src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Thu, 16 Jun 2011 15:51:57 -0400

author
tonyp
date
Thu, 16 Jun 2011 15:51:57 -0400
changeset 2971
c9ca3f51cf41
parent 2969
6747fd0512e0
child 3115
c2bf0120ee5d
permissions
-rw-r--r--

6994322: Remove the is_tlab and is_noref / is_large_noref parameters from the CollectedHeap
Summary: Remove two unused parameters from the mem_allocate() method and update its uses accordingly.
Reviewed-by: stefank, johnc

duke@435 1 /*
kvn@2558 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
stefank@2314 27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
stefank@2314 28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
stefank@2314 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
stefank@2314 32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
stefank@2314 33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
stefank@2314 34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
stefank@2314 35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
stefank@2314 36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
stefank@2314 38 #include "memory/gcLocker.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "runtime/handles.inline.hpp"
stefank@2314 41 #include "runtime/java.hpp"
stefank@2314 42 #include "runtime/vmThread.hpp"
stefank@2314 43 #include "utilities/vmError.hpp"
duke@435 44
duke@435 45 PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
duke@435 46 PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
duke@435 47 PSPermGen* ParallelScavengeHeap::_perm_gen = NULL;
duke@435 48 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
duke@435 49 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
duke@435 50 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
duke@435 51 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
duke@435 52
duke@435 53 static void trace_gen_sizes(const char* const str,
duke@435 54 size_t pg_min, size_t pg_max,
duke@435 55 size_t og_min, size_t og_max,
duke@435 56 size_t yg_min, size_t yg_max)
duke@435 57 {
duke@435 58 if (TracePageSizes) {
duke@435 59 tty->print_cr("%s: " SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 60 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 61 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 62 SIZE_FORMAT,
duke@435 63 str, pg_min / K, pg_max / K,
duke@435 64 og_min / K, og_max / K,
duke@435 65 yg_min / K, yg_max / K,
duke@435 66 (pg_max + og_max + yg_max) / K);
duke@435 67 }
duke@435 68 }
duke@435 69
duke@435 70 jint ParallelScavengeHeap::initialize() {
ysr@1601 71 CollectedHeap::pre_initialize();
ysr@1601 72
duke@435 73 // Cannot be initialized until after the flags are parsed
jmasa@1822 74 // GenerationSizer flag_parser;
jmasa@1822 75 _collector_policy = new GenerationSizer();
duke@435 76
jmasa@1822 77 size_t yg_min_size = _collector_policy->min_young_gen_size();
jmasa@1822 78 size_t yg_max_size = _collector_policy->max_young_gen_size();
jmasa@1822 79 size_t og_min_size = _collector_policy->min_old_gen_size();
jmasa@1822 80 size_t og_max_size = _collector_policy->max_old_gen_size();
duke@435 81 // Why isn't there a min_perm_gen_size()?
jmasa@1822 82 size_t pg_min_size = _collector_policy->perm_gen_size();
jmasa@1822 83 size_t pg_max_size = _collector_policy->max_perm_gen_size();
duke@435 84
duke@435 85 trace_gen_sizes("ps heap raw",
duke@435 86 pg_min_size, pg_max_size,
duke@435 87 og_min_size, og_max_size,
duke@435 88 yg_min_size, yg_max_size);
duke@435 89
duke@435 90 // The ReservedSpace ctor used below requires that the page size for the perm
duke@435 91 // gen is <= the page size for the rest of the heap (young + old gens).
duke@435 92 const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
duke@435 93 yg_max_size + og_max_size,
duke@435 94 8);
duke@435 95 const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
duke@435 96 pg_max_size, 16),
duke@435 97 og_page_sz);
duke@435 98
duke@435 99 const size_t pg_align = set_alignment(_perm_gen_alignment, pg_page_sz);
duke@435 100 const size_t og_align = set_alignment(_old_gen_alignment, og_page_sz);
duke@435 101 const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
duke@435 102
duke@435 103 // Update sizes to reflect the selected page size(s).
duke@435 104 //
duke@435 105 // NEEDS_CLEANUP. The default TwoGenerationCollectorPolicy uses NewRatio; it
duke@435 106 // should check UseAdaptiveSizePolicy. Changes from generationSizer could
duke@435 107 // move to the common code.
duke@435 108 yg_min_size = align_size_up(yg_min_size, yg_align);
duke@435 109 yg_max_size = align_size_up(yg_max_size, yg_align);
jmasa@1822 110 size_t yg_cur_size =
jmasa@1822 111 align_size_up(_collector_policy->young_gen_size(), yg_align);
duke@435 112 yg_cur_size = MAX2(yg_cur_size, yg_min_size);
duke@435 113
duke@435 114 og_min_size = align_size_up(og_min_size, og_align);
kvn@2558 115 // Align old gen size down to preserve specified heap size.
kvn@2558 116 assert(og_align == yg_align, "sanity");
kvn@2558 117 og_max_size = align_size_down(og_max_size, og_align);
kvn@2558 118 og_max_size = MAX2(og_max_size, og_min_size);
jmasa@1822 119 size_t og_cur_size =
kvn@2558 120 align_size_down(_collector_policy->old_gen_size(), og_align);
duke@435 121 og_cur_size = MAX2(og_cur_size, og_min_size);
duke@435 122
duke@435 123 pg_min_size = align_size_up(pg_min_size, pg_align);
duke@435 124 pg_max_size = align_size_up(pg_max_size, pg_align);
duke@435 125 size_t pg_cur_size = pg_min_size;
duke@435 126
duke@435 127 trace_gen_sizes("ps heap rnd",
duke@435 128 pg_min_size, pg_max_size,
duke@435 129 og_min_size, og_max_size,
duke@435 130 yg_min_size, yg_max_size);
duke@435 131
kvn@1077 132 const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
kvn@1077 133 char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
kvn@1077 134
duke@435 135 // The main part of the heap (old gen + young gen) can often use a larger page
duke@435 136 // size than is needed or wanted for the perm gen. Use the "compound
duke@435 137 // alignment" ReservedSpace ctor to avoid having to use the same page size for
duke@435 138 // all gens.
kvn@1077 139
coleenp@672 140 ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 141 og_align, addr);
kvn@1077 142
kvn@1077 143 if (UseCompressedOops) {
kvn@1077 144 if (addr != NULL && !heap_rs.is_reserved()) {
kvn@1077 145 // Failed to reserve at specified address - the requested memory
kvn@1077 146 // region is taken already, for example, by 'java' launcher.
kvn@1077 147 // Try again to reserver heap higher.
kvn@1077 148 addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
kvn@1077 149 ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 150 og_align, addr);
kvn@1077 151 if (addr != NULL && !heap_rs0.is_reserved()) {
kvn@1077 152 // Failed to reserve at specified address again - give up.
kvn@1077 153 addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
kvn@1077 154 assert(addr == NULL, "");
kvn@1077 155 ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 156 og_align, addr);
kvn@1077 157 heap_rs = heap_rs1;
kvn@1077 158 } else {
kvn@1077 159 heap_rs = heap_rs0;
kvn@1077 160 }
kvn@1077 161 }
kvn@1077 162 }
kvn@1077 163
duke@435 164 os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
duke@435 165 heap_rs.base(), pg_max_size);
duke@435 166 os::trace_page_sizes("ps main", og_min_size + yg_min_size,
duke@435 167 og_max_size + yg_max_size, og_page_sz,
duke@435 168 heap_rs.base() + pg_max_size,
duke@435 169 heap_rs.size() - pg_max_size);
duke@435 170 if (!heap_rs.is_reserved()) {
duke@435 171 vm_shutdown_during_initialization(
duke@435 172 "Could not reserve enough space for object heap");
duke@435 173 return JNI_ENOMEM;
duke@435 174 }
duke@435 175
duke@435 176 _reserved = MemRegion((HeapWord*)heap_rs.base(),
duke@435 177 (HeapWord*)(heap_rs.base() + heap_rs.size()));
duke@435 178
duke@435 179 CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
duke@435 180 _barrier_set = barrier_set;
duke@435 181 oopDesc::set_bs(_barrier_set);
duke@435 182 if (_barrier_set == NULL) {
duke@435 183 vm_shutdown_during_initialization(
duke@435 184 "Could not reserve enough space for barrier set");
duke@435 185 return JNI_ENOMEM;
duke@435 186 }
duke@435 187
duke@435 188 // Initial young gen size is 4 Mb
duke@435 189 //
duke@435 190 // XXX - what about flag_parser.young_gen_size()?
duke@435 191 const size_t init_young_size = align_size_up(4 * M, yg_align);
duke@435 192 yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
duke@435 193
duke@435 194 // Split the reserved space into perm gen and the main heap (everything else).
duke@435 195 // The main heap uses a different alignment.
duke@435 196 ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
duke@435 197 ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
duke@435 198
duke@435 199 // Make up the generations
duke@435 200 // Calculate the maximum size that a generation can grow. This
duke@435 201 // includes growth into the other generation. Note that the
duke@435 202 // parameter _max_gen_size is kept as the maximum
duke@435 203 // size of the generation as the boundaries currently stand.
duke@435 204 // _max_gen_size is still used as that value.
duke@435 205 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
duke@435 206 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
duke@435 207
duke@435 208 _gens = new AdjoiningGenerations(main_rs,
duke@435 209 og_cur_size,
duke@435 210 og_min_size,
duke@435 211 og_max_size,
duke@435 212 yg_cur_size,
duke@435 213 yg_min_size,
duke@435 214 yg_max_size,
duke@435 215 yg_align);
duke@435 216
duke@435 217 _old_gen = _gens->old_gen();
duke@435 218 _young_gen = _gens->young_gen();
duke@435 219
duke@435 220 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
duke@435 221 const size_t old_capacity = _old_gen->capacity_in_bytes();
duke@435 222 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
duke@435 223 _size_policy =
duke@435 224 new PSAdaptiveSizePolicy(eden_capacity,
duke@435 225 initial_promo_size,
duke@435 226 young_gen()->to_space()->capacity_in_bytes(),
jmasa@448 227 intra_heap_alignment(),
duke@435 228 max_gc_pause_sec,
duke@435 229 max_gc_minor_pause_sec,
duke@435 230 GCTimeRatio
duke@435 231 );
duke@435 232
duke@435 233 _perm_gen = new PSPermGen(perm_rs,
duke@435 234 pg_align,
duke@435 235 pg_cur_size,
duke@435 236 pg_cur_size,
duke@435 237 pg_max_size,
duke@435 238 "perm", 2);
duke@435 239
duke@435 240 assert(!UseAdaptiveGCBoundary ||
duke@435 241 (old_gen()->virtual_space()->high_boundary() ==
duke@435 242 young_gen()->virtual_space()->low_boundary()),
duke@435 243 "Boundaries must meet");
duke@435 244 // initialize the policy counters - 2 collectors, 3 generations
duke@435 245 _gc_policy_counters =
duke@435 246 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
duke@435 247 _psh = this;
duke@435 248
duke@435 249 // Set up the GCTaskManager
duke@435 250 _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
duke@435 251
duke@435 252 if (UseParallelOldGC && !PSParallelCompact::initialize()) {
duke@435 253 return JNI_ENOMEM;
duke@435 254 }
duke@435 255
duke@435 256 return JNI_OK;
duke@435 257 }
duke@435 258
duke@435 259 void ParallelScavengeHeap::post_initialize() {
duke@435 260 // Need to init the tenuring threshold
duke@435 261 PSScavenge::initialize();
duke@435 262 if (UseParallelOldGC) {
duke@435 263 PSParallelCompact::post_initialize();
duke@435 264 } else {
duke@435 265 PSMarkSweep::initialize();
duke@435 266 }
duke@435 267 PSPromotionManager::initialize();
duke@435 268 }
duke@435 269
duke@435 270 void ParallelScavengeHeap::update_counters() {
duke@435 271 young_gen()->update_counters();
duke@435 272 old_gen()->update_counters();
duke@435 273 perm_gen()->update_counters();
duke@435 274 }
duke@435 275
duke@435 276 size_t ParallelScavengeHeap::capacity() const {
duke@435 277 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
duke@435 278 return value;
duke@435 279 }
duke@435 280
duke@435 281 size_t ParallelScavengeHeap::used() const {
duke@435 282 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
duke@435 283 return value;
duke@435 284 }
duke@435 285
duke@435 286 bool ParallelScavengeHeap::is_maximal_no_gc() const {
duke@435 287 return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
duke@435 288 }
duke@435 289
duke@435 290
duke@435 291 size_t ParallelScavengeHeap::permanent_capacity() const {
duke@435 292 return perm_gen()->capacity_in_bytes();
duke@435 293 }
duke@435 294
duke@435 295 size_t ParallelScavengeHeap::permanent_used() const {
duke@435 296 return perm_gen()->used_in_bytes();
duke@435 297 }
duke@435 298
duke@435 299 size_t ParallelScavengeHeap::max_capacity() const {
duke@435 300 size_t estimated = reserved_region().byte_size();
duke@435 301 estimated -= perm_gen()->reserved().byte_size();
duke@435 302 if (UseAdaptiveSizePolicy) {
duke@435 303 estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
duke@435 304 } else {
duke@435 305 estimated -= young_gen()->to_space()->capacity_in_bytes();
duke@435 306 }
duke@435 307 return MAX2(estimated, capacity());
duke@435 308 }
duke@435 309
duke@435 310 bool ParallelScavengeHeap::is_in(const void* p) const {
duke@435 311 if (young_gen()->is_in(p)) {
duke@435 312 return true;
duke@435 313 }
duke@435 314
duke@435 315 if (old_gen()->is_in(p)) {
duke@435 316 return true;
duke@435 317 }
duke@435 318
duke@435 319 if (perm_gen()->is_in(p)) {
duke@435 320 return true;
duke@435 321 }
duke@435 322
duke@435 323 return false;
duke@435 324 }
duke@435 325
duke@435 326 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
duke@435 327 if (young_gen()->is_in_reserved(p)) {
duke@435 328 return true;
duke@435 329 }
duke@435 330
duke@435 331 if (old_gen()->is_in_reserved(p)) {
duke@435 332 return true;
duke@435 333 }
duke@435 334
duke@435 335 if (perm_gen()->is_in_reserved(p)) {
duke@435 336 return true;
duke@435 337 }
duke@435 338
duke@435 339 return false;
duke@435 340 }
duke@435 341
jmasa@2909 342 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
jmasa@2909 343 return is_in_young((oop)addr);
jmasa@2909 344 }
jmasa@2909 345
jmasa@2909 346 #ifdef ASSERT
jmasa@2909 347 // Don't implement this by using is_in_young(). This method is used
jmasa@2909 348 // in some cases to check that is_in_young() is correct.
jmasa@2909 349 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
jmasa@2909 350 assert(is_in_reserved(p) || p == NULL,
jmasa@2909 351 "Does not work if address is non-null and outside of the heap");
jmasa@2909 352 // The order of the generations is perm (low addr), old, young (high addr)
jmasa@2909 353 return p >= old_gen()->reserved().end();
jmasa@2909 354 }
jmasa@2909 355 #endif
jmasa@2909 356
duke@435 357 // There are two levels of allocation policy here.
duke@435 358 //
duke@435 359 // When an allocation request fails, the requesting thread must invoke a VM
duke@435 360 // operation, transfer control to the VM thread, and await the results of a
duke@435 361 // garbage collection. That is quite expensive, and we should avoid doing it
duke@435 362 // multiple times if possible.
duke@435 363 //
duke@435 364 // To accomplish this, we have a basic allocation policy, and also a
duke@435 365 // failed allocation policy.
duke@435 366 //
duke@435 367 // The basic allocation policy controls how you allocate memory without
duke@435 368 // attempting garbage collection. It is okay to grab locks and
duke@435 369 // expand the heap, if that can be done without coming to a safepoint.
duke@435 370 // It is likely that the basic allocation policy will not be very
duke@435 371 // aggressive.
duke@435 372 //
duke@435 373 // The failed allocation policy is invoked from the VM thread after
duke@435 374 // the basic allocation policy is unable to satisfy a mem_allocate
duke@435 375 // request. This policy needs to cover the entire range of collection,
duke@435 376 // heap expansion, and out-of-memory conditions. It should make every
duke@435 377 // attempt to allocate the requested memory.
duke@435 378
duke@435 379 // Basic allocation policy. Should never be called at a safepoint, or
duke@435 380 // from the VM thread.
duke@435 381 //
duke@435 382 // This method must handle cases where many mem_allocate requests fail
duke@435 383 // simultaneously. When that happens, only one VM operation will succeed,
duke@435 384 // and the rest will not be executed. For that reason, this method loops
duke@435 385 // during failed allocation attempts. If the java heap becomes exhausted,
duke@435 386 // we rely on the size_policy object to force a bail out.
duke@435 387 HeapWord* ParallelScavengeHeap::mem_allocate(
duke@435 388 size_t size,
duke@435 389 bool* gc_overhead_limit_was_exceeded) {
duke@435 390 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 391 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 392 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 393
jmasa@1822 394 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 395 // set it so here and reset it to true only if the gc time
jmasa@1822 396 // limit is being exceeded as checked below.
jmasa@1822 397 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 398
tonyp@2971 399 HeapWord* result = young_gen()->allocate(size);
duke@435 400
duke@435 401 uint loop_count = 0;
duke@435 402 uint gc_count = 0;
duke@435 403
duke@435 404 while (result == NULL) {
duke@435 405 // We don't want to have multiple collections for a single filled generation.
duke@435 406 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 407 // the count has changed, does not do a new collection.
duke@435 408 //
duke@435 409 // The collection count must be read only while holding the heap lock. VM
duke@435 410 // operations also hold the heap lock during collections. There is a lock
duke@435 411 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 412 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 413 // the collection count has already changed. To prevent duplicate collections,
duke@435 414 // The policy MUST attempt allocations during the same period it reads the
duke@435 415 // total_collections() value!
duke@435 416 {
duke@435 417 MutexLocker ml(Heap_lock);
duke@435 418 gc_count = Universe::heap()->total_collections();
duke@435 419
tonyp@2971 420 result = young_gen()->allocate(size);
duke@435 421
duke@435 422 // (1) If the requested object is too large to easily fit in the
duke@435 423 // young_gen, or
duke@435 424 // (2) If GC is locked out via GCLocker, young gen is full and
duke@435 425 // the need for a GC already signalled to GCLocker (done
duke@435 426 // at a safepoint),
duke@435 427 // ... then, rather than force a safepoint and (a potentially futile)
duke@435 428 // collection (attempt) for each allocation, try allocation directly
duke@435 429 // in old_gen. For case (2) above, we may in the future allow
duke@435 430 // TLAB allocation directly in the old gen.
duke@435 431 if (result != NULL) {
duke@435 432 return result;
duke@435 433 }
tonyp@2971 434 if (size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
tonyp@2971 435 result = old_gen()->allocate(size);
duke@435 436 if (result != NULL) {
duke@435 437 return result;
duke@435 438 }
duke@435 439 }
duke@435 440 if (GC_locker::is_active_and_needs_gc()) {
duke@435 441 // If this thread is not in a jni critical section, we stall
duke@435 442 // the requestor until the critical section has cleared and
duke@435 443 // GC allowed. When the critical section clears, a GC is
duke@435 444 // initiated by the last thread exiting the critical section; so
duke@435 445 // we retry the allocation sequence from the beginning of the loop,
duke@435 446 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 447 JavaThread* jthr = JavaThread::current();
duke@435 448 if (!jthr->in_critical()) {
duke@435 449 MutexUnlocker mul(Heap_lock);
duke@435 450 GC_locker::stall_until_clear();
duke@435 451 continue;
duke@435 452 } else {
duke@435 453 if (CheckJNICalls) {
duke@435 454 fatal("Possible deadlock due to allocating while"
duke@435 455 " in jni critical section");
duke@435 456 }
duke@435 457 return NULL;
duke@435 458 }
duke@435 459 }
duke@435 460 }
duke@435 461
duke@435 462 if (result == NULL) {
duke@435 463
duke@435 464 // Generate a VM operation
tonyp@2971 465 VM_ParallelGCFailedAllocation op(size, gc_count);
duke@435 466 VMThread::execute(&op);
duke@435 467
duke@435 468 // Did the VM operation execute? If so, return the result directly.
duke@435 469 // This prevents us from looping until time out on requests that can
duke@435 470 // not be satisfied.
duke@435 471 if (op.prologue_succeeded()) {
duke@435 472 assert(Universe::heap()->is_in_or_null(op.result()),
duke@435 473 "result not in heap");
duke@435 474
duke@435 475 // If GC was locked out during VM operation then retry allocation
duke@435 476 // and/or stall as necessary.
duke@435 477 if (op.gc_locked()) {
duke@435 478 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
duke@435 479 continue; // retry and/or stall as necessary
duke@435 480 }
jmasa@1822 481
jmasa@1822 482 // Exit the loop if the gc time limit has been exceeded.
jmasa@1822 483 // The allocation must have failed above ("result" guarding
jmasa@1822 484 // this path is NULL) and the most recent collection has exceeded the
jmasa@1822 485 // gc overhead limit (although enough may have been collected to
jmasa@1822 486 // satisfy the allocation). Exit the loop so that an out-of-memory
jmasa@1822 487 // will be thrown (return a NULL ignoring the contents of
jmasa@1822 488 // op.result()),
jmasa@1822 489 // but clear gc_overhead_limit_exceeded so that the next collection
jmasa@1822 490 // starts with a clean slate (i.e., forgets about previous overhead
jmasa@1822 491 // excesses). Fill op.result() with a filler object so that the
jmasa@1822 492 // heap remains parsable.
jmasa@1822 493 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 494 const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
jmasa@1822 495 assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
jmasa@1822 496 if (limit_exceeded && softrefs_clear) {
jmasa@1822 497 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 498 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 499 if (PrintGCDetails && Verbose) {
jmasa@1822 500 gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
jmasa@1822 501 "return NULL because gc_overhead_limit_exceeded is set");
jmasa@1822 502 }
jmasa@1822 503 if (op.result() != NULL) {
jmasa@1822 504 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 505 }
jmasa@1822 506 return NULL;
duke@435 507 }
jmasa@1822 508
duke@435 509 return op.result();
duke@435 510 }
duke@435 511 }
duke@435 512
duke@435 513 // The policy object will prevent us from looping forever. If the
duke@435 514 // time spent in gc crosses a threshold, we will bail out.
duke@435 515 loop_count++;
duke@435 516 if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
duke@435 517 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 518 warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
tonyp@2971 519 " size=%d", loop_count, size);
duke@435 520 }
duke@435 521 }
duke@435 522
duke@435 523 return result;
duke@435 524 }
duke@435 525
duke@435 526 // Failed allocation policy. Must be called from the VM thread, and
duke@435 527 // only at a safepoint! Note that this method has policy for allocation
duke@435 528 // flow, and NOT collection policy. So we do not check for gc collection
duke@435 529 // time over limit here, that is the responsibility of the heap specific
duke@435 530 // collection methods. This method decides where to attempt allocations,
duke@435 531 // and when to attempt collections, but no collection specific policy.
tonyp@2971 532 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
duke@435 533 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 534 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 535 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 536 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 537
duke@435 538 size_t mark_sweep_invocation_count = total_invocations();
duke@435 539
duke@435 540 // We assume (and assert!) that an allocation at this point will fail
duke@435 541 // unless we collect.
duke@435 542
duke@435 543 // First level allocation failure, scavenge and allocate in young gen.
duke@435 544 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 545 PSScavenge::invoke();
tonyp@2971 546 HeapWord* result = young_gen()->allocate(size);
duke@435 547
duke@435 548 // Second level allocation failure.
duke@435 549 // Mark sweep and allocate in young generation.
duke@435 550 if (result == NULL) {
duke@435 551 // There is some chance the scavenge method decided to invoke mark_sweep.
duke@435 552 // Don't mark sweep twice if so.
duke@435 553 if (mark_sweep_invocation_count == total_invocations()) {
duke@435 554 invoke_full_gc(false);
tonyp@2971 555 result = young_gen()->allocate(size);
duke@435 556 }
duke@435 557 }
duke@435 558
duke@435 559 // Third level allocation failure.
duke@435 560 // After mark sweep and young generation allocation failure,
duke@435 561 // allocate in old generation.
tonyp@2971 562 if (result == NULL) {
tonyp@2971 563 result = old_gen()->allocate(size);
duke@435 564 }
duke@435 565
duke@435 566 // Fourth level allocation failure. We're running out of memory.
duke@435 567 // More complete mark sweep and allocate in young generation.
duke@435 568 if (result == NULL) {
duke@435 569 invoke_full_gc(true);
tonyp@2971 570 result = young_gen()->allocate(size);
duke@435 571 }
duke@435 572
duke@435 573 // Fifth level allocation failure.
duke@435 574 // After more complete mark sweep, allocate in old generation.
tonyp@2971 575 if (result == NULL) {
tonyp@2971 576 result = old_gen()->allocate(size);
duke@435 577 }
duke@435 578
duke@435 579 return result;
duke@435 580 }
duke@435 581
duke@435 582 //
duke@435 583 // This is the policy loop for allocating in the permanent generation.
duke@435 584 // If the initial allocation fails, we create a vm operation which will
duke@435 585 // cause a collection.
duke@435 586 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
duke@435 587 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 588 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 589 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 590
duke@435 591 HeapWord* result;
duke@435 592
duke@435 593 uint loop_count = 0;
duke@435 594 uint gc_count = 0;
duke@435 595 uint full_gc_count = 0;
duke@435 596
duke@435 597 do {
duke@435 598 // We don't want to have multiple collections for a single filled generation.
duke@435 599 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 600 // the count has changed, does not do a new collection.
duke@435 601 //
duke@435 602 // The collection count must be read only while holding the heap lock. VM
duke@435 603 // operations also hold the heap lock during collections. There is a lock
duke@435 604 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 605 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 606 // the collection count has already changed. To prevent duplicate collections,
duke@435 607 // The policy MUST attempt allocations during the same period it reads the
duke@435 608 // total_collections() value!
duke@435 609 {
duke@435 610 MutexLocker ml(Heap_lock);
duke@435 611 gc_count = Universe::heap()->total_collections();
duke@435 612 full_gc_count = Universe::heap()->total_full_collections();
duke@435 613
duke@435 614 result = perm_gen()->allocate_permanent(size);
apetrusenko@574 615
apetrusenko@574 616 if (result != NULL) {
apetrusenko@574 617 return result;
apetrusenko@574 618 }
apetrusenko@574 619
apetrusenko@574 620 if (GC_locker::is_active_and_needs_gc()) {
apetrusenko@574 621 // If this thread is not in a jni critical section, we stall
apetrusenko@574 622 // the requestor until the critical section has cleared and
apetrusenko@574 623 // GC allowed. When the critical section clears, a GC is
apetrusenko@574 624 // initiated by the last thread exiting the critical section; so
apetrusenko@574 625 // we retry the allocation sequence from the beginning of the loop,
apetrusenko@574 626 // rather than causing more, now probably unnecessary, GC attempts.
apetrusenko@574 627 JavaThread* jthr = JavaThread::current();
apetrusenko@574 628 if (!jthr->in_critical()) {
apetrusenko@574 629 MutexUnlocker mul(Heap_lock);
apetrusenko@574 630 GC_locker::stall_until_clear();
apetrusenko@574 631 continue;
apetrusenko@574 632 } else {
apetrusenko@574 633 if (CheckJNICalls) {
apetrusenko@574 634 fatal("Possible deadlock due to allocating while"
apetrusenko@574 635 " in jni critical section");
apetrusenko@574 636 }
apetrusenko@574 637 return NULL;
apetrusenko@574 638 }
apetrusenko@574 639 }
duke@435 640 }
duke@435 641
duke@435 642 if (result == NULL) {
duke@435 643
duke@435 644 // Exit the loop if the gc time limit has been exceeded.
duke@435 645 // The allocation must have failed above (result must be NULL),
duke@435 646 // and the most recent collection must have exceeded the
duke@435 647 // gc time limit. Exit the loop so that an out-of-memory
duke@435 648 // will be thrown (returning a NULL will do that), but
jmasa@1822 649 // clear gc_overhead_limit_exceeded so that the next collection
duke@435 650 // will succeeded if the applications decides to handle the
duke@435 651 // out-of-memory and tries to go on.
jmasa@1822 652 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 653 if (limit_exceeded) {
jmasa@1822 654 size_policy()->set_gc_overhead_limit_exceeded(false);
duke@435 655 if (PrintGCDetails && Verbose) {
jmasa@1822 656 gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
jmasa@1822 657 " return NULL because gc_overhead_limit_exceeded is set");
duke@435 658 }
duke@435 659 assert(result == NULL, "Allocation did not fail");
duke@435 660 return NULL;
duke@435 661 }
duke@435 662
duke@435 663 // Generate a VM operation
duke@435 664 VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
duke@435 665 VMThread::execute(&op);
duke@435 666
duke@435 667 // Did the VM operation execute? If so, return the result directly.
duke@435 668 // This prevents us from looping until time out on requests that can
duke@435 669 // not be satisfied.
duke@435 670 if (op.prologue_succeeded()) {
duke@435 671 assert(Universe::heap()->is_in_permanent_or_null(op.result()),
duke@435 672 "result not in heap");
apetrusenko@574 673 // If GC was locked out during VM operation then retry allocation
apetrusenko@574 674 // and/or stall as necessary.
apetrusenko@574 675 if (op.gc_locked()) {
apetrusenko@574 676 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
apetrusenko@574 677 continue; // retry and/or stall as necessary
apetrusenko@574 678 }
duke@435 679 // If a NULL results is being returned, an out-of-memory
jmasa@1822 680 // will be thrown now. Clear the gc_overhead_limit_exceeded
duke@435 681 // flag to avoid the following situation.
jmasa@1822 682 // gc_overhead_limit_exceeded is set during a collection
duke@435 683 // the collection fails to return enough space and an OOM is thrown
jmasa@1822 684 // a subsequent GC prematurely throws an out-of-memory because
jmasa@1822 685 // the gc_overhead_limit_exceeded counts did not start
jmasa@1822 686 // again from 0.
duke@435 687 if (op.result() == NULL) {
jmasa@1822 688 size_policy()->reset_gc_overhead_limit_count();
duke@435 689 }
duke@435 690 return op.result();
duke@435 691 }
duke@435 692 }
duke@435 693
duke@435 694 // The policy object will prevent us from looping forever. If the
duke@435 695 // time spent in gc crosses a threshold, we will bail out.
duke@435 696 loop_count++;
duke@435 697 if ((QueuedAllocationWarningCount > 0) &&
duke@435 698 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 699 warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
duke@435 700 " size=%d", loop_count, size);
duke@435 701 }
duke@435 702 } while (result == NULL);
duke@435 703
duke@435 704 return result;
duke@435 705 }
duke@435 706
duke@435 707 //
duke@435 708 // This is the policy code for permanent allocations which have failed
duke@435 709 // and require a collection. Note that just as in failed_mem_allocate,
duke@435 710 // we do not set collection policy, only where & when to allocate and
duke@435 711 // collect.
duke@435 712 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
duke@435 713 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 714 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 715 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 716 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 717 assert(size > perm_gen()->free_in_words(), "Allocation should fail");
duke@435 718
duke@435 719 // We assume (and assert!) that an allocation at this point will fail
duke@435 720 // unless we collect.
duke@435 721
duke@435 722 // First level allocation failure. Mark-sweep and allocate in perm gen.
duke@435 723 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 724 invoke_full_gc(false);
duke@435 725 HeapWord* result = perm_gen()->allocate_permanent(size);
duke@435 726
duke@435 727 // Second level allocation failure. We're running out of memory.
duke@435 728 if (result == NULL) {
duke@435 729 invoke_full_gc(true);
duke@435 730 result = perm_gen()->allocate_permanent(size);
duke@435 731 }
duke@435 732
duke@435 733 return result;
duke@435 734 }
duke@435 735
duke@435 736 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
duke@435 737 CollectedHeap::ensure_parsability(retire_tlabs);
duke@435 738 young_gen()->eden_space()->ensure_parsability();
duke@435 739 }
duke@435 740
duke@435 741 size_t ParallelScavengeHeap::unsafe_max_alloc() {
duke@435 742 return young_gen()->eden_space()->free_in_bytes();
duke@435 743 }
duke@435 744
duke@435 745 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
duke@435 746 return young_gen()->eden_space()->tlab_capacity(thr);
duke@435 747 }
duke@435 748
duke@435 749 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
duke@435 750 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
duke@435 751 }
duke@435 752
duke@435 753 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
tonyp@2971 754 return young_gen()->allocate(size);
duke@435 755 }
duke@435 756
duke@435 757 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
duke@435 758 CollectedHeap::accumulate_statistics_all_tlabs();
duke@435 759 }
duke@435 760
duke@435 761 void ParallelScavengeHeap::resize_all_tlabs() {
duke@435 762 CollectedHeap::resize_all_tlabs();
duke@435 763 }
duke@435 764
ysr@1462 765 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 766 // We don't need barriers for stores to objects in the
ysr@1462 767 // young gen and, a fortiori, for initializing stores to
ysr@1462 768 // objects therein.
ysr@1462 769 return is_in_young(new_obj);
ysr@1462 770 }
ysr@1462 771
duke@435 772 // This method is used by System.gc() and JVMTI.
duke@435 773 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
duke@435 774 assert(!Heap_lock->owned_by_self(),
duke@435 775 "this thread should not own the Heap_lock");
duke@435 776
duke@435 777 unsigned int gc_count = 0;
duke@435 778 unsigned int full_gc_count = 0;
duke@435 779 {
duke@435 780 MutexLocker ml(Heap_lock);
duke@435 781 // This value is guarded by the Heap_lock
duke@435 782 gc_count = Universe::heap()->total_collections();
duke@435 783 full_gc_count = Universe::heap()->total_full_collections();
duke@435 784 }
duke@435 785
duke@435 786 VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
duke@435 787 VMThread::execute(&op);
duke@435 788 }
duke@435 789
duke@435 790 // This interface assumes that it's being called by the
duke@435 791 // vm thread. It collects the heap assuming that the
duke@435 792 // heap lock is already held and that we are executing in
duke@435 793 // the context of the vm thread.
duke@435 794 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
duke@435 795 assert(Thread::current()->is_VM_thread(), "Precondition#1");
duke@435 796 assert(Heap_lock->is_locked(), "Precondition#2");
duke@435 797 GCCauseSetter gcs(this, cause);
duke@435 798 switch (cause) {
duke@435 799 case GCCause::_heap_inspection:
duke@435 800 case GCCause::_heap_dump: {
duke@435 801 HandleMark hm;
duke@435 802 invoke_full_gc(false);
duke@435 803 break;
duke@435 804 }
duke@435 805 default: // XXX FIX ME
duke@435 806 ShouldNotReachHere();
duke@435 807 }
duke@435 808 }
duke@435 809
duke@435 810
duke@435 811 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
duke@435 812 Unimplemented();
duke@435 813 }
duke@435 814
duke@435 815 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
duke@435 816 young_gen()->object_iterate(cl);
duke@435 817 old_gen()->object_iterate(cl);
duke@435 818 perm_gen()->object_iterate(cl);
duke@435 819 }
duke@435 820
duke@435 821 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
duke@435 822 Unimplemented();
duke@435 823 }
duke@435 824
duke@435 825 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
duke@435 826 perm_gen()->object_iterate(cl);
duke@435 827 }
duke@435 828
duke@435 829 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
duke@435 830 if (young_gen()->is_in_reserved(addr)) {
duke@435 831 assert(young_gen()->is_in(addr),
duke@435 832 "addr should be in allocated part of young gen");
never@2262 833 // called from os::print_location by find or VMError
never@2262 834 if (Debugging || VMError::fatal_error_in_progress()) return NULL;
duke@435 835 Unimplemented();
duke@435 836 } else if (old_gen()->is_in_reserved(addr)) {
duke@435 837 assert(old_gen()->is_in(addr),
duke@435 838 "addr should be in allocated part of old gen");
duke@435 839 return old_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 840 } else if (perm_gen()->is_in_reserved(addr)) {
duke@435 841 assert(perm_gen()->is_in(addr),
duke@435 842 "addr should be in allocated part of perm gen");
duke@435 843 return perm_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 844 }
duke@435 845 return 0;
duke@435 846 }
duke@435 847
duke@435 848 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
duke@435 849 return oop(addr)->size();
duke@435 850 }
duke@435 851
duke@435 852 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
duke@435 853 return block_start(addr) == addr;
duke@435 854 }
duke@435 855
duke@435 856 jlong ParallelScavengeHeap::millis_since_last_gc() {
duke@435 857 return UseParallelOldGC ?
duke@435 858 PSParallelCompact::millis_since_last_gc() :
duke@435 859 PSMarkSweep::millis_since_last_gc();
duke@435 860 }
duke@435 861
duke@435 862 void ParallelScavengeHeap::prepare_for_verify() {
duke@435 863 ensure_parsability(false); // no need to retire TLABs for verification
duke@435 864 }
duke@435 865
duke@435 866 void ParallelScavengeHeap::print() const { print_on(tty); }
duke@435 867
duke@435 868 void ParallelScavengeHeap::print_on(outputStream* st) const {
duke@435 869 young_gen()->print_on(st);
duke@435 870 old_gen()->print_on(st);
duke@435 871 perm_gen()->print_on(st);
duke@435 872 }
duke@435 873
duke@435 874 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
duke@435 875 PSScavenge::gc_task_manager()->threads_do(tc);
duke@435 876 }
duke@435 877
duke@435 878 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
duke@435 879 PSScavenge::gc_task_manager()->print_threads_on(st);
duke@435 880 }
duke@435 881
duke@435 882 void ParallelScavengeHeap::print_tracing_info() const {
duke@435 883 if (TraceGen0Time) {
duke@435 884 double time = PSScavenge::accumulated_time()->seconds();
duke@435 885 tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
duke@435 886 }
duke@435 887 if (TraceGen1Time) {
duke@435 888 double time = PSMarkSweep::accumulated_time()->seconds();
duke@435 889 tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
duke@435 890 }
duke@435 891 }
duke@435 892
duke@435 893
johnc@2969 894 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent, VerifyOption option /* ignored */) {
duke@435 895 // Why do we need the total_collections()-filter below?
duke@435 896 if (total_collections() > 0) {
duke@435 897 if (!silent) {
duke@435 898 gclog_or_tty->print("permanent ");
duke@435 899 }
duke@435 900 perm_gen()->verify(allow_dirty);
duke@435 901
duke@435 902 if (!silent) {
duke@435 903 gclog_or_tty->print("tenured ");
duke@435 904 }
duke@435 905 old_gen()->verify(allow_dirty);
duke@435 906
duke@435 907 if (!silent) {
duke@435 908 gclog_or_tty->print("eden ");
duke@435 909 }
duke@435 910 young_gen()->verify(allow_dirty);
duke@435 911 }
duke@435 912 if (!silent) {
duke@435 913 gclog_or_tty->print("ref_proc ");
duke@435 914 }
duke@435 915 ReferenceProcessor::verify();
duke@435 916 }
duke@435 917
duke@435 918 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
duke@435 919 if (PrintGCDetails && Verbose) {
duke@435 920 gclog_or_tty->print(" " SIZE_FORMAT
duke@435 921 "->" SIZE_FORMAT
duke@435 922 "(" SIZE_FORMAT ")",
duke@435 923 prev_used, used(), capacity());
duke@435 924 } else {
duke@435 925 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 926 "->" SIZE_FORMAT "K"
duke@435 927 "(" SIZE_FORMAT "K)",
duke@435 928 prev_used / K, used() / K, capacity() / K);
duke@435 929 }
duke@435 930 }
duke@435 931
duke@435 932 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
duke@435 933 assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
duke@435 934 assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
duke@435 935 return _psh;
duke@435 936 }
duke@435 937
duke@435 938 // Before delegating the resize to the young generation,
duke@435 939 // the reserved space for the young and old generations
duke@435 940 // may be changed to accomodate the desired resize.
duke@435 941 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
duke@435 942 size_t survivor_size) {
duke@435 943 if (UseAdaptiveGCBoundary) {
duke@435 944 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 945 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 946 return; // The generation changed size already.
duke@435 947 }
duke@435 948 gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
duke@435 949 }
duke@435 950
duke@435 951 // Delegate the resize to the generation.
duke@435 952 _young_gen->resize(eden_size, survivor_size);
duke@435 953 }
duke@435 954
duke@435 955 // Before delegating the resize to the old generation,
duke@435 956 // the reserved space for the young and old generations
duke@435 957 // may be changed to accomodate the desired resize.
duke@435 958 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
duke@435 959 if (UseAdaptiveGCBoundary) {
duke@435 960 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 961 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 962 return; // The generation changed size already.
duke@435 963 }
duke@435 964 gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
duke@435 965 }
duke@435 966
duke@435 967 // Delegate the resize to the generation.
duke@435 968 _old_gen->resize(desired_free_space);
duke@435 969 }
jmasa@698 970
jrose@1424 971 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
jrose@1424 972 // nothing particular
jrose@1424 973 }
jrose@1424 974
jrose@1424 975 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
jrose@1424 976 // nothing particular
jrose@1424 977 }
jrose@1424 978
jmasa@698 979 #ifndef PRODUCT
jmasa@698 980 void ParallelScavengeHeap::record_gen_tops_before_GC() {
jmasa@698 981 if (ZapUnusedHeapArea) {
jmasa@698 982 young_gen()->record_spaces_top();
jmasa@698 983 old_gen()->record_spaces_top();
jmasa@698 984 perm_gen()->record_spaces_top();
jmasa@698 985 }
jmasa@698 986 }
jmasa@698 987
jmasa@698 988 void ParallelScavengeHeap::gen_mangle_unused_area() {
jmasa@698 989 if (ZapUnusedHeapArea) {
jmasa@698 990 young_gen()->eden_space()->mangle_unused_area();
jmasa@698 991 young_gen()->to_space()->mangle_unused_area();
jmasa@698 992 young_gen()->from_space()->mangle_unused_area();
jmasa@698 993 old_gen()->object_space()->mangle_unused_area();
jmasa@698 994 perm_gen()->object_space()->mangle_unused_area();
jmasa@698 995 }
jmasa@698 996 }
jmasa@698 997 #endif

mercurial