src/share/vm/utilities/globalDefinitions.hpp

Tue, 29 Jul 2014 13:54:16 +0200

author
thartmann
date
Tue, 29 Jul 2014 13:54:16 +0200
changeset 7001
b6a8cc1e0d92
parent 6680
78bbf4d43a14
child 7535
7ae4e26cb1e0
child 8368
32b682649973
permissions
-rw-r--r--

8040121: Load variable through a pointer of an incompatible type in src/hotspot/src/share/vm: opto/output.cpp, runtime/sharedRuntimeTrans.cpp, utilities/globalDefinitions_visCPP.hpp
Summary: Fixed parfait warnings in globalDefinitions files by using a union for casts.
Reviewed-by: kvn

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 27
dcubed@3202 28 #ifndef __STDC_FORMAT_MACROS
never@3156 29 #define __STDC_FORMAT_MACROS
dcubed@3202 30 #endif
never@3156 31
stefank@2314 32 #ifdef TARGET_COMPILER_gcc
stefank@2314 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_COMPILER_visCPP
stefank@2314 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 40 #endif
goetz@6461 41 #ifdef TARGET_COMPILER_xlc
goetz@6461 42 # include "utilities/globalDefinitions_xlc.hpp"
goetz@6461 43 #endif
stefank@2314 44
drchase@6680 45 #ifndef PRAGMA_DIAG_PUSH
drchase@6680 46 #define PRAGMA_DIAG_PUSH
drchase@6680 47 #endif
drchase@6680 48 #ifndef PRAGMA_DIAG_POP
drchase@6680 49 #define PRAGMA_DIAG_POP
drchase@6680 50 #endif
drchase@6680 51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 53 #endif
drchase@6680 54 #ifndef PRAGMA_FORMAT_IGNORED
drchase@6680 55 #define PRAGMA_FORMAT_IGNORED
drchase@6680 56 #endif
drchase@6680 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 59 #endif
drchase@6680 60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 62 #endif
drchase@6680 63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 65 #endif
drchase@6680 66 #ifndef ATTRIBUTE_PRINTF
drchase@6680 67 #define ATTRIBUTE_PRINTF(fmt, vargs)
drchase@6680 68 #endif
drchase@6680 69
drchase@6680 70
stefank@2314 71 #include "utilities/macros.hpp"
stefank@2314 72
duke@435 73 // This file holds all globally used constants & types, class (forward)
duke@435 74 // declarations and a few frequently used utility functions.
duke@435 75
duke@435 76 //----------------------------------------------------------------------------------------------------
duke@435 77 // Constants
duke@435 78
duke@435 79 const int LogBytesPerShort = 1;
duke@435 80 const int LogBytesPerInt = 2;
duke@435 81 #ifdef _LP64
duke@435 82 const int LogBytesPerWord = 3;
duke@435 83 #else
duke@435 84 const int LogBytesPerWord = 2;
duke@435 85 #endif
duke@435 86 const int LogBytesPerLong = 3;
duke@435 87
duke@435 88 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 89 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 90 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 91 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 92
duke@435 93 const int LogBitsPerByte = 3;
duke@435 94 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 95 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 96 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 97 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 98
duke@435 99 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 100 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 101 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 102 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 103 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 104
duke@435 105 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 106 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 107
duke@435 108 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 109
coleenp@548 110 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 111 extern int heapOopSize; // Oop within a java object
duke@435 112 const int wordSize = sizeof(char*);
duke@435 113 const int longSize = sizeof(jlong);
duke@435 114 const int jintSize = sizeof(jint);
duke@435 115 const int size_tSize = sizeof(size_t);
duke@435 116
coleenp@548 117 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 118
coleenp@548 119 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 120 extern int LogBitsPerHeapOop;
coleenp@548 121 extern int BytesPerHeapOop;
coleenp@548 122 extern int BitsPerHeapOop;
duke@435 123
kvn@1926 124 // Oop encoding heap max
kvn@1926 125 extern uint64_t OopEncodingHeapMax;
kvn@1926 126
duke@435 127 const int BitsPerJavaInteger = 32;
twisti@994 128 const int BitsPerJavaLong = 64;
duke@435 129 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 130
coleenp@548 131 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 132 const int jintAsStringSize = 12;
coleenp@548 133
duke@435 134 // In fact this should be
duke@435 135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 136 // see os::set_memory_serialize_page()
duke@435 137 #ifdef _LP64
duke@435 138 const int SerializePageShiftCount = 4;
duke@435 139 #else
duke@435 140 const int SerializePageShiftCount = 3;
duke@435 141 #endif
duke@435 142
duke@435 143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 144 // pointer into the heap. We require that object sizes be measured in
duke@435 145 // units of heap words, so that that
duke@435 146 // HeapWord* hw;
duke@435 147 // hw += oop(hw)->foo();
duke@435 148 // works, where foo is a method (like size or scavenge) that returns the
duke@435 149 // object size.
duke@435 150 class HeapWord {
duke@435 151 friend class VMStructs;
jmasa@698 152 private:
duke@435 153 char* i;
jmasa@796 154 #ifndef PRODUCT
jmasa@698 155 public:
jmasa@698 156 char* value() { return i; }
jmasa@698 157 #endif
duke@435 158 };
duke@435 159
coleenp@4037 160 // Analogous opaque struct for metadata allocated from
coleenp@4037 161 // metaspaces.
coleenp@4037 162 class MetaWord {
coleenp@4037 163 friend class VMStructs;
coleenp@4037 164 private:
coleenp@4037 165 char* i;
coleenp@4037 166 };
coleenp@4037 167
duke@435 168 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 169 const int HeapWordSize = sizeof(HeapWord);
duke@435 170 #ifdef _LP64
coleenp@548 171 const int LogHeapWordSize = 3;
duke@435 172 #else
coleenp@548 173 const int LogHeapWordSize = 2;
duke@435 174 #endif
coleenp@548 175 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 177
duke@435 178 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 179 // for the same application running in 64bit. See bug 4967770.
duke@435 180 // The minimum alignment to a heap word size is done. Other
duke@435 181 // parts of the memory system may required additional alignment
duke@435 182 // and are responsible for those alignments.
duke@435 183 #ifdef _LP64
duke@435 184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 185 #else
duke@435 186 #define ScaleForWordSize(x) (x)
duke@435 187 #endif
duke@435 188
duke@435 189 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 190 // bytes.
duke@435 191 inline size_t heap_word_size(size_t byte_size) {
duke@435 192 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 193 }
duke@435 194
duke@435 195
duke@435 196 const size_t K = 1024;
duke@435 197 const size_t M = K*K;
duke@435 198 const size_t G = M*K;
duke@435 199 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 200
duke@435 201 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 202 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 203
duke@435 204 // Constants for converting from a base unit to milli-base units. For
duke@435 205 // example from seconds to milliseconds and microseconds
duke@435 206
duke@435 207 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 208 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 209 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 210
johnc@3339 211 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@3339 212 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@3339 213
duke@435 214 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3766 215 #ifdef _LP64
brutisso@3766 216 if (s >= 10*G) {
brutisso@3766 217 return "G";
brutisso@3766 218 }
brutisso@3766 219 #endif
duke@435 220 if (s >= 10*M) {
duke@435 221 return "M";
duke@435 222 } else if (s >= 10*K) {
duke@435 223 return "K";
duke@435 224 } else {
duke@435 225 return "B";
duke@435 226 }
duke@435 227 }
duke@435 228
brutisso@3762 229 template <class T>
brutisso@3762 230 inline T byte_size_in_proper_unit(T s) {
brutisso@3766 231 #ifdef _LP64
brutisso@3766 232 if (s >= 10*G) {
brutisso@3766 233 return (T)(s/G);
brutisso@3766 234 }
brutisso@3766 235 #endif
duke@435 236 if (s >= 10*M) {
brutisso@3762 237 return (T)(s/M);
duke@435 238 } else if (s >= 10*K) {
brutisso@3762 239 return (T)(s/K);
duke@435 240 } else {
duke@435 241 return s;
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 //----------------------------------------------------------------------------------------------------
duke@435 246 // VM type definitions
duke@435 247
duke@435 248 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 249 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 250
duke@435 251 typedef intptr_t intx;
duke@435 252 typedef uintptr_t uintx;
duke@435 253
duke@435 254 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 255 const intx max_intx = (uintx)min_intx - 1;
duke@435 256 const uintx max_uintx = (uintx)-1;
duke@435 257
duke@435 258 // Table of values:
duke@435 259 // sizeof intx 4 8
duke@435 260 // min_intx 0x80000000 0x8000000000000000
duke@435 261 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 262 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 263
duke@435 264 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 265
duke@435 266
duke@435 267 //----------------------------------------------------------------------------------------------------
duke@435 268 // Java type definitions
duke@435 269
duke@435 270 // All kinds of 'plain' byte addresses
duke@435 271 typedef signed char s_char;
duke@435 272 typedef unsigned char u_char;
duke@435 273 typedef u_char* address;
duke@435 274 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 275 // except for some implementations of a C++
duke@435 276 // linkage pointer to function. Should never
duke@435 277 // need one of those to be placed in this
duke@435 278 // type anyway.
duke@435 279
duke@435 280 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 281 // Where portable means keep ANSI C++ compilers quiet
duke@435 282
duke@435 283 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 284 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 285
duke@435 286 // Utility functions to "portably" make cast to/from function pointers.
duke@435 287
duke@435 288 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 289 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 290 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 291
duke@435 292 // Pointer subtraction.
duke@435 293 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 294 // the range we might need to find differences from one end of the heap
duke@435 295 // to the other.
duke@435 296 // A typical use might be:
duke@435 297 // if (pointer_delta(end(), top()) >= size) {
duke@435 298 // // enough room for an object of size
duke@435 299 // ...
duke@435 300 // and then additions like
duke@435 301 // ... top() + size ...
duke@435 302 // are safe because we know that top() is at least size below end().
duke@435 303 inline size_t pointer_delta(const void* left,
duke@435 304 const void* right,
duke@435 305 size_t element_size) {
duke@435 306 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 307 }
duke@435 308 // A version specialized for HeapWord*'s.
duke@435 309 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 310 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 311 }
coleenp@4037 312 // A version specialized for MetaWord*'s.
coleenp@4037 313 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@4037 314 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@4037 315 }
duke@435 316
duke@435 317 //
duke@435 318 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 319 // directly without at best a warning. This macro accomplishes it silently
duke@435 320 // In every case that is present at this point the value be cast is a pointer
duke@435 321 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 322 // that linkage and a picky compiler would not complain. In other cases because
duke@435 323 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 324 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 325 // picky enough to catch these instances (which are few). It is possible that
duke@435 326 // using templates could fix these for all cases. This use of templates is likely
duke@435 327 // so far from the middle of the road that it is likely to be problematic in
duke@435 328 // many C++ compilers.
duke@435 329 //
duke@435 330 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 331 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 332
duke@435 333 // Unsigned byte types for os and stream.hpp
duke@435 334
duke@435 335 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 336 // the .class file format. See JVM book chapter 4.
duke@435 337
duke@435 338 typedef jubyte u1;
duke@435 339 typedef jushort u2;
duke@435 340 typedef juint u4;
duke@435 341 typedef julong u8;
duke@435 342
duke@435 343 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 344 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 345 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 346 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 347
phh@3427 348 typedef jbyte s1;
phh@3427 349 typedef jshort s2;
phh@3427 350 typedef jint s4;
phh@3427 351 typedef jlong s8;
phh@3427 352
duke@435 353 //----------------------------------------------------------------------------------------------------
duke@435 354 // JVM spec restrictions
duke@435 355
duke@435 356 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 357
tschatzl@5862 358 // Default ProtectionDomainCacheSize values
tschatzl@5862 359
tschatzl@5862 360 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@435 361
duke@435 362 //----------------------------------------------------------------------------------------------------
hseigel@4958 363 // Default and minimum StringTableSize values
hseigel@4277 364
hseigel@4958 365 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5862 366 const int minimumStringTableSize = 1009;
hseigel@4277 367
kevinw@5850 368 const int defaultSymbolTableSize = 20011;
kevinw@5850 369 const int minimumSymbolTableSize = 1009;
kevinw@5850 370
hseigel@4277 371
hseigel@4277 372 //----------------------------------------------------------------------------------------------------
duke@435 373 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 374 //
duke@435 375 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 376
duke@435 377 #define HOTSWAP
duke@435 378
duke@435 379 //----------------------------------------------------------------------------------------------------
duke@435 380 // Object alignment, in units of HeapWords.
duke@435 381 //
duke@435 382 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 383 // reference fields can be naturally aligned.
duke@435 384
kvn@1926 385 extern int MinObjAlignment;
kvn@1926 386 extern int MinObjAlignmentInBytes;
kvn@1926 387 extern int MinObjAlignmentInBytesMask;
duke@435 388
kvn@1926 389 extern int LogMinObjAlignment;
kvn@1926 390 extern int LogMinObjAlignmentInBytes;
coleenp@548 391
roland@4159 392 const int LogKlassAlignmentInBytes = 3;
roland@4159 393 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@4159 394 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@4159 395 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@4159 396
roland@4159 397 // Klass encoding metaspace max size
roland@4159 398 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@4159 399
duke@435 400 // Machine dependent stuff
duke@435 401
kvn@6429 402 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
kvn@6429 403 // Include Restricted Transactional Memory lock eliding optimization
kvn@6429 404 #define INCLUDE_RTM_OPT 1
kvn@6429 405 #define RTM_OPT_ONLY(code) code
kvn@6429 406 #else
kvn@6429 407 #define INCLUDE_RTM_OPT 0
kvn@6429 408 #define RTM_OPT_ONLY(code)
kvn@6429 409 #endif
kvn@6429 410 // States of Restricted Transactional Memory usage.
kvn@6429 411 enum RTMState {
kvn@6429 412 NoRTM = 0x2, // Don't use RTM
kvn@6429 413 UseRTM = 0x1, // Use RTM
kvn@6429 414 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
kvn@6429 415 };
kvn@6429 416
stefank@2314 417 #ifdef TARGET_ARCH_x86
stefank@2314 418 # include "globalDefinitions_x86.hpp"
stefank@2314 419 #endif
stefank@2314 420 #ifdef TARGET_ARCH_sparc
stefank@2314 421 # include "globalDefinitions_sparc.hpp"
stefank@2314 422 #endif
stefank@2314 423 #ifdef TARGET_ARCH_zero
stefank@2314 424 # include "globalDefinitions_zero.hpp"
stefank@2314 425 #endif
bobv@2508 426 #ifdef TARGET_ARCH_arm
bobv@2508 427 # include "globalDefinitions_arm.hpp"
bobv@2508 428 #endif
bobv@2508 429 #ifdef TARGET_ARCH_ppc
bobv@2508 430 # include "globalDefinitions_ppc.hpp"
bobv@2508 431 #endif
stefank@2314 432
jprovino@5188 433 /*
jprovino@5402 434 * If a platform does not support native stack walking
jprovino@5188 435 * the platform specific globalDefinitions (above)
jprovino@5402 436 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@5188 437 */
jprovino@5402 438 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@5402 439 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@5188 440 #endif
duke@435 441
goetz@6502 442 // To assure the IRIW property on processors that are not multiple copy
goetz@6502 443 // atomic, sync instructions must be issued between volatile reads to
goetz@6502 444 // assure their ordering, instead of after volatile stores.
goetz@6502 445 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6502 446 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6502 447 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6502 448 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6502 449 #else
goetz@6502 450 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6502 451 #endif
goetz@6502 452
duke@435 453 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 454 // Note: this value must be a power of 2
duke@435 455
duke@435 456 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 457
duke@435 458 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 459 // for use in places like enum definitions that require compile-time constant
duke@435 460 // expressions and a function for all other places so as to get type checking.
duke@435 461
duke@435 462 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 463
stefank@5578 464 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5578 465 return align_size_up_(size, alignment) == size;
stefank@5578 466 }
stefank@5578 467
stefank@5578 468 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5578 469 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5578 470 }
stefank@5578 471
duke@435 472 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 473 return align_size_up_(size, alignment);
duke@435 474 }
duke@435 475
duke@435 476 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 477
duke@435 478 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 479 return align_size_down_(size, alignment);
duke@435 480 }
duke@435 481
stefank@5515 482 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5515 483
stefank@5578 484 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@5578 485 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 486 }
stefank@5578 487
stefank@5578 488 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5578 489 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 490 }
stefank@5578 491
duke@435 492 // Align objects by rounding up their size, in HeapWord units.
duke@435 493
duke@435 494 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 495
duke@435 496 inline intptr_t align_object_size(intptr_t size) {
duke@435 497 return align_size_up(size, MinObjAlignment);
duke@435 498 }
duke@435 499
kvn@1926 500 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 501 return addr == align_object_size(addr);
kvn@1926 502 }
kvn@1926 503
duke@435 504 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 505
duke@435 506 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 507 return align_size_up(offset, HeapWordsPerLong);
duke@435 508 }
duke@435 509
stefank@5515 510 inline void* align_pointer_up(const void* addr, size_t size) {
stefank@5515 511 return (void*) align_size_up_((uintptr_t)addr, size);
stefank@5515 512 }
stefank@5515 513
jwilhelm@6083 514 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@6083 515
jwilhelm@6083 516 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@6083 517 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@6083 518 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@6083 519 }
jwilhelm@6083 520
mikael@4889 521 // Clamp an address to be within a specific page
mikael@4889 522 // 1. If addr is on the page it is returned as is
mikael@4889 523 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4889 524 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4889 525 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4889 526 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4889 527 // address is in the specified page, just return it as is
mikael@4889 528 return addr;
mikael@4889 529 } else if (addr > page_address) {
mikael@4889 530 // address is above specified page, return start of next page
mikael@4889 531 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4889 532 } else {
mikael@4889 533 // address is below specified page, return start of page
mikael@4889 534 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4889 535 }
mikael@4889 536 }
mikael@4889 537
mikael@4889 538
jcoomes@2020 539 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 540 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 541
duke@435 542
duke@435 543 //----------------------------------------------------------------------------------------------------
duke@435 544 // Utility macros for compilers
duke@435 545 // used to silence compiler warnings
duke@435 546
duke@435 547 #define Unused_Variable(var) var
duke@435 548
duke@435 549
duke@435 550 //----------------------------------------------------------------------------------------------------
duke@435 551 // Miscellaneous
duke@435 552
duke@435 553 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 554 // All fabs() callers should call this function instead, which will implicitly
duke@435 555 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 556 // doesn't exist in early versions of Solaris 8.
duke@435 557 inline double fabsd(double value) {
duke@435 558 return fabs(value);
duke@435 559 }
duke@435 560
thartmann@7001 561 //----------------------------------------------------------------------------------------------------
thartmann@7001 562 // Special casts
thartmann@7001 563 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@7001 564 typedef union {
thartmann@7001 565 jfloat f;
thartmann@7001 566 jint i;
thartmann@7001 567 } FloatIntConv;
thartmann@7001 568
thartmann@7001 569 typedef union {
thartmann@7001 570 jdouble d;
thartmann@7001 571 jlong l;
thartmann@7001 572 julong ul;
thartmann@7001 573 } DoubleLongConv;
thartmann@7001 574
thartmann@7001 575 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@7001 576 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@7001 577
thartmann@7001 578 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@7001 579 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@7001 580 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@7001 581
duke@435 582 inline jint low (jlong value) { return jint(value); }
duke@435 583 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 584
duke@435 585 // the fancy casts are a hopefully portable way
duke@435 586 // to do unsigned 32 to 64 bit type conversion
duke@435 587 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 588 *value |= (jlong)(julong)(juint)low; }
duke@435 589
duke@435 590 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 591 *value |= (jlong)high << 32; }
duke@435 592
duke@435 593 inline jlong jlong_from(jint h, jint l) {
duke@435 594 jlong result = 0; // initialization to avoid warning
duke@435 595 set_high(&result, h);
duke@435 596 set_low(&result, l);
duke@435 597 return result;
duke@435 598 }
duke@435 599
duke@435 600 union jlong_accessor {
duke@435 601 jint words[2];
duke@435 602 jlong long_value;
duke@435 603 };
duke@435 604
coleenp@548 605 void basic_types_init(); // cannot define here; uses assert
duke@435 606
duke@435 607
duke@435 608 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 609 enum BasicType {
roland@4159 610 T_BOOLEAN = 4,
roland@4159 611 T_CHAR = 5,
roland@4159 612 T_FLOAT = 6,
roland@4159 613 T_DOUBLE = 7,
roland@4159 614 T_BYTE = 8,
roland@4159 615 T_SHORT = 9,
roland@4159 616 T_INT = 10,
roland@4159 617 T_LONG = 11,
roland@4159 618 T_OBJECT = 12,
roland@4159 619 T_ARRAY = 13,
roland@4159 620 T_VOID = 14,
roland@4159 621 T_ADDRESS = 15,
roland@4159 622 T_NARROWOOP = 16,
roland@4159 623 T_METADATA = 17,
roland@4159 624 T_NARROWKLASS = 18,
roland@4159 625 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@4159 626 T_ILLEGAL = 99
duke@435 627 };
duke@435 628
kvn@464 629 inline bool is_java_primitive(BasicType t) {
kvn@464 630 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 631 }
kvn@464 632
jrose@1145 633 inline bool is_subword_type(BasicType t) {
jrose@1145 634 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 635 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 636 }
jrose@1145 637
jrose@1145 638 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 639 return (t == T_BYTE || t == T_SHORT);
jrose@1145 640 }
jrose@1145 641
duke@435 642 // Convert a char from a classfile signature to a BasicType
duke@435 643 inline BasicType char2type(char c) {
duke@435 644 switch( c ) {
duke@435 645 case 'B': return T_BYTE;
duke@435 646 case 'C': return T_CHAR;
duke@435 647 case 'D': return T_DOUBLE;
duke@435 648 case 'F': return T_FLOAT;
duke@435 649 case 'I': return T_INT;
duke@435 650 case 'J': return T_LONG;
duke@435 651 case 'S': return T_SHORT;
duke@435 652 case 'Z': return T_BOOLEAN;
duke@435 653 case 'V': return T_VOID;
duke@435 654 case 'L': return T_OBJECT;
duke@435 655 case '[': return T_ARRAY;
duke@435 656 }
duke@435 657 return T_ILLEGAL;
duke@435 658 }
duke@435 659
duke@435 660 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 661 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 662 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 663 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 664 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 665 extern BasicType name2type(const char* name);
duke@435 666
duke@435 667 // Auxilary math routines
duke@435 668 // least common multiple
duke@435 669 extern size_t lcm(size_t a, size_t b);
duke@435 670
duke@435 671
duke@435 672 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 673 enum BasicTypeSize {
roland@4159 674 T_BOOLEAN_size = 1,
roland@4159 675 T_CHAR_size = 1,
roland@4159 676 T_FLOAT_size = 1,
roland@4159 677 T_DOUBLE_size = 2,
roland@4159 678 T_BYTE_size = 1,
roland@4159 679 T_SHORT_size = 1,
roland@4159 680 T_INT_size = 1,
roland@4159 681 T_LONG_size = 2,
roland@4159 682 T_OBJECT_size = 1,
roland@4159 683 T_ARRAY_size = 1,
roland@4159 684 T_NARROWOOP_size = 1,
roland@4159 685 T_NARROWKLASS_size = 1,
roland@4159 686 T_VOID_size = 0
duke@435 687 };
duke@435 688
duke@435 689
duke@435 690 // maps a BasicType to its instance field storage type:
duke@435 691 // all sub-word integral types are widened to T_INT
duke@435 692 extern BasicType type2field[T_CONFLICT+1];
duke@435 693 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 694
duke@435 695
duke@435 696 // size in bytes
duke@435 697 enum ArrayElementSize {
roland@4159 698 T_BOOLEAN_aelem_bytes = 1,
roland@4159 699 T_CHAR_aelem_bytes = 2,
roland@4159 700 T_FLOAT_aelem_bytes = 4,
roland@4159 701 T_DOUBLE_aelem_bytes = 8,
roland@4159 702 T_BYTE_aelem_bytes = 1,
roland@4159 703 T_SHORT_aelem_bytes = 2,
roland@4159 704 T_INT_aelem_bytes = 4,
roland@4159 705 T_LONG_aelem_bytes = 8,
duke@435 706 #ifdef _LP64
roland@4159 707 T_OBJECT_aelem_bytes = 8,
roland@4159 708 T_ARRAY_aelem_bytes = 8,
duke@435 709 #else
roland@4159 710 T_OBJECT_aelem_bytes = 4,
roland@4159 711 T_ARRAY_aelem_bytes = 4,
duke@435 712 #endif
roland@4159 713 T_NARROWOOP_aelem_bytes = 4,
roland@4159 714 T_NARROWKLASS_aelem_bytes = 4,
roland@4159 715 T_VOID_aelem_bytes = 0
duke@435 716 };
duke@435 717
kvn@464 718 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 719 #ifdef ASSERT
kvn@464 720 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 721 #else
never@2118 722 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 723 #endif
duke@435 724
duke@435 725
duke@435 726 // JavaValue serves as a container for arbitrary Java values.
duke@435 727
duke@435 728 class JavaValue {
duke@435 729
duke@435 730 public:
duke@435 731 typedef union JavaCallValue {
duke@435 732 jfloat f;
duke@435 733 jdouble d;
duke@435 734 jint i;
duke@435 735 jlong l;
duke@435 736 jobject h;
duke@435 737 } JavaCallValue;
duke@435 738
duke@435 739 private:
duke@435 740 BasicType _type;
duke@435 741 JavaCallValue _value;
duke@435 742
duke@435 743 public:
duke@435 744 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 745
duke@435 746 JavaValue(jfloat value) {
duke@435 747 _type = T_FLOAT;
duke@435 748 _value.f = value;
duke@435 749 }
duke@435 750
duke@435 751 JavaValue(jdouble value) {
duke@435 752 _type = T_DOUBLE;
duke@435 753 _value.d = value;
duke@435 754 }
duke@435 755
duke@435 756 jfloat get_jfloat() const { return _value.f; }
duke@435 757 jdouble get_jdouble() const { return _value.d; }
duke@435 758 jint get_jint() const { return _value.i; }
duke@435 759 jlong get_jlong() const { return _value.l; }
duke@435 760 jobject get_jobject() const { return _value.h; }
duke@435 761 JavaCallValue* get_value_addr() { return &_value; }
duke@435 762 BasicType get_type() const { return _type; }
duke@435 763
duke@435 764 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 765 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 766 void set_jint(jint i) { _value.i = i;}
duke@435 767 void set_jlong(jlong l) { _value.l = l;}
duke@435 768 void set_jobject(jobject h) { _value.h = h;}
duke@435 769 void set_type(BasicType t) { _type = t; }
duke@435 770
duke@435 771 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 772 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 773 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 774 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 775
duke@435 776 };
duke@435 777
duke@435 778
duke@435 779 #define STACK_BIAS 0
duke@435 780 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 781 // in order to extend the reach of the stack pointer.
duke@435 782 #if defined(SPARC) && defined(_LP64)
duke@435 783 #undef STACK_BIAS
duke@435 784 #define STACK_BIAS 0x7ff
duke@435 785 #endif
duke@435 786
duke@435 787
duke@435 788 // TosState describes the top-of-stack state before and after the execution of
duke@435 789 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 790 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 791 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 792 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 793 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 794 // state when it comes to machine representation but is used separately for (oop)
duke@435 795 // type specific operations (e.g. verification code).
duke@435 796
duke@435 797 enum TosState { // describes the tos cache contents
duke@435 798 btos = 0, // byte, bool tos cached
jrose@1161 799 ctos = 1, // char tos cached
jrose@1161 800 stos = 2, // short tos cached
duke@435 801 itos = 3, // int tos cached
duke@435 802 ltos = 4, // long tos cached
duke@435 803 ftos = 5, // float tos cached
duke@435 804 dtos = 6, // double tos cached
duke@435 805 atos = 7, // object cached
duke@435 806 vtos = 8, // tos not cached
duke@435 807 number_of_states,
duke@435 808 ilgl // illegal state: should not occur
duke@435 809 };
duke@435 810
duke@435 811
duke@435 812 inline TosState as_TosState(BasicType type) {
duke@435 813 switch (type) {
duke@435 814 case T_BYTE : return btos;
jrose@1161 815 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@435 816 case T_CHAR : return ctos;
duke@435 817 case T_SHORT : return stos;
duke@435 818 case T_INT : return itos;
duke@435 819 case T_LONG : return ltos;
duke@435 820 case T_FLOAT : return ftos;
duke@435 821 case T_DOUBLE : return dtos;
duke@435 822 case T_VOID : return vtos;
duke@435 823 case T_ARRAY : // fall through
duke@435 824 case T_OBJECT : return atos;
duke@435 825 }
duke@435 826 return ilgl;
duke@435 827 }
duke@435 828
jrose@1161 829 inline BasicType as_BasicType(TosState state) {
jrose@1161 830 switch (state) {
jrose@1161 831 //case ztos: return T_BOOLEAN;//FIXME
jrose@1161 832 case btos : return T_BYTE;
jrose@1161 833 case ctos : return T_CHAR;
jrose@1161 834 case stos : return T_SHORT;
jrose@1161 835 case itos : return T_INT;
jrose@1161 836 case ltos : return T_LONG;
jrose@1161 837 case ftos : return T_FLOAT;
jrose@1161 838 case dtos : return T_DOUBLE;
jrose@1161 839 case atos : return T_OBJECT;
jrose@1161 840 case vtos : return T_VOID;
jrose@1161 841 }
jrose@1161 842 return T_ILLEGAL;
jrose@1161 843 }
jrose@1161 844
duke@435 845
duke@435 846 // Helper function to convert BasicType info into TosState
duke@435 847 // Note: Cannot define here as it uses global constant at the time being.
duke@435 848 TosState as_TosState(BasicType type);
duke@435 849
duke@435 850
duke@435 851 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 852 // information is needed by the safepoint code.
duke@435 853 //
duke@435 854 // There are 4 essential states:
duke@435 855 //
duke@435 856 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 857 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 858 // _thread_in_vm : Executing in the vm
duke@435 859 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 860 //
duke@435 861 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 862 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 863 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 864 //
duke@435 865 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 866 //
duke@435 867 enum JavaThreadState {
duke@435 868 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 869 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 870 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 871 _thread_in_native = 4, // running in native code
duke@435 872 _thread_in_native_trans = 5, // corresponding transition state
duke@435 873 _thread_in_vm = 6, // running in VM
duke@435 874 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 875 _thread_in_Java = 8, // running in Java or in stub code
duke@435 876 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 877 _thread_blocked = 10, // blocked in vm
duke@435 878 _thread_blocked_trans = 11, // corresponding transition state
duke@435 879 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 880 };
duke@435 881
duke@435 882
duke@435 883 // Handy constants for deciding which compiler mode to use.
duke@435 884 enum MethodCompilation {
duke@435 885 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 886 InvalidOSREntryBci = -2
duke@435 887 };
duke@435 888
duke@435 889 // Enumeration to distinguish tiers of compilation
duke@435 890 enum CompLevel {
iveresov@2138 891 CompLevel_any = -1,
iveresov@2138 892 CompLevel_all = -1,
iveresov@2138 893 CompLevel_none = 0, // Interpreter
iveresov@2138 894 CompLevel_simple = 1, // C1
iveresov@2138 895 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 896 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2729 897 CompLevel_full_optimization = 4, // C2 or Shark
duke@435 898
twisti@2729 899 #if defined(COMPILER2) || defined(SHARK)
iveresov@2138 900 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 901 #elif defined(COMPILER1)
iveresov@2138 902 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 903 #else
iveresov@2138 904 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 905 #endif
iveresov@2138 906
iveresov@2138 907 #if defined(TIERED)
iveresov@2138 908 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 909 #elif defined(COMPILER1)
iveresov@2138 910 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2729 911 #elif defined(COMPILER2) || defined(SHARK)
iveresov@2138 912 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 913 #else
iveresov@2138 914 CompLevel_initial_compile = CompLevel_none
iveresov@2138 915 #endif
duke@435 916 };
duke@435 917
iveresov@2138 918 inline bool is_c1_compile(int comp_level) {
iveresov@2138 919 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 920 }
iveresov@2138 921
iveresov@2138 922 inline bool is_c2_compile(int comp_level) {
duke@435 923 return comp_level == CompLevel_full_optimization;
duke@435 924 }
iveresov@2138 925
duke@435 926 inline bool is_highest_tier_compile(int comp_level) {
duke@435 927 return comp_level == CompLevel_highest_tier;
duke@435 928 }
duke@435 929
iignatyev@4908 930 inline bool is_compile(int comp_level) {
iignatyev@4908 931 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4908 932 }
iignatyev@4908 933
duke@435 934 //----------------------------------------------------------------------------------------------------
duke@435 935 // 'Forward' declarations of frequently used classes
duke@435 936 // (in order to reduce interface dependencies & reduce
duke@435 937 // number of unnecessary compilations after changes)
duke@435 938
duke@435 939 class symbolTable;
duke@435 940 class ClassFileStream;
duke@435 941
duke@435 942 class Event;
duke@435 943
duke@435 944 class Thread;
duke@435 945 class VMThread;
duke@435 946 class JavaThread;
duke@435 947 class Threads;
duke@435 948
duke@435 949 class VM_Operation;
duke@435 950 class VMOperationQueue;
duke@435 951
duke@435 952 class CodeBlob;
duke@435 953 class nmethod;
duke@435 954 class OSRAdapter;
duke@435 955 class I2CAdapter;
duke@435 956 class C2IAdapter;
duke@435 957 class CompiledIC;
duke@435 958 class relocInfo;
duke@435 959 class ScopeDesc;
duke@435 960 class PcDesc;
duke@435 961
duke@435 962 class Recompiler;
duke@435 963 class Recompilee;
duke@435 964 class RecompilationPolicy;
duke@435 965 class RFrame;
duke@435 966 class CompiledRFrame;
duke@435 967 class InterpretedRFrame;
duke@435 968
duke@435 969 class frame;
duke@435 970
duke@435 971 class vframe;
duke@435 972 class javaVFrame;
duke@435 973 class interpretedVFrame;
duke@435 974 class compiledVFrame;
duke@435 975 class deoptimizedVFrame;
duke@435 976 class externalVFrame;
duke@435 977 class entryVFrame;
duke@435 978
duke@435 979 class RegisterMap;
duke@435 980
duke@435 981 class Mutex;
duke@435 982 class Monitor;
duke@435 983 class BasicLock;
duke@435 984 class BasicObjectLock;
duke@435 985
duke@435 986 class PeriodicTask;
duke@435 987
duke@435 988 class JavaCallWrapper;
duke@435 989
duke@435 990 class oopDesc;
coleenp@4037 991 class metaDataOopDesc;
duke@435 992
duke@435 993 class NativeCall;
duke@435 994
duke@435 995 class zone;
duke@435 996
duke@435 997 class StubQueue;
duke@435 998
duke@435 999 class outputStream;
duke@435 1000
duke@435 1001 class ResourceArea;
duke@435 1002
duke@435 1003 class DebugInformationRecorder;
duke@435 1004 class ScopeValue;
duke@435 1005 class CompressedStream;
duke@435 1006 class DebugInfoReadStream;
duke@435 1007 class DebugInfoWriteStream;
duke@435 1008 class LocationValue;
duke@435 1009 class ConstantValue;
duke@435 1010 class IllegalValue;
duke@435 1011
duke@435 1012 class PrivilegedElement;
duke@435 1013 class MonitorArray;
duke@435 1014
duke@435 1015 class MonitorInfo;
duke@435 1016
duke@435 1017 class OffsetClosure;
duke@435 1018 class OopMapCache;
duke@435 1019 class InterpreterOopMap;
duke@435 1020 class OopMapCacheEntry;
duke@435 1021 class OSThread;
duke@435 1022
duke@435 1023 typedef int (*OSThreadStartFunc)(void*);
duke@435 1024
duke@435 1025 class Space;
duke@435 1026
duke@435 1027 class JavaValue;
duke@435 1028 class methodHandle;
duke@435 1029 class JavaCallArguments;
duke@435 1030
duke@435 1031 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 1032
duke@435 1033 extern void basic_fatal(const char* msg);
duke@435 1034
duke@435 1035
duke@435 1036 //----------------------------------------------------------------------------------------------------
duke@435 1037 // Special constants for debugging
duke@435 1038
duke@435 1039 const jint badInt = -3; // generic "bad int" value
duke@435 1040 const long badAddressVal = -2; // generic "bad address" value
duke@435 1041 const long badOopVal = -1; // generic "bad oop" value
duke@435 1042 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 1043 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 1044 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 1045 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 1046 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 1047 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 1048 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@4037 1049 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@435 1050 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 1051 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 1052
duke@435 1053
duke@435 1054 // (These must be implemented as #defines because C++ compilers are
duke@435 1055 // not obligated to inline non-integral constants!)
duke@435 1056 #define badAddress ((address)::badAddressVal)
hseigel@5784 1057 #define badOop (cast_to_oop(::badOopVal))
duke@435 1058 #define badHeapWord (::badHeapWordVal)
hseigel@5784 1059 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@435 1060
jcoomes@1746 1061 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 1062 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 1063
duke@435 1064 //----------------------------------------------------------------------------------------------------
duke@435 1065 // Utility functions for bitfield manipulations
duke@435 1066
duke@435 1067 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 1068 const intptr_t NoBits = 0; // no bits set in a word
duke@435 1069 const jlong NoLongBits = 0; // no bits set in a long
duke@435 1070 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 1071
duke@435 1072 // get a word with the n.th or the right-most or left-most n bits set
duke@435 1073 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 1074 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 1075 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 1076 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 1077
duke@435 1078 // bit-operations using a mask m
duke@435 1079 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 1080 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 1081 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 1082 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 1083 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 1084
duke@435 1085 // bit-operations using the n.th bit
duke@435 1086 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 1087 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 1088 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 1089
duke@435 1090 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 1091 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 1092 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 1093 }
duke@435 1094
duke@435 1095
duke@435 1096 //----------------------------------------------------------------------------------------------------
duke@435 1097 // Utility functions for integers
duke@435 1098
duke@435 1099 // Avoid use of global min/max macros which may cause unwanted double
duke@435 1100 // evaluation of arguments.
duke@435 1101 #ifdef max
duke@435 1102 #undef max
duke@435 1103 #endif
duke@435 1104
duke@435 1105 #ifdef min
duke@435 1106 #undef min
duke@435 1107 #endif
duke@435 1108
duke@435 1109 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 1110 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 1111
duke@435 1112 // It is necessary to use templates here. Having normal overloaded
duke@435 1113 // functions does not work because it is necessary to provide both 32-
duke@435 1114 // and 64-bit overloaded functions, which does not work, and having
duke@435 1115 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 1116 // will be even more error-prone than macros.
duke@435 1117 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 1118 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 1119 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 1120 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 1121 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 1122 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 1123
duke@435 1124 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 1125
duke@435 1126 // true if x is a power of 2, false otherwise
duke@435 1127 inline bool is_power_of_2(intptr_t x) {
duke@435 1128 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 1129 }
duke@435 1130
duke@435 1131 // long version of is_power_of_2
duke@435 1132 inline bool is_power_of_2_long(jlong x) {
duke@435 1133 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 1134 }
duke@435 1135
duke@435 1136 //* largest i such that 2^i <= x
duke@435 1137 // A negative value of 'x' will return '31'
duke@435 1138 inline int log2_intptr(intptr_t x) {
duke@435 1139 int i = -1;
duke@435 1140 uintptr_t p = 1;
duke@435 1141 while (p != 0 && p <= (uintptr_t)x) {
duke@435 1142 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1143 i++; p *= 2;
duke@435 1144 }
duke@435 1145 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1146 // (if p = 0 then overflow occurred and i = 31)
duke@435 1147 return i;
duke@435 1148 }
duke@435 1149
duke@435 1150 //* largest i such that 2^i <= x
duke@435 1151 // A negative value of 'x' will return '63'
duke@435 1152 inline int log2_long(jlong x) {
duke@435 1153 int i = -1;
duke@435 1154 julong p = 1;
duke@435 1155 while (p != 0 && p <= (julong)x) {
duke@435 1156 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1157 i++; p *= 2;
duke@435 1158 }
duke@435 1159 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1160 // (if p = 0 then overflow occurred and i = 63)
duke@435 1161 return i;
duke@435 1162 }
duke@435 1163
duke@435 1164 //* the argument must be exactly a power of 2
duke@435 1165 inline int exact_log2(intptr_t x) {
duke@435 1166 #ifdef ASSERT
duke@435 1167 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1168 #endif
duke@435 1169 return log2_intptr(x);
duke@435 1170 }
duke@435 1171
twisti@1003 1172 //* the argument must be exactly a power of 2
twisti@1003 1173 inline int exact_log2_long(jlong x) {
twisti@1003 1174 #ifdef ASSERT
twisti@1003 1175 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1176 #endif
twisti@1003 1177 return log2_long(x);
twisti@1003 1178 }
twisti@1003 1179
duke@435 1180
duke@435 1181 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1182 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1183 #ifdef ASSERT
duke@435 1184 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1185 #endif
duke@435 1186 const uintx m = s - 1;
duke@435 1187 return mask_bits(x + m, ~m);
duke@435 1188 }
duke@435 1189
duke@435 1190 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1191 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1192 #ifdef ASSERT
duke@435 1193 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1194 #endif
duke@435 1195 const uintx m = s - 1;
duke@435 1196 return mask_bits(x, ~m);
duke@435 1197 }
duke@435 1198
duke@435 1199
duke@435 1200 inline bool is_odd (intx x) { return x & 1; }
duke@435 1201 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1202
duke@435 1203 // "to" should be greater than "from."
duke@435 1204 inline intx byte_size(void* from, void* to) {
duke@435 1205 return (address)to - (address)from;
duke@435 1206 }
duke@435 1207
duke@435 1208 //----------------------------------------------------------------------------------------------------
duke@435 1209 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1210
duke@435 1211 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1212 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1213
duke@435 1214 // Given sequence of four bytes, build into a 32-bit word
duke@435 1215 // following the conventions used in class files.
duke@435 1216 // On the 386, this could be realized with a simple address cast.
duke@435 1217 //
duke@435 1218
duke@435 1219 // This routine takes eight bytes:
duke@435 1220 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1221 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1222 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1223 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1224 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1225 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1226 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1227 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1228 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1229 }
duke@435 1230
duke@435 1231 // This routine takes four bytes:
duke@435 1232 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1233 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1234 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1235 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1236 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1237 }
duke@435 1238
duke@435 1239 // And this one works if the four bytes are contiguous in memory:
duke@435 1240 inline u4 build_u4_from( u1* p ) {
duke@435 1241 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1242 }
duke@435 1243
duke@435 1244 // Ditto for two-byte ints:
duke@435 1245 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1246 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1247 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1248 }
duke@435 1249
duke@435 1250 // And this one works if the two bytes are contiguous in memory:
duke@435 1251 inline u2 build_u2_from( u1* p ) {
duke@435 1252 return build_u2_from( p[0], p[1] );
duke@435 1253 }
duke@435 1254
duke@435 1255 // Ditto for floats:
duke@435 1256 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1257 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1258 return *(jfloat*)&u;
duke@435 1259 }
duke@435 1260
duke@435 1261 inline jfloat build_float_from( u1* p ) {
duke@435 1262 u4 u = build_u4_from( p );
duke@435 1263 return *(jfloat*)&u;
duke@435 1264 }
duke@435 1265
duke@435 1266
duke@435 1267 // now (64-bit) longs
duke@435 1268
duke@435 1269 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1270 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1271 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1272 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1273 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1274 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1275 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1276 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1277 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1278 }
duke@435 1279
duke@435 1280 inline jlong build_long_from( u1* p ) {
duke@435 1281 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1282 }
duke@435 1283
duke@435 1284
duke@435 1285 // Doubles, too!
duke@435 1286 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1287 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1288 return *(jdouble*)&u;
duke@435 1289 }
duke@435 1290
duke@435 1291 inline jdouble build_double_from( u1* p ) {
duke@435 1292 jlong u = build_long_from( p );
duke@435 1293 return *(jdouble*)&u;
duke@435 1294 }
duke@435 1295
duke@435 1296
duke@435 1297 // Portable routines to go the other way:
duke@435 1298
duke@435 1299 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1300 c1 = u1(x >> 8);
duke@435 1301 c2 = u1(x);
duke@435 1302 }
duke@435 1303
duke@435 1304 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1305 explode_short_to( x, p[0], p[1]);
duke@435 1306 }
duke@435 1307
duke@435 1308 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1309 c1 = u1(x >> 24);
duke@435 1310 c2 = u1(x >> 16);
duke@435 1311 c3 = u1(x >> 8);
duke@435 1312 c4 = u1(x);
duke@435 1313 }
duke@435 1314
duke@435 1315 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1316 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1317 }
duke@435 1318
duke@435 1319
duke@435 1320 // Pack and extract shorts to/from ints:
duke@435 1321
duke@435 1322 inline int extract_low_short_from_int(jint x) {
duke@435 1323 return x & 0xffff;
duke@435 1324 }
duke@435 1325
duke@435 1326 inline int extract_high_short_from_int(jint x) {
duke@435 1327 return (x >> 16) & 0xffff;
duke@435 1328 }
duke@435 1329
duke@435 1330 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1331 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1332 }
duke@435 1333
drchase@6680 1334 // Convert pointer to intptr_t, for use in printing pointers.
drchase@6680 1335 inline intptr_t p2i(const void * p) {
drchase@6680 1336 return (intptr_t) p;
drchase@6680 1337 }
drchase@6680 1338
duke@435 1339 // Printf-style formatters for fixed- and variable-width types as pointers and
never@3156 1340 // integers. These are derived from the definitions in inttypes.h. If the platform
never@3156 1341 // doesn't provide appropriate definitions, they should be provided in
never@3156 1342 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1343
tonyp@2643 1344 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1345
duke@435 1346 // Format 32-bit quantities.
never@3156 1347 #define INT32_FORMAT "%" PRId32
never@3156 1348 #define UINT32_FORMAT "%" PRIu32
never@3156 1349 #define INT32_FORMAT_W(width) "%" #width PRId32
never@3156 1350 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@435 1351
never@3156 1352 #define PTR32_FORMAT "0x%08" PRIx32
duke@435 1353
duke@435 1354 // Format 64-bit quantities.
never@3156 1355 #define INT64_FORMAT "%" PRId64
never@3156 1356 #define UINT64_FORMAT "%" PRIu64
drchase@6680 1357 #define UINT64_FORMAT_X "%" PRIx64
never@3156 1358 #define INT64_FORMAT_W(width) "%" #width PRId64
never@3156 1359 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@435 1360
never@3156 1361 #define PTR64_FORMAT "0x%016" PRIx64
duke@435 1362
hseigel@4465 1363 // Format jlong, if necessary
hseigel@4465 1364 #ifndef JLONG_FORMAT
hseigel@4465 1365 #define JLONG_FORMAT INT64_FORMAT
hseigel@4465 1366 #endif
hseigel@4465 1367 #ifndef JULONG_FORMAT
hseigel@4465 1368 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4465 1369 #endif
hseigel@4465 1370
never@3156 1371 // Format pointers which change size between 32- and 64-bit.
duke@435 1372 #ifdef _LP64
never@3156 1373 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@3156 1374 #define PTR_FORMAT "0x%016" PRIxPTR
duke@435 1375 #else // !_LP64
never@3156 1376 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@3156 1377 #define PTR_FORMAT "0x%08" PRIxPTR
duke@435 1378 #endif // _LP64
duke@435 1379
drchase@6680 1380 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
drchase@6680 1381
drchase@6680 1382 #define SSIZE_FORMAT "%" PRIdPTR
drchase@6680 1383 #define SIZE_FORMAT "%" PRIuPTR
drchase@6680 1384 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
drchase@6680 1385 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
drchase@6680 1386 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
drchase@6680 1387 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
never@3156 1388
never@3156 1389 #define INTX_FORMAT "%" PRIdPTR
never@3156 1390 #define UINTX_FORMAT "%" PRIuPTR
never@3156 1391 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1392 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1393
duke@435 1394
duke@435 1395 // Enable zap-a-lot if in debug version.
duke@435 1396
duke@435 1397 # ifdef ASSERT
duke@435 1398 # ifdef COMPILER2
duke@435 1399 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1400 #endif /* COMPILER2 */
duke@435 1401 # endif /* ASSERT */
duke@435 1402
duke@435 1403 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1404
coleenp@4295 1405 // Dereference vptr
coleenp@4295 1406 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@4295 1407 // word. If there are exceptions, this function needs to be made compiler
coleenp@4295 1408 // specific.
coleenp@6678 1409 static inline void* dereference_vptr(const void* addr) {
coleenp@4295 1410 return *(void**)addr;
coleenp@4295 1411 }
coleenp@4295 1412
mikael@4889 1413 #ifndef PRODUCT
mikael@4889 1414
mikael@4889 1415 // For unit testing only
mikael@4889 1416 class GlobalDefinitions {
mikael@4889 1417 public:
mikael@4889 1418 static void test_globals();
mikael@4889 1419 };
mikael@4889 1420
mikael@4889 1421 #endif // PRODUCT
mikael@4889 1422
stefank@2314 1423 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial