src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1424
148e5441d916
child 1601
7b0e9cba0307
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

duke@435 1 /*
jrose@1100 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_parallelScavengeHeap.cpp.incl"
duke@435 27
duke@435 28 PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
duke@435 29 PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
duke@435 30 PSPermGen* ParallelScavengeHeap::_perm_gen = NULL;
duke@435 31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
duke@435 32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
duke@435 33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
duke@435 34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
duke@435 35
duke@435 36 static void trace_gen_sizes(const char* const str,
duke@435 37 size_t pg_min, size_t pg_max,
duke@435 38 size_t og_min, size_t og_max,
duke@435 39 size_t yg_min, size_t yg_max)
duke@435 40 {
duke@435 41 if (TracePageSizes) {
duke@435 42 tty->print_cr("%s: " SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 43 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 44 SIZE_FORMAT "," SIZE_FORMAT " "
duke@435 45 SIZE_FORMAT,
duke@435 46 str, pg_min / K, pg_max / K,
duke@435 47 og_min / K, og_max / K,
duke@435 48 yg_min / K, yg_max / K,
duke@435 49 (pg_max + og_max + yg_max) / K);
duke@435 50 }
duke@435 51 }
duke@435 52
duke@435 53 jint ParallelScavengeHeap::initialize() {
duke@435 54 // Cannot be initialized until after the flags are parsed
duke@435 55 GenerationSizer flag_parser;
duke@435 56
duke@435 57 size_t yg_min_size = flag_parser.min_young_gen_size();
duke@435 58 size_t yg_max_size = flag_parser.max_young_gen_size();
duke@435 59 size_t og_min_size = flag_parser.min_old_gen_size();
duke@435 60 size_t og_max_size = flag_parser.max_old_gen_size();
duke@435 61 // Why isn't there a min_perm_gen_size()?
duke@435 62 size_t pg_min_size = flag_parser.perm_gen_size();
duke@435 63 size_t pg_max_size = flag_parser.max_perm_gen_size();
duke@435 64
duke@435 65 trace_gen_sizes("ps heap raw",
duke@435 66 pg_min_size, pg_max_size,
duke@435 67 og_min_size, og_max_size,
duke@435 68 yg_min_size, yg_max_size);
duke@435 69
duke@435 70 // The ReservedSpace ctor used below requires that the page size for the perm
duke@435 71 // gen is <= the page size for the rest of the heap (young + old gens).
duke@435 72 const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
duke@435 73 yg_max_size + og_max_size,
duke@435 74 8);
duke@435 75 const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
duke@435 76 pg_max_size, 16),
duke@435 77 og_page_sz);
duke@435 78
duke@435 79 const size_t pg_align = set_alignment(_perm_gen_alignment, pg_page_sz);
duke@435 80 const size_t og_align = set_alignment(_old_gen_alignment, og_page_sz);
duke@435 81 const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
duke@435 82
duke@435 83 // Update sizes to reflect the selected page size(s).
duke@435 84 //
duke@435 85 // NEEDS_CLEANUP. The default TwoGenerationCollectorPolicy uses NewRatio; it
duke@435 86 // should check UseAdaptiveSizePolicy. Changes from generationSizer could
duke@435 87 // move to the common code.
duke@435 88 yg_min_size = align_size_up(yg_min_size, yg_align);
duke@435 89 yg_max_size = align_size_up(yg_max_size, yg_align);
duke@435 90 size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
duke@435 91 yg_cur_size = MAX2(yg_cur_size, yg_min_size);
duke@435 92
duke@435 93 og_min_size = align_size_up(og_min_size, og_align);
duke@435 94 og_max_size = align_size_up(og_max_size, og_align);
duke@435 95 size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
duke@435 96 og_cur_size = MAX2(og_cur_size, og_min_size);
duke@435 97
duke@435 98 pg_min_size = align_size_up(pg_min_size, pg_align);
duke@435 99 pg_max_size = align_size_up(pg_max_size, pg_align);
duke@435 100 size_t pg_cur_size = pg_min_size;
duke@435 101
duke@435 102 trace_gen_sizes("ps heap rnd",
duke@435 103 pg_min_size, pg_max_size,
duke@435 104 og_min_size, og_max_size,
duke@435 105 yg_min_size, yg_max_size);
duke@435 106
kvn@1077 107 const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
kvn@1077 108 char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
kvn@1077 109
duke@435 110 // The main part of the heap (old gen + young gen) can often use a larger page
duke@435 111 // size than is needed or wanted for the perm gen. Use the "compound
duke@435 112 // alignment" ReservedSpace ctor to avoid having to use the same page size for
duke@435 113 // all gens.
kvn@1077 114
coleenp@672 115 ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 116 og_align, addr);
kvn@1077 117
kvn@1077 118 if (UseCompressedOops) {
kvn@1077 119 if (addr != NULL && !heap_rs.is_reserved()) {
kvn@1077 120 // Failed to reserve at specified address - the requested memory
kvn@1077 121 // region is taken already, for example, by 'java' launcher.
kvn@1077 122 // Try again to reserver heap higher.
kvn@1077 123 addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
kvn@1077 124 ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 125 og_align, addr);
kvn@1077 126 if (addr != NULL && !heap_rs0.is_reserved()) {
kvn@1077 127 // Failed to reserve at specified address again - give up.
kvn@1077 128 addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
kvn@1077 129 assert(addr == NULL, "");
kvn@1077 130 ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
kvn@1077 131 og_align, addr);
kvn@1077 132 heap_rs = heap_rs1;
kvn@1077 133 } else {
kvn@1077 134 heap_rs = heap_rs0;
kvn@1077 135 }
kvn@1077 136 }
kvn@1077 137 }
kvn@1077 138
duke@435 139 os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
duke@435 140 heap_rs.base(), pg_max_size);
duke@435 141 os::trace_page_sizes("ps main", og_min_size + yg_min_size,
duke@435 142 og_max_size + yg_max_size, og_page_sz,
duke@435 143 heap_rs.base() + pg_max_size,
duke@435 144 heap_rs.size() - pg_max_size);
duke@435 145 if (!heap_rs.is_reserved()) {
duke@435 146 vm_shutdown_during_initialization(
duke@435 147 "Could not reserve enough space for object heap");
duke@435 148 return JNI_ENOMEM;
duke@435 149 }
duke@435 150
duke@435 151 _reserved = MemRegion((HeapWord*)heap_rs.base(),
duke@435 152 (HeapWord*)(heap_rs.base() + heap_rs.size()));
duke@435 153
duke@435 154 CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
duke@435 155 _barrier_set = barrier_set;
duke@435 156 oopDesc::set_bs(_barrier_set);
duke@435 157 if (_barrier_set == NULL) {
duke@435 158 vm_shutdown_during_initialization(
duke@435 159 "Could not reserve enough space for barrier set");
duke@435 160 return JNI_ENOMEM;
duke@435 161 }
duke@435 162
duke@435 163 // Initial young gen size is 4 Mb
duke@435 164 //
duke@435 165 // XXX - what about flag_parser.young_gen_size()?
duke@435 166 const size_t init_young_size = align_size_up(4 * M, yg_align);
duke@435 167 yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
duke@435 168
duke@435 169 // Split the reserved space into perm gen and the main heap (everything else).
duke@435 170 // The main heap uses a different alignment.
duke@435 171 ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
duke@435 172 ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
duke@435 173
duke@435 174 // Make up the generations
duke@435 175 // Calculate the maximum size that a generation can grow. This
duke@435 176 // includes growth into the other generation. Note that the
duke@435 177 // parameter _max_gen_size is kept as the maximum
duke@435 178 // size of the generation as the boundaries currently stand.
duke@435 179 // _max_gen_size is still used as that value.
duke@435 180 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
duke@435 181 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
duke@435 182
duke@435 183 _gens = new AdjoiningGenerations(main_rs,
duke@435 184 og_cur_size,
duke@435 185 og_min_size,
duke@435 186 og_max_size,
duke@435 187 yg_cur_size,
duke@435 188 yg_min_size,
duke@435 189 yg_max_size,
duke@435 190 yg_align);
duke@435 191
duke@435 192 _old_gen = _gens->old_gen();
duke@435 193 _young_gen = _gens->young_gen();
duke@435 194
duke@435 195 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
duke@435 196 const size_t old_capacity = _old_gen->capacity_in_bytes();
duke@435 197 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
duke@435 198 _size_policy =
duke@435 199 new PSAdaptiveSizePolicy(eden_capacity,
duke@435 200 initial_promo_size,
duke@435 201 young_gen()->to_space()->capacity_in_bytes(),
jmasa@448 202 intra_heap_alignment(),
duke@435 203 max_gc_pause_sec,
duke@435 204 max_gc_minor_pause_sec,
duke@435 205 GCTimeRatio
duke@435 206 );
duke@435 207
duke@435 208 _perm_gen = new PSPermGen(perm_rs,
duke@435 209 pg_align,
duke@435 210 pg_cur_size,
duke@435 211 pg_cur_size,
duke@435 212 pg_max_size,
duke@435 213 "perm", 2);
duke@435 214
duke@435 215 assert(!UseAdaptiveGCBoundary ||
duke@435 216 (old_gen()->virtual_space()->high_boundary() ==
duke@435 217 young_gen()->virtual_space()->low_boundary()),
duke@435 218 "Boundaries must meet");
duke@435 219 // initialize the policy counters - 2 collectors, 3 generations
duke@435 220 _gc_policy_counters =
duke@435 221 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
duke@435 222 _psh = this;
duke@435 223
duke@435 224 // Set up the GCTaskManager
duke@435 225 _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
duke@435 226
duke@435 227 if (UseParallelOldGC && !PSParallelCompact::initialize()) {
duke@435 228 return JNI_ENOMEM;
duke@435 229 }
duke@435 230
duke@435 231 return JNI_OK;
duke@435 232 }
duke@435 233
duke@435 234 void ParallelScavengeHeap::post_initialize() {
duke@435 235 // Need to init the tenuring threshold
duke@435 236 PSScavenge::initialize();
duke@435 237 if (UseParallelOldGC) {
duke@435 238 PSParallelCompact::post_initialize();
duke@435 239 } else {
duke@435 240 PSMarkSweep::initialize();
duke@435 241 }
duke@435 242 PSPromotionManager::initialize();
duke@435 243 }
duke@435 244
duke@435 245 void ParallelScavengeHeap::update_counters() {
duke@435 246 young_gen()->update_counters();
duke@435 247 old_gen()->update_counters();
duke@435 248 perm_gen()->update_counters();
duke@435 249 }
duke@435 250
duke@435 251 size_t ParallelScavengeHeap::capacity() const {
duke@435 252 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
duke@435 253 return value;
duke@435 254 }
duke@435 255
duke@435 256 size_t ParallelScavengeHeap::used() const {
duke@435 257 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
duke@435 258 return value;
duke@435 259 }
duke@435 260
duke@435 261 bool ParallelScavengeHeap::is_maximal_no_gc() const {
duke@435 262 return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
duke@435 263 }
duke@435 264
duke@435 265
duke@435 266 size_t ParallelScavengeHeap::permanent_capacity() const {
duke@435 267 return perm_gen()->capacity_in_bytes();
duke@435 268 }
duke@435 269
duke@435 270 size_t ParallelScavengeHeap::permanent_used() const {
duke@435 271 return perm_gen()->used_in_bytes();
duke@435 272 }
duke@435 273
duke@435 274 size_t ParallelScavengeHeap::max_capacity() const {
duke@435 275 size_t estimated = reserved_region().byte_size();
duke@435 276 estimated -= perm_gen()->reserved().byte_size();
duke@435 277 if (UseAdaptiveSizePolicy) {
duke@435 278 estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
duke@435 279 } else {
duke@435 280 estimated -= young_gen()->to_space()->capacity_in_bytes();
duke@435 281 }
duke@435 282 return MAX2(estimated, capacity());
duke@435 283 }
duke@435 284
duke@435 285 bool ParallelScavengeHeap::is_in(const void* p) const {
duke@435 286 if (young_gen()->is_in(p)) {
duke@435 287 return true;
duke@435 288 }
duke@435 289
duke@435 290 if (old_gen()->is_in(p)) {
duke@435 291 return true;
duke@435 292 }
duke@435 293
duke@435 294 if (perm_gen()->is_in(p)) {
duke@435 295 return true;
duke@435 296 }
duke@435 297
duke@435 298 return false;
duke@435 299 }
duke@435 300
duke@435 301 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
duke@435 302 if (young_gen()->is_in_reserved(p)) {
duke@435 303 return true;
duke@435 304 }
duke@435 305
duke@435 306 if (old_gen()->is_in_reserved(p)) {
duke@435 307 return true;
duke@435 308 }
duke@435 309
duke@435 310 if (perm_gen()->is_in_reserved(p)) {
duke@435 311 return true;
duke@435 312 }
duke@435 313
duke@435 314 return false;
duke@435 315 }
duke@435 316
duke@435 317 // There are two levels of allocation policy here.
duke@435 318 //
duke@435 319 // When an allocation request fails, the requesting thread must invoke a VM
duke@435 320 // operation, transfer control to the VM thread, and await the results of a
duke@435 321 // garbage collection. That is quite expensive, and we should avoid doing it
duke@435 322 // multiple times if possible.
duke@435 323 //
duke@435 324 // To accomplish this, we have a basic allocation policy, and also a
duke@435 325 // failed allocation policy.
duke@435 326 //
duke@435 327 // The basic allocation policy controls how you allocate memory without
duke@435 328 // attempting garbage collection. It is okay to grab locks and
duke@435 329 // expand the heap, if that can be done without coming to a safepoint.
duke@435 330 // It is likely that the basic allocation policy will not be very
duke@435 331 // aggressive.
duke@435 332 //
duke@435 333 // The failed allocation policy is invoked from the VM thread after
duke@435 334 // the basic allocation policy is unable to satisfy a mem_allocate
duke@435 335 // request. This policy needs to cover the entire range of collection,
duke@435 336 // heap expansion, and out-of-memory conditions. It should make every
duke@435 337 // attempt to allocate the requested memory.
duke@435 338
duke@435 339 // Basic allocation policy. Should never be called at a safepoint, or
duke@435 340 // from the VM thread.
duke@435 341 //
duke@435 342 // This method must handle cases where many mem_allocate requests fail
duke@435 343 // simultaneously. When that happens, only one VM operation will succeed,
duke@435 344 // and the rest will not be executed. For that reason, this method loops
duke@435 345 // during failed allocation attempts. If the java heap becomes exhausted,
duke@435 346 // we rely on the size_policy object to force a bail out.
duke@435 347 HeapWord* ParallelScavengeHeap::mem_allocate(
duke@435 348 size_t size,
duke@435 349 bool is_noref,
duke@435 350 bool is_tlab,
duke@435 351 bool* gc_overhead_limit_was_exceeded) {
duke@435 352 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 353 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 354 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 355
duke@435 356 HeapWord* result = young_gen()->allocate(size, is_tlab);
duke@435 357
duke@435 358 uint loop_count = 0;
duke@435 359 uint gc_count = 0;
duke@435 360
duke@435 361 while (result == NULL) {
duke@435 362 // We don't want to have multiple collections for a single filled generation.
duke@435 363 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 364 // the count has changed, does not do a new collection.
duke@435 365 //
duke@435 366 // The collection count must be read only while holding the heap lock. VM
duke@435 367 // operations also hold the heap lock during collections. There is a lock
duke@435 368 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 369 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 370 // the collection count has already changed. To prevent duplicate collections,
duke@435 371 // The policy MUST attempt allocations during the same period it reads the
duke@435 372 // total_collections() value!
duke@435 373 {
duke@435 374 MutexLocker ml(Heap_lock);
duke@435 375 gc_count = Universe::heap()->total_collections();
duke@435 376
duke@435 377 result = young_gen()->allocate(size, is_tlab);
duke@435 378
duke@435 379 // (1) If the requested object is too large to easily fit in the
duke@435 380 // young_gen, or
duke@435 381 // (2) If GC is locked out via GCLocker, young gen is full and
duke@435 382 // the need for a GC already signalled to GCLocker (done
duke@435 383 // at a safepoint),
duke@435 384 // ... then, rather than force a safepoint and (a potentially futile)
duke@435 385 // collection (attempt) for each allocation, try allocation directly
duke@435 386 // in old_gen. For case (2) above, we may in the future allow
duke@435 387 // TLAB allocation directly in the old gen.
duke@435 388 if (result != NULL) {
duke@435 389 return result;
duke@435 390 }
duke@435 391 if (!is_tlab &&
iveresov@808 392 size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
duke@435 393 result = old_gen()->allocate(size, is_tlab);
duke@435 394 if (result != NULL) {
duke@435 395 return result;
duke@435 396 }
duke@435 397 }
duke@435 398 if (GC_locker::is_active_and_needs_gc()) {
duke@435 399 // GC is locked out. If this is a TLAB allocation,
duke@435 400 // return NULL; the requestor will retry allocation
duke@435 401 // of an idividual object at a time.
duke@435 402 if (is_tlab) {
duke@435 403 return NULL;
duke@435 404 }
duke@435 405
duke@435 406 // If this thread is not in a jni critical section, we stall
duke@435 407 // the requestor until the critical section has cleared and
duke@435 408 // GC allowed. When the critical section clears, a GC is
duke@435 409 // initiated by the last thread exiting the critical section; so
duke@435 410 // we retry the allocation sequence from the beginning of the loop,
duke@435 411 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 412 JavaThread* jthr = JavaThread::current();
duke@435 413 if (!jthr->in_critical()) {
duke@435 414 MutexUnlocker mul(Heap_lock);
duke@435 415 GC_locker::stall_until_clear();
duke@435 416 continue;
duke@435 417 } else {
duke@435 418 if (CheckJNICalls) {
duke@435 419 fatal("Possible deadlock due to allocating while"
duke@435 420 " in jni critical section");
duke@435 421 }
duke@435 422 return NULL;
duke@435 423 }
duke@435 424 }
duke@435 425 }
duke@435 426
duke@435 427 if (result == NULL) {
duke@435 428
duke@435 429 // Exit the loop if if the gc time limit has been exceeded.
duke@435 430 // The allocation must have failed above (result must be NULL),
duke@435 431 // and the most recent collection must have exceeded the
duke@435 432 // gc time limit. Exit the loop so that an out-of-memory
duke@435 433 // will be thrown (returning a NULL will do that), but
duke@435 434 // clear gc_time_limit_exceeded so that the next collection
duke@435 435 // will succeeded if the applications decides to handle the
duke@435 436 // out-of-memory and tries to go on.
duke@435 437 *gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
duke@435 438 if (size_policy()->gc_time_limit_exceeded()) {
duke@435 439 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 440 if (PrintGCDetails && Verbose) {
duke@435 441 gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
duke@435 442 "return NULL because gc_time_limit_exceeded is set");
duke@435 443 }
duke@435 444 return NULL;
duke@435 445 }
duke@435 446
duke@435 447 // Generate a VM operation
duke@435 448 VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
duke@435 449 VMThread::execute(&op);
duke@435 450
duke@435 451 // Did the VM operation execute? If so, return the result directly.
duke@435 452 // This prevents us from looping until time out on requests that can
duke@435 453 // not be satisfied.
duke@435 454 if (op.prologue_succeeded()) {
duke@435 455 assert(Universe::heap()->is_in_or_null(op.result()),
duke@435 456 "result not in heap");
duke@435 457
duke@435 458 // If GC was locked out during VM operation then retry allocation
duke@435 459 // and/or stall as necessary.
duke@435 460 if (op.gc_locked()) {
duke@435 461 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
duke@435 462 continue; // retry and/or stall as necessary
duke@435 463 }
duke@435 464 // If a NULL result is being returned, an out-of-memory
duke@435 465 // will be thrown now. Clear the gc_time_limit_exceeded
duke@435 466 // flag to avoid the following situation.
duke@435 467 // gc_time_limit_exceeded is set during a collection
duke@435 468 // the collection fails to return enough space and an OOM is thrown
duke@435 469 // the next GC is skipped because the gc_time_limit_exceeded
duke@435 470 // flag is set and another OOM is thrown
duke@435 471 if (op.result() == NULL) {
duke@435 472 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 473 }
duke@435 474 return op.result();
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478 // The policy object will prevent us from looping forever. If the
duke@435 479 // time spent in gc crosses a threshold, we will bail out.
duke@435 480 loop_count++;
duke@435 481 if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
duke@435 482 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 483 warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
duke@435 484 " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
duke@435 485 }
duke@435 486 }
duke@435 487
duke@435 488 return result;
duke@435 489 }
duke@435 490
duke@435 491 // Failed allocation policy. Must be called from the VM thread, and
duke@435 492 // only at a safepoint! Note that this method has policy for allocation
duke@435 493 // flow, and NOT collection policy. So we do not check for gc collection
duke@435 494 // time over limit here, that is the responsibility of the heap specific
duke@435 495 // collection methods. This method decides where to attempt allocations,
duke@435 496 // and when to attempt collections, but no collection specific policy.
duke@435 497 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
duke@435 498 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 499 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 500 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 501 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 502
duke@435 503 size_t mark_sweep_invocation_count = total_invocations();
duke@435 504
duke@435 505 // We assume (and assert!) that an allocation at this point will fail
duke@435 506 // unless we collect.
duke@435 507
duke@435 508 // First level allocation failure, scavenge and allocate in young gen.
duke@435 509 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 510 PSScavenge::invoke();
duke@435 511 HeapWord* result = young_gen()->allocate(size, is_tlab);
duke@435 512
duke@435 513 // Second level allocation failure.
duke@435 514 // Mark sweep and allocate in young generation.
duke@435 515 if (result == NULL) {
duke@435 516 // There is some chance the scavenge method decided to invoke mark_sweep.
duke@435 517 // Don't mark sweep twice if so.
duke@435 518 if (mark_sweep_invocation_count == total_invocations()) {
duke@435 519 invoke_full_gc(false);
duke@435 520 result = young_gen()->allocate(size, is_tlab);
duke@435 521 }
duke@435 522 }
duke@435 523
duke@435 524 // Third level allocation failure.
duke@435 525 // After mark sweep and young generation allocation failure,
duke@435 526 // allocate in old generation.
duke@435 527 if (result == NULL && !is_tlab) {
duke@435 528 result = old_gen()->allocate(size, is_tlab);
duke@435 529 }
duke@435 530
duke@435 531 // Fourth level allocation failure. We're running out of memory.
duke@435 532 // More complete mark sweep and allocate in young generation.
duke@435 533 if (result == NULL) {
duke@435 534 invoke_full_gc(true);
duke@435 535 result = young_gen()->allocate(size, is_tlab);
duke@435 536 }
duke@435 537
duke@435 538 // Fifth level allocation failure.
duke@435 539 // After more complete mark sweep, allocate in old generation.
duke@435 540 if (result == NULL && !is_tlab) {
duke@435 541 result = old_gen()->allocate(size, is_tlab);
duke@435 542 }
duke@435 543
duke@435 544 return result;
duke@435 545 }
duke@435 546
duke@435 547 //
duke@435 548 // This is the policy loop for allocating in the permanent generation.
duke@435 549 // If the initial allocation fails, we create a vm operation which will
duke@435 550 // cause a collection.
duke@435 551 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
duke@435 552 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
duke@435 553 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
duke@435 554 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 555
duke@435 556 HeapWord* result;
duke@435 557
duke@435 558 uint loop_count = 0;
duke@435 559 uint gc_count = 0;
duke@435 560 uint full_gc_count = 0;
duke@435 561
duke@435 562 do {
duke@435 563 // We don't want to have multiple collections for a single filled generation.
duke@435 564 // To prevent this, each thread tracks the total_collections() value, and if
duke@435 565 // the count has changed, does not do a new collection.
duke@435 566 //
duke@435 567 // The collection count must be read only while holding the heap lock. VM
duke@435 568 // operations also hold the heap lock during collections. There is a lock
duke@435 569 // contention case where thread A blocks waiting on the Heap_lock, while
duke@435 570 // thread B is holding it doing a collection. When thread A gets the lock,
duke@435 571 // the collection count has already changed. To prevent duplicate collections,
duke@435 572 // The policy MUST attempt allocations during the same period it reads the
duke@435 573 // total_collections() value!
duke@435 574 {
duke@435 575 MutexLocker ml(Heap_lock);
duke@435 576 gc_count = Universe::heap()->total_collections();
duke@435 577 full_gc_count = Universe::heap()->total_full_collections();
duke@435 578
duke@435 579 result = perm_gen()->allocate_permanent(size);
apetrusenko@574 580
apetrusenko@574 581 if (result != NULL) {
apetrusenko@574 582 return result;
apetrusenko@574 583 }
apetrusenko@574 584
apetrusenko@574 585 if (GC_locker::is_active_and_needs_gc()) {
apetrusenko@574 586 // If this thread is not in a jni critical section, we stall
apetrusenko@574 587 // the requestor until the critical section has cleared and
apetrusenko@574 588 // GC allowed. When the critical section clears, a GC is
apetrusenko@574 589 // initiated by the last thread exiting the critical section; so
apetrusenko@574 590 // we retry the allocation sequence from the beginning of the loop,
apetrusenko@574 591 // rather than causing more, now probably unnecessary, GC attempts.
apetrusenko@574 592 JavaThread* jthr = JavaThread::current();
apetrusenko@574 593 if (!jthr->in_critical()) {
apetrusenko@574 594 MutexUnlocker mul(Heap_lock);
apetrusenko@574 595 GC_locker::stall_until_clear();
apetrusenko@574 596 continue;
apetrusenko@574 597 } else {
apetrusenko@574 598 if (CheckJNICalls) {
apetrusenko@574 599 fatal("Possible deadlock due to allocating while"
apetrusenko@574 600 " in jni critical section");
apetrusenko@574 601 }
apetrusenko@574 602 return NULL;
apetrusenko@574 603 }
apetrusenko@574 604 }
duke@435 605 }
duke@435 606
duke@435 607 if (result == NULL) {
duke@435 608
duke@435 609 // Exit the loop if the gc time limit has been exceeded.
duke@435 610 // The allocation must have failed above (result must be NULL),
duke@435 611 // and the most recent collection must have exceeded the
duke@435 612 // gc time limit. Exit the loop so that an out-of-memory
duke@435 613 // will be thrown (returning a NULL will do that), but
duke@435 614 // clear gc_time_limit_exceeded so that the next collection
duke@435 615 // will succeeded if the applications decides to handle the
duke@435 616 // out-of-memory and tries to go on.
duke@435 617 if (size_policy()->gc_time_limit_exceeded()) {
duke@435 618 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 619 if (PrintGCDetails && Verbose) {
duke@435 620 gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
duke@435 621 "return NULL because gc_time_limit_exceeded is set");
duke@435 622 }
duke@435 623 assert(result == NULL, "Allocation did not fail");
duke@435 624 return NULL;
duke@435 625 }
duke@435 626
duke@435 627 // Generate a VM operation
duke@435 628 VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
duke@435 629 VMThread::execute(&op);
duke@435 630
duke@435 631 // Did the VM operation execute? If so, return the result directly.
duke@435 632 // This prevents us from looping until time out on requests that can
duke@435 633 // not be satisfied.
duke@435 634 if (op.prologue_succeeded()) {
duke@435 635 assert(Universe::heap()->is_in_permanent_or_null(op.result()),
duke@435 636 "result not in heap");
apetrusenko@574 637 // If GC was locked out during VM operation then retry allocation
apetrusenko@574 638 // and/or stall as necessary.
apetrusenko@574 639 if (op.gc_locked()) {
apetrusenko@574 640 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
apetrusenko@574 641 continue; // retry and/or stall as necessary
apetrusenko@574 642 }
duke@435 643 // If a NULL results is being returned, an out-of-memory
duke@435 644 // will be thrown now. Clear the gc_time_limit_exceeded
duke@435 645 // flag to avoid the following situation.
duke@435 646 // gc_time_limit_exceeded is set during a collection
duke@435 647 // the collection fails to return enough space and an OOM is thrown
duke@435 648 // the next GC is skipped because the gc_time_limit_exceeded
duke@435 649 // flag is set and another OOM is thrown
duke@435 650 if (op.result() == NULL) {
duke@435 651 size_policy()->set_gc_time_limit_exceeded(false);
duke@435 652 }
duke@435 653 return op.result();
duke@435 654 }
duke@435 655 }
duke@435 656
duke@435 657 // The policy object will prevent us from looping forever. If the
duke@435 658 // time spent in gc crosses a threshold, we will bail out.
duke@435 659 loop_count++;
duke@435 660 if ((QueuedAllocationWarningCount > 0) &&
duke@435 661 (loop_count % QueuedAllocationWarningCount == 0)) {
duke@435 662 warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
duke@435 663 " size=%d", loop_count, size);
duke@435 664 }
duke@435 665 } while (result == NULL);
duke@435 666
duke@435 667 return result;
duke@435 668 }
duke@435 669
duke@435 670 //
duke@435 671 // This is the policy code for permanent allocations which have failed
duke@435 672 // and require a collection. Note that just as in failed_mem_allocate,
duke@435 673 // we do not set collection policy, only where & when to allocate and
duke@435 674 // collect.
duke@435 675 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
duke@435 676 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 677 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
duke@435 678 assert(!Universe::heap()->is_gc_active(), "not reentrant");
duke@435 679 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 680 assert(size > perm_gen()->free_in_words(), "Allocation should fail");
duke@435 681
duke@435 682 // We assume (and assert!) that an allocation at this point will fail
duke@435 683 // unless we collect.
duke@435 684
duke@435 685 // First level allocation failure. Mark-sweep and allocate in perm gen.
duke@435 686 GCCauseSetter gccs(this, GCCause::_allocation_failure);
duke@435 687 invoke_full_gc(false);
duke@435 688 HeapWord* result = perm_gen()->allocate_permanent(size);
duke@435 689
duke@435 690 // Second level allocation failure. We're running out of memory.
duke@435 691 if (result == NULL) {
duke@435 692 invoke_full_gc(true);
duke@435 693 result = perm_gen()->allocate_permanent(size);
duke@435 694 }
duke@435 695
duke@435 696 return result;
duke@435 697 }
duke@435 698
duke@435 699 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
duke@435 700 CollectedHeap::ensure_parsability(retire_tlabs);
duke@435 701 young_gen()->eden_space()->ensure_parsability();
duke@435 702 }
duke@435 703
duke@435 704 size_t ParallelScavengeHeap::unsafe_max_alloc() {
duke@435 705 return young_gen()->eden_space()->free_in_bytes();
duke@435 706 }
duke@435 707
duke@435 708 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
duke@435 709 return young_gen()->eden_space()->tlab_capacity(thr);
duke@435 710 }
duke@435 711
duke@435 712 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
duke@435 713 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
duke@435 714 }
duke@435 715
duke@435 716 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
duke@435 717 return young_gen()->allocate(size, true);
duke@435 718 }
duke@435 719
duke@435 720 void ParallelScavengeHeap::fill_all_tlabs(bool retire) {
duke@435 721 CollectedHeap::fill_all_tlabs(retire);
duke@435 722 }
duke@435 723
duke@435 724 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
duke@435 725 CollectedHeap::accumulate_statistics_all_tlabs();
duke@435 726 }
duke@435 727
duke@435 728 void ParallelScavengeHeap::resize_all_tlabs() {
duke@435 729 CollectedHeap::resize_all_tlabs();
duke@435 730 }
duke@435 731
ysr@1462 732 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 733 // We don't need barriers for stores to objects in the
ysr@1462 734 // young gen and, a fortiori, for initializing stores to
ysr@1462 735 // objects therein.
ysr@1462 736 return is_in_young(new_obj);
ysr@1462 737 }
ysr@1462 738
duke@435 739 // This method is used by System.gc() and JVMTI.
duke@435 740 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
duke@435 741 assert(!Heap_lock->owned_by_self(),
duke@435 742 "this thread should not own the Heap_lock");
duke@435 743
duke@435 744 unsigned int gc_count = 0;
duke@435 745 unsigned int full_gc_count = 0;
duke@435 746 {
duke@435 747 MutexLocker ml(Heap_lock);
duke@435 748 // This value is guarded by the Heap_lock
duke@435 749 gc_count = Universe::heap()->total_collections();
duke@435 750 full_gc_count = Universe::heap()->total_full_collections();
duke@435 751 }
duke@435 752
duke@435 753 VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
duke@435 754 VMThread::execute(&op);
duke@435 755 }
duke@435 756
duke@435 757 // This interface assumes that it's being called by the
duke@435 758 // vm thread. It collects the heap assuming that the
duke@435 759 // heap lock is already held and that we are executing in
duke@435 760 // the context of the vm thread.
duke@435 761 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
duke@435 762 assert(Thread::current()->is_VM_thread(), "Precondition#1");
duke@435 763 assert(Heap_lock->is_locked(), "Precondition#2");
duke@435 764 GCCauseSetter gcs(this, cause);
duke@435 765 switch (cause) {
duke@435 766 case GCCause::_heap_inspection:
duke@435 767 case GCCause::_heap_dump: {
duke@435 768 HandleMark hm;
duke@435 769 invoke_full_gc(false);
duke@435 770 break;
duke@435 771 }
duke@435 772 default: // XXX FIX ME
duke@435 773 ShouldNotReachHere();
duke@435 774 }
duke@435 775 }
duke@435 776
duke@435 777
duke@435 778 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
duke@435 779 Unimplemented();
duke@435 780 }
duke@435 781
duke@435 782 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
duke@435 783 young_gen()->object_iterate(cl);
duke@435 784 old_gen()->object_iterate(cl);
duke@435 785 perm_gen()->object_iterate(cl);
duke@435 786 }
duke@435 787
duke@435 788 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
duke@435 789 Unimplemented();
duke@435 790 }
duke@435 791
duke@435 792 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
duke@435 793 perm_gen()->object_iterate(cl);
duke@435 794 }
duke@435 795
duke@435 796 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
duke@435 797 if (young_gen()->is_in_reserved(addr)) {
duke@435 798 assert(young_gen()->is_in(addr),
duke@435 799 "addr should be in allocated part of young gen");
jrose@1100 800 if (Debugging) return NULL; // called from find() in debug.cpp
duke@435 801 Unimplemented();
duke@435 802 } else if (old_gen()->is_in_reserved(addr)) {
duke@435 803 assert(old_gen()->is_in(addr),
duke@435 804 "addr should be in allocated part of old gen");
duke@435 805 return old_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 806 } else if (perm_gen()->is_in_reserved(addr)) {
duke@435 807 assert(perm_gen()->is_in(addr),
duke@435 808 "addr should be in allocated part of perm gen");
duke@435 809 return perm_gen()->start_array()->object_start((HeapWord*)addr);
duke@435 810 }
duke@435 811 return 0;
duke@435 812 }
duke@435 813
duke@435 814 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
duke@435 815 return oop(addr)->size();
duke@435 816 }
duke@435 817
duke@435 818 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
duke@435 819 return block_start(addr) == addr;
duke@435 820 }
duke@435 821
duke@435 822 jlong ParallelScavengeHeap::millis_since_last_gc() {
duke@435 823 return UseParallelOldGC ?
duke@435 824 PSParallelCompact::millis_since_last_gc() :
duke@435 825 PSMarkSweep::millis_since_last_gc();
duke@435 826 }
duke@435 827
duke@435 828 void ParallelScavengeHeap::prepare_for_verify() {
duke@435 829 ensure_parsability(false); // no need to retire TLABs for verification
duke@435 830 }
duke@435 831
duke@435 832 void ParallelScavengeHeap::print() const { print_on(tty); }
duke@435 833
duke@435 834 void ParallelScavengeHeap::print_on(outputStream* st) const {
duke@435 835 young_gen()->print_on(st);
duke@435 836 old_gen()->print_on(st);
duke@435 837 perm_gen()->print_on(st);
duke@435 838 }
duke@435 839
duke@435 840 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
duke@435 841 PSScavenge::gc_task_manager()->threads_do(tc);
duke@435 842 }
duke@435 843
duke@435 844 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
duke@435 845 PSScavenge::gc_task_manager()->print_threads_on(st);
duke@435 846 }
duke@435 847
duke@435 848 void ParallelScavengeHeap::print_tracing_info() const {
duke@435 849 if (TraceGen0Time) {
duke@435 850 double time = PSScavenge::accumulated_time()->seconds();
duke@435 851 tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
duke@435 852 }
duke@435 853 if (TraceGen1Time) {
duke@435 854 double time = PSMarkSweep::accumulated_time()->seconds();
duke@435 855 tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
duke@435 856 }
duke@435 857 }
duke@435 858
duke@435 859
ysr@1280 860 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
duke@435 861 // Why do we need the total_collections()-filter below?
duke@435 862 if (total_collections() > 0) {
duke@435 863 if (!silent) {
duke@435 864 gclog_or_tty->print("permanent ");
duke@435 865 }
duke@435 866 perm_gen()->verify(allow_dirty);
duke@435 867
duke@435 868 if (!silent) {
duke@435 869 gclog_or_tty->print("tenured ");
duke@435 870 }
duke@435 871 old_gen()->verify(allow_dirty);
duke@435 872
duke@435 873 if (!silent) {
duke@435 874 gclog_or_tty->print("eden ");
duke@435 875 }
duke@435 876 young_gen()->verify(allow_dirty);
duke@435 877 }
duke@435 878 if (!silent) {
duke@435 879 gclog_or_tty->print("ref_proc ");
duke@435 880 }
duke@435 881 ReferenceProcessor::verify();
duke@435 882 }
duke@435 883
duke@435 884 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
duke@435 885 if (PrintGCDetails && Verbose) {
duke@435 886 gclog_or_tty->print(" " SIZE_FORMAT
duke@435 887 "->" SIZE_FORMAT
duke@435 888 "(" SIZE_FORMAT ")",
duke@435 889 prev_used, used(), capacity());
duke@435 890 } else {
duke@435 891 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 892 "->" SIZE_FORMAT "K"
duke@435 893 "(" SIZE_FORMAT "K)",
duke@435 894 prev_used / K, used() / K, capacity() / K);
duke@435 895 }
duke@435 896 }
duke@435 897
duke@435 898 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
duke@435 899 assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
duke@435 900 assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
duke@435 901 return _psh;
duke@435 902 }
duke@435 903
duke@435 904 // Before delegating the resize to the young generation,
duke@435 905 // the reserved space for the young and old generations
duke@435 906 // may be changed to accomodate the desired resize.
duke@435 907 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
duke@435 908 size_t survivor_size) {
duke@435 909 if (UseAdaptiveGCBoundary) {
duke@435 910 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 911 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 912 return; // The generation changed size already.
duke@435 913 }
duke@435 914 gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
duke@435 915 }
duke@435 916
duke@435 917 // Delegate the resize to the generation.
duke@435 918 _young_gen->resize(eden_size, survivor_size);
duke@435 919 }
duke@435 920
duke@435 921 // Before delegating the resize to the old generation,
duke@435 922 // the reserved space for the young and old generations
duke@435 923 // may be changed to accomodate the desired resize.
duke@435 924 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
duke@435 925 if (UseAdaptiveGCBoundary) {
duke@435 926 if (size_policy()->bytes_absorbed_from_eden() != 0) {
duke@435 927 size_policy()->reset_bytes_absorbed_from_eden();
duke@435 928 return; // The generation changed size already.
duke@435 929 }
duke@435 930 gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
duke@435 931 }
duke@435 932
duke@435 933 // Delegate the resize to the generation.
duke@435 934 _old_gen->resize(desired_free_space);
duke@435 935 }
jmasa@698 936
jrose@1424 937 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
jrose@1424 938 // nothing particular
jrose@1424 939 }
jrose@1424 940
jrose@1424 941 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
jrose@1424 942 // nothing particular
jrose@1424 943 }
jrose@1424 944
jmasa@698 945 #ifndef PRODUCT
jmasa@698 946 void ParallelScavengeHeap::record_gen_tops_before_GC() {
jmasa@698 947 if (ZapUnusedHeapArea) {
jmasa@698 948 young_gen()->record_spaces_top();
jmasa@698 949 old_gen()->record_spaces_top();
jmasa@698 950 perm_gen()->record_spaces_top();
jmasa@698 951 }
jmasa@698 952 }
jmasa@698 953
jmasa@698 954 void ParallelScavengeHeap::gen_mangle_unused_area() {
jmasa@698 955 if (ZapUnusedHeapArea) {
jmasa@698 956 young_gen()->eden_space()->mangle_unused_area();
jmasa@698 957 young_gen()->to_space()->mangle_unused_area();
jmasa@698 958 young_gen()->from_space()->mangle_unused_area();
jmasa@698 959 old_gen()->object_space()->mangle_unused_area();
jmasa@698 960 perm_gen()->object_space()->mangle_unused_area();
jmasa@698 961 }
jmasa@698 962 }
jmasa@698 963 #endif

mercurial