src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Thu, 16 Jun 2011 15:51:57 -0400

author
tonyp
date
Thu, 16 Jun 2011 15:51:57 -0400
changeset 2971
c9ca3f51cf41
parent 2969
6747fd0512e0
child 3115
c2bf0120ee5d
permissions
-rw-r--r--

6994322: Remove the is_tlab and is_noref / is_large_noref parameters from the CollectedHeap
Summary: Remove two unused parameters from the mem_allocate() method and update its uses accordingly.
Reviewed-by: stefank, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
    27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
    28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
    36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
    38 #include "memory/gcLocker.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "runtime/handles.inline.hpp"
    41 #include "runtime/java.hpp"
    42 #include "runtime/vmThread.hpp"
    43 #include "utilities/vmError.hpp"
    45 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    46 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    47 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    48 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    49 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    50 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    51 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    53 static void trace_gen_sizes(const char* const str,
    54                             size_t pg_min, size_t pg_max,
    55                             size_t og_min, size_t og_max,
    56                             size_t yg_min, size_t yg_max)
    57 {
    58   if (TracePageSizes) {
    59     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    60                   SIZE_FORMAT "," SIZE_FORMAT " "
    61                   SIZE_FORMAT "," SIZE_FORMAT " "
    62                   SIZE_FORMAT,
    63                   str, pg_min / K, pg_max / K,
    64                   og_min / K, og_max / K,
    65                   yg_min / K, yg_max / K,
    66                   (pg_max + og_max + yg_max) / K);
    67   }
    68 }
    70 jint ParallelScavengeHeap::initialize() {
    71   CollectedHeap::pre_initialize();
    73   // Cannot be initialized until after the flags are parsed
    74   // GenerationSizer flag_parser;
    75   _collector_policy = new GenerationSizer();
    77   size_t yg_min_size = _collector_policy->min_young_gen_size();
    78   size_t yg_max_size = _collector_policy->max_young_gen_size();
    79   size_t og_min_size = _collector_policy->min_old_gen_size();
    80   size_t og_max_size = _collector_policy->max_old_gen_size();
    81   // Why isn't there a min_perm_gen_size()?
    82   size_t pg_min_size = _collector_policy->perm_gen_size();
    83   size_t pg_max_size = _collector_policy->max_perm_gen_size();
    85   trace_gen_sizes("ps heap raw",
    86                   pg_min_size, pg_max_size,
    87                   og_min_size, og_max_size,
    88                   yg_min_size, yg_max_size);
    90   // The ReservedSpace ctor used below requires that the page size for the perm
    91   // gen is <= the page size for the rest of the heap (young + old gens).
    92   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    93                                                      yg_max_size + og_max_size,
    94                                                      8);
    95   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    96                                                           pg_max_size, 16),
    97                                  og_page_sz);
    99   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
   100   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
   101   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
   103   // Update sizes to reflect the selected page size(s).
   104   //
   105   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
   106   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
   107   // move to the common code.
   108   yg_min_size = align_size_up(yg_min_size, yg_align);
   109   yg_max_size = align_size_up(yg_max_size, yg_align);
   110   size_t yg_cur_size =
   111     align_size_up(_collector_policy->young_gen_size(), yg_align);
   112   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
   114   og_min_size = align_size_up(og_min_size, og_align);
   115   // Align old gen size down to preserve specified heap size.
   116   assert(og_align == yg_align, "sanity");
   117   og_max_size = align_size_down(og_max_size, og_align);
   118   og_max_size = MAX2(og_max_size, og_min_size);
   119   size_t og_cur_size =
   120     align_size_down(_collector_policy->old_gen_size(), og_align);
   121   og_cur_size = MAX2(og_cur_size, og_min_size);
   123   pg_min_size = align_size_up(pg_min_size, pg_align);
   124   pg_max_size = align_size_up(pg_max_size, pg_align);
   125   size_t pg_cur_size = pg_min_size;
   127   trace_gen_sizes("ps heap rnd",
   128                   pg_min_size, pg_max_size,
   129                   og_min_size, og_max_size,
   130                   yg_min_size, yg_max_size);
   132   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
   133   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   135   // The main part of the heap (old gen + young gen) can often use a larger page
   136   // size than is needed or wanted for the perm gen.  Use the "compound
   137   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   138   // all gens.
   140   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   141                             og_align, addr);
   143   if (UseCompressedOops) {
   144     if (addr != NULL && !heap_rs.is_reserved()) {
   145       // Failed to reserve at specified address - the requested memory
   146       // region is taken already, for example, by 'java' launcher.
   147       // Try again to reserver heap higher.
   148       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   149       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
   150                                  og_align, addr);
   151       if (addr != NULL && !heap_rs0.is_reserved()) {
   152         // Failed to reserve at specified address again - give up.
   153         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   154         assert(addr == NULL, "");
   155         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
   156                                    og_align, addr);
   157         heap_rs = heap_rs1;
   158       } else {
   159         heap_rs = heap_rs0;
   160       }
   161     }
   162   }
   164   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   165                        heap_rs.base(), pg_max_size);
   166   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   167                        og_max_size + yg_max_size, og_page_sz,
   168                        heap_rs.base() + pg_max_size,
   169                        heap_rs.size() - pg_max_size);
   170   if (!heap_rs.is_reserved()) {
   171     vm_shutdown_during_initialization(
   172       "Could not reserve enough space for object heap");
   173     return JNI_ENOMEM;
   174   }
   176   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   177                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   179   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   180   _barrier_set = barrier_set;
   181   oopDesc::set_bs(_barrier_set);
   182   if (_barrier_set == NULL) {
   183     vm_shutdown_during_initialization(
   184       "Could not reserve enough space for barrier set");
   185     return JNI_ENOMEM;
   186   }
   188   // Initial young gen size is 4 Mb
   189   //
   190   // XXX - what about flag_parser.young_gen_size()?
   191   const size_t init_young_size = align_size_up(4 * M, yg_align);
   192   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   194   // Split the reserved space into perm gen and the main heap (everything else).
   195   // The main heap uses a different alignment.
   196   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   197   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   199   // Make up the generations
   200   // Calculate the maximum size that a generation can grow.  This
   201   // includes growth into the other generation.  Note that the
   202   // parameter _max_gen_size is kept as the maximum
   203   // size of the generation as the boundaries currently stand.
   204   // _max_gen_size is still used as that value.
   205   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   206   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   208   _gens = new AdjoiningGenerations(main_rs,
   209                                    og_cur_size,
   210                                    og_min_size,
   211                                    og_max_size,
   212                                    yg_cur_size,
   213                                    yg_min_size,
   214                                    yg_max_size,
   215                                    yg_align);
   217   _old_gen = _gens->old_gen();
   218   _young_gen = _gens->young_gen();
   220   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   221   const size_t old_capacity = _old_gen->capacity_in_bytes();
   222   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   223   _size_policy =
   224     new PSAdaptiveSizePolicy(eden_capacity,
   225                              initial_promo_size,
   226                              young_gen()->to_space()->capacity_in_bytes(),
   227                              intra_heap_alignment(),
   228                              max_gc_pause_sec,
   229                              max_gc_minor_pause_sec,
   230                              GCTimeRatio
   231                              );
   233   _perm_gen = new PSPermGen(perm_rs,
   234                             pg_align,
   235                             pg_cur_size,
   236                             pg_cur_size,
   237                             pg_max_size,
   238                             "perm", 2);
   240   assert(!UseAdaptiveGCBoundary ||
   241     (old_gen()->virtual_space()->high_boundary() ==
   242      young_gen()->virtual_space()->low_boundary()),
   243     "Boundaries must meet");
   244   // initialize the policy counters - 2 collectors, 3 generations
   245   _gc_policy_counters =
   246     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   247   _psh = this;
   249   // Set up the GCTaskManager
   250   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   252   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   253     return JNI_ENOMEM;
   254   }
   256   return JNI_OK;
   257 }
   259 void ParallelScavengeHeap::post_initialize() {
   260   // Need to init the tenuring threshold
   261   PSScavenge::initialize();
   262   if (UseParallelOldGC) {
   263     PSParallelCompact::post_initialize();
   264   } else {
   265     PSMarkSweep::initialize();
   266   }
   267   PSPromotionManager::initialize();
   268 }
   270 void ParallelScavengeHeap::update_counters() {
   271   young_gen()->update_counters();
   272   old_gen()->update_counters();
   273   perm_gen()->update_counters();
   274 }
   276 size_t ParallelScavengeHeap::capacity() const {
   277   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   278   return value;
   279 }
   281 size_t ParallelScavengeHeap::used() const {
   282   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   283   return value;
   284 }
   286 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   287   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   288 }
   291 size_t ParallelScavengeHeap::permanent_capacity() const {
   292   return perm_gen()->capacity_in_bytes();
   293 }
   295 size_t ParallelScavengeHeap::permanent_used() const {
   296   return perm_gen()->used_in_bytes();
   297 }
   299 size_t ParallelScavengeHeap::max_capacity() const {
   300   size_t estimated = reserved_region().byte_size();
   301   estimated -= perm_gen()->reserved().byte_size();
   302   if (UseAdaptiveSizePolicy) {
   303     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   304   } else {
   305     estimated -= young_gen()->to_space()->capacity_in_bytes();
   306   }
   307   return MAX2(estimated, capacity());
   308 }
   310 bool ParallelScavengeHeap::is_in(const void* p) const {
   311   if (young_gen()->is_in(p)) {
   312     return true;
   313   }
   315   if (old_gen()->is_in(p)) {
   316     return true;
   317   }
   319   if (perm_gen()->is_in(p)) {
   320     return true;
   321   }
   323   return false;
   324 }
   326 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   327   if (young_gen()->is_in_reserved(p)) {
   328     return true;
   329   }
   331   if (old_gen()->is_in_reserved(p)) {
   332     return true;
   333   }
   335   if (perm_gen()->is_in_reserved(p)) {
   336     return true;
   337   }
   339   return false;
   340 }
   342 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
   343   return is_in_young((oop)addr);
   344 }
   346 #ifdef ASSERT
   347 // Don't implement this by using is_in_young().  This method is used
   348 // in some cases to check that is_in_young() is correct.
   349 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
   350   assert(is_in_reserved(p) || p == NULL,
   351     "Does not work if address is non-null and outside of the heap");
   352   // The order of the generations is perm (low addr), old, young (high addr)
   353   return p >= old_gen()->reserved().end();
   354 }
   355 #endif
   357 // There are two levels of allocation policy here.
   358 //
   359 // When an allocation request fails, the requesting thread must invoke a VM
   360 // operation, transfer control to the VM thread, and await the results of a
   361 // garbage collection. That is quite expensive, and we should avoid doing it
   362 // multiple times if possible.
   363 //
   364 // To accomplish this, we have a basic allocation policy, and also a
   365 // failed allocation policy.
   366 //
   367 // The basic allocation policy controls how you allocate memory without
   368 // attempting garbage collection. It is okay to grab locks and
   369 // expand the heap, if that can be done without coming to a safepoint.
   370 // It is likely that the basic allocation policy will not be very
   371 // aggressive.
   372 //
   373 // The failed allocation policy is invoked from the VM thread after
   374 // the basic allocation policy is unable to satisfy a mem_allocate
   375 // request. This policy needs to cover the entire range of collection,
   376 // heap expansion, and out-of-memory conditions. It should make every
   377 // attempt to allocate the requested memory.
   379 // Basic allocation policy. Should never be called at a safepoint, or
   380 // from the VM thread.
   381 //
   382 // This method must handle cases where many mem_allocate requests fail
   383 // simultaneously. When that happens, only one VM operation will succeed,
   384 // and the rest will not be executed. For that reason, this method loops
   385 // during failed allocation attempts. If the java heap becomes exhausted,
   386 // we rely on the size_policy object to force a bail out.
   387 HeapWord* ParallelScavengeHeap::mem_allocate(
   388                                      size_t size,
   389                                      bool* gc_overhead_limit_was_exceeded) {
   390   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   391   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   392   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   394   // In general gc_overhead_limit_was_exceeded should be false so
   395   // set it so here and reset it to true only if the gc time
   396   // limit is being exceeded as checked below.
   397   *gc_overhead_limit_was_exceeded = false;
   399   HeapWord* result = young_gen()->allocate(size);
   401   uint loop_count = 0;
   402   uint gc_count = 0;
   404   while (result == NULL) {
   405     // We don't want to have multiple collections for a single filled generation.
   406     // To prevent this, each thread tracks the total_collections() value, and if
   407     // the count has changed, does not do a new collection.
   408     //
   409     // The collection count must be read only while holding the heap lock. VM
   410     // operations also hold the heap lock during collections. There is a lock
   411     // contention case where thread A blocks waiting on the Heap_lock, while
   412     // thread B is holding it doing a collection. When thread A gets the lock,
   413     // the collection count has already changed. To prevent duplicate collections,
   414     // The policy MUST attempt allocations during the same period it reads the
   415     // total_collections() value!
   416     {
   417       MutexLocker ml(Heap_lock);
   418       gc_count = Universe::heap()->total_collections();
   420       result = young_gen()->allocate(size);
   422       // (1) If the requested object is too large to easily fit in the
   423       //     young_gen, or
   424       // (2) If GC is locked out via GCLocker, young gen is full and
   425       //     the need for a GC already signalled to GCLocker (done
   426       //     at a safepoint),
   427       // ... then, rather than force a safepoint and (a potentially futile)
   428       // collection (attempt) for each allocation, try allocation directly
   429       // in old_gen. For case (2) above, we may in the future allow
   430       // TLAB allocation directly in the old gen.
   431       if (result != NULL) {
   432         return result;
   433       }
   434       if (size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
   435         result = old_gen()->allocate(size);
   436         if (result != NULL) {
   437           return result;
   438         }
   439       }
   440       if (GC_locker::is_active_and_needs_gc()) {
   441         // If this thread is not in a jni critical section, we stall
   442         // the requestor until the critical section has cleared and
   443         // GC allowed. When the critical section clears, a GC is
   444         // initiated by the last thread exiting the critical section; so
   445         // we retry the allocation sequence from the beginning of the loop,
   446         // rather than causing more, now probably unnecessary, GC attempts.
   447         JavaThread* jthr = JavaThread::current();
   448         if (!jthr->in_critical()) {
   449           MutexUnlocker mul(Heap_lock);
   450           GC_locker::stall_until_clear();
   451           continue;
   452         } else {
   453           if (CheckJNICalls) {
   454             fatal("Possible deadlock due to allocating while"
   455                   " in jni critical section");
   456           }
   457           return NULL;
   458         }
   459       }
   460     }
   462     if (result == NULL) {
   464       // Generate a VM operation
   465       VM_ParallelGCFailedAllocation op(size, gc_count);
   466       VMThread::execute(&op);
   468       // Did the VM operation execute? If so, return the result directly.
   469       // This prevents us from looping until time out on requests that can
   470       // not be satisfied.
   471       if (op.prologue_succeeded()) {
   472         assert(Universe::heap()->is_in_or_null(op.result()),
   473           "result not in heap");
   475         // If GC was locked out during VM operation then retry allocation
   476         // and/or stall as necessary.
   477         if (op.gc_locked()) {
   478           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   479           continue;  // retry and/or stall as necessary
   480         }
   482         // Exit the loop if the gc time limit has been exceeded.
   483         // The allocation must have failed above ("result" guarding
   484         // this path is NULL) and the most recent collection has exceeded the
   485         // gc overhead limit (although enough may have been collected to
   486         // satisfy the allocation).  Exit the loop so that an out-of-memory
   487         // will be thrown (return a NULL ignoring the contents of
   488         // op.result()),
   489         // but clear gc_overhead_limit_exceeded so that the next collection
   490         // starts with a clean slate (i.e., forgets about previous overhead
   491         // excesses).  Fill op.result() with a filler object so that the
   492         // heap remains parsable.
   493         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   494         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
   495         assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   496         if (limit_exceeded && softrefs_clear) {
   497           *gc_overhead_limit_was_exceeded = true;
   498           size_policy()->set_gc_overhead_limit_exceeded(false);
   499           if (PrintGCDetails && Verbose) {
   500             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   501               "return NULL because gc_overhead_limit_exceeded is set");
   502           }
   503           if (op.result() != NULL) {
   504             CollectedHeap::fill_with_object(op.result(), size);
   505           }
   506           return NULL;
   507         }
   509         return op.result();
   510       }
   511     }
   513     // The policy object will prevent us from looping forever. If the
   514     // time spent in gc crosses a threshold, we will bail out.
   515     loop_count++;
   516     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   517         (loop_count % QueuedAllocationWarningCount == 0)) {
   518       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   519               " size=%d", loop_count, size);
   520     }
   521   }
   523   return result;
   524 }
   526 // Failed allocation policy. Must be called from the VM thread, and
   527 // only at a safepoint! Note that this method has policy for allocation
   528 // flow, and NOT collection policy. So we do not check for gc collection
   529 // time over limit here, that is the responsibility of the heap specific
   530 // collection methods. This method decides where to attempt allocations,
   531 // and when to attempt collections, but no collection specific policy.
   532 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
   533   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   534   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   535   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   536   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   538   size_t mark_sweep_invocation_count = total_invocations();
   540   // We assume (and assert!) that an allocation at this point will fail
   541   // unless we collect.
   543   // First level allocation failure, scavenge and allocate in young gen.
   544   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   545   PSScavenge::invoke();
   546   HeapWord* result = young_gen()->allocate(size);
   548   // Second level allocation failure.
   549   //   Mark sweep and allocate in young generation.
   550   if (result == NULL) {
   551     // There is some chance the scavenge method decided to invoke mark_sweep.
   552     // Don't mark sweep twice if so.
   553     if (mark_sweep_invocation_count == total_invocations()) {
   554       invoke_full_gc(false);
   555       result = young_gen()->allocate(size);
   556     }
   557   }
   559   // Third level allocation failure.
   560   //   After mark sweep and young generation allocation failure,
   561   //   allocate in old generation.
   562   if (result == NULL) {
   563     result = old_gen()->allocate(size);
   564   }
   566   // Fourth level allocation failure. We're running out of memory.
   567   //   More complete mark sweep and allocate in young generation.
   568   if (result == NULL) {
   569     invoke_full_gc(true);
   570     result = young_gen()->allocate(size);
   571   }
   573   // Fifth level allocation failure.
   574   //   After more complete mark sweep, allocate in old generation.
   575   if (result == NULL) {
   576     result = old_gen()->allocate(size);
   577   }
   579   return result;
   580 }
   582 //
   583 // This is the policy loop for allocating in the permanent generation.
   584 // If the initial allocation fails, we create a vm operation which will
   585 // cause a collection.
   586 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   587   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   588   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   589   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   591   HeapWord* result;
   593   uint loop_count = 0;
   594   uint gc_count = 0;
   595   uint full_gc_count = 0;
   597   do {
   598     // We don't want to have multiple collections for a single filled generation.
   599     // To prevent this, each thread tracks the total_collections() value, and if
   600     // the count has changed, does not do a new collection.
   601     //
   602     // The collection count must be read only while holding the heap lock. VM
   603     // operations also hold the heap lock during collections. There is a lock
   604     // contention case where thread A blocks waiting on the Heap_lock, while
   605     // thread B is holding it doing a collection. When thread A gets the lock,
   606     // the collection count has already changed. To prevent duplicate collections,
   607     // The policy MUST attempt allocations during the same period it reads the
   608     // total_collections() value!
   609     {
   610       MutexLocker ml(Heap_lock);
   611       gc_count      = Universe::heap()->total_collections();
   612       full_gc_count = Universe::heap()->total_full_collections();
   614       result = perm_gen()->allocate_permanent(size);
   616       if (result != NULL) {
   617         return result;
   618       }
   620       if (GC_locker::is_active_and_needs_gc()) {
   621         // If this thread is not in a jni critical section, we stall
   622         // the requestor until the critical section has cleared and
   623         // GC allowed. When the critical section clears, a GC is
   624         // initiated by the last thread exiting the critical section; so
   625         // we retry the allocation sequence from the beginning of the loop,
   626         // rather than causing more, now probably unnecessary, GC attempts.
   627         JavaThread* jthr = JavaThread::current();
   628         if (!jthr->in_critical()) {
   629           MutexUnlocker mul(Heap_lock);
   630           GC_locker::stall_until_clear();
   631           continue;
   632         } else {
   633           if (CheckJNICalls) {
   634             fatal("Possible deadlock due to allocating while"
   635                   " in jni critical section");
   636           }
   637           return NULL;
   638         }
   639       }
   640     }
   642     if (result == NULL) {
   644       // Exit the loop if the gc time limit has been exceeded.
   645       // The allocation must have failed above (result must be NULL),
   646       // and the most recent collection must have exceeded the
   647       // gc time limit.  Exit the loop so that an out-of-memory
   648       // will be thrown (returning a NULL will do that), but
   649       // clear gc_overhead_limit_exceeded so that the next collection
   650       // will succeeded if the applications decides to handle the
   651       // out-of-memory and tries to go on.
   652       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   653       if (limit_exceeded) {
   654         size_policy()->set_gc_overhead_limit_exceeded(false);
   655         if (PrintGCDetails && Verbose) {
   656           gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
   657             " return NULL because gc_overhead_limit_exceeded is set");
   658         }
   659         assert(result == NULL, "Allocation did not fail");
   660         return NULL;
   661       }
   663       // Generate a VM operation
   664       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   665       VMThread::execute(&op);
   667       // Did the VM operation execute? If so, return the result directly.
   668       // This prevents us from looping until time out on requests that can
   669       // not be satisfied.
   670       if (op.prologue_succeeded()) {
   671         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   672           "result not in heap");
   673         // If GC was locked out during VM operation then retry allocation
   674         // and/or stall as necessary.
   675         if (op.gc_locked()) {
   676           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   677           continue;  // retry and/or stall as necessary
   678         }
   679         // If a NULL results is being returned, an out-of-memory
   680         // will be thrown now.  Clear the gc_overhead_limit_exceeded
   681         // flag to avoid the following situation.
   682         //      gc_overhead_limit_exceeded is set during a collection
   683         //      the collection fails to return enough space and an OOM is thrown
   684         //      a subsequent GC prematurely throws an out-of-memory because
   685         //        the gc_overhead_limit_exceeded counts did not start
   686         //        again from 0.
   687         if (op.result() == NULL) {
   688           size_policy()->reset_gc_overhead_limit_count();
   689         }
   690         return op.result();
   691       }
   692     }
   694     // The policy object will prevent us from looping forever. If the
   695     // time spent in gc crosses a threshold, we will bail out.
   696     loop_count++;
   697     if ((QueuedAllocationWarningCount > 0) &&
   698         (loop_count % QueuedAllocationWarningCount == 0)) {
   699       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   700               " size=%d", loop_count, size);
   701     }
   702   } while (result == NULL);
   704   return result;
   705 }
   707 //
   708 // This is the policy code for permanent allocations which have failed
   709 // and require a collection. Note that just as in failed_mem_allocate,
   710 // we do not set collection policy, only where & when to allocate and
   711 // collect.
   712 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   713   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   714   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   715   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   716   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   717   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   719   // We assume (and assert!) that an allocation at this point will fail
   720   // unless we collect.
   722   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   723   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   724   invoke_full_gc(false);
   725   HeapWord* result = perm_gen()->allocate_permanent(size);
   727   // Second level allocation failure. We're running out of memory.
   728   if (result == NULL) {
   729     invoke_full_gc(true);
   730     result = perm_gen()->allocate_permanent(size);
   731   }
   733   return result;
   734 }
   736 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   737   CollectedHeap::ensure_parsability(retire_tlabs);
   738   young_gen()->eden_space()->ensure_parsability();
   739 }
   741 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   742   return young_gen()->eden_space()->free_in_bytes();
   743 }
   745 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   746   return young_gen()->eden_space()->tlab_capacity(thr);
   747 }
   749 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   750   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   751 }
   753 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   754   return young_gen()->allocate(size);
   755 }
   757 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   758   CollectedHeap::accumulate_statistics_all_tlabs();
   759 }
   761 void ParallelScavengeHeap::resize_all_tlabs() {
   762   CollectedHeap::resize_all_tlabs();
   763 }
   765 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
   766   // We don't need barriers for stores to objects in the
   767   // young gen and, a fortiori, for initializing stores to
   768   // objects therein.
   769   return is_in_young(new_obj);
   770 }
   772 // This method is used by System.gc() and JVMTI.
   773 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   774   assert(!Heap_lock->owned_by_self(),
   775     "this thread should not own the Heap_lock");
   777   unsigned int gc_count      = 0;
   778   unsigned int full_gc_count = 0;
   779   {
   780     MutexLocker ml(Heap_lock);
   781     // This value is guarded by the Heap_lock
   782     gc_count      = Universe::heap()->total_collections();
   783     full_gc_count = Universe::heap()->total_full_collections();
   784   }
   786   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   787   VMThread::execute(&op);
   788 }
   790 // This interface assumes that it's being called by the
   791 // vm thread. It collects the heap assuming that the
   792 // heap lock is already held and that we are executing in
   793 // the context of the vm thread.
   794 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   795   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   796   assert(Heap_lock->is_locked(), "Precondition#2");
   797   GCCauseSetter gcs(this, cause);
   798   switch (cause) {
   799     case GCCause::_heap_inspection:
   800     case GCCause::_heap_dump: {
   801       HandleMark hm;
   802       invoke_full_gc(false);
   803       break;
   804     }
   805     default: // XXX FIX ME
   806       ShouldNotReachHere();
   807   }
   808 }
   811 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   812   Unimplemented();
   813 }
   815 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   816   young_gen()->object_iterate(cl);
   817   old_gen()->object_iterate(cl);
   818   perm_gen()->object_iterate(cl);
   819 }
   821 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   822   Unimplemented();
   823 }
   825 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   826   perm_gen()->object_iterate(cl);
   827 }
   829 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   830   if (young_gen()->is_in_reserved(addr)) {
   831     assert(young_gen()->is_in(addr),
   832            "addr should be in allocated part of young gen");
   833     // called from os::print_location by find or VMError
   834     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
   835     Unimplemented();
   836   } else if (old_gen()->is_in_reserved(addr)) {
   837     assert(old_gen()->is_in(addr),
   838            "addr should be in allocated part of old gen");
   839     return old_gen()->start_array()->object_start((HeapWord*)addr);
   840   } else if (perm_gen()->is_in_reserved(addr)) {
   841     assert(perm_gen()->is_in(addr),
   842            "addr should be in allocated part of perm gen");
   843     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   844   }
   845   return 0;
   846 }
   848 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   849   return oop(addr)->size();
   850 }
   852 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   853   return block_start(addr) == addr;
   854 }
   856 jlong ParallelScavengeHeap::millis_since_last_gc() {
   857   return UseParallelOldGC ?
   858     PSParallelCompact::millis_since_last_gc() :
   859     PSMarkSweep::millis_since_last_gc();
   860 }
   862 void ParallelScavengeHeap::prepare_for_verify() {
   863   ensure_parsability(false);  // no need to retire TLABs for verification
   864 }
   866 void ParallelScavengeHeap::print() const { print_on(tty); }
   868 void ParallelScavengeHeap::print_on(outputStream* st) const {
   869   young_gen()->print_on(st);
   870   old_gen()->print_on(st);
   871   perm_gen()->print_on(st);
   872 }
   874 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   875   PSScavenge::gc_task_manager()->threads_do(tc);
   876 }
   878 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   879   PSScavenge::gc_task_manager()->print_threads_on(st);
   880 }
   882 void ParallelScavengeHeap::print_tracing_info() const {
   883   if (TraceGen0Time) {
   884     double time = PSScavenge::accumulated_time()->seconds();
   885     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   886   }
   887   if (TraceGen1Time) {
   888     double time = PSMarkSweep::accumulated_time()->seconds();
   889     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   890   }
   891 }
   894 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent, VerifyOption option /* ignored */) {
   895   // Why do we need the total_collections()-filter below?
   896   if (total_collections() > 0) {
   897     if (!silent) {
   898       gclog_or_tty->print("permanent ");
   899     }
   900     perm_gen()->verify(allow_dirty);
   902     if (!silent) {
   903       gclog_or_tty->print("tenured ");
   904     }
   905     old_gen()->verify(allow_dirty);
   907     if (!silent) {
   908       gclog_or_tty->print("eden ");
   909     }
   910     young_gen()->verify(allow_dirty);
   911   }
   912   if (!silent) {
   913     gclog_or_tty->print("ref_proc ");
   914   }
   915   ReferenceProcessor::verify();
   916 }
   918 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   919   if (PrintGCDetails && Verbose) {
   920     gclog_or_tty->print(" "  SIZE_FORMAT
   921                         "->" SIZE_FORMAT
   922                         "("  SIZE_FORMAT ")",
   923                         prev_used, used(), capacity());
   924   } else {
   925     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   926                         "->" SIZE_FORMAT "K"
   927                         "("  SIZE_FORMAT "K)",
   928                         prev_used / K, used() / K, capacity() / K);
   929   }
   930 }
   932 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   933   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   934   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   935   return _psh;
   936 }
   938 // Before delegating the resize to the young generation,
   939 // the reserved space for the young and old generations
   940 // may be changed to accomodate the desired resize.
   941 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   942     size_t survivor_size) {
   943   if (UseAdaptiveGCBoundary) {
   944     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   945       size_policy()->reset_bytes_absorbed_from_eden();
   946       return;  // The generation changed size already.
   947     }
   948     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   949   }
   951   // Delegate the resize to the generation.
   952   _young_gen->resize(eden_size, survivor_size);
   953 }
   955 // Before delegating the resize to the old generation,
   956 // the reserved space for the young and old generations
   957 // may be changed to accomodate the desired resize.
   958 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   959   if (UseAdaptiveGCBoundary) {
   960     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   961       size_policy()->reset_bytes_absorbed_from_eden();
   962       return;  // The generation changed size already.
   963     }
   964     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   965   }
   967   // Delegate the resize to the generation.
   968   _old_gen->resize(desired_free_space);
   969 }
   971 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
   972   // nothing particular
   973 }
   975 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
   976   // nothing particular
   977 }
   979 #ifndef PRODUCT
   980 void ParallelScavengeHeap::record_gen_tops_before_GC() {
   981   if (ZapUnusedHeapArea) {
   982     young_gen()->record_spaces_top();
   983     old_gen()->record_spaces_top();
   984     perm_gen()->record_spaces_top();
   985   }
   986 }
   988 void ParallelScavengeHeap::gen_mangle_unused_area() {
   989   if (ZapUnusedHeapArea) {
   990     young_gen()->eden_space()->mangle_unused_area();
   991     young_gen()->to_space()->mangle_unused_area();
   992     young_gen()->from_space()->mangle_unused_area();
   993     old_gen()->object_space()->mangle_unused_area();
   994     perm_gen()->object_space()->mangle_unused_area();
   995   }
   996 }
   997 #endif

mercurial