src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1822
0bfd3fb24150
child 2262
1e9a9d2e6509
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_parallelScavengeHeap.cpp.incl"
duke@435 27
duke@435 28 PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
duke@435 29 PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
duke@435 30 PSPermGen* ParallelScavengeHeap::_perm_gen = NULL;
duke@435 31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
duke@435 32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
duke@435 33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
duke@435 34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
duke@435 35
duke@435 36 static void trace_gen_sizes(const char* const str,
duke@435 37 size_t pg_min, size_t pg_max,
duke@435 38 size_t og_min, size_t og_max,
duke@435 39 size_t yg_min, size_t yg_max)
duke@435 40 {
duke@435 41 if (TracePageSizes) {
duke@435 42 tty->print_cr("%s: " SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 43 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 44 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 45 SIZE_FORMAT,
duke@435 46 str, pg_min / K, pg_max / K,
duke@435 47 og_min / K, og_max / K,
duke@435 48 yg_min / K, yg_max / K,
duke@435 49 (pg_max + og_max + yg_max) / K);
duke@435 50 }
duke@435 51 }
duke@435 52
duke@435 53 jint ParallelScavengeHeap::initialize() {
ysr@1601 54 CollectedHeap::pre_initialize();
ysr@1601 55
duke@435 56 // Cannot be initialized until after the flags are parsed
jmasa@1822 57 // GenerationSizer flag_parser;
jmasa@1822 58 _collector_policy = new GenerationSizer();
duke@435 59
jmasa@1822 60 size_t yg_min_size = _collector_policy->min_young_gen_size();
jmasa@1822 61 size_t yg_max_size = _collector_policy->max_young_gen_size();
jmasa@1822 62 size_t og_min_size = _collector_policy->min_old_gen_size();
jmasa@1822 63 size_t og_max_size = _collector_policy->max_old_gen_size();
duke@435 64 // Why isn't there a min_perm_gen_size()?
jmasa@1822 65 size_t pg_min_size = _collector_policy->perm_gen_size();
jmasa@1822 66 size_t pg_max_size = _collector_policy->max_perm_gen_size();
duke@435 67
duke@435 68 trace_gen_sizes("ps heap raw",
duke@435 69 pg_min_size, pg_max_size,
duke@435 70 og_min_size, og_max_size,
duke@435 71 yg_min_size, yg_max_size);
duke@435 72
duke@435 73 // The ReservedSpace ctor used below requires that the page size for the perm
duke@435 74 // gen is <= the page size for the rest of the heap (young + old gens).
duke@435 75 const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
duke@435 76 yg_max_size + og_max_size,
duke@435 77 8);
duke@435 78 const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
duke@435 79 pg_max_size, 16),
duke@435 80 og_page_sz);
duke@435 81
duke@435 82 const size_t pg_align = set_alignment(_perm_gen_alignment, pg_page_sz);
duke@435 83 const size_t og_align = set_alignment(_old_gen_alignment, og_page_sz);
duke@435 84 const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
duke@435 85
duke@435 86 // Update sizes to reflect the selected page size(s).
duke@435 87 //
duke@435 88 // NEEDS_CLEANUP. The default TwoGenerationCollectorPolicy uses NewRatio; it
duke@435 89 // should check UseAdaptiveSizePolicy. Changes from generationSizer could
duke@435 90 // move to the common code.
duke@435 91 yg_min_size = align_size_up(yg_min_size, yg_align);
duke@435 92 yg_max_size = align_size_up(yg_max_size, yg_align);
jmasa@1822 93 size_t yg_cur_size =
jmasa@1822 94 align_size_up(_collector_policy->young_gen_size(), yg_align);
duke@435 95 yg_cur_size = MAX2(yg_cur_size, yg_min_size);
duke@435 96
duke@435 97 og_min_size = align_size_up(og_min_size, og_align);
duke@435 98 og_max_size = align_size_up(og_max_size, og_align);
jmasa@1822 99 size_t og_cur_size =
jmasa@1822 100 align_size_up(_collector_policy->old_gen_size(), og_align);
duke@435 101 og_cur_size = MAX2(og_cur_size, og_min_size);
duke@435 102
duke@435 103 pg_min_size = align_size_up(pg_min_size, pg_align);
duke@435 104 pg_max_size = align_size_up(pg_max_size, pg_align);
duke@435 105 size_t pg_cur_size = pg_min_size;
duke@435 106
duke@435 107 trace_gen_sizes("ps heap rnd",
duke@435 108 pg_min_size, pg_max_size,
duke@435 109 og_min_size, og_max_size,
duke@435 110 yg_min_size, yg_max_size);
duke@435 111
kvn@1077 112 const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
kvn@1077 113 char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
kvn@1077 114
duke@435 115 // The main part of the heap (old gen + young gen) can often use a larger page
duke@435 116 // size than is needed or wanted for the perm gen. Use the "compound
duke@435 117 // alignment" ReservedSpace ctor to avoid having to use the same page size for
duke@435 118 // all gens.
kvn@1077 119
coleenp@672 120 ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 121 og_align, addr);
kvn@1077 122
kvn@1077 123 if (UseCompressedOops) {
kvn@1077 124 if (addr != NULL && !heap_rs.is_reserved()) {
kvn@1077 125 // Failed to reserve at specified address - the requested memory
kvn@1077 126 // region is taken already, for example, by 'java' launcher.
kvn@1077 127 // Try again to reserver heap higher.
kvn@1077 128 addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
kvn@1077 129 ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 130 og_align, addr);
kvn@1077 131 if (addr != NULL && !heap_rs0.is_reserved()) {
kvn@1077 132 // Failed to reserve at specified address again - give up.
kvn@1077 133 addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
kvn@1077 134 assert(addr == NULL, "");
kvn@1077 135 ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 136 og_align, addr);
kvn@1077 137 heap_rs = heap_rs1;
kvn@1077 138 } else {
kvn@1077 139 heap_rs = heap_rs0;
kvn@1077 140 }
kvn@1077 141 }
kvn@1077 142 }
kvn@1077 143
duke@435 144 os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
duke@435 145 heap_rs.base(), pg_max_size);
duke@435 146 os::trace_page_sizes("ps main", og_min_size + yg_min_size,
duke@435 147 og_max_size + yg_max_size, og_page_sz,
duke@435 148 heap_rs.base() + pg_max_size,
duke@435 149 heap_rs.size() - pg_max_size);
duke@435 150 if (!heap_rs.is_reserved()) {
duke@435 151 vm_shutdown_during_initialization(
duke@435 152 "Could not reserve enough space for object heap");
duke@435 153 return JNI_ENOMEM;
duke@435 154 }
duke@435 155
duke@435 156 _reserved = MemRegion((HeapWord*)heap_rs.base(),
duke@435 157 (HeapWord*)(heap_rs.base() + heap_rs.size()));
duke@435 158
duke@435 159 CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
duke@435 160 _barrier_set = barrier_set;
duke@435 161 oopDesc::set_bs(_barrier_set);
duke@435 162 if (_barrier_set == NULL) {
duke@435 163 vm_shutdown_during_initialization(
duke@435 164 "Could not reserve enough space for barrier set");
duke@435 165 return JNI_ENOMEM;
duke@435 166 }
duke@435 167
duke@435 168 // Initial young gen size is 4 Mb
duke@435 169 //
duke@435 170 // XXX - what about flag_parser.young_gen_size()?
duke@435 171 const size_t init_young_size = align_size_up(4 * M, yg_align);
duke@435 172 yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
duke@435 173
duke@435 174 // Split the reserved space into perm gen and the main heap (everything else).
duke@435 175 // The main heap uses a different alignment.
duke@435 176 ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
duke@435 177 ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
duke@435 178
duke@435 179 // Make up the generations
duke@435 180 // Calculate the maximum size that a generation can grow. This
duke@435 181 // includes growth into the other generation. Note that the
duke@435 182 // parameter _max_gen_size is kept as the maximum
duke@435 183 // size of the generation as the boundaries currently stand.
duke@435 184 // _max_gen_size is still used as that value.
duke@435 185 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
duke@435 186 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
duke@435 187
duke@435 188 _gens = new AdjoiningGenerations(main_rs,
duke@435 189 og_cur_size,
duke@435 190 og_min_size,
duke@435 191 og_max_size,
duke@435 192 yg_cur_size,
duke@435 193 yg_min_size,
duke@435 194 yg_max_size,
duke@435 195 yg_align);
duke@435 196
duke@435 197 _old_gen = _gens->old_gen();
duke@435 198 _young_gen = _gens->young_gen();
duke@435 199
duke@435 200 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
duke@435 201 const size_t old_capacity = _old_gen->capacity_in_bytes();
duke@435 202 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
duke@435 203 _size_policy =
duke@435 204 new PSAdaptiveSizePolicy(eden_capacity,
duke@435 205 initial_promo_size,
duke@435 206 young_gen()->to_space()->capacity_in_bytes(),
jmasa@448 207 intra_heap_alignment(),
duke@435 208 max_gc_pause_sec,
duke@435 209 max_gc_minor_pause_sec,
duke@435 210 GCTimeRatio
duke@435 211 );
duke@435 212
duke@435 213 _perm_gen = new PSPermGen(perm_rs,
duke@435 214 pg_align,
duke@435 215 pg_cur_size,
duke@435 216 pg_cur_size,
duke@435 217 pg_max_size,
duke@435 218 "perm", 2);
duke@435 219
duke@435 220 assert(!UseAdaptiveGCBoundary ||
duke@435 221 (old_gen()->virtual_space()->high_boundary() ==
duke@435 222 young_gen()->virtual_space()->low_boundary()),
duke@435 223 "Boundaries must meet");
duke@435 224 // initialize the policy counters - 2 collectors, 3 generations
duke@435 225 _gc_policy_counters =
duke@435 226 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
duke@435 227 _psh = this;
duke@435 228
duke@435 229 // Set up the GCTaskManager
duke@435 230 _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
duke@435 231
duke@435 232 if (UseParallelOldGC && !PSParallelCompact::initialize()) {
duke@435 233 return JNI_ENOMEM;
duke@435 234 }
duke@435 235
duke@435 236 return JNI_OK;
duke@435 237 }
duke@435 238
duke@435 239 void ParallelScavengeHeap::post_initialize() {
duke@435 240 // Need to init the tenuring threshold
duke@435 241 PSScavenge::initialize();
duke@435 242 if (UseParallelOldGC) {
duke@435 243 PSParallelCompact::post_initialize();
duke@435 244 } else {
duke@435 245 PSMarkSweep::initialize();
duke@435 246 }
duke@435 247 PSPromotionManager::initialize();
duke@435 248 }
duke@435 249
duke@435 250 void ParallelScavengeHeap::update_counters() {
duke@435 251 young_gen()->update_counters();
duke@435 252 old_gen()->update_counters();
duke@435 253 perm_gen()->update_counters();
duke@435 254 }
duke@435 255
duke@435 256 size_t ParallelScavengeHeap::capacity() const {
duke@435 257 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
duke@435 258 return value;
duke@435 259 }
duke@435 260
duke@435 261 size_t ParallelScavengeHeap::used() const {
duke@435 262 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
duke@435 263 return value;
duke@435 264 }
duke@435 265
duke@435 266 bool ParallelScavengeHeap::is_maximal_no_gc() const {
duke@435 267 return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
duke@435 268 }
duke@435 269
duke@435 270
duke@435 271 size_t ParallelScavengeHeap::permanent_capacity() const {
duke@435 272 return perm_gen()->capacity_in_bytes();
duke@435 273 }
duke@435 274
duke@435 275 size_t ParallelScavengeHeap::permanent_used() const {
duke@435 276 return perm_gen()->used_in_bytes();
duke@435 277 }
duke@435 278
duke@435 279 size_t ParallelScavengeHeap::max_capacity() const {
duke@435 280 size_t estimated = reserved_region().byte_size();
duke@435 281 estimated -= perm_gen()->reserved().byte_size();
duke@435 282 if (UseAdaptiveSizePolicy) {
duke@435 283 estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
duke@435 284 } else {
duke@435 285 estimated -= young_gen()->to_space()->capacity_in_bytes();
duke@435 286 }
duke@435 287 return MAX2(estimated, capacity());
duke@435 288 }
duke@435 289
duke@435 290 bool ParallelScavengeHeap::is_in(const void* p) const {
duke@435 291 if (young_gen()->is_in(p)) {
duke@435 292 return true;
duke@435 293 }
duke@435 294
duke@435 295 if (old_gen()->is_in(p)) {
duke@435 296 return true;
duke@435 297 }
duke@435 298
duke@435 299 if (perm_gen()->is_in(p)) {
duke@435 300 return true;
duke@435 301 }
duke@435 302
duke@435 303 return false;
duke@435 304 }
duke@435 305
duke@435 306 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
duke@435 307 if (young_gen()->is_in_reserved(p)) {
duke@435 308 return true;
duke@435 309 }
duke@435 310
duke@435 311 if (old_gen()->is_in_reserved(p)) {
duke@435 312 return true;
duke@435 313 }
duke@435 314
duke@435 315 if (perm_gen()->is_in_reserved(p)) {
duke@435 316 return true;
duke@435 317 }
duke@435 318
duke@435 319 return false;
duke@435 320 }
duke@435 321
duke@435 322 // There are two levels of allocation policy here.
duke@435 323 //
duke@435 324 // When an allocation request fails, the requesting thread must invoke a VM
duke@435 325 // operation, transfer control to the VM thread, and await the results of a
duke@435 326 // garbage collection. That is quite expensive, and we should avoid doing it
duke@435 327 // multiple times if possible.
duke@435 328 //
duke@435 329 // To accomplish this, we have a basic allocation policy, and also a
duke@435 330 // failed allocation policy.
duke@435 331 //
duke@435 332 // The basic allocation policy controls how you allocate memory without
duke@435 333 // attempting garbage collection. It is okay to grab locks and
duke@435 334 // expand the heap, if that can be done without coming to a safepoint.
duke@435 335 // It is likely that the basic allocation policy will not be very
duke@435 336 // aggressive.
duke@435 337 //
duke@435 338 // The failed allocation policy is invoked from the VM thread after
duke@435 339 // the basic allocation policy is unable to satisfy a mem_allocate
duke@435 340 // request. This policy needs to cover the entire range of collection,
duke@435 341 // heap expansion, and out-of-memory conditions. It should make every
duke@435 342 // attempt to allocate the requested memory.
duke@435 343
duke@435 344 // Basic allocation policy. Should never be called at a safepoint, or
duke@435 345 // from the VM thread.
duke@435 346 //
duke@435 347 // This method must handle cases where many mem_allocate requests fail
duke@435 348 // simultaneously. When that happens, only one VM operation will succeed,
duke@435 349 // and the rest will not be executed. For that reason, this method loops
duke@435 350 // during failed allocation attempts. If the java heap becomes exhausted,
duke@435 351 // we rely on the size_policy object to force a bail out.
duke@435 352 HeapWord* ParallelScavengeHeap::mem_allocate(
duke@435 353 size_t size,
duke@435 354 bool is_noref,
duke@435 355 bool is_tlab,
duke@435 356 bool* gc_overhead_limit_was_exceeded) {
duke@435 357 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 358 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 359 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 360
jmasa@1822 361 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 362 // set it so here and reset it to true only if the gc time
jmasa@1822 363 // limit is being exceeded as checked below.
jmasa@1822 364 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 365
duke@435 366 HeapWord* result = young_gen()->allocate(size, is_tlab);
duke@435 367
duke@435 368 uint loop_count = 0;
duke@435 369 uint gc_count = 0;
duke@435 370
duke@435 371 while (result == NULL) {
duke@435 372 // We don't want to have multiple collections for a single filled generation.
duke@435 373 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 374 // the count has changed, does not do a new collection.
duke@435 375 //
duke@435 376 // The collection count must be read only while holding the heap lock. VM
duke@435 377 // operations also hold the heap lock during collections. There is a lock
duke@435 378 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 379 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 380 // the collection count has already changed. To prevent duplicate collections,
duke@435 381 // The policy MUST attempt allocations during the same period it reads the
duke@435 382 // total_collections() value!
duke@435 383 {
duke@435 384 MutexLocker ml(Heap_lock);
duke@435 385 gc_count = Universe::heap()->total_collections();
duke@435 386
duke@435 387 result = young_gen()->allocate(size, is_tlab);
duke@435 388
duke@435 389 // (1) If the requested object is too large to easily fit in the
duke@435 390 // young_gen, or
duke@435 391 // (2) If GC is locked out via GCLocker, young gen is full and
duke@435 392 // the need for a GC already signalled to GCLocker (done
duke@435 393 // at a safepoint),
duke@435 394 // ... then, rather than force a safepoint and (a potentially futile)
duke@435 395 // collection (attempt) for each allocation, try allocation directly
duke@435 396 // in old_gen. For case (2) above, we may in the future allow
duke@435 397 // TLAB allocation directly in the old gen.
duke@435 398 if (result != NULL) {
duke@435 399 return result;
duke@435 400 }
duke@435 401 if (!is_tlab &&
iveresov@808 402 size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
duke@435 403 result = old_gen()->allocate(size, is_tlab);
duke@435 404 if (result != NULL) {
duke@435 405 return result;
duke@435 406 }
duke@435 407 }
duke@435 408 if (GC_locker::is_active_and_needs_gc()) {
duke@435 409 // GC is locked out. If this is a TLAB allocation,
duke@435 410 // return NULL; the requestor will retry allocation
duke@435 411 // of an idividual object at a time.
duke@435 412 if (is_tlab) {
duke@435 413 return NULL;
duke@435 414 }
duke@435 415
duke@435 416 // If this thread is not in a jni critical section, we stall
duke@435 417 // the requestor until the critical section has cleared and
duke@435 418 // GC allowed. When the critical section clears, a GC is
duke@435 419 // initiated by the last thread exiting the critical section; so
duke@435 420 // we retry the allocation sequence from the beginning of the loop,
duke@435 421 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 422 JavaThread* jthr = JavaThread::current();
duke@435 423 if (!jthr->in_critical()) {
duke@435 424 MutexUnlocker mul(Heap_lock);
duke@435 425 GC_locker::stall_until_clear();
duke@435 426 continue;
duke@435 427 } else {
duke@435 428 if (CheckJNICalls) {
duke@435 429 fatal("Possible deadlock due to allocating while"
duke@435 430 " in jni critical section");
duke@435 431 }
duke@435 432 return NULL;
duke@435 433 }
duke@435 434 }
duke@435 435 }
duke@435 436
duke@435 437 if (result == NULL) {
duke@435 438
duke@435 439 // Generate a VM operation
duke@435 440 VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
duke@435 441 VMThread::execute(&op);
duke@435 442
duke@435 443 // Did the VM operation execute? If so, return the result directly.
duke@435 444 // This prevents us from looping until time out on requests that can
duke@435 445 // not be satisfied.
duke@435 446 if (op.prologue_succeeded()) {
duke@435 447 assert(Universe::heap()->is_in_or_null(op.result()),
duke@435 448 "result not in heap");
duke@435 449
duke@435 450 // If GC was locked out during VM operation then retry allocation
duke@435 451 // and/or stall as necessary.
duke@435 452 if (op.gc_locked()) {
duke@435 453 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
duke@435 454 continue; // retry and/or stall as necessary
duke@435 455 }
jmasa@1822 456
jmasa@1822 457 // Exit the loop if the gc time limit has been exceeded.
jmasa@1822 458 // The allocation must have failed above ("result" guarding
jmasa@1822 459 // this path is NULL) and the most recent collection has exceeded the
jmasa@1822 460 // gc overhead limit (although enough may have been collected to
jmasa@1822 461 // satisfy the allocation). Exit the loop so that an out-of-memory
jmasa@1822 462 // will be thrown (return a NULL ignoring the contents of
jmasa@1822 463 // op.result()),
jmasa@1822 464 // but clear gc_overhead_limit_exceeded so that the next collection
jmasa@1822 465 // starts with a clean slate (i.e., forgets about previous overhead
jmasa@1822 466 // excesses). Fill op.result() with a filler object so that the
jmasa@1822 467 // heap remains parsable.
jmasa@1822 468 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 469 const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
jmasa@1822 470 assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
jmasa@1822 471 if (limit_exceeded && softrefs_clear) {
jmasa@1822 472 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 473 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 474 if (PrintGCDetails && Verbose) {
jmasa@1822 475 gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
jmasa@1822 476 "return NULL because gc_overhead_limit_exceeded is set");
jmasa@1822 477 }
jmasa@1822 478 if (op.result() != NULL) {
jmasa@1822 479 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 480 }
jmasa@1822 481 return NULL;
duke@435 482 }
jmasa@1822 483
duke@435 484 return op.result();
duke@435 485 }
duke@435 486 }
duke@435 487
duke@435 488 // The policy object will prevent us from looping forever. If the
duke@435 489 // time spent in gc crosses a threshold, we will bail out.
duke@435 490 loop_count++;
duke@435 491 if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
duke@435 492 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 493 warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
duke@435 494 " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
duke@435 495 }
duke@435 496 }
duke@435 497
duke@435 498 return result;
duke@435 499 }
duke@435 500
duke@435 501 // Failed allocation policy. Must be called from the VM thread, and
duke@435 502 // only at a safepoint! Note that this method has policy for allocation
duke@435 503 // flow, and NOT collection policy. So we do not check for gc collection
duke@435 504 // time over limit here, that is the responsibility of the heap specific
duke@435 505 // collection methods. This method decides where to attempt allocations,
duke@435 506 // and when to attempt collections, but no collection specific policy.
duke@435 507 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
duke@435 508 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 509 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 510 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 511 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 512
duke@435 513 size_t mark_sweep_invocation_count = total_invocations();
duke@435 514
duke@435 515 // We assume (and assert!) that an allocation at this point will fail
duke@435 516 // unless we collect.
duke@435 517
duke@435 518 // First level allocation failure, scavenge and allocate in young gen.
duke@435 519 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 520 PSScavenge::invoke();
duke@435 521 HeapWord* result = young_gen()->allocate(size, is_tlab);
duke@435 522
duke@435 523 // Second level allocation failure.
duke@435 524 // Mark sweep and allocate in young generation.
duke@435 525 if (result == NULL) {
duke@435 526 // There is some chance the scavenge method decided to invoke mark_sweep.
duke@435 527 // Don't mark sweep twice if so.
duke@435 528 if (mark_sweep_invocation_count == total_invocations()) {
duke@435 529 invoke_full_gc(false);
duke@435 530 result = young_gen()->allocate(size, is_tlab);
duke@435 531 }
duke@435 532 }
duke@435 533
duke@435 534 // Third level allocation failure.
duke@435 535 // After mark sweep and young generation allocation failure,
duke@435 536 // allocate in old generation.
duke@435 537 if (result == NULL && !is_tlab) {
duke@435 538 result = old_gen()->allocate(size, is_tlab);
duke@435 539 }
duke@435 540
duke@435 541 // Fourth level allocation failure. We're running out of memory.
duke@435 542 // More complete mark sweep and allocate in young generation.
duke@435 543 if (result == NULL) {
duke@435 544 invoke_full_gc(true);
duke@435 545 result = young_gen()->allocate(size, is_tlab);
duke@435 546 }
duke@435 547
duke@435 548 // Fifth level allocation failure.
duke@435 549 // After more complete mark sweep, allocate in old generation.
duke@435 550 if (result == NULL && !is_tlab) {
duke@435 551 result = old_gen()->allocate(size, is_tlab);
duke@435 552 }
duke@435 553
duke@435 554 return result;
duke@435 555 }
duke@435 556
duke@435 557 //
duke@435 558 // This is the policy loop for allocating in the permanent generation.
duke@435 559 // If the initial allocation fails, we create a vm operation which will
duke@435 560 // cause a collection.
duke@435 561 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
duke@435 562 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 563 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 564 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 565
duke@435 566 HeapWord* result;
duke@435 567
duke@435 568 uint loop_count = 0;
duke@435 569 uint gc_count = 0;
duke@435 570 uint full_gc_count = 0;
duke@435 571
duke@435 572 do {
duke@435 573 // We don't want to have multiple collections for a single filled generation.
duke@435 574 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 575 // the count has changed, does not do a new collection.
duke@435 576 //
duke@435 577 // The collection count must be read only while holding the heap lock. VM
duke@435 578 // operations also hold the heap lock during collections. There is a lock
duke@435 579 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 580 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 581 // the collection count has already changed. To prevent duplicate collections,
duke@435 582 // The policy MUST attempt allocations during the same period it reads the
duke@435 583 // total_collections() value!
duke@435 584 {
duke@435 585 MutexLocker ml(Heap_lock);
duke@435 586 gc_count = Universe::heap()->total_collections();
duke@435 587 full_gc_count = Universe::heap()->total_full_collections();
duke@435 588
duke@435 589 result = perm_gen()->allocate_permanent(size);
apetrusenko@574 590
apetrusenko@574 591 if (result != NULL) {
apetrusenko@574 592 return result;
apetrusenko@574 593 }
apetrusenko@574 594
apetrusenko@574 595 if (GC_locker::is_active_and_needs_gc()) {
apetrusenko@574 596 // If this thread is not in a jni critical section, we stall
apetrusenko@574 597 // the requestor until the critical section has cleared and
apetrusenko@574 598 // GC allowed. When the critical section clears, a GC is
apetrusenko@574 599 // initiated by the last thread exiting the critical section; so
apetrusenko@574 600 // we retry the allocation sequence from the beginning of the loop,
apetrusenko@574 601 // rather than causing more, now probably unnecessary, GC attempts.
apetrusenko@574 602 JavaThread* jthr = JavaThread::current();
apetrusenko@574 603 if (!jthr->in_critical()) {
apetrusenko@574 604 MutexUnlocker mul(Heap_lock);
apetrusenko@574 605 GC_locker::stall_until_clear();
apetrusenko@574 606 continue;
apetrusenko@574 607 } else {
apetrusenko@574 608 if (CheckJNICalls) {
apetrusenko@574 609 fatal("Possible deadlock due to allocating while"
apetrusenko@574 610 " in jni critical section");
apetrusenko@574 611 }
apetrusenko@574 612 return NULL;
apetrusenko@574 613 }
apetrusenko@574 614 }
duke@435 615 }
duke@435 616
duke@435 617 if (result == NULL) {
duke@435 618
duke@435 619 // Exit the loop if the gc time limit has been exceeded.
duke@435 620 // The allocation must have failed above (result must be NULL),
duke@435 621 // and the most recent collection must have exceeded the
duke@435 622 // gc time limit. Exit the loop so that an out-of-memory
duke@435 623 // will be thrown (returning a NULL will do that), but
jmasa@1822 624 // clear gc_overhead_limit_exceeded so that the next collection
duke@435 625 // will succeeded if the applications decides to handle the
duke@435 626 // out-of-memory and tries to go on.
jmasa@1822 627 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 628 if (limit_exceeded) {
jmasa@1822 629 size_policy()->set_gc_overhead_limit_exceeded(false);
duke@435 630 if (PrintGCDetails && Verbose) {
jmasa@1822 631 gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
jmasa@1822 632 " return NULL because gc_overhead_limit_exceeded is set");
duke@435 633 }
duke@435 634 assert(result == NULL, "Allocation did not fail");
duke@435 635 return NULL;
duke@435 636 }
duke@435 637
duke@435 638 // Generate a VM operation
duke@435 639 VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
duke@435 640 VMThread::execute(&op);
duke@435 641
duke@435 642 // Did the VM operation execute? If so, return the result directly.
duke@435 643 // This prevents us from looping until time out on requests that can
duke@435 644 // not be satisfied.
duke@435 645 if (op.prologue_succeeded()) {
duke@435 646 assert(Universe::heap()->is_in_permanent_or_null(op.result()),
duke@435 647 "result not in heap");
apetrusenko@574 648 // If GC was locked out during VM operation then retry allocation
apetrusenko@574 649 // and/or stall as necessary.
apetrusenko@574 650 if (op.gc_locked()) {
apetrusenko@574 651 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
apetrusenko@574 652 continue; // retry and/or stall as necessary
apetrusenko@574 653 }
duke@435 654 // If a NULL results is being returned, an out-of-memory
jmasa@1822 655 // will be thrown now. Clear the gc_overhead_limit_exceeded
duke@435 656 // flag to avoid the following situation.
jmasa@1822 657 // gc_overhead_limit_exceeded is set during a collection
duke@435 658 // the collection fails to return enough space and an OOM is thrown
jmasa@1822 659 // a subsequent GC prematurely throws an out-of-memory because
jmasa@1822 660 // the gc_overhead_limit_exceeded counts did not start
jmasa@1822 661 // again from 0.
duke@435 662 if (op.result() == NULL) {
jmasa@1822 663 size_policy()->reset_gc_overhead_limit_count();
duke@435 664 }
duke@435 665 return op.result();
duke@435 666 }
duke@435 667 }
duke@435 668
duke@435 669 // The policy object will prevent us from looping forever. If the
duke@435 670 // time spent in gc crosses a threshold, we will bail out.
duke@435 671 loop_count++;
duke@435 672 if ((QueuedAllocationWarningCount > 0) &&
duke@435 673 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 674 warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
duke@435 675 " size=%d", loop_count, size);
duke@435 676 }
duke@435 677 } while (result == NULL);
duke@435 678
duke@435 679 return result;
duke@435 680 }
duke@435 681
duke@435 682 //
duke@435 683 // This is the policy code for permanent allocations which have failed
duke@435 684 // and require a collection. Note that just as in failed_mem_allocate,
duke@435 685 // we do not set collection policy, only where & when to allocate and
duke@435 686 // collect.
duke@435 687 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
duke@435 688 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 689 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 690 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 691 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 692 assert(size > perm_gen()->free_in_words(), "Allocation should fail");
duke@435 693
duke@435 694 // We assume (and assert!) that an allocation at this point will fail
duke@435 695 // unless we collect.
duke@435 696
duke@435 697 // First level allocation failure. Mark-sweep and allocate in perm gen.
duke@435 698 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 699 invoke_full_gc(false);
duke@435 700 HeapWord* result = perm_gen()->allocate_permanent(size);
duke@435 701
duke@435 702 // Second level allocation failure. We're running out of memory.
duke@435 703 if (result == NULL) {
duke@435 704 invoke_full_gc(true);
duke@435 705 result = perm_gen()->allocate_permanent(size);
duke@435 706 }
duke@435 707
duke@435 708 return result;
duke@435 709 }
duke@435 710
duke@435 711 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
duke@435 712 CollectedHeap::ensure_parsability(retire_tlabs);
duke@435 713 young_gen()->eden_space()->ensure_parsability();
duke@435 714 }
duke@435 715
duke@435 716 size_t ParallelScavengeHeap::unsafe_max_alloc() {
duke@435 717 return young_gen()->eden_space()->free_in_bytes();
duke@435 718 }
duke@435 719
duke@435 720 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
duke@435 721 return young_gen()->eden_space()->tlab_capacity(thr);
duke@435 722 }
duke@435 723
duke@435 724 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
duke@435 725 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
duke@435 726 }
duke@435 727
duke@435 728 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
duke@435 729 return young_gen()->allocate(size, true);
duke@435 730 }
duke@435 731
duke@435 732 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
duke@435 733 CollectedHeap::accumulate_statistics_all_tlabs();
duke@435 734 }
duke@435 735
duke@435 736 void ParallelScavengeHeap::resize_all_tlabs() {
duke@435 737 CollectedHeap::resize_all_tlabs();
duke@435 738 }
duke@435 739
ysr@1462 740 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 741 // We don't need barriers for stores to objects in the
ysr@1462 742 // young gen and, a fortiori, for initializing stores to
ysr@1462 743 // objects therein.
ysr@1462 744 return is_in_young(new_obj);
ysr@1462 745 }
ysr@1462 746
duke@435 747 // This method is used by System.gc() and JVMTI.
duke@435 748 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
duke@435 749 assert(!Heap_lock->owned_by_self(),
duke@435 750 "this thread should not own the Heap_lock");
duke@435 751
duke@435 752 unsigned int gc_count = 0;
duke@435 753 unsigned int full_gc_count = 0;
duke@435 754 {
duke@435 755 MutexLocker ml(Heap_lock);
duke@435 756 // This value is guarded by the Heap_lock
duke@435 757 gc_count = Universe::heap()->total_collections();
duke@435 758 full_gc_count = Universe::heap()->total_full_collections();
duke@435 759 }
duke@435 760
duke@435 761 VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
duke@435 762 VMThread::execute(&op);
duke@435 763 }
duke@435 764
duke@435 765 // This interface assumes that it's being called by the
duke@435 766 // vm thread. It collects the heap assuming that the
duke@435 767 // heap lock is already held and that we are executing in
duke@435 768 // the context of the vm thread.
duke@435 769 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
duke@435 770 assert(Thread::current()->is_VM_thread(), "Precondition#1");
duke@435 771 assert(Heap_lock->is_locked(), "Precondition#2");
duke@435 772 GCCauseSetter gcs(this, cause);
duke@435 773 switch (cause) {
duke@435 774 case GCCause::_heap_inspection:
duke@435 775 case GCCause::_heap_dump: {
duke@435 776 HandleMark hm;
duke@435 777 invoke_full_gc(false);
duke@435 778 break;
duke@435 779 }
duke@435 780 default: // XXX FIX ME
duke@435 781 ShouldNotReachHere();
duke@435 782 }
duke@435 783 }
duke@435 784
duke@435 785
duke@435 786 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
duke@435 787 Unimplemented();
duke@435 788 }
duke@435 789
duke@435 790 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
duke@435 791 young_gen()->object_iterate(cl);
duke@435 792 old_gen()->object_iterate(cl);
duke@435 793 perm_gen()->object_iterate(cl);
duke@435 794 }
duke@435 795
duke@435 796 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
duke@435 797 Unimplemented();
duke@435 798 }
duke@435 799
duke@435 800 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
duke@435 801 perm_gen()->object_iterate(cl);
duke@435 802 }
duke@435 803
duke@435 804 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
duke@435 805 if (young_gen()->is_in_reserved(addr)) {
duke@435 806 assert(young_gen()->is_in(addr),
duke@435 807 "addr should be in allocated part of young gen");
jrose@1100 808 if (Debugging) return NULL; // called from find() in debug.cpp
duke@435 809 Unimplemented();
duke@435 810 } else if (old_gen()->is_in_reserved(addr)) {
duke@435 811 assert(old_gen()->is_in(addr),
duke@435 812 "addr should be in allocated part of old gen");
duke@435 813 return old_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 814 } else if (perm_gen()->is_in_reserved(addr)) {
duke@435 815 assert(perm_gen()->is_in(addr),
duke@435 816 "addr should be in allocated part of perm gen");
duke@435 817 return perm_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 818 }
duke@435 819 return 0;
duke@435 820 }
duke@435 821
duke@435 822 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
duke@435 823 return oop(addr)->size();
duke@435 824 }
duke@435 825
duke@435 826 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
duke@435 827 return block_start(addr) == addr;
duke@435 828 }
duke@435 829
duke@435 830 jlong ParallelScavengeHeap::millis_since_last_gc() {
duke@435 831 return UseParallelOldGC ?
duke@435 832 PSParallelCompact::millis_since_last_gc() :
duke@435 833 PSMarkSweep::millis_since_last_gc();
duke@435 834 }
duke@435 835
duke@435 836 void ParallelScavengeHeap::prepare_for_verify() {
duke@435 837 ensure_parsability(false); // no need to retire TLABs for verification
duke@435 838 }
duke@435 839
duke@435 840 void ParallelScavengeHeap::print() const { print_on(tty); }
duke@435 841
duke@435 842 void ParallelScavengeHeap::print_on(outputStream* st) const {
duke@435 843 young_gen()->print_on(st);
duke@435 844 old_gen()->print_on(st);
duke@435 845 perm_gen()->print_on(st);
duke@435 846 }
duke@435 847
duke@435 848 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
duke@435 849 PSScavenge::gc_task_manager()->threads_do(tc);
duke@435 850 }
duke@435 851
duke@435 852 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
duke@435 853 PSScavenge::gc_task_manager()->print_threads_on(st);
duke@435 854 }
duke@435 855
duke@435 856 void ParallelScavengeHeap::print_tracing_info() const {
duke@435 857 if (TraceGen0Time) {
duke@435 858 double time = PSScavenge::accumulated_time()->seconds();
duke@435 859 tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
duke@435 860 }
duke@435 861 if (TraceGen1Time) {
duke@435 862 double time = PSMarkSweep::accumulated_time()->seconds();
duke@435 863 tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
duke@435 864 }
duke@435 865 }
duke@435 866
duke@435 867
ysr@1280 868 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
duke@435 869 // Why do we need the total_collections()-filter below?
duke@435 870 if (total_collections() > 0) {
duke@435 871 if (!silent) {
duke@435 872 gclog_or_tty->print("permanent ");
duke@435 873 }
duke@435 874 perm_gen()->verify(allow_dirty);
duke@435 875
duke@435 876 if (!silent) {
duke@435 877 gclog_or_tty->print("tenured ");
duke@435 878 }
duke@435 879 old_gen()->verify(allow_dirty);
duke@435 880
duke@435 881 if (!silent) {
duke@435 882 gclog_or_tty->print("eden ");
duke@435 883 }
duke@435 884 young_gen()->verify(allow_dirty);
duke@435 885 }
duke@435 886 if (!silent) {
duke@435 887 gclog_or_tty->print("ref_proc ");
duke@435 888 }
duke@435 889 ReferenceProcessor::verify();
duke@435 890 }
duke@435 891
duke@435 892 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
duke@435 893 if (PrintGCDetails && Verbose) {
duke@435 894 gclog_or_tty->print(" " SIZE_FORMAT
duke@435 895 "->" SIZE_FORMAT
duke@435 896 "(" SIZE_FORMAT ")",
duke@435 897 prev_used, used(), capacity());
duke@435 898 } else {
duke@435 899 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 900 "->" SIZE_FORMAT "K"
duke@435 901 "(" SIZE_FORMAT "K)",
duke@435 902 prev_used / K, used() / K, capacity() / K);
duke@435 903 }
duke@435 904 }
duke@435 905
duke@435 906 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
duke@435 907 assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
duke@435 908 assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
duke@435 909 return _psh;
duke@435 910 }
duke@435 911
duke@435 912 // Before delegating the resize to the young generation,
duke@435 913 // the reserved space for the young and old generations
duke@435 914 // may be changed to accomodate the desired resize.
duke@435 915 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
duke@435 916 size_t survivor_size) {
duke@435 917 if (UseAdaptiveGCBoundary) {
duke@435 918 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 919 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 920 return; // The generation changed size already.
duke@435 921 }
duke@435 922 gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
duke@435 923 }
duke@435 924
duke@435 925 // Delegate the resize to the generation.
duke@435 926 _young_gen->resize(eden_size, survivor_size);
duke@435 927 }
duke@435 928
duke@435 929 // Before delegating the resize to the old generation,
duke@435 930 // the reserved space for the young and old generations
duke@435 931 // may be changed to accomodate the desired resize.
duke@435 932 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
duke@435 933 if (UseAdaptiveGCBoundary) {
duke@435 934 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 935 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 936 return; // The generation changed size already.
duke@435 937 }
duke@435 938 gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
duke@435 939 }
duke@435 940
duke@435 941 // Delegate the resize to the generation.
duke@435 942 _old_gen->resize(desired_free_space);
duke@435 943 }
jmasa@698 944
jrose@1424 945 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
jrose@1424 946 // nothing particular
jrose@1424 947 }
jrose@1424 948
jrose@1424 949 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
jrose@1424 950 // nothing particular
jrose@1424 951 }
jrose@1424 952
jmasa@698 953 #ifndef PRODUCT
jmasa@698 954 void ParallelScavengeHeap::record_gen_tops_before_GC() {
jmasa@698 955 if (ZapUnusedHeapArea) {
jmasa@698 956 young_gen()->record_spaces_top();
jmasa@698 957 old_gen()->record_spaces_top();
jmasa@698 958 perm_gen()->record_spaces_top();
jmasa@698 959 }
jmasa@698 960 }
jmasa@698 961
jmasa@698 962 void ParallelScavengeHeap::gen_mangle_unused_area() {
jmasa@698 963 if (ZapUnusedHeapArea) {
jmasa@698 964 young_gen()->eden_space()->mangle_unused_area();
jmasa@698 965 young_gen()->to_space()->mangle_unused_area();
jmasa@698 966 young_gen()->from_space()->mangle_unused_area();
jmasa@698 967 old_gen()->object_space()->mangle_unused_area();
jmasa@698 968 perm_gen()->object_space()->mangle_unused_area();
jmasa@698 969 }
jmasa@698 970 }
jmasa@698 971 #endif

mercurial