node_count = 0;
iveresov@3085 2632 _numa_used_node_list = NULL;
iveresov@3085 2633 // do rest of initialization in build routine (after function pointers are set up)
iveresov@3085 2634 }
iveresov@3085 2635
iveresov@3085 2636 ~NUMANodeListHolder() {
iveresov@3085 2637 free_node_list();
iveresov@3085 2638 }
iveresov@3085 2639
iveresov@3085 2640 bool build() {
iveresov@3085 2641 DWORD_PTR proc_aff_mask;
iveresov@3085 2642 DWORD_PTR sys_aff_mask;
iveresov@3085 2643 if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
iveresov@3085 2644 ULONG highest_node_number;
iveresov@3085 2645 if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
iveresov@3085 2646 free_node_list();
iveresov@3127 2647 _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1);
iveresov@3085 2648 for (unsigned int i = 0; i <= highest_node_number; i++) {
iveresov@3085 2649 ULONGLONG proc_mask_numa_node;
iveresov@3085 2650 if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
iveresov@3085 2651 if ((proc_aff_mask & proc_mask_numa_node)!=0) {
iveresov@3085 2652 _numa_used_node_list[_numa_used_node_count++] = i;
iveresov@3085 2653 }
iveresov@3085 2654 }
iveresov@3085 2655 return (_numa_used_node_count > 1);
iveresov@3085 2656 }
iveresov@3085 2657
iveresov@3085 2658 int get_count() {return _numa_used_node_count;}
iveresov@3085 2659 int get_node_list_entry(int n) {
iveresov@3085 2660 // for indexes out of range, returns -1
iveresov@3085 2661 return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
iveresov@3085 2662 }
iveresov@3085 2663
iveresov@3085 2664 } numa_node_list_holder;
iveresov@3085 2665
iveresov@3085 2666
iveresov@3085 2667
duke@435 2668 static size_t _large_page_size = 0;
duke@435 2669
duke@435 2670 static bool resolve_functions_for_large_page_init() {
zgu@3031 2671 return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
zgu@3031 2672 os::Advapi32Dll::AdvapiAvailable();
duke@435 2673 }
duke@435 2674
duke@435 2675 static bool request_lock_memory_privilege() {
duke@435 2676 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
duke@435 2677 os::current_process_id());
duke@435 2678
duke@435 2679 LUID luid;
duke@435 2680 if (_hProcess != NULL &&
zgu@3031 2681 os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
zgu@3031 2682 os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
duke@435 2683
duke@435 2684 TOKEN_PRIVILEGES tp;
duke@435 2685 tp.PrivilegeCount = 1;
duke@435 2686 tp.Privileges[0].Luid = luid;
duke@435 2687 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
duke@435 2688
duke@435 2689 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
duke@435 2690 // privilege. Check GetLastError() too. See MSDN document.
zgu@3031 2691 if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
duke@435 2692 (GetLastError() == ERROR_SUCCESS)) {
duke@435 2693 return true;
duke@435 2694 }
duke@435 2695 }
duke@435 2696
duke@435 2697 return false;
duke@435 2698 }
duke@435 2699
duke@435 2700 static void cleanup_after_large_page_init() {
duke@435 2701 if (_hProcess) CloseHandle(_hProcess);
duke@435 2702 _hProcess = NULL;
duke@435 2703 if (_hToken) CloseHandle(_hToken);
duke@435 2704 _hToken = NULL;
duke@435 2705 }
duke@435 2706
iveresov@3085 2707 static bool numa_interleaving_init() {
iveresov@3085 2708 bool success = false;
iveresov@3085 2709 bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
iveresov@3085 2710
iveresov@3118 2711 // print a warning if UseNUMAInterleaving flag is specified on command line
iveresov@3118 2712 bool warn_on_failure = use_numa_interleaving_specified;
iveresov@3085 2713 # define WARN(msg) if (warn_on_failure) { warning(msg); }
iveresov@3085 2714
iveresov@3085 2715 // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
iveresov@3085 2716 size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2717 NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
iveresov@3085 2718
iveresov@3085 2719 if (os::Kernel32Dll::NumaCallsAvailable()) {
iveresov@3085 2720 if (numa_node_list_holder.build()) {
iveresov@3085 2721 if (PrintMiscellaneous && Verbose) {
iveresov@3118 2722 tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
iveresov@3085 2723 for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
iveresov@3085 2724 tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
iveresov@3085 2725 }
iveresov@3085 2726 tty->print("\n");
iveresov@3085 2727 }
iveresov@3085 2728 success = true;
iveresov@3085 2729 } else {
iveresov@3085 2730 WARN("Process does not cover multiple NUMA nodes.");
iveresov@3085 2731 }
iveresov@3085 2732 } else {
iveresov@3085 2733 WARN("NUMA Interleaving is not supported by the operating system.");
iveresov@3085 2734 }
iveresov@3085 2735 if (!success) {
iveresov@3085 2736 if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
iveresov@3085 2737 }
iveresov@3085 2738 return success;
iveresov@3085 2739 #undef WARN
iveresov@3085 2740 }
iveresov@3085 2741
iveresov@3085 2742 // this routine is used whenever we need to reserve a contiguous VA range
iveresov@3085 2743 // but we need to make separate VirtualAlloc calls for each piece of the range
iveresov@3085 2744 // Reasons for doing this:
iveresov@3085 2745 // * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
iveresov@3085 2746 // * UseNUMAInterleaving requires a separate node for each piece
iveresov@3085 2747 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
iveresov@3085 2748 bool should_inject_error=false) {
iveresov@3085 2749 char * p_buf;
iveresov@3085 2750 // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
iveresov@3085 2751 size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2752 size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
iveresov@3085 2753
iveresov@3085 2754 // first reserve enough address space in advance since we want to be
iveresov@3085 2755 // able to break a single contiguous virtual address range into multiple
iveresov@3085 2756 // large page commits but WS2003 does not allow reserving large page space
iveresov@3085 2757 // so we just use 4K pages for reserve, this gives us a legal contiguous
iveresov@3085 2758 // address space. then we will deallocate that reservation, and re alloc
iveresov@3085 2759 // using large pages
iveresov@3085 2760 const size_t size_of_reserve = bytes + chunk_size;
iveresov@3085 2761 if (bytes > size_of_reserve) {
iveresov@3085 2762 // Overflowed.
iveresov@3085 2763 return NULL;
iveresov@3085 2764 }
iveresov@3085 2765 p_buf = (char *) VirtualAlloc(addr,
iveresov@3085 2766 size_of_reserve, // size of Reserve
iveresov@3085 2767 MEM_RESERVE,
iveresov@3085 2768 PAGE_READWRITE);
iveresov@3085 2769 // If reservation failed, return NULL
iveresov@3085 2770 if (p_buf == NULL) return NULL;
iveresov@3085 2771
iveresov@3085 2772 os::release_memory(p_buf, bytes + chunk_size);
iveresov@3085 2773
iveresov@3085 2774 // we still need to round up to a page boundary (in case we are using large pages)
iveresov@3085 2775 // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
iveresov@3085 2776 // instead we handle this in the bytes_to_rq computation below
iveresov@3085 2777 p_buf = (char *) align_size_up((size_t)p_buf, page_size);
iveresov@3085 2778
iveresov@3085 2779 // now go through and allocate one chunk at a time until all bytes are
iveresov@3085 2780 // allocated
iveresov@3085 2781 size_t bytes_remaining = bytes;
iveresov@3085 2782 // An overflow of align_size_up() would have been caught above
iveresov@3085 2783 // in the calculation of size_of_reserve.
iveresov@3085 2784 char * next_alloc_addr = p_buf;
iveresov@3085 2785 HANDLE hProc = GetCurrentProcess();
iveresov@3085 2786
iveresov@3085 2787 #ifdef ASSERT
iveresov@3085 2788 // Variable for the failure injection
iveresov@3085 2789 long ran_num = os::random();
iveresov@3085 2790 size_t fail_after = ran_num % bytes;
iveresov@3085 2791 #endif
iveresov@3085 2792
iveresov@3085 2793 int count=0;
iveresov@3085 2794 while (bytes_remaining) {
iveresov@3085 2795 // select bytes_to_rq to get to the next chunk_size boundary
iveresov@3085 2796
iveresov@3085 2797 size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
iveresov@3085 2798 // Note allocate and commit
iveresov@3085 2799 char * p_new;
iveresov@3085 2800
iveresov@3085 2801 #ifdef ASSERT
iveresov@3085 2802 bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
iveresov@3085 2803 #else
iveresov@3085 2804 const bool inject_error_now = false;
iveresov@3085 2805 #endif
iveresov@3085 2806
iveresov@3085 2807 if (inject_error_now) {
iveresov@3085 2808 p_new = NULL;
iveresov@3085 2809 } else {
iveresov@3085 2810 if (!UseNUMAInterleaving) {
iveresov@3085 2811 p_new = (char *) VirtualAlloc(next_alloc_addr,
iveresov@3085 2812 bytes_to_rq,
iveresov@3085 2813 flags,
iveresov@3085 2814 prot);
iveresov@3085 2815 } else {
iveresov@3085 2816 // get the next node to use from the used_node_list
iveresov@3118 2817 assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
iveresov@3118 2818 DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
iveresov@3085 2819 p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
iveresov@3085 2820 next_alloc_addr,
iveresov@3085 2821 bytes_to_rq,
iveresov@3085 2822 flags,
iveresov@3085 2823 prot,
iveresov@3085 2824 node);
iveresov@3085 2825 }
iveresov@3085 2826 }
iveresov@3085 2827
iveresov@3085 2828 if (p_new == NULL) {
iveresov@3085 2829 // Free any allocated pages
iveresov@3085 2830 if (next_alloc_addr > p_buf) {
iveresov@3085 2831 // Some memory was committed so release it.
iveresov@3085 2832 size_t bytes_to_release = bytes - bytes_remaining;
iveresov@3085 2833 os::release_memory(p_buf, bytes_to_release);
iveresov@3085 2834 }
iveresov@3085 2835 #ifdef ASSERT
iveresov@3085 2836 if (should_inject_error) {
iveresov@3085 2837 if (TracePageSizes && Verbose) {
iveresov@3085 2838 tty->print_cr("Reserving pages individually failed.");
iveresov@3085 2839 }
iveresov@3085 2840 }
iveresov@3085 2841 #endif
iveresov@3085 2842 return NULL;
iveresov@3085 2843 }
iveresov@3085 2844 bytes_remaining -= bytes_to_rq;
iveresov@3085 2845 next_alloc_addr += bytes_to_rq;
iveresov@3085 2846 count++;
iveresov@3085 2847 }
iveresov@3085 2848 // made it this far, success
iveresov@3085 2849 return p_buf;
iveresov@3085 2850 }
iveresov@3085 2851
iveresov@3085 2852
iveresov@3085 2853
iveresov@2850 2854 void os::large_page_init() {
iveresov@2850 2855 if (!UseLargePages) return;
duke@435 2856
duke@435 2857 // print a warning if any large page related flag is specified on command line
duke@435 2858 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2859 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 2860 bool success = false;
duke@435 2861
duke@435 2862 # define WARN(msg) if (warn_on_failure) { warning(msg); }
duke@435 2863 if (resolve_functions_for_large_page_init()) {
duke@435 2864 if (request_lock_memory_privilege()) {
zgu@3031 2865 size_t s = os::Kernel32Dll::GetLargePageMinimum();
duke@435 2866 if (s) {
duke@435 2867 #if defined(IA32) || defined(AMD64)
duke@435 2868 if (s > 4*M || LargePageSizeInBytes > 4*M) {
duke@435 2869 WARN("JVM cannot use large pages bigger than 4mb.");
duke@435 2870 } else {
duke@435 2871 #endif
duke@435 2872 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
duke@435 2873 _large_page_size = LargePageSizeInBytes;
duke@435 2874 } else {
duke@435 2875 _large_page_size = s;
duke@435 2876 }
duke@435 2877 success = true;
duke@435 2878 #if defined(IA32) || defined(AMD64)
duke@435 2879 }
duke@435 2880 #endif
duke@435 2881 } else {
duke@435 2882 WARN("Large page is not supported by the processor.");
duke@435 2883 }
duke@435 2884 } else {
duke@435 2885 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
duke@435 2886 }
duke@435 2887 } else {
duke@435 2888 WARN("Large page is not supported by the operating system.");
duke@435 2889 }
duke@435 2890 #undef WARN
duke@435 2891
duke@435 2892 const size_t default_page_size = (size_t) vm_page_size();
duke@435 2893 if (success && _large_page_size > default_page_size) {
duke@435 2894 _page_sizes[0] = _large_page_size;
duke@435 2895 _page_sizes[1] = default_page_size;
duke@435 2896 _page_sizes[2] = 0;
duke@435 2897 }
duke@435 2898
duke@435 2899 cleanup_after_large_page_init();
iveresov@2850 2900 UseLargePages = success;
duke@435 2901 }
duke@435 2902
duke@435 2903 // On win32, one cannot release just a part of reserved memory, it's an
duke@435 2904 // all or nothing deal. When we split a reservation, we must break the
duke@435 2905 // reservation into two reservations.
duke@435 2906 void os::split_reserved_memory(char *base, size_t size, size_t split,
duke@435 2907 bool realloc) {
duke@435 2908 if (size > 0) {
duke@435 2909 release_memory(base, size);
duke@435 2910 if (realloc) {
duke@435 2911 reserve_memory(split, base);
duke@435 2912 }
duke@435 2913 if (size != split) {
duke@435 2914 reserve_memory(size - split, base + split);
duke@435 2915 }
duke@435 2916 }
duke@435 2917 }
duke@435 2918
duke@435 2919 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
duke@435 2920 assert((size_t)addr % os::vm_allocation_granularity() == 0,
duke@435 2921 "reserve alignment");
duke@435 2922 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
iveresov@3085 2923 char* res;
iveresov@3085 2924 // note that if UseLargePages is on, all the areas that require interleaving
iveresov@3085 2925 // will go thru reserve_memory_special rather than thru here.
iveresov@3085 2926 bool use_individual = (UseNUMAInterleaving && !UseLargePages);
iveresov@3085 2927 if (!use_individual) {
iveresov@3085 2928 res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 2929 } else {
iveresov@3085 2930 elapsedTimer reserveTimer;
iveresov@3085 2931 if( Verbose && PrintMiscellaneous ) reserveTimer.start();
iveresov@3085 2932 // in numa interleaving, we have to allocate pages individually
iveresov@3085 2933 // (well really chunks of NUMAInterleaveGranularity size)
iveresov@3085 2934 res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 2935 if (res == NULL) {
iveresov@3085 2936 warning("NUMA page allocation failed");
iveresov@3085 2937 }
iveresov@3085 2938 if( Verbose && PrintMiscellaneous ) {
iveresov@3085 2939 reserveTimer.stop();
iveresov@3085 2940 tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
iveresov@3085 2941 reserveTimer.milliseconds(), reserveTimer.ticks());
iveresov@3085 2942 }
iveresov@3085 2943 }
duke@435 2944 assert(res == NULL || addr == NULL || addr == res,
duke@435 2945 "Unexpected address from reserve.");
iveresov@3085 2946
duke@435 2947 return res;
duke@435 2948 }
duke@435 2949
duke@435 2950 // Reserve memory at an arbitrary address, only if that area is
duke@435 2951 // available (and not reserved for something else).
duke@435 2952 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2953 // Windows os::reserve_memory() fails of the requested address range is
duke@435 2954 // not avilable.
duke@435 2955 return reserve_memory(bytes, requested_addr);
duke@435 2956 }
duke@435 2957
duke@435 2958 size_t os::large_page_size() {
duke@435 2959 return _large_page_size;
duke@435 2960 }
duke@435 2961
duke@435 2962 bool os::can_commit_large_page_memory() {
duke@435 2963 // Windows only uses large page memory when the entire region is reserved
duke@435 2964 // and committed in a single VirtualAlloc() call. This may change in the
duke@435 2965 // future, but with Windows 2003 it's not possible to commit on demand.
duke@435 2966 return false;
duke@435 2967 }
duke@435 2968
jcoomes@514 2969 bool os::can_execute_large_page_memory() {
jcoomes@514 2970 return true;
jcoomes@514 2971 }
jcoomes@514 2972
coleenp@1091 2973 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
coleenp@912 2974
coleenp@1152 2975 const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
iveresov@3085 2976 const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
iveresov@3085 2977
iveresov@3085 2978 // with large pages, there are two cases where we need to use Individual Allocation
iveresov@3085 2979 // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
iveresov@3085 2980 // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
iveresov@3085 2981 if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
jmasa@824 2982 if (TracePageSizes && Verbose) {
jmasa@824 2983 tty->print_cr("Reserving large pages individually.");
jmasa@824 2984 }
iveresov@3085 2985 char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
iveresov@3085 2986 if (p_buf == NULL) {
iveresov@3085 2987 // give an appropriate warning message
iveresov@3085 2988 if (UseNUMAInterleaving) {
iveresov@3085 2989 warning("NUMA large page allocation failed, UseLargePages flag ignored");
iveresov@3085 2990 }
iveresov@3085 2991 if (UseLargePagesIndividualAllocation) {
iveresov@3085 2992 warning("Individually allocated large pages failed, "
iveresov@3085 2993 "use -XX:-UseLargePagesIndividualAllocation to turn off");
iveresov@3085 2994 }
jmasa@824 2995 return NULL;
jmasa@824 2996 }
jmasa@824 2997
jmasa@824 2998 return p_buf;
jmasa@824 2999
jmasa@824 3000 } else {
jmasa@824 3001 // normal policy just allocate it all at once
jmasa@824 3002 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
coleenp@1152 3003 char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
jmasa@824 3004 return res;
jmasa@824 3005 }
duke@435 3006 }
duke@435 3007
duke@435 3008 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 3009 return release_memory(base, bytes);
duke@435 3010 }
duke@435 3011
duke@435 3012 void os::print_statistics() {
duke@435 3013 }
duke@435 3014
coleenp@1091 3015 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
duke@435 3016 if (bytes == 0) {
duke@435 3017 // Don't bother the OS with noops.
duke@435 3018 return true;
duke@435 3019 }
duke@435 3020 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
duke@435 3021 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
duke@435 3022 // Don't attempt to print anything if the OS call fails. We're
duke@435 3023 // probably low on resources, so the print itself may cause crashes.
iveresov@3085 3024
iveresov@3085 3025 // unless we have NUMAInterleaving enabled, the range of a commit
iveresov@3085 3026 // is always within a reserve covered by a single VirtualAlloc
iveresov@3085 3027 // in that case we can just do a single commit for the requested size
iveresov@3085 3028 if (!UseNUMAInterleaving) {
iveresov@3085 3029 if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
iveresov@3085 3030 if (exec) {
iveresov@3085 3031 DWORD oldprot;
iveresov@3085 3032 // Windows doc says to use VirtualProtect to get execute permissions
iveresov@3085 3033 if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
iveresov@3085 3034 }
iveresov@3085 3035 return true;
coleenp@1091 3036 } else {
iveresov@3085 3037
iveresov@3085 3038 // when NUMAInterleaving is enabled, the commit might cover a range that
iveresov@3085 3039 // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
iveresov@3085 3040 // VirtualQuery can help us determine that. The RegionSize that VirtualQuery
iveresov@3085 3041 // returns represents the number of bytes that can be committed in one step.
iveresov@3085 3042 size_t bytes_remaining = bytes;
iveresov@3085 3043 char * next_alloc_addr = addr;
iveresov@3085 3044 while (bytes_remaining > 0) {
iveresov@3085 3045 MEMORY_BASIC_INFORMATION alloc_info;
iveresov@3085 3046 VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
iveresov@3085 3047 size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
iveresov@3085 3048 if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
iveresov@3085 3049 return false;
iveresov@3085 3050 if (exec) {
iveresov@3085 3051 DWORD oldprot;
iveresov@3085 3052 if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
iveresov@3085 3053 return false;
iveresov@3085 3054 }
iveresov@3085 3055 bytes_remaining -= bytes_to_rq;
iveresov@3085 3056 next_alloc_addr += bytes_to_rq;
iveresov@3085 3057 }
iveresov@3085 3058 }
iveresov@3085 3059 // if we made it this far, return true
iveresov@3085 3060 return true;
duke@435 3061 }
duke@435 3062
coleenp@1091 3063 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 3064 bool exec) {
coleenp@1091 3065 return commit_memory(addr, size, exec);
duke@435 3066 }
duke@435 3067
duke@435 3068 bool os::uncommit_memory(char* addr, size_t bytes) {
duke@435 3069 if (bytes == 0) {
duke@435 3070 // Don't bother the OS with noops.
duke@435 3071 return true;
duke@435 3072 }
duke@435 3073 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
duke@435 3074 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
duke@435 3075 return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
duke@435 3076 }
duke@435 3077
duke@435 3078 bool os::release_memory(char* addr, size_t bytes) {
duke@435 3079 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
duke@435 3080 }
duke@435 3081
coleenp@1755 3082 bool os::create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 3083 return os::commit_memory(addr, size);
coleenp@1755 3084 }
coleenp@1755 3085
coleenp@1755 3086 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 3087 return os::uncommit_memory(addr, size);
coleenp@1755 3088 }
coleenp@1755 3089
coleenp@672 3090 // Set protections specified
coleenp@672 3091 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 3092 bool is_committed) {
coleenp@672 3093 unsigned int p = 0;
coleenp@672 3094 switch (prot) {
coleenp@672 3095 case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
coleenp@672 3096 case MEM_PROT_READ: p = PAGE_READONLY; break;
coleenp@672 3097 case MEM_PROT_RW: p = PAGE_READWRITE; break;
coleenp@672 3098 case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
coleenp@672 3099 default:
coleenp@672 3100 ShouldNotReachHere();
coleenp@672 3101 }
coleenp@672 3102
duke@435 3103 DWORD old_status;
coleenp@672 3104
coleenp@672 3105 // Strange enough, but on Win32 one can change protection only for committed
coleenp@672 3106 // memory, not a big deal anyway, as bytes less or equal than 64K
coleenp@1091 3107 if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
coleenp@672 3108 fatal("cannot commit protection page");
coleenp@672 3109 }
coleenp@672 3110 // One cannot use os::guard_memory() here, as on Win32 guard page
coleenp@672 3111 // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
coleenp@672 3112 //
coleenp@672 3113 // Pages in the region become guard pages. Any attempt to access a guard page
coleenp@672 3114 // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
coleenp@672 3115 // the guard page status. Guard pages thus act as a one-time access alarm.
coleenp@672 3116 return VirtualProtect(addr, bytes, p, &old_status) != 0;
duke@435 3117 }
duke@435 3118
duke@435 3119 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 3120 DWORD old_status;
coleenp@912 3121 return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
duke@435 3122 }
duke@435 3123
duke@435 3124 bool os::unguard_memory(char* addr, size_t bytes) {
duke@435 3125 DWORD old_status;
coleenp@912 3126 return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
duke@435 3127 }
duke@435 3128
duke@435 3129 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 3130 void os::free_memory(char *addr, size_t bytes) { }
duke@435 3131 void os::numa_make_global(char *addr, size_t bytes) { }
iveresov@576 3132 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
duke@435 3133 bool os::numa_topology_changed() { return false; }
iveresov@3118 3134 size_t os::numa_get_groups_num() { return MAX2(numa_node_list_holder.get_count(), 1); }
duke@435 3135 int os::numa_get_group_id() { return 0; }
duke@435 3136 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@3118 3137 if (numa_node_list_holder.get_count() == 0 && size > 0) {
iveresov@3118 3138 // Provide an answer for UMA systems
iveresov@3118 3139 ids[0] = 0;
iveresov@3118 3140 return 1;
iveresov@3118 3141 } else {
iveresov@3118 3142 // check for size bigger than actual groups_num
iveresov@3118 3143 size = MIN2(size, numa_get_groups_num());
iveresov@3118 3144 for (int i = 0; i < (int)size; i++) {
iveresov@3118 3145 ids[i] = numa_node_list_holder.get_node_list_entry(i);
iveresov@3118 3146 }
iveresov@3118 3147 return size;
iveresov@3118 3148 }
duke@435 3149 }
duke@435 3150
duke@435 3151 bool os::get_page_info(char *start, page_info* info) {
duke@435 3152 return false;
duke@435 3153 }
duke@435 3154
duke@435 3155 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 3156 return end;
duke@435 3157 }
duke@435 3158
duke@435 3159 char* os::non_memory_address_word() {
duke@435 3160 // Must never look like an address returned by reserve_memory,
duke@435 3161 // even in its subfields (as defined by the CPU immediate fields,
duke@435 3162 // if the CPU splits constants across multiple instructions).
duke@435 3163 return (char*)-1;
duke@435 3164 }
duke@435 3165
duke@435 3166 #define MAX_ERROR_COUNT 100
duke@435 3167 #define SYS_THREAD_ERROR 0xffffffffUL
duke@435 3168
duke@435 3169 void os::pd_start_thread(Thread* thread) {
duke@435 3170 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
duke@435 3171 // Returns previous suspend state:
duke@435 3172 // 0: Thread was not suspended
duke@435 3173 // 1: Thread is running now
duke@435 3174 // >1: Thread is still suspended.
duke@435 3175 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
duke@435 3176 }
duke@435 3177
duke@435 3178 class HighResolutionInterval {
duke@435 3179 // The default timer resolution seems to be 10 milliseconds.
duke@435 3180 // (Where is this written down?)
duke@435 3181 // If someone wants to sleep for only a fraction of the default,
duke@435 3182 // then we set the timer resolution down to 1 millisecond for
duke@435 3183 // the duration of their interval.
duke@435 3184 // We carefully set the resolution back, since otherwise we
duke@435 3185 // seem to incur an overhead (3%?) that we don't need.
duke@435 3186 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
duke@435 3187 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
duke@435 3188 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
duke@435 3189 // timeBeginPeriod() if the relative error exceeded some threshold.
duke@435 3190 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
duke@435 3191 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
duke@435 3192 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
duke@435 3193 // resolution timers running.
duke@435 3194 private:
duke@435 3195 jlong resolution;
duke@435 3196 public:
duke@435 3197 HighResolutionInterval(jlong ms) {
duke@435 3198 resolution = ms % 10L;
duke@435 3199 if (resolution != 0) {
duke@435 3200 MMRESULT result = timeBeginPeriod(1L);
duke@435 3201 }
duke@435 3202 }
duke@435 3203 ~HighResolutionInterval() {
duke@435 3204 if (resolution != 0) {
duke@435 3205 MMRESULT result = timeEndPeriod(1L);
duke@435 3206 }
duke@435 3207 resolution = 0L;
duke@435 3208 }
duke@435 3209 };
duke@435 3210
duke@435 3211 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
duke@435 3212 jlong limit = (jlong) MAXDWORD;
duke@435 3213
duke@435 3214 while(ms > limit) {
duke@435 3215 int res;
duke@435 3216 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
duke@435 3217 return res;
duke@435 3218 ms -= limit;
duke@435 3219 }
duke@435 3220
duke@435 3221 assert(thread == Thread::current(), "thread consistency check");
duke@435 3222 OSThread* osthread = thread->osthread();
duke@435 3223 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
duke@435 3224 int result;
duke@435 3225 if (interruptable) {
duke@435 3226 assert(thread->is_Java_thread(), "must be java thread");
duke@435 3227 JavaThread *jt = (JavaThread *) thread;
duke@435 3228 ThreadBlockInVM tbivm(jt);
duke@435 3229
duke@435 3230 jt->set_suspend_equivalent();
duke@435 3231 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3232 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3233
duke@435 3234 HANDLE events[1];
duke@435 3235 events[0] = osthread->interrupt_event();
duke@435 3236 HighResolutionInterval *phri=NULL;
duke@435 3237 if(!ForceTimeHighResolution)
duke@435 3238 phri = new HighResolutionInterval( ms );
duke@435 3239 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
duke@435 3240 result = OS_TIMEOUT;
duke@435 3241 } else {
duke@435 3242 ResetEvent(osthread->interrupt_event());
duke@435 3243 osthread->set_interrupted(false);
duke@435 3244 result = OS_INTRPT;
duke@435 3245 }
duke@435 3246 delete phri; //if it is NULL, harmless
duke@435 3247
duke@435 3248 // were we externally suspended while we were waiting?
duke@435 3249 jt->check_and_wait_while_suspended();
duke@435 3250 } else {
duke@435 3251 assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 3252 Sleep((long) ms);
duke@435 3253 result = OS_TIMEOUT;
duke@435 3254 }
duke@435 3255 return result;
duke@435 3256 }
duke@435 3257
duke@435 3258 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3259 void os::infinite_sleep() {
duke@435 3260 while (true) { // sleep forever ...
duke@435 3261 Sleep(100000); // ... 100 seconds at a time
duke@435 3262 }
duke@435 3263 }
duke@435 3264
duke@435 3265 typedef BOOL (WINAPI * STTSignature)(void) ;
duke@435 3266
duke@435 3267 os::YieldResult os::NakedYield() {
duke@435 3268 // Use either SwitchToThread() or Sleep(0)
duke@435 3269 // Consider passing back the return value from SwitchToThread().
zgu@3031 3270 if (os::Kernel32Dll::SwitchToThreadAvailable()) {
zgu@3031 3271 return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
duke@435 3272 } else {
zgu@3031 3273 Sleep(0);
duke@435 3274 }
duke@435 3275 return os::YIELD_UNKNOWN ;
duke@435 3276 }
duke@435 3277
duke@435 3278 void os::yield() { os::NakedYield(); }
duke@435 3279
duke@435 3280 void os::yield_all(int attempts) {
duke@435 3281 // Yields to all threads, including threads with lower priorities
duke@435 3282 Sleep(1);
duke@435 3283 }
duke@435 3284
duke@435 3285 // Win32 only gives you access to seven real priorities at a time,
duke@435 3286 // so we compress Java's ten down to seven. It would be better
duke@435 3287 // if we dynamically adjusted relative priorities.
duke@435 3288
duke@435 3289 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3290 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3291 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3292 THREAD_PRIORITY_LOWEST, // 2
duke@435 3293 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3294 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3295 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3296 THREAD_PRIORITY_NORMAL, // 6
duke@435 3297 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3298 THREAD_PRIORITY_ABOVE_NORMAL, // 8
duke@435 3299 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 3300 THREAD_PRIORITY_HIGHEST // 10 MaxPriority
duke@435 3301 };
duke@435 3302
duke@435 3303 int prio_policy1[MaxPriority + 1] = {
duke@435 3304 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3305 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3306 THREAD_PRIORITY_LOWEST, // 2
duke@435 3307 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3308 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3309 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3310 THREAD_PRIORITY_ABOVE_NORMAL, // 6
duke@435 3311 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3312 THREAD_PRIORITY_HIGHEST, // 8
duke@435 3313 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
duke@435 3314 THREAD_PRIORITY_TIME_CRITICAL // 10 MaxPriority
duke@435 3315 };
duke@435 3316
duke@435 3317 static int prio_init() {
duke@435 3318 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3319 if (ThreadPriorityPolicy == 1) {
duke@435 3320 int i;
duke@435 3321 for (i = 0; i < MaxPriority + 1; i++) {
duke@435 3322 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3323 }
duke@435 3324 }
duke@435 3325 return 0;
duke@435 3326 }
duke@435 3327
duke@435 3328 OSReturn os::set_native_priority(Thread* thread, int priority) {
duke@435 3329 if (!UseThreadPriorities) return OS_OK;
duke@435 3330 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
duke@435 3331 return ret ? OS_OK : OS_ERR;
duke@435 3332 }
duke@435 3333
duke@435 3334 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
duke@435 3335 if ( !UseThreadPriorities ) {
duke@435 3336 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3337 return OS_OK;
duke@435 3338 }
duke@435 3339 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
duke@435 3340 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
duke@435 3341 assert(false, "GetThreadPriority failed");
duke@435 3342 return OS_ERR;
duke@435 3343 }
duke@435 3344 *priority_ptr = os_prio;
duke@435 3345 return OS_OK;
duke@435 3346 }
duke@435 3347
duke@435 3348
duke@435 3349 // Hint to the underlying OS that a task switch would not be good.
duke@435 3350 // Void return because it's a hint and can fail.
duke@435 3351 void os::hint_no_preempt() {}
duke@435 3352
duke@435 3353 void os::interrupt(Thread* thread) {
duke@435 3354 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3355 "possibility of dangling Thread pointer");
duke@435 3356
duke@435 3357 OSThread* osthread = thread->osthread();
duke@435 3358 osthread->set_interrupted(true);
duke@435 3359 // More than one thread can get here with the same value of osthread,
duke@435 3360 // resulting in multiple notifications. We do, however, want the store
duke@435 3361 // to interrupted() to be visible to other threads before we post
duke@435 3362 // the interrupt event.
duke@435 3363 OrderAccess::release();
duke@435 3364 SetEvent(osthread->interrupt_event());
duke@435 3365 // For JSR166: unpark after setting status
duke@435 3366 if (thread->is_Java_thread())
duke@435 3367 ((JavaThread*)thread)->parker()->unpark();
duke@435 3368
duke@435 3369 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3370 if (ev != NULL) ev->unpark() ;
duke@435 3371
duke@435 3372 }
duke@435 3373
duke@435 3374
duke@435 3375 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3376 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3377 "possibility of dangling Thread pointer");
duke@435 3378
duke@435 3379 OSThread* osthread = thread->osthread();
dholmes@2668 3380 bool interrupted = osthread->interrupted();
dholmes@2668 3381 // There is no synchronization between the setting of the interrupt
dholmes@2668 3382 // and it being cleared here. It is critical - see 6535709 - that
dholmes@2668 3383 // we only clear the interrupt state, and reset the interrupt event,
dholmes@2668 3384 // if we are going to report that we were indeed interrupted - else
dholmes@2668 3385 // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
dholmes@2668 3386 // depending on the timing
dholmes@2668 3387 if (interrupted && clear_interrupted) {
duke@435 3388 osthread->set_interrupted(false);
duke@435 3389 ResetEvent(osthread->interrupt_event());
duke@435 3390 } // Otherwise leave the interrupted state alone
duke@435 3391
duke@435 3392 return interrupted;
duke@435 3393 }
duke@435 3394
duke@435 3395 // Get's a pc (hint) for a running thread. Currently used only for profiling.
duke@435 3396 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3397 CONTEXT context;
duke@435 3398 context.ContextFlags = CONTEXT_CONTROL;
duke@435 3399 HANDLE handle = thread->osthread()->thread_handle();
duke@435 3400 #ifdef _M_IA64
duke@435 3401 assert(0, "Fix get_thread_pc");
duke@435 3402 return ExtendedPC(NULL);
duke@435 3403 #else
duke@435 3404 if (GetThreadContext(handle, &context)) {
duke@435 3405 #ifdef _M_AMD64
duke@435 3406 return ExtendedPC((address) context.Rip);
duke@435 3407 #else
duke@435 3408 return ExtendedPC((address) context.Eip);
duke@435 3409 #endif
duke@435 3410 } else {
duke@435 3411 return ExtendedPC(NULL);
duke@435 3412 }
duke@435 3413 #endif
duke@435 3414 }
duke@435 3415
duke@435 3416 // GetCurrentThreadId() returns DWORD
duke@435 3417 intx os::current_thread_id() { return GetCurrentThreadId(); }
duke@435 3418
duke@435 3419 static int _initial_pid = 0;
duke@435 3420
duke@435 3421 int os::current_process_id()
duke@435 3422 {
duke@435 3423 return (_initial_pid ? _initial_pid : _getpid());
duke@435 3424 }
duke@435 3425
duke@435 3426 int os::win32::_vm_page_size = 0;
duke@435 3427 int os::win32::_vm_allocation_granularity = 0;
duke@435 3428 int os::win32::_processor_type = 0;
duke@435 3429 // Processor level is not available on non-NT systems, use vm_version instead
duke@435 3430 int os::win32::_processor_level = 0;
duke@435 3431 julong os::win32::_physical_memory = 0;
duke@435 3432 size_t os::win32::_default_stack_size = 0;
duke@435 3433
duke@435 3434 intx os::win32::_os_thread_limit = 0;
duke@435 3435 volatile intx os::win32::_os_thread_count = 0;
duke@435 3436
duke@435 3437 bool os::win32::_is_nt = false;
jmasa@824 3438 bool os::win32::_is_windows_2003 = false;
ctornqvi@2520 3439 bool os::win32::_is_windows_server = false;
duke@435 3440
duke@435 3441 void os::win32::initialize_system_info() {
duke@435 3442 SYSTEM_INFO si;
duke@435 3443 GetSystemInfo(&si);
duke@435 3444 _vm_page_size = si.dwPageSize;
duke@435 3445 _vm_allocation_granularity = si.dwAllocationGranularity;
duke@435 3446 _processor_type = si.dwProcessorType;
duke@435 3447 _processor_level = si.wProcessorLevel;
phh@1558 3448 set_processor_count(si.dwNumberOfProcessors);
coleenp@912 3449
poonam@1312 3450 MEMORYSTATUSEX ms;
poonam@1312 3451 ms.dwLength = sizeof(ms);
poonam@1312 3452
duke@435 3453 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
duke@435 3454 // dwMemoryLoad (% of memory in use)
poonam@1312 3455 GlobalMemoryStatusEx(&ms);
poonam@1312 3456 _physical_memory = ms.ullTotalPhys;
duke@435 3457
ctornqvi@2520 3458 OSVERSIONINFOEX oi;
ctornqvi@2520 3459 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
ctornqvi@2520 3460 GetVersionEx((OSVERSIONINFO*)&oi);
duke@435 3461 switch(oi.dwPlatformId) {
duke@435 3462 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
jmasa@824 3463 case VER_PLATFORM_WIN32_NT:
jmasa@824 3464 _is_nt = true;
jmasa@824 3465 {
jmasa@824 3466 int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
jmasa@824 3467 if (os_vers == 5002) {
jmasa@824 3468 _is_windows_2003 = true;
jmasa@824 3469 }
ctornqvi@2520 3470 if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
ctornqvi@2520 3471 oi.wProductType == VER_NT_SERVER) {
ctornqvi@2520 3472 _is_windows_server = true;
ctornqvi@2520 3473 }
jmasa@824 3474 }
jmasa@824 3475 break;
duke@435 3476 default: fatal("Unknown platform");
duke@435 3477 }
duke@435 3478
duke@435 3479 _default_stack_size = os::current_stack_size();
duke@435 3480 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
duke@435 3481 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
duke@435 3482 "stack size not a multiple of page size");
duke@435 3483
duke@435 3484 initialize_performance_counter();
duke@435 3485
duke@435 3486 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
duke@435 3487 // known to deadlock the system, if the VM issues to thread operations with
duke@435 3488 // a too high frequency, e.g., such as changing the priorities.
duke@435 3489 // The 6000 seems to work well - no deadlocks has been notices on the test
duke@435 3490 // programs that we have seen experience this problem.
duke@435 3491 if (!os::win32::is_nt()) {
duke@435 3492 StarvationMonitorInterval = 6000;
duke@435 3493 }
duke@435 3494 }
duke@435 3495
duke@435 3496
zgu@3031 3497 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
zgu@3031 3498 char path[MAX_PATH];
zgu@3031 3499 DWORD size;
zgu@3031 3500 DWORD pathLen = (DWORD)sizeof(path);
zgu@3031 3501 HINSTANCE result = NULL;
zgu@3031 3502
zgu@3031 3503 // only allow library name without path component
zgu@3031 3504 assert(strchr(name, '\\') == NULL, "path not allowed");
zgu@3031 3505 assert(strchr(name, ':') == NULL, "path not allowed");
zgu@3031 3506 if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
zgu@3031 3507 jio_snprintf(ebuf, ebuflen,
zgu@3031 3508 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
zgu@3031 3509 return NULL;
zgu@3031 3510 }
zgu@3031 3511
zgu@3031 3512 // search system directory
zgu@3031 3513 if ((size = GetSystemDirectory(path, pathLen)) > 0) {
zgu@3031 3514 strcat(path, "\\");
zgu@3031 3515 strcat(path, name);
zgu@3031 3516 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3517 return result;
zgu@3031 3518 }
zgu@3031 3519 }
zgu@3031 3520
zgu@3031 3521 // try Windows directory
zgu@3031 3522 if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
zgu@3031 3523 strcat(path, "\\");
zgu@3031 3524 strcat(path, name);
zgu@3031 3525 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3526 return result;
zgu@3031 3527 }
zgu@3031 3528 }
zgu@3031 3529
zgu@3031 3530 jio_snprintf(ebuf, ebuflen,
zgu@3031 3531 "os::win32::load_windows_dll() cannot load %s from system directories.", name);
zgu@3031 3532 return NULL;
zgu@3031 3533 }
zgu@3031 3534
duke@435 3535 void os::win32::setmode_streams() {
duke@435 3536 _setmode(_fileno(stdin), _O_BINARY);
duke@435 3537 _setmode(_fileno(stdout), _O_BINARY);
duke@435 3538 _setmode(_fileno(stderr), _O_BINARY);
duke@435 3539 }
duke@435 3540
duke@435 3541
sla@2584 3542 bool os::is_debugger_attached() {
sla@2584 3543 return IsDebuggerPresent() ? true : false;
sla@2584 3544 }
sla@2584 3545
sla@2584 3546
sla@2584 3547 void os::wait_for_keypress_at_exit(void) {
sla@2584 3548 if (PauseAtExit) {
sla@2584 3549 fprintf(stderr, "Press any key to continue...\n");
sla@2584 3550 fgetc(stdin);
sla@2584 3551 }
sla@2584 3552 }
sla@2584 3553
sla@2584 3554
duke@435 3555 int os::message_box(const char* title, const char* message) {
duke@435 3556 int result = MessageBox(NULL, message, title,
duke@435 3557 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
duke@435 3558 return result == IDYES;
duke@435 3559 }
duke@435 3560
duke@435 3561 int os::allocate_thread_local_storage() {
duke@435 3562 return TlsAlloc();
duke@435 3563 }
duke@435 3564
duke@435 3565
duke@435 3566 void os::free_thread_local_storage(int index) {
duke@435 3567 TlsFree(index);
duke@435 3568 }
duke@435 3569
duke@435 3570
duke@435 3571 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 3572 TlsSetValue(index, value);
duke@435 3573 assert(thread_local_storage_at(index) == value, "Just checking");
duke@435 3574 }
duke@435 3575
duke@435 3576
duke@435 3577 void* os::thread_local_storage_at(int index) {
duke@435 3578 return TlsGetValue(index);
duke@435 3579 }
duke@435 3580
duke@435 3581
duke@435 3582 #ifndef PRODUCT
duke@435 3583 #ifndef _WIN64
duke@435 3584 // Helpers to check whether NX protection is enabled
duke@435 3585 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
duke@435 3586 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 3587 pex->ExceptionRecord->NumberParameters > 0 &&
duke@435 3588 pex->ExceptionRecord->ExceptionInformation[0] ==
duke@435 3589 EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 3590 return EXCEPTION_EXECUTE_HANDLER;
duke@435 3591 }
duke@435 3592 return EXCEPTION_CONTINUE_SEARCH;
duke@435 3593 }
duke@435 3594
duke@435 3595 void nx_check_protection() {
duke@435 3596 // If NX is enabled we'll get an exception calling into code on the stack
duke@435 3597 char code[] = { (char)0xC3 }; // ret
duke@435 3598 void *code_ptr = (void *)code;
duke@435 3599 __try {
duke@435 3600 __asm call code_ptr
duke@435 3601 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 3602 tty->print_raw_cr("NX protection detected.");
duke@435 3603 }
duke@435 3604 }
duke@435 3605 #endif // _WIN64
duke@435 3606 #endif // PRODUCT
duke@435 3607
duke@435 3608 // this is called _before_ the global arguments have been parsed
duke@435 3609 void os::init(void) {
duke@435 3610 _initial_pid = _getpid();
duke@435 3611
duke@435 3612 init_random(1234567);
duke@435 3613
duke@435 3614 win32::initialize_system_info();
duke@435 3615 win32::setmode_streams();
duke@435 3616 init_page_sizes((size_t) win32::vm_page_size());
duke@435 3617
duke@435 3618 // For better scalability on MP systems (must be called after initialize_system_info)
duke@435 3619 #ifndef PRODUCT
duke@435 3620 if (is_MP()) {
duke@435 3621 NoYieldsInMicrolock = true;
duke@435 3622 }
duke@435 3623 #endif
jmasa@824 3624 // This may be overridden later when argument processing is done.
jmasa@824 3625 FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
jmasa@824 3626 os::win32::is_windows_2003());
jmasa@824 3627
duke@435 3628 // Initialize main_process and main_thread
duke@435 3629 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
jmasa@824 3630 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
duke@435 3631 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
duke@435 3632 fatal("DuplicateHandle failed\n");
duke@435 3633 }
duke@435 3634 main_thread_id = (int) GetCurrentThreadId();
duke@435 3635 }
duke@435 3636
duke@435 3637 // To install functions for atexit processing
duke@435 3638 extern "C" {
duke@435 3639 static void perfMemory_exit_helper() {
duke@435 3640 perfMemory_exit();
duke@435 3641 }
duke@435 3642 }
duke@435 3643
duke@435 3644 // this is called _after_ the global arguments have been parsed
duke@435 3645 jint os::init_2(void) {
duke@435 3646 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3647 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
duke@435 3648 guarantee( polling_page != NULL, "Reserve Failed for polling page");
duke@435 3649
duke@435 3650 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
duke@435 3651 guarantee( return_page != NULL, "Commit Failed for polling page");
duke@435 3652
duke@435 3653 os::set_polling_page( polling_page );
duke@435 3654
duke@435 3655 #ifndef PRODUCT
duke@435 3656 if( Verbose && PrintMiscellaneous )
duke@435 3657 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3658 #endif
duke@435 3659
duke@435 3660 if (!UseMembar) {
coleenp@1091 3661 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
duke@435 3662 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
duke@435 3663
coleenp@1091 3664 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
duke@435 3665 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
duke@435 3666
duke@435 3667 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3668
duke@435 3669 #ifndef PRODUCT
duke@435 3670 if(Verbose && PrintMiscellaneous)
duke@435 3671 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3672 #endif
iveresov@3085 3673 }
duke@435 3674
iveresov@2850 3675 os::large_page_init();
duke@435 3676
duke@435 3677 // Setup Windows Exceptions
duke@435 3678
duke@435 3679 // On Itanium systems, Structured Exception Handling does not
duke@435 3680 // work since stack frames must be walkable by the OS. Since
duke@435 3681 // much of our code is dynamically generated, and we do not have
duke@435 3682 // proper unwind .xdata sections, the system simply exits
duke@435 3683 // rather than delivering the exception. To work around
duke@435 3684 // this we use VectorExceptions instead.
duke@435 3685 #ifdef _WIN64
duke@435 3686 if (UseVectoredExceptions) {
duke@435 3687 topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
duke@435 3688 }
duke@435 3689 #endif
duke@435 3690
duke@435 3691 // for debugging float code generation bugs
duke@435 3692 if (ForceFloatExceptions) {
duke@435 3693 #ifndef _WIN64
duke@435 3694 static long fp_control_word = 0;
duke@435 3695 __asm { fstcw fp_control_word }
duke@435 3696 // see Intel PPro Manual, Vol. 2, p 7-16
duke@435 3697 const long precision = 0x20;
duke@435 3698 const long underflow = 0x10;
duke@435 3699 const long overflow = 0x08;
duke@435 3700 const long zero_div = 0x04;
duke@435 3701 const long denorm = 0x02;
duke@435 3702 const long invalid = 0x01;
duke@435 3703 fp_control_word |= invalid;
duke@435 3704 __asm { fldcw fp_control_word }
duke@435 3705 #endif
duke@435 3706 }
duke@435 3707
duke@435 3708 // If stack_commit_size is 0, windows will reserve the default size,
duke@435 3709 // but only commit a small portion of it.
duke@435 3710 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
duke@435 3711 size_t default_reserve_size = os::win32::default_stack_size();
duke@435 3712 size_t actual_reserve_size = stack_commit_size;
duke@435 3713 if (stack_commit_size < default_reserve_size) {
duke@435 3714 // If stack_commit_size == 0, we want this too
duke@435 3715 actual_reserve_size = default_reserve_size;
duke@435 3716 }
duke@435 3717
coleenp@2222 3718 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 3719 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 3720 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 3721 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 3722 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 3723 size_t min_stack_allowed =
coleenp@2222 3724 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 3725 2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
coleenp@2222 3726 if (actual_reserve_size < min_stack_allowed) {
coleenp@2222 3727 tty->print_cr("\nThe stack size specified is too small, "
coleenp@2222 3728 "Specify at least %dk",
coleenp@2222 3729 min_stack_allowed / K);
coleenp@2222 3730 return JNI_ERR;
coleenp@2222 3731 }
coleenp@2222 3732
duke@435 3733 JavaThread::set_stack_size_at_create(stack_commit_size);
duke@435 3734
duke@435 3735 // Calculate theoretical max. size of Threads to guard gainst artifical
duke@435 3736 // out-of-memory situations, where all available address-space has been
duke@435 3737 // reserved by thread stacks.
duke@435 3738 assert(actual_reserve_size != 0, "Must have a stack");
duke@435 3739
duke@435 3740 // Calculate the thread limit when we should start doing Virtual Memory
duke@435 3741 // banging. Currently when the threads will have used all but 200Mb of space.
duke@435 3742 //
duke@435 3743 // TODO: consider performing a similar calculation for commit size instead
duke@435 3744 // as reserve size, since on a 64-bit platform we'll run into that more
duke@435 3745 // often than running out of virtual memory space. We can use the
duke@435 3746 // lower value of the two calculations as the os_thread_limit.
coleenp@548 3747 size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
duke@435 3748 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
duke@435 3749
duke@435 3750 // at exit methods are called in the reverse order of their registration.
duke@435 3751 // there is no limit to the number of functions registered. atexit does
duke@435 3752 // not set errno.
duke@435 3753
duke@435 3754 if (PerfAllowAtExitRegistration) {
duke@435 3755 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3756 // atexit functions can be delayed until process exit time, which
duke@435 3757 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3758 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3759
duke@435 3760 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3761 // the future if the appropriate cleanup code can be added to the
duke@435 3762 // VM_Exit VMOperation's doit method.
duke@435 3763 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3764 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
duke@435 3765 }
duke@435 3766 }
duke@435 3767
duke@435 3768 #ifndef _WIN64
duke@435 3769 // Print something if NX is enabled (win32 on AMD64)
duke@435 3770 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
duke@435 3771 #endif
duke@435 3772
duke@435 3773 // initialize thread priority policy
duke@435 3774 prio_init();
duke@435 3775
iveresov@3118 3776 if (UseNUMA && !ForceNUMA) {
iveresov@3118 3777 UseNUMA = false; // We don't fully support this yet
iveresov@3118 3778 }
iveresov@3118 3779
iveresov@3085 3780 if (UseNUMAInterleaving) {
iveresov@3085 3781 // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
iveresov@3085 3782 bool success = numa_interleaving_init();
iveresov@3085 3783 if (!success) UseNUMAInterleaving = false;
iveresov@897 3784 }
iveresov@897 3785
duke@435 3786 return JNI_OK;
duke@435 3787 }
duke@435 3788
bobv@2036 3789 void os::init_3(void) {
bobv@2036 3790 return;
bobv@2036 3791 }
duke@435 3792
duke@435 3793 // Mark the polling page as unreadable
duke@435 3794 void os::make_polling_page_unreadable(void) {
duke@435 3795 DWORD old_status;
duke@435 3796 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
duke@435 3797 fatal("Could not disable polling page");
duke@435 3798 };
duke@435 3799
duke@435 3800 // Mark the polling page as readable
duke@435 3801 void os::make_polling_page_readable(void) {
duke@435 3802 DWORD old_status;
duke@435 3803 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
duke@435 3804 fatal("Could not enable polling page");
duke@435 3805 };
duke@435 3806
duke@435 3807
duke@435 3808 int os::stat(const char *path, struct stat *sbuf) {
duke@435 3809 char pathbuf[MAX_PATH];
duke@435 3810 if (strlen(path) > MAX_PATH - 1) {
duke@435 3811 errno = ENAMETOOLONG;
duke@435 3812 return -1;
duke@435 3813 }
ikrylov@2322 3814 os::native_path(strcpy(pathbuf, path));
duke@435 3815 int ret = ::stat(pathbuf, sbuf);
duke@435 3816 if (sbuf != NULL && UseUTCFileTimestamp) {
duke@435 3817 // Fix for 6539723. st_mtime returned from stat() is dependent on
duke@435 3818 // the system timezone and so can return different values for the
duke@435 3819 // same file if/when daylight savings time changes. This adjustment
duke@435 3820 // makes sure the same timestamp is returned regardless of the TZ.
duke@435 3821 //
duke@435 3822 // See:
duke@435 3823 // http://msdn.microsoft.com/library/
duke@435 3824 // default.asp?url=/library/en-us/sysinfo/base/
duke@435 3825 // time_zone_information_str.asp
duke@435 3826 // and
duke@435 3827 // http://msdn.microsoft.com/library/default.asp?url=
duke@435 3828 // /library/en-us/sysinfo/base/settimezoneinformation.asp
duke@435 3829 //
duke@435 3830 // NOTE: there is a insidious bug here: If the timezone is changed
duke@435 3831 // after the call to stat() but before 'GetTimeZoneInformation()', then
duke@435 3832 // the adjustment we do here will be wrong and we'll return the wrong
duke@435 3833 // value (which will likely end up creating an invalid class data
duke@435 3834 // archive). Absent a better API for this, or some time zone locking
duke@435 3835 // mechanism, we'll have to live with this risk.
duke@435 3836 TIME_ZONE_INFORMATION tz;
duke@435 3837 DWORD tzid = GetTimeZoneInformation(&tz);
duke@435 3838 int daylightBias =
duke@435 3839 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
duke@435 3840 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
duke@435 3841 }
duke@435 3842 return ret;
duke@435 3843 }
duke@435 3844
duke@435 3845
duke@435 3846 #define FT2INT64(ft) \
duke@435 3847 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
duke@435 3848
duke@435 3849
duke@435 3850 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 3851 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 3852 // of a thread.
duke@435 3853 //
duke@435 3854 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 3855 // the fast estimate available on the platform.
duke@435 3856
duke@435 3857 // current_thread_cpu_time() is not optimized for Windows yet
duke@435 3858 jlong os::current_thread_cpu_time() {
duke@435 3859 // return user + sys since the cost is the same
duke@435 3860 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
duke@435 3861 }
duke@435 3862
duke@435 3863 jlong os::thread_cpu_time(Thread* thread) {
duke@435 3864 // consistent with what current_thread_cpu_time() returns.
duke@435 3865 return os::thread_cpu_time(thread, true /* user+sys */);
duke@435 3866 }
duke@435 3867
duke@435 3868 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 3869 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 3870 }
duke@435 3871
duke@435 3872 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
duke@435 3873 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
duke@435 3874 // If this function changes, os::is_thread_cpu_time_supported() should too
duke@435 3875 if (os::win32::is_nt()) {
duke@435 3876 FILETIME CreationTime;
duke@435 3877 FILETIME ExitTime;
duke@435 3878 FILETIME KernelTime;
duke@435 3879 FILETIME UserTime;
duke@435 3880
duke@435 3881 if ( GetThreadTimes(thread->osthread()->thread_handle(),
duke@435 3882 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3883 return -1;
duke@435 3884 else
duke@435 3885 if (user_sys_cpu_time) {
duke@435 3886 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
duke@435 3887 } else {
duke@435 3888 return FT2INT64(UserTime) * 100;
duke@435 3889 }
duke@435 3890 } else {
duke@435 3891 return (jlong) timeGetTime() * 1000000;
duke@435 3892 }
duke@435 3893 }
duke@435 3894
duke@435 3895 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3896 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3897 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3898 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3899 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3900 }
duke@435 3901
duke@435 3902 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3903 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3904 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3905 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3906 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3907 }
duke@435 3908
duke@435 3909 bool os::is_thread_cpu_time_supported() {
duke@435 3910 // see os::thread_cpu_time
duke@435 3911 if (os::win32::is_nt()) {
duke@435 3912 FILETIME CreationTime;
duke@435 3913 FILETIME ExitTime;
duke@435 3914 FILETIME KernelTime;
duke@435 3915 FILETIME UserTime;
duke@435 3916
duke@435 3917 if ( GetThreadTimes(GetCurrentThread(),
duke@435 3918 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3919 return false;
duke@435 3920 else
duke@435 3921 return true;
duke@435 3922 } else {
duke@435 3923 return false;
duke@435 3924 }
duke@435 3925 }
duke@435 3926
duke@435 3927 // Windows does't provide a loadavg primitive so this is stubbed out for now.
duke@435 3928 // It does have primitives (PDH API) to get CPU usage and run queue length.
duke@435 3929 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
duke@435 3930 // If we wanted to implement loadavg on Windows, we have a few options:
duke@435 3931 //
duke@435 3932 // a) Query CPU usage and run queue length and "fake" an answer by
duke@435 3933 // returning the CPU usage if it's under 100%, and the run queue
duke@435 3934 // length otherwise. It turns out that querying is pretty slow
duke@435 3935 // on Windows, on the order of 200 microseconds on a fast machine.
duke@435 3936 // Note that on the Windows the CPU usage value is the % usage
duke@435 3937 // since the last time the API was called (and the first call
duke@435 3938 // returns 100%), so we'd have to deal with that as well.
duke@435 3939 //
duke@435 3940 // b) Sample the "fake" answer using a sampling thread and store
duke@435 3941 // the answer in a global variable. The call to loadavg would
duke@435 3942 // just return the value of the global, avoiding the slow query.
duke@435 3943 //
duke@435 3944 // c) Sample a better answer using exponential decay to smooth the
duke@435 3945 // value. This is basically the algorithm used by UNIX kernels.
duke@435 3946 //
duke@435 3947 // Note that sampling thread starvation could affect both (b) and (c).
duke@435 3948 int os::loadavg(double loadavg[], int nelem) {
duke@435 3949 return -1;
duke@435 3950 }
duke@435 3951
duke@435 3952
duke@435 3953 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
duke@435 3954 bool os::dont_yield() {
duke@435 3955 return DontYieldALot;
duke@435 3956 }
duke@435 3957
ikrylov@2322 3958 // This method is a slightly reworked copy of JDK's sysOpen
ikrylov@2322 3959 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 3960
ikrylov@2322 3961 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 3962 char pathbuf[MAX_PATH];
ikrylov@2322 3963
ikrylov@2322 3964 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 3965 errno = ENAMETOOLONG;
ikrylov@2322 3966 return -1;
ikrylov@2322 3967 }
ikrylov@2322 3968 os::native_path(strcpy(pathbuf, path));
ikrylov@2322 3969 return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
ikrylov@2322 3970 }
ikrylov@2322 3971
duke@435 3972 // Is a (classpath) directory empty?
duke@435 3973 bool os::dir_is_empty(const char* path) {
duke@435 3974 WIN32_FIND_DATA fd;
duke@435 3975 HANDLE f = FindFirstFile(path, &fd);
duke@435 3976 if (f == INVALID_HANDLE_VALUE) {
duke@435 3977 return true;
duke@435 3978 }
duke@435 3979 FindClose(f);
duke@435 3980 return false;
duke@435 3981 }
duke@435 3982
duke@435 3983 // create binary file, rewriting existing file if required
duke@435 3984 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 3985 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
duke@435 3986 if (!rewrite_existing) {
duke@435 3987 oflags |= _O_EXCL;
duke@435 3988 }
duke@435 3989 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
duke@435 3990 }
duke@435 3991
duke@435 3992 // return current position of file pointer
duke@435 3993 jlong os::current_file_offset(int fd) {
duke@435 3994 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
duke@435 3995 }
duke@435 3996
duke@435 3997 // move file pointer to the specified offset
duke@435 3998 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 3999 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
duke@435 4000 }
duke@435 4001
duke@435 4002
ikrylov@2322 4003 jlong os::lseek(int fd, jlong offset, int whence) {
ikrylov@2322 4004 return (jlong) ::_lseeki64(fd, offset, whence);
ikrylov@2322 4005 }
ikrylov@2322 4006
ikrylov@2322 4007 // This method is a slightly reworked copy of JDK's sysNativePath
ikrylov@2322 4008 // from src/windows/hpi/src/path_md.c
ikrylov@2322 4009
ikrylov@2322 4010 /* Convert a pathname to native format. On win32, this involves forcing all
ikrylov@2322 4011 separators to be '\\' rather than '/' (both are legal inputs, but Win95
ikrylov@2322 4012 sometimes rejects '/') and removing redundant separators. The input path is
ikrylov@2322 4013 assumed to have been converted into the character encoding used by the local
ikrylov@2322 4014 system. Because this might be a double-byte encoding, care is taken to
ikrylov@2322 4015 treat double-byte lead characters correctly.
ikrylov@2322 4016
ikrylov@2322 4017 This procedure modifies the given path in place, as the result is never
ikrylov@2322 4018 longer than the original. There is no error return; this operation always
ikrylov@2322 4019 succeeds. */
ikrylov@2322 4020 char * os::native_path(char *path) {
ikrylov@2322 4021 char *src = path, *dst = path, *end = path;
ikrylov@2322 4022 char *colon = NULL; /* If a drive specifier is found, this will
ikrylov@2322 4023 point to the colon following the drive
ikrylov@2322 4024 letter */
ikrylov@2322 4025
ikrylov@2322 4026 /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
ikrylov@2322 4027 assert(((!::IsDBCSLeadByte('/'))
ikrylov@2322 4028 && (!::IsDBCSLeadByte('\\'))
ikrylov@2322 4029 && (!::IsDBCSLeadByte(':'))),
ikrylov@2322 4030 "Illegal lead byte");
ikrylov@2322 4031
ikrylov@2322 4032 /* Check for leading separators */
ikrylov@2322 4033 #define isfilesep(c) ((c) == '/' || (c) == '\\')
ikrylov@2322 4034 while (isfilesep(*src)) {
ikrylov@2322 4035 src++;
ikrylov@2322 4036 }
ikrylov@2322 4037
ikrylov@2322 4038 if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
ikrylov@2322 4039 /* Remove leading separators if followed by drive specifier. This
ikrylov@2322 4040 hack is necessary to support file URLs containing drive
ikrylov@2322 4041 specifiers (e.g., "file://c:/path"). As a side effect,
ikrylov@2322 4042 "/c:/path" can be used as an alternative to "c:/path". */
ikrylov@2322 4043 *dst++ = *src++;
ikrylov@2322 4044 colon = dst;
ikrylov@2322 4045 *dst++ = ':';
ikrylov@2322 4046 src++;
ikrylov@2322 4047 } else {
ikrylov@2322 4048 src = path;
ikrylov@2322 4049 if (isfilesep(src[0]) && isfilesep(src[1])) {
ikrylov@2322 4050 /* UNC pathname: Retain first separator; leave src pointed at
ikrylov@2322 4051 second separator so that further separators will be collapsed
ikrylov@2322 4052 into the second separator. The result will be a pathname
ikrylov@2322 4053 beginning with "\\\\" followed (most likely) by a host name. */
ikrylov@2322 4054 src = dst = path + 1;
ikrylov@2322 4055 path[0] = '\\'; /* Force first separator to '\\' */
ikrylov@2322 4056 }
ikrylov@2322 4057 }
ikrylov@2322 4058
ikrylov@2322 4059 end = dst;
ikrylov@2322 4060
ikrylov@2322 4061 /* Remove redundant separators from remainder of path, forcing all
ikrylov@2322 4062 separators to be '\\' rather than '/'. Also, single byte space
ikrylov@2322 4063 characters are removed from the end of the path because those
ikrylov@2322 4064 are not legal ending characters on this operating system.
ikrylov@2322 4065 */
ikrylov@2322 4066 while (*src != '\0') {
ikrylov@2322 4067 if (isfilesep(*src)) {
ikrylov@2322 4068 *dst++ = '\\'; src++;
ikrylov@2322 4069 while (isfilesep(*src)) src++;
ikrylov@2322 4070 if (*src == '\0') {
ikrylov@2322 4071 /* Check for trailing separator */
ikrylov@2322 4072 end = dst;
ikrylov@2322 4073 if (colon == dst - 2) break; /* "z:\\" */
ikrylov@2322 4074 if (dst == path + 1) break; /* "\\" */
ikrylov@2322 4075 if (dst == path + 2 && isfilesep(path[0])) {
ikrylov@2322 4076 /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
ikrylov@2322 4077 beginning of a UNC pathname. Even though it is not, by
ikrylov@2322 4078 itself, a valid UNC pathname, we leave it as is in order
ikrylov@2322 4079 to be consistent with the path canonicalizer as well
ikrylov@2322 4080 as the win32 APIs, which treat this case as an invalid
ikrylov@2322 4081 UNC pathname rather than as an alias for the root
ikrylov@2322 4082 directory of the current drive. */
ikrylov@2322 4083 break;
ikrylov@2322 4084 }
ikrylov@2322 4085 end = --dst; /* Path does not denote a root directory, so
ikrylov@2322 4086 remove trailing separator */
ikrylov@2322 4087 break;
ikrylov@2322 4088 }
ikrylov@2322 4089 end = dst;
ikrylov@2322 4090 } else {
ikrylov@2322 4091 if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
ikrylov@2322 4092 *dst++ = *src++;
ikrylov@2322 4093 if (*src) *dst++ = *src++;
ikrylov@2322 4094 end = dst;
ikrylov@2322 4095 } else { /* Copy a single-byte character */
ikrylov@2322 4096 char c = *src++;
ikrylov@2322 4097 *dst++ = c;
ikrylov@2322 4098 /* Space is not a legal ending character */
ikrylov@2322 4099 if (c != ' ') end = dst;
ikrylov@2322 4100 }
ikrylov@2322 4101 }
ikrylov@2322 4102 }
ikrylov@2322 4103
ikrylov@2322 4104 *end = '\0';
ikrylov@2322 4105
ikrylov@2322 4106 /* For "z:", add "." to work around a bug in the C runtime library */
ikrylov@2322 4107 if (colon == dst - 1) {
ikrylov@2322 4108 path[2] = '.';
ikrylov@2322 4109 path[3] = '\0';
ikrylov@2322 4110 }
ikrylov@2322 4111
ikrylov@2322 4112 #ifdef DEBUG
ikrylov@2322 4113 jio_fprintf(stderr, "sysNativePath: %s\n", path);
ikrylov@2322 4114 #endif DEBUG
ikrylov@2322 4115 return path;
ikrylov@2322 4116 }
ikrylov@2322 4117
ikrylov@2322 4118 // This code is a copy of JDK's sysSetLength
ikrylov@2322 4119 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4120
ikrylov@2322 4121 int os::ftruncate(int fd, jlong length) {
ikrylov@2322 4122 HANDLE h = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4123 long high = (long)(length >> 32);
ikrylov@2322 4124 DWORD ret;
ikrylov@2322 4125
ikrylov@2322 4126 if (h == (HANDLE)(-1)) {
ikrylov@2322 4127 return -1;
ikrylov@2322 4128 }
ikrylov@2322 4129
ikrylov@2322 4130 ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
ikrylov@2322 4131 if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
ikrylov@2322 4132 return -1;
ikrylov@2322 4133 }
ikrylov@2322 4134
ikrylov@2322 4135 if (::SetEndOfFile(h) == FALSE) {
ikrylov@2322 4136 return -1;
ikrylov@2322 4137 }
ikrylov@2322 4138
ikrylov@2322 4139 return 0;
ikrylov@2322 4140 }
ikrylov@2322 4141
ikrylov@2322 4142
ikrylov@2322 4143 // This code is a copy of JDK's sysSync
ikrylov@2322 4144 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4145 // except for the legacy workaround for a bug in Win 98
ikrylov@2322 4146
ikrylov@2322 4147 int os::fsync(int fd) {
ikrylov@2322 4148 HANDLE handle = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4149
ikrylov@2322 4150 if ( (!::FlushFileBuffers(handle)) &&
ikrylov@2322 4151 (GetLastError() != ERROR_ACCESS_DENIED) ) {
ikrylov@2322 4152 /* from winerror.h */
ikrylov@2322 4153 return -1;
ikrylov@2322 4154 }
ikrylov@2322 4155 return 0;
ikrylov@2322 4156 }
ikrylov@2322 4157
ikrylov@2322 4158 static int nonSeekAvailable(int, long *);
ikrylov@2322 4159 static int stdinAvailable(int, long *);
ikrylov@2322 4160
ikrylov@2322 4161 #define S_ISCHR(mode) (((mode) & _S_IFCHR) == _S_IFCHR)
ikrylov@2322 4162 #define S_ISFIFO(mode) (((mode) & _S_IFIFO) == _S_IFIFO)
ikrylov@2322 4163
ikrylov@2322 4164 // This code is a copy of JDK's sysAvailable
ikrylov@2322 4165 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4166
ikrylov@2322 4167 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4168 jlong cur, end;
ikrylov@2322 4169 struct _stati64 stbuf64;
ikrylov@2322 4170
ikrylov@2322 4171 if (::_fstati64(fd, &stbuf64) >= 0) {
ikrylov@2322 4172 int mode = stbuf64.st_mode;
ikrylov@2322 4173 if (S_ISCHR(mode) || S_ISFIFO(mode)) {
ikrylov@2322 4174 int ret;
ikrylov@2322 4175 long lpbytes;
ikrylov@2322 4176 if (fd == 0) {
ikrylov@2322 4177 ret = stdinAvailable(fd, &lpbytes);
ikrylov@2322 4178 } else {
ikrylov@2322 4179 ret = nonSeekAvailable(fd, &lpbytes);
ikrylov@2322 4180 }
ikrylov@2322 4181 (*bytes) = (jlong)(lpbytes);
ikrylov@2322 4182 return ret;
ikrylov@2322 4183 }
ikrylov@2322 4184 if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4185 return FALSE;
ikrylov@2322 4186 } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4187 return FALSE;
ikrylov@2322 4188 } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4189 return FALSE;
ikrylov@2322 4190 }
ikrylov@2322 4191 *bytes = end - cur;
ikrylov@2322 4192 return TRUE;
ikrylov@2322 4193 } else {
ikrylov@2322 4194 return FALSE;
ikrylov@2322 4195 }
ikrylov@2322 4196 }
ikrylov@2322 4197
ikrylov@2322 4198 // This code is a copy of JDK's nonSeekAvailable
ikrylov@2322 4199 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4200
ikrylov@2322 4201 static int nonSeekAvailable(int fd, long *pbytes) {
ikrylov@2322 4202 /* This is used for available on non-seekable devices
ikrylov@2322 4203 * (like both named and anonymous pipes, such as pipes
ikrylov@2322 4204 * connected to an exec'd process).
ikrylov@2322 4205 * Standard Input is a special case.
ikrylov@2322 4206 *
ikrylov@2322 4207 */
ikrylov@2322 4208 HANDLE han;
ikrylov@2322 4209
ikrylov@2322 4210 if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
ikrylov@2322 4211 return FALSE;
ikrylov@2322 4212 }
ikrylov@2322 4213
ikrylov@2322 4214 if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
ikrylov@2322 4215 /* PeekNamedPipe fails when at EOF. In that case we
ikrylov@2322 4216 * simply make *pbytes = 0 which is consistent with the
ikrylov@2322 4217 * behavior we get on Solaris when an fd is at EOF.
ikrylov@2322 4218 * The only alternative is to raise an Exception,
ikrylov@2322 4219 * which isn't really warranted.
ikrylov@2322 4220 */
ikrylov@2322 4221 if (::GetLastError() != ERROR_BROKEN_PIPE) {
ikrylov@2322 4222 return FALSE;
ikrylov@2322 4223 }
ikrylov@2322 4224 *pbytes = 0;
ikrylov@2322 4225 }
ikrylov@2322 4226 return TRUE;
ikrylov@2322 4227 }
ikrylov@2322 4228
ikrylov@2322 4229 #define MAX_INPUT_EVENTS 2000
ikrylov@2322 4230
ikrylov@2322 4231 // This code is a copy of JDK's stdinAvailable
ikrylov@2322 4232 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4233
ikrylov@2322 4234 static int stdinAvailable(int fd, long *pbytes) {
ikrylov@2322 4235 HANDLE han;
ikrylov@2322 4236 DWORD numEventsRead = 0; /* Number of events read from buffer */
ikrylov@2322 4237 DWORD numEvents = 0; /* Number of events in buffer */
ikrylov@2322 4238 DWORD i = 0; /* Loop index */
ikrylov@2322 4239 DWORD curLength = 0; /* Position marker */
ikrylov@2322 4240 DWORD actualLength = 0; /* Number of bytes readable */
ikrylov@2322 4241 BOOL error = FALSE; /* Error holder */
ikrylov@2322 4242 INPUT_RECORD *lpBuffer; /* Pointer to records of input events */
ikrylov@2322 4243
ikrylov@2322 4244 if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
ikrylov@2322 4245 return FALSE;
ikrylov@2322 4246 }
ikrylov@2322 4247
ikrylov@2322 4248 /* Construct an array of input records in the console buffer */
ikrylov@2322 4249 error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
ikrylov@2322 4250 if (error == 0) {
ikrylov@2322 4251 return nonSeekAvailable(fd, pbytes);
ikrylov@2322 4252 }
ikrylov@2322 4253
ikrylov@2322 4254 /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
ikrylov@2322 4255 if (numEvents > MAX_INPUT_EVENTS) {
ikrylov@2322 4256 numEvents = MAX_INPUT_EVENTS;
ikrylov@2322 4257 }
ikrylov@2322 4258
ikrylov@2322 4259 lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD));
ikrylov@2322 4260 if (lpBuffer == NULL) {
ikrylov@2322 4261 return FALSE;
ikrylov@2322 4262 }
ikrylov@2322 4263
ikrylov@2322 4264 error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
ikrylov@2322 4265 if (error == 0) {
ikrylov@2322 4266 os::free(lpBuffer);
ikrylov@2322 4267 return FALSE;
ikrylov@2322 4268 }
ikrylov@2322 4269
ikrylov@2322 4270 /* Examine input records for the number of bytes available */
ikrylov@2322 4271 for(i=0; i<numEvents; i++) {
ikrylov@2322 4272 if (lpBuffer[i].EventType == KEY_EVENT) {
ikrylov@2322 4273
ikrylov@2322 4274 KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
ikrylov@2322 4275 &(lpBuffer[i].Event);
ikrylov@2322 4276 if (keyRecord->bKeyDown == TRUE) {
ikrylov@2322 4277 CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
ikrylov@2322 4278 curLength++;
ikrylov@2322 4279 if (*keyPressed == '\r') {
ikrylov@2322 4280 actualLength = curLength;
ikrylov@2322 4281 }
ikrylov@2322 4282 }
ikrylov@2322 4283 }
ikrylov@2322 4284 }
ikrylov@2322 4285
ikrylov@2322 4286 if(lpBuffer != NULL) {
ikrylov@2322 4287 os::free(lpBuffer);
ikrylov@2322 4288 }
ikrylov@2322 4289
ikrylov@2322 4290 *pbytes = (long) actualLength;
ikrylov@2322 4291 return TRUE;
ikrylov@2322 4292 }
ikrylov@2322 4293
duke@435 4294 // Map a block of memory.
duke@435 4295 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4296 char *addr, size_t bytes, bool read_only,
duke@435 4297 bool allow_exec) {
duke@435 4298 HANDLE hFile;
duke@435 4299 char* base;
duke@435 4300
duke@435 4301 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
duke@435 4302 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
duke@435 4303 if (hFile == NULL) {
duke@435 4304 if (PrintMiscellaneous && Verbose) {
duke@435 4305 DWORD err = GetLastError();
duke@435 4306 tty->print_cr("CreateFile() failed: GetLastError->%ld.");
duke@435 4307 }
duke@435 4308 return NULL;
duke@435 4309 }
duke@435 4310
duke@435 4311 if (allow_exec) {
duke@435 4312 // CreateFileMapping/MapViewOfFileEx can't map executable memory
duke@435 4313 // unless it comes from a PE image (which the shared archive is not.)
duke@435 4314 // Even VirtualProtect refuses to give execute access to mapped memory
duke@435 4315 // that was not previously executable.
duke@435 4316 //
duke@435 4317 // Instead, stick the executable region in anonymous memory. Yuck.
duke@435 4318 // Penalty is that ~4 pages will not be shareable - in the future
duke@435 4319 // we might consider DLLizing the shared archive with a proper PE
duke@435 4320 // header so that mapping executable + sharing is possible.
duke@435 4321
duke@435 4322 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
duke@435 4323 PAGE_READWRITE);
duke@435 4324 if (base == NULL) {
duke@435 4325 if (PrintMiscellaneous && Verbose) {
duke@435 4326 DWORD err = GetLastError();
duke@435 4327 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
duke@435 4328 }
duke@435 4329 CloseHandle(hFile);
duke@435 4330 return NULL;
duke@435 4331 }
duke@435 4332
duke@435 4333 DWORD bytes_read;
duke@435 4334 OVERLAPPED overlapped;
duke@435 4335 overlapped.Offset = (DWORD)file_offset;
duke@435 4336 overlapped.OffsetHigh = 0;
duke@435 4337 overlapped.hEvent = NULL;
duke@435 4338 // ReadFile guarantees that if the return value is true, the requested
duke@435 4339 // number of bytes were read before returning.
duke@435 4340 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
duke@435 4341 if (!res) {
duke@435 4342 if (PrintMiscellaneous && Verbose) {
duke@435 4343 DWORD err = GetLastError();
duke@435 4344 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
duke@435 4345 }
duke@435 4346 release_memory(base, bytes);
duke@435 4347 CloseHandle(hFile);
duke@435 4348 return NULL;
duke@435 4349 }
duke@435 4350 } else {
duke@435 4351 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
duke@435 4352 NULL /*file_name*/);
duke@435 4353 if (hMap == NULL) {
duke@435 4354 if (PrintMiscellaneous && Verbose) {
duke@435 4355 DWORD err = GetLastError();
duke@435 4356 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
duke@435 4357 }
duke@435 4358 CloseHandle(hFile);
duke@435 4359 return NULL;
duke@435 4360 }
duke@435 4361
duke@435 4362 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
duke@435 4363 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
duke@435 4364 (DWORD)bytes, addr);
duke@435 4365 if (base == NULL) {
duke@435 4366 if (PrintMiscellaneous && Verbose) {
duke@435 4367 DWORD err = GetLastError();
duke@435 4368 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
duke@435 4369 }
duke@435 4370 CloseHandle(hMap);
duke@435 4371 CloseHandle(hFile);
duke@435 4372 return NULL;
duke@435 4373 }
duke@435 4374
duke@435 4375 if (CloseHandle(hMap) == 0) {
duke@435 4376 if (PrintMiscellaneous && Verbose) {
duke@435 4377 DWORD err = GetLastError();
duke@435 4378 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
duke@435 4379 }
duke@435 4380 CloseHandle(hFile);
duke@435 4381 return base;
duke@435 4382 }
duke@435 4383 }
duke@435 4384
duke@435 4385 if (allow_exec) {
duke@435 4386 DWORD old_protect;
duke@435 4387 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
duke@435 4388 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
duke@435 4389
duke@435 4390 if (!res) {
duke@435 4391 if (PrintMiscellaneous && Verbose) {
duke@435 4392 DWORD err = GetLastError();
duke@435 4393 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
duke@435 4394 }
duke@435 4395 // Don't consider this a hard error, on IA32 even if the
duke@435 4396 // VirtualProtect fails, we should still be able to execute
duke@435 4397 CloseHandle(hFile);
duke@435 4398 return base;
duke@435 4399 }
duke@435 4400 }
duke@435 4401
duke@435 4402 if (CloseHandle(hFile) == 0) {
duke@435 4403 if (PrintMiscellaneous && Verbose) {
duke@435 4404 DWORD err = GetLastError();
duke@435 4405 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
duke@435 4406 }
duke@435 4407 return base;
duke@435 4408 }
duke@435 4409
duke@435 4410 return base;
duke@435 4411 }
duke@435 4412
duke@435 4413
duke@435 4414 // Remap a block of memory.
duke@435 4415 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4416 char *addr, size_t bytes, bool read_only,
duke@435 4417 bool allow_exec) {
duke@435 4418 // This OS does not allow existing memory maps to be remapped so we
duke@435 4419 // have to unmap the memory before we remap it.
duke@435 4420 if (!os::unmap_memory(addr, bytes)) {
duke@435 4421 return NULL;
duke@435 4422 }
duke@435 4423
duke@435 4424 // There is a very small theoretical window between the unmap_memory()
duke@435 4425 // call above and the map_memory() call below where a thread in native
duke@435 4426 // code may be able to access an address that is no longer mapped.
duke@435 4427
duke@435 4428 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 4429 allow_exec);
duke@435 4430 }
duke@435 4431
duke@435 4432
duke@435 4433 // Unmap a block of memory.
duke@435 4434 // Returns true=success, otherwise false.
duke@435 4435
duke@435 4436 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 4437 BOOL result = UnmapViewOfFile(addr);
duke@435 4438 if (result == 0) {
duke@435 4439 if (PrintMiscellaneous && Verbose) {
duke@435 4440 DWORD err = GetLastError();
duke@435 4441 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
duke@435 4442 }
duke@435 4443 return false;
duke@435 4444 }
duke@435 4445 return true;
duke@435 4446 }
duke@435 4447
duke@435 4448 void os::pause() {
duke@435 4449 char filename[MAX_PATH];
duke@435 4450 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4451 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4452 } else {
duke@435 4453 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4454 }
duke@435 4455
duke@435 4456 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4457 if (fd != -1) {
duke@435 4458 struct stat buf;
ikrylov@2322 4459 ::close(fd);
duke@435 4460 while (::stat(filename, &buf) == 0) {
duke@435 4461 Sleep(100);
duke@435 4462 }
duke@435 4463 } else {
duke@435 4464 jio_fprintf(stderr,
duke@435 4465 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4466 }
duke@435 4467 }
duke@435 4468
duke@435 4469 // An Event wraps a win32 "CreateEvent" kernel handle.
duke@435 4470 //
duke@435 4471 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
duke@435 4472 //
duke@435 4473 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
duke@435 4474 // field, and call CloseHandle() on the win32 event handle. Unpark() would
duke@435 4475 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
duke@435 4476 // In addition, an unpark() operation might fetch the handle field, but the
duke@435 4477 // event could recycle between the fetch and the SetEvent() operation.
duke@435 4478 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
duke@435 4479 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
duke@435 4480 // on an stale but recycled handle would be harmless, but in practice this might
duke@435 4481 // confuse other non-Sun code, so it's not a viable approach.
duke@435 4482 //
duke@435 4483 // 2: Once a win32 event handle is associated with an Event, it remains associated
duke@435 4484 // with the Event. The event handle is never closed. This could be construed
duke@435 4485 // as handle leakage, but only up to the maximum # of threads that have been extant
duke@435 4486 // at any one time. This shouldn't be an issue, as windows platforms typically
duke@435 4487 // permit a process to have hundreds of thousands of open handles.
duke@435 4488 //
duke@435 4489 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
duke@435 4490 // and release unused handles.
duke@435 4491 //
duke@435 4492 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
duke@435 4493 // It's not clear, however, that we wouldn't be trading one type of leak for another.
duke@435 4494 //
duke@435 4495 // 5. Use an RCU-like mechanism (Read-Copy Update).
duke@435 4496 // Or perhaps something similar to Maged Michael's "Hazard pointers".
duke@435 4497 //
duke@435 4498 // We use (2).
duke@435 4499 //
duke@435 4500 // TODO-FIXME:
duke@435 4501 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
duke@435 4502 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
duke@435 4503 // to recover from (or at least detect) the dreaded Windows 841176 bug.
duke@435 4504 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
duke@435 4505 // into a single win32 CreateEvent() handle.
duke@435 4506 //
duke@435 4507 // _Event transitions in park()
duke@435 4508 // -1 => -1 : illegal
duke@435 4509 // 1 => 0 : pass - return immediately
duke@435 4510 // 0 => -1 : block
duke@435 4511 //
duke@435 4512 // _Event serves as a restricted-range semaphore :
duke@435 4513 // -1 : thread is blocked
duke@435 4514 // 0 : neutral - thread is running or ready
duke@435 4515 // 1 : signaled - thread is running or ready
duke@435 4516 //
duke@435 4517 // Another possible encoding of _Event would be
duke@435 4518 // with explicit "PARKED" and "SIGNALED" bits.
duke@435 4519
duke@435 4520 int os::PlatformEvent::park (jlong Millis) {
duke@435 4521 guarantee (_ParkHandle != NULL , "Invariant") ;
duke@435 4522 guarantee (Millis > 0 , "Invariant") ;
duke@435 4523 int v ;
duke@435 4524
duke@435 4525 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
duke@435 4526 // the initial park() operation.
duke@435 4527
duke@435 4528 for (;;) {
duke@435 4529 v = _Event ;
duke@435 4530 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4531 }
duke@435 4532 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4533 if (v != 0) return OS_OK ;
duke@435 4534
duke@435 4535 // Do this the hard way by blocking ...
duke@435 4536 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4537 // spin attempts by this thread.
duke@435 4538 //
duke@435 4539 // We decompose long timeouts into series of shorter timed waits.
duke@435 4540 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
duke@435 4541 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
duke@435 4542 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
duke@435 4543 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
duke@435 4544 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
duke@435 4545 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
duke@435 4546 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
duke@435 4547 // for the already waited time. This policy does not admit any new outcomes.
duke@435 4548 // In the future, however, we might want to track the accumulated wait time and
duke@435 4549 // adjust Millis accordingly if we encounter a spurious wakeup.
duke@435 4550
duke@435 4551 const int MAXTIMEOUT = 0x10000000 ;
duke@435 4552 DWORD rv = WAIT_TIMEOUT ;
duke@435 4553 while (_Event < 0 && Millis > 0) {
duke@435 4554 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
duke@435 4555 if (Millis > MAXTIMEOUT) {
duke@435 4556 prd = MAXTIMEOUT ;
duke@435 4557 }
duke@435 4558 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
duke@435 4559 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
duke@435 4560 if (rv == WAIT_TIMEOUT) {
duke@435 4561 Millis -= prd ;
duke@435 4562 }
duke@435 4563 }
duke@435 4564 v = _Event ;
duke@435 4565 _Event = 0 ;
duke@435 4566 OrderAccess::fence() ;
duke@435 4567 // If we encounter a nearly simultanous timeout expiry and unpark()
duke@435 4568 // we return OS_OK indicating we awoke via unpark().
duke@435 4569 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
duke@435 4570 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
duke@435 4571 }
duke@435 4572
duke@435 4573 void os::PlatformEvent::park () {
duke@435 4574 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 4575 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4576 // may call park().
duke@435 4577 int v ;
duke@435 4578 for (;;) {
duke@435 4579 v = _Event ;
duke@435 4580 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4581 }
duke@435 4582 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4583 if (v != 0) return ;
duke@435 4584
duke@435 4585 // Do this the hard way by blocking ...
duke@435 4586 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4587 // spin attempts by this thread.
duke@435 4588 while (_Event < 0) {
duke@435 4589 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
duke@435 4590 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
duke@435 4591 }
duke@435 4592
duke@435 4593 // Usually we'll find _Event == 0 at this point, but as
duke@435 4594 // an optional optimization we clear it, just in case can
duke@435 4595 // multiple unpark() operations drove _Event up to 1.
duke@435 4596 _Event = 0 ;
duke@435 4597 OrderAccess::fence() ;
duke@435 4598 guarantee (_Event >= 0, "invariant") ;
duke@435 4599 }
duke@435 4600
duke@435 4601 void os::PlatformEvent::unpark() {
duke@435 4602 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 4603 int v ;
duke@435 4604 for (;;) {
duke@435 4605 v = _Event ; // Increment _Event if it's < 1.
duke@435 4606 if (v > 0) {
duke@435 4607 // If it's already signaled just return.
duke@435 4608 // The LD of _Event could have reordered or be satisfied
duke@435 4609 // by a read-aside from this processor's write buffer.
duke@435 4610 // To avoid problems execute a barrier and then
duke@435 4611 // ratify the value. A degenerate CAS() would also work.
duke@435 4612 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 4613 OrderAccess::fence() ;
duke@435 4614 if (_Event == v) return ;
duke@435 4615 continue ;
duke@435 4616 }
duke@435 4617 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4618 }
duke@435 4619 if (v < 0) {
duke@435 4620 ::SetEvent (_ParkHandle) ;
duke@435 4621 }
duke@435 4622 }
duke@435 4623
duke@435 4624
duke@435 4625 // JSR166
duke@435 4626 // -------------------------------------------------------
duke@435 4627
duke@435 4628 /*
duke@435 4629 * The Windows implementation of Park is very straightforward: Basic
duke@435 4630 * operations on Win32 Events turn out to have the right semantics to
duke@435 4631 * use them directly. We opportunistically resuse the event inherited
duke@435 4632 * from Monitor.
duke@435 4633 */
duke@435 4634
duke@435 4635
duke@435 4636 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4637 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4638 // First, demultiplex/decode time arguments
duke@435 4639 if (time < 0) { // don't wait
duke@435 4640 return;
duke@435 4641 }
acorn@2220 4642 else if (time == 0 && !isAbsolute) {
duke@435 4643 time = INFINITE;
duke@435 4644 }
duke@435 4645 else if (isAbsolute) {
duke@435 4646 time -= os::javaTimeMillis(); // convert to relative time
duke@435 4647 if (time <= 0) // already elapsed
duke@435 4648 return;
duke@435 4649 }
duke@435 4650 else { // relative
duke@435 4651 time /= 1000000; // Must coarsen from nanos to millis
duke@435 4652 if (time == 0) // Wait for the minimal time unit if zero
duke@435 4653 time = 1;
duke@435 4654 }
duke@435 4655
duke@435 4656 JavaThread* thread = (JavaThread*)(Thread::current());
duke@435 4657 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4658 JavaThread *jt = (JavaThread *)thread;
duke@435 4659
duke@435 4660 // Don't wait if interrupted or already triggered
duke@435 4661 if (Thread::is_interrupted(thread, false) ||
duke@435 4662 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
duke@435 4663 ResetEvent(_ParkEvent);
duke@435 4664 return;
duke@435 4665 }
duke@435 4666 else {
duke@435 4667 ThreadBlockInVM tbivm(jt);
duke@435 4668 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4669 jt->set_suspend_equivalent();
duke@435 4670
duke@435 4671 WaitForSingleObject(_ParkEvent, time);
duke@435 4672 ResetEvent(_ParkEvent);
duke@435 4673
duke@435 4674 // If externally suspended while waiting, re-suspend
duke@435 4675 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4676 jt->java_suspend_self();
duke@435 4677 }
duke@435 4678 }
duke@435 4679 }
duke@435 4680
duke@435 4681 void Parker::unpark() {
duke@435 4682 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4683 SetEvent(_ParkEvent);
duke@435 4684 }
duke@435 4685
duke@435 4686 // Run the specified command in a separate process. Return its exit value,
duke@435 4687 // or -1 on failure (e.g. can't create a new process).
duke@435 4688 int os::fork_and_exec(char* cmd) {
duke@435 4689 STARTUPINFO si;
duke@435 4690 PROCESS_INFORMATION pi;
duke@435 4691
duke@435 4692 memset(&si, 0, sizeof(si));
duke@435 4693 si.cb = sizeof(si);
duke@435 4694 memset(&pi, 0, sizeof(pi));
duke@435 4695 BOOL rslt = CreateProcess(NULL, // executable name - use command line
duke@435 4696 cmd, // command line
duke@435 4697 NULL, // process security attribute
duke@435 4698 NULL, // thread security attribute
duke@435 4699 TRUE, // inherits system handles
duke@435 4700 0, // no creation flags
duke@435 4701 NULL, // use parent's environment block
duke@435 4702 NULL, // use parent's starting directory
duke@435 4703 &si, // (in) startup information
duke@435 4704 &pi); // (out) process information
duke@435 4705
duke@435 4706 if (rslt) {
duke@435 4707 // Wait until child process exits.
duke@435 4708 WaitForSingleObject(pi.hProcess, INFINITE);
duke@435 4709
duke@435 4710 DWORD exit_code;
duke@435 4711 GetExitCodeProcess(pi.hProcess, &exit_code);
duke@435 4712
duke@435 4713 // Close process and thread handles.
duke@435 4714 CloseHandle(pi.hProcess);
duke@435 4715 CloseHandle(pi.hThread);
duke@435 4716
duke@435 4717 return (int)exit_code;
duke@435 4718 } else {
duke@435 4719 return -1;
duke@435 4720 }
duke@435 4721 }
duke@435 4722
duke@435 4723 //--------------------------------------------------------------------------------------------------
duke@435 4724 // Non-product code
duke@435 4725
duke@435 4726 static int mallocDebugIntervalCounter = 0;
duke@435 4727 static int mallocDebugCounter = 0;
duke@435 4728 bool os::check_heap(bool force) {
duke@435 4729 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
duke@435 4730 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
duke@435 4731 // Note: HeapValidate executes two hardware breakpoints when it finds something
duke@435 4732 // wrong; at these points, eax contains the address of the offending block (I think).
duke@435 4733 // To get to the exlicit error message(s) below, just continue twice.
duke@435 4734 HANDLE heap = GetProcessHeap();
duke@435 4735 { HeapLock(heap);
duke@435 4736 PROCESS_HEAP_ENTRY phe;
duke@435 4737 phe.lpData = NULL;
duke@435 4738 while (HeapWalk(heap, &phe) != 0) {
duke@435 4739 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
duke@435 4740 !HeapValidate(heap, 0, phe.lpData)) {
duke@435 4741 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
duke@435 4742 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
duke@435 4743 fatal("corrupted C heap");
duke@435 4744 }
duke@435 4745 }
duke@435 4746 int err = GetLastError();
duke@435 4747 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
jcoomes@1845 4748 fatal(err_msg("heap walk aborted with error %d", err));
duke@435 4749 }
duke@435 4750 HeapUnlock(heap);
duke@435 4751 }
duke@435 4752 mallocDebugIntervalCounter = 0;
duke@435 4753 }
duke@435 4754 return true;
duke@435 4755 }
duke@435 4756
duke@435 4757
bobv@2036 4758 bool os::find(address addr, outputStream* st) {
duke@435 4759 // Nothing yet
duke@435 4760 return false;
duke@435 4761 }
duke@435 4762
duke@435 4763 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
duke@435 4764 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
duke@435 4765
duke@435 4766 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 4767 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
duke@435 4768 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
duke@435 4769 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 4770
duke@435 4771 if (os::is_memory_serialize_page(thread, addr))
duke@435 4772 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 4773 }
duke@435 4774
duke@435 4775 return EXCEPTION_CONTINUE_SEARCH;
duke@435 4776 }
duke@435 4777
duke@435 4778 static int getLastErrorString(char *buf, size_t len)
duke@435 4779 {
duke@435 4780 long errval;
duke@435 4781
duke@435 4782 if ((errval = GetLastError()) != 0)
duke@435 4783 {
duke@435 4784 /* DOS error */
duke@435 4785 size_t n = (size_t)FormatMessage(
duke@435 4786 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
duke@435 4787 NULL,
duke@435 4788 errval,
duke@435 4789 0,
duke@435 4790 buf,
duke@435 4791 (DWORD)len,
duke@435 4792 NULL);
duke@435 4793 if (n > 3) {
duke@435 4794 /* Drop final '.', CR, LF */
duke@435 4795 if (buf[n - 1] == '\n') n--;
duke@435 4796 if (buf[n - 1] == '\r') n--;
duke@435 4797 if (buf[n - 1] == '.') n--;
duke@435 4798 buf[n] = '\0';
duke@435 4799 }
duke@435 4800 return (int)n;
duke@435 4801 }
duke@435 4802
duke@435 4803 if (errno != 0)
duke@435 4804 {
duke@435 4805 /* C runtime error that has no corresponding DOS error code */
duke@435 4806 const char *s = strerror(errno);
duke@435 4807 size_t n = strlen(s);
duke@435 4808 if (n >= len) n = len - 1;
duke@435 4809 strncpy(buf, s, n);
duke@435 4810 buf[n] = '\0';
duke@435 4811 return (int)n;
duke@435 4812 }
duke@435 4813 return 0;
duke@435 4814 }
bobv@2036 4815
bobv@2036 4816
bobv@2036 4817 // We don't build a headless jre for Windows
bobv@2036 4818 bool os::is_headless_jre() { return false; }
bobv@2036 4819
ikrylov@2322 4820
ikrylov@2322 4821 typedef CRITICAL_SECTION mutex_t;
ikrylov@2322 4822 #define mutexInit(m) InitializeCriticalSection(m)
ikrylov@2322 4823 #define mutexDestroy(m) DeleteCriticalSection(m)
ikrylov@2322 4824 #define mutexLock(m) EnterCriticalSection(m)
ikrylov@2322 4825 #define mutexUnlock(m) LeaveCriticalSection(m)
ikrylov@2322 4826
zgu@3031 4827 static bool sock_initialized = FALSE;
ikrylov@2322 4828 static mutex_t sockFnTableMutex;
ikrylov@2322 4829
zgu@3031 4830 static void initSock() {
ikrylov@2322 4831 WSADATA wsadata;
ikrylov@2322 4832
zgu@3031 4833 if (!os::WinSock2Dll::WinSock2Available()) {
zgu@3031 4834 jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
zgu@3031 4835 ::GetLastError());
zgu@3031 4836 return;
zgu@3031 4837 }
zgu@3031 4838 if (sock_initialized == TRUE) return;
zgu@3031 4839
ikrylov@2322 4840 ::mutexInit(&sockFnTableMutex);
ikrylov@2322 4841 ::mutexLock(&sockFnTableMutex);
zgu@3031 4842 if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
zgu@3031 4843 jio_fprintf(stderr, "Could not initialize Winsock\n");
ikrylov@2322 4844 }
zgu@3031 4845 sock_initialized = TRUE;
ikrylov@2322 4846 ::mutexUnlock(&sockFnTableMutex);
ikrylov@2322 4847 }
ikrylov@2322 4848
ikrylov@2322 4849 struct hostent* os::get_host_by_name(char* name) {
zgu@3031 4850 if (!sock_initialized) {
zgu@3031 4851 initSock();
ikrylov@2322 4852 }
zgu@3031 4853 if (!os::WinSock2Dll::WinSock2Available()) {
zgu@3031 4854 return NULL;
zgu@3031 4855 }
zgu@3031 4856 return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
ikrylov@2322 4857 }
ikrylov@2322 4858
ikrylov@2322 4859
ikrylov@2322 4860 int os::socket_close(int fd) {
ikrylov@2322 4861 ShouldNotReachHere();
ikrylov@2322 4862 return 0;
ikrylov@2322 4863 }
ikrylov@2322 4864
ikrylov@2322 4865 int os::socket_available(int fd, jint *pbytes) {
ikrylov@2322 4866 ShouldNotReachHere();
ikrylov@2322 4867 return 0;
ikrylov@2322 4868 }
ikrylov@2322 4869
ikrylov@2322 4870 int os::socket(int domain, int type, int protocol) {
ikrylov@2322 4871 ShouldNotReachHere();
ikrylov@2322 4872 return 0;
ikrylov@2322 4873 }
ikrylov@2322 4874
ikrylov@2322 4875 int os::listen(int fd, int count) {
ikrylov@2322 4876 ShouldNotReachHere();
ikrylov@2322 4877 return 0;
ikrylov@2322 4878 }
ikrylov@2322 4879
ikrylov@2322 4880 int os::connect(int fd, struct sockaddr *him, int len) {
ikrylov@2322 4881 ShouldNotReachHere();
ikrylov@2322 4882 return 0;
ikrylov@2322 4883 }
ikrylov@2322 4884
ikrylov@2322 4885 int os::accept(int fd, struct sockaddr *him, int *len) {
ikrylov@2322 4886 ShouldNotReachHere();
ikrylov@2322 4887 return 0;
ikrylov@2322 4888 }
ikrylov@2322 4889
ikrylov@2322 4890 int os::sendto(int fd, char *buf, int len, int flags,
ikrylov@2322 4891 struct sockaddr *to, int tolen) {
ikrylov@2322 4892 ShouldNotReachHere();
ikrylov@2322 4893 return 0;
ikrylov@2322 4894 }
ikrylov@2322 4895
ikrylov@2322 4896 int os::recvfrom(int fd, char *buf, int nBytes, int flags,
ikrylov@2322 4897 sockaddr *from, int *fromlen) {
ikrylov@2322 4898 ShouldNotReachHere();
ikrylov@2322 4899 return 0;
ikrylov@2322 4900 }
ikrylov@2322 4901
ikrylov@2322 4902 int os::recv(int fd, char *buf, int nBytes, int flags) {
ikrylov@2322 4903 ShouldNotReachHere();
ikrylov@2322 4904 return 0;
ikrylov@2322 4905 }
ikrylov@2322 4906
ikrylov@2322 4907 int os::send(int fd, char *buf, int nBytes, int flags) {
ikrylov@2322 4908 ShouldNotReachHere();
ikrylov@2322 4909 return 0;
ikrylov@2322 4910 }
ikrylov@2322 4911
ikrylov@2322 4912 int os::raw_send(int fd, char *buf, int nBytes, int flags) {
ikrylov@2322 4913 ShouldNotReachHere();
ikrylov@2322 4914 return 0;
ikrylov@2322 4915 }
ikrylov@2322 4916
ikrylov@2322 4917 int os::timeout(int fd, long timeout) {
ikrylov@2322 4918 ShouldNotReachHere();
ikrylov@2322 4919 return 0;
ikrylov@2322 4920 }
ikrylov@2322 4921
ikrylov@2322 4922 int os::get_host_name(char* name, int namelen) {
ikrylov@2322 4923 ShouldNotReachHere();
ikrylov@2322 4924 return 0;
ikrylov@2322 4925 }
ikrylov@2322 4926
ikrylov@2322 4927 int os::socket_shutdown(int fd, int howto) {
ikrylov@2322 4928 ShouldNotReachHere();
ikrylov@2322 4929 return 0;
ikrylov@2322 4930 }
ikrylov@2322 4931
ikrylov@2322 4932 int os::bind(int fd, struct sockaddr *him, int len) {
ikrylov@2322 4933 ShouldNotReachHere();
ikrylov@2322 4934 return 0;
ikrylov@2322 4935 }
ikrylov@2322 4936
ikrylov@2322 4937 int os::get_sock_name(int fd, struct sockaddr *him, int *len) {
ikrylov@2322 4938 ShouldNotReachHere();
ikrylov@2322 4939 return 0;
ikrylov@2322 4940 }
ikrylov@2322 4941
ikrylov@2322 4942 int os::get_sock_opt(int fd, int level, int optname,
ikrylov@2322 4943 char *optval, int* optlen) {
ikrylov@2322 4944 ShouldNotReachHere();
ikrylov@2322 4945 return 0;
ikrylov@2322 4946 }
ikrylov@2322 4947
ikrylov@2322 4948 int os::set_sock_opt(int fd, int level, int optname,
ikrylov@2322 4949 const char *optval, int optlen) {
ikrylov@2322 4950 ShouldNotReachHere();
ikrylov@2322 4951 return 0;
ikrylov@2322 4952 }
zgu@3031 4953
zgu@3031 4954
zgu@3031 4955 // Kernel32 API
zgu@3031 4956 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
iveresov@3085 4957 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
iveresov@3085 4958 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
iveresov@3085 4959 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
iveresov@3085 4960
zgu@3031 4961 GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL;
iveresov@3085 4962 VirtualAllocExNuma_Fn os::Kernel32Dll::_VirtualAllocExNuma = NULL;
iveresov@3085 4963 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
iveresov@3085 4964 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
zgu@3031 4965 BOOL os::Kernel32Dll::initialized = FALSE;
zgu@3031 4966 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
zgu@3031 4967 assert(initialized && _GetLargePageMinimum != NULL,
zgu@3031 4968 "GetLargePageMinimumAvailable() not yet called");
zgu@3031 4969 return _GetLargePageMinimum();
zgu@3031 4970 }
zgu@3031 4971
zgu@3031 4972 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
zgu@3031 4973 if (!initialized) {
zgu@3031 4974 initialize();
zgu@3031 4975 }
zgu@3031 4976 return _GetLargePageMinimum != NULL;
zgu@3031 4977 }
zgu@3031 4978
iveresov@3085 4979 BOOL os::Kernel32Dll::NumaCallsAvailable() {
iveresov@3085 4980 if (!initialized) {
iveresov@3085 4981 initialize();
iveresov@3085 4982 }
iveresov@3085 4983 return _VirtualAllocExNuma != NULL;
iveresov@3085 4984 }
iveresov@3085 4985
iveresov@3085 4986 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
iveresov@3085 4987 assert(initialized && _VirtualAllocExNuma != NULL,
iveresov@3085 4988 "NUMACallsAvailable() not yet called");
iveresov@3085 4989
iveresov@3085 4990 return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
iveresov@3085 4991 }
iveresov@3085 4992
iveresov@3085 4993 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
iveresov@3085 4994 assert(initialized && _GetNumaHighestNodeNumber != NULL,
iveresov@3085 4995 "NUMACallsAvailable() not yet called");
iveresov@3085 4996
iveresov@3085 4997 return _GetNumaHighestNodeNumber(ptr_highest_node_number);
iveresov@3085 4998 }
iveresov@3085 4999
iveresov@3085 5000 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
iveresov@3085 5001 assert(initialized && _GetNumaNodeProcessorMask != NULL,
iveresov@3085 5002 "NUMACallsAvailable() not yet called");
iveresov@3085 5003
iveresov@3085 5004 return _GetNumaNodeProcessorMask(node, proc_mask);
iveresov@3085 5005 }
iveresov@3085 5006
iveresov@3085 5007
iveresov@3085 5008 void os::Kernel32Dll::initializeCommon() {
zgu@3031 5009 if (!initialized) {
zgu@3031 5010 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 5011 assert(handle != NULL, "Just check");
zgu@3031 5012 _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
iveresov@3085 5013 _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
iveresov@3085 5014 _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
iveresov@3085 5015 _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
zgu@3031 5016 initialized = TRUE;
zgu@3031 5017 }
zgu@3031 5018 }
zgu@3031 5019
zgu@3031 5020
iveresov@3085 5021
iveresov@3085 5022 #ifndef JDK6_OR_EARLIER
iveresov@3085 5023
iveresov@3085 5024 void os::Kernel32Dll::initialize() {
iveresov@3085 5025 initializeCommon();
iveresov@3085 5026 }
iveresov@3085 5027
iveresov@3085 5028
zgu@3031 5029 // Kernel32 API
zgu@3031 5030 inline BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 5031 return ::SwitchToThread();
zgu@3031 5032 }
zgu@3031 5033
zgu@3031 5034 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 5035 return true;
zgu@3031 5036 }
zgu@3031 5037
zgu@3031 5038 // Help tools
zgu@3031 5039 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5040 return true;
zgu@3031 5041 }
zgu@3031 5042
zgu@3031 5043 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5044 return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5045 }
zgu@3031 5046
zgu@3031 5047 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5048 return ::Module32First(hSnapshot, lpme);
zgu@3031 5049 }
zgu@3031 5050
zgu@3031 5051 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5052 return ::Module32Next(hSnapshot, lpme);
zgu@3031 5053 }
zgu@3031 5054
zgu@3031 5055
zgu@3031 5056 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5057 return true;
zgu@3031 5058 }
zgu@3031 5059
zgu@3031 5060 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5061 ::GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5062 }
zgu@3031 5063
zgu@3031 5064 // PSAPI API
zgu@3031 5065 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5066 return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5067 }
zgu@3031 5068
zgu@3031 5069 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5070 return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5071 }
zgu@3031 5072
zgu@3031 5073 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5074 return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5075 }
zgu@3031 5076
zgu@3031 5077 inline BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5078 return true;
zgu@3031 5079 }
zgu@3031 5080
zgu@3031 5081
zgu@3031 5082 // WinSock2 API
zgu@3031 5083 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5084 return ::WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5085 }
zgu@3031 5086
zgu@3031 5087 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5088 return ::gethostbyname(name);
zgu@3031 5089 }
zgu@3031 5090
zgu@3031 5091 inline BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5092 return true;
zgu@3031 5093 }
zgu@3031 5094
zgu@3031 5095 // Advapi API
zgu@3031 5096 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5097 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5098 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5099 return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5100 BufferLength, PreviousState, ReturnLength);
zgu@3031 5101 }
zgu@3031 5102
zgu@3031 5103 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5104 PHANDLE TokenHandle) {
zgu@3031 5105 return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5106 }
zgu@3031 5107
zgu@3031 5108 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5109 return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5110 }
zgu@3031 5111
zgu@3031 5112 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5113 return true;
zgu@3031 5114 }
zgu@3031 5115
zgu@3031 5116 #else
zgu@3031 5117 // Kernel32 API
zgu@3031 5118 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
zgu@3031 5119 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
zgu@3031 5120 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5121 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5122 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
zgu@3031 5123
zgu@3031 5124 SwitchToThread_Fn os::Kernel32Dll::_SwitchToThread = NULL;
zgu@3031 5125 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
zgu@3031 5126 Module32First_Fn os::Kernel32Dll::_Module32First = NULL;
zgu@3031 5127 Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL;
zgu@3031 5128 GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL;
zgu@3031 5129
iveresov@3085 5130
zgu@3031 5131 void os::Kernel32Dll::initialize() {
zgu@3031 5132 if (!initialized) {
zgu@3031 5133 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 5134 assert(handle != NULL, "Just check");
zgu@3031 5135
zgu@3031 5136 _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
zgu@3031 5137 _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
zgu@3031 5138 ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
zgu@3031 5139 _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
zgu@3031 5140 _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
zgu@3031 5141 _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
iveresov@3085 5142 initializeCommon(); // resolve the functions that always need resolving
zgu@3031 5143
zgu@3031 5144 initialized = TRUE;
zgu@3031 5145 }
zgu@3031 5146 }
zgu@3031 5147
zgu@3031 5148 BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 5149 assert(initialized && _SwitchToThread != NULL,
zgu@3031 5150 "SwitchToThreadAvailable() not yet called");
zgu@3031 5151 return _SwitchToThread();
zgu@3031 5152 }
zgu@3031 5153
zgu@3031 5154
zgu@3031 5155 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 5156 if (!initialized) {
zgu@3031 5157 initialize();
zgu@3031 5158 }
zgu@3031 5159 return _SwitchToThread != NULL;
zgu@3031 5160 }
zgu@3031 5161
zgu@3031 5162 // Help tools
zgu@3031 5163 BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5164 if (!initialized) {
zgu@3031 5165 initialize();
zgu@3031 5166 }
zgu@3031 5167 return _CreateToolhelp32Snapshot != NULL &&
zgu@3031 5168 _Module32First != NULL &&
zgu@3031 5169 _Module32Next != NULL;
zgu@3031 5170 }
zgu@3031 5171
zgu@3031 5172 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5173 assert(initialized && _CreateToolhelp32Snapshot != NULL,
zgu@3031 5174 "HelpToolsAvailable() not yet called");
zgu@3031 5175
zgu@3031 5176 return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5177 }
zgu@3031 5178
zgu@3031 5179 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5180 assert(initialized && _Module32First != NULL,
zgu@3031 5181 "HelpToolsAvailable() not yet called");
zgu@3031 5182
zgu@3031 5183 return _Module32First(hSnapshot, lpme);
zgu@3031 5184 }
zgu@3031 5185
zgu@3031 5186 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5187 assert(initialized && _Module32Next != NULL,
zgu@3031 5188 "HelpToolsAvailable() not yet called");
zgu@3031 5189
zgu@3031 5190 return _Module32Next(hSnapshot, lpme);
zgu@3031 5191 }
zgu@3031 5192
zgu@3031 5193
zgu@3031 5194 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5195 if (!initialized) {
zgu@3031 5196 initialize();
zgu@3031 5197 }
zgu@3031 5198 return _GetNativeSystemInfo != NULL;
zgu@3031 5199 }
zgu@3031 5200
zgu@3031 5201 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5202 assert(initialized && _GetNativeSystemInfo != NULL,
zgu@3031 5203 "GetNativeSystemInfoAvailable() not yet called");
zgu@3031 5204
zgu@3031 5205 _GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5206 }
zgu@3031 5207
iveresov@3085 5208
iveresov@3085 5209
zgu@3031 5210 // PSAPI API
zgu@3031 5211
zgu@3031 5212
zgu@3031 5213 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
zgu@3031 5214 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
zgu@3031 5215 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
zgu@3031 5216
zgu@3031 5217 EnumProcessModules_Fn os::PSApiDll::_EnumProcessModules = NULL;
zgu@3031 5218 GetModuleFileNameEx_Fn os::PSApiDll::_GetModuleFileNameEx = NULL;
zgu@3031 5219 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
zgu@3031 5220 BOOL os::PSApiDll::initialized = FALSE;
zgu@3031 5221
zgu@3031 5222 void os::PSApiDll::initialize() {
zgu@3031 5223 if (!initialized) {
zgu@3031 5224 HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
zgu@3031 5225 if (handle != NULL) {
zgu@3031 5226 _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
zgu@3031 5227 "EnumProcessModules");
zgu@3031 5228 _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
zgu@3031 5229 "GetModuleFileNameExA");
zgu@3031 5230 _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
zgu@3031 5231 "GetModuleInformation");
zgu@3031 5232 }
zgu@3031 5233 initialized = TRUE;
zgu@3031 5234 }
zgu@3031 5235 }
zgu@3031 5236
zgu@3031 5237
zgu@3031 5238
zgu@3031 5239 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5240 assert(initialized && _EnumProcessModules != NULL,
zgu@3031 5241 "PSApiAvailable() not yet called");
zgu@3031 5242 return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5243 }
zgu@3031 5244
zgu@3031 5245 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5246 assert(initialized && _GetModuleFileNameEx != NULL,
zgu@3031 5247 "PSApiAvailable() not yet called");
zgu@3031 5248 return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5249 }
zgu@3031 5250
zgu@3031 5251 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5252 assert(initialized && _GetModuleInformation != NULL,
zgu@3031 5253 "PSApiAvailable() not yet called");
zgu@3031 5254 return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5255 }
zgu@3031 5256
zgu@3031 5257 BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5258 if (!initialized) {
zgu@3031 5259 initialize();
zgu@3031 5260 }
zgu@3031 5261 return _EnumProcessModules != NULL &&
zgu@3031 5262 _GetModuleFileNameEx != NULL &&
zgu@3031 5263 _GetModuleInformation != NULL;
zgu@3031 5264 }
zgu@3031 5265
zgu@3031 5266
zgu@3031 5267 // WinSock2 API
zgu@3031 5268 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
zgu@3031 5269 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
zgu@3031 5270
zgu@3031 5271 WSAStartup_Fn os::WinSock2Dll::_WSAStartup = NULL;
zgu@3031 5272 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
zgu@3031 5273 BOOL os::WinSock2Dll::initialized = FALSE;
zgu@3031 5274
zgu@3031 5275 void os::WinSock2Dll::initialize() {
zgu@3031 5276 if (!initialized) {
zgu@3031 5277 HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
zgu@3031 5278 if (handle != NULL) {
zgu@3031 5279 _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
zgu@3031 5280 _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
zgu@3031 5281 }
zgu@3031 5282 initialized = TRUE;
zgu@3031 5283 }
zgu@3031 5284 }
zgu@3031 5285
zgu@3031 5286
zgu@3031 5287 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5288 assert(initialized && _WSAStartup != NULL,
zgu@3031 5289 "WinSock2Available() not yet called");
zgu@3031 5290 return _WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5291 }
zgu@3031 5292
zgu@3031 5293 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5294 assert(initialized && _gethostbyname != NULL,
zgu@3031 5295 "WinSock2Available() not yet called");
zgu@3031 5296 return _gethostbyname(name);
zgu@3031 5297 }
zgu@3031 5298
zgu@3031 5299 BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5300 if (!initialized) {
zgu@3031 5301 initialize();
zgu@3031 5302 }
zgu@3031 5303 return _WSAStartup != NULL &&
zgu@3031 5304 _gethostbyname != NULL;
zgu@3031 5305 }
zgu@3031 5306
zgu@3031 5307 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
zgu@3031 5308 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
zgu@3031 5309 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
zgu@3031 5310
zgu@3031 5311 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
zgu@3031 5312 OpenProcessToken_Fn os::Advapi32Dll::_OpenProcessToken = NULL;
zgu@3031 5313 LookupPrivilegeValue_Fn os::Advapi32Dll::_LookupPrivilegeValue = NULL;
zgu@3031 5314 BOOL os::Advapi32Dll::initialized = FALSE;
zgu@3031 5315
zgu@3031 5316 void os::Advapi32Dll::initialize() {
zgu@3031 5317 if (!initialized) {
zgu@3031 5318 HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
zgu@3031 5319 if (handle != NULL) {
zgu@3031 5320 _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
zgu@3031 5321 "AdjustTokenPrivileges");
zgu@3031 5322 _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
zgu@3031 5323 "OpenProcessToken");
zgu@3031 5324 _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
zgu@3032 5325 "LookupPrivilegeValueA");
zgu@3031 5326 }
zgu@3031 5327 initialized = TRUE;
zgu@3031 5328 }
zgu@3031 5329 }
zgu@3031 5330
zgu@3031 5331 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5332 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5333 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5334 assert(initialized && _AdjustTokenPrivileges != NULL,
zgu@3031 5335 "AdvapiAvailable() not yet called");
zgu@3031 5336 return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5337 BufferLength, PreviousState, ReturnLength);
zgu@3031 5338 }
zgu@3031 5339
zgu@3031 5340 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5341 PHANDLE TokenHandle) {
zgu@3031 5342 assert(initialized && _OpenProcessToken != NULL,
zgu@3031 5343 "AdvapiAvailable() not yet called");
zgu@3031 5344 return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5345 }
zgu@3031 5346
zgu@3031 5347 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5348 assert(initialized && _LookupPrivilegeValue != NULL,
zgu@3031 5349 "AdvapiAvailable() not yet called");
zgu@3031 5350 return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5351 }
zgu@3031 5352
zgu@3031 5353 BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5354 if (!initialized) {
zgu@3031 5355 initialize();
zgu@3031 5356 }
zgu@3031 5357 return _AdjustTokenPrivileges != NULL &&
zgu@3031 5358 _OpenProcessToken != NULL &&
zgu@3031 5359 _LookupPrivilegeValue != NULL;
zgu@3031 5360 }
zgu@3031 5361
zgu@3031 5362 #endif
zgu@3031 5363

mercurial