src/os/windows/vm/os_windows.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3829
de909f001528
child 4136
bf2edd3c9b0f
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

duke@435 1 /*
never@3499 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
sla@2588 25 // Must be at least Windows 2000 or XP to use VectoredExceptions and IsDebuggerPresent
duke@435 26 #define _WIN32_WINNT 0x500
duke@435 27
stefank@2314 28 // no precompiled headers
stefank@2314 29 #include "classfile/classLoader.hpp"
stefank@2314 30 #include "classfile/systemDictionary.hpp"
stefank@2314 31 #include "classfile/vmSymbols.hpp"
stefank@2314 32 #include "code/icBuffer.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "interpreter/interpreter.hpp"
stefank@2314 36 #include "jvm_windows.h"
stefank@2314 37 #include "memory/allocation.inline.hpp"
stefank@2314 38 #include "memory/filemap.hpp"
stefank@2314 39 #include "mutex_windows.inline.hpp"
stefank@2314 40 #include "oops/oop.inline.hpp"
stefank@2314 41 #include "os_share_windows.hpp"
stefank@2314 42 #include "prims/jniFastGetField.hpp"
stefank@2314 43 #include "prims/jvm.h"
stefank@2314 44 #include "prims/jvm_misc.hpp"
stefank@2314 45 #include "runtime/arguments.hpp"
stefank@2314 46 #include "runtime/extendedPC.hpp"
stefank@2314 47 #include "runtime/globals.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/java.hpp"
stefank@2314 50 #include "runtime/javaCalls.hpp"
stefank@2314 51 #include "runtime/mutexLocker.hpp"
stefank@2314 52 #include "runtime/objectMonitor.hpp"
stefank@2314 53 #include "runtime/osThread.hpp"
stefank@2314 54 #include "runtime/perfMemory.hpp"
stefank@2314 55 #include "runtime/sharedRuntime.hpp"
stefank@2314 56 #include "runtime/statSampler.hpp"
stefank@2314 57 #include "runtime/stubRoutines.hpp"
stefank@2314 58 #include "runtime/threadCritical.hpp"
stefank@2314 59 #include "runtime/timer.hpp"
stefank@2314 60 #include "services/attachListener.hpp"
stefank@2314 61 #include "services/runtimeService.hpp"
stefank@2314 62 #include "thread_windows.inline.hpp"
zgu@2364 63 #include "utilities/decoder.hpp"
stefank@2314 64 #include "utilities/defaultStream.hpp"
stefank@2314 65 #include "utilities/events.hpp"
stefank@2314 66 #include "utilities/growableArray.hpp"
stefank@2314 67 #include "utilities/vmError.hpp"
stefank@2314 68 #ifdef TARGET_ARCH_x86
stefank@2314 69 # include "assembler_x86.inline.hpp"
stefank@2314 70 # include "nativeInst_x86.hpp"
stefank@2314 71 #endif
stefank@2314 72 #ifdef COMPILER1
stefank@2314 73 #include "c1/c1_Runtime1.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef COMPILER2
stefank@2314 76 #include "opto/runtime.hpp"
stefank@2314 77 #endif
duke@435 78
duke@435 79 #ifdef _DEBUG
duke@435 80 #include <crtdbg.h>
duke@435 81 #endif
duke@435 82
duke@435 83
duke@435 84 #include <windows.h>
duke@435 85 #include <sys/types.h>
duke@435 86 #include <sys/stat.h>
duke@435 87 #include <sys/timeb.h>
duke@435 88 #include <objidl.h>
duke@435 89 #include <shlobj.h>
duke@435 90
duke@435 91 #include <malloc.h>
duke@435 92 #include <signal.h>
duke@435 93 #include <direct.h>
duke@435 94 #include <errno.h>
duke@435 95 #include <fcntl.h>
duke@435 96 #include <io.h>
duke@435 97 #include <process.h> // For _beginthreadex(), _endthreadex()
duke@435 98 #include <imagehlp.h> // For os::dll_address_to_function_name
duke@435 99 /* for enumerating dll libraries */
duke@435 100 #include <vdmdbg.h>
duke@435 101
duke@435 102 // for timer info max values which include all bits
duke@435 103 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 104
duke@435 105 // For DLL loading/load error detection
duke@435 106 // Values of PE COFF
duke@435 107 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
duke@435 108 #define IMAGE_FILE_SIGNATURE_LENGTH 4
duke@435 109
duke@435 110 static HANDLE main_process;
duke@435 111 static HANDLE main_thread;
duke@435 112 static int main_thread_id;
duke@435 113
duke@435 114 static FILETIME process_creation_time;
duke@435 115 static FILETIME process_exit_time;
duke@435 116 static FILETIME process_user_time;
duke@435 117 static FILETIME process_kernel_time;
duke@435 118
duke@435 119 #ifdef _WIN64
duke@435 120 PVOID topLevelVectoredExceptionHandler = NULL;
duke@435 121 #endif
duke@435 122
duke@435 123 #ifdef _M_IA64
duke@435 124 #define __CPU__ ia64
duke@435 125 #elif _M_AMD64
duke@435 126 #define __CPU__ amd64
duke@435 127 #else
duke@435 128 #define __CPU__ i486
duke@435 129 #endif
duke@435 130
duke@435 131 // save DLL module handle, used by GetModuleFileName
duke@435 132
duke@435 133 HINSTANCE vm_lib_handle;
duke@435 134
duke@435 135 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
duke@435 136 switch (reason) {
duke@435 137 case DLL_PROCESS_ATTACH:
duke@435 138 vm_lib_handle = hinst;
duke@435 139 if(ForceTimeHighResolution)
duke@435 140 timeBeginPeriod(1L);
duke@435 141 break;
duke@435 142 case DLL_PROCESS_DETACH:
duke@435 143 if(ForceTimeHighResolution)
duke@435 144 timeEndPeriod(1L);
duke@435 145 #ifdef _WIN64
duke@435 146 if (topLevelVectoredExceptionHandler != NULL) {
duke@435 147 RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
duke@435 148 topLevelVectoredExceptionHandler = NULL;
duke@435 149 }
duke@435 150 #endif
duke@435 151 break;
duke@435 152 default:
duke@435 153 break;
duke@435 154 }
duke@435 155 return true;
duke@435 156 }
duke@435 157
duke@435 158 static inline double fileTimeAsDouble(FILETIME* time) {
duke@435 159 const double high = (double) ((unsigned int) ~0);
duke@435 160 const double split = 10000000.0;
duke@435 161 double result = (time->dwLowDateTime / split) +
duke@435 162 time->dwHighDateTime * (high/split);
duke@435 163 return result;
duke@435 164 }
duke@435 165
duke@435 166 // Implementation of os
duke@435 167
duke@435 168 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 169 int result = GetEnvironmentVariable(name, buffer, len);
duke@435 170 return result > 0 && result < len;
duke@435 171 }
duke@435 172
duke@435 173
duke@435 174 // No setuid programs under Windows.
duke@435 175 bool os::have_special_privileges() {
duke@435 176 return false;
duke@435 177 }
duke@435 178
duke@435 179
duke@435 180 // This method is a periodic task to check for misbehaving JNI applications
duke@435 181 // under CheckJNI, we can add any periodic checks here.
duke@435 182 // For Windows at the moment does nothing
duke@435 183 void os::run_periodic_checks() {
duke@435 184 return;
duke@435 185 }
duke@435 186
duke@435 187 #ifndef _WIN64
dcubed@1649 188 // previous UnhandledExceptionFilter, if there is one
dcubed@1649 189 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
dcubed@1649 190
duke@435 191 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 192 #endif
duke@435 193 void os::init_system_properties_values() {
duke@435 194 /* sysclasspath, java_home, dll_dir */
duke@435 195 {
duke@435 196 char *home_path;
duke@435 197 char *dll_path;
duke@435 198 char *pslash;
duke@435 199 char *bin = "\\bin";
duke@435 200 char home_dir[MAX_PATH];
duke@435 201
duke@435 202 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
duke@435 203 os::jvm_path(home_dir, sizeof(home_dir));
duke@435 204 // Found the full path to jvm[_g].dll.
duke@435 205 // Now cut the path to <java_home>/jre if we can.
duke@435 206 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
duke@435 207 pslash = strrchr(home_dir, '\\');
duke@435 208 if (pslash != NULL) {
duke@435 209 *pslash = '\0'; /* get rid of \{client|server} */
duke@435 210 pslash = strrchr(home_dir, '\\');
duke@435 211 if (pslash != NULL)
duke@435 212 *pslash = '\0'; /* get rid of \bin */
duke@435 213 }
duke@435 214 }
duke@435 215
zgu@3900 216 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
duke@435 217 if (home_path == NULL)
duke@435 218 return;
duke@435 219 strcpy(home_path, home_dir);
duke@435 220 Arguments::set_java_home(home_path);
duke@435 221
zgu@3900 222 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
duke@435 223 if (dll_path == NULL)
duke@435 224 return;
duke@435 225 strcpy(dll_path, home_dir);
duke@435 226 strcat(dll_path, bin);
duke@435 227 Arguments::set_dll_dir(dll_path);
duke@435 228
duke@435 229 if (!set_boot_path('\\', ';'))
duke@435 230 return;
duke@435 231 }
duke@435 232
duke@435 233 /* library_path */
duke@435 234 #define EXT_DIR "\\lib\\ext"
duke@435 235 #define BIN_DIR "\\bin"
duke@435 236 #define PACKAGE_DIR "\\Sun\\Java"
duke@435 237 {
duke@435 238 /* Win32 library search order (See the documentation for LoadLibrary):
duke@435 239 *
duke@435 240 * 1. The directory from which application is loaded.
zgu@3031 241 * 2. The system wide Java Extensions directory (Java only)
zgu@3031 242 * 3. System directory (GetSystemDirectory)
zgu@3031 243 * 4. Windows directory (GetWindowsDirectory)
zgu@3031 244 * 5. The PATH environment variable
zgu@3031 245 * 6. The current directory
duke@435 246 */
duke@435 247
duke@435 248 char *library_path;
duke@435 249 char tmp[MAX_PATH];
duke@435 250 char *path_str = ::getenv("PATH");
duke@435 251
duke@435 252 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
zgu@3900 253 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
duke@435 254
duke@435 255 library_path[0] = '\0';
duke@435 256
duke@435 257 GetModuleFileName(NULL, tmp, sizeof(tmp));
duke@435 258 *(strrchr(tmp, '\\')) = '\0';
duke@435 259 strcat(library_path, tmp);
duke@435 260
duke@435 261 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 262 strcat(library_path, ";");
duke@435 263 strcat(library_path, tmp);
duke@435 264 strcat(library_path, PACKAGE_DIR BIN_DIR);
duke@435 265
duke@435 266 GetSystemDirectory(tmp, sizeof(tmp));
duke@435 267 strcat(library_path, ";");
duke@435 268 strcat(library_path, tmp);
duke@435 269
duke@435 270 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 271 strcat(library_path, ";");
duke@435 272 strcat(library_path, tmp);
duke@435 273
duke@435 274 if (path_str) {
duke@435 275 strcat(library_path, ";");
duke@435 276 strcat(library_path, path_str);
duke@435 277 }
duke@435 278
zgu@3031 279 strcat(library_path, ";.");
zgu@3031 280
duke@435 281 Arguments::set_library_path(library_path);
zgu@3900 282 FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
duke@435 283 }
duke@435 284
duke@435 285 /* Default extensions directory */
duke@435 286 {
duke@435 287 char path[MAX_PATH];
duke@435 288 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
duke@435 289 GetWindowsDirectory(path, MAX_PATH);
duke@435 290 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
duke@435 291 path, PACKAGE_DIR, EXT_DIR);
duke@435 292 Arguments::set_ext_dirs(buf);
duke@435 293 }
duke@435 294 #undef EXT_DIR
duke@435 295 #undef BIN_DIR
duke@435 296 #undef PACKAGE_DIR
duke@435 297
duke@435 298 /* Default endorsed standards directory. */
duke@435 299 {
duke@435 300 #define ENDORSED_DIR "\\lib\\endorsed"
duke@435 301 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
zgu@3900 302 char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
duke@435 303 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
duke@435 304 Arguments::set_endorsed_dirs(buf);
duke@435 305 #undef ENDORSED_DIR
duke@435 306 }
duke@435 307
duke@435 308 #ifndef _WIN64
dcubed@1649 309 // set our UnhandledExceptionFilter and save any previous one
dcubed@1649 310 prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
duke@435 311 #endif
duke@435 312
duke@435 313 // Done
duke@435 314 return;
duke@435 315 }
duke@435 316
duke@435 317 void os::breakpoint() {
duke@435 318 DebugBreak();
duke@435 319 }
duke@435 320
duke@435 321 // Invoked from the BREAKPOINT Macro
duke@435 322 extern "C" void breakpoint() {
duke@435 323 os::breakpoint();
duke@435 324 }
duke@435 325
zgu@3900 326 /*
zgu@3900 327 * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
zgu@3900 328 * So far, this method is only used by Native Memory Tracking, which is
zgu@3900 329 * only supported on Windows XP or later.
zgu@3900 330 */
zgu@3900 331 address os::get_caller_pc(int n) {
zgu@3900 332 #ifdef _NMT_NOINLINE_
zgu@3900 333 n ++;
zgu@3900 334 #endif
zgu@3900 335 address pc;
zgu@3900 336 if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
zgu@3900 337 return pc;
zgu@3900 338 }
zgu@3900 339 return NULL;
zgu@3900 340 }
zgu@3900 341
zgu@3900 342
duke@435 343 // os::current_stack_base()
duke@435 344 //
duke@435 345 // Returns the base of the stack, which is the stack's
duke@435 346 // starting address. This function must be called
duke@435 347 // while running on the stack of the thread being queried.
duke@435 348
duke@435 349 address os::current_stack_base() {
duke@435 350 MEMORY_BASIC_INFORMATION minfo;
duke@435 351 address stack_bottom;
duke@435 352 size_t stack_size;
duke@435 353
duke@435 354 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 355 stack_bottom = (address)minfo.AllocationBase;
duke@435 356 stack_size = minfo.RegionSize;
duke@435 357
duke@435 358 // Add up the sizes of all the regions with the same
duke@435 359 // AllocationBase.
duke@435 360 while( 1 )
duke@435 361 {
duke@435 362 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
duke@435 363 if ( stack_bottom == (address)minfo.AllocationBase )
duke@435 364 stack_size += minfo.RegionSize;
duke@435 365 else
duke@435 366 break;
duke@435 367 }
duke@435 368
duke@435 369 #ifdef _M_IA64
duke@435 370 // IA64 has memory and register stacks
duke@435 371 stack_size = stack_size / 2;
duke@435 372 #endif
duke@435 373 return stack_bottom + stack_size;
duke@435 374 }
duke@435 375
duke@435 376 size_t os::current_stack_size() {
duke@435 377 size_t sz;
duke@435 378 MEMORY_BASIC_INFORMATION minfo;
duke@435 379 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 380 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
duke@435 381 return sz;
duke@435 382 }
duke@435 383
ysr@983 384 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 385 const struct tm* time_struct_ptr = localtime(clock);
ysr@983 386 if (time_struct_ptr != NULL) {
ysr@983 387 *res = *time_struct_ptr;
ysr@983 388 return res;
ysr@983 389 }
ysr@983 390 return NULL;
ysr@983 391 }
duke@435 392
duke@435 393 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 394
duke@435 395 // Thread start routine for all new Java threads
duke@435 396 static unsigned __stdcall java_start(Thread* thread) {
duke@435 397 // Try to randomize the cache line index of hot stack frames.
duke@435 398 // This helps when threads of the same stack traces evict each other's
duke@435 399 // cache lines. The threads can be either from the same JVM instance, or
duke@435 400 // from different JVM instances. The benefit is especially true for
duke@435 401 // processors with hyperthreading technology.
duke@435 402 static int counter = 0;
duke@435 403 int pid = os::current_process_id();
duke@435 404 _alloca(((pid ^ counter++) & 7) * 128);
duke@435 405
duke@435 406 OSThread* osthr = thread->osthread();
duke@435 407 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 408
duke@435 409 if (UseNUMA) {
duke@435 410 int lgrp_id = os::numa_get_group_id();
duke@435 411 if (lgrp_id != -1) {
duke@435 412 thread->set_lgrp_id(lgrp_id);
duke@435 413 }
duke@435 414 }
duke@435 415
duke@435 416
duke@435 417 if (UseVectoredExceptions) {
duke@435 418 // If we are using vectored exception we don't need to set a SEH
duke@435 419 thread->run();
duke@435 420 }
duke@435 421 else {
duke@435 422 // Install a win32 structured exception handler around every thread created
duke@435 423 // by VM, so VM can genrate error dump when an exception occurred in non-
duke@435 424 // Java thread (e.g. VM thread).
duke@435 425 __try {
duke@435 426 thread->run();
duke@435 427 } __except(topLevelExceptionFilter(
duke@435 428 (_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 429 // Nothing to do.
duke@435 430 }
duke@435 431 }
duke@435 432
duke@435 433 // One less thread is executing
duke@435 434 // When the VMThread gets here, the main thread may have already exited
duke@435 435 // which frees the CodeHeap containing the Atomic::add code
duke@435 436 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 437 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 438 }
duke@435 439
duke@435 440 return 0;
duke@435 441 }
duke@435 442
duke@435 443 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
duke@435 444 // Allocate the OSThread object
duke@435 445 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 446 if (osthread == NULL) return NULL;
duke@435 447
duke@435 448 // Initialize support for Java interrupts
duke@435 449 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 450 if (interrupt_event == NULL) {
duke@435 451 delete osthread;
duke@435 452 return NULL;
duke@435 453 }
duke@435 454 osthread->set_interrupt_event(interrupt_event);
duke@435 455
duke@435 456 // Store info on the Win32 thread into the OSThread
duke@435 457 osthread->set_thread_handle(thread_handle);
duke@435 458 osthread->set_thread_id(thread_id);
duke@435 459
duke@435 460 if (UseNUMA) {
duke@435 461 int lgrp_id = os::numa_get_group_id();
duke@435 462 if (lgrp_id != -1) {
duke@435 463 thread->set_lgrp_id(lgrp_id);
duke@435 464 }
duke@435 465 }
duke@435 466
duke@435 467 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 468 osthread->set_state(INITIALIZED);
duke@435 469
duke@435 470 return osthread;
duke@435 471 }
duke@435 472
duke@435 473
duke@435 474 bool os::create_attached_thread(JavaThread* thread) {
duke@435 475 #ifdef ASSERT
duke@435 476 thread->verify_not_published();
duke@435 477 #endif
duke@435 478 HANDLE thread_h;
duke@435 479 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
duke@435 480 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
duke@435 481 fatal("DuplicateHandle failed\n");
duke@435 482 }
duke@435 483 OSThread* osthread = create_os_thread(thread, thread_h,
duke@435 484 (int)current_thread_id());
duke@435 485 if (osthread == NULL) {
duke@435 486 return false;
duke@435 487 }
duke@435 488
duke@435 489 // Initial thread state is RUNNABLE
duke@435 490 osthread->set_state(RUNNABLE);
duke@435 491
duke@435 492 thread->set_osthread(osthread);
duke@435 493 return true;
duke@435 494 }
duke@435 495
duke@435 496 bool os::create_main_thread(JavaThread* thread) {
duke@435 497 #ifdef ASSERT
duke@435 498 thread->verify_not_published();
duke@435 499 #endif
duke@435 500 if (_starting_thread == NULL) {
duke@435 501 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
duke@435 502 if (_starting_thread == NULL) {
duke@435 503 return false;
duke@435 504 }
duke@435 505 }
duke@435 506
duke@435 507 // The primordial thread is runnable from the start)
duke@435 508 _starting_thread->set_state(RUNNABLE);
duke@435 509
duke@435 510 thread->set_osthread(_starting_thread);
duke@435 511 return true;
duke@435 512 }
duke@435 513
duke@435 514 // Allocate and initialize a new OSThread
duke@435 515 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 516 unsigned thread_id;
duke@435 517
duke@435 518 // Allocate the OSThread object
duke@435 519 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 520 if (osthread == NULL) {
duke@435 521 return false;
duke@435 522 }
duke@435 523
duke@435 524 // Initialize support for Java interrupts
duke@435 525 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 526 if (interrupt_event == NULL) {
duke@435 527 delete osthread;
duke@435 528 return NULL;
duke@435 529 }
duke@435 530 osthread->set_interrupt_event(interrupt_event);
duke@435 531 osthread->set_interrupted(false);
duke@435 532
duke@435 533 thread->set_osthread(osthread);
duke@435 534
duke@435 535 if (stack_size == 0) {
duke@435 536 switch (thr_type) {
duke@435 537 case os::java_thread:
duke@435 538 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 539 if (JavaThread::stack_size_at_create() > 0)
duke@435 540 stack_size = JavaThread::stack_size_at_create();
duke@435 541 break;
duke@435 542 case os::compiler_thread:
duke@435 543 if (CompilerThreadStackSize > 0) {
duke@435 544 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 545 break;
duke@435 546 } // else fall through:
duke@435 547 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 548 case os::vm_thread:
duke@435 549 case os::pgc_thread:
duke@435 550 case os::cgc_thread:
duke@435 551 case os::watcher_thread:
duke@435 552 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 553 break;
duke@435 554 }
duke@435 555 }
duke@435 556
duke@435 557 // Create the Win32 thread
duke@435 558 //
duke@435 559 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
duke@435 560 // does not specify stack size. Instead, it specifies the size of
duke@435 561 // initially committed space. The stack size is determined by
duke@435 562 // PE header in the executable. If the committed "stack_size" is larger
duke@435 563 // than default value in the PE header, the stack is rounded up to the
duke@435 564 // nearest multiple of 1MB. For example if the launcher has default
duke@435 565 // stack size of 320k, specifying any size less than 320k does not
duke@435 566 // affect the actual stack size at all, it only affects the initial
duke@435 567 // commitment. On the other hand, specifying 'stack_size' larger than
duke@435 568 // default value may cause significant increase in memory usage, because
duke@435 569 // not only the stack space will be rounded up to MB, but also the
duke@435 570 // entire space is committed upfront.
duke@435 571 //
duke@435 572 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
duke@435 573 // for CreateThread() that can treat 'stack_size' as stack size. However we
duke@435 574 // are not supposed to call CreateThread() directly according to MSDN
duke@435 575 // document because JVM uses C runtime library. The good news is that the
duke@435 576 // flag appears to work with _beginthredex() as well.
duke@435 577
duke@435 578 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
duke@435 579 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
duke@435 580 #endif
duke@435 581
duke@435 582 HANDLE thread_handle =
duke@435 583 (HANDLE)_beginthreadex(NULL,
duke@435 584 (unsigned)stack_size,
duke@435 585 (unsigned (__stdcall *)(void*)) java_start,
duke@435 586 thread,
duke@435 587 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
duke@435 588 &thread_id);
duke@435 589 if (thread_handle == NULL) {
duke@435 590 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
duke@435 591 // without the flag.
duke@435 592 thread_handle =
duke@435 593 (HANDLE)_beginthreadex(NULL,
duke@435 594 (unsigned)stack_size,
duke@435 595 (unsigned (__stdcall *)(void*)) java_start,
duke@435 596 thread,
duke@435 597 CREATE_SUSPENDED,
duke@435 598 &thread_id);
duke@435 599 }
duke@435 600 if (thread_handle == NULL) {
duke@435 601 // Need to clean up stuff we've allocated so far
duke@435 602 CloseHandle(osthread->interrupt_event());
duke@435 603 thread->set_osthread(NULL);
duke@435 604 delete osthread;
duke@435 605 return NULL;
duke@435 606 }
duke@435 607
duke@435 608 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 609
duke@435 610 // Store info on the Win32 thread into the OSThread
duke@435 611 osthread->set_thread_handle(thread_handle);
duke@435 612 osthread->set_thread_id(thread_id);
duke@435 613
duke@435 614 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 615 osthread->set_state(INITIALIZED);
duke@435 616
duke@435 617 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 618 return true;
duke@435 619 }
duke@435 620
duke@435 621
duke@435 622 // Free Win32 resources related to the OSThread
duke@435 623 void os::free_thread(OSThread* osthread) {
duke@435 624 assert(osthread != NULL, "osthread not set");
duke@435 625 CloseHandle(osthread->thread_handle());
duke@435 626 CloseHandle(osthread->interrupt_event());
duke@435 627 delete osthread;
duke@435 628 }
duke@435 629
duke@435 630
duke@435 631 static int has_performance_count = 0;
duke@435 632 static jlong first_filetime;
duke@435 633 static jlong initial_performance_count;
duke@435 634 static jlong performance_frequency;
duke@435 635
duke@435 636
duke@435 637 jlong as_long(LARGE_INTEGER x) {
duke@435 638 jlong result = 0; // initialization to avoid warning
duke@435 639 set_high(&result, x.HighPart);
duke@435 640 set_low(&result, x.LowPart);
duke@435 641 return result;
duke@435 642 }
duke@435 643
duke@435 644
duke@435 645 jlong os::elapsed_counter() {
duke@435 646 LARGE_INTEGER count;
duke@435 647 if (has_performance_count) {
duke@435 648 QueryPerformanceCounter(&count);
duke@435 649 return as_long(count) - initial_performance_count;
duke@435 650 } else {
duke@435 651 FILETIME wt;
duke@435 652 GetSystemTimeAsFileTime(&wt);
duke@435 653 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
duke@435 654 }
duke@435 655 }
duke@435 656
duke@435 657
duke@435 658 jlong os::elapsed_frequency() {
duke@435 659 if (has_performance_count) {
duke@435 660 return performance_frequency;
duke@435 661 } else {
duke@435 662 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
duke@435 663 return 10000000;
duke@435 664 }
duke@435 665 }
duke@435 666
duke@435 667
duke@435 668 julong os::available_memory() {
duke@435 669 return win32::available_memory();
duke@435 670 }
duke@435 671
duke@435 672 julong os::win32::available_memory() {
poonam@1312 673 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 674 // value if total memory is larger than 4GB
poonam@1312 675 MEMORYSTATUSEX ms;
poonam@1312 676 ms.dwLength = sizeof(ms);
poonam@1312 677 GlobalMemoryStatusEx(&ms);
poonam@1312 678
poonam@1312 679 return (julong)ms.ullAvailPhys;
duke@435 680 }
duke@435 681
duke@435 682 julong os::physical_memory() {
duke@435 683 return win32::physical_memory();
duke@435 684 }
duke@435 685
duke@435 686 julong os::allocatable_physical_memory(julong size) {
phh@455 687 #ifdef _LP64
phh@455 688 return size;
phh@455 689 #else
phh@455 690 // Limit to 1400m because of the 2gb address space wall
duke@435 691 return MIN2(size, (julong)1400*M);
phh@455 692 #endif
duke@435 693 }
duke@435 694
duke@435 695 // VC6 lacks DWORD_PTR
duke@435 696 #if _MSC_VER < 1300
duke@435 697 typedef UINT_PTR DWORD_PTR;
duke@435 698 #endif
duke@435 699
duke@435 700 int os::active_processor_count() {
duke@435 701 DWORD_PTR lpProcessAffinityMask = 0;
duke@435 702 DWORD_PTR lpSystemAffinityMask = 0;
duke@435 703 int proc_count = processor_count();
duke@435 704 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
duke@435 705 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
duke@435 706 // Nof active processors is number of bits in process affinity mask
duke@435 707 int bitcount = 0;
duke@435 708 while (lpProcessAffinityMask != 0) {
duke@435 709 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
duke@435 710 bitcount++;
duke@435 711 }
duke@435 712 return bitcount;
duke@435 713 } else {
duke@435 714 return proc_count;
duke@435 715 }
duke@435 716 }
duke@435 717
dcubed@3202 718 void os::set_native_thread_name(const char *name) {
dcubed@3202 719 // Not yet implemented.
dcubed@3202 720 return;
dcubed@3202 721 }
dcubed@3202 722
duke@435 723 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 724 // Not yet implemented.
duke@435 725 return false;
duke@435 726 }
duke@435 727
duke@435 728 bool os::bind_to_processor(uint processor_id) {
duke@435 729 // Not yet implemented.
duke@435 730 return false;
duke@435 731 }
duke@435 732
duke@435 733 static void initialize_performance_counter() {
duke@435 734 LARGE_INTEGER count;
duke@435 735 if (QueryPerformanceFrequency(&count)) {
duke@435 736 has_performance_count = 1;
duke@435 737 performance_frequency = as_long(count);
duke@435 738 QueryPerformanceCounter(&count);
duke@435 739 initial_performance_count = as_long(count);
duke@435 740 } else {
duke@435 741 has_performance_count = 0;
duke@435 742 FILETIME wt;
duke@435 743 GetSystemTimeAsFileTime(&wt);
duke@435 744 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 745 }
duke@435 746 }
duke@435 747
duke@435 748
duke@435 749 double os::elapsedTime() {
duke@435 750 return (double) elapsed_counter() / (double) elapsed_frequency();
duke@435 751 }
duke@435 752
duke@435 753
duke@435 754 // Windows format:
duke@435 755 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
duke@435 756 // Java format:
duke@435 757 // Java standards require the number of milliseconds since 1/1/1970
duke@435 758
duke@435 759 // Constant offset - calculated using offset()
duke@435 760 static jlong _offset = 116444736000000000;
duke@435 761 // Fake time counter for reproducible results when debugging
duke@435 762 static jlong fake_time = 0;
duke@435 763
duke@435 764 #ifdef ASSERT
duke@435 765 // Just to be safe, recalculate the offset in debug mode
duke@435 766 static jlong _calculated_offset = 0;
duke@435 767 static int _has_calculated_offset = 0;
duke@435 768
duke@435 769 jlong offset() {
duke@435 770 if (_has_calculated_offset) return _calculated_offset;
duke@435 771 SYSTEMTIME java_origin;
duke@435 772 java_origin.wYear = 1970;
duke@435 773 java_origin.wMonth = 1;
duke@435 774 java_origin.wDayOfWeek = 0; // ignored
duke@435 775 java_origin.wDay = 1;
duke@435 776 java_origin.wHour = 0;
duke@435 777 java_origin.wMinute = 0;
duke@435 778 java_origin.wSecond = 0;
duke@435 779 java_origin.wMilliseconds = 0;
duke@435 780 FILETIME jot;
duke@435 781 if (!SystemTimeToFileTime(&java_origin, &jot)) {
jcoomes@1845 782 fatal(err_msg("Error = %d\nWindows error", GetLastError()));
duke@435 783 }
duke@435 784 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
duke@435 785 _has_calculated_offset = 1;
duke@435 786 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
duke@435 787 return _calculated_offset;
duke@435 788 }
duke@435 789 #else
duke@435 790 jlong offset() {
duke@435 791 return _offset;
duke@435 792 }
duke@435 793 #endif
duke@435 794
duke@435 795 jlong windows_to_java_time(FILETIME wt) {
duke@435 796 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 797 return (a - offset()) / 10000;
duke@435 798 }
duke@435 799
duke@435 800 FILETIME java_to_windows_time(jlong l) {
duke@435 801 jlong a = (l * 10000) + offset();
duke@435 802 FILETIME result;
duke@435 803 result.dwHighDateTime = high(a);
duke@435 804 result.dwLowDateTime = low(a);
duke@435 805 return result;
duke@435 806 }
duke@435 807
ysr@777 808 // For now, we say that Windows does not support vtime. I have no idea
ysr@777 809 // whether it can actually be made to (DLD, 9/13/05).
ysr@777 810
ysr@777 811 bool os::supports_vtime() { return false; }
ysr@777 812 bool os::enable_vtime() { return false; }
ysr@777 813 bool os::vtime_enabled() { return false; }
ysr@777 814 double os::elapsedVTime() {
ysr@777 815 // better than nothing, but not much
ysr@777 816 return elapsedTime();
ysr@777 817 }
ysr@777 818
duke@435 819 jlong os::javaTimeMillis() {
duke@435 820 if (UseFakeTimers) {
duke@435 821 return fake_time++;
duke@435 822 } else {
sbohne@496 823 FILETIME wt;
sbohne@496 824 GetSystemTimeAsFileTime(&wt);
sbohne@496 825 return windows_to_java_time(wt);
duke@435 826 }
duke@435 827 }
duke@435 828
duke@435 829 jlong os::javaTimeNanos() {
duke@435 830 if (!has_performance_count) {
johnc@3339 831 return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
duke@435 832 } else {
duke@435 833 LARGE_INTEGER current_count;
duke@435 834 QueryPerformanceCounter(&current_count);
duke@435 835 double current = as_long(current_count);
duke@435 836 double freq = performance_frequency;
johnc@3339 837 jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
duke@435 838 return time;
duke@435 839 }
duke@435 840 }
duke@435 841
duke@435 842 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 843 if (!has_performance_count) {
duke@435 844 // javaTimeMillis() doesn't have much percision,
duke@435 845 // but it is not going to wrap -- so all 64 bits
duke@435 846 info_ptr->max_value = ALL_64_BITS;
duke@435 847
duke@435 848 // this is a wall clock timer, so may skip
duke@435 849 info_ptr->may_skip_backward = true;
duke@435 850 info_ptr->may_skip_forward = true;
duke@435 851 } else {
duke@435 852 jlong freq = performance_frequency;
johnc@3339 853 if (freq < NANOSECS_PER_SEC) {
duke@435 854 // the performance counter is 64 bits and we will
duke@435 855 // be multiplying it -- so no wrap in 64 bits
duke@435 856 info_ptr->max_value = ALL_64_BITS;
johnc@3339 857 } else if (freq > NANOSECS_PER_SEC) {
duke@435 858 // use the max value the counter can reach to
duke@435 859 // determine the max value which could be returned
duke@435 860 julong max_counter = (julong)ALL_64_BITS;
johnc@3339 861 info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
duke@435 862 } else {
duke@435 863 // the performance counter is 64 bits and we will
duke@435 864 // be using it directly -- so no wrap in 64 bits
duke@435 865 info_ptr->max_value = ALL_64_BITS;
duke@435 866 }
duke@435 867
duke@435 868 // using a counter, so no skipping
duke@435 869 info_ptr->may_skip_backward = false;
duke@435 870 info_ptr->may_skip_forward = false;
duke@435 871 }
duke@435 872 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 873 }
duke@435 874
duke@435 875 char* os::local_time_string(char *buf, size_t buflen) {
duke@435 876 SYSTEMTIME st;
duke@435 877 GetLocalTime(&st);
duke@435 878 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 879 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
duke@435 880 return buf;
duke@435 881 }
duke@435 882
duke@435 883 bool os::getTimesSecs(double* process_real_time,
duke@435 884 double* process_user_time,
duke@435 885 double* process_system_time) {
duke@435 886 HANDLE h_process = GetCurrentProcess();
duke@435 887 FILETIME create_time, exit_time, kernel_time, user_time;
duke@435 888 BOOL result = GetProcessTimes(h_process,
duke@435 889 &create_time,
duke@435 890 &exit_time,
duke@435 891 &kernel_time,
duke@435 892 &user_time);
duke@435 893 if (result != 0) {
duke@435 894 FILETIME wt;
duke@435 895 GetSystemTimeAsFileTime(&wt);
duke@435 896 jlong rtc_millis = windows_to_java_time(wt);
duke@435 897 jlong user_millis = windows_to_java_time(user_time);
duke@435 898 jlong system_millis = windows_to_java_time(kernel_time);
duke@435 899 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
duke@435 900 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
duke@435 901 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
duke@435 902 return true;
duke@435 903 } else {
duke@435 904 return false;
duke@435 905 }
duke@435 906 }
duke@435 907
duke@435 908 void os::shutdown() {
duke@435 909
duke@435 910 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 911 perfMemory_exit();
duke@435 912
duke@435 913 // flush buffered output, finish log files
duke@435 914 ostream_abort();
duke@435 915
duke@435 916 // Check for abort hook
duke@435 917 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 918 if (abort_hook != NULL) {
duke@435 919 abort_hook();
duke@435 920 }
duke@435 921 }
duke@435 922
ctornqvi@2520 923
ctornqvi@2520 924 static BOOL (WINAPI *_MiniDumpWriteDump) ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 925 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
ctornqvi@2520 926
ctornqvi@2520 927 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
ctornqvi@2520 928 HINSTANCE dbghelp;
ctornqvi@2520 929 EXCEPTION_POINTERS ep;
ctornqvi@2520 930 MINIDUMP_EXCEPTION_INFORMATION mei;
zgu@2772 931 MINIDUMP_EXCEPTION_INFORMATION* pmei;
zgu@2772 932
ctornqvi@2520 933 HANDLE hProcess = GetCurrentProcess();
ctornqvi@2520 934 DWORD processId = GetCurrentProcessId();
ctornqvi@2520 935 HANDLE dumpFile;
ctornqvi@2520 936 MINIDUMP_TYPE dumpType;
ctornqvi@2520 937 static const char* cwd;
ctornqvi@2520 938
ctornqvi@2520 939 // If running on a client version of Windows and user has not explicitly enabled dumping
ctornqvi@2520 940 if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
ctornqvi@2520 941 VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
ctornqvi@2520 942 return;
ctornqvi@2520 943 // If running on a server version of Windows and user has explictly disabled dumping
ctornqvi@2520 944 } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
ctornqvi@2520 945 VMError::report_coredump_status("Minidump has been disabled from the command line", false);
ctornqvi@2520 946 return;
ctornqvi@2520 947 }
ctornqvi@2520 948
zgu@3031 949 dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
ctornqvi@2520 950
ctornqvi@2520 951 if (dbghelp == NULL) {
ctornqvi@2520 952 VMError::report_coredump_status("Failed to load dbghelp.dll", false);
ctornqvi@2520 953 return;
ctornqvi@2520 954 }
ctornqvi@2520 955
ctornqvi@2520 956 _MiniDumpWriteDump = CAST_TO_FN_PTR(
ctornqvi@2520 957 BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 958 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
ctornqvi@2520 959 GetProcAddress(dbghelp, "MiniDumpWriteDump"));
ctornqvi@2520 960
ctornqvi@2520 961 if (_MiniDumpWriteDump == NULL) {
ctornqvi@2520 962 VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
ctornqvi@2520 963 return;
ctornqvi@2520 964 }
ctornqvi@2520 965
ctornqvi@2521 966 dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
ctornqvi@2521 967
ctornqvi@2521 968 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
ctornqvi@2521 969 // API_VERSION_NUMBER 11 or higher contains the ones we want though
ctornqvi@2521 970 #if API_VERSION_NUMBER >= 11
ctornqvi@2521 971 dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
ctornqvi@2521 972 MiniDumpWithUnloadedModules);
ctornqvi@2521 973 #endif
ctornqvi@2520 974
ctornqvi@2520 975 cwd = get_current_directory(NULL, 0);
ctornqvi@2520 976 jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
ctornqvi@2520 977 dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
ctornqvi@2520 978
ctornqvi@2520 979 if (dumpFile == INVALID_HANDLE_VALUE) {
ctornqvi@2520 980 VMError::report_coredump_status("Failed to create file for dumping", false);
ctornqvi@2520 981 return;
ctornqvi@2520 982 }
zgu@2772 983 if (exceptionRecord != NULL && contextRecord != NULL) {
zgu@2772 984 ep.ContextRecord = (PCONTEXT) contextRecord;
zgu@2772 985 ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
zgu@2772 986
zgu@2772 987 mei.ThreadId = GetCurrentThreadId();
zgu@2772 988 mei.ExceptionPointers = &ep;
zgu@2772 989 pmei = &mei;
zgu@2772 990 } else {
zgu@2772 991 pmei = NULL;
zgu@2772 992 }
zgu@2772 993
ctornqvi@2520 994
ctornqvi@2520 995 // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
ctornqvi@2520 996 // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
zgu@2772 997 if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
zgu@2772 998 _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
ctornqvi@2520 999 VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
ctornqvi@2520 1000 } else {
ctornqvi@2520 1001 VMError::report_coredump_status(buffer, true);
ctornqvi@2520 1002 }
ctornqvi@2520 1003
ctornqvi@2520 1004 CloseHandle(dumpFile);
ctornqvi@2520 1005 }
ctornqvi@2520 1006
ctornqvi@2520 1007
ctornqvi@2520 1008
duke@435 1009 void os::abort(bool dump_core)
duke@435 1010 {
duke@435 1011 os::shutdown();
duke@435 1012 // no core dump on Windows
duke@435 1013 ::exit(1);
duke@435 1014 }
duke@435 1015
duke@435 1016 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1017 void os::die() {
duke@435 1018 _exit(-1);
duke@435 1019 }
duke@435 1020
duke@435 1021 // Directory routines copied from src/win32/native/java/io/dirent_md.c
duke@435 1022 // * dirent_md.c 1.15 00/02/02
duke@435 1023 //
duke@435 1024 // The declarations for DIR and struct dirent are in jvm_win32.h.
duke@435 1025
duke@435 1026 /* Caller must have already run dirname through JVM_NativePath, which removes
duke@435 1027 duplicate slashes and converts all instances of '/' into '\\'. */
duke@435 1028
duke@435 1029 DIR *
duke@435 1030 os::opendir(const char *dirname)
duke@435 1031 {
duke@435 1032 assert(dirname != NULL, "just checking"); // hotspot change
zgu@3900 1033 DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
duke@435 1034 DWORD fattr; // hotspot change
duke@435 1035 char alt_dirname[4] = { 0, 0, 0, 0 };
duke@435 1036
duke@435 1037 if (dirp == 0) {
duke@435 1038 errno = ENOMEM;
duke@435 1039 return 0;
duke@435 1040 }
duke@435 1041
duke@435 1042 /*
duke@435 1043 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
duke@435 1044 * as a directory in FindFirstFile(). We detect this case here and
duke@435 1045 * prepend the current drive name.
duke@435 1046 */
duke@435 1047 if (dirname[1] == '\0' && dirname[0] == '\\') {
duke@435 1048 alt_dirname[0] = _getdrive() + 'A' - 1;
duke@435 1049 alt_dirname[1] = ':';
duke@435 1050 alt_dirname[2] = '\\';
duke@435 1051 alt_dirname[3] = '\0';
duke@435 1052 dirname = alt_dirname;
duke@435 1053 }
duke@435 1054
zgu@3900 1055 dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
duke@435 1056 if (dirp->path == 0) {
zgu@3900 1057 free(dirp, mtInternal);
duke@435 1058 errno = ENOMEM;
duke@435 1059 return 0;
duke@435 1060 }
duke@435 1061 strcpy(dirp->path, dirname);
duke@435 1062
duke@435 1063 fattr = GetFileAttributes(dirp->path);
duke@435 1064 if (fattr == 0xffffffff) {
zgu@3900 1065 free(dirp->path, mtInternal);
zgu@3900 1066 free(dirp, mtInternal);
duke@435 1067 errno = ENOENT;
duke@435 1068 return 0;
duke@435 1069 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
zgu@3900 1070 free(dirp->path, mtInternal);
zgu@3900 1071 free(dirp, mtInternal);
duke@435 1072 errno = ENOTDIR;
duke@435 1073 return 0;
duke@435 1074 }
duke@435 1075
duke@435 1076 /* Append "*.*", or possibly "\\*.*", to path */
duke@435 1077 if (dirp->path[1] == ':'
duke@435 1078 && (dirp->path[2] == '\0'
duke@435 1079 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
duke@435 1080 /* No '\\' needed for cases like "Z:" or "Z:\" */
duke@435 1081 strcat(dirp->path, "*.*");
duke@435 1082 } else {
duke@435 1083 strcat(dirp->path, "\\*.*");
duke@435 1084 }
duke@435 1085
duke@435 1086 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
duke@435 1087 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1088 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
zgu@3900 1089 free(dirp->path, mtInternal);
zgu@3900 1090 free(dirp, mtInternal);
duke@435 1091 errno = EACCES;
duke@435 1092 return 0;
duke@435 1093 }
duke@435 1094 }
duke@435 1095 return dirp;
duke@435 1096 }
duke@435 1097
duke@435 1098 /* parameter dbuf unused on Windows */
duke@435 1099
duke@435 1100 struct dirent *
duke@435 1101 os::readdir(DIR *dirp, dirent *dbuf)
duke@435 1102 {
duke@435 1103 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1104 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1105 return 0;
duke@435 1106 }
duke@435 1107
duke@435 1108 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
duke@435 1109
duke@435 1110 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
duke@435 1111 if (GetLastError() == ERROR_INVALID_HANDLE) {
duke@435 1112 errno = EBADF;
duke@435 1113 return 0;
duke@435 1114 }
duke@435 1115 FindClose(dirp->handle);
duke@435 1116 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1117 }
duke@435 1118
duke@435 1119 return &dirp->dirent;
duke@435 1120 }
duke@435 1121
duke@435 1122 int
duke@435 1123 os::closedir(DIR *dirp)
duke@435 1124 {
duke@435 1125 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1126 if (dirp->handle != INVALID_HANDLE_VALUE) {
duke@435 1127 if (!FindClose(dirp->handle)) {
duke@435 1128 errno = EBADF;
duke@435 1129 return -1;
duke@435 1130 }
duke@435 1131 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1132 }
zgu@3900 1133 free(dirp->path, mtInternal);
zgu@3900 1134 free(dirp, mtInternal);
duke@435 1135 return 0;
duke@435 1136 }
duke@435 1137
coleenp@2450 1138 // This must be hard coded because it's the system's temporary
coleenp@2450 1139 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@1788 1140 const char* os::get_temp_directory() {
coleenp@1788 1141 static char path_buf[MAX_PATH];
coleenp@1788 1142 if (GetTempPath(MAX_PATH, path_buf)>0)
coleenp@1788 1143 return path_buf;
coleenp@1788 1144 else{
coleenp@1788 1145 path_buf[0]='\0';
coleenp@1788 1146 return path_buf;
coleenp@1788 1147 }
duke@435 1148 }
duke@435 1149
phh@1126 1150 static bool file_exists(const char* filename) {
phh@1126 1151 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1152 return false;
phh@1126 1153 }
phh@1126 1154 return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
phh@1126 1155 }
phh@1126 1156
phh@1126 1157 void os::dll_build_name(char *buffer, size_t buflen,
phh@1126 1158 const char* pname, const char* fname) {
phh@1126 1159 const size_t pnamelen = pname ? strlen(pname) : 0;
phh@1126 1160 const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
phh@1126 1161
phh@1126 1162 // Quietly truncates on buffer overflow. Should be an error.
phh@1126 1163 if (pnamelen + strlen(fname) + 10 > buflen) {
phh@1126 1164 *buffer = '\0';
phh@1126 1165 return;
phh@1126 1166 }
phh@1126 1167
phh@1126 1168 if (pnamelen == 0) {
phh@1126 1169 jio_snprintf(buffer, buflen, "%s.dll", fname);
phh@1126 1170 } else if (c == ':' || c == '\\') {
phh@1126 1171 jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
phh@1126 1172 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1173 int n;
phh@1126 1174 char** pelements = split_path(pname, &n);
phh@1126 1175 for (int i = 0 ; i < n ; i++) {
phh@1126 1176 char* path = pelements[i];
phh@1126 1177 // Really shouldn't be NULL, but check can't hurt
phh@1126 1178 size_t plen = (path == NULL) ? 0 : strlen(path);
phh@1126 1179 if (plen == 0) {
phh@1126 1180 continue; // skip the empty path values
phh@1126 1181 }
phh@1126 1182 const char lastchar = path[plen - 1];
phh@1126 1183 if (lastchar == ':' || lastchar == '\\') {
phh@1126 1184 jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
phh@1126 1185 } else {
phh@1126 1186 jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
phh@1126 1187 }
phh@1126 1188 if (file_exists(buffer)) {
phh@1126 1189 break;
phh@1126 1190 }
kamg@677 1191 }
phh@1126 1192 // release the storage
phh@1126 1193 for (int i = 0 ; i < n ; i++) {
phh@1126 1194 if (pelements[i] != NULL) {
zgu@3900 1195 FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
phh@1126 1196 }
kamg@677 1197 }
phh@1126 1198 if (pelements != NULL) {
zgu@3900 1199 FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
phh@1126 1200 }
phh@1126 1201 } else {
phh@1126 1202 jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
phh@1126 1203 }
kamg@677 1204 }
kamg@677 1205
duke@435 1206 // Needs to be in os specific directory because windows requires another
duke@435 1207 // header file <direct.h>
duke@435 1208 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1209 return _getcwd(buf, buflen);
duke@435 1210 }
duke@435 1211
duke@435 1212 //-----------------------------------------------------------
duke@435 1213 // Helper functions for fatal error handler
duke@435 1214 #ifdef _WIN64
duke@435 1215 // Helper routine which returns true if address in
duke@435 1216 // within the NTDLL address space.
duke@435 1217 //
duke@435 1218 static bool _addr_in_ntdll( address addr )
duke@435 1219 {
duke@435 1220 HMODULE hmod;
duke@435 1221 MODULEINFO minfo;
duke@435 1222
duke@435 1223 hmod = GetModuleHandle("NTDLL.DLL");
duke@435 1224 if ( hmod == NULL ) return false;
zgu@3031 1225 if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
duke@435 1226 &minfo, sizeof(MODULEINFO)) )
duke@435 1227 return false;
duke@435 1228
duke@435 1229 if ( (addr >= minfo.lpBaseOfDll) &&
duke@435 1230 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
duke@435 1231 return true;
duke@435 1232 else
duke@435 1233 return false;
duke@435 1234 }
duke@435 1235 #endif
duke@435 1236
duke@435 1237
duke@435 1238 // Enumerate all modules for a given process ID
duke@435 1239 //
duke@435 1240 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
duke@435 1241 // different API for doing this. We use PSAPI.DLL on NT based
duke@435 1242 // Windows and ToolHelp on 95/98/Me.
duke@435 1243
duke@435 1244 // Callback function that is called by enumerate_modules() on
duke@435 1245 // every DLL module.
duke@435 1246 // Input parameters:
duke@435 1247 // int pid,
duke@435 1248 // char* module_file_name,
duke@435 1249 // address module_base_addr,
duke@435 1250 // unsigned module_size,
duke@435 1251 // void* param
duke@435 1252 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
duke@435 1253
duke@435 1254 // enumerate_modules for Windows NT, using PSAPI
duke@435 1255 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
duke@435 1256 {
duke@435 1257 HANDLE hProcess ;
duke@435 1258
duke@435 1259 # define MAX_NUM_MODULES 128
duke@435 1260 HMODULE modules[MAX_NUM_MODULES];
duke@435 1261 static char filename[ MAX_PATH ];
duke@435 1262 int result = 0;
duke@435 1263
zgu@3031 1264 if (!os::PSApiDll::PSApiAvailable()) {
zgu@3031 1265 return 0;
zgu@3031 1266 }
duke@435 1267
duke@435 1268 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
duke@435 1269 FALSE, pid ) ;
duke@435 1270 if (hProcess == NULL) return 0;
duke@435 1271
duke@435 1272 DWORD size_needed;
zgu@3031 1273 if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
duke@435 1274 sizeof(modules), &size_needed)) {
duke@435 1275 CloseHandle( hProcess );
duke@435 1276 return 0;
duke@435 1277 }
duke@435 1278
duke@435 1279 // number of modules that are currently loaded
duke@435 1280 int num_modules = size_needed / sizeof(HMODULE);
duke@435 1281
duke@435 1282 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
duke@435 1283 // Get Full pathname:
zgu@3031 1284 if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
duke@435 1285 filename, sizeof(filename))) {
duke@435 1286 filename[0] = '\0';
duke@435 1287 }
duke@435 1288
duke@435 1289 MODULEINFO modinfo;
zgu@3031 1290 if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
duke@435 1291 &modinfo, sizeof(modinfo))) {
duke@435 1292 modinfo.lpBaseOfDll = NULL;
duke@435 1293 modinfo.SizeOfImage = 0;
duke@435 1294 }
duke@435 1295
duke@435 1296 // Invoke callback function
duke@435 1297 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
duke@435 1298 modinfo.SizeOfImage, param);
duke@435 1299 if (result) break;
duke@435 1300 }
duke@435 1301
duke@435 1302 CloseHandle( hProcess ) ;
duke@435 1303 return result;
duke@435 1304 }
duke@435 1305
duke@435 1306
duke@435 1307 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
duke@435 1308 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
duke@435 1309 {
duke@435 1310 HANDLE hSnapShot ;
duke@435 1311 static MODULEENTRY32 modentry ;
duke@435 1312 int result = 0;
duke@435 1313
zgu@3031 1314 if (!os::Kernel32Dll::HelpToolsAvailable()) {
zgu@3031 1315 return 0;
zgu@3031 1316 }
duke@435 1317
duke@435 1318 // Get a handle to a Toolhelp snapshot of the system
zgu@3031 1319 hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
duke@435 1320 if( hSnapShot == INVALID_HANDLE_VALUE ) {
duke@435 1321 return FALSE ;
duke@435 1322 }
duke@435 1323
duke@435 1324 // iterate through all modules
duke@435 1325 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1326 bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
duke@435 1327
duke@435 1328 while( not_done ) {
duke@435 1329 // invoke the callback
duke@435 1330 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
duke@435 1331 modentry.modBaseSize, param);
duke@435 1332 if (result) break;
duke@435 1333
duke@435 1334 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1335 not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
duke@435 1336 }
duke@435 1337
duke@435 1338 CloseHandle(hSnapShot);
duke@435 1339 return result;
duke@435 1340 }
duke@435 1341
duke@435 1342 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
duke@435 1343 {
duke@435 1344 // Get current process ID if caller doesn't provide it.
duke@435 1345 if (!pid) pid = os::current_process_id();
duke@435 1346
duke@435 1347 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
duke@435 1348 else return _enumerate_modules_windows(pid, func, param);
duke@435 1349 }
duke@435 1350
duke@435 1351 struct _modinfo {
duke@435 1352 address addr;
duke@435 1353 char* full_path; // point to a char buffer
duke@435 1354 int buflen; // size of the buffer
duke@435 1355 address base_addr;
duke@435 1356 };
duke@435 1357
duke@435 1358 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
duke@435 1359 unsigned size, void * param) {
duke@435 1360 struct _modinfo *pmod = (struct _modinfo *)param;
duke@435 1361 if (!pmod) return -1;
duke@435 1362
duke@435 1363 if (base_addr <= pmod->addr &&
duke@435 1364 base_addr+size > pmod->addr) {
duke@435 1365 // if a buffer is provided, copy path name to the buffer
duke@435 1366 if (pmod->full_path) {
duke@435 1367 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
duke@435 1368 }
duke@435 1369 pmod->base_addr = base_addr;
duke@435 1370 return 1;
duke@435 1371 }
duke@435 1372 return 0;
duke@435 1373 }
duke@435 1374
duke@435 1375 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1376 int buflen, int* offset) {
duke@435 1377 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
duke@435 1378 // return the full path to the DLL file, sometimes it returns path
duke@435 1379 // to the corresponding PDB file (debug info); sometimes it only
duke@435 1380 // returns partial path, which makes life painful.
duke@435 1381
duke@435 1382 struct _modinfo mi;
duke@435 1383 mi.addr = addr;
duke@435 1384 mi.full_path = buf;
duke@435 1385 mi.buflen = buflen;
duke@435 1386 int pid = os::current_process_id();
duke@435 1387 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
duke@435 1388 // buf already contains path name
duke@435 1389 if (offset) *offset = addr - mi.base_addr;
duke@435 1390 return true;
duke@435 1391 } else {
duke@435 1392 if (buf) buf[0] = '\0';
duke@435 1393 if (offset) *offset = -1;
duke@435 1394 return false;
duke@435 1395 }
duke@435 1396 }
duke@435 1397
duke@435 1398 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1399 int buflen, int *offset) {
zgu@3430 1400 if (Decoder::decode(addr, buf, buflen, offset)) {
zgu@2364 1401 return true;
zgu@2364 1402 }
zgu@2364 1403 if (offset != NULL) *offset = -1;
zgu@2364 1404 if (buf != NULL) buf[0] = '\0';
duke@435 1405 return false;
duke@435 1406 }
duke@435 1407
duke@435 1408 // save the start and end address of jvm.dll into param[0] and param[1]
duke@435 1409 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
duke@435 1410 unsigned size, void * param) {
duke@435 1411 if (!param) return -1;
duke@435 1412
duke@435 1413 if (base_addr <= (address)_locate_jvm_dll &&
duke@435 1414 base_addr+size > (address)_locate_jvm_dll) {
duke@435 1415 ((address*)param)[0] = base_addr;
duke@435 1416 ((address*)param)[1] = base_addr + size;
duke@435 1417 return 1;
duke@435 1418 }
duke@435 1419 return 0;
duke@435 1420 }
duke@435 1421
duke@435 1422 address vm_lib_location[2]; // start and end address of jvm.dll
duke@435 1423
duke@435 1424 // check if addr is inside jvm.dll
duke@435 1425 bool os::address_is_in_vm(address addr) {
duke@435 1426 if (!vm_lib_location[0] || !vm_lib_location[1]) {
duke@435 1427 int pid = os::current_process_id();
duke@435 1428 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
duke@435 1429 assert(false, "Can't find jvm module.");
duke@435 1430 return false;
duke@435 1431 }
duke@435 1432 }
duke@435 1433
duke@435 1434 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
duke@435 1435 }
duke@435 1436
duke@435 1437 // print module info; param is outputStream*
duke@435 1438 static int _print_module(int pid, char* fname, address base,
duke@435 1439 unsigned size, void* param) {
duke@435 1440 if (!param) return -1;
duke@435 1441
duke@435 1442 outputStream* st = (outputStream*)param;
duke@435 1443
duke@435 1444 address end_addr = base + size;
duke@435 1445 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
duke@435 1446 return 0;
duke@435 1447 }
duke@435 1448
duke@435 1449 // Loads .dll/.so and
duke@435 1450 // in case of error it checks if .dll/.so was built for the
duke@435 1451 // same architecture as Hotspot is running on
duke@435 1452 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
duke@435 1453 {
duke@435 1454 void * result = LoadLibrary(name);
duke@435 1455 if (result != NULL)
duke@435 1456 {
duke@435 1457 return result;
duke@435 1458 }
duke@435 1459
phh@3379 1460 DWORD errcode = GetLastError();
duke@435 1461 if (errcode == ERROR_MOD_NOT_FOUND) {
duke@435 1462 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
duke@435 1463 ebuf[ebuflen-1]='\0';
duke@435 1464 return NULL;
duke@435 1465 }
duke@435 1466
duke@435 1467 // Parsing dll below
duke@435 1468 // If we can read dll-info and find that dll was built
duke@435 1469 // for an architecture other than Hotspot is running in
duke@435 1470 // - then print to buffer "DLL was built for a different architecture"
phh@3379 1471 // else call os::lasterror to obtain system error message
duke@435 1472
duke@435 1473 // Read system error message into ebuf
duke@435 1474 // It may or may not be overwritten below (in the for loop and just above)
phh@3379 1475 lasterror(ebuf, (size_t) ebuflen);
duke@435 1476 ebuf[ebuflen-1]='\0';
duke@435 1477 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
duke@435 1478 if (file_descriptor<0)
duke@435 1479 {
duke@435 1480 return NULL;
duke@435 1481 }
duke@435 1482
duke@435 1483 uint32_t signature_offset;
duke@435 1484 uint16_t lib_arch=0;
duke@435 1485 bool failed_to_get_lib_arch=
duke@435 1486 (
duke@435 1487 //Go to position 3c in the dll
duke@435 1488 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
duke@435 1489 ||
duke@435 1490 // Read loacation of signature
duke@435 1491 (sizeof(signature_offset)!=
duke@435 1492 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
duke@435 1493 ||
duke@435 1494 //Go to COFF File Header in dll
duke@435 1495 //that is located after"signature" (4 bytes long)
duke@435 1496 (os::seek_to_file_offset(file_descriptor,
duke@435 1497 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
duke@435 1498 ||
duke@435 1499 //Read field that contains code of architecture
duke@435 1500 // that dll was build for
duke@435 1501 (sizeof(lib_arch)!=
duke@435 1502 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
duke@435 1503 );
duke@435 1504
duke@435 1505 ::close(file_descriptor);
duke@435 1506 if (failed_to_get_lib_arch)
duke@435 1507 {
phh@3379 1508 // file i/o error - report os::lasterror(...) msg
duke@435 1509 return NULL;
duke@435 1510 }
duke@435 1511
duke@435 1512 typedef struct
duke@435 1513 {
duke@435 1514 uint16_t arch_code;
duke@435 1515 char* arch_name;
duke@435 1516 } arch_t;
duke@435 1517
duke@435 1518 static const arch_t arch_array[]={
duke@435 1519 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
duke@435 1520 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
duke@435 1521 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
duke@435 1522 };
duke@435 1523 #if (defined _M_IA64)
duke@435 1524 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
duke@435 1525 #elif (defined _M_AMD64)
duke@435 1526 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
duke@435 1527 #elif (defined _M_IX86)
duke@435 1528 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
duke@435 1529 #else
duke@435 1530 #error Method os::dll_load requires that one of following \
duke@435 1531 is defined :_M_IA64,_M_AMD64 or _M_IX86
duke@435 1532 #endif
duke@435 1533
duke@435 1534
duke@435 1535 // Obtain a string for printf operation
duke@435 1536 // lib_arch_str shall contain string what platform this .dll was built for
duke@435 1537 // running_arch_str shall string contain what platform Hotspot was built for
duke@435 1538 char *running_arch_str=NULL,*lib_arch_str=NULL;
duke@435 1539 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
duke@435 1540 {
duke@435 1541 if (lib_arch==arch_array[i].arch_code)
duke@435 1542 lib_arch_str=arch_array[i].arch_name;
duke@435 1543 if (running_arch==arch_array[i].arch_code)
duke@435 1544 running_arch_str=arch_array[i].arch_name;
duke@435 1545 }
duke@435 1546
duke@435 1547 assert(running_arch_str,
duke@435 1548 "Didn't find runing architecture code in arch_array");
duke@435 1549
duke@435 1550 // If the architure is right
phh@3379 1551 // but some other error took place - report os::lasterror(...) msg
duke@435 1552 if (lib_arch == running_arch)
duke@435 1553 {
duke@435 1554 return NULL;
duke@435 1555 }
duke@435 1556
duke@435 1557 if (lib_arch_str!=NULL)
duke@435 1558 {
duke@435 1559 ::_snprintf(ebuf, ebuflen-1,
duke@435 1560 "Can't load %s-bit .dll on a %s-bit platform",
duke@435 1561 lib_arch_str,running_arch_str);
duke@435 1562 }
duke@435 1563 else
duke@435 1564 {
duke@435 1565 // don't know what architecture this dll was build for
duke@435 1566 ::_snprintf(ebuf, ebuflen-1,
duke@435 1567 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
duke@435 1568 lib_arch,running_arch_str);
duke@435 1569 }
duke@435 1570
duke@435 1571 return NULL;
duke@435 1572 }
duke@435 1573
duke@435 1574
duke@435 1575 void os::print_dll_info(outputStream *st) {
duke@435 1576 int pid = os::current_process_id();
duke@435 1577 st->print_cr("Dynamic libraries:");
duke@435 1578 enumerate_modules(pid, _print_module, (void *)st);
duke@435 1579 }
duke@435 1580
nloodin@3783 1581 void os::print_os_info_brief(outputStream* st) {
nloodin@3783 1582 os::print_os_info(st);
nloodin@3783 1583 }
nloodin@3783 1584
duke@435 1585 void os::print_os_info(outputStream* st) {
xlu@708 1586 st->print("OS:");
xlu@708 1587
nloodin@3783 1588 os::win32::print_windows_version(st);
nloodin@3783 1589 }
nloodin@3783 1590
nloodin@3783 1591 void os::win32::print_windows_version(outputStream* st) {
xlu@708 1592 OSVERSIONINFOEX osvi;
xlu@708 1593 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
xlu@708 1594 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
xlu@708 1595
xlu@708 1596 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
xlu@708 1597 st->print_cr("N/A");
xlu@708 1598 return;
xlu@708 1599 }
xlu@708 1600
xlu@708 1601 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
xlu@708 1602 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
xlu@708 1603 switch (os_vers) {
xlu@708 1604 case 3051: st->print(" Windows NT 3.51"); break;
xlu@708 1605 case 4000: st->print(" Windows NT 4.0"); break;
xlu@708 1606 case 5000: st->print(" Windows 2000"); break;
xlu@708 1607 case 5001: st->print(" Windows XP"); break;
xlu@708 1608 case 5002:
asaha@1397 1609 case 6000:
mikael@3829 1610 case 6001:
mikael@3829 1611 case 6002: {
xlu@708 1612 // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
xlu@708 1613 // find out whether we are running on 64 bit processor or not.
xlu@708 1614 SYSTEM_INFO si;
xlu@708 1615 ZeroMemory(&si, sizeof(SYSTEM_INFO));
zgu@3031 1616 if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
xlu@708 1617 GetSystemInfo(&si);
xlu@708 1618 } else {
zgu@3031 1619 os::Kernel32Dll::GetNativeSystemInfo(&si);
xlu@708 1620 }
xlu@708 1621 if (os_vers == 5002) {
xlu@708 1622 if (osvi.wProductType == VER_NT_WORKSTATION &&
xlu@708 1623 si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1624 st->print(" Windows XP x64 Edition");
xlu@708 1625 else
xlu@708 1626 st->print(" Windows Server 2003 family");
asaha@1397 1627 } else if (os_vers == 6000) {
xlu@708 1628 if (osvi.wProductType == VER_NT_WORKSTATION)
xlu@708 1629 st->print(" Windows Vista");
xlu@708 1630 else
xlu@708 1631 st->print(" Windows Server 2008");
xlu@708 1632 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
xlu@708 1633 st->print(" , 64 bit");
asaha@1397 1634 } else if (os_vers == 6001) {
asaha@1397 1635 if (osvi.wProductType == VER_NT_WORKSTATION) {
asaha@1397 1636 st->print(" Windows 7");
asaha@1397 1637 } else {
asaha@1397 1638 // Unrecognized windows, print out its major and minor versions
asaha@1397 1639 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1640 }
asaha@1397 1641 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1642 st->print(" , 64 bit");
mikael@3829 1643 } else if (os_vers == 6002) {
mikael@3829 1644 if (osvi.wProductType == VER_NT_WORKSTATION) {
mikael@3829 1645 st->print(" Windows 8");
mikael@3829 1646 } else {
mikael@3829 1647 st->print(" Windows Server 2012");
mikael@3829 1648 }
mikael@3829 1649 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
mikael@3829 1650 st->print(" , 64 bit");
asaha@1397 1651 } else { // future os
asaha@1397 1652 // Unrecognized windows, print out its major and minor versions
asaha@1397 1653 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
asaha@1397 1654 if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
asaha@1397 1655 st->print(" , 64 bit");
xlu@708 1656 }
xlu@708 1657 break;
xlu@708 1658 }
xlu@708 1659 default: // future windows, print out its major and minor versions
xlu@708 1660 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1661 }
xlu@708 1662 } else {
xlu@708 1663 switch (os_vers) {
xlu@708 1664 case 4000: st->print(" Windows 95"); break;
xlu@708 1665 case 4010: st->print(" Windows 98"); break;
xlu@708 1666 case 4090: st->print(" Windows Me"); break;
xlu@708 1667 default: // future windows, print out its major and minor versions
xlu@708 1668 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1669 }
xlu@708 1670 }
xlu@708 1671 st->print(" Build %d", osvi.dwBuildNumber);
xlu@708 1672 st->print(" %s", osvi.szCSDVersion); // service pack
xlu@708 1673 st->cr();
duke@435 1674 }
duke@435 1675
jcoomes@2997 1676 void os::pd_print_cpu_info(outputStream* st) {
jcoomes@2997 1677 // Nothing to do for now.
jcoomes@2997 1678 }
jcoomes@2997 1679
duke@435 1680 void os::print_memory_info(outputStream* st) {
duke@435 1681 st->print("Memory:");
duke@435 1682 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1683
poonam@1312 1684 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 1685 // value if total memory is larger than 4GB
poonam@1312 1686 MEMORYSTATUSEX ms;
poonam@1312 1687 ms.dwLength = sizeof(ms);
poonam@1312 1688 GlobalMemoryStatusEx(&ms);
duke@435 1689
duke@435 1690 st->print(", physical %uk", os::physical_memory() >> 10);
duke@435 1691 st->print("(%uk free)", os::available_memory() >> 10);
duke@435 1692
poonam@1312 1693 st->print(", swap %uk", ms.ullTotalPageFile >> 10);
poonam@1312 1694 st->print("(%uk free)", ms.ullAvailPageFile >> 10);
duke@435 1695 st->cr();
duke@435 1696 }
duke@435 1697
duke@435 1698 void os::print_siginfo(outputStream *st, void *siginfo) {
duke@435 1699 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
duke@435 1700 st->print("siginfo:");
duke@435 1701 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
duke@435 1702
duke@435 1703 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 1704 er->NumberParameters >= 2) {
duke@435 1705 switch (er->ExceptionInformation[0]) {
duke@435 1706 case 0: st->print(", reading address"); break;
duke@435 1707 case 1: st->print(", writing address"); break;
duke@435 1708 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
duke@435 1709 er->ExceptionInformation[0]);
duke@435 1710 }
duke@435 1711 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
duke@435 1712 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
duke@435 1713 er->NumberParameters >= 2 && UseSharedSpaces) {
duke@435 1714 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1715 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
duke@435 1716 st->print("\n\nError accessing class data sharing archive." \
duke@435 1717 " Mapped file inaccessible during execution, " \
duke@435 1718 " possible disk/network problem.");
duke@435 1719 }
duke@435 1720 } else {
duke@435 1721 int num = er->NumberParameters;
duke@435 1722 if (num > 0) {
duke@435 1723 st->print(", ExceptionInformation=");
duke@435 1724 for (int i = 0; i < num; i++) {
duke@435 1725 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
duke@435 1726 }
duke@435 1727 }
duke@435 1728 }
duke@435 1729 st->cr();
duke@435 1730 }
duke@435 1731
duke@435 1732 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1733 // do nothing
duke@435 1734 }
duke@435 1735
duke@435 1736 static char saved_jvm_path[MAX_PATH] = {0};
duke@435 1737
duke@435 1738 // Find the full path to the current module, jvm.dll or jvm_g.dll
duke@435 1739 void os::jvm_path(char *buf, jint buflen) {
duke@435 1740 // Error checking.
duke@435 1741 if (buflen < MAX_PATH) {
duke@435 1742 assert(false, "must use a large-enough buffer");
duke@435 1743 buf[0] = '\0';
duke@435 1744 return;
duke@435 1745 }
duke@435 1746 // Lazy resolve the path to current module.
duke@435 1747 if (saved_jvm_path[0] != 0) {
duke@435 1748 strcpy(buf, saved_jvm_path);
duke@435 1749 return;
duke@435 1750 }
duke@435 1751
sla@2327 1752 buf[0] = '\0';
sla@2584 1753 if (Arguments::created_by_gamma_launcher()) {
sla@2327 1754 // Support for the gamma launcher. Check for an
sla@2369 1755 // JAVA_HOME environment variable
sla@2327 1756 // and fix up the path so it looks like
sla@2327 1757 // libjvm.so is installed there (append a fake suffix
sla@2327 1758 // hotspot/libjvm.so).
sla@2369 1759 char* java_home_var = ::getenv("JAVA_HOME");
sla@2327 1760 if (java_home_var != NULL && java_home_var[0] != 0) {
sla@2327 1761
sla@2327 1762 strncpy(buf, java_home_var, buflen);
sla@2327 1763
sla@2327 1764 // determine if this is a legacy image or modules image
sla@2327 1765 // modules image doesn't have "jre" subdirectory
sla@2327 1766 size_t len = strlen(buf);
sla@2327 1767 char* jrebin_p = buf + len;
sla@2327 1768 jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
sla@2327 1769 if (0 != _access(buf, 0)) {
sla@2327 1770 jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
sla@2327 1771 }
sla@2327 1772 len = strlen(buf);
sla@2327 1773 jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
sla@2327 1774 }
sla@2327 1775 }
sla@2327 1776
sla@2327 1777 if(buf[0] == '\0') {
duke@435 1778 GetModuleFileName(vm_lib_handle, buf, buflen);
sla@2327 1779 }
duke@435 1780 strcpy(saved_jvm_path, buf);
duke@435 1781 }
duke@435 1782
duke@435 1783
duke@435 1784 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 1785 #ifndef _WIN64
duke@435 1786 st->print("_");
duke@435 1787 #endif
duke@435 1788 }
duke@435 1789
duke@435 1790
duke@435 1791 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 1792 #ifndef _WIN64
duke@435 1793 st->print("@%d", args_size * sizeof(int));
duke@435 1794 #endif
duke@435 1795 }
duke@435 1796
ikrylov@2322 1797 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1798 // from src/windows/hpi/src/system_md.c
ikrylov@2322 1799
phh@3379 1800 size_t os::lasterror(char* buf, size_t len) {
phh@3379 1801 DWORD errval;
ikrylov@2322 1802
ikrylov@2322 1803 if ((errval = GetLastError()) != 0) {
phh@3379 1804 // DOS error
phh@3379 1805 size_t n = (size_t)FormatMessage(
ikrylov@2322 1806 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
ikrylov@2322 1807 NULL,
ikrylov@2322 1808 errval,
ikrylov@2322 1809 0,
ikrylov@2322 1810 buf,
ikrylov@2322 1811 (DWORD)len,
ikrylov@2322 1812 NULL);
ikrylov@2322 1813 if (n > 3) {
phh@3379 1814 // Drop final '.', CR, LF
ikrylov@2322 1815 if (buf[n - 1] == '\n') n--;
ikrylov@2322 1816 if (buf[n - 1] == '\r') n--;
ikrylov@2322 1817 if (buf[n - 1] == '.') n--;
ikrylov@2322 1818 buf[n] = '\0';
ikrylov@2322 1819 }
ikrylov@2322 1820 return n;
ikrylov@2322 1821 }
ikrylov@2322 1822
ikrylov@2322 1823 if (errno != 0) {
phh@3379 1824 // C runtime error that has no corresponding DOS error code
phh@3379 1825 const char* s = strerror(errno);
ikrylov@2322 1826 size_t n = strlen(s);
ikrylov@2322 1827 if (n >= len) n = len - 1;
ikrylov@2322 1828 strncpy(buf, s, n);
ikrylov@2322 1829 buf[n] = '\0';
ikrylov@2322 1830 return n;
ikrylov@2322 1831 }
phh@3379 1832
ikrylov@2322 1833 return 0;
ikrylov@2322 1834 }
ikrylov@2322 1835
phh@3379 1836 int os::get_last_error() {
phh@3379 1837 DWORD error = GetLastError();
phh@3379 1838 if (error == 0)
phh@3379 1839 error = errno;
phh@3379 1840 return (int)error;
phh@3379 1841 }
phh@3379 1842
duke@435 1843 // sun.misc.Signal
duke@435 1844 // NOTE that this is a workaround for an apparent kernel bug where if
duke@435 1845 // a signal handler for SIGBREAK is installed then that signal handler
duke@435 1846 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
duke@435 1847 // See bug 4416763.
duke@435 1848 static void (*sigbreakHandler)(int) = NULL;
duke@435 1849
duke@435 1850 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 1851 os::signal_notify(sig);
duke@435 1852 // We need to reinstate the signal handler each time...
duke@435 1853 os::signal(sig, (void*)UserHandler);
duke@435 1854 }
duke@435 1855
duke@435 1856 void* os::user_handler() {
duke@435 1857 return (void*) UserHandler;
duke@435 1858 }
duke@435 1859
duke@435 1860 void* os::signal(int signal_number, void* handler) {
duke@435 1861 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
duke@435 1862 void (*oldHandler)(int) = sigbreakHandler;
duke@435 1863 sigbreakHandler = (void (*)(int)) handler;
duke@435 1864 return (void*) oldHandler;
duke@435 1865 } else {
duke@435 1866 return (void*)::signal(signal_number, (void (*)(int))handler);
duke@435 1867 }
duke@435 1868 }
duke@435 1869
duke@435 1870 void os::signal_raise(int signal_number) {
duke@435 1871 raise(signal_number);
duke@435 1872 }
duke@435 1873
duke@435 1874 // The Win32 C runtime library maps all console control events other than ^C
duke@435 1875 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
duke@435 1876 // logoff, and shutdown events. We therefore install our own console handler
duke@435 1877 // that raises SIGTERM for the latter cases.
duke@435 1878 //
duke@435 1879 static BOOL WINAPI consoleHandler(DWORD event) {
duke@435 1880 switch(event) {
duke@435 1881 case CTRL_C_EVENT:
duke@435 1882 if (is_error_reported()) {
duke@435 1883 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 1884 // handler fails to abort. Let VM die immediately.
duke@435 1885 os::die();
duke@435 1886 }
duke@435 1887
duke@435 1888 os::signal_raise(SIGINT);
duke@435 1889 return TRUE;
duke@435 1890 break;
duke@435 1891 case CTRL_BREAK_EVENT:
duke@435 1892 if (sigbreakHandler != NULL) {
duke@435 1893 (*sigbreakHandler)(SIGBREAK);
duke@435 1894 }
duke@435 1895 return TRUE;
duke@435 1896 break;
duke@435 1897 case CTRL_CLOSE_EVENT:
duke@435 1898 case CTRL_LOGOFF_EVENT:
duke@435 1899 case CTRL_SHUTDOWN_EVENT:
duke@435 1900 os::signal_raise(SIGTERM);
duke@435 1901 return TRUE;
duke@435 1902 break;
duke@435 1903 default:
duke@435 1904 break;
duke@435 1905 }
duke@435 1906 return FALSE;
duke@435 1907 }
duke@435 1908
duke@435 1909 /*
duke@435 1910 * The following code is moved from os.cpp for making this
duke@435 1911 * code platform specific, which it is by its very nature.
duke@435 1912 */
duke@435 1913
duke@435 1914 // Return maximum OS signal used + 1 for internal use only
duke@435 1915 // Used as exit signal for signal_thread
duke@435 1916 int os::sigexitnum_pd(){
duke@435 1917 return NSIG;
duke@435 1918 }
duke@435 1919
duke@435 1920 // a counter for each possible signal value, including signal_thread exit signal
duke@435 1921 static volatile jint pending_signals[NSIG+1] = { 0 };
duke@435 1922 static HANDLE sig_sem;
duke@435 1923
duke@435 1924 void os::signal_init_pd() {
duke@435 1925 // Initialize signal structures
duke@435 1926 memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 1927
duke@435 1928 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
duke@435 1929
duke@435 1930 // Programs embedding the VM do not want it to attempt to receive
duke@435 1931 // events like CTRL_LOGOFF_EVENT, which are used to implement the
duke@435 1932 // shutdown hooks mechanism introduced in 1.3. For example, when
duke@435 1933 // the VM is run as part of a Windows NT service (i.e., a servlet
duke@435 1934 // engine in a web server), the correct behavior is for any console
duke@435 1935 // control handler to return FALSE, not TRUE, because the OS's
duke@435 1936 // "final" handler for such events allows the process to continue if
duke@435 1937 // it is a service (while terminating it if it is not a service).
duke@435 1938 // To make this behavior uniform and the mechanism simpler, we
duke@435 1939 // completely disable the VM's usage of these console events if -Xrs
duke@435 1940 // (=ReduceSignalUsage) is specified. This means, for example, that
duke@435 1941 // the CTRL-BREAK thread dump mechanism is also disabled in this
duke@435 1942 // case. See bugs 4323062, 4345157, and related bugs.
duke@435 1943
duke@435 1944 if (!ReduceSignalUsage) {
duke@435 1945 // Add a CTRL-C handler
duke@435 1946 SetConsoleCtrlHandler(consoleHandler, TRUE);
duke@435 1947 }
duke@435 1948 }
duke@435 1949
duke@435 1950 void os::signal_notify(int signal_number) {
duke@435 1951 BOOL ret;
duke@435 1952
duke@435 1953 Atomic::inc(&pending_signals[signal_number]);
duke@435 1954 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1955 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1956 }
duke@435 1957
duke@435 1958 static int check_pending_signals(bool wait_for_signal) {
duke@435 1959 DWORD ret;
duke@435 1960 while (true) {
duke@435 1961 for (int i = 0; i < NSIG + 1; i++) {
duke@435 1962 jint n = pending_signals[i];
duke@435 1963 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 1964 return i;
duke@435 1965 }
duke@435 1966 }
duke@435 1967 if (!wait_for_signal) {
duke@435 1968 return -1;
duke@435 1969 }
duke@435 1970
duke@435 1971 JavaThread *thread = JavaThread::current();
duke@435 1972
duke@435 1973 ThreadBlockInVM tbivm(thread);
duke@435 1974
duke@435 1975 bool threadIsSuspended;
duke@435 1976 do {
duke@435 1977 thread->set_suspend_equivalent();
duke@435 1978 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 1979 ret = ::WaitForSingleObject(sig_sem, INFINITE);
duke@435 1980 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
duke@435 1981
duke@435 1982 // were we externally suspended while we were waiting?
duke@435 1983 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 1984 if (threadIsSuspended) {
duke@435 1985 //
duke@435 1986 // The semaphore has been incremented, but while we were waiting
duke@435 1987 // another thread suspended us. We don't want to continue running
duke@435 1988 // while suspended because that would surprise the thread that
duke@435 1989 // suspended us.
duke@435 1990 //
duke@435 1991 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 1992 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 1993
duke@435 1994 thread->java_suspend_self();
duke@435 1995 }
duke@435 1996 } while (threadIsSuspended);
duke@435 1997 }
duke@435 1998 }
duke@435 1999
duke@435 2000 int os::signal_lookup() {
duke@435 2001 return check_pending_signals(false);
duke@435 2002 }
duke@435 2003
duke@435 2004 int os::signal_wait() {
duke@435 2005 return check_pending_signals(true);
duke@435 2006 }
duke@435 2007
duke@435 2008 // Implicit OS exception handling
duke@435 2009
duke@435 2010 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
duke@435 2011 JavaThread* thread = JavaThread::current();
duke@435 2012 // Save pc in thread
duke@435 2013 #ifdef _M_IA64
duke@435 2014 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
duke@435 2015 // Set pc to handler
duke@435 2016 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
duke@435 2017 #elif _M_AMD64
duke@435 2018 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
duke@435 2019 // Set pc to handler
duke@435 2020 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
duke@435 2021 #else
duke@435 2022 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
duke@435 2023 // Set pc to handler
duke@435 2024 exceptionInfo->ContextRecord->Eip = (LONG)handler;
duke@435 2025 #endif
duke@435 2026
duke@435 2027 // Continue the execution
duke@435 2028 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2029 }
duke@435 2030
duke@435 2031
duke@435 2032 // Used for PostMortemDump
duke@435 2033 extern "C" void safepoints();
duke@435 2034 extern "C" void find(int x);
duke@435 2035 extern "C" void events();
duke@435 2036
duke@435 2037 // According to Windows API documentation, an illegal instruction sequence should generate
duke@435 2038 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
duke@435 2039 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
duke@435 2040 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
duke@435 2041
duke@435 2042 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
duke@435 2043
duke@435 2044 // From "Execution Protection in the Windows Operating System" draft 0.35
duke@435 2045 // Once a system header becomes available, the "real" define should be
duke@435 2046 // included or copied here.
duke@435 2047 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
duke@435 2048
duke@435 2049 #define def_excpt(val) #val, val
duke@435 2050
duke@435 2051 struct siglabel {
duke@435 2052 char *name;
duke@435 2053 int number;
duke@435 2054 };
duke@435 2055
zgu@2391 2056 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
zgu@2391 2057 // C++ compiler contain this error code. Because this is a compiler-generated
zgu@2391 2058 // error, the code is not listed in the Win32 API header files.
zgu@2391 2059 // The code is actually a cryptic mnemonic device, with the initial "E"
zgu@2391 2060 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
zgu@2391 2061 // ASCII values of "msc".
zgu@2391 2062
zgu@2391 2063 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION 0xE06D7363
zgu@2391 2064
zgu@2391 2065
duke@435 2066 struct siglabel exceptlabels[] = {
duke@435 2067 def_excpt(EXCEPTION_ACCESS_VIOLATION),
duke@435 2068 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
duke@435 2069 def_excpt(EXCEPTION_BREAKPOINT),
duke@435 2070 def_excpt(EXCEPTION_SINGLE_STEP),
duke@435 2071 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
duke@435 2072 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
duke@435 2073 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
duke@435 2074 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
duke@435 2075 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
duke@435 2076 def_excpt(EXCEPTION_FLT_OVERFLOW),
duke@435 2077 def_excpt(EXCEPTION_FLT_STACK_CHECK),
duke@435 2078 def_excpt(EXCEPTION_FLT_UNDERFLOW),
duke@435 2079 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
duke@435 2080 def_excpt(EXCEPTION_INT_OVERFLOW),
duke@435 2081 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
duke@435 2082 def_excpt(EXCEPTION_IN_PAGE_ERROR),
duke@435 2083 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
duke@435 2084 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
duke@435 2085 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
duke@435 2086 def_excpt(EXCEPTION_STACK_OVERFLOW),
duke@435 2087 def_excpt(EXCEPTION_INVALID_DISPOSITION),
duke@435 2088 def_excpt(EXCEPTION_GUARD_PAGE),
duke@435 2089 def_excpt(EXCEPTION_INVALID_HANDLE),
zgu@2391 2090 def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
duke@435 2091 NULL, 0
duke@435 2092 };
duke@435 2093
duke@435 2094 const char* os::exception_name(int exception_code, char *buf, size_t size) {
duke@435 2095 for (int i = 0; exceptlabels[i].name != NULL; i++) {
duke@435 2096 if (exceptlabels[i].number == exception_code) {
duke@435 2097 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
duke@435 2098 return buf;
duke@435 2099 }
duke@435 2100 }
duke@435 2101
duke@435 2102 return NULL;
duke@435 2103 }
duke@435 2104
duke@435 2105 //-----------------------------------------------------------------------------
duke@435 2106 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2107 // handle exception caused by idiv; should only happen for -MinInt/-1
duke@435 2108 // (division by zero is handled explicitly)
duke@435 2109 #ifdef _M_IA64
duke@435 2110 assert(0, "Fix Handle_IDiv_Exception");
duke@435 2111 #elif _M_AMD64
duke@435 2112 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2113 address pc = (address)ctx->Rip;
duke@435 2114 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2115 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2116 assert(ctx->Rax == min_jint, "unexpected idiv exception");
duke@435 2117 // set correct result values and continue after idiv instruction
duke@435 2118 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2119 ctx->Rax = (DWORD)min_jint; // result
duke@435 2120 ctx->Rdx = (DWORD)0; // remainder
duke@435 2121 // Continue the execution
duke@435 2122 #else
duke@435 2123 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2124 address pc = (address)ctx->Eip;
duke@435 2125 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2126 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2127 assert(ctx->Eax == min_jint, "unexpected idiv exception");
duke@435 2128 // set correct result values and continue after idiv instruction
duke@435 2129 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2130 ctx->Eax = (DWORD)min_jint; // result
duke@435 2131 ctx->Edx = (DWORD)0; // remainder
duke@435 2132 // Continue the execution
duke@435 2133 #endif
duke@435 2134 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2135 }
duke@435 2136
duke@435 2137 #ifndef _WIN64
duke@435 2138 //-----------------------------------------------------------------------------
duke@435 2139 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
dcubed@1649 2140 // handle exception caused by native method modifying control word
duke@435 2141 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2142 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2143
duke@435 2144 switch (exception_code) {
duke@435 2145 case EXCEPTION_FLT_DENORMAL_OPERAND:
duke@435 2146 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
duke@435 2147 case EXCEPTION_FLT_INEXACT_RESULT:
duke@435 2148 case EXCEPTION_FLT_INVALID_OPERATION:
duke@435 2149 case EXCEPTION_FLT_OVERFLOW:
duke@435 2150 case EXCEPTION_FLT_STACK_CHECK:
duke@435 2151 case EXCEPTION_FLT_UNDERFLOW:
duke@435 2152 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 2153 if (fp_control_word != ctx->FloatSave.ControlWord) {
duke@435 2154 // Restore FPCW and mask out FLT exceptions
duke@435 2155 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
duke@435 2156 // Mask out pending FLT exceptions
duke@435 2157 ctx->FloatSave.StatusWord &= 0xffffff00;
duke@435 2158 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2159 }
duke@435 2160 }
dcubed@1649 2161
dcubed@1649 2162 if (prev_uef_handler != NULL) {
dcubed@1649 2163 // We didn't handle this exception so pass it to the previous
dcubed@1649 2164 // UnhandledExceptionFilter.
dcubed@1649 2165 return (prev_uef_handler)(exceptionInfo);
dcubed@1649 2166 }
dcubed@1649 2167
duke@435 2168 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2169 }
duke@435 2170 #else //_WIN64
duke@435 2171 /*
duke@435 2172 On Windows, the mxcsr control bits are non-volatile across calls
duke@435 2173 See also CR 6192333
duke@435 2174 If EXCEPTION_FLT_* happened after some native method modified
duke@435 2175 mxcsr - it is not a jvm fault.
duke@435 2176 However should we decide to restore of mxcsr after a faulty
duke@435 2177 native method we can uncomment following code
duke@435 2178 jint MxCsr = INITIAL_MXCSR;
duke@435 2179 // we can't use StubRoutines::addr_mxcsr_std()
duke@435 2180 // because in Win64 mxcsr is not saved there
duke@435 2181 if (MxCsr != ctx->MxCsr) {
duke@435 2182 ctx->MxCsr = MxCsr;
duke@435 2183 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2184 }
duke@435 2185
duke@435 2186 */
duke@435 2187 #endif //_WIN64
duke@435 2188
duke@435 2189
duke@435 2190 // Fatal error reporting is single threaded so we can make this a
duke@435 2191 // static and preallocated. If it's more than MAX_PATH silently ignore
duke@435 2192 // it.
duke@435 2193 static char saved_error_file[MAX_PATH] = {0};
duke@435 2194
duke@435 2195 void os::set_error_file(const char *logfile) {
duke@435 2196 if (strlen(logfile) <= MAX_PATH) {
duke@435 2197 strncpy(saved_error_file, logfile, MAX_PATH);
duke@435 2198 }
duke@435 2199 }
duke@435 2200
duke@435 2201 static inline void report_error(Thread* t, DWORD exception_code,
duke@435 2202 address addr, void* siginfo, void* context) {
duke@435 2203 VMError err(t, exception_code, addr, siginfo, context);
duke@435 2204 err.report_and_die();
duke@435 2205
duke@435 2206 // If UseOsErrorReporting, this will return here and save the error file
duke@435 2207 // somewhere where we can find it in the minidump.
duke@435 2208 }
duke@435 2209
duke@435 2210 //-----------------------------------------------------------------------------
duke@435 2211 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2212 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2213 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2214 #ifdef _M_IA64
duke@435 2215 address pc = (address) exceptionInfo->ContextRecord->StIIP;
duke@435 2216 #elif _M_AMD64
duke@435 2217 address pc = (address) exceptionInfo->ContextRecord->Rip;
duke@435 2218 #else
duke@435 2219 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2220 #endif
duke@435 2221 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 2222
duke@435 2223 #ifndef _WIN64
duke@435 2224 // Execution protection violation - win32 running on AMD64 only
duke@435 2225 // Handled first to avoid misdiagnosis as a "normal" access violation;
duke@435 2226 // This is safe to do because we have a new/unique ExceptionInformation
duke@435 2227 // code for this condition.
duke@435 2228 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2229 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2230 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
duke@435 2231 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2232
duke@435 2233 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 2234 int page_size = os::vm_page_size();
duke@435 2235
duke@435 2236 // Make sure the pc and the faulting address are sane.
duke@435 2237 //
duke@435 2238 // If an instruction spans a page boundary, and the page containing
duke@435 2239 // the beginning of the instruction is executable but the following
duke@435 2240 // page is not, the pc and the faulting address might be slightly
duke@435 2241 // different - we still want to unguard the 2nd page in this case.
duke@435 2242 //
duke@435 2243 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 2244 bool pc_is_near_addr =
duke@435 2245 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 2246 bool instr_spans_page_boundary =
duke@435 2247 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 2248 (intptr_t) page_size) > 0);
duke@435 2249
duke@435 2250 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 2251 static volatile address last_addr =
duke@435 2252 (address) os::non_memory_address_word();
duke@435 2253
duke@435 2254 // In conservative mode, don't unguard unless the address is in the VM
duke@435 2255 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
duke@435 2256 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 2257
coleenp@912 2258 // Set memory to RWX and retry
duke@435 2259 address page_start =
duke@435 2260 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 2261 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 2262 os::MEM_PROT_RWX);
duke@435 2263
duke@435 2264 if (PrintMiscellaneous && Verbose) {
duke@435 2265 char buf[256];
duke@435 2266 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 2267 "at " INTPTR_FORMAT
duke@435 2268 ", unguarding " INTPTR_FORMAT ": %s", addr,
duke@435 2269 page_start, (res ? "success" : strerror(errno)));
duke@435 2270 tty->print_raw_cr(buf);
duke@435 2271 }
duke@435 2272
duke@435 2273 // Set last_addr so if we fault again at the same address, we don't
duke@435 2274 // end up in an endless loop.
duke@435 2275 //
duke@435 2276 // There are two potential complications here. Two threads trapping
duke@435 2277 // at the same address at the same time could cause one of the
duke@435 2278 // threads to think it already unguarded, and abort the VM. Likely
duke@435 2279 // very rare.
duke@435 2280 //
duke@435 2281 // The other race involves two threads alternately trapping at
duke@435 2282 // different addresses and failing to unguard the page, resulting in
duke@435 2283 // an endless loop. This condition is probably even more unlikely
duke@435 2284 // than the first.
duke@435 2285 //
duke@435 2286 // Although both cases could be avoided by using locks or thread
duke@435 2287 // local last_addr, these solutions are unnecessary complication:
duke@435 2288 // this handler is a best-effort safety net, not a complete solution.
duke@435 2289 // It is disabled by default and should only be used as a workaround
duke@435 2290 // in case we missed any no-execute-unsafe VM code.
duke@435 2291
duke@435 2292 last_addr = addr;
duke@435 2293
duke@435 2294 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2295 }
duke@435 2296 }
duke@435 2297
duke@435 2298 // Last unguard failed or not unguarding
duke@435 2299 tty->print_raw_cr("Execution protection violation");
duke@435 2300 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
duke@435 2301 exceptionInfo->ContextRecord);
duke@435 2302 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2303 }
duke@435 2304 }
duke@435 2305 #endif // _WIN64
duke@435 2306
duke@435 2307 // Check to see if we caught the safepoint code in the
duke@435 2308 // process of write protecting the memory serialization page.
duke@435 2309 // It write enables the page immediately after protecting it
duke@435 2310 // so just return.
duke@435 2311 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 2312 JavaThread* thread = (JavaThread*) t;
duke@435 2313 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2314 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2315 if ( os::is_memory_serialize_page(thread, addr) ) {
duke@435 2316 // Block current thread until the memory serialize page permission restored.
duke@435 2317 os::block_on_serialize_page_trap();
duke@435 2318 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2319 }
duke@435 2320 }
duke@435 2321
duke@435 2322 if (t != NULL && t->is_Java_thread()) {
duke@435 2323 JavaThread* thread = (JavaThread*) t;
duke@435 2324 bool in_java = thread->thread_state() == _thread_in_Java;
duke@435 2325
duke@435 2326 // Handle potential stack overflows up front.
duke@435 2327 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
duke@435 2328 if (os::uses_stack_guard_pages()) {
duke@435 2329 #ifdef _M_IA64
duke@435 2330 //
duke@435 2331 // If it's a legal stack address continue, Windows will map it in.
duke@435 2332 //
duke@435 2333 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2334 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2335 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
duke@435 2336 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2337
duke@435 2338 // The register save area is the same size as the memory stack
duke@435 2339 // and starts at the page just above the start of the memory stack.
duke@435 2340 // If we get a fault in this area, we've run out of register
duke@435 2341 // stack. If we are in java, try throwing a stack overflow exception.
duke@435 2342 if (addr > thread->stack_base() &&
duke@435 2343 addr <= (thread->stack_base()+thread->stack_size()) ) {
duke@435 2344 char buf[256];
duke@435 2345 jio_snprintf(buf, sizeof(buf),
duke@435 2346 "Register stack overflow, addr:%p, stack_base:%p\n",
duke@435 2347 addr, thread->stack_base() );
duke@435 2348 tty->print_raw_cr(buf);
duke@435 2349 // If not in java code, return and hope for the best.
duke@435 2350 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2351 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2352 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2353 }
duke@435 2354 #endif
duke@435 2355 if (thread->stack_yellow_zone_enabled()) {
duke@435 2356 // Yellow zone violation. The o/s has unprotected the first yellow
duke@435 2357 // zone page for us. Note: must call disable_stack_yellow_zone to
duke@435 2358 // update the enabled status, even if the zone contains only one page.
duke@435 2359 thread->disable_stack_yellow_zone();
duke@435 2360 // If not in java code, return and hope for the best.
duke@435 2361 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2362 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2363 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2364 } else {
duke@435 2365 // Fatal red zone violation.
duke@435 2366 thread->disable_stack_red_zone();
duke@435 2367 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
duke@435 2368 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2369 exceptionInfo->ContextRecord);
duke@435 2370 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2371 }
duke@435 2372 } else if (in_java) {
duke@435 2373 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
duke@435 2374 // a one-time-only guard page, which it has released to us. The next
duke@435 2375 // stack overflow on this thread will result in an ACCESS_VIOLATION.
duke@435 2376 return Handle_Exception(exceptionInfo,
duke@435 2377 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2378 } else {
duke@435 2379 // Can only return and hope for the best. Further stack growth will
duke@435 2380 // result in an ACCESS_VIOLATION.
duke@435 2381 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2382 }
duke@435 2383 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2384 // Either stack overflow or null pointer exception.
duke@435 2385 if (in_java) {
duke@435 2386 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2387 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2388 address stack_end = thread->stack_base() - thread->stack_size();
duke@435 2389 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
duke@435 2390 // Stack overflow.
duke@435 2391 assert(!os::uses_stack_guard_pages(),
duke@435 2392 "should be caught by red zone code above.");
duke@435 2393 return Handle_Exception(exceptionInfo,
duke@435 2394 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2395 }
duke@435 2396 //
duke@435 2397 // Check for safepoint polling and implicit null
duke@435 2398 // We only expect null pointers in the stubs (vtable)
duke@435 2399 // the rest are checked explicitly now.
duke@435 2400 //
duke@435 2401 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 2402 if (cb != NULL) {
duke@435 2403 if (os::is_poll_address(addr)) {
duke@435 2404 address stub = SharedRuntime::get_poll_stub(pc);
duke@435 2405 return Handle_Exception(exceptionInfo, stub);
duke@435 2406 }
duke@435 2407 }
duke@435 2408 {
duke@435 2409 #ifdef _WIN64
duke@435 2410 //
duke@435 2411 // If it's a legal stack address map the entire region in
duke@435 2412 //
duke@435 2413 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2414 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2415 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
duke@435 2416 addr = (address)((uintptr_t)addr &
duke@435 2417 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
coleenp@1091 2418 os::commit_memory((char *)addr, thread->stack_base() - addr,
coleenp@1091 2419 false );
duke@435 2420 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2421 }
duke@435 2422 else
duke@435 2423 #endif
duke@435 2424 {
duke@435 2425 // Null pointer exception.
duke@435 2426 #ifdef _M_IA64
duke@435 2427 // We catch register stack overflows in compiled code by doing
duke@435 2428 // an explicit compare and executing a st8(G0, G0) if the
duke@435 2429 // BSP enters into our guard area. We test for the overflow
duke@435 2430 // condition and fall into the normal null pointer exception
duke@435 2431 // code if BSP hasn't overflowed.
duke@435 2432 if ( in_java ) {
duke@435 2433 if(thread->register_stack_overflow()) {
duke@435 2434 assert((address)exceptionInfo->ContextRecord->IntS3 ==
duke@435 2435 thread->register_stack_limit(),
duke@435 2436 "GR7 doesn't contain register_stack_limit");
duke@435 2437 // Disable the yellow zone which sets the state that
duke@435 2438 // we've got a stack overflow problem.
duke@435 2439 if (thread->stack_yellow_zone_enabled()) {
duke@435 2440 thread->disable_stack_yellow_zone();
duke@435 2441 }
duke@435 2442 // Give us some room to process the exception
duke@435 2443 thread->disable_register_stack_guard();
duke@435 2444 // Update GR7 with the new limit so we can continue running
duke@435 2445 // compiled code.
duke@435 2446 exceptionInfo->ContextRecord->IntS3 =
duke@435 2447 (ULONGLONG)thread->register_stack_limit();
duke@435 2448 return Handle_Exception(exceptionInfo,
duke@435 2449 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2450 } else {
duke@435 2451 //
duke@435 2452 // Check for implicit null
duke@435 2453 // We only expect null pointers in the stubs (vtable)
duke@435 2454 // the rest are checked explicitly now.
duke@435 2455 //
poonam@900 2456 if (((uintptr_t)addr) < os::vm_page_size() ) {
poonam@900 2457 // an access to the first page of VM--assume it is a null pointer
poonam@900 2458 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2459 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2460 }
duke@435 2461 }
duke@435 2462 } // in_java
duke@435 2463
duke@435 2464 // IA64 doesn't use implicit null checking yet. So we shouldn't
duke@435 2465 // get here.
duke@435 2466 tty->print_raw_cr("Access violation, possible null pointer exception");
duke@435 2467 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2468 exceptionInfo->ContextRecord);
duke@435 2469 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2470 #else /* !IA64 */
duke@435 2471
duke@435 2472 // Windows 98 reports faulting addresses incorrectly
duke@435 2473 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
duke@435 2474 !os::win32::is_nt()) {
poonam@900 2475 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2476 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2477 }
duke@435 2478 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2479 exceptionInfo->ContextRecord);
duke@435 2480 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2481 #endif
duke@435 2482 }
duke@435 2483 }
duke@435 2484 }
duke@435 2485
duke@435 2486 #ifdef _WIN64
duke@435 2487 // Special care for fast JNI field accessors.
duke@435 2488 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
duke@435 2489 // in and the heap gets shrunk before the field access.
duke@435 2490 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2491 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2492 if (addr != (address)-1) {
duke@435 2493 return Handle_Exception(exceptionInfo, addr);
duke@435 2494 }
duke@435 2495 }
duke@435 2496 #endif
duke@435 2497
duke@435 2498 #ifdef _WIN64
duke@435 2499 // Windows will sometimes generate an access violation
duke@435 2500 // when we call malloc. Since we use VectoredExceptions
duke@435 2501 // on 64 bit platforms, we see this exception. We must
duke@435 2502 // pass this exception on so Windows can recover.
duke@435 2503 // We check to see if the pc of the fault is in NTDLL.DLL
duke@435 2504 // if so, we pass control on to Windows for handling.
duke@435 2505 if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2506 #endif
duke@435 2507
duke@435 2508 // Stack overflow or null pointer exception in native code.
duke@435 2509 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2510 exceptionInfo->ContextRecord);
duke@435 2511 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2512 }
duke@435 2513
duke@435 2514 if (in_java) {
duke@435 2515 switch (exception_code) {
duke@435 2516 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2517 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
duke@435 2518
duke@435 2519 case EXCEPTION_INT_OVERFLOW:
duke@435 2520 return Handle_IDiv_Exception(exceptionInfo);
duke@435 2521
duke@435 2522 } // switch
duke@435 2523 }
duke@435 2524 #ifndef _WIN64
zgu@2391 2525 if (((thread->thread_state() == _thread_in_Java) ||
zgu@2391 2526 (thread->thread_state() == _thread_in_native)) &&
zgu@2391 2527 exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
duke@435 2528 {
duke@435 2529 LONG result=Handle_FLT_Exception(exceptionInfo);
duke@435 2530 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
duke@435 2531 }
duke@435 2532 #endif //_WIN64
duke@435 2533 }
duke@435 2534
duke@435 2535 if (exception_code != EXCEPTION_BREAKPOINT) {
duke@435 2536 #ifndef _WIN64
duke@435 2537 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2538 exceptionInfo->ContextRecord);
duke@435 2539 #else
duke@435 2540 // Itanium Windows uses a VectoredExceptionHandler
duke@435 2541 // Which means that C++ programatic exception handlers (try/except)
duke@435 2542 // will get here. Continue the search for the right except block if
duke@435 2543 // the exception code is not a fatal code.
duke@435 2544 switch ( exception_code ) {
duke@435 2545 case EXCEPTION_ACCESS_VIOLATION:
duke@435 2546 case EXCEPTION_STACK_OVERFLOW:
duke@435 2547 case EXCEPTION_ILLEGAL_INSTRUCTION:
duke@435 2548 case EXCEPTION_ILLEGAL_INSTRUCTION_2:
duke@435 2549 case EXCEPTION_INT_OVERFLOW:
duke@435 2550 case EXCEPTION_INT_DIVIDE_BY_ZERO:
zgu@2391 2551 case EXCEPTION_UNCAUGHT_CXX_EXCEPTION:
duke@435 2552 { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2553 exceptionInfo->ContextRecord);
duke@435 2554 }
duke@435 2555 break;
duke@435 2556 default:
duke@435 2557 break;
duke@435 2558 }
duke@435 2559 #endif
duke@435 2560 }
duke@435 2561 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2562 }
duke@435 2563
duke@435 2564 #ifndef _WIN64
duke@435 2565 // Special care for fast JNI accessors.
duke@435 2566 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
duke@435 2567 // the heap gets shrunk before the field access.
duke@435 2568 // Need to install our own structured exception handler since native code may
duke@435 2569 // install its own.
duke@435 2570 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2571 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2572 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2573 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2574 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2575 if (addr != (address)-1) {
duke@435 2576 return Handle_Exception(exceptionInfo, addr);
duke@435 2577 }
duke@435 2578 }
duke@435 2579 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2580 }
duke@435 2581
duke@435 2582 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
duke@435 2583 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
duke@435 2584 __try { \
duke@435 2585 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
duke@435 2586 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
duke@435 2587 } \
duke@435 2588 return 0; \
duke@435 2589 }
duke@435 2590
duke@435 2591 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
duke@435 2592 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
duke@435 2593 DEFINE_FAST_GETFIELD(jchar, char, Char)
duke@435 2594 DEFINE_FAST_GETFIELD(jshort, short, Short)
duke@435 2595 DEFINE_FAST_GETFIELD(jint, int, Int)
duke@435 2596 DEFINE_FAST_GETFIELD(jlong, long, Long)
duke@435 2597 DEFINE_FAST_GETFIELD(jfloat, float, Float)
duke@435 2598 DEFINE_FAST_GETFIELD(jdouble, double, Double)
duke@435 2599
duke@435 2600 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
duke@435 2601 switch (type) {
duke@435 2602 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
duke@435 2603 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
duke@435 2604 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
duke@435 2605 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
duke@435 2606 case T_INT: return (address)jni_fast_GetIntField_wrapper;
duke@435 2607 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
duke@435 2608 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
duke@435 2609 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
duke@435 2610 default: ShouldNotReachHere();
duke@435 2611 }
duke@435 2612 return (address)-1;
duke@435 2613 }
duke@435 2614 #endif
duke@435 2615
duke@435 2616 // Virtual Memory
duke@435 2617
duke@435 2618 int os::vm_page_size() { return os::win32::vm_page_size(); }
duke@435 2619 int os::vm_allocation_granularity() {
duke@435 2620 return os::win32::vm_allocation_granularity();
duke@435 2621 }
duke@435 2622
duke@435 2623 // Windows large page support is available on Windows 2003. In order to use
duke@435 2624 // large page memory, the administrator must first assign additional privilege
duke@435 2625 // to the user:
duke@435 2626 // + select Control Panel -> Administrative Tools -> Local Security Policy
duke@435 2627 // + select Local Policies -> User Rights Assignment
duke@435 2628 // + double click "Lock pages in memory", add users and/or groups
duke@435 2629 // + reboot
duke@435 2630 // Note the above steps are needed for administrator as well, as administrators
duke@435 2631 // by default do not have the privilege to lock pages in memory.
duke@435 2632 //
duke@435 2633 // Note about Windows 2003: although the API supports committing large page
duke@435 2634 // memory on a page-by-page basis and VirtualAlloc() returns success under this
duke@435 2635 // scenario, I found through experiment it only uses large page if the entire
duke@435 2636 // memory region is reserved and committed in a single VirtualAlloc() call.
duke@435 2637 // This makes Windows large page support more or less like Solaris ISM, in
duke@435 2638 // that the entire heap must be committed upfront. This probably will change
duke@435 2639 // in the future, if so the code below needs to be revisited.
duke@435 2640
duke@435 2641 #ifndef MEM_LARGE_PAGES
duke@435 2642 #define MEM_LARGE_PAGES 0x20000000
duke@435 2643 #endif
duke@435 2644
duke@435 2645 static HANDLE _hProcess;
duke@435 2646 static HANDLE _hToken;
duke@435 2647
iveresov@3085 2648 // Container for NUMA node list info
iveresov@3085 2649 class NUMANodeListHolder {
iveresov@3085 2650 private:
iveresov@3085 2651 int *_numa_used_node_list; // allocated below
iveresov@3085 2652 int _numa_used_node_count;
iveresov@3085 2653
iveresov@3085 2654 void free_node_list() {
iveresov@3085 2655 if (_numa_used_node_list != NULL) {
zgu@3900 2656 FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
iveresov@3085 2657 }
iveresov@3085 2658 }
iveresov@3085 2659
iveresov@3085 2660 public:
iveresov@3085 2661 NUMANodeListHolder() {
iveresov@3085 2662 _numa_used_node_count = 0;
iveresov@3085 2663 _numa_used_node_list = NULL;
iveresov@3085 2664 // do rest of initialization in build routine (after function pointers are set up)
iveresov@3085 2665 }
iveresov@3085 2666
iveresov@3085 2667 ~NUMANodeListHolder() {
iveresov@3085 2668 free_node_list();
iveresov@3085 2669 }
iveresov@3085 2670
iveresov@3085 2671 bool build() {
iveresov@3085 2672 DWORD_PTR proc_aff_mask;
iveresov@3085 2673 DWORD_PTR sys_aff_mask;
iveresov@3085 2674 if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
iveresov@3085 2675 ULONG highest_node_number;
iveresov@3085 2676 if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
iveresov@3085 2677 free_node_list();
zgu@3900 2678 _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
iveresov@3085 2679 for (unsigned int i = 0; i <= highest_node_number; i++) {
iveresov@3085 2680 ULONGLONG proc_mask_numa_node;
iveresov@3085 2681 if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
iveresov@3085 2682 if ((proc_aff_mask & proc_mask_numa_node)!=0) {
iveresov@3085 2683 _numa_used_node_list[_numa_used_node_count++] = i;
iveresov@3085 2684 }
iveresov@3085 2685 }
iveresov@3085 2686 return (_numa_used_node_count > 1);
iveresov@3085 2687 }
iveresov@3085 2688
iveresov@3085 2689 int get_count() {return _numa_used_node_count;}
iveresov@3085 2690 int get_node_list_entry(int n) {
iveresov@3085 2691 // for indexes out of range, returns -1
iveresov@3085 2692 return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
iveresov@3085 2693 }
iveresov@3085 2694
iveresov@3085 2695 } numa_node_list_holder;
iveresov@3085 2696
iveresov@3085 2697
iveresov@3085 2698
duke@435 2699 static size_t _large_page_size = 0;
duke@435 2700
duke@435 2701 static bool resolve_functions_for_large_page_init() {
zgu@3031 2702 return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
zgu@3031 2703 os::Advapi32Dll::AdvapiAvailable();
duke@435 2704 }
duke@435 2705
duke@435 2706 static bool request_lock_memory_privilege() {
duke@435 2707 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
duke@435 2708 os::current_process_id());
duke@435 2709
duke@435 2710 LUID luid;
duke@435 2711 if (_hProcess != NULL &&
zgu@3031 2712 os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
zgu@3031 2713 os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
duke@435 2714
duke@435 2715 TOKEN_PRIVILEGES tp;
duke@435 2716 tp.PrivilegeCount = 1;
duke@435 2717 tp.Privileges[0].Luid = luid;
duke@435 2718 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
duke@435 2719
duke@435 2720 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
duke@435 2721 // privilege. Check GetLastError() too. See MSDN document.
zgu@3031 2722 if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
duke@435 2723 (GetLastError() == ERROR_SUCCESS)) {
duke@435 2724 return true;
duke@435 2725 }
duke@435 2726 }
duke@435 2727
duke@435 2728 return false;
duke@435 2729 }
duke@435 2730
duke@435 2731 static void cleanup_after_large_page_init() {
duke@435 2732 if (_hProcess) CloseHandle(_hProcess);
duke@435 2733 _hProcess = NULL;
duke@435 2734 if (_hToken) CloseHandle(_hToken);
duke@435 2735 _hToken = NULL;
duke@435 2736 }
duke@435 2737
iveresov@3085 2738 static bool numa_interleaving_init() {
iveresov@3085 2739 bool success = false;
iveresov@3085 2740 bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
iveresov@3085 2741
iveresov@3118 2742 // print a warning if UseNUMAInterleaving flag is specified on command line
iveresov@3118 2743 bool warn_on_failure = use_numa_interleaving_specified;
iveresov@3085 2744 # define WARN(msg) if (warn_on_failure) { warning(msg); }
iveresov@3085 2745
iveresov@3085 2746 // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
iveresov@3085 2747 size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2748 NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
iveresov@3085 2749
iveresov@3085 2750 if (os::Kernel32Dll::NumaCallsAvailable()) {
iveresov@3085 2751 if (numa_node_list_holder.build()) {
iveresov@3085 2752 if (PrintMiscellaneous && Verbose) {
iveresov@3118 2753 tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
iveresov@3085 2754 for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
iveresov@3085 2755 tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
iveresov@3085 2756 }
iveresov@3085 2757 tty->print("\n");
iveresov@3085 2758 }
iveresov@3085 2759 success = true;
iveresov@3085 2760 } else {
iveresov@3085 2761 WARN("Process does not cover multiple NUMA nodes.");
iveresov@3085 2762 }
iveresov@3085 2763 } else {
iveresov@3085 2764 WARN("NUMA Interleaving is not supported by the operating system.");
iveresov@3085 2765 }
iveresov@3085 2766 if (!success) {
iveresov@3085 2767 if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
iveresov@3085 2768 }
iveresov@3085 2769 return success;
iveresov@3085 2770 #undef WARN
iveresov@3085 2771 }
iveresov@3085 2772
iveresov@3085 2773 // this routine is used whenever we need to reserve a contiguous VA range
iveresov@3085 2774 // but we need to make separate VirtualAlloc calls for each piece of the range
iveresov@3085 2775 // Reasons for doing this:
iveresov@3085 2776 // * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
iveresov@3085 2777 // * UseNUMAInterleaving requires a separate node for each piece
iveresov@3085 2778 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
iveresov@3085 2779 bool should_inject_error=false) {
iveresov@3085 2780 char * p_buf;
iveresov@3085 2781 // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
iveresov@3085 2782 size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2783 size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
iveresov@3085 2784
iveresov@3085 2785 // first reserve enough address space in advance since we want to be
iveresov@3085 2786 // able to break a single contiguous virtual address range into multiple
iveresov@3085 2787 // large page commits but WS2003 does not allow reserving large page space
iveresov@3085 2788 // so we just use 4K pages for reserve, this gives us a legal contiguous
iveresov@3085 2789 // address space. then we will deallocate that reservation, and re alloc
iveresov@3085 2790 // using large pages
iveresov@3085 2791 const size_t size_of_reserve = bytes + chunk_size;
iveresov@3085 2792 if (bytes > size_of_reserve) {
iveresov@3085 2793 // Overflowed.
iveresov@3085 2794 return NULL;
iveresov@3085 2795 }
iveresov@3085 2796 p_buf = (char *) VirtualAlloc(addr,
iveresov@3085 2797 size_of_reserve, // size of Reserve
iveresov@3085 2798 MEM_RESERVE,
iveresov@3085 2799 PAGE_READWRITE);
iveresov@3085 2800 // If reservation failed, return NULL
iveresov@3085 2801 if (p_buf == NULL) return NULL;
iveresov@3085 2802
iveresov@3085 2803 os::release_memory(p_buf, bytes + chunk_size);
iveresov@3085 2804
iveresov@3085 2805 // we still need to round up to a page boundary (in case we are using large pages)
iveresov@3085 2806 // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
iveresov@3085 2807 // instead we handle this in the bytes_to_rq computation below
iveresov@3085 2808 p_buf = (char *) align_size_up((size_t)p_buf, page_size);
iveresov@3085 2809
iveresov@3085 2810 // now go through and allocate one chunk at a time until all bytes are
iveresov@3085 2811 // allocated
iveresov@3085 2812 size_t bytes_remaining = bytes;
iveresov@3085 2813 // An overflow of align_size_up() would have been caught above
iveresov@3085 2814 // in the calculation of size_of_reserve.
iveresov@3085 2815 char * next_alloc_addr = p_buf;
iveresov@3085 2816 HANDLE hProc = GetCurrentProcess();
iveresov@3085 2817
iveresov@3085 2818 #ifdef ASSERT
iveresov@3085 2819 // Variable for the failure injection
iveresov@3085 2820 long ran_num = os::random();
iveresov@3085 2821 size_t fail_after = ran_num % bytes;
iveresov@3085 2822 #endif
iveresov@3085 2823
iveresov@3085 2824 int count=0;
iveresov@3085 2825 while (bytes_remaining) {
iveresov@3085 2826 // select bytes_to_rq to get to the next chunk_size boundary
iveresov@3085 2827
iveresov@3085 2828 size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
iveresov@3085 2829 // Note allocate and commit
iveresov@3085 2830 char * p_new;
iveresov@3085 2831
iveresov@3085 2832 #ifdef ASSERT
iveresov@3085 2833 bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
iveresov@3085 2834 #else
iveresov@3085 2835 const bool inject_error_now = false;
iveresov@3085 2836 #endif
iveresov@3085 2837
iveresov@3085 2838 if (inject_error_now) {
iveresov@3085 2839 p_new = NULL;
iveresov@3085 2840 } else {
iveresov@3085 2841 if (!UseNUMAInterleaving) {
iveresov@3085 2842 p_new = (char *) VirtualAlloc(next_alloc_addr,
iveresov@3085 2843 bytes_to_rq,
iveresov@3085 2844 flags,
iveresov@3085 2845 prot);
iveresov@3085 2846 } else {
iveresov@3085 2847 // get the next node to use from the used_node_list
iveresov@3118 2848 assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
iveresov@3118 2849 DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
iveresov@3085 2850 p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
iveresov@3085 2851 next_alloc_addr,
iveresov@3085 2852 bytes_to_rq,
iveresov@3085 2853 flags,
iveresov@3085 2854 prot,
iveresov@3085 2855 node);
iveresov@3085 2856 }
iveresov@3085 2857 }
iveresov@3085 2858
iveresov@3085 2859 if (p_new == NULL) {
iveresov@3085 2860 // Free any allocated pages
iveresov@3085 2861 if (next_alloc_addr > p_buf) {
iveresov@3085 2862 // Some memory was committed so release it.
iveresov@3085 2863 size_t bytes_to_release = bytes - bytes_remaining;
iveresov@3085 2864 os::release_memory(p_buf, bytes_to_release);
iveresov@3085 2865 }
iveresov@3085 2866 #ifdef ASSERT
iveresov@3085 2867 if (should_inject_error) {
iveresov@3085 2868 if (TracePageSizes && Verbose) {
iveresov@3085 2869 tty->print_cr("Reserving pages individually failed.");
iveresov@3085 2870 }
iveresov@3085 2871 }
iveresov@3085 2872 #endif
iveresov@3085 2873 return NULL;
iveresov@3085 2874 }
iveresov@3085 2875 bytes_remaining -= bytes_to_rq;
iveresov@3085 2876 next_alloc_addr += bytes_to_rq;
iveresov@3085 2877 count++;
iveresov@3085 2878 }
iveresov@3085 2879 // made it this far, success
iveresov@3085 2880 return p_buf;
iveresov@3085 2881 }
iveresov@3085 2882
iveresov@3085 2883
iveresov@3085 2884
iveresov@2850 2885 void os::large_page_init() {
iveresov@2850 2886 if (!UseLargePages) return;
duke@435 2887
duke@435 2888 // print a warning if any large page related flag is specified on command line
duke@435 2889 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 2890 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 2891 bool success = false;
duke@435 2892
duke@435 2893 # define WARN(msg) if (warn_on_failure) { warning(msg); }
duke@435 2894 if (resolve_functions_for_large_page_init()) {
duke@435 2895 if (request_lock_memory_privilege()) {
zgu@3031 2896 size_t s = os::Kernel32Dll::GetLargePageMinimum();
duke@435 2897 if (s) {
duke@435 2898 #if defined(IA32) || defined(AMD64)
duke@435 2899 if (s > 4*M || LargePageSizeInBytes > 4*M) {
duke@435 2900 WARN("JVM cannot use large pages bigger than 4mb.");
duke@435 2901 } else {
duke@435 2902 #endif
duke@435 2903 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
duke@435 2904 _large_page_size = LargePageSizeInBytes;
duke@435 2905 } else {
duke@435 2906 _large_page_size = s;
duke@435 2907 }
duke@435 2908 success = true;
duke@435 2909 #if defined(IA32) || defined(AMD64)
duke@435 2910 }
duke@435 2911 #endif
duke@435 2912 } else {
duke@435 2913 WARN("Large page is not supported by the processor.");
duke@435 2914 }
duke@435 2915 } else {
duke@435 2916 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
duke@435 2917 }
duke@435 2918 } else {
duke@435 2919 WARN("Large page is not supported by the operating system.");
duke@435 2920 }
duke@435 2921 #undef WARN
duke@435 2922
duke@435 2923 const size_t default_page_size = (size_t) vm_page_size();
duke@435 2924 if (success && _large_page_size > default_page_size) {
duke@435 2925 _page_sizes[0] = _large_page_size;
duke@435 2926 _page_sizes[1] = default_page_size;
duke@435 2927 _page_sizes[2] = 0;
duke@435 2928 }
duke@435 2929
duke@435 2930 cleanup_after_large_page_init();
iveresov@2850 2931 UseLargePages = success;
duke@435 2932 }
duke@435 2933
duke@435 2934 // On win32, one cannot release just a part of reserved memory, it's an
duke@435 2935 // all or nothing deal. When we split a reservation, we must break the
duke@435 2936 // reservation into two reservations.
zgu@3900 2937 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
duke@435 2938 bool realloc) {
duke@435 2939 if (size > 0) {
duke@435 2940 release_memory(base, size);
duke@435 2941 if (realloc) {
duke@435 2942 reserve_memory(split, base);
duke@435 2943 }
duke@435 2944 if (size != split) {
duke@435 2945 reserve_memory(size - split, base + split);
duke@435 2946 }
duke@435 2947 }
duke@435 2948 }
duke@435 2949
zgu@3900 2950 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
duke@435 2951 assert((size_t)addr % os::vm_allocation_granularity() == 0,
duke@435 2952 "reserve alignment");
duke@435 2953 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
iveresov@3085 2954 char* res;
iveresov@3085 2955 // note that if UseLargePages is on, all the areas that require interleaving
iveresov@3085 2956 // will go thru reserve_memory_special rather than thru here.
iveresov@3085 2957 bool use_individual = (UseNUMAInterleaving && !UseLargePages);
iveresov@3085 2958 if (!use_individual) {
iveresov@3085 2959 res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 2960 } else {
iveresov@3085 2961 elapsedTimer reserveTimer;
iveresov@3085 2962 if( Verbose && PrintMiscellaneous ) reserveTimer.start();
iveresov@3085 2963 // in numa interleaving, we have to allocate pages individually
iveresov@3085 2964 // (well really chunks of NUMAInterleaveGranularity size)
iveresov@3085 2965 res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 2966 if (res == NULL) {
iveresov@3085 2967 warning("NUMA page allocation failed");
iveresov@3085 2968 }
iveresov@3085 2969 if( Verbose && PrintMiscellaneous ) {
iveresov@3085 2970 reserveTimer.stop();
iveresov@3085 2971 tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
iveresov@3085 2972 reserveTimer.milliseconds(), reserveTimer.ticks());
iveresov@3085 2973 }
iveresov@3085 2974 }
duke@435 2975 assert(res == NULL || addr == NULL || addr == res,
duke@435 2976 "Unexpected address from reserve.");
iveresov@3085 2977
duke@435 2978 return res;
duke@435 2979 }
duke@435 2980
duke@435 2981 // Reserve memory at an arbitrary address, only if that area is
duke@435 2982 // available (and not reserved for something else).
zgu@3900 2983 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2984 // Windows os::reserve_memory() fails of the requested address range is
duke@435 2985 // not avilable.
duke@435 2986 return reserve_memory(bytes, requested_addr);
duke@435 2987 }
duke@435 2988
duke@435 2989 size_t os::large_page_size() {
duke@435 2990 return _large_page_size;
duke@435 2991 }
duke@435 2992
duke@435 2993 bool os::can_commit_large_page_memory() {
duke@435 2994 // Windows only uses large page memory when the entire region is reserved
duke@435 2995 // and committed in a single VirtualAlloc() call. This may change in the
duke@435 2996 // future, but with Windows 2003 it's not possible to commit on demand.
duke@435 2997 return false;
duke@435 2998 }
duke@435 2999
jcoomes@514 3000 bool os::can_execute_large_page_memory() {
jcoomes@514 3001 return true;
jcoomes@514 3002 }
jcoomes@514 3003
coleenp@1091 3004 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
coleenp@912 3005
coleenp@1152 3006 const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
iveresov@3085 3007 const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
iveresov@3085 3008
iveresov@3085 3009 // with large pages, there are two cases where we need to use Individual Allocation
iveresov@3085 3010 // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
iveresov@3085 3011 // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
iveresov@3085 3012 if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
jmasa@824 3013 if (TracePageSizes && Verbose) {
jmasa@824 3014 tty->print_cr("Reserving large pages individually.");
jmasa@824 3015 }
iveresov@3085 3016 char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
iveresov@3085 3017 if (p_buf == NULL) {
iveresov@3085 3018 // give an appropriate warning message
iveresov@3085 3019 if (UseNUMAInterleaving) {
iveresov@3085 3020 warning("NUMA large page allocation failed, UseLargePages flag ignored");
iveresov@3085 3021 }
iveresov@3085 3022 if (UseLargePagesIndividualAllocation) {
iveresov@3085 3023 warning("Individually allocated large pages failed, "
iveresov@3085 3024 "use -XX:-UseLargePagesIndividualAllocation to turn off");
iveresov@3085 3025 }
jmasa@824 3026 return NULL;
jmasa@824 3027 }
jmasa@824 3028
jmasa@824 3029 return p_buf;
jmasa@824 3030
jmasa@824 3031 } else {
jmasa@824 3032 // normal policy just allocate it all at once
jmasa@824 3033 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
coleenp@1152 3034 char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
jmasa@824 3035 return res;
jmasa@824 3036 }
duke@435 3037 }
duke@435 3038
duke@435 3039 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 3040 return release_memory(base, bytes);
duke@435 3041 }
duke@435 3042
duke@435 3043 void os::print_statistics() {
duke@435 3044 }
duke@435 3045
zgu@3900 3046 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
duke@435 3047 if (bytes == 0) {
duke@435 3048 // Don't bother the OS with noops.
duke@435 3049 return true;
duke@435 3050 }
duke@435 3051 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
duke@435 3052 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
duke@435 3053 // Don't attempt to print anything if the OS call fails. We're
duke@435 3054 // probably low on resources, so the print itself may cause crashes.
iveresov@3085 3055
iveresov@3085 3056 // unless we have NUMAInterleaving enabled, the range of a commit
iveresov@3085 3057 // is always within a reserve covered by a single VirtualAlloc
iveresov@3085 3058 // in that case we can just do a single commit for the requested size
iveresov@3085 3059 if (!UseNUMAInterleaving) {
iveresov@3085 3060 if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
iveresov@3085 3061 if (exec) {
iveresov@3085 3062 DWORD oldprot;
iveresov@3085 3063 // Windows doc says to use VirtualProtect to get execute permissions
iveresov@3085 3064 if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
iveresov@3085 3065 }
iveresov@3085 3066 return true;
coleenp@1091 3067 } else {
iveresov@3085 3068
iveresov@3085 3069 // when NUMAInterleaving is enabled, the commit might cover a range that
iveresov@3085 3070 // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
iveresov@3085 3071 // VirtualQuery can help us determine that. The RegionSize that VirtualQuery
iveresov@3085 3072 // returns represents the number of bytes that can be committed in one step.
iveresov@3085 3073 size_t bytes_remaining = bytes;
iveresov@3085 3074 char * next_alloc_addr = addr;
iveresov@3085 3075 while (bytes_remaining > 0) {
iveresov@3085 3076 MEMORY_BASIC_INFORMATION alloc_info;
iveresov@3085 3077 VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
iveresov@3085 3078 size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
iveresov@3085 3079 if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
iveresov@3085 3080 return false;
iveresov@3085 3081 if (exec) {
iveresov@3085 3082 DWORD oldprot;
iveresov@3085 3083 if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
iveresov@3085 3084 return false;
iveresov@3085 3085 }
iveresov@3085 3086 bytes_remaining -= bytes_to_rq;
iveresov@3085 3087 next_alloc_addr += bytes_to_rq;
iveresov@3085 3088 }
iveresov@3085 3089 }
iveresov@3085 3090 // if we made it this far, return true
iveresov@3085 3091 return true;
duke@435 3092 }
duke@435 3093
zgu@3900 3094 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 3095 bool exec) {
coleenp@1091 3096 return commit_memory(addr, size, exec);
duke@435 3097 }
duke@435 3098
zgu@3900 3099 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
duke@435 3100 if (bytes == 0) {
duke@435 3101 // Don't bother the OS with noops.
duke@435 3102 return true;
duke@435 3103 }
duke@435 3104 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
duke@435 3105 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
zgu@3900 3106 return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
zgu@3900 3107 }
zgu@3900 3108
zgu@3900 3109 bool os::pd_release_memory(char* addr, size_t bytes) {
duke@435 3110 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
duke@435 3111 }
duke@435 3112
zgu@3900 3113 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 3114 return os::commit_memory(addr, size);
coleenp@1755 3115 }
coleenp@1755 3116
coleenp@1755 3117 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 3118 return os::uncommit_memory(addr, size);
coleenp@1755 3119 }
coleenp@1755 3120
coleenp@672 3121 // Set protections specified
coleenp@672 3122 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 3123 bool is_committed) {
coleenp@672 3124 unsigned int p = 0;
coleenp@672 3125 switch (prot) {
coleenp@672 3126 case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
coleenp@672 3127 case MEM_PROT_READ: p = PAGE_READONLY; break;
coleenp@672 3128 case MEM_PROT_RW: p = PAGE_READWRITE; break;
coleenp@672 3129 case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
coleenp@672 3130 default:
coleenp@672 3131 ShouldNotReachHere();
coleenp@672 3132 }
coleenp@672 3133
duke@435 3134 DWORD old_status;
coleenp@672 3135
coleenp@672 3136 // Strange enough, but on Win32 one can change protection only for committed
coleenp@672 3137 // memory, not a big deal anyway, as bytes less or equal than 64K
coleenp@1091 3138 if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
coleenp@672 3139 fatal("cannot commit protection page");
coleenp@672 3140 }
coleenp@672 3141 // One cannot use os::guard_memory() here, as on Win32 guard page
coleenp@672 3142 // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
coleenp@672 3143 //
coleenp@672 3144 // Pages in the region become guard pages. Any attempt to access a guard page
coleenp@672 3145 // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
coleenp@672 3146 // the guard page status. Guard pages thus act as a one-time access alarm.
coleenp@672 3147 return VirtualProtect(addr, bytes, p, &old_status) != 0;
duke@435 3148 }
duke@435 3149
duke@435 3150 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 3151 DWORD old_status;
coleenp@912 3152 return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
duke@435 3153 }
duke@435 3154
duke@435 3155 bool os::unguard_memory(char* addr, size_t bytes) {
duke@435 3156 DWORD old_status;
coleenp@912 3157 return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
duke@435 3158 }
duke@435 3159
zgu@3900 3160 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
zgu@3900 3161 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 3162 void os::numa_make_global(char *addr, size_t bytes) { }
iveresov@576 3163 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
duke@435 3164 bool os::numa_topology_changed() { return false; }
iveresov@3118 3165 size_t os::numa_get_groups_num() { return MAX2(numa_node_list_holder.get_count(), 1); }
duke@435 3166 int os::numa_get_group_id() { return 0; }
duke@435 3167 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@3118 3168 if (numa_node_list_holder.get_count() == 0 && size > 0) {
iveresov@3118 3169 // Provide an answer for UMA systems
iveresov@3118 3170 ids[0] = 0;
iveresov@3118 3171 return 1;
iveresov@3118 3172 } else {
iveresov@3118 3173 // check for size bigger than actual groups_num
iveresov@3118 3174 size = MIN2(size, numa_get_groups_num());
iveresov@3118 3175 for (int i = 0; i < (int)size; i++) {
iveresov@3118 3176 ids[i] = numa_node_list_holder.get_node_list_entry(i);
iveresov@3118 3177 }
iveresov@3118 3178 return size;
iveresov@3118 3179 }
duke@435 3180 }
duke@435 3181
duke@435 3182 bool os::get_page_info(char *start, page_info* info) {
duke@435 3183 return false;
duke@435 3184 }
duke@435 3185
duke@435 3186 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 3187 return end;
duke@435 3188 }
duke@435 3189
duke@435 3190 char* os::non_memory_address_word() {
duke@435 3191 // Must never look like an address returned by reserve_memory,
duke@435 3192 // even in its subfields (as defined by the CPU immediate fields,
duke@435 3193 // if the CPU splits constants across multiple instructions).
duke@435 3194 return (char*)-1;
duke@435 3195 }
duke@435 3196
duke@435 3197 #define MAX_ERROR_COUNT 100
duke@435 3198 #define SYS_THREAD_ERROR 0xffffffffUL
duke@435 3199
duke@435 3200 void os::pd_start_thread(Thread* thread) {
duke@435 3201 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
duke@435 3202 // Returns previous suspend state:
duke@435 3203 // 0: Thread was not suspended
duke@435 3204 // 1: Thread is running now
duke@435 3205 // >1: Thread is still suspended.
duke@435 3206 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
duke@435 3207 }
duke@435 3208
duke@435 3209 class HighResolutionInterval {
duke@435 3210 // The default timer resolution seems to be 10 milliseconds.
duke@435 3211 // (Where is this written down?)
duke@435 3212 // If someone wants to sleep for only a fraction of the default,
duke@435 3213 // then we set the timer resolution down to 1 millisecond for
duke@435 3214 // the duration of their interval.
duke@435 3215 // We carefully set the resolution back, since otherwise we
duke@435 3216 // seem to incur an overhead (3%?) that we don't need.
duke@435 3217 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
duke@435 3218 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
duke@435 3219 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
duke@435 3220 // timeBeginPeriod() if the relative error exceeded some threshold.
duke@435 3221 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
duke@435 3222 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
duke@435 3223 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
duke@435 3224 // resolution timers running.
duke@435 3225 private:
duke@435 3226 jlong resolution;
duke@435 3227 public:
duke@435 3228 HighResolutionInterval(jlong ms) {
duke@435 3229 resolution = ms % 10L;
duke@435 3230 if (resolution != 0) {
duke@435 3231 MMRESULT result = timeBeginPeriod(1L);
duke@435 3232 }
duke@435 3233 }
duke@435 3234 ~HighResolutionInterval() {
duke@435 3235 if (resolution != 0) {
duke@435 3236 MMRESULT result = timeEndPeriod(1L);
duke@435 3237 }
duke@435 3238 resolution = 0L;
duke@435 3239 }
duke@435 3240 };
duke@435 3241
duke@435 3242 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
duke@435 3243 jlong limit = (jlong) MAXDWORD;
duke@435 3244
duke@435 3245 while(ms > limit) {
duke@435 3246 int res;
duke@435 3247 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
duke@435 3248 return res;
duke@435 3249 ms -= limit;
duke@435 3250 }
duke@435 3251
duke@435 3252 assert(thread == Thread::current(), "thread consistency check");
duke@435 3253 OSThread* osthread = thread->osthread();
duke@435 3254 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
duke@435 3255 int result;
duke@435 3256 if (interruptable) {
duke@435 3257 assert(thread->is_Java_thread(), "must be java thread");
duke@435 3258 JavaThread *jt = (JavaThread *) thread;
duke@435 3259 ThreadBlockInVM tbivm(jt);
duke@435 3260
duke@435 3261 jt->set_suspend_equivalent();
duke@435 3262 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3263 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3264
duke@435 3265 HANDLE events[1];
duke@435 3266 events[0] = osthread->interrupt_event();
duke@435 3267 HighResolutionInterval *phri=NULL;
duke@435 3268 if(!ForceTimeHighResolution)
duke@435 3269 phri = new HighResolutionInterval( ms );
duke@435 3270 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
duke@435 3271 result = OS_TIMEOUT;
duke@435 3272 } else {
duke@435 3273 ResetEvent(osthread->interrupt_event());
duke@435 3274 osthread->set_interrupted(false);
duke@435 3275 result = OS_INTRPT;
duke@435 3276 }
duke@435 3277 delete phri; //if it is NULL, harmless
duke@435 3278
duke@435 3279 // were we externally suspended while we were waiting?
duke@435 3280 jt->check_and_wait_while_suspended();
duke@435 3281 } else {
duke@435 3282 assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 3283 Sleep((long) ms);
duke@435 3284 result = OS_TIMEOUT;
duke@435 3285 }
duke@435 3286 return result;
duke@435 3287 }
duke@435 3288
duke@435 3289 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3290 void os::infinite_sleep() {
duke@435 3291 while (true) { // sleep forever ...
duke@435 3292 Sleep(100000); // ... 100 seconds at a time
duke@435 3293 }
duke@435 3294 }
duke@435 3295
duke@435 3296 typedef BOOL (WINAPI * STTSignature)(void) ;
duke@435 3297
duke@435 3298 os::YieldResult os::NakedYield() {
duke@435 3299 // Use either SwitchToThread() or Sleep(0)
duke@435 3300 // Consider passing back the return value from SwitchToThread().
zgu@3031 3301 if (os::Kernel32Dll::SwitchToThreadAvailable()) {
zgu@3031 3302 return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
duke@435 3303 } else {
zgu@3031 3304 Sleep(0);
duke@435 3305 }
duke@435 3306 return os::YIELD_UNKNOWN ;
duke@435 3307 }
duke@435 3308
duke@435 3309 void os::yield() { os::NakedYield(); }
duke@435 3310
duke@435 3311 void os::yield_all(int attempts) {
duke@435 3312 // Yields to all threads, including threads with lower priorities
duke@435 3313 Sleep(1);
duke@435 3314 }
duke@435 3315
duke@435 3316 // Win32 only gives you access to seven real priorities at a time,
duke@435 3317 // so we compress Java's ten down to seven. It would be better
duke@435 3318 // if we dynamically adjusted relative priorities.
duke@435 3319
phh@3481 3320 int os::java_to_os_priority[CriticalPriority + 1] = {
duke@435 3321 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3322 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3323 THREAD_PRIORITY_LOWEST, // 2
duke@435 3324 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3325 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3326 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3327 THREAD_PRIORITY_NORMAL, // 6
duke@435 3328 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3329 THREAD_PRIORITY_ABOVE_NORMAL, // 8
duke@435 3330 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
phh@3481 3331 THREAD_PRIORITY_HIGHEST, // 10 MaxPriority
phh@3481 3332 THREAD_PRIORITY_HIGHEST // 11 CriticalPriority
duke@435 3333 };
duke@435 3334
phh@3481 3335 int prio_policy1[CriticalPriority + 1] = {
duke@435 3336 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3337 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3338 THREAD_PRIORITY_LOWEST, // 2
duke@435 3339 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3340 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3341 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3342 THREAD_PRIORITY_ABOVE_NORMAL, // 6
duke@435 3343 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3344 THREAD_PRIORITY_HIGHEST, // 8
duke@435 3345 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
phh@3481 3346 THREAD_PRIORITY_TIME_CRITICAL, // 10 MaxPriority
phh@3481 3347 THREAD_PRIORITY_TIME_CRITICAL // 11 CriticalPriority
duke@435 3348 };
duke@435 3349
duke@435 3350 static int prio_init() {
duke@435 3351 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3352 if (ThreadPriorityPolicy == 1) {
duke@435 3353 int i;
phh@3481 3354 for (i = 0; i < CriticalPriority + 1; i++) {
duke@435 3355 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3356 }
duke@435 3357 }
phh@3481 3358 if (UseCriticalJavaThreadPriority) {
phh@3481 3359 os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
phh@3481 3360 }
duke@435 3361 return 0;
duke@435 3362 }
duke@435 3363
duke@435 3364 OSReturn os::set_native_priority(Thread* thread, int priority) {
duke@435 3365 if (!UseThreadPriorities) return OS_OK;
duke@435 3366 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
duke@435 3367 return ret ? OS_OK : OS_ERR;
duke@435 3368 }
duke@435 3369
duke@435 3370 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
duke@435 3371 if ( !UseThreadPriorities ) {
duke@435 3372 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3373 return OS_OK;
duke@435 3374 }
duke@435 3375 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
duke@435 3376 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
duke@435 3377 assert(false, "GetThreadPriority failed");
duke@435 3378 return OS_ERR;
duke@435 3379 }
duke@435 3380 *priority_ptr = os_prio;
duke@435 3381 return OS_OK;
duke@435 3382 }
duke@435 3383
duke@435 3384
duke@435 3385 // Hint to the underlying OS that a task switch would not be good.
duke@435 3386 // Void return because it's a hint and can fail.
duke@435 3387 void os::hint_no_preempt() {}
duke@435 3388
duke@435 3389 void os::interrupt(Thread* thread) {
duke@435 3390 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3391 "possibility of dangling Thread pointer");
duke@435 3392
duke@435 3393 OSThread* osthread = thread->osthread();
duke@435 3394 osthread->set_interrupted(true);
duke@435 3395 // More than one thread can get here with the same value of osthread,
duke@435 3396 // resulting in multiple notifications. We do, however, want the store
duke@435 3397 // to interrupted() to be visible to other threads before we post
duke@435 3398 // the interrupt event.
duke@435 3399 OrderAccess::release();
duke@435 3400 SetEvent(osthread->interrupt_event());
duke@435 3401 // For JSR166: unpark after setting status
duke@435 3402 if (thread->is_Java_thread())
duke@435 3403 ((JavaThread*)thread)->parker()->unpark();
duke@435 3404
duke@435 3405 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3406 if (ev != NULL) ev->unpark() ;
duke@435 3407
duke@435 3408 }
duke@435 3409
duke@435 3410
duke@435 3411 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3412 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3413 "possibility of dangling Thread pointer");
duke@435 3414
duke@435 3415 OSThread* osthread = thread->osthread();
dholmes@2668 3416 bool interrupted = osthread->interrupted();
dholmes@2668 3417 // There is no synchronization between the setting of the interrupt
dholmes@2668 3418 // and it being cleared here. It is critical - see 6535709 - that
dholmes@2668 3419 // we only clear the interrupt state, and reset the interrupt event,
dholmes@2668 3420 // if we are going to report that we were indeed interrupted - else
dholmes@2668 3421 // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
dholmes@2668 3422 // depending on the timing
dholmes@2668 3423 if (interrupted && clear_interrupted) {
duke@435 3424 osthread->set_interrupted(false);
duke@435 3425 ResetEvent(osthread->interrupt_event());
duke@435 3426 } // Otherwise leave the interrupted state alone
duke@435 3427
duke@435 3428 return interrupted;
duke@435 3429 }
duke@435 3430
duke@435 3431 // Get's a pc (hint) for a running thread. Currently used only for profiling.
duke@435 3432 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3433 CONTEXT context;
duke@435 3434 context.ContextFlags = CONTEXT_CONTROL;
duke@435 3435 HANDLE handle = thread->osthread()->thread_handle();
duke@435 3436 #ifdef _M_IA64
duke@435 3437 assert(0, "Fix get_thread_pc");
duke@435 3438 return ExtendedPC(NULL);
duke@435 3439 #else
duke@435 3440 if (GetThreadContext(handle, &context)) {
duke@435 3441 #ifdef _M_AMD64
duke@435 3442 return ExtendedPC((address) context.Rip);
duke@435 3443 #else
duke@435 3444 return ExtendedPC((address) context.Eip);
duke@435 3445 #endif
duke@435 3446 } else {
duke@435 3447 return ExtendedPC(NULL);
duke@435 3448 }
duke@435 3449 #endif
duke@435 3450 }
duke@435 3451
duke@435 3452 // GetCurrentThreadId() returns DWORD
duke@435 3453 intx os::current_thread_id() { return GetCurrentThreadId(); }
duke@435 3454
duke@435 3455 static int _initial_pid = 0;
duke@435 3456
duke@435 3457 int os::current_process_id()
duke@435 3458 {
duke@435 3459 return (_initial_pid ? _initial_pid : _getpid());
duke@435 3460 }
duke@435 3461
duke@435 3462 int os::win32::_vm_page_size = 0;
duke@435 3463 int os::win32::_vm_allocation_granularity = 0;
duke@435 3464 int os::win32::_processor_type = 0;
duke@435 3465 // Processor level is not available on non-NT systems, use vm_version instead
duke@435 3466 int os::win32::_processor_level = 0;
duke@435 3467 julong os::win32::_physical_memory = 0;
duke@435 3468 size_t os::win32::_default_stack_size = 0;
duke@435 3469
duke@435 3470 intx os::win32::_os_thread_limit = 0;
duke@435 3471 volatile intx os::win32::_os_thread_count = 0;
duke@435 3472
duke@435 3473 bool os::win32::_is_nt = false;
jmasa@824 3474 bool os::win32::_is_windows_2003 = false;
ctornqvi@2520 3475 bool os::win32::_is_windows_server = false;
duke@435 3476
duke@435 3477 void os::win32::initialize_system_info() {
duke@435 3478 SYSTEM_INFO si;
duke@435 3479 GetSystemInfo(&si);
duke@435 3480 _vm_page_size = si.dwPageSize;
duke@435 3481 _vm_allocation_granularity = si.dwAllocationGranularity;
duke@435 3482 _processor_type = si.dwProcessorType;
duke@435 3483 _processor_level = si.wProcessorLevel;
phh@1558 3484 set_processor_count(si.dwNumberOfProcessors);
coleenp@912 3485
poonam@1312 3486 MEMORYSTATUSEX ms;
poonam@1312 3487 ms.dwLength = sizeof(ms);
poonam@1312 3488
duke@435 3489 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
duke@435 3490 // dwMemoryLoad (% of memory in use)
poonam@1312 3491 GlobalMemoryStatusEx(&ms);
poonam@1312 3492 _physical_memory = ms.ullTotalPhys;
duke@435 3493
ctornqvi@2520 3494 OSVERSIONINFOEX oi;
ctornqvi@2520 3495 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
ctornqvi@2520 3496 GetVersionEx((OSVERSIONINFO*)&oi);
duke@435 3497 switch(oi.dwPlatformId) {
duke@435 3498 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
jmasa@824 3499 case VER_PLATFORM_WIN32_NT:
jmasa@824 3500 _is_nt = true;
jmasa@824 3501 {
jmasa@824 3502 int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
jmasa@824 3503 if (os_vers == 5002) {
jmasa@824 3504 _is_windows_2003 = true;
jmasa@824 3505 }
ctornqvi@2520 3506 if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
ctornqvi@2520 3507 oi.wProductType == VER_NT_SERVER) {
ctornqvi@2520 3508 _is_windows_server = true;
ctornqvi@2520 3509 }
jmasa@824 3510 }
jmasa@824 3511 break;
duke@435 3512 default: fatal("Unknown platform");
duke@435 3513 }
duke@435 3514
duke@435 3515 _default_stack_size = os::current_stack_size();
duke@435 3516 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
duke@435 3517 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
duke@435 3518 "stack size not a multiple of page size");
duke@435 3519
duke@435 3520 initialize_performance_counter();
duke@435 3521
duke@435 3522 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
duke@435 3523 // known to deadlock the system, if the VM issues to thread operations with
duke@435 3524 // a too high frequency, e.g., such as changing the priorities.
duke@435 3525 // The 6000 seems to work well - no deadlocks has been notices on the test
duke@435 3526 // programs that we have seen experience this problem.
duke@435 3527 if (!os::win32::is_nt()) {
duke@435 3528 StarvationMonitorInterval = 6000;
duke@435 3529 }
duke@435 3530 }
duke@435 3531
duke@435 3532
zgu@3031 3533 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
zgu@3031 3534 char path[MAX_PATH];
zgu@3031 3535 DWORD size;
zgu@3031 3536 DWORD pathLen = (DWORD)sizeof(path);
zgu@3031 3537 HINSTANCE result = NULL;
zgu@3031 3538
zgu@3031 3539 // only allow library name without path component
zgu@3031 3540 assert(strchr(name, '\\') == NULL, "path not allowed");
zgu@3031 3541 assert(strchr(name, ':') == NULL, "path not allowed");
zgu@3031 3542 if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
zgu@3031 3543 jio_snprintf(ebuf, ebuflen,
zgu@3031 3544 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
zgu@3031 3545 return NULL;
zgu@3031 3546 }
zgu@3031 3547
zgu@3031 3548 // search system directory
zgu@3031 3549 if ((size = GetSystemDirectory(path, pathLen)) > 0) {
zgu@3031 3550 strcat(path, "\\");
zgu@3031 3551 strcat(path, name);
zgu@3031 3552 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3553 return result;
zgu@3031 3554 }
zgu@3031 3555 }
zgu@3031 3556
zgu@3031 3557 // try Windows directory
zgu@3031 3558 if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
zgu@3031 3559 strcat(path, "\\");
zgu@3031 3560 strcat(path, name);
zgu@3031 3561 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3562 return result;
zgu@3031 3563 }
zgu@3031 3564 }
zgu@3031 3565
zgu@3031 3566 jio_snprintf(ebuf, ebuflen,
zgu@3031 3567 "os::win32::load_windows_dll() cannot load %s from system directories.", name);
zgu@3031 3568 return NULL;
zgu@3031 3569 }
zgu@3031 3570
duke@435 3571 void os::win32::setmode_streams() {
duke@435 3572 _setmode(_fileno(stdin), _O_BINARY);
duke@435 3573 _setmode(_fileno(stdout), _O_BINARY);
duke@435 3574 _setmode(_fileno(stderr), _O_BINARY);
duke@435 3575 }
duke@435 3576
duke@435 3577
sla@2584 3578 bool os::is_debugger_attached() {
sla@2584 3579 return IsDebuggerPresent() ? true : false;
sla@2584 3580 }
sla@2584 3581
sla@2584 3582
sla@2584 3583 void os::wait_for_keypress_at_exit(void) {
sla@2584 3584 if (PauseAtExit) {
sla@2584 3585 fprintf(stderr, "Press any key to continue...\n");
sla@2584 3586 fgetc(stdin);
sla@2584 3587 }
sla@2584 3588 }
sla@2584 3589
sla@2584 3590
duke@435 3591 int os::message_box(const char* title, const char* message) {
duke@435 3592 int result = MessageBox(NULL, message, title,
duke@435 3593 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
duke@435 3594 return result == IDYES;
duke@435 3595 }
duke@435 3596
duke@435 3597 int os::allocate_thread_local_storage() {
duke@435 3598 return TlsAlloc();
duke@435 3599 }
duke@435 3600
duke@435 3601
duke@435 3602 void os::free_thread_local_storage(int index) {
duke@435 3603 TlsFree(index);
duke@435 3604 }
duke@435 3605
duke@435 3606
duke@435 3607 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 3608 TlsSetValue(index, value);
duke@435 3609 assert(thread_local_storage_at(index) == value, "Just checking");
duke@435 3610 }
duke@435 3611
duke@435 3612
duke@435 3613 void* os::thread_local_storage_at(int index) {
duke@435 3614 return TlsGetValue(index);
duke@435 3615 }
duke@435 3616
duke@435 3617
duke@435 3618 #ifndef PRODUCT
duke@435 3619 #ifndef _WIN64
duke@435 3620 // Helpers to check whether NX protection is enabled
duke@435 3621 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
duke@435 3622 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 3623 pex->ExceptionRecord->NumberParameters > 0 &&
duke@435 3624 pex->ExceptionRecord->ExceptionInformation[0] ==
duke@435 3625 EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 3626 return EXCEPTION_EXECUTE_HANDLER;
duke@435 3627 }
duke@435 3628 return EXCEPTION_CONTINUE_SEARCH;
duke@435 3629 }
duke@435 3630
duke@435 3631 void nx_check_protection() {
duke@435 3632 // If NX is enabled we'll get an exception calling into code on the stack
duke@435 3633 char code[] = { (char)0xC3 }; // ret
duke@435 3634 void *code_ptr = (void *)code;
duke@435 3635 __try {
duke@435 3636 __asm call code_ptr
duke@435 3637 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 3638 tty->print_raw_cr("NX protection detected.");
duke@435 3639 }
duke@435 3640 }
duke@435 3641 #endif // _WIN64
duke@435 3642 #endif // PRODUCT
duke@435 3643
duke@435 3644 // this is called _before_ the global arguments have been parsed
duke@435 3645 void os::init(void) {
duke@435 3646 _initial_pid = _getpid();
duke@435 3647
duke@435 3648 init_random(1234567);
duke@435 3649
duke@435 3650 win32::initialize_system_info();
duke@435 3651 win32::setmode_streams();
duke@435 3652 init_page_sizes((size_t) win32::vm_page_size());
duke@435 3653
duke@435 3654 // For better scalability on MP systems (must be called after initialize_system_info)
duke@435 3655 #ifndef PRODUCT
duke@435 3656 if (is_MP()) {
duke@435 3657 NoYieldsInMicrolock = true;
duke@435 3658 }
duke@435 3659 #endif
jmasa@824 3660 // This may be overridden later when argument processing is done.
jmasa@824 3661 FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
jmasa@824 3662 os::win32::is_windows_2003());
jmasa@824 3663
duke@435 3664 // Initialize main_process and main_thread
duke@435 3665 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
jmasa@824 3666 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
duke@435 3667 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
duke@435 3668 fatal("DuplicateHandle failed\n");
duke@435 3669 }
duke@435 3670 main_thread_id = (int) GetCurrentThreadId();
duke@435 3671 }
duke@435 3672
duke@435 3673 // To install functions for atexit processing
duke@435 3674 extern "C" {
duke@435 3675 static void perfMemory_exit_helper() {
duke@435 3676 perfMemory_exit();
duke@435 3677 }
duke@435 3678 }
duke@435 3679
duke@435 3680 // this is called _after_ the global arguments have been parsed
duke@435 3681 jint os::init_2(void) {
duke@435 3682 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3683 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
duke@435 3684 guarantee( polling_page != NULL, "Reserve Failed for polling page");
duke@435 3685
duke@435 3686 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
duke@435 3687 guarantee( return_page != NULL, "Commit Failed for polling page");
duke@435 3688
duke@435 3689 os::set_polling_page( polling_page );
duke@435 3690
duke@435 3691 #ifndef PRODUCT
duke@435 3692 if( Verbose && PrintMiscellaneous )
duke@435 3693 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3694 #endif
duke@435 3695
duke@435 3696 if (!UseMembar) {
coleenp@1091 3697 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
duke@435 3698 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
duke@435 3699
coleenp@1091 3700 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
duke@435 3701 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
duke@435 3702
duke@435 3703 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3704
duke@435 3705 #ifndef PRODUCT
duke@435 3706 if(Verbose && PrintMiscellaneous)
duke@435 3707 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3708 #endif
iveresov@3085 3709 }
duke@435 3710
iveresov@2850 3711 os::large_page_init();
duke@435 3712
duke@435 3713 // Setup Windows Exceptions
duke@435 3714
duke@435 3715 // On Itanium systems, Structured Exception Handling does not
duke@435 3716 // work since stack frames must be walkable by the OS. Since
duke@435 3717 // much of our code is dynamically generated, and we do not have
duke@435 3718 // proper unwind .xdata sections, the system simply exits
duke@435 3719 // rather than delivering the exception. To work around
duke@435 3720 // this we use VectorExceptions instead.
duke@435 3721 #ifdef _WIN64
duke@435 3722 if (UseVectoredExceptions) {
duke@435 3723 topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
duke@435 3724 }
duke@435 3725 #endif
duke@435 3726
duke@435 3727 // for debugging float code generation bugs
duke@435 3728 if (ForceFloatExceptions) {
duke@435 3729 #ifndef _WIN64
duke@435 3730 static long fp_control_word = 0;
duke@435 3731 __asm { fstcw fp_control_word }
duke@435 3732 // see Intel PPro Manual, Vol. 2, p 7-16
duke@435 3733 const long precision = 0x20;
duke@435 3734 const long underflow = 0x10;
duke@435 3735 const long overflow = 0x08;
duke@435 3736 const long zero_div = 0x04;
duke@435 3737 const long denorm = 0x02;
duke@435 3738 const long invalid = 0x01;
duke@435 3739 fp_control_word |= invalid;
duke@435 3740 __asm { fldcw fp_control_word }
duke@435 3741 #endif
duke@435 3742 }
duke@435 3743
duke@435 3744 // If stack_commit_size is 0, windows will reserve the default size,
duke@435 3745 // but only commit a small portion of it.
duke@435 3746 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
duke@435 3747 size_t default_reserve_size = os::win32::default_stack_size();
duke@435 3748 size_t actual_reserve_size = stack_commit_size;
duke@435 3749 if (stack_commit_size < default_reserve_size) {
duke@435 3750 // If stack_commit_size == 0, we want this too
duke@435 3751 actual_reserve_size = default_reserve_size;
duke@435 3752 }
duke@435 3753
coleenp@2222 3754 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 3755 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 3756 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 3757 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 3758 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 3759 size_t min_stack_allowed =
coleenp@2222 3760 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 3761 2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
coleenp@2222 3762 if (actual_reserve_size < min_stack_allowed) {
coleenp@2222 3763 tty->print_cr("\nThe stack size specified is too small, "
coleenp@2222 3764 "Specify at least %dk",
coleenp@2222 3765 min_stack_allowed / K);
coleenp@2222 3766 return JNI_ERR;
coleenp@2222 3767 }
coleenp@2222 3768
duke@435 3769 JavaThread::set_stack_size_at_create(stack_commit_size);
duke@435 3770
duke@435 3771 // Calculate theoretical max. size of Threads to guard gainst artifical
duke@435 3772 // out-of-memory situations, where all available address-space has been
duke@435 3773 // reserved by thread stacks.
duke@435 3774 assert(actual_reserve_size != 0, "Must have a stack");
duke@435 3775
duke@435 3776 // Calculate the thread limit when we should start doing Virtual Memory
duke@435 3777 // banging. Currently when the threads will have used all but 200Mb of space.
duke@435 3778 //
duke@435 3779 // TODO: consider performing a similar calculation for commit size instead
duke@435 3780 // as reserve size, since on a 64-bit platform we'll run into that more
duke@435 3781 // often than running out of virtual memory space. We can use the
duke@435 3782 // lower value of the two calculations as the os_thread_limit.
coleenp@548 3783 size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
duke@435 3784 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
duke@435 3785
duke@435 3786 // at exit methods are called in the reverse order of their registration.
duke@435 3787 // there is no limit to the number of functions registered. atexit does
duke@435 3788 // not set errno.
duke@435 3789
duke@435 3790 if (PerfAllowAtExitRegistration) {
duke@435 3791 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 3792 // atexit functions can be delayed until process exit time, which
duke@435 3793 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 3794 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 3795
duke@435 3796 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 3797 // the future if the appropriate cleanup code can be added to the
duke@435 3798 // VM_Exit VMOperation's doit method.
duke@435 3799 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 3800 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
duke@435 3801 }
duke@435 3802 }
duke@435 3803
duke@435 3804 #ifndef _WIN64
duke@435 3805 // Print something if NX is enabled (win32 on AMD64)
duke@435 3806 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
duke@435 3807 #endif
duke@435 3808
duke@435 3809 // initialize thread priority policy
duke@435 3810 prio_init();
duke@435 3811
iveresov@3118 3812 if (UseNUMA && !ForceNUMA) {
iveresov@3118 3813 UseNUMA = false; // We don't fully support this yet
iveresov@3118 3814 }
iveresov@3118 3815
iveresov@3085 3816 if (UseNUMAInterleaving) {
iveresov@3085 3817 // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
iveresov@3085 3818 bool success = numa_interleaving_init();
iveresov@3085 3819 if (!success) UseNUMAInterleaving = false;
iveresov@897 3820 }
iveresov@897 3821
duke@435 3822 return JNI_OK;
duke@435 3823 }
duke@435 3824
bobv@2036 3825 void os::init_3(void) {
bobv@2036 3826 return;
bobv@2036 3827 }
duke@435 3828
duke@435 3829 // Mark the polling page as unreadable
duke@435 3830 void os::make_polling_page_unreadable(void) {
duke@435 3831 DWORD old_status;
duke@435 3832 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
duke@435 3833 fatal("Could not disable polling page");
duke@435 3834 };
duke@435 3835
duke@435 3836 // Mark the polling page as readable
duke@435 3837 void os::make_polling_page_readable(void) {
duke@435 3838 DWORD old_status;
duke@435 3839 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
duke@435 3840 fatal("Could not enable polling page");
duke@435 3841 };
duke@435 3842
duke@435 3843
duke@435 3844 int os::stat(const char *path, struct stat *sbuf) {
duke@435 3845 char pathbuf[MAX_PATH];
duke@435 3846 if (strlen(path) > MAX_PATH - 1) {
duke@435 3847 errno = ENAMETOOLONG;
duke@435 3848 return -1;
duke@435 3849 }
ikrylov@2322 3850 os::native_path(strcpy(pathbuf, path));
duke@435 3851 int ret = ::stat(pathbuf, sbuf);
duke@435 3852 if (sbuf != NULL && UseUTCFileTimestamp) {
duke@435 3853 // Fix for 6539723. st_mtime returned from stat() is dependent on
duke@435 3854 // the system timezone and so can return different values for the
duke@435 3855 // same file if/when daylight savings time changes. This adjustment
duke@435 3856 // makes sure the same timestamp is returned regardless of the TZ.
duke@435 3857 //
duke@435 3858 // See:
duke@435 3859 // http://msdn.microsoft.com/library/
duke@435 3860 // default.asp?url=/library/en-us/sysinfo/base/
duke@435 3861 // time_zone_information_str.asp
duke@435 3862 // and
duke@435 3863 // http://msdn.microsoft.com/library/default.asp?url=
duke@435 3864 // /library/en-us/sysinfo/base/settimezoneinformation.asp
duke@435 3865 //
duke@435 3866 // NOTE: there is a insidious bug here: If the timezone is changed
duke@435 3867 // after the call to stat() but before 'GetTimeZoneInformation()', then
duke@435 3868 // the adjustment we do here will be wrong and we'll return the wrong
duke@435 3869 // value (which will likely end up creating an invalid class data
duke@435 3870 // archive). Absent a better API for this, or some time zone locking
duke@435 3871 // mechanism, we'll have to live with this risk.
duke@435 3872 TIME_ZONE_INFORMATION tz;
duke@435 3873 DWORD tzid = GetTimeZoneInformation(&tz);
duke@435 3874 int daylightBias =
duke@435 3875 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
duke@435 3876 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
duke@435 3877 }
duke@435 3878 return ret;
duke@435 3879 }
duke@435 3880
duke@435 3881
duke@435 3882 #define FT2INT64(ft) \
duke@435 3883 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
duke@435 3884
duke@435 3885
duke@435 3886 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 3887 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 3888 // of a thread.
duke@435 3889 //
duke@435 3890 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 3891 // the fast estimate available on the platform.
duke@435 3892
duke@435 3893 // current_thread_cpu_time() is not optimized for Windows yet
duke@435 3894 jlong os::current_thread_cpu_time() {
duke@435 3895 // return user + sys since the cost is the same
duke@435 3896 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
duke@435 3897 }
duke@435 3898
duke@435 3899 jlong os::thread_cpu_time(Thread* thread) {
duke@435 3900 // consistent with what current_thread_cpu_time() returns.
duke@435 3901 return os::thread_cpu_time(thread, true /* user+sys */);
duke@435 3902 }
duke@435 3903
duke@435 3904 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 3905 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 3906 }
duke@435 3907
duke@435 3908 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
duke@435 3909 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
duke@435 3910 // If this function changes, os::is_thread_cpu_time_supported() should too
duke@435 3911 if (os::win32::is_nt()) {
duke@435 3912 FILETIME CreationTime;
duke@435 3913 FILETIME ExitTime;
duke@435 3914 FILETIME KernelTime;
duke@435 3915 FILETIME UserTime;
duke@435 3916
duke@435 3917 if ( GetThreadTimes(thread->osthread()->thread_handle(),
duke@435 3918 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3919 return -1;
duke@435 3920 else
duke@435 3921 if (user_sys_cpu_time) {
duke@435 3922 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
duke@435 3923 } else {
duke@435 3924 return FT2INT64(UserTime) * 100;
duke@435 3925 }
duke@435 3926 } else {
duke@435 3927 return (jlong) timeGetTime() * 1000000;
duke@435 3928 }
duke@435 3929 }
duke@435 3930
duke@435 3931 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3932 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3933 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3934 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3935 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3936 }
duke@435 3937
duke@435 3938 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 3939 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 3940 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 3941 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 3942 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 3943 }
duke@435 3944
duke@435 3945 bool os::is_thread_cpu_time_supported() {
duke@435 3946 // see os::thread_cpu_time
duke@435 3947 if (os::win32::is_nt()) {
duke@435 3948 FILETIME CreationTime;
duke@435 3949 FILETIME ExitTime;
duke@435 3950 FILETIME KernelTime;
duke@435 3951 FILETIME UserTime;
duke@435 3952
duke@435 3953 if ( GetThreadTimes(GetCurrentThread(),
duke@435 3954 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 3955 return false;
duke@435 3956 else
duke@435 3957 return true;
duke@435 3958 } else {
duke@435 3959 return false;
duke@435 3960 }
duke@435 3961 }
duke@435 3962
duke@435 3963 // Windows does't provide a loadavg primitive so this is stubbed out for now.
duke@435 3964 // It does have primitives (PDH API) to get CPU usage and run queue length.
duke@435 3965 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
duke@435 3966 // If we wanted to implement loadavg on Windows, we have a few options:
duke@435 3967 //
duke@435 3968 // a) Query CPU usage and run queue length and "fake" an answer by
duke@435 3969 // returning the CPU usage if it's under 100%, and the run queue
duke@435 3970 // length otherwise. It turns out that querying is pretty slow
duke@435 3971 // on Windows, on the order of 200 microseconds on a fast machine.
duke@435 3972 // Note that on the Windows the CPU usage value is the % usage
duke@435 3973 // since the last time the API was called (and the first call
duke@435 3974 // returns 100%), so we'd have to deal with that as well.
duke@435 3975 //
duke@435 3976 // b) Sample the "fake" answer using a sampling thread and store
duke@435 3977 // the answer in a global variable. The call to loadavg would
duke@435 3978 // just return the value of the global, avoiding the slow query.
duke@435 3979 //
duke@435 3980 // c) Sample a better answer using exponential decay to smooth the
duke@435 3981 // value. This is basically the algorithm used by UNIX kernels.
duke@435 3982 //
duke@435 3983 // Note that sampling thread starvation could affect both (b) and (c).
duke@435 3984 int os::loadavg(double loadavg[], int nelem) {
duke@435 3985 return -1;
duke@435 3986 }
duke@435 3987
duke@435 3988
duke@435 3989 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
duke@435 3990 bool os::dont_yield() {
duke@435 3991 return DontYieldALot;
duke@435 3992 }
duke@435 3993
ikrylov@2322 3994 // This method is a slightly reworked copy of JDK's sysOpen
ikrylov@2322 3995 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 3996
ikrylov@2322 3997 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 3998 char pathbuf[MAX_PATH];
ikrylov@2322 3999
ikrylov@2322 4000 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 4001 errno = ENAMETOOLONG;
ikrylov@2322 4002 return -1;
ikrylov@2322 4003 }
ikrylov@2322 4004 os::native_path(strcpy(pathbuf, path));
ikrylov@2322 4005 return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
ikrylov@2322 4006 }
ikrylov@2322 4007
duke@435 4008 // Is a (classpath) directory empty?
duke@435 4009 bool os::dir_is_empty(const char* path) {
duke@435 4010 WIN32_FIND_DATA fd;
duke@435 4011 HANDLE f = FindFirstFile(path, &fd);
duke@435 4012 if (f == INVALID_HANDLE_VALUE) {
duke@435 4013 return true;
duke@435 4014 }
duke@435 4015 FindClose(f);
duke@435 4016 return false;
duke@435 4017 }
duke@435 4018
duke@435 4019 // create binary file, rewriting existing file if required
duke@435 4020 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4021 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
duke@435 4022 if (!rewrite_existing) {
duke@435 4023 oflags |= _O_EXCL;
duke@435 4024 }
duke@435 4025 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
duke@435 4026 }
duke@435 4027
duke@435 4028 // return current position of file pointer
duke@435 4029 jlong os::current_file_offset(int fd) {
duke@435 4030 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
duke@435 4031 }
duke@435 4032
duke@435 4033 // move file pointer to the specified offset
duke@435 4034 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4035 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
duke@435 4036 }
duke@435 4037
duke@435 4038
ikrylov@2322 4039 jlong os::lseek(int fd, jlong offset, int whence) {
ikrylov@2322 4040 return (jlong) ::_lseeki64(fd, offset, whence);
ikrylov@2322 4041 }
ikrylov@2322 4042
ikrylov@2322 4043 // This method is a slightly reworked copy of JDK's sysNativePath
ikrylov@2322 4044 // from src/windows/hpi/src/path_md.c
ikrylov@2322 4045
ikrylov@2322 4046 /* Convert a pathname to native format. On win32, this involves forcing all
ikrylov@2322 4047 separators to be '\\' rather than '/' (both are legal inputs, but Win95
ikrylov@2322 4048 sometimes rejects '/') and removing redundant separators. The input path is
ikrylov@2322 4049 assumed to have been converted into the character encoding used by the local
ikrylov@2322 4050 system. Because this might be a double-byte encoding, care is taken to
ikrylov@2322 4051 treat double-byte lead characters correctly.
ikrylov@2322 4052
ikrylov@2322 4053 This procedure modifies the given path in place, as the result is never
ikrylov@2322 4054 longer than the original. There is no error return; this operation always
ikrylov@2322 4055 succeeds. */
ikrylov@2322 4056 char * os::native_path(char *path) {
ikrylov@2322 4057 char *src = path, *dst = path, *end = path;
ikrylov@2322 4058 char *colon = NULL; /* If a drive specifier is found, this will
ikrylov@2322 4059 point to the colon following the drive
ikrylov@2322 4060 letter */
ikrylov@2322 4061
ikrylov@2322 4062 /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
ikrylov@2322 4063 assert(((!::IsDBCSLeadByte('/'))
ikrylov@2322 4064 && (!::IsDBCSLeadByte('\\'))
ikrylov@2322 4065 && (!::IsDBCSLeadByte(':'))),
ikrylov@2322 4066 "Illegal lead byte");
ikrylov@2322 4067
ikrylov@2322 4068 /* Check for leading separators */
ikrylov@2322 4069 #define isfilesep(c) ((c) == '/' || (c) == '\\')
ikrylov@2322 4070 while (isfilesep(*src)) {
ikrylov@2322 4071 src++;
ikrylov@2322 4072 }
ikrylov@2322 4073
ikrylov@2322 4074 if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
ikrylov@2322 4075 /* Remove leading separators if followed by drive specifier. This
ikrylov@2322 4076 hack is necessary to support file URLs containing drive
ikrylov@2322 4077 specifiers (e.g., "file://c:/path"). As a side effect,
ikrylov@2322 4078 "/c:/path" can be used as an alternative to "c:/path". */
ikrylov@2322 4079 *dst++ = *src++;
ikrylov@2322 4080 colon = dst;
ikrylov@2322 4081 *dst++ = ':';
ikrylov@2322 4082 src++;
ikrylov@2322 4083 } else {
ikrylov@2322 4084 src = path;
ikrylov@2322 4085 if (isfilesep(src[0]) && isfilesep(src[1])) {
ikrylov@2322 4086 /* UNC pathname: Retain first separator; leave src pointed at
ikrylov@2322 4087 second separator so that further separators will be collapsed
ikrylov@2322 4088 into the second separator. The result will be a pathname
ikrylov@2322 4089 beginning with "\\\\" followed (most likely) by a host name. */
ikrylov@2322 4090 src = dst = path + 1;
ikrylov@2322 4091 path[0] = '\\'; /* Force first separator to '\\' */
ikrylov@2322 4092 }
ikrylov@2322 4093 }
ikrylov@2322 4094
ikrylov@2322 4095 end = dst;
ikrylov@2322 4096
ikrylov@2322 4097 /* Remove redundant separators from remainder of path, forcing all
ikrylov@2322 4098 separators to be '\\' rather than '/'. Also, single byte space
ikrylov@2322 4099 characters are removed from the end of the path because those
ikrylov@2322 4100 are not legal ending characters on this operating system.
ikrylov@2322 4101 */
ikrylov@2322 4102 while (*src != '\0') {
ikrylov@2322 4103 if (isfilesep(*src)) {
ikrylov@2322 4104 *dst++ = '\\'; src++;
ikrylov@2322 4105 while (isfilesep(*src)) src++;
ikrylov@2322 4106 if (*src == '\0') {
ikrylov@2322 4107 /* Check for trailing separator */
ikrylov@2322 4108 end = dst;
ikrylov@2322 4109 if (colon == dst - 2) break; /* "z:\\" */
ikrylov@2322 4110 if (dst == path + 1) break; /* "\\" */
ikrylov@2322 4111 if (dst == path + 2 && isfilesep(path[0])) {
ikrylov@2322 4112 /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
ikrylov@2322 4113 beginning of a UNC pathname. Even though it is not, by
ikrylov@2322 4114 itself, a valid UNC pathname, we leave it as is in order
ikrylov@2322 4115 to be consistent with the path canonicalizer as well
ikrylov@2322 4116 as the win32 APIs, which treat this case as an invalid
ikrylov@2322 4117 UNC pathname rather than as an alias for the root
ikrylov@2322 4118 directory of the current drive. */
ikrylov@2322 4119 break;
ikrylov@2322 4120 }
ikrylov@2322 4121 end = --dst; /* Path does not denote a root directory, so
ikrylov@2322 4122 remove trailing separator */
ikrylov@2322 4123 break;
ikrylov@2322 4124 }
ikrylov@2322 4125 end = dst;
ikrylov@2322 4126 } else {
ikrylov@2322 4127 if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
ikrylov@2322 4128 *dst++ = *src++;
ikrylov@2322 4129 if (*src) *dst++ = *src++;
ikrylov@2322 4130 end = dst;
ikrylov@2322 4131 } else { /* Copy a single-byte character */
ikrylov@2322 4132 char c = *src++;
ikrylov@2322 4133 *dst++ = c;
ikrylov@2322 4134 /* Space is not a legal ending character */
ikrylov@2322 4135 if (c != ' ') end = dst;
ikrylov@2322 4136 }
ikrylov@2322 4137 }
ikrylov@2322 4138 }
ikrylov@2322 4139
ikrylov@2322 4140 *end = '\0';
ikrylov@2322 4141
ikrylov@2322 4142 /* For "z:", add "." to work around a bug in the C runtime library */
ikrylov@2322 4143 if (colon == dst - 1) {
ikrylov@2322 4144 path[2] = '.';
ikrylov@2322 4145 path[3] = '\0';
ikrylov@2322 4146 }
ikrylov@2322 4147
ikrylov@2322 4148 #ifdef DEBUG
ikrylov@2322 4149 jio_fprintf(stderr, "sysNativePath: %s\n", path);
ikrylov@2322 4150 #endif DEBUG
ikrylov@2322 4151 return path;
ikrylov@2322 4152 }
ikrylov@2322 4153
ikrylov@2322 4154 // This code is a copy of JDK's sysSetLength
ikrylov@2322 4155 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4156
ikrylov@2322 4157 int os::ftruncate(int fd, jlong length) {
ikrylov@2322 4158 HANDLE h = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4159 long high = (long)(length >> 32);
ikrylov@2322 4160 DWORD ret;
ikrylov@2322 4161
ikrylov@2322 4162 if (h == (HANDLE)(-1)) {
ikrylov@2322 4163 return -1;
ikrylov@2322 4164 }
ikrylov@2322 4165
ikrylov@2322 4166 ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
ikrylov@2322 4167 if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
ikrylov@2322 4168 return -1;
ikrylov@2322 4169 }
ikrylov@2322 4170
ikrylov@2322 4171 if (::SetEndOfFile(h) == FALSE) {
ikrylov@2322 4172 return -1;
ikrylov@2322 4173 }
ikrylov@2322 4174
ikrylov@2322 4175 return 0;
ikrylov@2322 4176 }
ikrylov@2322 4177
ikrylov@2322 4178
ikrylov@2322 4179 // This code is a copy of JDK's sysSync
ikrylov@2322 4180 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4181 // except for the legacy workaround for a bug in Win 98
ikrylov@2322 4182
ikrylov@2322 4183 int os::fsync(int fd) {
ikrylov@2322 4184 HANDLE handle = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4185
ikrylov@2322 4186 if ( (!::FlushFileBuffers(handle)) &&
ikrylov@2322 4187 (GetLastError() != ERROR_ACCESS_DENIED) ) {
ikrylov@2322 4188 /* from winerror.h */
ikrylov@2322 4189 return -1;
ikrylov@2322 4190 }
ikrylov@2322 4191 return 0;
ikrylov@2322 4192 }
ikrylov@2322 4193
ikrylov@2322 4194 static int nonSeekAvailable(int, long *);
ikrylov@2322 4195 static int stdinAvailable(int, long *);
ikrylov@2322 4196
ikrylov@2322 4197 #define S_ISCHR(mode) (((mode) & _S_IFCHR) == _S_IFCHR)
ikrylov@2322 4198 #define S_ISFIFO(mode) (((mode) & _S_IFIFO) == _S_IFIFO)
ikrylov@2322 4199
ikrylov@2322 4200 // This code is a copy of JDK's sysAvailable
ikrylov@2322 4201 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4202
ikrylov@2322 4203 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4204 jlong cur, end;
ikrylov@2322 4205 struct _stati64 stbuf64;
ikrylov@2322 4206
ikrylov@2322 4207 if (::_fstati64(fd, &stbuf64) >= 0) {
ikrylov@2322 4208 int mode = stbuf64.st_mode;
ikrylov@2322 4209 if (S_ISCHR(mode) || S_ISFIFO(mode)) {
ikrylov@2322 4210 int ret;
ikrylov@2322 4211 long lpbytes;
ikrylov@2322 4212 if (fd == 0) {
ikrylov@2322 4213 ret = stdinAvailable(fd, &lpbytes);
ikrylov@2322 4214 } else {
ikrylov@2322 4215 ret = nonSeekAvailable(fd, &lpbytes);
ikrylov@2322 4216 }
ikrylov@2322 4217 (*bytes) = (jlong)(lpbytes);
ikrylov@2322 4218 return ret;
ikrylov@2322 4219 }
ikrylov@2322 4220 if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4221 return FALSE;
ikrylov@2322 4222 } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4223 return FALSE;
ikrylov@2322 4224 } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4225 return FALSE;
ikrylov@2322 4226 }
ikrylov@2322 4227 *bytes = end - cur;
ikrylov@2322 4228 return TRUE;
ikrylov@2322 4229 } else {
ikrylov@2322 4230 return FALSE;
ikrylov@2322 4231 }
ikrylov@2322 4232 }
ikrylov@2322 4233
ikrylov@2322 4234 // This code is a copy of JDK's nonSeekAvailable
ikrylov@2322 4235 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4236
ikrylov@2322 4237 static int nonSeekAvailable(int fd, long *pbytes) {
ikrylov@2322 4238 /* This is used for available on non-seekable devices
ikrylov@2322 4239 * (like both named and anonymous pipes, such as pipes
ikrylov@2322 4240 * connected to an exec'd process).
ikrylov@2322 4241 * Standard Input is a special case.
ikrylov@2322 4242 *
ikrylov@2322 4243 */
ikrylov@2322 4244 HANDLE han;
ikrylov@2322 4245
ikrylov@2322 4246 if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
ikrylov@2322 4247 return FALSE;
ikrylov@2322 4248 }
ikrylov@2322 4249
ikrylov@2322 4250 if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
ikrylov@2322 4251 /* PeekNamedPipe fails when at EOF. In that case we
ikrylov@2322 4252 * simply make *pbytes = 0 which is consistent with the
ikrylov@2322 4253 * behavior we get on Solaris when an fd is at EOF.
ikrylov@2322 4254 * The only alternative is to raise an Exception,
ikrylov@2322 4255 * which isn't really warranted.
ikrylov@2322 4256 */
ikrylov@2322 4257 if (::GetLastError() != ERROR_BROKEN_PIPE) {
ikrylov@2322 4258 return FALSE;
ikrylov@2322 4259 }
ikrylov@2322 4260 *pbytes = 0;
ikrylov@2322 4261 }
ikrylov@2322 4262 return TRUE;
ikrylov@2322 4263 }
ikrylov@2322 4264
ikrylov@2322 4265 #define MAX_INPUT_EVENTS 2000
ikrylov@2322 4266
ikrylov@2322 4267 // This code is a copy of JDK's stdinAvailable
ikrylov@2322 4268 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4269
ikrylov@2322 4270 static int stdinAvailable(int fd, long *pbytes) {
ikrylov@2322 4271 HANDLE han;
ikrylov@2322 4272 DWORD numEventsRead = 0; /* Number of events read from buffer */
ikrylov@2322 4273 DWORD numEvents = 0; /* Number of events in buffer */
ikrylov@2322 4274 DWORD i = 0; /* Loop index */
ikrylov@2322 4275 DWORD curLength = 0; /* Position marker */
ikrylov@2322 4276 DWORD actualLength = 0; /* Number of bytes readable */
ikrylov@2322 4277 BOOL error = FALSE; /* Error holder */
ikrylov@2322 4278 INPUT_RECORD *lpBuffer; /* Pointer to records of input events */
ikrylov@2322 4279
ikrylov@2322 4280 if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
ikrylov@2322 4281 return FALSE;
ikrylov@2322 4282 }
ikrylov@2322 4283
ikrylov@2322 4284 /* Construct an array of input records in the console buffer */
ikrylov@2322 4285 error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
ikrylov@2322 4286 if (error == 0) {
ikrylov@2322 4287 return nonSeekAvailable(fd, pbytes);
ikrylov@2322 4288 }
ikrylov@2322 4289
ikrylov@2322 4290 /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
ikrylov@2322 4291 if (numEvents > MAX_INPUT_EVENTS) {
ikrylov@2322 4292 numEvents = MAX_INPUT_EVENTS;
ikrylov@2322 4293 }
ikrylov@2322 4294
zgu@3900 4295 lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
ikrylov@2322 4296 if (lpBuffer == NULL) {
ikrylov@2322 4297 return FALSE;
ikrylov@2322 4298 }
ikrylov@2322 4299
ikrylov@2322 4300 error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
ikrylov@2322 4301 if (error == 0) {
zgu@3900 4302 os::free(lpBuffer, mtInternal);
ikrylov@2322 4303 return FALSE;
ikrylov@2322 4304 }
ikrylov@2322 4305
ikrylov@2322 4306 /* Examine input records for the number of bytes available */
ikrylov@2322 4307 for(i=0; i<numEvents; i++) {
ikrylov@2322 4308 if (lpBuffer[i].EventType == KEY_EVENT) {
ikrylov@2322 4309
ikrylov@2322 4310 KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
ikrylov@2322 4311 &(lpBuffer[i].Event);
ikrylov@2322 4312 if (keyRecord->bKeyDown == TRUE) {
ikrylov@2322 4313 CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
ikrylov@2322 4314 curLength++;
ikrylov@2322 4315 if (*keyPressed == '\r') {
ikrylov@2322 4316 actualLength = curLength;
ikrylov@2322 4317 }
ikrylov@2322 4318 }
ikrylov@2322 4319 }
ikrylov@2322 4320 }
ikrylov@2322 4321
ikrylov@2322 4322 if(lpBuffer != NULL) {
zgu@3900 4323 os::free(lpBuffer, mtInternal);
ikrylov@2322 4324 }
ikrylov@2322 4325
ikrylov@2322 4326 *pbytes = (long) actualLength;
ikrylov@2322 4327 return TRUE;
ikrylov@2322 4328 }
ikrylov@2322 4329
duke@435 4330 // Map a block of memory.
zgu@3900 4331 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4332 char *addr, size_t bytes, bool read_only,
duke@435 4333 bool allow_exec) {
duke@435 4334 HANDLE hFile;
duke@435 4335 char* base;
duke@435 4336
duke@435 4337 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
duke@435 4338 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
duke@435 4339 if (hFile == NULL) {
duke@435 4340 if (PrintMiscellaneous && Verbose) {
duke@435 4341 DWORD err = GetLastError();
duke@435 4342 tty->print_cr("CreateFile() failed: GetLastError->%ld.");
duke@435 4343 }
duke@435 4344 return NULL;
duke@435 4345 }
duke@435 4346
duke@435 4347 if (allow_exec) {
duke@435 4348 // CreateFileMapping/MapViewOfFileEx can't map executable memory
duke@435 4349 // unless it comes from a PE image (which the shared archive is not.)
duke@435 4350 // Even VirtualProtect refuses to give execute access to mapped memory
duke@435 4351 // that was not previously executable.
duke@435 4352 //
duke@435 4353 // Instead, stick the executable region in anonymous memory. Yuck.
duke@435 4354 // Penalty is that ~4 pages will not be shareable - in the future
duke@435 4355 // we might consider DLLizing the shared archive with a proper PE
duke@435 4356 // header so that mapping executable + sharing is possible.
duke@435 4357
duke@435 4358 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
duke@435 4359 PAGE_READWRITE);
duke@435 4360 if (base == NULL) {
duke@435 4361 if (PrintMiscellaneous && Verbose) {
duke@435 4362 DWORD err = GetLastError();
duke@435 4363 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
duke@435 4364 }
duke@435 4365 CloseHandle(hFile);
duke@435 4366 return NULL;
duke@435 4367 }
duke@435 4368
duke@435 4369 DWORD bytes_read;
duke@435 4370 OVERLAPPED overlapped;
duke@435 4371 overlapped.Offset = (DWORD)file_offset;
duke@435 4372 overlapped.OffsetHigh = 0;
duke@435 4373 overlapped.hEvent = NULL;
duke@435 4374 // ReadFile guarantees that if the return value is true, the requested
duke@435 4375 // number of bytes were read before returning.
duke@435 4376 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
duke@435 4377 if (!res) {
duke@435 4378 if (PrintMiscellaneous && Verbose) {
duke@435 4379 DWORD err = GetLastError();
duke@435 4380 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
duke@435 4381 }
duke@435 4382 release_memory(base, bytes);
duke@435 4383 CloseHandle(hFile);
duke@435 4384 return NULL;
duke@435 4385 }
duke@435 4386 } else {
duke@435 4387 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
duke@435 4388 NULL /*file_name*/);
duke@435 4389 if (hMap == NULL) {
duke@435 4390 if (PrintMiscellaneous && Verbose) {
duke@435 4391 DWORD err = GetLastError();
duke@435 4392 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
duke@435 4393 }
duke@435 4394 CloseHandle(hFile);
duke@435 4395 return NULL;
duke@435 4396 }
duke@435 4397
duke@435 4398 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
duke@435 4399 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
duke@435 4400 (DWORD)bytes, addr);
duke@435 4401 if (base == NULL) {
duke@435 4402 if (PrintMiscellaneous && Verbose) {
duke@435 4403 DWORD err = GetLastError();
duke@435 4404 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
duke@435 4405 }
duke@435 4406 CloseHandle(hMap);
duke@435 4407 CloseHandle(hFile);
duke@435 4408 return NULL;
duke@435 4409 }
duke@435 4410
duke@435 4411 if (CloseHandle(hMap) == 0) {
duke@435 4412 if (PrintMiscellaneous && Verbose) {
duke@435 4413 DWORD err = GetLastError();
duke@435 4414 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
duke@435 4415 }
duke@435 4416 CloseHandle(hFile);
duke@435 4417 return base;
duke@435 4418 }
duke@435 4419 }
duke@435 4420
duke@435 4421 if (allow_exec) {
duke@435 4422 DWORD old_protect;
duke@435 4423 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
duke@435 4424 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
duke@435 4425
duke@435 4426 if (!res) {
duke@435 4427 if (PrintMiscellaneous && Verbose) {
duke@435 4428 DWORD err = GetLastError();
duke@435 4429 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
duke@435 4430 }
duke@435 4431 // Don't consider this a hard error, on IA32 even if the
duke@435 4432 // VirtualProtect fails, we should still be able to execute
duke@435 4433 CloseHandle(hFile);
duke@435 4434 return base;
duke@435 4435 }
duke@435 4436 }
duke@435 4437
duke@435 4438 if (CloseHandle(hFile) == 0) {
duke@435 4439 if (PrintMiscellaneous && Verbose) {
duke@435 4440 DWORD err = GetLastError();
duke@435 4441 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
duke@435 4442 }
duke@435 4443 return base;
duke@435 4444 }
duke@435 4445
duke@435 4446 return base;
duke@435 4447 }
duke@435 4448
duke@435 4449
duke@435 4450 // Remap a block of memory.
zgu@3900 4451 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4452 char *addr, size_t bytes, bool read_only,
duke@435 4453 bool allow_exec) {
duke@435 4454 // This OS does not allow existing memory maps to be remapped so we
duke@435 4455 // have to unmap the memory before we remap it.
duke@435 4456 if (!os::unmap_memory(addr, bytes)) {
duke@435 4457 return NULL;
duke@435 4458 }
duke@435 4459
duke@435 4460 // There is a very small theoretical window between the unmap_memory()
duke@435 4461 // call above and the map_memory() call below where a thread in native
duke@435 4462 // code may be able to access an address that is no longer mapped.
duke@435 4463
zgu@3900 4464 return os::map_memory(fd, file_name, file_offset, addr, bytes,
zgu@3900 4465 read_only, allow_exec);
duke@435 4466 }
duke@435 4467
duke@435 4468
duke@435 4469 // Unmap a block of memory.
duke@435 4470 // Returns true=success, otherwise false.
duke@435 4471
zgu@3900 4472 bool os::pd_unmap_memory(char* addr, size_t bytes) {
duke@435 4473 BOOL result = UnmapViewOfFile(addr);
duke@435 4474 if (result == 0) {
duke@435 4475 if (PrintMiscellaneous && Verbose) {
duke@435 4476 DWORD err = GetLastError();
duke@435 4477 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
duke@435 4478 }
duke@435 4479 return false;
duke@435 4480 }
duke@435 4481 return true;
duke@435 4482 }
duke@435 4483
duke@435 4484 void os::pause() {
duke@435 4485 char filename[MAX_PATH];
duke@435 4486 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4487 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4488 } else {
duke@435 4489 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4490 }
duke@435 4491
duke@435 4492 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4493 if (fd != -1) {
duke@435 4494 struct stat buf;
ikrylov@2322 4495 ::close(fd);
duke@435 4496 while (::stat(filename, &buf) == 0) {
duke@435 4497 Sleep(100);
duke@435 4498 }
duke@435 4499 } else {
duke@435 4500 jio_fprintf(stderr,
duke@435 4501 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4502 }
duke@435 4503 }
duke@435 4504
duke@435 4505 // An Event wraps a win32 "CreateEvent" kernel handle.
duke@435 4506 //
duke@435 4507 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
duke@435 4508 //
duke@435 4509 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
duke@435 4510 // field, and call CloseHandle() on the win32 event handle. Unpark() would
duke@435 4511 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
duke@435 4512 // In addition, an unpark() operation might fetch the handle field, but the
duke@435 4513 // event could recycle between the fetch and the SetEvent() operation.
duke@435 4514 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
duke@435 4515 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
duke@435 4516 // on an stale but recycled handle would be harmless, but in practice this might
duke@435 4517 // confuse other non-Sun code, so it's not a viable approach.
duke@435 4518 //
duke@435 4519 // 2: Once a win32 event handle is associated with an Event, it remains associated
duke@435 4520 // with the Event. The event handle is never closed. This could be construed
duke@435 4521 // as handle leakage, but only up to the maximum # of threads that have been extant
duke@435 4522 // at any one time. This shouldn't be an issue, as windows platforms typically
duke@435 4523 // permit a process to have hundreds of thousands of open handles.
duke@435 4524 //
duke@435 4525 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
duke@435 4526 // and release unused handles.
duke@435 4527 //
duke@435 4528 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
duke@435 4529 // It's not clear, however, that we wouldn't be trading one type of leak for another.
duke@435 4530 //
duke@435 4531 // 5. Use an RCU-like mechanism (Read-Copy Update).
duke@435 4532 // Or perhaps something similar to Maged Michael's "Hazard pointers".
duke@435 4533 //
duke@435 4534 // We use (2).
duke@435 4535 //
duke@435 4536 // TODO-FIXME:
duke@435 4537 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
duke@435 4538 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
duke@435 4539 // to recover from (or at least detect) the dreaded Windows 841176 bug.
duke@435 4540 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
duke@435 4541 // into a single win32 CreateEvent() handle.
duke@435 4542 //
duke@435 4543 // _Event transitions in park()
duke@435 4544 // -1 => -1 : illegal
duke@435 4545 // 1 => 0 : pass - return immediately
duke@435 4546 // 0 => -1 : block
duke@435 4547 //
duke@435 4548 // _Event serves as a restricted-range semaphore :
duke@435 4549 // -1 : thread is blocked
duke@435 4550 // 0 : neutral - thread is running or ready
duke@435 4551 // 1 : signaled - thread is running or ready
duke@435 4552 //
duke@435 4553 // Another possible encoding of _Event would be
duke@435 4554 // with explicit "PARKED" and "SIGNALED" bits.
duke@435 4555
duke@435 4556 int os::PlatformEvent::park (jlong Millis) {
duke@435 4557 guarantee (_ParkHandle != NULL , "Invariant") ;
duke@435 4558 guarantee (Millis > 0 , "Invariant") ;
duke@435 4559 int v ;
duke@435 4560
duke@435 4561 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
duke@435 4562 // the initial park() operation.
duke@435 4563
duke@435 4564 for (;;) {
duke@435 4565 v = _Event ;
duke@435 4566 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4567 }
duke@435 4568 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4569 if (v != 0) return OS_OK ;
duke@435 4570
duke@435 4571 // Do this the hard way by blocking ...
duke@435 4572 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4573 // spin attempts by this thread.
duke@435 4574 //
duke@435 4575 // We decompose long timeouts into series of shorter timed waits.
duke@435 4576 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
duke@435 4577 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
duke@435 4578 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
duke@435 4579 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
duke@435 4580 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
duke@435 4581 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
duke@435 4582 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
duke@435 4583 // for the already waited time. This policy does not admit any new outcomes.
duke@435 4584 // In the future, however, we might want to track the accumulated wait time and
duke@435 4585 // adjust Millis accordingly if we encounter a spurious wakeup.
duke@435 4586
duke@435 4587 const int MAXTIMEOUT = 0x10000000 ;
duke@435 4588 DWORD rv = WAIT_TIMEOUT ;
duke@435 4589 while (_Event < 0 && Millis > 0) {
duke@435 4590 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
duke@435 4591 if (Millis > MAXTIMEOUT) {
duke@435 4592 prd = MAXTIMEOUT ;
duke@435 4593 }
duke@435 4594 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
duke@435 4595 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
duke@435 4596 if (rv == WAIT_TIMEOUT) {
duke@435 4597 Millis -= prd ;
duke@435 4598 }
duke@435 4599 }
duke@435 4600 v = _Event ;
duke@435 4601 _Event = 0 ;
duke@435 4602 OrderAccess::fence() ;
duke@435 4603 // If we encounter a nearly simultanous timeout expiry and unpark()
duke@435 4604 // we return OS_OK indicating we awoke via unpark().
duke@435 4605 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
duke@435 4606 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
duke@435 4607 }
duke@435 4608
duke@435 4609 void os::PlatformEvent::park () {
duke@435 4610 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 4611 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4612 // may call park().
duke@435 4613 int v ;
duke@435 4614 for (;;) {
duke@435 4615 v = _Event ;
duke@435 4616 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4617 }
duke@435 4618 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4619 if (v != 0) return ;
duke@435 4620
duke@435 4621 // Do this the hard way by blocking ...
duke@435 4622 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4623 // spin attempts by this thread.
duke@435 4624 while (_Event < 0) {
duke@435 4625 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
duke@435 4626 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
duke@435 4627 }
duke@435 4628
duke@435 4629 // Usually we'll find _Event == 0 at this point, but as
duke@435 4630 // an optional optimization we clear it, just in case can
duke@435 4631 // multiple unpark() operations drove _Event up to 1.
duke@435 4632 _Event = 0 ;
duke@435 4633 OrderAccess::fence() ;
duke@435 4634 guarantee (_Event >= 0, "invariant") ;
duke@435 4635 }
duke@435 4636
duke@435 4637 void os::PlatformEvent::unpark() {
duke@435 4638 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 4639 int v ;
duke@435 4640 for (;;) {
duke@435 4641 v = _Event ; // Increment _Event if it's < 1.
duke@435 4642 if (v > 0) {
duke@435 4643 // If it's already signaled just return.
duke@435 4644 // The LD of _Event could have reordered or be satisfied
duke@435 4645 // by a read-aside from this processor's write buffer.
duke@435 4646 // To avoid problems execute a barrier and then
duke@435 4647 // ratify the value. A degenerate CAS() would also work.
duke@435 4648 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 4649 OrderAccess::fence() ;
duke@435 4650 if (_Event == v) return ;
duke@435 4651 continue ;
duke@435 4652 }
duke@435 4653 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 4654 }
duke@435 4655 if (v < 0) {
duke@435 4656 ::SetEvent (_ParkHandle) ;
duke@435 4657 }
duke@435 4658 }
duke@435 4659
duke@435 4660
duke@435 4661 // JSR166
duke@435 4662 // -------------------------------------------------------
duke@435 4663
duke@435 4664 /*
duke@435 4665 * The Windows implementation of Park is very straightforward: Basic
duke@435 4666 * operations on Win32 Events turn out to have the right semantics to
duke@435 4667 * use them directly. We opportunistically resuse the event inherited
duke@435 4668 * from Monitor.
duke@435 4669 */
duke@435 4670
duke@435 4671
duke@435 4672 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4673 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4674 // First, demultiplex/decode time arguments
duke@435 4675 if (time < 0) { // don't wait
duke@435 4676 return;
duke@435 4677 }
acorn@2220 4678 else if (time == 0 && !isAbsolute) {
duke@435 4679 time = INFINITE;
duke@435 4680 }
duke@435 4681 else if (isAbsolute) {
duke@435 4682 time -= os::javaTimeMillis(); // convert to relative time
duke@435 4683 if (time <= 0) // already elapsed
duke@435 4684 return;
duke@435 4685 }
duke@435 4686 else { // relative
duke@435 4687 time /= 1000000; // Must coarsen from nanos to millis
duke@435 4688 if (time == 0) // Wait for the minimal time unit if zero
duke@435 4689 time = 1;
duke@435 4690 }
duke@435 4691
duke@435 4692 JavaThread* thread = (JavaThread*)(Thread::current());
duke@435 4693 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4694 JavaThread *jt = (JavaThread *)thread;
duke@435 4695
duke@435 4696 // Don't wait if interrupted or already triggered
duke@435 4697 if (Thread::is_interrupted(thread, false) ||
duke@435 4698 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
duke@435 4699 ResetEvent(_ParkEvent);
duke@435 4700 return;
duke@435 4701 }
duke@435 4702 else {
duke@435 4703 ThreadBlockInVM tbivm(jt);
duke@435 4704 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4705 jt->set_suspend_equivalent();
duke@435 4706
duke@435 4707 WaitForSingleObject(_ParkEvent, time);
duke@435 4708 ResetEvent(_ParkEvent);
duke@435 4709
duke@435 4710 // If externally suspended while waiting, re-suspend
duke@435 4711 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4712 jt->java_suspend_self();
duke@435 4713 }
duke@435 4714 }
duke@435 4715 }
duke@435 4716
duke@435 4717 void Parker::unpark() {
duke@435 4718 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4719 SetEvent(_ParkEvent);
duke@435 4720 }
duke@435 4721
duke@435 4722 // Run the specified command in a separate process. Return its exit value,
duke@435 4723 // or -1 on failure (e.g. can't create a new process).
duke@435 4724 int os::fork_and_exec(char* cmd) {
duke@435 4725 STARTUPINFO si;
duke@435 4726 PROCESS_INFORMATION pi;
duke@435 4727
duke@435 4728 memset(&si, 0, sizeof(si));
duke@435 4729 si.cb = sizeof(si);
duke@435 4730 memset(&pi, 0, sizeof(pi));
duke@435 4731 BOOL rslt = CreateProcess(NULL, // executable name - use command line
duke@435 4732 cmd, // command line
duke@435 4733 NULL, // process security attribute
duke@435 4734 NULL, // thread security attribute
duke@435 4735 TRUE, // inherits system handles
duke@435 4736 0, // no creation flags
duke@435 4737 NULL, // use parent's environment block
duke@435 4738 NULL, // use parent's starting directory
duke@435 4739 &si, // (in) startup information
duke@435 4740 &pi); // (out) process information
duke@435 4741
duke@435 4742 if (rslt) {
duke@435 4743 // Wait until child process exits.
duke@435 4744 WaitForSingleObject(pi.hProcess, INFINITE);
duke@435 4745
duke@435 4746 DWORD exit_code;
duke@435 4747 GetExitCodeProcess(pi.hProcess, &exit_code);
duke@435 4748
duke@435 4749 // Close process and thread handles.
duke@435 4750 CloseHandle(pi.hProcess);
duke@435 4751 CloseHandle(pi.hThread);
duke@435 4752
duke@435 4753 return (int)exit_code;
duke@435 4754 } else {
duke@435 4755 return -1;
duke@435 4756 }
duke@435 4757 }
duke@435 4758
duke@435 4759 //--------------------------------------------------------------------------------------------------
duke@435 4760 // Non-product code
duke@435 4761
duke@435 4762 static int mallocDebugIntervalCounter = 0;
duke@435 4763 static int mallocDebugCounter = 0;
duke@435 4764 bool os::check_heap(bool force) {
duke@435 4765 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
duke@435 4766 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
duke@435 4767 // Note: HeapValidate executes two hardware breakpoints when it finds something
duke@435 4768 // wrong; at these points, eax contains the address of the offending block (I think).
duke@435 4769 // To get to the exlicit error message(s) below, just continue twice.
duke@435 4770 HANDLE heap = GetProcessHeap();
duke@435 4771 { HeapLock(heap);
duke@435 4772 PROCESS_HEAP_ENTRY phe;
duke@435 4773 phe.lpData = NULL;
duke@435 4774 while (HeapWalk(heap, &phe) != 0) {
duke@435 4775 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
duke@435 4776 !HeapValidate(heap, 0, phe.lpData)) {
duke@435 4777 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
duke@435 4778 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
duke@435 4779 fatal("corrupted C heap");
duke@435 4780 }
duke@435 4781 }
phh@3379 4782 DWORD err = GetLastError();
duke@435 4783 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
jcoomes@1845 4784 fatal(err_msg("heap walk aborted with error %d", err));
duke@435 4785 }
duke@435 4786 HeapUnlock(heap);
duke@435 4787 }
duke@435 4788 mallocDebugIntervalCounter = 0;
duke@435 4789 }
duke@435 4790 return true;
duke@435 4791 }
duke@435 4792
duke@435 4793
bobv@2036 4794 bool os::find(address addr, outputStream* st) {
duke@435 4795 // Nothing yet
duke@435 4796 return false;
duke@435 4797 }
duke@435 4798
duke@435 4799 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
duke@435 4800 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
duke@435 4801
duke@435 4802 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 4803 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
duke@435 4804 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
duke@435 4805 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 4806
duke@435 4807 if (os::is_memory_serialize_page(thread, addr))
duke@435 4808 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 4809 }
duke@435 4810
duke@435 4811 return EXCEPTION_CONTINUE_SEARCH;
duke@435 4812 }
duke@435 4813
bobv@2036 4814 // We don't build a headless jre for Windows
bobv@2036 4815 bool os::is_headless_jre() { return false; }
bobv@2036 4816
ikrylov@2322 4817
ikrylov@2322 4818 typedef CRITICAL_SECTION mutex_t;
ikrylov@2322 4819 #define mutexInit(m) InitializeCriticalSection(m)
ikrylov@2322 4820 #define mutexDestroy(m) DeleteCriticalSection(m)
ikrylov@2322 4821 #define mutexLock(m) EnterCriticalSection(m)
ikrylov@2322 4822 #define mutexUnlock(m) LeaveCriticalSection(m)
ikrylov@2322 4823
zgu@3031 4824 static bool sock_initialized = FALSE;
ikrylov@2322 4825 static mutex_t sockFnTableMutex;
ikrylov@2322 4826
zgu@3031 4827 static void initSock() {
ikrylov@2322 4828 WSADATA wsadata;
ikrylov@2322 4829
zgu@3031 4830 if (!os::WinSock2Dll::WinSock2Available()) {
zgu@3031 4831 jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
zgu@3031 4832 ::GetLastError());
zgu@3031 4833 return;
zgu@3031 4834 }
zgu@3031 4835 if (sock_initialized == TRUE) return;
zgu@3031 4836
ikrylov@2322 4837 ::mutexInit(&sockFnTableMutex);
ikrylov@2322 4838 ::mutexLock(&sockFnTableMutex);
zgu@3031 4839 if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
zgu@3031 4840 jio_fprintf(stderr, "Could not initialize Winsock\n");
ikrylov@2322 4841 }
zgu@3031 4842 sock_initialized = TRUE;
ikrylov@2322 4843 ::mutexUnlock(&sockFnTableMutex);
ikrylov@2322 4844 }
ikrylov@2322 4845
phh@3344 4846 struct hostent* os::get_host_by_name(char* name) {
zgu@3031 4847 if (!sock_initialized) {
zgu@3031 4848 initSock();
ikrylov@2322 4849 }
zgu@3031 4850 if (!os::WinSock2Dll::WinSock2Available()) {
zgu@3031 4851 return NULL;
zgu@3031 4852 }
zgu@3031 4853 return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
ikrylov@2322 4854 }
ikrylov@2322 4855
ikrylov@2322 4856 int os::socket_close(int fd) {
twisti@3747 4857 return ::closesocket(fd);
ikrylov@2322 4858 }
ikrylov@2322 4859
ikrylov@2322 4860 int os::socket_available(int fd, jint *pbytes) {
twisti@3747 4861 int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
twisti@3747 4862 return (ret < 0) ? 0 : 1;
ikrylov@2322 4863 }
ikrylov@2322 4864
ikrylov@2322 4865 int os::socket(int domain, int type, int protocol) {
twisti@3747 4866 return ::socket(domain, type, protocol);
ikrylov@2322 4867 }
ikrylov@2322 4868
ikrylov@2322 4869 int os::listen(int fd, int count) {
twisti@3747 4870 return ::listen(fd, count);
ikrylov@2322 4871 }
ikrylov@2322 4872
phh@3344 4873 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
twisti@3747 4874 return ::connect(fd, him, len);
ikrylov@2322 4875 }
ikrylov@2322 4876
phh@3344 4877 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
twisti@3747 4878 return ::accept(fd, him, len);
ikrylov@2322 4879 }
ikrylov@2322 4880
phh@3344 4881 int os::sendto(int fd, char* buf, size_t len, uint flags,
phh@3344 4882 struct sockaddr* to, socklen_t tolen) {
twisti@3747 4883
twisti@3747 4884 return ::sendto(fd, buf, (int)len, flags, to, tolen);
ikrylov@2322 4885 }
ikrylov@2322 4886
phh@3344 4887 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
phh@3344 4888 sockaddr* from, socklen_t* fromlen) {
twisti@3747 4889
twisti@3747 4890 return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
ikrylov@2322 4891 }
ikrylov@2322 4892
phh@3344 4893 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
twisti@3747 4894 return ::recv(fd, buf, (int)nBytes, flags);
ikrylov@2322 4895 }
ikrylov@2322 4896
phh@3344 4897 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
twisti@3747 4898 return ::send(fd, buf, (int)nBytes, flags);
ikrylov@2322 4899 }
ikrylov@2322 4900
phh@3344 4901 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
twisti@3747 4902 return ::send(fd, buf, (int)nBytes, flags);
ikrylov@2322 4903 }
ikrylov@2322 4904
ikrylov@2322 4905 int os::timeout(int fd, long timeout) {
twisti@3747 4906 fd_set tbl;
twisti@3747 4907 struct timeval t;
twisti@3747 4908
twisti@3747 4909 t.tv_sec = timeout / 1000;
twisti@3747 4910 t.tv_usec = (timeout % 1000) * 1000;
twisti@3747 4911
twisti@3747 4912 tbl.fd_count = 1;
twisti@3747 4913 tbl.fd_array[0] = fd;
twisti@3747 4914
twisti@3747 4915 return ::select(1, &tbl, 0, 0, &t);
ikrylov@2322 4916 }
ikrylov@2322 4917
ikrylov@2322 4918 int os::get_host_name(char* name, int namelen) {
twisti@3747 4919 return ::gethostname(name, namelen);
ikrylov@2322 4920 }
ikrylov@2322 4921
ikrylov@2322 4922 int os::socket_shutdown(int fd, int howto) {
twisti@3747 4923 return ::shutdown(fd, howto);
ikrylov@2322 4924 }
ikrylov@2322 4925
phh@3344 4926 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
twisti@3747 4927 return ::bind(fd, him, len);
ikrylov@2322 4928 }
ikrylov@2322 4929
phh@3344 4930 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
twisti@3747 4931 return ::getsockname(fd, him, len);
ikrylov@2322 4932 }
ikrylov@2322 4933
ikrylov@2322 4934 int os::get_sock_opt(int fd, int level, int optname,
phh@3344 4935 char* optval, socklen_t* optlen) {
twisti@3747 4936 return ::getsockopt(fd, level, optname, optval, optlen);
ikrylov@2322 4937 }
ikrylov@2322 4938
ikrylov@2322 4939 int os::set_sock_opt(int fd, int level, int optname,
phh@3344 4940 const char* optval, socklen_t optlen) {
twisti@3747 4941 return ::setsockopt(fd, level, optname, optval, optlen);
ikrylov@2322 4942 }
zgu@3031 4943
zgu@3031 4944
zgu@3031 4945 // Kernel32 API
zgu@3031 4946 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
iveresov@3085 4947 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
iveresov@3085 4948 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
iveresov@3085 4949 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
zgu@3900 4950 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
iveresov@3085 4951
zgu@3031 4952 GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL;
iveresov@3085 4953 VirtualAllocExNuma_Fn os::Kernel32Dll::_VirtualAllocExNuma = NULL;
iveresov@3085 4954 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
iveresov@3085 4955 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
zgu@3900 4956 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
zgu@3900 4957
zgu@3900 4958
zgu@3031 4959 BOOL os::Kernel32Dll::initialized = FALSE;
zgu@3031 4960 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
zgu@3031 4961 assert(initialized && _GetLargePageMinimum != NULL,
zgu@3031 4962 "GetLargePageMinimumAvailable() not yet called");
zgu@3031 4963 return _GetLargePageMinimum();
zgu@3031 4964 }
zgu@3031 4965
zgu@3031 4966 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
zgu@3031 4967 if (!initialized) {
zgu@3031 4968 initialize();
zgu@3031 4969 }
zgu@3031 4970 return _GetLargePageMinimum != NULL;
zgu@3031 4971 }
zgu@3031 4972
iveresov@3085 4973 BOOL os::Kernel32Dll::NumaCallsAvailable() {
iveresov@3085 4974 if (!initialized) {
iveresov@3085 4975 initialize();
iveresov@3085 4976 }
iveresov@3085 4977 return _VirtualAllocExNuma != NULL;
iveresov@3085 4978 }
iveresov@3085 4979
iveresov@3085 4980 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
iveresov@3085 4981 assert(initialized && _VirtualAllocExNuma != NULL,
iveresov@3085 4982 "NUMACallsAvailable() not yet called");
iveresov@3085 4983
iveresov@3085 4984 return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
iveresov@3085 4985 }
iveresov@3085 4986
iveresov@3085 4987 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
iveresov@3085 4988 assert(initialized && _GetNumaHighestNodeNumber != NULL,
iveresov@3085 4989 "NUMACallsAvailable() not yet called");
iveresov@3085 4990
iveresov@3085 4991 return _GetNumaHighestNodeNumber(ptr_highest_node_number);
iveresov@3085 4992 }
iveresov@3085 4993
iveresov@3085 4994 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
iveresov@3085 4995 assert(initialized && _GetNumaNodeProcessorMask != NULL,
iveresov@3085 4996 "NUMACallsAvailable() not yet called");
iveresov@3085 4997
iveresov@3085 4998 return _GetNumaNodeProcessorMask(node, proc_mask);
iveresov@3085 4999 }
iveresov@3085 5000
zgu@3900 5001 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
zgu@3900 5002 ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
zgu@3900 5003 if (!initialized) {
zgu@3900 5004 initialize();
zgu@3900 5005 }
zgu@3900 5006
zgu@3900 5007 if (_RtlCaptureStackBackTrace != NULL) {
zgu@3900 5008 return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
zgu@3900 5009 BackTrace, BackTraceHash);
zgu@3900 5010 } else {
zgu@3900 5011 return 0;
zgu@3900 5012 }
zgu@3900 5013 }
iveresov@3085 5014
iveresov@3085 5015 void os::Kernel32Dll::initializeCommon() {
zgu@3031 5016 if (!initialized) {
zgu@3031 5017 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 5018 assert(handle != NULL, "Just check");
zgu@3031 5019 _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
iveresov@3085 5020 _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
iveresov@3085 5021 _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
iveresov@3085 5022 _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
zgu@3900 5023 _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
zgu@3031 5024 initialized = TRUE;
zgu@3031 5025 }
zgu@3031 5026 }
zgu@3031 5027
zgu@3031 5028
iveresov@3085 5029
iveresov@3085 5030 #ifndef JDK6_OR_EARLIER
iveresov@3085 5031
iveresov@3085 5032 void os::Kernel32Dll::initialize() {
iveresov@3085 5033 initializeCommon();
iveresov@3085 5034 }
iveresov@3085 5035
iveresov@3085 5036
zgu@3031 5037 // Kernel32 API
zgu@3031 5038 inline BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 5039 return ::SwitchToThread();
zgu@3031 5040 }
zgu@3031 5041
zgu@3031 5042 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 5043 return true;
zgu@3031 5044 }
zgu@3031 5045
zgu@3031 5046 // Help tools
zgu@3031 5047 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5048 return true;
zgu@3031 5049 }
zgu@3031 5050
zgu@3031 5051 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5052 return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5053 }
zgu@3031 5054
zgu@3031 5055 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5056 return ::Module32First(hSnapshot, lpme);
zgu@3031 5057 }
zgu@3031 5058
zgu@3031 5059 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5060 return ::Module32Next(hSnapshot, lpme);
zgu@3031 5061 }
zgu@3031 5062
zgu@3031 5063
zgu@3031 5064 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5065 return true;
zgu@3031 5066 }
zgu@3031 5067
zgu@3031 5068 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5069 ::GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5070 }
zgu@3031 5071
zgu@3031 5072 // PSAPI API
zgu@3031 5073 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5074 return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5075 }
zgu@3031 5076
zgu@3031 5077 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5078 return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5079 }
zgu@3031 5080
zgu@3031 5081 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5082 return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5083 }
zgu@3031 5084
zgu@3031 5085 inline BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5086 return true;
zgu@3031 5087 }
zgu@3031 5088
zgu@3031 5089
zgu@3031 5090 // WinSock2 API
zgu@3031 5091 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5092 return ::WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5093 }
zgu@3031 5094
zgu@3031 5095 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5096 return ::gethostbyname(name);
zgu@3031 5097 }
zgu@3031 5098
zgu@3031 5099 inline BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5100 return true;
zgu@3031 5101 }
zgu@3031 5102
zgu@3031 5103 // Advapi API
zgu@3031 5104 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5105 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5106 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5107 return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5108 BufferLength, PreviousState, ReturnLength);
zgu@3031 5109 }
zgu@3031 5110
zgu@3031 5111 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5112 PHANDLE TokenHandle) {
zgu@3031 5113 return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5114 }
zgu@3031 5115
zgu@3031 5116 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5117 return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5118 }
zgu@3031 5119
zgu@3031 5120 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5121 return true;
zgu@3031 5122 }
zgu@3031 5123
zgu@3031 5124 #else
zgu@3031 5125 // Kernel32 API
zgu@3031 5126 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
zgu@3031 5127 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
zgu@3031 5128 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5129 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5130 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
zgu@3031 5131
zgu@3031 5132 SwitchToThread_Fn os::Kernel32Dll::_SwitchToThread = NULL;
zgu@3031 5133 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
zgu@3031 5134 Module32First_Fn os::Kernel32Dll::_Module32First = NULL;
zgu@3031 5135 Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL;
zgu@3031 5136 GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL;
zgu@3031 5137
zgu@3031 5138 void os::Kernel32Dll::initialize() {
zgu@3031 5139 if (!initialized) {
zgu@3031 5140 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 5141 assert(handle != NULL, "Just check");
zgu@3031 5142
zgu@3031 5143 _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
zgu@3031 5144 _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
zgu@3031 5145 ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
zgu@3031 5146 _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
zgu@3031 5147 _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
zgu@3031 5148 _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
iveresov@3085 5149 initializeCommon(); // resolve the functions that always need resolving
zgu@3031 5150
zgu@3031 5151 initialized = TRUE;
zgu@3031 5152 }
zgu@3031 5153 }
zgu@3031 5154
zgu@3031 5155 BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 5156 assert(initialized && _SwitchToThread != NULL,
zgu@3031 5157 "SwitchToThreadAvailable() not yet called");
zgu@3031 5158 return _SwitchToThread();
zgu@3031 5159 }
zgu@3031 5160
zgu@3031 5161
zgu@3031 5162 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 5163 if (!initialized) {
zgu@3031 5164 initialize();
zgu@3031 5165 }
zgu@3031 5166 return _SwitchToThread != NULL;
zgu@3031 5167 }
zgu@3031 5168
zgu@3031 5169 // Help tools
zgu@3031 5170 BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5171 if (!initialized) {
zgu@3031 5172 initialize();
zgu@3031 5173 }
zgu@3031 5174 return _CreateToolhelp32Snapshot != NULL &&
zgu@3031 5175 _Module32First != NULL &&
zgu@3031 5176 _Module32Next != NULL;
zgu@3031 5177 }
zgu@3031 5178
zgu@3031 5179 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5180 assert(initialized && _CreateToolhelp32Snapshot != NULL,
zgu@3031 5181 "HelpToolsAvailable() not yet called");
zgu@3031 5182
zgu@3031 5183 return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5184 }
zgu@3031 5185
zgu@3031 5186 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5187 assert(initialized && _Module32First != NULL,
zgu@3031 5188 "HelpToolsAvailable() not yet called");
zgu@3031 5189
zgu@3031 5190 return _Module32First(hSnapshot, lpme);
zgu@3031 5191 }
zgu@3031 5192
zgu@3031 5193 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5194 assert(initialized && _Module32Next != NULL,
zgu@3031 5195 "HelpToolsAvailable() not yet called");
zgu@3031 5196
zgu@3031 5197 return _Module32Next(hSnapshot, lpme);
zgu@3031 5198 }
zgu@3031 5199
zgu@3031 5200
zgu@3031 5201 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5202 if (!initialized) {
zgu@3031 5203 initialize();
zgu@3031 5204 }
zgu@3031 5205 return _GetNativeSystemInfo != NULL;
zgu@3031 5206 }
zgu@3031 5207
zgu@3031 5208 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5209 assert(initialized && _GetNativeSystemInfo != NULL,
zgu@3031 5210 "GetNativeSystemInfoAvailable() not yet called");
zgu@3031 5211
zgu@3031 5212 _GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5213 }
zgu@3031 5214
zgu@3031 5215 // PSAPI API
zgu@3031 5216
zgu@3031 5217
zgu@3031 5218 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
zgu@3031 5219 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
zgu@3031 5220 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
zgu@3031 5221
zgu@3031 5222 EnumProcessModules_Fn os::PSApiDll::_EnumProcessModules = NULL;
zgu@3031 5223 GetModuleFileNameEx_Fn os::PSApiDll::_GetModuleFileNameEx = NULL;
zgu@3031 5224 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
zgu@3031 5225 BOOL os::PSApiDll::initialized = FALSE;
zgu@3031 5226
zgu@3031 5227 void os::PSApiDll::initialize() {
zgu@3031 5228 if (!initialized) {
zgu@3031 5229 HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
zgu@3031 5230 if (handle != NULL) {
zgu@3031 5231 _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
zgu@3031 5232 "EnumProcessModules");
zgu@3031 5233 _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
zgu@3031 5234 "GetModuleFileNameExA");
zgu@3031 5235 _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
zgu@3031 5236 "GetModuleInformation");
zgu@3031 5237 }
zgu@3031 5238 initialized = TRUE;
zgu@3031 5239 }
zgu@3031 5240 }
zgu@3031 5241
zgu@3031 5242
zgu@3031 5243
zgu@3031 5244 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5245 assert(initialized && _EnumProcessModules != NULL,
zgu@3031 5246 "PSApiAvailable() not yet called");
zgu@3031 5247 return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5248 }
zgu@3031 5249
zgu@3031 5250 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5251 assert(initialized && _GetModuleFileNameEx != NULL,
zgu@3031 5252 "PSApiAvailable() not yet called");
zgu@3031 5253 return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5254 }
zgu@3031 5255
zgu@3031 5256 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5257 assert(initialized && _GetModuleInformation != NULL,
zgu@3031 5258 "PSApiAvailable() not yet called");
zgu@3031 5259 return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5260 }
zgu@3031 5261
zgu@3031 5262 BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5263 if (!initialized) {
zgu@3031 5264 initialize();
zgu@3031 5265 }
zgu@3031 5266 return _EnumProcessModules != NULL &&
zgu@3031 5267 _GetModuleFileNameEx != NULL &&
zgu@3031 5268 _GetModuleInformation != NULL;
zgu@3031 5269 }
zgu@3031 5270
zgu@3031 5271
zgu@3031 5272 // WinSock2 API
zgu@3031 5273 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
zgu@3031 5274 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
zgu@3031 5275
zgu@3031 5276 WSAStartup_Fn os::WinSock2Dll::_WSAStartup = NULL;
zgu@3031 5277 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
zgu@3031 5278 BOOL os::WinSock2Dll::initialized = FALSE;
zgu@3031 5279
zgu@3031 5280 void os::WinSock2Dll::initialize() {
zgu@3031 5281 if (!initialized) {
zgu@3031 5282 HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
zgu@3031 5283 if (handle != NULL) {
zgu@3031 5284 _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
zgu@3031 5285 _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
zgu@3031 5286 }
zgu@3031 5287 initialized = TRUE;
zgu@3031 5288 }
zgu@3031 5289 }
zgu@3031 5290
zgu@3031 5291
zgu@3031 5292 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5293 assert(initialized && _WSAStartup != NULL,
zgu@3031 5294 "WinSock2Available() not yet called");
zgu@3031 5295 return _WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5296 }
zgu@3031 5297
zgu@3031 5298 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5299 assert(initialized && _gethostbyname != NULL,
zgu@3031 5300 "WinSock2Available() not yet called");
zgu@3031 5301 return _gethostbyname(name);
zgu@3031 5302 }
zgu@3031 5303
zgu@3031 5304 BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5305 if (!initialized) {
zgu@3031 5306 initialize();
zgu@3031 5307 }
zgu@3031 5308 return _WSAStartup != NULL &&
zgu@3031 5309 _gethostbyname != NULL;
zgu@3031 5310 }
zgu@3031 5311
zgu@3031 5312 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
zgu@3031 5313 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
zgu@3031 5314 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
zgu@3031 5315
zgu@3031 5316 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
zgu@3031 5317 OpenProcessToken_Fn os::Advapi32Dll::_OpenProcessToken = NULL;
zgu@3031 5318 LookupPrivilegeValue_Fn os::Advapi32Dll::_LookupPrivilegeValue = NULL;
zgu@3031 5319 BOOL os::Advapi32Dll::initialized = FALSE;
zgu@3031 5320
zgu@3031 5321 void os::Advapi32Dll::initialize() {
zgu@3031 5322 if (!initialized) {
zgu@3031 5323 HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
zgu@3031 5324 if (handle != NULL) {
zgu@3031 5325 _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
zgu@3031 5326 "AdjustTokenPrivileges");
zgu@3031 5327 _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
zgu@3031 5328 "OpenProcessToken");
zgu@3031 5329 _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
zgu@3032 5330 "LookupPrivilegeValueA");
zgu@3031 5331 }
zgu@3031 5332 initialized = TRUE;
zgu@3031 5333 }
zgu@3031 5334 }
zgu@3031 5335
zgu@3031 5336 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5337 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5338 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5339 assert(initialized && _AdjustTokenPrivileges != NULL,
zgu@3031 5340 "AdvapiAvailable() not yet called");
zgu@3031 5341 return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5342 BufferLength, PreviousState, ReturnLength);
zgu@3031 5343 }
zgu@3031 5344
zgu@3031 5345 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5346 PHANDLE TokenHandle) {
zgu@3031 5347 assert(initialized && _OpenProcessToken != NULL,
zgu@3031 5348 "AdvapiAvailable() not yet called");
zgu@3031 5349 return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5350 }
zgu@3031 5351
zgu@3031 5352 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5353 assert(initialized && _LookupPrivilegeValue != NULL,
zgu@3031 5354 "AdvapiAvailable() not yet called");
zgu@3031 5355 return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5356 }
zgu@3031 5357
zgu@3031 5358 BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5359 if (!initialized) {
zgu@3031 5360 initialize();
zgu@3031 5361 }
zgu@3031 5362 return _AdjustTokenPrivileges != NULL &&
zgu@3031 5363 _OpenProcessToken != NULL &&
zgu@3031 5364 _LookupPrivilegeValue != NULL;
zgu@3031 5365 }
zgu@3031 5366
zgu@3031 5367 #endif

mercurial