src/share/vm/utilities/globalDefinitions.hpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1005
dca06e7f503d
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
twisti@994 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // This file holds all globally used constants & types, class (forward)
duke@435 26 // declarations and a few frequently used utility functions.
duke@435 27
duke@435 28 //----------------------------------------------------------------------------------------------------
duke@435 29 // Constants
duke@435 30
duke@435 31 const int LogBytesPerShort = 1;
duke@435 32 const int LogBytesPerInt = 2;
duke@435 33 #ifdef _LP64
duke@435 34 const int LogBytesPerWord = 3;
duke@435 35 #else
duke@435 36 const int LogBytesPerWord = 2;
duke@435 37 #endif
duke@435 38 const int LogBytesPerLong = 3;
duke@435 39
duke@435 40 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 41 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 42 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 43 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 44
duke@435 45 const int LogBitsPerByte = 3;
duke@435 46 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 47 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 48 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 49 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 50
duke@435 51 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 52 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 53 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 54 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 55 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 56
duke@435 57 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 58 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 59
duke@435 60 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 61
coleenp@548 62 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 63 extern int heapOopSize; // Oop within a java object
duke@435 64 const int wordSize = sizeof(char*);
duke@435 65 const int longSize = sizeof(jlong);
duke@435 66 const int jintSize = sizeof(jint);
duke@435 67 const int size_tSize = sizeof(size_t);
duke@435 68
coleenp@548 69 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 70
coleenp@548 71 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 72 extern int LogBitsPerHeapOop;
coleenp@548 73 extern int BytesPerHeapOop;
coleenp@548 74 extern int BitsPerHeapOop;
duke@435 75
duke@435 76 const int BitsPerJavaInteger = 32;
twisti@994 77 const int BitsPerJavaLong = 64;
duke@435 78 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 79
coleenp@548 80 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 81 const int jintAsStringSize = 12;
coleenp@548 82
duke@435 83 // In fact this should be
duke@435 84 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 85 // see os::set_memory_serialize_page()
duke@435 86 #ifdef _LP64
duke@435 87 const int SerializePageShiftCount = 4;
duke@435 88 #else
duke@435 89 const int SerializePageShiftCount = 3;
duke@435 90 #endif
duke@435 91
duke@435 92 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 93 // pointer into the heap. We require that object sizes be measured in
duke@435 94 // units of heap words, so that that
duke@435 95 // HeapWord* hw;
duke@435 96 // hw += oop(hw)->foo();
duke@435 97 // works, where foo is a method (like size or scavenge) that returns the
duke@435 98 // object size.
duke@435 99 class HeapWord {
duke@435 100 friend class VMStructs;
jmasa@698 101 private:
duke@435 102 char* i;
jmasa@796 103 #ifndef PRODUCT
jmasa@698 104 public:
jmasa@698 105 char* value() { return i; }
jmasa@698 106 #endif
duke@435 107 };
duke@435 108
duke@435 109 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 110 const int HeapWordSize = sizeof(HeapWord);
duke@435 111 #ifdef _LP64
coleenp@548 112 const int LogHeapWordSize = 3;
duke@435 113 #else
coleenp@548 114 const int LogHeapWordSize = 2;
duke@435 115 #endif
coleenp@548 116 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 117 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 118
duke@435 119 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 120 // for the same application running in 64bit. See bug 4967770.
duke@435 121 // The minimum alignment to a heap word size is done. Other
duke@435 122 // parts of the memory system may required additional alignment
duke@435 123 // and are responsible for those alignments.
duke@435 124 #ifdef _LP64
duke@435 125 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 126 #else
duke@435 127 #define ScaleForWordSize(x) (x)
duke@435 128 #endif
duke@435 129
duke@435 130 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 131 // bytes.
duke@435 132 inline size_t heap_word_size(size_t byte_size) {
duke@435 133 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 const size_t K = 1024;
duke@435 138 const size_t M = K*K;
duke@435 139 const size_t G = M*K;
duke@435 140 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 141
duke@435 142 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 143 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 144
duke@435 145 // Constants for converting from a base unit to milli-base units. For
duke@435 146 // example from seconds to milliseconds and microseconds
duke@435 147
duke@435 148 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 149 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 150 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 151
duke@435 152 inline const char* proper_unit_for_byte_size(size_t s) {
duke@435 153 if (s >= 10*M) {
duke@435 154 return "M";
duke@435 155 } else if (s >= 10*K) {
duke@435 156 return "K";
duke@435 157 } else {
duke@435 158 return "B";
duke@435 159 }
duke@435 160 }
duke@435 161
duke@435 162 inline size_t byte_size_in_proper_unit(size_t s) {
duke@435 163 if (s >= 10*M) {
duke@435 164 return s/M;
duke@435 165 } else if (s >= 10*K) {
duke@435 166 return s/K;
duke@435 167 } else {
duke@435 168 return s;
duke@435 169 }
duke@435 170 }
duke@435 171
duke@435 172
duke@435 173 //----------------------------------------------------------------------------------------------------
duke@435 174 // VM type definitions
duke@435 175
duke@435 176 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 177 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 178
duke@435 179 typedef intptr_t intx;
duke@435 180 typedef uintptr_t uintx;
duke@435 181
duke@435 182 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 183 const intx max_intx = (uintx)min_intx - 1;
duke@435 184 const uintx max_uintx = (uintx)-1;
duke@435 185
duke@435 186 // Table of values:
duke@435 187 // sizeof intx 4 8
duke@435 188 // min_intx 0x80000000 0x8000000000000000
duke@435 189 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 190 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 191
duke@435 192 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 193
duke@435 194
duke@435 195 //----------------------------------------------------------------------------------------------------
duke@435 196 // Java type definitions
duke@435 197
duke@435 198 // All kinds of 'plain' byte addresses
duke@435 199 typedef signed char s_char;
duke@435 200 typedef unsigned char u_char;
duke@435 201 typedef u_char* address;
duke@435 202 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 203 // except for some implementations of a C++
duke@435 204 // linkage pointer to function. Should never
duke@435 205 // need one of those to be placed in this
duke@435 206 // type anyway.
duke@435 207
duke@435 208 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 209 // Where portable means keep ANSI C++ compilers quiet
duke@435 210
duke@435 211 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 212 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 213
duke@435 214 // Utility functions to "portably" make cast to/from function pointers.
duke@435 215
duke@435 216 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 217 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 218 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 219
duke@435 220 // Pointer subtraction.
duke@435 221 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 222 // the range we might need to find differences from one end of the heap
duke@435 223 // to the other.
duke@435 224 // A typical use might be:
duke@435 225 // if (pointer_delta(end(), top()) >= size) {
duke@435 226 // // enough room for an object of size
duke@435 227 // ...
duke@435 228 // and then additions like
duke@435 229 // ... top() + size ...
duke@435 230 // are safe because we know that top() is at least size below end().
duke@435 231 inline size_t pointer_delta(const void* left,
duke@435 232 const void* right,
duke@435 233 size_t element_size) {
duke@435 234 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 235 }
duke@435 236 // A version specialized for HeapWord*'s.
duke@435 237 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 238 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 239 }
duke@435 240
duke@435 241 //
duke@435 242 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 243 // directly without at best a warning. This macro accomplishes it silently
duke@435 244 // In every case that is present at this point the value be cast is a pointer
duke@435 245 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 246 // that linkage and a picky compiler would not complain. In other cases because
duke@435 247 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 248 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 249 // picky enough to catch these instances (which are few). It is possible that
duke@435 250 // using templates could fix these for all cases. This use of templates is likely
duke@435 251 // so far from the middle of the road that it is likely to be problematic in
duke@435 252 // many C++ compilers.
duke@435 253 //
duke@435 254 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 255 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 256
duke@435 257 // Unsigned byte types for os and stream.hpp
duke@435 258
duke@435 259 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 260 // the .class file format. See JVM book chapter 4.
duke@435 261
duke@435 262 typedef jubyte u1;
duke@435 263 typedef jushort u2;
duke@435 264 typedef juint u4;
duke@435 265 typedef julong u8;
duke@435 266
duke@435 267 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 268 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 269 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 270 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 271
duke@435 272 //----------------------------------------------------------------------------------------------------
duke@435 273 // JVM spec restrictions
duke@435 274
duke@435 275 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 276
duke@435 277
duke@435 278 //----------------------------------------------------------------------------------------------------
duke@435 279 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 280 //
duke@435 281 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 282
duke@435 283 #define HOTSWAP
duke@435 284
duke@435 285 //----------------------------------------------------------------------------------------------------
duke@435 286 // Object alignment, in units of HeapWords.
duke@435 287 //
duke@435 288 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 289 // reference fields can be naturally aligned.
duke@435 290
duke@435 291 const int MinObjAlignment = HeapWordsPerLong;
duke@435 292 const int MinObjAlignmentInBytes = MinObjAlignment * HeapWordSize;
duke@435 293 const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
duke@435 294
coleenp@548 295 const int LogMinObjAlignment = LogHeapWordsPerLong;
coleenp@548 296 const int LogMinObjAlignmentInBytes = LogMinObjAlignment + LogHeapWordSize;
coleenp@548 297
duke@435 298 // Machine dependent stuff
duke@435 299
duke@435 300 #include "incls/_globalDefinitions_pd.hpp.incl"
duke@435 301
duke@435 302 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 303 // Note: this value must be a power of 2
duke@435 304
duke@435 305 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 306
duke@435 307 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 308 // for use in places like enum definitions that require compile-time constant
duke@435 309 // expressions and a function for all other places so as to get type checking.
duke@435 310
duke@435 311 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 312
duke@435 313 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 314 return align_size_up_(size, alignment);
duke@435 315 }
duke@435 316
duke@435 317 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 318
duke@435 319 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 320 return align_size_down_(size, alignment);
duke@435 321 }
duke@435 322
duke@435 323 // Align objects by rounding up their size, in HeapWord units.
duke@435 324
duke@435 325 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 326
duke@435 327 inline intptr_t align_object_size(intptr_t size) {
duke@435 328 return align_size_up(size, MinObjAlignment);
duke@435 329 }
duke@435 330
duke@435 331 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 332
duke@435 333 #define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
duke@435 334
duke@435 335 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 336 return align_size_up(offset, HeapWordsPerLong);
duke@435 337 }
duke@435 338
duke@435 339 inline bool is_object_aligned(intptr_t offset) {
duke@435 340 return offset == align_object_offset(offset);
duke@435 341 }
duke@435 342
duke@435 343
duke@435 344 //----------------------------------------------------------------------------------------------------
duke@435 345 // Utility macros for compilers
duke@435 346 // used to silence compiler warnings
duke@435 347
duke@435 348 #define Unused_Variable(var) var
duke@435 349
duke@435 350
duke@435 351 //----------------------------------------------------------------------------------------------------
duke@435 352 // Miscellaneous
duke@435 353
duke@435 354 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 355 // All fabs() callers should call this function instead, which will implicitly
duke@435 356 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 357 // doesn't exist in early versions of Solaris 8.
duke@435 358 inline double fabsd(double value) {
duke@435 359 return fabs(value);
duke@435 360 }
duke@435 361
duke@435 362 inline jint low (jlong value) { return jint(value); }
duke@435 363 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 364
duke@435 365 // the fancy casts are a hopefully portable way
duke@435 366 // to do unsigned 32 to 64 bit type conversion
duke@435 367 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 368 *value |= (jlong)(julong)(juint)low; }
duke@435 369
duke@435 370 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 371 *value |= (jlong)high << 32; }
duke@435 372
duke@435 373 inline jlong jlong_from(jint h, jint l) {
duke@435 374 jlong result = 0; // initialization to avoid warning
duke@435 375 set_high(&result, h);
duke@435 376 set_low(&result, l);
duke@435 377 return result;
duke@435 378 }
duke@435 379
duke@435 380 union jlong_accessor {
duke@435 381 jint words[2];
duke@435 382 jlong long_value;
duke@435 383 };
duke@435 384
coleenp@548 385 void basic_types_init(); // cannot define here; uses assert
duke@435 386
duke@435 387
duke@435 388 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 389 enum BasicType {
duke@435 390 T_BOOLEAN = 4,
duke@435 391 T_CHAR = 5,
duke@435 392 T_FLOAT = 6,
duke@435 393 T_DOUBLE = 7,
duke@435 394 T_BYTE = 8,
duke@435 395 T_SHORT = 9,
duke@435 396 T_INT = 10,
duke@435 397 T_LONG = 11,
duke@435 398 T_OBJECT = 12,
duke@435 399 T_ARRAY = 13,
duke@435 400 T_VOID = 14,
duke@435 401 T_ADDRESS = 15,
coleenp@548 402 T_NARROWOOP= 16,
coleenp@548 403 T_CONFLICT = 17, // for stack value type with conflicting contents
duke@435 404 T_ILLEGAL = 99
duke@435 405 };
duke@435 406
kvn@464 407 inline bool is_java_primitive(BasicType t) {
kvn@464 408 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 409 }
kvn@464 410
duke@435 411 // Convert a char from a classfile signature to a BasicType
duke@435 412 inline BasicType char2type(char c) {
duke@435 413 switch( c ) {
duke@435 414 case 'B': return T_BYTE;
duke@435 415 case 'C': return T_CHAR;
duke@435 416 case 'D': return T_DOUBLE;
duke@435 417 case 'F': return T_FLOAT;
duke@435 418 case 'I': return T_INT;
duke@435 419 case 'J': return T_LONG;
duke@435 420 case 'S': return T_SHORT;
duke@435 421 case 'Z': return T_BOOLEAN;
duke@435 422 case 'V': return T_VOID;
duke@435 423 case 'L': return T_OBJECT;
duke@435 424 case '[': return T_ARRAY;
duke@435 425 }
duke@435 426 return T_ILLEGAL;
duke@435 427 }
duke@435 428
duke@435 429 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 430 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 431 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 432 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 433 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 434 extern BasicType name2type(const char* name);
duke@435 435
duke@435 436 // Auxilary math routines
duke@435 437 // least common multiple
duke@435 438 extern size_t lcm(size_t a, size_t b);
duke@435 439
duke@435 440
duke@435 441 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 442 enum BasicTypeSize {
duke@435 443 T_BOOLEAN_size = 1,
duke@435 444 T_CHAR_size = 1,
duke@435 445 T_FLOAT_size = 1,
duke@435 446 T_DOUBLE_size = 2,
duke@435 447 T_BYTE_size = 1,
duke@435 448 T_SHORT_size = 1,
duke@435 449 T_INT_size = 1,
duke@435 450 T_LONG_size = 2,
duke@435 451 T_OBJECT_size = 1,
duke@435 452 T_ARRAY_size = 1,
coleenp@548 453 T_NARROWOOP_size = 1,
duke@435 454 T_VOID_size = 0
duke@435 455 };
duke@435 456
duke@435 457
duke@435 458 // maps a BasicType to its instance field storage type:
duke@435 459 // all sub-word integral types are widened to T_INT
duke@435 460 extern BasicType type2field[T_CONFLICT+1];
duke@435 461 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 462
duke@435 463
duke@435 464 // size in bytes
duke@435 465 enum ArrayElementSize {
duke@435 466 T_BOOLEAN_aelem_bytes = 1,
duke@435 467 T_CHAR_aelem_bytes = 2,
duke@435 468 T_FLOAT_aelem_bytes = 4,
duke@435 469 T_DOUBLE_aelem_bytes = 8,
duke@435 470 T_BYTE_aelem_bytes = 1,
duke@435 471 T_SHORT_aelem_bytes = 2,
duke@435 472 T_INT_aelem_bytes = 4,
duke@435 473 T_LONG_aelem_bytes = 8,
duke@435 474 #ifdef _LP64
duke@435 475 T_OBJECT_aelem_bytes = 8,
duke@435 476 T_ARRAY_aelem_bytes = 8,
duke@435 477 #else
duke@435 478 T_OBJECT_aelem_bytes = 4,
duke@435 479 T_ARRAY_aelem_bytes = 4,
duke@435 480 #endif
coleenp@548 481 T_NARROWOOP_aelem_bytes = 4,
duke@435 482 T_VOID_aelem_bytes = 0
duke@435 483 };
duke@435 484
kvn@464 485 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 486 #ifdef ASSERT
kvn@464 487 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 488 #else
kvn@464 489 inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
kvn@464 490 #endif
duke@435 491
duke@435 492
duke@435 493 // JavaValue serves as a container for arbitrary Java values.
duke@435 494
duke@435 495 class JavaValue {
duke@435 496
duke@435 497 public:
duke@435 498 typedef union JavaCallValue {
duke@435 499 jfloat f;
duke@435 500 jdouble d;
duke@435 501 jint i;
duke@435 502 jlong l;
duke@435 503 jobject h;
duke@435 504 } JavaCallValue;
duke@435 505
duke@435 506 private:
duke@435 507 BasicType _type;
duke@435 508 JavaCallValue _value;
duke@435 509
duke@435 510 public:
duke@435 511 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 512
duke@435 513 JavaValue(jfloat value) {
duke@435 514 _type = T_FLOAT;
duke@435 515 _value.f = value;
duke@435 516 }
duke@435 517
duke@435 518 JavaValue(jdouble value) {
duke@435 519 _type = T_DOUBLE;
duke@435 520 _value.d = value;
duke@435 521 }
duke@435 522
duke@435 523 jfloat get_jfloat() const { return _value.f; }
duke@435 524 jdouble get_jdouble() const { return _value.d; }
duke@435 525 jint get_jint() const { return _value.i; }
duke@435 526 jlong get_jlong() const { return _value.l; }
duke@435 527 jobject get_jobject() const { return _value.h; }
duke@435 528 JavaCallValue* get_value_addr() { return &_value; }
duke@435 529 BasicType get_type() const { return _type; }
duke@435 530
duke@435 531 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 532 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 533 void set_jint(jint i) { _value.i = i;}
duke@435 534 void set_jlong(jlong l) { _value.l = l;}
duke@435 535 void set_jobject(jobject h) { _value.h = h;}
duke@435 536 void set_type(BasicType t) { _type = t; }
duke@435 537
duke@435 538 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 539 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 540 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 541 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 542
duke@435 543 };
duke@435 544
duke@435 545
duke@435 546 #define STACK_BIAS 0
duke@435 547 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 548 // in order to extend the reach of the stack pointer.
duke@435 549 #if defined(SPARC) && defined(_LP64)
duke@435 550 #undef STACK_BIAS
duke@435 551 #define STACK_BIAS 0x7ff
duke@435 552 #endif
duke@435 553
duke@435 554
duke@435 555 // TosState describes the top-of-stack state before and after the execution of
duke@435 556 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 557 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 558 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 559 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 560 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 561 // state when it comes to machine representation but is used separately for (oop)
duke@435 562 // type specific operations (e.g. verification code).
duke@435 563
duke@435 564 enum TosState { // describes the tos cache contents
duke@435 565 btos = 0, // byte, bool tos cached
duke@435 566 ctos = 1, // short, char tos cached
duke@435 567 stos = 2, // short, char tos cached
duke@435 568 itos = 3, // int tos cached
duke@435 569 ltos = 4, // long tos cached
duke@435 570 ftos = 5, // float tos cached
duke@435 571 dtos = 6, // double tos cached
duke@435 572 atos = 7, // object cached
duke@435 573 vtos = 8, // tos not cached
duke@435 574 number_of_states,
duke@435 575 ilgl // illegal state: should not occur
duke@435 576 };
duke@435 577
duke@435 578
duke@435 579 inline TosState as_TosState(BasicType type) {
duke@435 580 switch (type) {
duke@435 581 case T_BYTE : return btos;
duke@435 582 case T_BOOLEAN: return btos;
duke@435 583 case T_CHAR : return ctos;
duke@435 584 case T_SHORT : return stos;
duke@435 585 case T_INT : return itos;
duke@435 586 case T_LONG : return ltos;
duke@435 587 case T_FLOAT : return ftos;
duke@435 588 case T_DOUBLE : return dtos;
duke@435 589 case T_VOID : return vtos;
duke@435 590 case T_ARRAY : // fall through
duke@435 591 case T_OBJECT : return atos;
duke@435 592 }
duke@435 593 return ilgl;
duke@435 594 }
duke@435 595
duke@435 596
duke@435 597 // Helper function to convert BasicType info into TosState
duke@435 598 // Note: Cannot define here as it uses global constant at the time being.
duke@435 599 TosState as_TosState(BasicType type);
duke@435 600
duke@435 601
duke@435 602 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
duke@435 603
duke@435 604 enum ReferenceType {
duke@435 605 REF_NONE, // Regular class
duke@435 606 REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
duke@435 607 REF_SOFT, // Subclass of java/lang/ref/SoftReference
duke@435 608 REF_WEAK, // Subclass of java/lang/ref/WeakReference
duke@435 609 REF_FINAL, // Subclass of java/lang/ref/FinalReference
duke@435 610 REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
duke@435 611 };
duke@435 612
duke@435 613
duke@435 614 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 615 // information is needed by the safepoint code.
duke@435 616 //
duke@435 617 // There are 4 essential states:
duke@435 618 //
duke@435 619 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 620 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 621 // _thread_in_vm : Executing in the vm
duke@435 622 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 623 //
duke@435 624 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 625 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 626 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 627 //
duke@435 628 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 629 //
duke@435 630 enum JavaThreadState {
duke@435 631 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 632 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 633 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 634 _thread_in_native = 4, // running in native code
duke@435 635 _thread_in_native_trans = 5, // corresponding transition state
duke@435 636 _thread_in_vm = 6, // running in VM
duke@435 637 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 638 _thread_in_Java = 8, // running in Java or in stub code
duke@435 639 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 640 _thread_blocked = 10, // blocked in vm
duke@435 641 _thread_blocked_trans = 11, // corresponding transition state
duke@435 642 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 643 };
duke@435 644
duke@435 645
duke@435 646 // Handy constants for deciding which compiler mode to use.
duke@435 647 enum MethodCompilation {
duke@435 648 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 649 InvalidOSREntryBci = -2
duke@435 650 };
duke@435 651
duke@435 652 // Enumeration to distinguish tiers of compilation
duke@435 653 enum CompLevel {
duke@435 654 CompLevel_none = 0,
duke@435 655 CompLevel_fast_compile = 1,
duke@435 656 CompLevel_full_optimization = 2,
duke@435 657
duke@435 658 CompLevel_highest_tier = CompLevel_full_optimization,
duke@435 659 #ifdef TIERED
duke@435 660 CompLevel_initial_compile = CompLevel_fast_compile
duke@435 661 #else
duke@435 662 CompLevel_initial_compile = CompLevel_full_optimization
duke@435 663 #endif // TIERED
duke@435 664 };
duke@435 665
duke@435 666 inline bool is_tier1_compile(int comp_level) {
duke@435 667 return comp_level == CompLevel_fast_compile;
duke@435 668 }
duke@435 669 inline bool is_tier2_compile(int comp_level) {
duke@435 670 return comp_level == CompLevel_full_optimization;
duke@435 671 }
duke@435 672 inline bool is_highest_tier_compile(int comp_level) {
duke@435 673 return comp_level == CompLevel_highest_tier;
duke@435 674 }
duke@435 675
duke@435 676 //----------------------------------------------------------------------------------------------------
duke@435 677 // 'Forward' declarations of frequently used classes
duke@435 678 // (in order to reduce interface dependencies & reduce
duke@435 679 // number of unnecessary compilations after changes)
duke@435 680
duke@435 681 class symbolTable;
duke@435 682 class ClassFileStream;
duke@435 683
duke@435 684 class Event;
duke@435 685
duke@435 686 class Thread;
duke@435 687 class VMThread;
duke@435 688 class JavaThread;
duke@435 689 class Threads;
duke@435 690
duke@435 691 class VM_Operation;
duke@435 692 class VMOperationQueue;
duke@435 693
duke@435 694 class CodeBlob;
duke@435 695 class nmethod;
duke@435 696 class OSRAdapter;
duke@435 697 class I2CAdapter;
duke@435 698 class C2IAdapter;
duke@435 699 class CompiledIC;
duke@435 700 class relocInfo;
duke@435 701 class ScopeDesc;
duke@435 702 class PcDesc;
duke@435 703
duke@435 704 class Recompiler;
duke@435 705 class Recompilee;
duke@435 706 class RecompilationPolicy;
duke@435 707 class RFrame;
duke@435 708 class CompiledRFrame;
duke@435 709 class InterpretedRFrame;
duke@435 710
duke@435 711 class frame;
duke@435 712
duke@435 713 class vframe;
duke@435 714 class javaVFrame;
duke@435 715 class interpretedVFrame;
duke@435 716 class compiledVFrame;
duke@435 717 class deoptimizedVFrame;
duke@435 718 class externalVFrame;
duke@435 719 class entryVFrame;
duke@435 720
duke@435 721 class RegisterMap;
duke@435 722
duke@435 723 class Mutex;
duke@435 724 class Monitor;
duke@435 725 class BasicLock;
duke@435 726 class BasicObjectLock;
duke@435 727
duke@435 728 class PeriodicTask;
duke@435 729
duke@435 730 class JavaCallWrapper;
duke@435 731
duke@435 732 class oopDesc;
duke@435 733
duke@435 734 class NativeCall;
duke@435 735
duke@435 736 class zone;
duke@435 737
duke@435 738 class StubQueue;
duke@435 739
duke@435 740 class outputStream;
duke@435 741
duke@435 742 class ResourceArea;
duke@435 743
duke@435 744 class DebugInformationRecorder;
duke@435 745 class ScopeValue;
duke@435 746 class CompressedStream;
duke@435 747 class DebugInfoReadStream;
duke@435 748 class DebugInfoWriteStream;
duke@435 749 class LocationValue;
duke@435 750 class ConstantValue;
duke@435 751 class IllegalValue;
duke@435 752
duke@435 753 class PrivilegedElement;
duke@435 754 class MonitorArray;
duke@435 755
duke@435 756 class MonitorInfo;
duke@435 757
duke@435 758 class OffsetClosure;
duke@435 759 class OopMapCache;
duke@435 760 class InterpreterOopMap;
duke@435 761 class OopMapCacheEntry;
duke@435 762 class OSThread;
duke@435 763
duke@435 764 typedef int (*OSThreadStartFunc)(void*);
duke@435 765
duke@435 766 class Space;
duke@435 767
duke@435 768 class JavaValue;
duke@435 769 class methodHandle;
duke@435 770 class JavaCallArguments;
duke@435 771
duke@435 772 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 773
duke@435 774 extern void basic_fatal(const char* msg);
duke@435 775
duke@435 776
duke@435 777 //----------------------------------------------------------------------------------------------------
duke@435 778 // Special constants for debugging
duke@435 779
duke@435 780 const jint badInt = -3; // generic "bad int" value
duke@435 781 const long badAddressVal = -2; // generic "bad address" value
duke@435 782 const long badOopVal = -1; // generic "bad oop" value
duke@435 783 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 784 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 785 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 786 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 787 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 788 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 789 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
duke@435 790 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 791 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 792
duke@435 793
duke@435 794 // (These must be implemented as #defines because C++ compilers are
duke@435 795 // not obligated to inline non-integral constants!)
duke@435 796 #define badAddress ((address)::badAddressVal)
duke@435 797 #define badOop ((oop)::badOopVal)
duke@435 798 #define badHeapWord (::badHeapWordVal)
duke@435 799 #define badJNIHandle ((oop)::badJNIHandleVal)
duke@435 800
duke@435 801
duke@435 802 //----------------------------------------------------------------------------------------------------
duke@435 803 // Utility functions for bitfield manipulations
duke@435 804
duke@435 805 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 806 const intptr_t NoBits = 0; // no bits set in a word
duke@435 807 const jlong NoLongBits = 0; // no bits set in a long
duke@435 808 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 809
duke@435 810 // get a word with the n.th or the right-most or left-most n bits set
duke@435 811 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 812 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 813 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 814 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 815
duke@435 816 // bit-operations using a mask m
duke@435 817 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 818 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 819 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 820 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 821 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 822
duke@435 823 // bit-operations using the n.th bit
duke@435 824 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 825 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 826 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 827
duke@435 828 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 829 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 830 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 831 }
duke@435 832
duke@435 833
duke@435 834 //----------------------------------------------------------------------------------------------------
duke@435 835 // Utility functions for integers
duke@435 836
duke@435 837 // Avoid use of global min/max macros which may cause unwanted double
duke@435 838 // evaluation of arguments.
duke@435 839 #ifdef max
duke@435 840 #undef max
duke@435 841 #endif
duke@435 842
duke@435 843 #ifdef min
duke@435 844 #undef min
duke@435 845 #endif
duke@435 846
duke@435 847 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 848 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 849
duke@435 850 // It is necessary to use templates here. Having normal overloaded
duke@435 851 // functions does not work because it is necessary to provide both 32-
duke@435 852 // and 64-bit overloaded functions, which does not work, and having
duke@435 853 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 854 // will be even more error-prone than macros.
duke@435 855 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 856 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 857 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 858 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 859 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 860 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 861
duke@435 862 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 863
duke@435 864 // true if x is a power of 2, false otherwise
duke@435 865 inline bool is_power_of_2(intptr_t x) {
duke@435 866 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 867 }
duke@435 868
duke@435 869 // long version of is_power_of_2
duke@435 870 inline bool is_power_of_2_long(jlong x) {
duke@435 871 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 872 }
duke@435 873
duke@435 874 //* largest i such that 2^i <= x
duke@435 875 // A negative value of 'x' will return '31'
duke@435 876 inline int log2_intptr(intptr_t x) {
duke@435 877 int i = -1;
duke@435 878 uintptr_t p = 1;
duke@435 879 while (p != 0 && p <= (uintptr_t)x) {
duke@435 880 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 881 i++; p *= 2;
duke@435 882 }
duke@435 883 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 884 // (if p = 0 then overflow occurred and i = 31)
duke@435 885 return i;
duke@435 886 }
duke@435 887
duke@435 888 //* largest i such that 2^i <= x
duke@435 889 // A negative value of 'x' will return '63'
duke@435 890 inline int log2_long(jlong x) {
duke@435 891 int i = -1;
duke@435 892 julong p = 1;
duke@435 893 while (p != 0 && p <= (julong)x) {
duke@435 894 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 895 i++; p *= 2;
duke@435 896 }
duke@435 897 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 898 // (if p = 0 then overflow occurred and i = 63)
duke@435 899 return i;
duke@435 900 }
duke@435 901
duke@435 902 //* the argument must be exactly a power of 2
duke@435 903 inline int exact_log2(intptr_t x) {
duke@435 904 #ifdef ASSERT
duke@435 905 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 906 #endif
duke@435 907 return log2_intptr(x);
duke@435 908 }
duke@435 909
twisti@1003 910 //* the argument must be exactly a power of 2
twisti@1003 911 inline int exact_log2_long(jlong x) {
twisti@1003 912 #ifdef ASSERT
twisti@1003 913 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 914 #endif
twisti@1003 915 return log2_long(x);
twisti@1003 916 }
twisti@1003 917
duke@435 918
duke@435 919 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 920 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 921 #ifdef ASSERT
duke@435 922 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 923 #endif
duke@435 924 const uintx m = s - 1;
duke@435 925 return mask_bits(x + m, ~m);
duke@435 926 }
duke@435 927
duke@435 928 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 929 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 930 #ifdef ASSERT
duke@435 931 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 932 #endif
duke@435 933 const uintx m = s - 1;
duke@435 934 return mask_bits(x, ~m);
duke@435 935 }
duke@435 936
duke@435 937
duke@435 938 inline bool is_odd (intx x) { return x & 1; }
duke@435 939 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 940
duke@435 941 // "to" should be greater than "from."
duke@435 942 inline intx byte_size(void* from, void* to) {
duke@435 943 return (address)to - (address)from;
duke@435 944 }
duke@435 945
duke@435 946 //----------------------------------------------------------------------------------------------------
duke@435 947 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 948
duke@435 949 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 950 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 951
duke@435 952 // Given sequence of four bytes, build into a 32-bit word
duke@435 953 // following the conventions used in class files.
duke@435 954 // On the 386, this could be realized with a simple address cast.
duke@435 955 //
duke@435 956
duke@435 957 // This routine takes eight bytes:
duke@435 958 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 959 return ( u8(c1) << 56 ) & ( u8(0xff) << 56 )
duke@435 960 | ( u8(c2) << 48 ) & ( u8(0xff) << 48 )
duke@435 961 | ( u8(c3) << 40 ) & ( u8(0xff) << 40 )
duke@435 962 | ( u8(c4) << 32 ) & ( u8(0xff) << 32 )
duke@435 963 | ( u8(c5) << 24 ) & ( u8(0xff) << 24 )
duke@435 964 | ( u8(c6) << 16 ) & ( u8(0xff) << 16 )
duke@435 965 | ( u8(c7) << 8 ) & ( u8(0xff) << 8 )
duke@435 966 | ( u8(c8) << 0 ) & ( u8(0xff) << 0 );
duke@435 967 }
duke@435 968
duke@435 969 // This routine takes four bytes:
duke@435 970 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 971 return ( u4(c1) << 24 ) & 0xff000000
duke@435 972 | ( u4(c2) << 16 ) & 0x00ff0000
duke@435 973 | ( u4(c3) << 8 ) & 0x0000ff00
duke@435 974 | ( u4(c4) << 0 ) & 0x000000ff;
duke@435 975 }
duke@435 976
duke@435 977 // And this one works if the four bytes are contiguous in memory:
duke@435 978 inline u4 build_u4_from( u1* p ) {
duke@435 979 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 980 }
duke@435 981
duke@435 982 // Ditto for two-byte ints:
duke@435 983 inline u2 build_u2_from( u1 c1, u1 c2 ) {
duke@435 984 return u2(( u2(c1) << 8 ) & 0xff00
duke@435 985 | ( u2(c2) << 0 ) & 0x00ff);
duke@435 986 }
duke@435 987
duke@435 988 // And this one works if the two bytes are contiguous in memory:
duke@435 989 inline u2 build_u2_from( u1* p ) {
duke@435 990 return build_u2_from( p[0], p[1] );
duke@435 991 }
duke@435 992
duke@435 993 // Ditto for floats:
duke@435 994 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 995 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 996 return *(jfloat*)&u;
duke@435 997 }
duke@435 998
duke@435 999 inline jfloat build_float_from( u1* p ) {
duke@435 1000 u4 u = build_u4_from( p );
duke@435 1001 return *(jfloat*)&u;
duke@435 1002 }
duke@435 1003
duke@435 1004
duke@435 1005 // now (64-bit) longs
duke@435 1006
duke@435 1007 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1008 return ( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )
duke@435 1009 | ( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )
duke@435 1010 | ( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )
duke@435 1011 | ( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )
duke@435 1012 | ( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )
duke@435 1013 | ( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )
duke@435 1014 | ( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )
duke@435 1015 | ( jlong(c8) << 0 ) & ( jlong(0xff) << 0 );
duke@435 1016 }
duke@435 1017
duke@435 1018 inline jlong build_long_from( u1* p ) {
duke@435 1019 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1020 }
duke@435 1021
duke@435 1022
duke@435 1023 // Doubles, too!
duke@435 1024 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1025 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1026 return *(jdouble*)&u;
duke@435 1027 }
duke@435 1028
duke@435 1029 inline jdouble build_double_from( u1* p ) {
duke@435 1030 jlong u = build_long_from( p );
duke@435 1031 return *(jdouble*)&u;
duke@435 1032 }
duke@435 1033
duke@435 1034
duke@435 1035 // Portable routines to go the other way:
duke@435 1036
duke@435 1037 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1038 c1 = u1(x >> 8);
duke@435 1039 c2 = u1(x);
duke@435 1040 }
duke@435 1041
duke@435 1042 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1043 explode_short_to( x, p[0], p[1]);
duke@435 1044 }
duke@435 1045
duke@435 1046 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1047 c1 = u1(x >> 24);
duke@435 1048 c2 = u1(x >> 16);
duke@435 1049 c3 = u1(x >> 8);
duke@435 1050 c4 = u1(x);
duke@435 1051 }
duke@435 1052
duke@435 1053 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1054 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1055 }
duke@435 1056
duke@435 1057
duke@435 1058 // Pack and extract shorts to/from ints:
duke@435 1059
duke@435 1060 inline int extract_low_short_from_int(jint x) {
duke@435 1061 return x & 0xffff;
duke@435 1062 }
duke@435 1063
duke@435 1064 inline int extract_high_short_from_int(jint x) {
duke@435 1065 return (x >> 16) & 0xffff;
duke@435 1066 }
duke@435 1067
duke@435 1068 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1069 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1070 }
duke@435 1071
duke@435 1072 // Printf-style formatters for fixed- and variable-width types as pointers and
duke@435 1073 // integers.
duke@435 1074 //
duke@435 1075 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1076 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
duke@435 1077 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
duke@435 1078 // (in ILP32).
duke@435 1079
duke@435 1080 // Format 32-bit quantities.
duke@435 1081 #define INT32_FORMAT "%d"
duke@435 1082 #define UINT32_FORMAT "%u"
duke@435 1083 #define INT32_FORMAT_W(width) "%" #width "d"
duke@435 1084 #define UINT32_FORMAT_W(width) "%" #width "u"
duke@435 1085
duke@435 1086 #define PTR32_FORMAT "0x%08x"
duke@435 1087
duke@435 1088 // Format 64-bit quantities.
duke@435 1089 #define INT64_FORMAT "%" FORMAT64_MODIFIER "d"
duke@435 1090 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
duke@435 1091 #define PTR64_FORMAT "0x%016" FORMAT64_MODIFIER "x"
duke@435 1092
duke@435 1093 #define INT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "d"
duke@435 1094 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
duke@435 1095
duke@435 1096 // Format macros that allow the field width to be specified. The width must be
duke@435 1097 // a string literal (e.g., "8") or a macro that evaluates to one.
duke@435 1098 #ifdef _LP64
xlu@948 1099 #define UINTX_FORMAT_W(width) UINT64_FORMAT_W(width)
duke@435 1100 #define SSIZE_FORMAT_W(width) INT64_FORMAT_W(width)
duke@435 1101 #define SIZE_FORMAT_W(width) UINT64_FORMAT_W(width)
duke@435 1102 #else
xlu@948 1103 #define UINTX_FORMAT_W(width) UINT32_FORMAT_W(width)
duke@435 1104 #define SSIZE_FORMAT_W(width) INT32_FORMAT_W(width)
duke@435 1105 #define SIZE_FORMAT_W(width) UINT32_FORMAT_W(width)
duke@435 1106 #endif // _LP64
duke@435 1107
duke@435 1108 // Format pointers and size_t (or size_t-like integer types) which change size
xlu@948 1109 // between 32- and 64-bit. The pointer format theoretically should be "%p",
xlu@948 1110 // however, it has different output on different platforms. On Windows, the data
xlu@948 1111 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
xlu@948 1112 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
xlu@948 1113 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
xlu@948 1114 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
xlu@948 1115 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
xlu@948 1116 // using "%x".
duke@435 1117 #ifdef _LP64
duke@435 1118 #define PTR_FORMAT PTR64_FORMAT
duke@435 1119 #define UINTX_FORMAT UINT64_FORMAT
duke@435 1120 #define INTX_FORMAT INT64_FORMAT
duke@435 1121 #define SIZE_FORMAT UINT64_FORMAT
duke@435 1122 #define SSIZE_FORMAT INT64_FORMAT
duke@435 1123 #else // !_LP64
duke@435 1124 #define PTR_FORMAT PTR32_FORMAT
duke@435 1125 #define UINTX_FORMAT UINT32_FORMAT
duke@435 1126 #define INTX_FORMAT INT32_FORMAT
duke@435 1127 #define SIZE_FORMAT UINT32_FORMAT
duke@435 1128 #define SSIZE_FORMAT INT32_FORMAT
duke@435 1129 #endif // _LP64
duke@435 1130
duke@435 1131 #define INTPTR_FORMAT PTR_FORMAT
duke@435 1132
duke@435 1133 // Enable zap-a-lot if in debug version.
duke@435 1134
duke@435 1135 # ifdef ASSERT
duke@435 1136 # ifdef COMPILER2
duke@435 1137 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1138 #endif /* COMPILER2 */
duke@435 1139 # endif /* ASSERT */
duke@435 1140
duke@435 1141 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))

mercurial